Science.gov

Sample records for prototype power assist

  1. Power API Prototype

    SciTech Connect

    2014-12-04

    The software serves two purposes. The first purpose of the software is to prototype the Sandia High Performance Computing Power Application Programming Interface Specification effort. The specification can be found at http://powerapi.sandia.gov . Prototypes of the specification were developed in parallel with the development of the specification. Release of the prototype will be instructive to anyone who intends to implement the specification. More specifically, our vendor collaborators will benefit from the availability of the prototype. The second is in direct support of the PowerInsight power measurement device, which was co-developed with Penguin Computing. The software provides a cluster wide measurement capability enabled by the PowerInsight device. The software can be used by anyone who purchases a PowerInsight device. The software will allow the user to easily collect power and energy information of a node that is instrumented with PowerInsight. The software can also be used as an example prototype implementation of the High Performance Computing Power Application Programming Interface Specification.

  2. Computer-assisted trauma care prototype.

    PubMed

    Holzman, T G; Griffith, A; Hunter, W G; Allen, T; Simpson, R J

    1995-01-01

    Each year, civilian accidental injury results in 150,000 deaths and 400,000 permanent disabilities in the United States alone. The timely creation of and access to dynamically updated trauma patient information at the point of injury is critical to improving the state of care. Such information is often non-existent, incomplete, or inaccurate, resulting in less than adequate treatment by medics and the loss of precious time by medical personnel at the hospital or battalion aid station as they attempt to reassess and treat the patient. The Trauma Care Information Management System (TCIMS) is a prototype system for facilitating information flow and patient processing decisions in the difficult circumstances of civilian and military trauma care activities. The program is jointly supported by the United States Advanced Research Projects Agency (ARPA) and a consortium of universities, medical centers, and private companies. The authors' focus has been the human-computer interface for the system. We are attempting to make TCIMS powerful in the functions it delivers to its users in the field while also making it easy to understand and operate. To develop such a usable system, an approach known as user-centered design is being followed. Medical personnel themselves are collaborating with the authors in its needs analysis, design, and evaluation. Specifically, the prototype being demonstrated was designed through observation of actual civilian trauma care episodes, military trauma care exercises onboard a hospital ship, interviews with civilian and military trauma care providers, repeated evaluation of evolving prototypes by potential users, and study of the literature on trauma care and human factors engineering. This presentation at MedInfo '95 is still another avenue for soliciting guidance from medical information system experts and users. The outcome of this process is a system that provides the functions trauma care personnel desire in a manner that can be easily and

  3. Laser-assisted rapid prototyping in Japan

    NASA Astrophysics Data System (ADS)

    Kathuria, Yash P.

    2002-04-01

    In the recent past years, developments in the rapid prototyping of various parts have taken new dynamic turns in manufacturing technology. Besides the use of new materials, unrelenting demands for the downsizing of miniature components in the micro-domain have expanded the application area of the rapid prototype product. Their requirements with reduced time lag have forced the manufacturers to adopt and develop innovative techniques which meet these demands. In order to overcome this problem, several techniques, predominantly laser stereolithography, have successfully been used in Japan for the past several years to generate a complex micro-/macro part of polymer resin based in two- or three-dimensional domains. The main disadvantage of this process is that they consist of two or more steps for producing metallic/metal-matrix composite microstructures. But recently developed new technologies of selective laser sintering/generating and ballistic particles manufacturing processes offer the possibility of the direct generation of these microstructures in a single step process. The last two processes actually have limitations on the feature size produced, due to the minimum size of the molten droplet. But the selective laser sintering technique can bind the particles by melting together at the interfacial grain contact area only and thus producing smaller feature sizes. Based upon these techniques, the present paper aims to review the current status and the future prospective of laser assisted rapid prototyping in Japan.

  4. Prototype Low Temperature Low Power Cryocooler,

    DTIC Science & Technology

    1982-02-01

    Zimmerman successfully operated a point-Contact Nb SQUID on a four- stage stirling cycle cryocooler with a mechanical drive power of approxi- mately 15...AD-ADL2 622 LAKE SHORE CRYOTRONICS INC WESTERVILLE OH F/6 13/1 PROTOTYPE LOW TEMPERATURE LOW POWER CRYOCOOLER ,(U) FE13 82 W G P IERC E N0001INROC...pPrototype Low Temperature Low Power Cryocooler // It by Warren G. Pierce February 1982 Prepared under Contract No. N00014-80-C-0825 by LAKE SHORE

  5. Approaches for Evaluating the Usability of Assistive Technology Product Prototypes

    ERIC Educational Resources Information Center

    Choi, Young Mi; Sprigle, Stephen H.

    2011-01-01

    User input is an important component to help guide designers in producing a more usable product. Evaluation of prototypes is one method of obtaining this input, but methods for evaluating assistive technology prototypes during design have not been adequately described or evaluated. This project aimed to compare different methods of evaluating…

  6. ICD9 Code Assistant: A prototype.

    PubMed

    Erdal, Selnur; Ding, Jing; Osborn, Carol; Mekhjian, Hagop; Kamal, Jyoti

    2007-10-11

    At The Ohio State University Medical Center (OSUMC) patient reports are available in real time along with other clinical and financial data in the OSUMC Information Warehouse (IW). Using the UMLS Meta Thesaurus we have leveraged the IW to develop a tool that can assist the medical record coders as well as administrators, physicians and researchers to quickly identify clinical concepts and their associated ICD-9 codes.

  7. Electric prototype power processor for a 30cm ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Inouye, L. Y.; Schoenfeld, A. D.

    1977-01-01

    An electrical prototype power processor unit was designed, fabricated and tested with a 30 cm mercury ion engine for primary space propulsion. The power processor unit used the thyristor series resonant inverter as the basic power stage for the high power beam and discharge supplies. A transistorized series resonant inverter processed the remaining power for the low power outputs. The power processor included a digital interface unit to process all input commands and internal telemetry signals so that electric propulsion systems could be operated with a central computer system. The electrical prototype unit included design improvement in the power components such as thyristors, transistors, filters and resonant capacitors, and power transformers and inductors in order to reduce component weight, to minimize losses, and to control the component temperature rise. A design analysis for the electrical prototype is also presented on the component weight, losses, part count and reliability estimate. The electrical prototype was tested in a thermal vacuum environment. Integration tests were performed with a 30 cm ion engine and demonstrated operational compatibility. Electromagnetic interference data was also recorded on the design to provide information for spacecraft integration.

  8. Prototype of a mechanical assistance device for the wrists' flexion-extension movement

    NASA Astrophysics Data System (ADS)

    Politti, Julio C.; Puglisi, Lisandro J.; Farfán, Fernando D.

    2007-11-01

    Using CMU actuators, a Prototype of Mechanical Assistance Device for the Wrist's Flexion Movement (PMA) was developed and probed in a mechanical model, in order to be implemented in a future as a dynamic powered orthosis or as a rehabilitation assistant instrument. Two Mayor Actuators conformed by three CMU actuators arranged in a series configuration, allows to an artificial hand to be placed in four predefined positions: 0°, 20°, 40° and 60°. The synchronism and control of the actuators is achieved with the Programmable Control Module (PCM). It is capable to drive up to six CMU actuators, and possess two different modes of execution: a Manual mode and an Exercise mode. In the Manual Mode, the position of the hand responds directly to the commands of the keyboard of the front panel, and in the Exercise mode, the hand realizes a repetitive and programmed movement. The prototype was tested in 100 positions in the Manual Mode and for 225 works cycles in the Exercise Mode. The relative repetition error was less than 5% for both test. This prototype only consumes 4,15W, which makes it possible to be powered by small rechargeable batteries, allowing its use as a portable device.

  9. Prototype ventricular assist device supported on magnetic bearings

    SciTech Connect

    Allaire, P.E.; Maslen, E.H.; Kim, H.C.; Olsen, D.B.; Bearnson, G.D.

    1995-12-31

    Mechanical artificial hearts are now expected to be used as assist or total replacements for failing human hearts, if a reliable, anatomically appropriate design is developed. Initially, ventricular assist or total replacement devices were pulsatile air driven units containing a flexing polymeric diaphragm and two valves for each ventricle. Many reliability problems were encountered. Recently, attention has been focused on axial or centrifugal continuous flow blood pumps. Magnetic bearings employed in such devices offer the advantages of no required lubrication and large operating clearances. This paper describes a prototype continuous flow pump supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. It delivered 6 liters/min of flow at 100 mm Hg differential head operating at 2,400 rpm in water. The pump is totally magnetically supported in four magnetic bearings - two radial and two thrust. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity, current gains, and open loop stiffness are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water.

  10. Prototype low temperature low power cryocooler

    SciTech Connect

    Pierce, W.G.

    1982-02-01

    Over the past several years considerable interest has developed for low power, low cost mechanical cryocoolers for use in cooling SQUIDS and other superconducting devices. In 1977 Dr. Jim Zimmerman of National Bureau of Standards, Boulder, CO described a stirling cycle cryocooler that exhibited the following desirable characteristics: (1) Low input power (approximately 50 watts connected load); (2) Modest cooling capacity at very low temperature; (3) Constructed of non-ferromagnetic materials; and (4) Simple design. Dr. Zimmerman's intent was to demonstrate the feasibility of constructing a simple low power cryocooler capable of cooling an operational SQUID. After several modifications of the original cryocooler, Dr. Zimmerman successfully operated a point-Contact Nb SQUID on a four-stage stirling cycle cryocooler with a mechanical drive power of approximately 15 watts, and a capacity of few milliwatts at less than 9 Kelvin. During this period Lake Shore Cryotronics, Inc. successfully negotiated an exclusive licensing (for the U.S.) agreement with Oxford Instruments Ltd. concerning a simple patented single stage cryocooler utilizing a slide-valve-controlled gas driven displacer drive head, powered by a remote conventional high speed compressor. The lowest temperature achieved was less than 20 Kelvin with the two stage cylinder/displacer operating at a cycle rate of 2Hz, 100 psi inlet (pressure), and 20 psi outlet pressure.

  11. RHIC GAMMA TRANSITION JUMP POWER SUPPLY PROTOTYPE TEST.

    SciTech Connect

    MI,J.; GANETIS,G.; LOUIE,W.; BRUNO,D.; ZAPASEK,R.; SANDBERG,J.; ZHANG,W.

    2001-06-18

    This paper describes the principle and test results of the prototype RHIC Gamma Transition Jump Power Supply. The jump power supply principle is introduced and illustrated along with diagrams in this paper. The prototype is built with Insulated Gate Bipolar Transistors (IGBT) as current direction switch components. Optically coupled IGBT drivers are used for the jump control switch. The jump time among the power supplies is synchronized from 40 to 60 milliseconds to meet the RHIC beam transition-crossing requirement. The short jump time is needed to avoid particle loss and to preserve the initial bunch area during the transition, thus successfully transferring the ion beams from the acceleration RF system to storage system. There are a total of twenty four jump power supplies that will be used. They synchronously switch the direction of the magnets current while the beam is being accelerated through the transition to reach the top storage energy. Each power supply will energize a group of super conducting magnets, which consists of four magnets that are connected in series. At the end, test results are listed, accompanied with the dummy load current waveform and prototype power supply picture.

  12. Development of Power Assisting Suit

    NASA Astrophysics Data System (ADS)

    Yamamoto, Keijiro; Ishii, Mineo; Hyodo, Kazuhito; Yoshimitsu, Toshihiro; Matsuo, Takashi

    In order to realize a wearable power assisting suit for assisting a nurse to carry a patient in her arms, the power supply and control systems of the suit have to be miniaturized, and it has to be wireless and pipeline-less. The new wearable suit consists of shoulders, arms, back, waist and legs units to be fitted on the nurse's body. The arms, waist and legs have new pneumatic rotary actuators driven directly by micro air pumps supplied by portable Ni-Cd batteries. The muscle forces are sensed by a new muscle hardness sensor utilizing a sensing tip mounted on a force sensing film device. An embedded microcomputer is used for the calculations of control signals. The new wearable suit was applied practically to a human body and a series of movement experiments that weights in the arms were held and taken up and down was performed. Each unit of the suit could transmit assisting torque directly to each joint verifying its practicability.

  13. Expert System For Pilot Assistance: The Challenge Of An Intensive Prototyping

    NASA Astrophysics Data System (ADS)

    Gallo, Paolo; Dabbene, Danilo; Luise, Federica; Giordanengo, Patrizia

    1989-03-01

    It's a common opinion that in the 1990s combat aircraft a new generation of avionic systems with a more integrated hardware and software will take place, involving innovative software about signal processing, sensor fusion and especially expert system software to reduce pilot workload and to improve system performance. AI theories, methodologies and techniques seem to be generally adequate to these purposes, even for complex applications such as those of Pilot Assistance. In some cases, it is not completely clear yet, if the state of the art in this technology is adequate to meet the needs of such a complex project, and we are still in a phase in which the cost-effectiveness of the AI techniques must be fully demonstrated. A lot of companies are carrying on researches and projects in order to evaluate suitability, maturity and costs of these techniques. An effective approach to the acquisition and use of AI techniques may be the definition of a wide project involving the development of prototypes with increasing functions and performance. The real challenge of an intensive and rapid prototyping is double: from the technical point of view one can investigate technologies and pick up information on the suitability and the adequacy of certain techniques; from the project management point of view one can redefine the purposes of the project and their timing considering the gathered experiences. In this paper we describe the methodologies and techniques employed to develop an Expert System for Pilot Assistance while performing route planning or replanning, the functional characteristics of a first prototype working on Lisp machine, and its current architecture. This prototype is able to provide the pilot with dynamic information about the geography of terrain (accessing an object-oriented database), the tactical situation, the meteo conditions and the current state of the aircraft; further, static information about threats characteristics, fuel consumption, aircraft

  14. Sandwich module prototype progress for space solar power

    NASA Astrophysics Data System (ADS)

    Jaffe, Paul; Hodkin, Jason; Harrington, Forest; Person, Clark; Nurnberger, Michael; Nguyen, Bang; LaCava, Susie; Scheiman, Dave; Stewart, Grant; Han, Andrew; Hettwer, Ethan; Rhoades, Daniel

    2014-02-01

    Space solar power (SSP) has been broadly defined as the collection of solar energy in space and its wireless transmission for use on earth. This approach potentially gives the benefit of provision of baseload power while avoiding the losses due to the day/night cycle and tropospheric effects that are associated with terrestrial solar power. Proponents have contended that the implementation of such systems could offer energy security, environmental, and technological advantages to those who would undertake their development. Among recent implementations commonly proposed for SSP, the modular symmetrical concentrator (MSC) and other modular concepts have received considerable attention. Each employs an array of modules for performing conversion of concentrated sunlight into microwaves or laser beams for transmission to earth. While prototypes of such modules have been designed and developed previously by several groups, none have been subjected to the challenging conditions inherent to the space environment and the possible solar concentration levels in which an array of modules might be required to operate. The research described herein details our team's efforts in the development of photovoltaic arrays, power electronics, microwave conversion electronics, and antennas for microwave-based "sandwich" module prototypes. The implementation status and testing results of the prototypes are reviewed.

  15. A Description of a Prototype System at NTID which Merges Computer Assisted Instruction and Instructional Television.

    ERIC Educational Resources Information Center

    vonFeldt, James R.

    The development of a prototype system is described which merges the strengths of computer assisted instruction, data gathering, interactive learning, individualized instruction, and the motion in color, and audio features of television. Creation of the prototype system will allow testing of both TV and interactive CAI/TV strategies in auditory and…

  16. Hub River: A private power prototype. [Independent Power Production

    SciTech Connect

    Sachs, J.L.

    1992-10-01

    This article examines the challenges of financing an independent power project in a developing country. The oil-fired plant is to be located on the Hub River in Baluchistan on the Arabian Sea coast. The topics of the article include a description of the team that put the project together, the financing plans, the risk in the face of political unrest and change of governments, and the beginning of construction of the project.

  17. Prototype continuous flow ventricular assist device supported on magnetic bearings.

    PubMed

    Allaire, P E; Kim, H C; Maslen, E H; Olsen, D B; Bearnson, G B

    1996-06-01

    This article describes a prototype continuous flow pump (CFVAD2) fully supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. The pump delivered 6 L/min of flow at 100 mm Hg of differential pressure head operating at 2,400 rpm in water. The pump is totally supported in 4 magnetic bearings: 2 radial and 2 thrust. Magnetic bearings offer the advantages of no required lubrication and large operating clearances. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity and current gains are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water. Much lower levels of force were found than were expected, allowing for a very significant reduction in the size of the next prototype. Hemolysis levels were measured in the prototype pump and found not to indicate damage to the blood cells.

  18. Design and performance of a prototype fuel cell powered vehicle

    SciTech Connect

    Lehman, P.A.; Chamberlin, C.E.

    1996-12-31

    The Schatz Energy Research Center (SERC) is now engaged in the Palm Desert Renewable Hydrogen Transportation System Project. The Project involves a consortium which includes the City of Palm Desert, SERC, the U.S. Department of Energy, the South Coast Air Quality Management District, and Sandia and Lawrence Livermore National Laboratories. Its goal to develop a clean and sustainable transportation system for a community will be accomplished by producing a fleet of fuel cell vehicles, installing a refueling infrastructure utilizing hydrogen generated from solar and wind power, and developing and staffing a fuel cell service and diagnostic center. We will describe details of the project and performance goals for the fuel cell vehicles and associated peripheral systems. In the past year during the first stage in the project, SERC has designed and built a prototype fuel cell powered personal utility vehicle (PUV). These steps included: (1) Designing, building, and testing a 4.0 kW proton exchange membrane (PEM) fuel cell as a power plant for the PUV. (2) Designing, building and testing peripherals including the air delivery, fuel storage/delivery, refueling, water circulation, cooling, and electrical systems. (3) Devising a control algorithm for the fuel cell power plant in the PUV. (4) Designing and building a test bench in which running conditions in the PUV could be simulated and the fuel cell and its peripheral systems tested. (5) Installing an onboard computer and associated electronics into the PUV (6) Assembling and road testing the PUV.

  19. Design and Implementation of a Prototype with a Standardized Interface for Transducers in Ambient Assisted Living

    PubMed Central

    Dorronzoro, Enrique; Gómez, Isabel; Medina, Ana Verónica; Gómez, José Antonio

    2015-01-01

    Solutions in the field of Ambient Assisted Living (AAL) do not generally use standards to implement a communication interface between sensors and actuators. This makes these applications isolated solutions because it is so difficult to integrate them into new or existing systems. The objective of this research was to design and implement a prototype with a standardized interface for sensors and actuators to facilitate the integration of different solutions in the field of AAL. Our work is based on the roadmap defined by AALIANCE, using motes with TinyOS telosb, 6LoWPAN, sensors, and the IEEE 21451 standard protocol. This prototype allows one to upgrade sensors to a smart status for easy integration with new applications and already existing ones. The prototype has been evaluated for autonomy and performance. As a use case, the prototype has been tested in a serious game previously designed for people with mobility problems, and its advantages and disadvantages have been analysed. PMID:25643057

  20. Design and implementation of a prototype with a standardized interface for transducers in ambient assisted living.

    PubMed

    Dorronzoro, Enrique; Gómez, Isabel; Medina, Ana Verónica; Gómez, José Antonio

    2015-01-29

    Solutions in the field of Ambient Assisted Living (AAL) do not generally use standards to implement a communication interface between sensors and actuators. This makes these applications isolated solutions because it is so difficult to integrate them into new or existing systems. The objective of this research was to design and implement a prototype with a standardized interface for sensors and actuators to facilitate the integration of different solutions in the field of AAL. Our work is based on the roadmap defined by AALIANCE, using motes with TinyOS telosb, 6LoWPAN, sensors, and the IEEE 21451 standard protocol. This prototype allows one to upgrade sensors to a smart status for easy integration with new applications and already existing ones. The prototype has been evaluated for autonomy and performance. As a use case, the prototype has been tested in a serious game previously designed for people with mobility problems, and its advantages and disadvantages have been analysed.

  1. Development of Power Assisting Suit for Assisting Nurse Labor

    NASA Astrophysics Data System (ADS)

    Yamamoto, Keijiro; Hyodo, Kazuhito; Ishii, Mineo; Matsuo, Takashi

    In order to realize a power assisting suit for assisting a nurse caring a patient in her arm, a hardness sensor of muscle using load cell and a pneumatic rotary actuator utilizing pressure cuffs have been developed. The power assisting suit consists of shoulders, arms, waist and legs made of aluminum, and is fitted on the nurse body. The power assisting suit is originated with the concept of a master and slave system in one body. The arms, waist and legs have the pneumatic rotary actuators. The pneumatic rotary actuators are constructed with pressure cuffs sandwiched between thin plates. The action of the arms, waist and legs of the nurse are sensed with the muscle hardness sensor utilizing load cell with diaphragm mounted on a sensing tip. The dent of the sensing tip corresponds to the hardness of the muscle so that exerting muscle force produces electric signal. This paper gives the design and characteristics of the power assisting suit using the cuff type pneumatic rotary actuators and the muscle hardness sensor verifying its practicability.

  2. Rapid algorithm prototyping and implementation for power quality measurement

    NASA Astrophysics Data System (ADS)

    Kołek, Krzysztof; Piątek, Krzysztof

    2015-12-01

    This article presents a Model-Based Design (MBD) approach to rapidly implement power quality (PQ) metering algorithms. Power supply quality is a very important aspect of modern power systems and will become even more important in future smart grids. In this case, maintaining the PQ parameters at the desired level will require efficient implementation methods of the metering algorithms. Currently, the development of new, advanced PQ metering algorithms requires new hardware with adequate computational capability and time intensive, cost-ineffective manual implementations. An alternative, considered here, is an MBD approach. The MBD approach focuses on the modelling and validation of the model by simulation, which is well-supported by a Computer-Aided Engineering (CAE) packages. This paper presents two algorithms utilized in modern PQ meters: a phase-locked loop based on an Enhanced Phase Locked Loop (EPLL), and the flicker measurement according to the IEC 61000-4-15 standard. The algorithms were chosen because of their complexity and non-trivial development. They were first modelled in the MATLAB/Simulink package, then tested and validated in a simulation environment. The models, in the form of Simulink diagrams, were next used to automatically generate C code. The code was compiled and executed in real-time on the Zynq Xilinx platform that combines a reconfigurable Field Programmable Gate Array (FPGA) with a dual-core processor. The MBD development of PQ algorithms, automatic code generation, and compilation form a rapid algorithm prototyping and implementation path for PQ measurements. The main advantage of this approach is the ability to focus on the design, validation, and testing stages while skipping over implementation issues. The code generation process renders production-ready code that can be easily used on the target hardware. This is especially important when standards for PQ measurement are in constant development, and the PQ issues in emerging smart

  3. Development of a prototype magnetically suspended rotor ventricular assist device.

    PubMed

    Bearnson, G B; Maslen, E H; Olsen, D B; Allaire, P E; Khanwilkar, P S; Long, J W; Kim, H C

    1996-01-01

    A continuous flow centrifugal blood pump with magnetically suspended impeller has been designed, constructed, and tested. The system can be functionally divided into three subsystem designs: 1) centrifugal pump and flow paths, 2) magnetic bearings, and 3) brushless DC motor. The centrifugal pump is a Francis vane type design with a designed operating point of 6 L/min flow and 100 mmHg pressure rise at 2,300 RPM. Peak hydraulic efficiency is over 50%. The magnetic bearing system is an all active design with five axes of control. Rotor position sensors were developed as part of the system to provide feedback to a proportional-integral-derivative controller. The motor is a sensorless brushless DC motor. Back electromotive force voltage generated by the motor is used to provide commutation for the motor. No slots are employed in the motor design in order to reduce the radial force that the bearings must generate. Tests pumping blood in vitro were very encouraging; an index of hemolysis of 0.0086 +/- 0.0012 was measured. Further design refinement is needed to reduce power dissipation and size of the device. The concept of using magnetic bearings in a blood pump shows promise in a long-term implantable blood pump.

  4. Zero Power Warming (ZPW) Chamber Prototype Measurements, Barrow, Alaska, 2016

    DOE Data Explorer

    Ely, Kim; Serbin, Shawn; Rogers, Alistair

    2017-02-10

    Data were collected during one season of prototyping associated with the development of a passive warming technology. An experimental chamber, the Zero Power Warming (ZPW) chamber, was fitted with apparatus to modulate venting of a field enclosure and enhance elevation of air temperature by solar radiation. The ZPW chamber was compared with a control chamber (Control) and an ambient open air plot (Ambient). The control chamber was identical to the ZPW chamber but lacked the apparatus necessary to modulate venting, the chamber vents in the control chamber were fixed open for the majority of the trial period. The three plots were located over Carex aquatilis growing in an area of moderately degraded permafrost. Chambers were placed on the same footprints that were used for a similar exercise in 2015 (no data) and therefore those plots had experienced some thaw and degradation prior to 2016. The following data were collected for 80 days at 1 minute intervals from within two chambers and an ambient plot: solar input, chamber venting, air temperature, relative humidity, soil temperature (at 5, 10 and 15 cm), soil moisture, downward and upward NIR.

  5. Toast: The power system operators assistant

    SciTech Connect

    Talukdar, S.N.; Cardozo, E.; Leao, L.

    1986-07-01

    The environments in which power system operators work are becoming more complex. New constraints are appearing, old constraints are tightening, and the number of decision variables is increasing. To cope with these trends, operators need intelligent assistants to help manage information and lighten their decision-making burdens. Such assistants can be divided into two types: Phase-1 assistants for off-line uses and Phase-2 assistants for on-line uses and Phase-2 assistants for on-line, real-time uses. Toast is an evolving Phase-1 assistant. Of the nine possible functions of an assistant, Toast has immediate potential in two-diagnosis and criticism. Its diagnostic knowledge, though hardly complete, is extensive enough to be useful to human operators. In contrast, its abilities to critique proposed courses of action are much less developed and, as yet, consist only of facilities to simulate some of the these courses of action. Toast has been written in Cops, a programming environment that allows for distributed processing and has a readily extensible library of both symbolic and numerical programs. These features should make the task of expanding Toast relatively painless. Of the many directions in which expansions could occur, we plan on adding diagnostic capabilities in the area of power system security. This area was identified in a study as the most worthy of development.

  6. A prototype case-based reasoning human assistant for space crew assessment and mission management

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Holland, Albert W.; Wood, Joanna

    1993-01-01

    We present a prototype human assistant system for space crew assessment and mission management. Our system is based on case episodes from American and Russian space missions and analog environments such as polar stations and undersea habitats. The general domain of small groups in isolated and confined environments represents a near ideal application area for case-based reasoning (CBR) - there are few reliable rules to follow, and most domain knowledge is in the form of cases. We define the problem domain and outline a unique knowledge representation system driven by conflict and communication triggers. The prototype system is able to represent, index, and retrieve case studies of human performance. We index by social, behavioral, and environmental factors. We present the problem domain, our current implementation, our research approach for an operational system, and prototype performance and results.

  7. Innovative power conversion system for the French SFR prototype, ASTRID

    SciTech Connect

    Cachon, L.; Biscarrat, C.; Morin, F.; Haubensack, D.; Rigal, E.; Moro, I.; Baque, F.; Madeleine, S.; Rodriguez, G.; Laffont, G.

    2012-07-01

    In the framework of the French Act of 28 June 2006 about nuclear materials and waste management, the prototype ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), foreseen in operation by the 20's, will have to demonstrate not only the minor actinide transmutation capability, but also the progress made in Sodium Fast Reactor (SFR) technology on an industrial scale, by qualifying innovative options. Some of these options still require improvements, especially in the field of operability and safety. In fact, one of the main issues with the standard steam/water Power Conversion System (PCS) of SFR is the fast and energetic chemical reaction between water and sodium, which could occur in steam generators in case of tube failure. To manage the sodium/water reaction, one way consists in minimizing the impact of such event: hence studies are carried out on steam generator design, improvement of the physical knowledge of this phenomenon, development of numerical simulation to predict the reaction onset and consequences, and associated detection improvement. On the other hand, the other way consists in eliminating sodium/water reaction. In this frame, the CEA contribution to the feasibility evaluation of an alternative innovative PCS (replacing steam/water by 180 bar pressurised nitrogen) is focused on the following main topics: - The parametric study leading to nitrogen selection: the thermodynamic cycle efficiency optimisation on Brayton cycles is performed with several gases at different pressures. - The design of innovative compact heat exchangers for the gas loop: here the key points are the nuclear codification associated with inspection capability, the innovative welding process and the thermal-hydraulic and thermal-mechanic optimisations. After a general introduction of the ASTRID project, this paper presents in detail these different feasibility studies being led on the innovative gas PCS for an SFR. (authors)

  8. Basic Characteristics of New Developed Higher-Voltage Direct-Current Power-Feeding Prototype System

    NASA Astrophysics Data System (ADS)

    Babasaki, Tadatoshi; Tanaka, Toshimitsu; Tanaka, Toru; Nozaki, Yousuke; Aoki, Tadahito; Kurokawa, Fujio

    High efficiency power feeding systems are effective solutions for reducing the ICT power consumption with reducing power consumption of the ICT equipment and cooling systems. A higher voltage direct current (HVDC) power feeding system prototype was produced. This system is composed of a rectifier equipment, power distribution unit, batteries, and the ICT equipment. The configuration is similar to a -48V DC power supply system. The output of the rectifier equipment is 100kW, and the output voltage is 401.4V. This paper present the configuration of the HVDC power feeding system and discuss its basic characteristics in the prototype system.

  9. Wind-assist irrigation and electrical-power generation

    NASA Astrophysics Data System (ADS)

    Nelson, V.; Starcher, K.

    1982-07-01

    A wind turbine is mechanically connected to an existing irrigation well. The system can be operated in three modes: electric motor driving the water turbine pump. Wind assist mode where wind turbine supplements power from the utility line to drive the water turbine pump. At wind speeds of 12 m/s and greater, the wind turbine can pump water (15 kW) and feed power (10 kW) back into the utility grid at the same time. Electrical generation mode where the water pump is disconnected and all power is fed back to the utility grid. The concept is technically viable as the mechanical connection allows for a smooth transfer of power in parallel with an existing power source. Minor problems caused delays and major problems of two rotor failures precluded enough operation time to obtain a good estimation of the economics. Because reliability and maintenance are difficult problems with prototype or limited production wind energy conversion systems, the expense of the demonstration project has exceeded the estimated cost by a large amount.

  10. Performance evaluation of a serially powered pixel detector prototype for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Gonella, L.; Filimonov, V.; Hügging, F.; Hemperek, T.; Janssen, J.; Krüger, H.; Pohl, D.-L.; Wermes, N.

    2017-03-01

    Efficient and low mass power distribution presents a challenge for vertex and tracking detectors at the HL-LHC . Different approaches have been considered to transmit power at low current and high voltage. This paper presents the serial powering scheme proposed as baseline for the ATLAS and CMS pixel detectors at the HL-LHC . A serially powered detector prototype with six pixel modules has been built, featuring all elements needed for current distribution, redundancy, data transmission, and sensor biasing. Results of the characterisation of the prototype in standard operating conditions as well as in more challenging scenarios including increased digital activity are presented.

  11. Development and Testing of a Prototype Grid-Tied Photovoltaic Power System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed and tested a prototype 2 kW DC grid-tied photovoltaic (PV) power system at the Center. The PV system has generated in excess of 6700 kWh since operation commenced in July 2006. The PV system is providing power to the GRC grid for use by all. Operation of the prototype PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the prototype PV system, additional PV power system expansion at GRC is under consideration. The prototype grid-tied PV power system was successfully designed and developed which served to validate the basic principles described, and the theoretical work that was performed. The report concludes that grid-tied photovoltaic power systems are reliable, maintenance free, long life power systems, and are of significant value to NASA and the community.

  12. Design and Prototype Development of a Wireless Power Transmission System for a Micro Air Vehicle (MAV).

    DTIC Science & Technology

    1999-06-01

    assembled, each consisting of microwave rectifier, antenna and a miniature DC motor . It was demonstrated that a 1.8-Watt, 1.3-GHz microwave signal could...power the DC motor at free space distance of 30 inches from transmitting antenna to prototype MAV. Greater operating distances are proposed by using higher transmitting power and antenna gain.

  13. Power Teaching Prototype: New Paradigm Education at Edward Waters College. Occasional Paper #7

    ERIC Educational Resources Information Center

    Fluellen, Jerry Ellsworth, Jr.

    2009-01-01

    Since, its early development in our nation's capital, the Power Teaching Prototype (PTP) has evolved to connect three factors likely to characterize 21st Century teaching and learning. Teaching for understanding requires a clear method of designing instruction and a simple, yet powerful, way of delivering. For the design of instruction, Harvard…

  14. Preliminary Evaluation of a Personal Healthcare System Prototype for Cognitive eRehabilitation in a Living Assistance Domain

    PubMed Central

    Pastorino, Matteo; Fioravanti, Alessio; Arredondo, Maria Teresa; Cogollor, José M.; Rojo, Javier; Ferre, Manuel; Bienkiewicz, Marta; Hermsdörfer, Joachim; Fringi, Evangelia; Wing, Alan M.

    2014-01-01

    The integration of rehabilitation systems in an ambient assisted living environment can provide a powerful and versatile tool for long-term stroke rehabilitation goals. This paper introduces a novel concept of a personalized cognitive rehabilitation system in a naturalistic setting. The proposed platform was developed within the CogWatch project, with the intent of fostering independence in activities of daily living in patients with apraxia and action disorganization syndrome. Technical usability was evaluated in a series of pilot experiments, which illustrate how this approach may help to retrain patients in activities of daily living. The first system prototype has been tested with 36 participants divided into three groups, providing an exploratory evaluation of the usability of this solution and its acceptability. The technical solutions used within the CogWatch project are targeted to meet both the end users' needs from the interaction and usability point of views and the clinical requirements associated with the use of such systems. The challenges behind the development of ambient assisted living systems for cognitive rehabilitation are discussed. PMID:24922452

  15. Preliminary evaluation of a personal healthcare system prototype for cognitive eRehabilitation in a living assistance domain.

    PubMed

    Pastorino, Matteo; Fioravanti, Alessio; Arredondo, Maria Teresa; Cogollor, José M; Rojo, Javier; Ferre, Manuel; Bienkiewicz, Marta; Hermsdörfer, Joachim; Fringi, Evangelia; Wing, Alan M

    2014-06-11

    The integration of rehabilitation systems in an ambient assisted living environment can provide a powerful and versatile tool for long-term stroke rehabilitation goals. This paper introduces a novel concept of a personalized cognitive rehabilitation system in a naturalistic setting. The proposed platform was developed within the CogWatch project, with the intent of fostering independence in activities of daily living in patients with apraxia and action disorganization syndrome. Technical usability was evaluated in a series of pilot experiments, which illustrate how this approach may help to retrain patients in activities of daily living. The first system prototype has been tested with 36 participants divided into three groups, providing an exploratory evaluation of the usability of this solution and its acceptability. The technical solutions used within the CogWatch project are targeted to meet both the end users' needs from the interaction and usability point of views and the clinical requirements associated with the use of such systems. The challenges behind the development of ambient assisted living systems for cognitive rehabilitation are discussed.

  16. Perfect Power Prototype for Illinois Institute of Technology

    SciTech Connect

    Shahidehpour, Mohammad

    2014-09-30

    Starting in October 2008, Illinois Institute of Technology (IIT), in collaboration with over 20 participating members, led an extensive effort to develop, demonstrate, promote, and commercialize a microgrid system and offer supporting technologies that will achieve Perfect Power at the main campus of IIT. A Perfect Power system, as defined by the Galvin Electricity Initiative (GEI), is a system that cannot fail to meet the electric needs of the individual end-user. The Principle Investigator of this Perfect Power project was Dr. Mohammad Shahidehpour, Director of the Robert W. Galvin Center for Electricity Innovation at IIT. There were six overall objectives of the Perfect Power project: (1) Demonstrate the higher reliability introduced by the microgrid system at IIT; (2) Demonstrate the economics of microgrid operations; (3) Allow for a decrease of fifty percent (50%) of grid electricity load; (4) Create a permanent twenty percent (20%) decrease in peak load from 2007 level; (5) Defer planned substation through load reduction; (6) Offer a distribution system design that can be replicated in urban communities.

  17. Construction of a power plant with prototype DLN combustion turbines

    SciTech Connect

    Wilkinson, M.L.; Drummond, L.J.

    1996-12-31

    Design and construction of a power plant is always a difficult process and this is especially true when the main keystone, the combustion turbine engine, is being modified by the manufacturer resulting in numerous changes in the design interfaces. The development of the design and construction of the Orange Cogeneration Facility has been in parallel with major modification of the LM6000 to DLE technology (a Dry Low NO{sub x} combustion system). The Dry Low NO{sub x} Combustion System for a combustion turbine offered a means to reduce water usage, lower Zero Liquid Discharge System operating costs and reduce emissions to meet Florida Department of Environmental Protection requirements. This development was successfully accomplished by Owner, EPC contractor and Combustion Turbine Manufacturer by maintaining flexibility in the design and construction while the design interfaces and performance of the combustion turbines were being finalized.

  18. Trade-off study on the power capacity of a prototype SFR in Korea

    SciTech Connect

    Baek, M. H.; Kim, S. J.; Yoo, J.; Bae, I. H.

    2012-07-01

    The major roles of a prototype SFR are to provide irradiation test capability for the fuel and structure materials, and to obtain operational experiences of systems. Due to a compromise between the irradiation capability and construction costs, the power level should be properly determined. In this paper, a trade-off study on the power level of the prototype SFR was performed from a neutronics viewpoint. To select candidate cores, the parametric study of pin diameters was estimated using 20 wt.% uranium fuel. The candidate cores of different power levels, 125 MWt, 250 MWt, 400 MWt, and 500 MWt, were compared with the 1500 MWt reference core. The resulting core performance and economic efficiency indices became insensitive to the power at about 400-500 MWt and sharply deteriorated at about 125-250 MWt with decreasing core sizes. Fuel management scheme, TRU core performance comparing with uranium core, and sodium void reactivity were also evaluated with increasing power levels. It is found that increasing the number of batches showed higher burnup performance and economic efficiency. However, increasing the cycle length showed the trends in lower economic efficiency. Irradiation performance of TRU and enriched TRU cores was improved about 20 % and 50 %, respectively. The maximum sodium void reactivity of 5.2$ was confirmed less than the design limit of 7.5$. As a result, the power capacity of the prototype SFR should not be less than 250 MWt and would be appropriate at {approx} 500 MWt considering the performance and economic efficiency. (authors)

  19. Evaluation of a Prototype Hybrid Vacuum Pump to Provide Vacuum-Assisted Suspension for Above-Knee Prostheses

    PubMed Central

    Major, Matthew J.; Caldwell, Ryan; Fatone, Stefania

    2015-01-01

    Vacuum-assisted suspension (VAS) of prosthetic sockets utilizes a pump to evacuate air from between the prosthetic liner and socket, and are available as mechanical or electric systems. This technical note describes a hybrid pump that benefits from the advantages of mechanical and electric systems, and evaluates a prototype as proof-of-concept. Cyclical bench testing of the hybrid pump mechanical system was performed using a materials testing system to assess the relationship between compression cycles and vacuum pressure. Phase 1 in vivo testing of the hybrid pump was performed by an able-bodied individual using prosthesis simulator boots walking on a treadmill, and phase 2 involved an above-knee prosthesis user walking with the hybrid pump and a commercial electric pump for comparison. Bench testing of 300 compression cycles produced a maximum vacuum of 24 in-Hg. In vivo testing demonstrated that the hybrid pump continued to pull vacuum during walking, and as opposed to the commercial electric pump, did not require reactivation of the electric system during phase 2 testing. The novelty of the hybrid pump is that while the electric system provides rapid, initial vacuum suspension, the mechanical system provides continuous air evacuation while walking to maintain suspension without reactivation of the electric system, thereby allowing battery power to be reserved for monitoring vacuum levels. PMID:27462383

  20. Evaluation of a Prototype Hybrid Vacuum Pump to Provide Vacuum-Assisted Suspension for Above-Knee Prostheses.

    PubMed

    Major, Matthew J; Caldwell, Ryan; Fatone, Stefania

    2015-12-01

    Vacuum-assisted suspension (VAS) of prosthetic sockets utilizes a pump to evacuate air from between the prosthetic liner and socket, and are available as mechanical or electric systems. This technical note describes a hybrid pump that benefits from the advantages of mechanical and electric systems, and evaluates a prototype as proof-of-concept. Cyclical bench testing of the hybrid pump mechanical system was performed using a materials testing system to assess the relationship between compression cycles and vacuum pressure. Phase 1 in vivo testing of the hybrid pump was performed by an able-bodied individual using prosthesis simulator boots walking on a treadmill, and phase 2 involved an above-knee prosthesis user walking with the hybrid pump and a commercial electric pump for comparison. Bench testing of 300 compression cycles produced a maximum vacuum of 24 in-Hg. In vivo testing demonstrated that the hybrid pump continued to pull vacuum during walking, and as opposed to the commercial electric pump, did not require reactivation of the electric system during phase 2 testing. The novelty of the hybrid pump is that while the electric system provides rapid, initial vacuum suspension, the mechanical system provides continuous air evacuation while walking to maintain suspension without reactivation of the electric system, thereby allowing battery power to be reserved for monitoring vacuum levels.

  1. Ka-Band Wide-Bandgap Solid-State Power Amplifier: Prototype Combiner Spurious Mode Suppression and Power Constraints

    NASA Technical Reports Server (NTRS)

    Khan, P.; Epp, L.

    2006-01-01

    Results of prototype hardware activities related to a 120-W, 32-GHz (Ka-band) solid-state power amplifier (SSPA) architecture study are presented. Spurious mode suppression and the power-handling capability of a prototype 24-way radial combiner and a prototype 2-way septum binary combiner were investigated. Experimental data indicate that a commercial absorptive filter, designed to pass the circular TE01 mode, effectively suppressed the higher-order modes generated by a narrowband, flower-petal-type mode transducer. However, the same filter was not effective in suppressing higher-order modes generated by the broadband Marie mode transducer that is used in the prototype waveguide radial combiner. Should greater filtering be required by a particular SSPA application, a broadband mode filter that can suppress specifically those higher-order modes that are generated by the Marie transducer will need to be developed. A back-to-back configuration of the prototype radial combiner was tested with drive power up to approximately 50 W. No anomalous behavior was observed. Power measurements of the septum combiner indicate that up to 10-W radio frequency (RF) can be dissipated in the integrated resistive element before a permanent performance shift is observed. Thus, a given adder (a single-stage, 2-way combiner) can safely combine two 20-W sources, and the adder will not be damaged in the event of a source failure. This result is used to calculate the maximum source power that can be safely combined as a function of the number of sources combined and the number of source failures allowed in a multi-stage combiner. The analysis shows that SSPA power >140 W can be generated by power combining 16 sources producing 10 W each. In this configuration, up to three sources could fail with the guarantee that the combiner would not be damaged. Finally, a modified prototype septum combiner design was verified. The improved design reduced the assembly time from over 2 hours to about 15

  2. Testing Procedures and Results of the Prototype Fundamental Power Coupler for the Spallation Neutron Source

    SciTech Connect

    Stirbet, M; Campisi, I E; Daly, E F; Davis, G K; Drury, M; Kneisel, P; Myneni, G; Powers, T; Schneider, W J; Wilson, K M; Kang, Y; Cummings, K A; Hardek, T

    2001-06-01

    High-power RF testing with peak power in excess of 500 kW has been performed on prototype Fundamental Power Couplers (FPC) for the Spallation Neutron Source superconducting (SNS) cavities. The testing followed the development of procedures for cleaning, assembling and preparing the FPC for installation in the test stand. The qualification of the couplers has occurred for the time being only in a limited set of conditions (travelling wave, 20 pps) as the available RF system and control instrumentation are under improvement.

  3. Electrical Prototype Power Processor for the 30-cm Mercury electric propulsion engine

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Frye, R. J.

    1978-01-01

    An Electrical Prototpye Power Processor has been designed to the latest electrical and performance requirements for a flight-type 30-cm ion engine and includes all the necessary power, command, telemetry and control interfaces for a typical electric propulsion subsystem. The power processor was configured into seven separate mechanical modules that would allow subassembly fabrication, test and integration into a complete power processor unit assembly. The conceptual mechanical packaging of the electrical prototype power processor unit demonstrated the relative location of power, high voltage and control electronic components to minimize electrical interactions and to provide adequate thermal control in a vacuum environment. Thermal control was accomplished with a heat pipe simulator attached to the base of the modules.

  4. 100kW Energy Transfer Multiplexer Power Converter Prototype Development Project

    SciTech Connect

    S. Merrill Skeist; Richard H. Baker; Anthony G.P. Marini; DOE Project Officer - Keith Bennett

    2006-03-21

    Project Final Report for "100kW Energy Transfer Multiplexer Power Converter Prototype Development Project" prepared under DOE grant number DE-FG36-03GO13138. This project relates to the further development and prototype construction/evaluation for the Energy Transfer Multiplexer (ETM) power converter topology concept. The ETM uses a series resonant link to transfer energy from any phase of a multiphase input to any phase of a multiphase output, converting any input voltage and frequency to any output voltage and frequency. The basic form of the ETM converter consists of an eight (8)-switch matrix (six phase power switches and two ground power switches) and a series L-C resonant circuit. Electronic control of the switches allows energy to be transferred in the proper amount from any phase to any other phase. Depending upon the final circuit application, the switches may be either SCRs or IGBTs. The inherent characteristics of the ETM converter include the following: Power processing in either direction (bidirectional); Large voltage gain without the need of low frequency magnetics; High efficiency independent of output load and frequency; Wide bandwidth with fast transient response and; Operation as a current source. The ETM is able to synthesize true sinusoidal waveforms with low harmonic distortions. For a low power PM wind generation system, the ETM has the following characteristics and advantages: It provides voltage gain without the need of low frequency magnetics (DC inductors) and; It has constant high efficiency independent of the load. The ETM converter can be implemented into a PM wind power system with smaller size, reduced weight and lower cost. As a result of our analyses, the ETM offers wind power generation technology for the reduction of the cost and size as well as the increase in performance of low power, low wind speed power generation. This project is the further theoretical/analytical exploration of the ETM converter concept in relationship to

  5. A prototype of wireless power and data acquisition system for large detectors

    NASA Astrophysics Data System (ADS)

    De Lurgio, P.; Djurcic, Z.; Drake, G.; Hashemian, R.; Kreps, A.; Oberling, M.; Pearson, T.; Sahoo, H.

    2015-06-01

    We have developed a prototype detector and data acquisition module that incorporates wireless power and wireless data transmission techniques. The module has no electrical connections. It receives power using photovoltaic devices, and communicates control, timing, trigger, and data using the 802.11n wireless communication standard. The work is part of a study for building a large detector having many readout channels, where it is desirable to reduce the cable plant and infrastructure. The system could also be deployed in smaller detectors that require mobility or are difficult to cable due to extreme conditions. We describe the design and operation of the prototype module, including benchmark performance measurements, and discuss aspect and issues in extrapolating to a large detector system.

  6. Distributing Power Grid State Estimation on HPC Clusters A System Architecture Prototype

    SciTech Connect

    Liu, Yan; Jiang, Wei; Jin, Shuangshuang; Rice, Mark J.; Chen, Yousu

    2012-08-20

    The future power grid is expected to further expand with highly distributed energy sources and smart loads. The increased size and complexity lead to increased burden on existing computational resources in energy control centers. Thus the need to perform real-time assessment on such systems entails efficient means to distribute centralized functions such as state estimation in the power system. In this paper, we present our early prototype of a system architecture that connects distributed state estimators individually running parallel programs to solve non-linear estimation procedure. The prototype consists of a middleware and data processing toolkits that allows data exchange in the distributed state estimation. We build a test case based on the IEEE 118 bus system and partition the state estimation of the whole system model to available HPC clusters. The measurement from the testbed demonstrates the low overhead of our solution.

  7. Epitrochoid Power-Law Nozzle Rapid Prototype Build/Test Project (Briefing Charts)

    DTIC Science & Technology

    2015-02-01

    Production Approved for public release; distribution is unlimited. PA clearance # 15122. 4 Epitrochoid Power-Law Nozzle Build/Test Build on SpaceX ...Multiengine Approach SpaceX ) Approved for public release; distribution is unlimited. PA clearance # 15122. Engines: Merlin 1D on Falcon 9 v1.1 (Photo 5...to utilize features of high performance engines advances and the economies of scale of the multi-engine approach of SpaceX Falcon 9 – Rapid Prototype

  8. HelioTrope: An innovative and efficient prototype for solar power production

    NASA Astrophysics Data System (ADS)

    Papageorgiou, George; Maimaris, Athanasios; Hadjixenophontos, Savvas; Ioannou, Petros

    2014-12-01

    The solar energy alternative could provide us with all the energy we need as it exist in vast quantities all around us. We only should be innovative enough in order to improve the efficiency of our systems in capturing and converting solar energy in usable forms of power. By making a case for the solar energy alternative, we identify areas where efficiency can be improved and thereby Solar Energy can become a competitive energy source. This paper suggests an innovative approach to solar energy power production, which is manifested in a prototype given the name HelioTrope. The Heliotrope Solar Energy Production prototype is tested on its' capabilities to efficiently covert solar energy to generation of electricity and other forms of energy for storage or direct use. HelioTrope involves an innovative Stirling engine design and a parabolic concentrating dish with a sun tracking system implementing a control algorithm to maximize the capturing of solar energy. Further, it utilizes a patent developed by the authors where a mechanism is designed for the transmission of reciprocating motion of variable amplitude into unidirectional circular motion. This is employed in our prototype for converting linear reciprocating motion into circular for electricity production, which gives a significant increase in efficiency and reduces maintenance costs. Preliminary calculations indicate that the Heliotrope approach constitutes a competitive solution to solar power production.

  9. NASA Research Announcement Phase 1 Report and Phase 2 Proposal for the Development of a Power Assisted Space Suit Glove Assembly

    NASA Technical Reports Server (NTRS)

    Cadogan, Dave; Lingo, Bob

    1996-01-01

    In July of 1996, ILC Dover was awarded Phase 1 of a contract for NASA to develop a prototype Power Assisted Space Suit glove to enhance the performance of astronauts during Extra-Vehicular Activity (EVA). This report summarizes the work performed to date on Phase 1, and details the work to be conducted on Phase 2 of the program. Phase 1 of the program consisted of research and review of related technical sources, concept brainstorming, baseline design development, modeling and analysis, component mock-up testing, and test data analysis. ILC worked in conjunction with the University of Maryland's Space Systems Laboratory (SSL) to develop the power assisted glove. Phase 2 activities will focus on the design maturation and the manufacture of a working prototype system. The prototype will be tested and evaluated in conjunction with existing space suit glove technology to determine the performance enhancement anticipated with the implementation of the power assisted joint technology in space suit gloves.

  10. A lower-limb power-assist robot with perception-assist.

    PubMed

    Hayashi, Yoshiaki; Kiguchi, Kazuo

    2011-01-01

    In order to assist the motion in the daily lives of physically weak persons such as elderly persons, many kinds of power-assist robots have been developed. In the case of some physically weak persons, the ability to perceive the environment is sometimes deteriorated also. A method of perception-assist has been proposed to assist not only the user's motion but also the user's interaction with an environment, by applying the modification force to the user's motion if it is necessary. In this paper, the perception-assist for a lower-limb power-assist exoskeleton robot is proposed. In the daily life, the walking is very important for persons to achieve desired tasks. Basically, the robot assists the user's muscle force according to the user's motion intention which is estimated based on EMG signals. If the robot has found problems which might lead the user to dangerous situation such as the falling down, the robot tries to modify the user's motion in addition to the ordinal power-assists to make the user walk properly. Since the user might fall down by the effect of the additional modification force of the perception-assist, the robot automatically prevents the user from falling down by considering ZMP (Zero Moment Point). The effectiveness of the proposed method has been evaluated by performing experiments.

  11. Simulations of the high average power selene free electron laser prototype. Master's thesis

    SciTech Connect

    Quick, D.D.

    1994-06-01

    Free electron laser (FEL) technology continues to advance, providing alternative solutions to existing and potential problems. The capabilities of an FEL with respect to tunability, power and efficiency make it an attractive choice when moving into new laser utilization fields. The initial design parameters, for any new system, offer a good base to begin system simulation tests in an effort to determine the best possible design. This is a study of the Novosibirsk design which is a prototype for the proposed SELENE FEL. The design uses a three-section, low-power optical klystron followed by a single-pass, high-power radiator. This system is inherently sensitive to electron beam quality, but affords flexibility in achieving the final design. The performance of the system is studied using the initial parameters. An FEL, configured as a simple, two section optical klystron is studied to determine the basic operating characteristics of a high current FEL klystron.

  12. Report on Performance of Prototype Dynatronix Power Supplies Developed Under a Phase I DOE SBIR

    SciTech Connect

    Hoppe, Eric W.; Merriman, Jason H.

    2011-03-01

    The purpose of this study is to evaluate the prototype power supplies fabricated by Dynatronix, Inc. This project supports the advancement of electroforming capabilities to produce ultra-high purity copper. Ultra-high purity copper is an essential material used for a range of current and future fundamental nuclear physics programs such as the MAJORANA DEMONSTRATOR. The Mach 30 power supplies are a new design built to the specifications from the requirements of Pacific Northwest National Laboratory (PNNL) with regard to timing, voltage, current output, and the required tolerances. The parameters used in these tests were developed empirically over a number of years based on a combination of thermodynamic and kinetics of the electroplating process. The power supplies were operated in a typical cleanroom environment for the production electroforming at PNNL. The units that were received by PNNL in July, 2010 have performed satisfactorily and have demonstrated short term durability.

  13. Federal financial assistance for hydroelectric power

    SciTech Connect

    Not Available

    1980-09-01

    The Rural Energy Initiative seeks to maximize the effectiveness of Federal programs in developing certain energy resources, including small-scale hydropower. The REI target is to arrange financing for 100 hydro sites by 1981, with about 300 MWe of additional capacity. The REI financial assistance programs for small hydropower development in the US DOE; Economic Development Administration; REA; HUD; Farmers Home Administration; DOI; DOL's CETA programs; and the Community Services Administration are described. (MCW)

  14. Direct containment heating experiments in Zion Nuclear Power Plant geometry using prototypic materials

    SciTech Connect

    Binder, J.L.; McUmber, L.M.; Spencer, B.W.

    1993-12-31

    Direct Containment Heating (DCH) experiments have been completed which utilize prototypic core materials. The experiments reported on here are a continuation of the Integral Effects Testing (IET) DCH program. The experiments incorporated a 1/40 scale model of the Zion Nuclear Power Plant containment structures. The model included representations of the primary system volume, RPV lower head, cavity and instrument tunnel, and the lower containment structures. The experiments were steam driven. Iron-alumina thermite with chromium was used as a core melt stimulant in the earlier IET experiments. These earlier IET experiments at Argonne National Laboratory (ANL) and Sandia National Laboratories (SNL) provided useful data on the effect of scale on DCH phenomena; however, a significant question concerns the potential experiment distortions introduced by the use of non-prototypic iron/alumina thermite. Therefore, further testing with prototypic materials has been carried out at ANL. Three tests have been completed, DCH-U1A, U1B and U2. DCH-U1A and U1B employed an inerted containment atmosphere and are counterpart to the IET-1RR test with iron/alumina thermite. DCH-U2 employed nominally the same atmosphere composition of its counterpart iron/alumina test, IET-6. All tests, with prototypic material, have produced lower peak containment pressure rises; 45, 111 and 185 kPa in U1A, U1B and U2, compared to 150 and 250 kPa IET-1RR and 6. Hydrogen production, due to metal-steam reactions, was 33% larger in U1B and U2 compared to IET-1RR and IET-6. The pressurization efficiency was consistently lower for the corium tests compared to the IET tests.

  15. Security Assistance Dependence - Wielding American Power

    DTIC Science & Technology

    2002-12-09

    INTERNATIONAL. July 24, 2001. Dougherty, James E. and Robert L. Pfaltzgraff, Jr. “From Realist to Neorealist Theory .” In Contending Theories of...International Traffic in Arms Regulation. US Code. Vol. 22 sec 2751. 22 CFR parts 120-130 (1999). Waltz , Kenneth . Theory of International Politics. Reading...respect to a state’s capabilities and its ability and willingness to express its power.25 Kenneth Waltz proposes that it is possible to rank

  16. Atmospheric freeze drying assisted by power ultrasound

    NASA Astrophysics Data System (ADS)

    Santacatalina, J. V.; Cárcel, J. A.; Simal, S.; Garcia-Perez, J. V.; Mulet, A.

    2012-12-01

    Atmospheric freeze drying (AFD) is considered an alternative to vacuum freeze drying to keep the quality of fresh product. AFD allows continuous drying reducing fix and operating costs, but presents, as main disadvantage, a long drying time required. The application of power ultrasound (US) can accelerate AFD process. The main objective of the present study was to evaluate the application of power ultrasound to improve atmospheric freeze drying of carrot. For that purpose, AFD experiments were carried out with carrot cubes (10 mm side) at constant air velocity (2 ms-1), temperature (-10°C) and relative humidity (10%) with (20.5 kWm-3,USAFD) and without (AFD) ultrasonic application. A diffusion model was used in order to quantify the influence of US in drying kinetics. To evaluate the quality of dry products, rehydration capacity and textural properties were determined. The US application during AFD of carrot involved the increase of drying rate. The effective moisture diffusivity identified in USAFD was 73% higher than in AFD experiments. On the other hand, the rehydration capacity was higher in USAFD than in AFD and the hardness of dried samples did not show significant (p<0.05) differences. Therefore, US application during AFD significantly (p<0.05) sped-up the drying process preserving the quality properties of the dry product.

  17. Final Report Providing the Design for Low-Cost Wireless Current Transducer and Electric Power Sensor Prototype

    SciTech Connect

    Kintner-Meyer, Michael CW; Burghard, Brion J.; Reid, Larry D.

    2005-01-31

    This report describes the design and development of a wireless current transducer and electric power sensor prototype. The report includes annotated schematics of the power sensor circuitry and the printed circuit board. The application program used to illustrate the functionality of the wireless sensors is described in this document as well.

  18. Design of a Power-Assisted Spacesuit Glove Actuator

    NASA Technical Reports Server (NTRS)

    Howard, Russell D.

    2000-01-01

    This paper presents the details of the design and implementation of an electromechanical power-assisted spacesuit glove actuator. The project was a joint effort by the University of Maryland's Space Systems Laboratory and ILC Dover, Inc., and involved innovative approaches to power augmentation and compact actuator packaging. The first actuator built validated several basic design concepts, and the second demonstrated improved performance and met many of the goals for flight qualification of the technology.

  19. Development of a hybrid (numerical-hydraulic) circulatory model: prototype testing and its response to IABP assistance.

    PubMed

    Ferrari, G; Kozarski, M; De Lazzari, C; Górczyńska, K; Tosti, G; Darowski, M

    2005-07-01

    Merging numerical and physical models of the circulation makes it possible to develop a new class of circulatory models defined as hybrid. This solution reduces the costs, enhances the flexibility and opens the way to many applications ranging from research to education and heart assist devices testing. In the prototype described in this paper, a hydraulic model of systemic arterial tree is connected to a lumped parameters numerical model including pulmonary circulation and the remaining parts of systemic circulation. The hydraulic model consists of a characteristic resistance, of a silicon rubber tube to allow the insertion of an Intra-Aortic Balloon Pump (IABP) and of a lumped parameters compliance. Two electro-hydraulic interfaces, realized by means of gear pumps driven by DC motors, connect the numerical section with both terminals of the hydraulic section. The lumped parameters numerical model and the control system (including analog to digital and digital to analog converters)are developed in LabVIEW environment. The behavior of the model is analyzed by means of the ventricular pressure-volume loops and the time courses of arterial and ventricular pressures and flows in different circulatory conditions. A simulated pathological condition was set to test the IABP and verify the response of the system to this type of mechanical circulatory assistance. The results show that the model can represent hemodynamic relationships in different ventricular and circulatory conditions and is able to react to the IABP assistance.

  20. Developing a Prototype Handbook for Monitoring and Evaluating Department of Defense Humanitarian Assistance Projects

    DTIC Science & Technology

    2011-01-01

    workshop with combatant command (COCOM) HA managers, " Monitoring and Evaluation of DoD Humanitarian Assistance Programs." Participants felt that a user...friendly handbook to clarify overall monitoring and evaluation (M&E) concepts and to facilitate project assessment would be particularly valuable to

  1. The Casualty Assistance Readiness Enhancement System: A Case Study in Rapid Prototyping and Design for Flexibility

    NASA Astrophysics Data System (ADS)

    Goerger, Simon R.; Wong, Ernest Y.; Henderson, Dale L.; Sperling, Brian K.; Bland, William

    Numerous government benefits are available to the surviving family of fallen U.S. military service members. Unfortunately, most of these entitlements require a considerable amount of paperwork to process correctly, necessitating a great deal of patience, attention to detail, and composure from families at a time when their grief is raw. Even though the U.S. Army appoints a Casualty Assistance Officer (CAO) to help surviving family members through this process, the soldiers serving as CAOs tend to be inexperienced and oftentimes find themselves challenged to provide accurate and thorough assistance. Consequently, some families do not receive all benefits in a timely manner, and some entitlements may be overlooked entirely. To help with the military's Casualty Program, we have developed the Casualty Assistance Readiness Enhancement System (CARES), an information system that improves how the Department of the Army cares for military families in arguably their greatest time of need. The tool and associated process reduced the time required to complete forms, reduced the potential for errors on repetitive information, assisted CAOs through the process, and provided electronic copies of completed forms.

  2. Development of a prototype of the tele-localisation system in radiotherapy using personal digital assistant via wireless communication.

    PubMed

    Wu, Vincent Wing-Cheung; Tang, Fuk-hay; Cheung, Wai-kwan; Chan, Kit-chi

    2013-02-01

    In localisation of radiotherapy treatment field, the oncologist is present at the simulator to approve treatment details produced by the therapist. Problems may arise if the oncologist is not available and the patient requires urgent treatment. The development of a tele-localisation system is a potential solution, where the oncologist uses a personal digital assistant (PDA) to localise the treatment field on the image sent from the simulator through wireless communication and returns the information to the therapist after his or her approval. Our team developed the first tele-localisation prototype, which consisted of a server workstation (simulator) for the administration of digital imaging and communication in medicine localisation images including viewing and communication with the PDA via a Wi-Fi network; a PDA (oncologist's site) installed with the custom-built programme that synchronises with the server workstation and performs treatment field editing. Trial tests on accuracy and speed of the prototype system were conducted on 30 subjects with the treatment regions covering the neck, skull, chest and pelvis. The average time required in performing the localisation using the PDA was less than 1.5 min, with the blocked field longer than the open field. The transmission speed of the four treatment regions was similar. The average physical distortion of the images was within 4.4% and the accuracy of field size indication was within 5.3%. Compared with the manual method, the tele-localisation system presented with an average deviation of 5.5%. The prototype system fulfilled the planned objectives of tele-localisation procedure with reasonable speed and accuracy.

  3. Rapid prototyping process using linear array of high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Zhu, Linquan; Cheng, Jun; Zhou, Hanchang

    2000-02-01

    Because of the weak points of the SLS spot Scanning process, a new rapid prototyping process -- SLS line scan using linear array of high power laser diodes regarded as energy sources is researched in this paper. A linear array with requisite length is formed by some high power laser diodes that can be derived individually. Beams of the linear array are transferred to the workplace and imaged some short and light lines by the corresponding optical collimators. They are lined up in a linear laser beam without separation whose length is equal to that of the linear array diodes. When sintering powdered material, the linear laser beam scans in one direction along x axis only. Only if the maximum line length is less than the y axial size of the workpiece, it is necessary that linear laser beam is lapped for some times in the y axis. The Scanning mode of x-y simultaneous guideways are used in this new system which differs entirely from the vibrating mirror scan. The scanning trace of the latter is an arc that will influence processing quality. This new process has higher efficiency and better quality than the traditional spot scanning method.

  4. The 247-foot length of the Helios prototype wing is in evidence as the solar-powered flying wing res

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The 247-foot length of the Helios prototype wing is in evidence as the high-altitude, solar-powered flying wing rests on its ground dolly during pre-flight tests at the U.S. Navy's Pacific Missile Range Facility on Kaua'i, Hawaii.

  5. Development of a prototype movement assistance system for extravehicular activity gloves

    NASA Astrophysics Data System (ADS)

    Hill, Tyler N.

    Spacesuits utilized a rubberized layer of material to contain a pressurized atmosphere to facilitate respiration and maintain the physiologic functions of the astronaut residing within. However, the elasticity of the material makes it resistant to deformation increasing the amount of work required during movement. This becomes particularly fatiguing for the muscle groups controlling the motion of the hands and fingers. To mitigate this a robotic system was proposed and developed. The system built upon previous concepts and prototypes discovered through research efforts. It utilized electric motors to pull the index, ring, and middle fingers of the right hand closed, ideally overcoming the resistive force posed by the pressurized elastic material. The effect of the system was determined by comparing qualitative and quantitative data obtained during activities conducted with and without it within a glove box. It was found that the system was able to offload some of this elastic force though several characteristics of the design limited the full potential this device offered. None the less, the project was met with success and provides a solid platform for continued research and development.

  6. Alstom's Chemical Looping Combustion Prototype for CO2 Capture from Existing Pulverized Coal-Fired Power Plants

    SciTech Connect

    Andrus, Jr., Herbert E.; Chiu, John H.; Edberg, Carl D.; Thibeault, Paul R.; Turek, David G.

    2012-09-30

    Alstom’s Limestone Chemical Looping (LCL™) process has the potential to capture CO2 from new and existing coal-fired power plants while maintaining high plant power generation efficiency. This new power plant concept is based on a hybrid combustion- gasification process utilizing high temperature chemical and thermal looping technology. This process could also be potentially configured as a hybrid combustion-gasification process producing a syngas or hydrogen for various applications while also producing a separate stream of CO2 for use or sequestration. The targets set for this technology is to capture over 90% of the total carbon in the coal at cost of electricity which is less than 20% greater than Conventional PC or CFB units. Previous work with bench scale test and a 65 kWt Process Development Unit Development (PDU) has validated the chemistry required for the chemical looping process and provided for the investigation of the solids transport mechanisms and design requirements. The objective of this project is to continue development of the combustion option of chemical looping (LCL-C™) by designing, building and testing a 3 MWt prototype facility. The prototype includes all of the equipment that is required to operate the chemical looping plant in a fully integrated manner with all major systems in service. Data from the design, construction, and testing will be used to characterize environmental performance, identify and address technical risks, reassess commercial plant economics, and develop design information for a demonstration plant planned to follow the proposed Prototype. A cold flow model of the prototype will be used to predict operating conditions for the prototype and help in operator training. Operation of the prototype will provide operator experience with this new technology and performance data of the LCL-C™ process, which will be applied to the commercial design and economics and plan for a future demonstration

  7. Concentrated solar power on demand demonstration: Construction and operation of a 25 kW prototype

    NASA Astrophysics Data System (ADS)

    Gil, Antoni; Codd, Daniel S.; Zhou, Lei; Trumper, David; Calvet, Nicolas; Slocum, Alexander H.

    2016-05-01

    Currently, the majority of concentrated solar power (CSP) plants built worldwide integrate thermal energy storage (TES) systems which enable dispatchable output and higher global plant efficiencies. TES systems are typically based on two tank molten salt technology which involves inherent drawbacks such as parasitic pumping losses and electric tracing of pipes, risk of solidification and high capital costs. The concept presented in this paper is based on a single tank where the concentrated sunlight is directly focused on the molten salt. Hot and cold volumes of salt (at 565 °C and 280 °C, respectively) are axially separated by an insulated divider plate which helps maintain the thermal gradient. The concept, based on existing technologies, seeks to avoid the listed drawbacks as well as reducing the final cost of the TES system. In order to demonstrate its feasibility, Masdar Institute (MI) and Massachusetts Institute of Technology are developing a 25 kW prototype to be tested in the Masdar Solar Platform beam down facility.

  8. Concept, Design, and Prototyping of XSAS: A High Power Extendable Solar Array for CubeSat Applications

    NASA Technical Reports Server (NTRS)

    Senatore, Patrick; Klesh, Andrew; Zurbuchen, Thomas H.; McKague, Darren; Cutler, James

    2010-01-01

    CubeSats have proven themselves as a reliable and cost-effective method to perform experiments in space, but they are highly constrained by their specifications and size. One such constraint is the average continuous power, about 5 W, which is available to the typical CubeSat. To improve this constraint, we have developed the eXtendable Solar Array System (XSAS), a deployable solar array prototype in a CubeSat package, which can provide an average 23 W of continuous power. The prototype served as a technology demonstrator for the high risk mechanisms needed to release, deploy, and control the solar array. Aside from this drastic power increase, it is in the integration of each mechanism, their application within the small CubeSat form-factor, and the inherent passive control benefit of the deployed geometry that make XSAS a novel design. In this paper, we discuss the requirements and design process for the XSAS system and mechanical prototype, and provide qualitative and quantitative results from numerical simulations and prototype tests. We also discuss future work, including an upcoming NASA zero-gravity flight campaign, to further improve on XSAS and prepare it for future launch opportunities.

  9. A prototype of a beam steering assistant tool for accelerator operations

    SciTech Connect

    M. Bickley; P. Chevtsov

    2006-10-24

    The CEBAF accelerator provides nuclear physics experiments at Jefferson Lab with high quality electron beams. Three experimental end stations can simultaneously receive the beams with different energies and intensities. For each operational mode, the accelerator setup procedures are complicated and require very careful checking of beam spot sizes and positions on multiple beam viewers. To simplify these procedures and make them reproducible, a beam steering assistant GUI tool has been created. The tool is implemented as a multi-window control screen. The screen has an interactive graphical object window, which is an overlay on top of a digitized live video image from a beam viewer. It allows a user to easily create and edit any graphical objects consisting of text, ellipses, and lines, right above the live beam viewer image and then save them in a file that is called a beam steering template. The template can show, for example, the area within which the beam must always be on the viewer. Later, this template can be loaded in the interactive graphical object window to help accelerator operators steer the beam to the specified area on the viewer.

  10. Economic viability of photovoltaic power for development assistance applications

    NASA Technical Reports Server (NTRS)

    Bifano, W. J.

    1982-01-01

    This paper briefly discusses the development assistance market and examines a number of specific photovoltaic (PV) development assistance field tests, including water pumping/grain grinding (Tangaye, Upper Volta), vaccine refrigerators slated for deployment in 24 countries, rural medical centers to be installed in Ecuador, Guyana, Kenya and Zimbabwe, and remote earth stations to be deployed in the near future. A comparison of levelized energy cost for diesel generators and PV systems covering a range of annual energy consumptions is also included. The analysis does not consider potential societal, environmental or political benefits associated with PV power. PV systems are shown to be competitive with diesel generators, based on life cycle cost considerations, assuming a system price of $20/W(peak), for applications having an annual energy demand of up to 6000 kilowatt-hours per year.

  11. Computational Fluid Dynamics (CFD) study of the 4th generation prototype of a continuous flow Ventricular Assist Device (VAD).

    PubMed

    Song, Xinwei; Wood, Houston G; Olsen, Don

    2004-04-01

    The continuous flow ventricular assist device (VAD) is a miniature centrifugal pump, fully suspended by magnetic bearings, which is being developed for implantation in humans. The CF4 model is the first actual prototype of the final design product. The overall performances of blood flow in CF4 have been simulated using computational fluid dynamics (CFD) software: CFX, which is commercially available from ANSYS Inc. The flow regions modeled in CF4 include the inlet elbow, the five-blade impeller, the clearance gap below the impeller, and the exit volute. According to different needs from patients, a wide range of flow rates and revolutions per minute (RPM) have been studied. The flow rate-pressure curves are given. The streamlines in the flow field are drawn to detect stagnation points and vortices that could lead to thrombosis. The stress is calculated in the fluid field to estimate potential hemolysis. The stress is elevated to the decreased size of the blood flow paths through the smaller pump, but is still within the safe range. The thermal study on the pump, the blood and the surrounding tissue shows the temperature rise due to magnetoelectric heat sources and thermal dissipation is insignificant. CFD simulation proved valuable to demonstrate and to improve the performance of fluid flow in the design of a small size pump.

  12. Plasma"anti-assistance" and"self-assistance" to high power impulse magnetron sputtering

    SciTech Connect

    Anders, Andre; Yushkov, Georgy Yu.

    2009-01-30

    A plasma assistance system was investigated with the goal to operate high power impulse magnetron sputtering (HiPIMS) at lower pressure than usual, thereby to enhance the utilization of the ballistic atoms and ions with high kinetic energy in the film growth process. Gas plasma flow from a constricted plasma source was aimed at the magnetron target. Contrary to initial expectations, such plasma assistance turned out to be contra-productive because it led to the extinction of the magnetron discharge. The effect can be explained by gas rarefaction. A better method of reducing the necessary gas pressure is operation at relatively high pulse repetition rates where the afterglow plasma of one pulse assists in the development of the next pulse. Here we show that this method, known from medium-frequency (MF) pulsed sputtering, is also very important at the much lower pulse repetition rates of HiPIMS. A minimum in the possible operational pressure is found in the frequency region between HiPIMS and MF pulsed sputtering.

  13. Fast prototyping of high-aspect ratio, high-resolution x-ray masks by gas-assisted focused ion beam

    NASA Technical Reports Server (NTRS)

    Hartley, F.; Malek, C.; Neogi, J.

    2001-01-01

    The capacity of chemically-assisted focused ion beam (fib) etching systems to undertake direct and highly anisotropic erosion of thin and thick gold (or other high atomic number [Z])coatings on x-ray mask membranes/substrates provides new levels of precision, flexibility, simplification and rapidity in the manufacture of mask absorber patterns, allowing the fast prototyping of high aspect ratio, high-resolution masks for deep x-ray lithography.

  14. A Study of a Handrim-Activated Power-Assist Wheelchair Based on a Non-Contact Torque Sensor

    PubMed Central

    Nam, Ki-Tae; Jang, Dae-Jin; Kim, Yong Chol; Heo, Yoon; Hong, Eung-Pyo

    2016-01-01

    Demand for wheelchairs is increasing with growing numbers of aged and disabled persons. Manual wheelchairs are the most commonly used assistive device for mobility because they are convenient to transport. Manual wheelchairs have several advantages but are not easy to use for the elderly or those who lack muscular strength. Therefore, handrim-activated power-assist wheelchairs (HAPAW) that can aid driving power with a motor by detecting user driving intentions through the handrim are being researched. This research will be on HAPAW that judge user driving intentions by using non-contact torque sensors. To deliver the desired motion, which is sensed from handrim rotation relative to a fixed controller, a new driving wheel mechanism is designed by applying a non-contact torque sensor, and corresponding torques are simulated. Torques are measured by a driving wheel prototype and compared with simulation results. The HAPAW prototype was developed using the wheels and a driving control algorithm that uses left and right input torques and time differences are used to check if the non-contact torque sensor can distinguish users’ driving intentions. Through this procedure, it was confirmed that the proposed sensor can be used effectively in HAPAW. PMID:27509508

  15. Powered orthosis and attachable power-assist device with Hydraulic Bilateral Servo System.

    PubMed

    Ohnishi, Kengo; Saito, Yukio; Oshima, Toru; Higashihara, Takanori

    2013-01-01

    This paper discusses the developments and control strategies of exoskeleton-type robot systems for the application of an upper limb powered orthosis and an attachable power-assist device for care-givers. Hydraulic Bilateral Servo System, which consist of a computer controlled motor, parallel connected hydraulic actuators, position sensors, and pressure sensors, are installed in the system to derive the joint motion of the exoskeleton arm. The types of hydraulic component structure and the control strategy are discussed in relation to the design philosophy and target joints motions.

  16. Software Prototyping

    PubMed Central

    Del Fiol, Guilherme; Hanseler, Haley; Crouch, Barbara Insley; Cummins, Mollie R.

    2016-01-01

    Summary Background Health information exchange (HIE) between Poison Control Centers (PCCs) and Emergency Departments (EDs) could improve care of poisoned patients. However, PCC information systems are not designed to facilitate HIE with EDs; therefore, we are developing specialized software to support HIE within the normal workflow of the PCC using user-centered design and rapid prototyping. Objective To describe the design of an HIE dashboard and the refinement of user requirements through rapid prototyping. Methods Using previously elicited user requirements, we designed low-fidelity sketches of designs on paper with iterative refinement. Next, we designed an interactive high-fidelity prototype and conducted scenario-based usability tests with end users. Users were asked to think aloud while accomplishing tasks related to a case vignette. After testing, the users provided feedback and evaluated the prototype using the System Usability Scale (SUS). Results Survey results from three users provided useful feedback that was then incorporated into the design. After achieving a stable design, we used the prototype itself as the specification for development of the actual software. Benefits of prototyping included having 1) subject-matter experts heavily involved with the design; 2) flexibility to make rapid changes, 3) the ability to minimize software development efforts early in the design stage; 4) rapid finalization of requirements; 5) early visualization of designs; 6) and a powerful vehicle for communication of the design to the programmers. Challenges included 1) time and effort to develop the prototypes and case scenarios; 2) no simulation of system performance; 3) not having all proposed functionality available in the final product; and 4) missing needed data elements in the PCC information system. PMID:27081404

  17. Design of 154 kV Extra-High-Voltage Prototype SF6 Bushing for Superconducting Electric Power Applications

    NASA Astrophysics Data System (ADS)

    Koo, Ja-yoon; Seong, Jae-gyu; Hwang, Jae-sang; Lee, Bang-wook; Lee, Sang-hwa

    2012-09-01

    One of the critical components to be developed for high-voltage superconducting devices, such as superconducting transformers, cables, and fault current limiters, is a high-voltage bushing to supply a high current to devices without insulation difficulties in cryogenic environments. Unfortunately, suitable bushings for high-temperature-superconductivity (HTS) equipment have not been fully developed to address cryogenic insulation issues. As a fundamental step towards developing the optimum design of the 154 kV prototype SF6 bushing of HTS devices, the puncture and creepage breakdown voltages of glass-fiber-reinforced-plastic (GFRP) were analyzed with a variety of configurations of electrodes and gap distances in the insulation material. And design factors of high-voltage cryogenic bushings were obtained from the result of tests. Finally, the withstand voltage tests of manufacturing a 154 kV extra-high-voltage (EHV) prototype bushing has been performed. Consequently, we verified the insulation level of the newly designed 154 kV EHV cryogenic prototype bushings for superconducting electric power applications.

  18. Laser assisted die bending: a new application of high power diode lasers

    NASA Astrophysics Data System (ADS)

    Schuöcker, D.; Schumi, T.; Spitzer, O.; Bammer, F.; Schuöcker, G.; Sperrer, G.

    2015-02-01

    Nowadays high power lasers are mainly used for cutting of sheet metals, for welding, hardening and rapid prototyping. In the forming of sheet metals as bending or deep drawing lasers are not used. Nevertheless a few years ago a new application of high power lasers has been invented, where bending of materials that break at room temperature becomes possible by heating them along the bending edge with high power lasers thus allowing their treatment without cracks and rupture. For this purpose a large number of diode lasers are arranged in the bottom tool of a bending machine (a V-shaped die) which heat up the initially flat sheet metal during the bending process what is performed by pressing it into the die with a knife shaped upper tool where due to the laser heating the material is softened and thus cracks are avoided. For the technical realization of the new process of laser assisted die bending, modules equipped with numerous laser diodes and a total beam power of 2,5 kW are used. The light emitted by these modules enters a tool with a length of 15cm and is deflected towards the workpiece. By using ten of these modules with adjacent dies and by integrating those in a bending press a bending edge of sheet metals with a length of 1500mm can be realized. Such a bending press with laser assistance also needs energization with a power of practically 50kW, a respective water flow, a heat exchanger system and also a control for all functions of this system. Special measures have also been developed to avoid radiating of those tools that are not covered by a workpiece in the case of bending edges shorter than the full length of the bending tools whereas individual short circuiting of diode modules can be performed. Specific measures to ensure a safe operation without any harm to the operational person have been realized. Exploitation of the bending process has been carried out for titanium, where material thicknesses up to 3mm have been bent successfully.

  19. Design, development and testing of a solar-powered multi-family residential-size prototype turbocompressor heat pump

    SciTech Connect

    Not Available

    1982-10-01

    An experimental program was conducted to further define, improve and demonstrate the performance characteristics and operational features of an existing 18-ton solar-powered prototype heat pump. The prototype heat pump is nominally sized for multi-family residential applications and provides both space heating and cooling. It incorporates a turbocompressor specially designed to operate at peak temperatures consistent with medium concentration collectors. The major efforts in this program phase included modification and improvement of the instrumentation sensors, the laboratory simulation equipment and selected heat pump components. After implementing these modifications, performance testing was conducted for a total operating time of approximately 250 hours. Experimental test results compared favorably with performance data calculated using the UTRC computer prediction program for the same boundary conditions. A series of tests was conducted continuously over a 12-h period to simulate operation (in the cooling mode) of the prototype heat pump under conditions typical of an actual installation. The test demonstrated that the heat pump could match the cooling load profile of a multi-family residential building. During the system performance testing, sufficient data were taken to identify the performance of each of the major components (e.g. turbine, compressor, heat exchangers, R11 pump). Component performance is compared with that calculated using the UTRC computer predict program and with data supplied by their manufacturers. The performance capabilities of the prototype heat pump system have been documented and recommendations are made for further design improvements which could be included in a MOD-2 configuration. The MOD-2 configuration would incorporate features that would improve system performance, reduce capital cost and most importantly improve system reliability.

  20. An Educational Laboratory for Digital Control and Rapid Prototyping of Power Electronic Circuits

    ERIC Educational Resources Information Center

    Choi, Sanghun; Saeedifard, M.

    2012-01-01

    This paper describes a new educational power electronics laboratory that was developed primarily to reinforce experimentally the fundamental concepts presented in a power electronics course. The developed laboratory combines theoretical design, simulation studies, digital control, fabrication, and verification of power-electronic circuits based on…

  1. The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hanga

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hangar at NASA's Dryden flight Research Center, Edwards, California. The elongated 247-foot span lightweight aircraft, resting on its ground maneuvering dolly, stretched almost the full length of the 300-foot long hangar while on display during a visit of NASA Administrator Sean O'Keefe and other NASA officials on Jan. 31, 2002. The unique solar-electric flying wing reached an altitude of 96,863 feet during an almost 17-hour flight near Hawaii on Aug. 13, 2001, a world record for sustained horizontal flight by a non-rocket powered aircraft. Developed by AeroVironment, Inc., under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude uninhabited aerial vehicles (UAV) which can serve as 'atmospheric satellites,' performing Earth science missions or functioning as telecommunications relay platforms in the stratosphere.

  2. Model measurement based identification of Francis turbine vortex rope parameters for prototype part load pressure and power pulsation prediction

    NASA Astrophysics Data System (ADS)

    Manderla, M.; Weber, W.; Koutnik, J.

    2016-11-01

    Pressure and power fluctuations of hydro-electric power plants in part-load operation are an important measure for the quality of the power which is delivered to the electrical grid. It is well known that the unsteadiness is driven by the flow patterns in the draft tube where a vortex rope is present. However, until today the equivalent vortex rope parameters for common numerical 1D-models are a major source of uncertainty. In this work, a new optimization-based grey box method for experimental vortex rope modelling and parameter identification is presented. The combination of analytical vortex rope and test rig modelling and the usage of dynamic measurements allow the identification of the unknown vortex rope parameters. Upscaling from model to prototype size is achieved via existing nondimensional parameters. In this work, a new experimental setup and system identification method is proposed which are suitable for the determination of the full set of part load vortex rope parameters in the lab. For the vortex rope, a symmetric model with cavity compliance, bulk viscosity and two pressure excitation sources is developed and implemented which shows the best correspondence with available measurement data. Due to the non-dimensional parameter definition, scaling is possible. This finally provides a complete method for the prediction of prototype part-load pressure and power oscillations. Since the proposed method is based on a simple limited control domain, limited modelling effort and also small modelling uncertainties are some major advantages. Due to the generality of the approach, a future application to other operating conditions such as full load will be straightforward.

  3. A prototype ground support system security monitor for space based power system health monitoring

    NASA Astrophysics Data System (ADS)

    Janik, Donald F.; Gholdston, Edward W.

    This paper reports on the work Rocketdyne is performing in the area of power system security monitoring for space-based system health monitoring. The Integrated Power Advisory Controller, which represents a portion of a ground-based system security monitor and uses an object-oriented knowledge design, is discussed. The simulation environment used to develop and test the system is described.

  4. Development and testing of a prototype on-line radioiodine monitor for nuclear power stations

    SciTech Connect

    Tseng, T.T.; Jester, W.A.; Baratta, A.J.; McMaster, I.B.; Miller, D.W.

    1986-01-01

    A prototype on-line monitor has been developed which is capable of detecting radioiodine in the presence of as much as 1 X 10(6) higher concentration of noble gases. The system contains two identical radiation monitoring chambers through which the monitored air and a purging gas alternately cycle. Each chamber contains a silver zeolite filter which has a high retention of the various forms of airborne radioiodine but low retention of noble gases. During the purging cycle the radioactive noble gases are quickly purged from the filter and chamber and the lower levels of radioiodine accumulated on the filter are detected. This system has been successfully tested using short-lived radionuclides simulating vented reactor gases resulting from an abnormal condition.

  5. Deep proton writing: a powerful rapid prototyping technology for various micro-optical components

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Vervaeke, Michael; Debaes, Christof; Ottevaere, Heidi; Van Overmeire, Sara; Hermanne, Alex; Thienpont, Hugo

    2010-05-01

    One of the important challenges for the deployment of the emerging breed of nanotechnology components is interfacing them with the external world, preferably accomplished with low-cost micro-optical devices. For the fabrication of this kind of micro-optical modules, we make use of deep proton writing (DPW) as a generic rapid prototyping technology. DPW consists of bombarding polymer samples with swift protons, which results after chemical processing steps in high quality micro-optical components. The strength of the DPW micro-machining technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we give an overview of the process steps of the technology and we present several examples of micro-optical and micro-mechanical components, fabricated through DPW, targeting applications in optical interconnections and in bio-photonics. These include: high-precision 2-D fiber connectors, out-of-plane coupling structures featuring high-quality 45° and curved micro-mirrors, arrays of high aspect ratio micro-pillars, and fluorescence and absorption detection bio-photonics modules. While DPW is clearly not a mass fabrication technique as such, one of its assets is that once the master component has been prototyped, a metal mould can be generated from the DPW master by applying electroplating. After removal of the plastic master, this metal mould can be used as a shim in a final microinjection moulding or hot embossing step. This way, the master component can be mass-produced at low cost in a wide variety of high-tech plastics.

  6. Wind-tunnel evaluation of a 21-percent-scale powered model of a prototype advanced scout helicopter

    NASA Technical Reports Server (NTRS)

    Phelps, A. E., III; Berry, J. D.

    1985-01-01

    An exploratory wind tunnel investigation of a 21 percent scale powered model of a prototype advanced scout helicopter was conducted in the Langley 4 by 7 Meter Tunnel. The investigation was conducted to define the overall aerodynamic characteristics of the Army Helicopter Improvement Program (AHIP), to determine the effects of the rotor on the aerodynamic characteristics and to evaluate the effect of a mast mounted sight on the aircraft stability characteristics. Tests covered a range of thrust coefficients, advance ratios, angles of attack and angles of sideslip and were run for both rotor on and rotor off configurations. Results of the investigation showed that the prototype configuration was longitudinally unstable with angle of attack for all configurations tested. The instability was due to unfavorable interference effects between the horizontal tail and the wake shed from the engine pylon and rotor hub, which caused a loss of horizontal tail effectiveness. The addition of the mast mounted sight had little effect on the stability of the model, but it caused an alteration in the rotor lift distribution that resulted in substantial interference drag for the sight.

  7. Performance evaluation of the hydrogen-powered prototype locomotive 'Hydrogen Pioneer'

    NASA Astrophysics Data System (ADS)

    Hoffrichter, Andreas; Fisher, Peter; Tutcher, Jonathan; Hillmansen, Stuart; Roberts, Clive

    2014-03-01

    The narrow-gauge locomotive 'Hydrogen Pioneer', which was developed and constructed at the University of Birmingham, was employed to establish the performance of a hydrogen-hybrid railway traction vehicle. To achieve this several empirical tests were conducted. The locomotive utilises hydrogen gas in a Proton Exchange Membrane Fuel Cell power-plant to supply electricity to the traction motors or charge the on-board lead-acid batteries. First, the resistance to motion of the vehicle was determined, then operating tests were conducted for the speeds 2 km h-1, 6 km h-1, 7 km h-1, and 10 km h-1 on a 30 m straight, level alignment resembling light running. The power-plant and vehicle efficiency as well as the performance of the hybrid system were recorded. The observed overall duty cycle efficiency of the power-plant was from 28% to 40% and peak-power demand, such as during acceleration, was provided by the battery-pack, while average power during the duty cycle was met by the fuel cell stack, as designed. The tests establish the proof-of-concept for a hydrogen-hybrid railway traction vehicle and the results indicate that the traction system can be applied to full-scale locomotives.

  8. Performance Testing of a Prototypic Annular Linear Induction Pump for Fission Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Pearson, J. B.; Schoenfeld, M. P.; Webster, K.; Houts, M. G.; Godfroy, T. J.; Bossard, J. A.

    2010-01-01

    Results of performance testing of an annular linear induction pump are presented. The pump electromagnetically pumps liquid metal (NaK) through a circuit specially designed to allow for quantification of the performance. Testing was conducted over a range of conditions, including frequencies of 33, 36, 39, and 60 Hz, liquid metal temperatures from 25 to 525 C, and input voltages from 5 to 120 V. Pump performance spanned a range of flow rates from roughly 0.16 to 5.7 L/s (2.5 to 90 gpm), and pressure head <1 to 90 kPa (<0.145 to 13 psi). The maximum efficiency measured during testing was slightly greater than 6%. The efficiency was fairly insensitive to input frequency from 33 to 39 Hz, and was markedly lower at 60 Hz. In addition, the efficiency decreased as the NaK temperature was raised. While the pump was powered, the fluid responded immediately to changes in the input power level, but when power was removed altogether, there was a brief slow-down period before the fluid would come to rest. The performance of the pump operating on a variable frequency drive providing 60 Hz power compared favorably with the same pump operating on 60 Hz power drawn directly from the electrical grid.

  9. Prototype of a high-power, high-energy industrial XeCl laser

    NASA Astrophysics Data System (ADS)

    Borisov, V. M.; Demin, A. I.; Khristoforov, O. B.

    2015-03-01

    We discuss the results of fabrication and experimental study of a high-power excimer XeCl laser for industrial applications. Compactness of the laser is achieved by the employment of a laser chamber based on a ceramic tube made of Al2O3. High laser output energy (1.5 - 2.5 J pulse-1) is obtained using a wide-aperture (up to 55 × 30 mm) volume discharge with pre-ionisation by a creeping discharge. The pre-ionisation is realised through a semitransparent electrode by the UV radiation of a creeping discharge in the form of uniform plasma sheet on a surface of a plane sapphire plate. The operating lifetime of the gas mixture amounts to ~57 × 106 pulses at a stabilised average laser power of 450 W. The results obtained demonstrate real prospects for developing a new class of excimer XeCl lasers with an average power of ~1 kW.

  10. A COMPUTERIZED OPERATOR SUPPORT SYSTEM PROTOTYPE

    SciTech Connect

    Thomas A. Ulrich; Roger Lew; Ronald L. Boring; Ken Thomas

    2015-03-01

    A computerized operator support system (COSS) is proposed for use in nuclear power plants to assist control room operators in addressing time-critical plant upsets. A COSS is a collection of technologies to assist operators in monitoring overall plant performance and making timely, informed decisions on appropriate control actions for the projected plant condition. A prototype COSS was developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, piping and instrumentation diagram system representations, and a recommender module for mitigation actions. The initial version of the prototype is now operational at the Idaho National Laboratory using the Human System Simulation Laboratory.

  11. High Power Electric Propulsion Using The VASIMR VX-200: A Flight Technology Prototype

    NASA Astrophysics Data System (ADS)

    Bering, Edgar, III; Longmier, Benjamin; Glover, Tim; Chang-Diaz, Franklin; Squire, Jared; Brukardt, Michael

    2008-11-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is a high power magnetoplasma rocket, capable of Isp/thrust modulation at constant power. The plasma is produced by a helicon discharge. The bulk of the energy is added by ion cyclotron resonance heating (ICRH.) Axial momentum is obtained by adiabatic expansion of the plasma in a magnetic nozzle. Thrust/specific impulse ratio control in the VASIMR is primarily achieved by the partitioning of the RF power to the helicon and ICRH systems, with the proper adjustment of the propellant flow. Ion dynamics in the exhaust were studied using probes, gridded energy analyzers (RPA's), microwave interferometry and optical techniques. Results are summarize from high power ICRH experiments performed on the VX-100 using argon plasma during 2007, and on the VX-200 using argon plasma during 2008. The VX-100 has demonstrated ICRH antenna efficiency >90% and a total coupling efficiency of ˜75%. The rocket performance parameters inferred by integrating the moments of the ion energy distribution corresponds to a thrust of 2 N at an exhaust velocity of 20 km/s with the VX-100 device. The new VX-200 machine is described.

  12. Prototype Power and Communications System for EeV Cosmic Rays Studies

    SciTech Connect

    Russ, James S.

    2010-08-31

    An analysis of improving the power output of small wind turbines by adding a venturi housing was done. Including the effects of back pressure developed at the input to the housing lowers the efficiency gain from a factor of 5 to a factor of 2 for a turbine blade radius of 24 inches. The gain is small enough that only large systems could profit from the application.

  13. Prototype of a high-power, high-energy industrial XeCl laser

    SciTech Connect

    Borisov, V M; Demin, A I; Khristoforov, O B

    2015-03-31

    We discuss the results of fabrication and experimental study of a high-power excimer XeCl laser for industrial applications. Compactness of the laser is achieved by the employment of a laser chamber based on a ceramic tube made of Al{sub 2}O{sub 3}. High laser output energy (1.5 – 2.5 J pulse{sup -1}) is obtained using a wide-aperture (up to 55 × 30 mm) volume discharge with pre-ionisation by a creeping discharge. The pre-ionisation is realised through a semitransparent electrode by the UV radiation of a creeping discharge in the form of uniform plasma sheet on a surface of a plane sapphire plate. The operating lifetime of the gas mixture amounts to ∼57 × 10{sup 6} pulses at a stabilised average laser power of 450 W. The results obtained demonstrate real prospects for developing a new class of excimer XeCl lasers with an average power of ∼1 kW. (lasers)

  14. Geospatial Analysis and Technical Assistance for Power Plant Siting Interagency

    SciTech Connect

    Neher, L A

    2002-03-07

    The focus of this contract (in the summer and fall of 2001) was originally to help the California Energy Commission (CEC) locate and evaluate potential sites for electric power generation facilities and to assist the CEC in addressing areas of congestion on transmission lines and natural gas supply line corridors. Subsequent events have reduced the immediate urgency, although not the ultimate need for such analyses. Software technology for deploying interactive geographic information systems (GIS) accessible over the Internet have developed to the point that it is now practical to develop and publish GIS web sites that have substantial viewing, movement, query, and even map-making capabilities. As part of a separate project not funded by the CEC, the GIS Center at LLNL, on an experimental basis, has developed a web site to explore the technical difficulties as well as the interest in such a web site by agencies and others concerned with energy research. This exploratory effort offers the potential or developing an interactive GIS web site for use by the CEC for energy research, policy analysis, site evaluation, and permit and regulatory matters. To help ground the geospatial capabilities in the realistic requirements and needs of the CEC staff, the CEC requested that the GIS Center conduct interviews of several CEC staff persons to establish their current and envisioned use of spatial data and requirements for geospatial analyses. This survey will help define a web-accessible central GIS database for the CEC, which will augment the well-received work of the CEC Cartography Unit. Individuals within each siting discipline have been contacted and their responses to three question areas have been summarized. The web-based geospatial data and analytical tools developed within this project will be available to CEC staff for initial area studies, queries, and informal, small-format maps. It is not designed for fine cartography or for large-format posters such as the

  15. Overturning the Case for Gravitational Powering in the Prototypical Cooling Lyα Nebula

    NASA Astrophysics Data System (ADS)

    Prescott, Moire K. M.; Momcheva, Ivelina; Brammer, Gabriel B.; Fynbo, Johan P. U.; Møller, Palle

    2015-03-01

    The Nilsson et al. Lyα nebula has often been cited as the most plausible example of an Lyα nebula powered by gravitational cooling. In this paper, we bring together new data from the Hubble Space Telescope and the Herschel Space Observatory as well as comparisons to recent theoretical simulations in order to revisit the questions of the local environment and most likely power source for the Lyα nebula. In contrast to previous results, we find that this Lyα nebula is associated with six nearby galaxies and an obscured AGN that is offset by ˜4″ ≈ 30 kpc from the Lyα peak. The local region is overdense relative to the field, by a factor of ˜10, and at low surface brightness levels the Lyα emission appears to encircle the position of the obscured AGN, highly suggestive of a physical association. At the same time, we confirm that there is no compact continuum source located within ˜2-3″ ≈ 15-23 kpc of the Lyα peak. Since the latest cold accretion simulations predict that the brightest Lyα emission will be coincident with a central growing galaxy, we conclude that this is actually a strong argument against, rather than for, the idea that the nebula is gravitationally powered. While we may be seeing gas within cosmic filaments, this gas is primarily being lit up, not by gravitational energy, but due to illumination from a nearby buried AGN.

  16. OVERTURNING THE CASE FOR GRAVITATIONAL POWERING IN THE PROTOTYPICAL COOLING LYα NEBULA

    SciTech Connect

    Prescott, Moire K. M.; Fynbo, Johan P. U.; Momcheva, Ivelina; Brammer, Gabriel B.; Møller, Palle

    2015-03-20

    The Nilsson et al. Lyα nebula has often been cited as the most plausible example of an Lyα nebula powered by gravitational cooling. In this paper, we bring together new data from the Hubble Space Telescope and the Herschel Space Observatory as well as comparisons to recent theoretical simulations in order to revisit the questions of the local environment and most likely power source for the Lyα nebula. In contrast to previous results, we find that this Lyα nebula is associated with six nearby galaxies and an obscured AGN that is offset by ∼4″ ≈ 30 kpc from the Lyα peak. The local region is overdense relative to the field, by a factor of ∼10, and at low surface brightness levels the Lyα emission appears to encircle the position of the obscured AGN, highly suggestive of a physical association. At the same time, we confirm that there is no compact continuum source located within ∼2–3″ ≈ 15–23 kpc of the Lyα peak. Since the latest cold accretion simulations predict that the brightest Lyα emission will be coincident with a central growing galaxy, we conclude that this is actually a strong argument against, rather than for, the idea that the nebula is gravitationally powered. While we may be seeing gas within cosmic filaments, this gas is primarily being lit up, not by gravitational energy, but due to illumination from a nearby buried AGN.

  17. Experience from design, prototyping and production of a DC-DC conversion powering scheme for the CMS Phase-1 Pixel Upgrade

    NASA Astrophysics Data System (ADS)

    Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max; Schmitz, Stefan; Wlochal, Michael

    2017-02-01

    The CMS pixel detector will be replaced during the technical stop 2016/2017. To allow the new pixel detector to be powered with the legacy cable plant and power supplies, a novel powering scheme based on DC-DC conversion will be employed. After the successful conclusion of an extensive development and prototyping phase, mass production of 1800 DC-DC converters as well as motherboards and other power PCBs has now been completed. This contribution reviews the lessons learned from the development of the power system for the Phase-1 pixel detector, and summarizes the experience gained from the production phase.

  18. Rolling resistance and propulsion efficiency of manual and power-assisted wheelchairs.

    PubMed

    Pavlidou, Efthymia; Kloosterman, Marieke G M; Buurke, Jaap H; Rietman, Johan S; Janssen, Thomas W J

    2015-11-01

    Rolling resistance is one of the main forces resisting wheelchair propulsion and thus affecting stress exerted on the upper limbs. The present study investigates the differences in rolling resistance, propulsion efficiency and energy expenditure required by the user during power-assisted and manual propulsion. Different tire pressures (50%, 75%, 100%) and two different levels of motor assistance were tested. Drag force, energy expenditure and propulsion efficiency were measured in 10 able-bodied individuals under different experimental settings on a treadmill. Results showed that drag force levels were significantly higher in the 50%, compared to the 75% and 100% inflation conditions. In terms of wheelchair type, the manual wheelchair displayed significantly lower drag force values than the power-assisted one. The use of extra-power-assisted wheelchair appeared to be significantly superior to conventional power-assisted and manual wheelchairs concerning both propulsion efficiency and energy expenditure required by the user. Overall, the results of the study suggest that the use of power-assisted wheelchair was more efficient and required less energy input by the user, depending on the motor assistance provided.

  19. Design and development of a prototype 25 kV, 10 A long pulse Marx modulator for high power klystron

    NASA Astrophysics Data System (ADS)

    Acharya, Mahesh; Shrivastava, Purushottam

    2016-02-01

    Research, design, and development of high average power modulators for the proposed Indian Spallation Neutron Source are in progress at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of 25 kV, 10 A, 1 ms Marx modulator at repetition rate of 1 Hz has been designed and developed which serves as a proof of principle and technology assessment stage for further development of high repetition rate high voltage high average power modulators. Insulated Gate Bipolar Transistor (IGBT) based modules of 2.8 kV switching capability have been used as main modules. The modulator had 8.2% droop in output voltage pulse without any droop compensation circuit. A droop compensation involving 15 corrector modules has been used to reduce the droop up to 1%. We have used IGBT based 250 V switches to realize the corrector module. A microcontroller based control unit was designed and developed for triggering the main and corrector modules. With this control unit, programmable output pulse has been achieved. Electrical isolation between high voltage circuits and control circuit has been achieved by the use of fiber optic based control signal transmission. Output pulses of 1 ms pulse width, 800 ns rise time, and 5 μs fall time have been achieved. The modulator has advantages of modular design, adjustable pulse width, adjustable rise time, and fall time.

  20. Design and development of a prototype 25 kV, 10 A long pulse Marx modulator for high power klystron.

    PubMed

    Acharya, Mahesh; Shrivastava, Purushottam

    2016-02-01

    Research, design, and development of high average power modulators for the proposed Indian Spallation Neutron Source are in progress at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of 25 kV, 10 A, 1 ms Marx modulator at repetition rate of 1 Hz has been designed and developed which serves as a proof of principle and technology assessment stage for further development of high repetition rate high voltage high average power modulators. Insulated Gate Bipolar Transistor (IGBT) based modules of 2.8 kV switching capability have been used as main modules. The modulator had 8.2% droop in output voltage pulse without any droop compensation circuit. A droop compensation involving 15 corrector modules has been used to reduce the droop up to 1%. We have used IGBT based 250 V switches to realize the corrector module. A microcontroller based control unit was designed and developed for triggering the main and corrector modules. With this control unit, programmable output pulse has been achieved. Electrical isolation between high voltage circuits and control circuit has been achieved by the use of fiber optic based control signal transmission. Output pulses of 1 ms pulse width, 800 ns rise time, and 5 μs fall time have been achieved. The modulator has advantages of modular design, adjustable pulse width, adjustable rise time, and fall time.

  1. Biomechanical Evaluation of an Electric Power-Assisted Bicycle by a Musculoskeletal Model

    NASA Astrophysics Data System (ADS)

    Takehara, Shoichiro; Murakami, Musashi; Hase, Kazunori

    In this study, we construct an evaluation system for the muscular activity of the lower limbs when a human pedals an electric power-assisted bicycle. The evaluation system is composed of an electric power-assisted bicycle, a numerical simulator and a motion capture system. The electric power-assisted bicycle in this study has a pedal with an attached force sensor. The numerical simulator for pedaling motion is a musculoskeletal model of a human. The motion capture system measures the joint angles of the lower limb. We examine the influence of the electric power-assisted force on each muscle of the human trunk and legs. First, an experiment of pedaling motion is performed. Then, the musculoskeletal model is calculated by using the experimental data. We discuss the influence on each muscle by electric power-assist. It is found that the muscular activity is decreased by the electric power-assist bicycle, and the reduction of the muscular force required for pedaling motion was quantitatively shown for every muscle.

  2. Development of a Power Assist System of a Walking Chair Based on Human Arm Characteristics

    NASA Astrophysics Data System (ADS)

    Wu, Yunfeng; Nakamura, Hitoshi; Takeda, Yukio; Higuchi, Masaru; Sugimoto, Koichi

    In this paper, design of control system and power combination mechanism of a power assist system of the walking chair was discussed based on kinetostatic characteristics of human arm. The walking chair is a welfare walking machine which is an alternative vehicle of the wheelchair, and expected to be driven by user's cranking operation with assisting actuator. To efficiently utilize user power as much as possible for long locomotion without giving much fatigue to the user while providing comfortable driving feeling to the user, the human arm characteristics were taken into consideration. Kinetostatic characteristics of the human arm were experimentally investigated for its modeling. This model was applied to the design of mechanism and control system of the power assist system of the walking chair, and design parameters were determined for achieving comfortable driving feeling and efficient utilization of user power.

  3. Humanitarian Assistance and ’Soft’ Power Projection

    DTIC Science & Technology

    2012-05-04

    challenge the current dogma that U.S. military humanitarian support must maintain the ‘status quo’ and remain reactionary. The decoupling will occur in...future challenges that go beyond humanitarian assistance. These were not an all inclusive list of similarities between Peace Operations and...Civil Authorities  Intergovernmental organizations (United Nations)  Local population This is not an all inclusive list, but it helps set the

  4. Comparison of Conventional Methods and Laser-Assisted Rapid Prototyping for Manufacturing Fixed Dental Prostheses: An In Vitro Study.

    PubMed

    Pompa, Giorgio; Di Carlo, Stefano; De Angelis, Francesca; Cristalli, Maria Paola; Annibali, Susanna

    2015-01-01

    This study assessed whether there are differences in marginal fit between laser-fusion and conventional techniques to produce fixed dental prostheses (FDPs). A master steel die with 2 abutments was produced to receive a posterior 4-unit FDPs and single copings. These experimental models were divided into three groups (n = 20/group) manufactured: group 1, Ni-Cr alloy, with a lost-wax casting technique; group 2, Co-Cr alloy, with selective laser melting (SLM); and group 3, yttria-tetragonal zirconia polycrystal (Y-TZP), with a milling system. All specimens were cut along the longitudinal axis and their adaptation was measured at the marginal and shoulder areas on the right and left sides of each abutment. Measurements were made using a stereomicroscope (×60 magnification) and a scanning electron microscope (×800 magnification). The data were analyzed using one-way analysis of variance and the Bonferroni post hoc test, with a significance cutoff of 5%. Significant differences (P < 0.05) were observed between group 3 and the other groups. The marginal opening was smallest with Co-Cr alloy substructures, while the shoulder opening was smallest with Ni-Cr alloy substructures. Within the limitations of this study, the marginal fit of an FDP is better with rapid prototyping (RP) via SLM than conventional manufacturing systems.

  5. Comparison of Conventional Methods and Laser-Assisted Rapid Prototyping for Manufacturing Fixed Dental Prostheses: An In Vitro Study

    PubMed Central

    Pompa, Giorgio; Di Carlo, Stefano; De Angelis, Francesca; Cristalli, Maria Paola; Annibali, Susanna

    2015-01-01

    This study assessed whether there are differences in marginal fit between laser-fusion and conventional techniques to produce fixed dental prostheses (FDPs). A master steel die with 2 abutments was produced to receive a posterior 4-unit FDPs and single copings. These experimental models were divided into three groups (n = 20/group) manufactured: group 1, Ni-Cr alloy, with a lost-wax casting technique; group 2, Co-Cr alloy, with selective laser melting (SLM); and group 3, yttria-tetragonal zirconia polycrystal (Y-TZP), with a milling system. All specimens were cut along the longitudinal axis and their adaptation was measured at the marginal and shoulder areas on the right and left sides of each abutment. Measurements were made using a stereomicroscope (×60 magnification) and a scanning electron microscope (×800 magnification). The data were analyzed using one-way analysis of variance and the Bonferroni post hoc test, with a significance cutoff of 5%. Significant differences (P < 0.05) were observed between group 3 and the other groups. The marginal opening was smallest with Co-Cr alloy substructures, while the shoulder opening was smallest with Ni-Cr alloy substructures. Within the limitations of this study, the marginal fit of an FDP is better with rapid prototyping (RP) via SLM than conventional manufacturing systems. PMID:26576419

  6. Operationality Improvement Control of Electric Power Assisted Wheelchair by Fuzzy Algorithm Considering Posture Angle

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroki; Seki, Hirokazu; Minakata, Hideaki; Tadakuma, Susumu

    This paper describes a novel operationality improvement control for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel operationality improvement control by fuzzy algorithm to realize the stable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity, the posture angle of the wheelchair, the human input torque proportion and the total human torque of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.

  7. Feasibility of a Hydraulic Power Assist System for Use in Hybrid Neuroprostheses

    PubMed Central

    Foglyano, Kevin M.; Kobetic, Rudi; To, Curtis S.; Bulea, Thomas C.; Schnellenberger, John R.; Audu, Musa L.; Nandor, Mark J.; Quinn, Roger D.; Triolo, Ronald J.

    2015-01-01

    Feasibility of using pressurized hydraulic fluid as a source of on-demand assistive power for hybrid neuroprosthesis combining exoskeleton with functional neuromuscular stimulation was explored. Hydraulic systems were selected as an alternative to electric motors for their high torque/mass ratio and ability to be located proximally on the exoskeleton and distribute power distally to assist in moving the joints. The power assist system (PAS) was designed and constructed using off-the-shelf components to test the feasibility of using high pressure fluid from an accumulator to provide assistive torque to an exoskeletal hip joint. The PAS was able to provide 21 Nm of assistive torque at an input pressure of 3171 kPa with a response time of 93 ms resulting in 32° of hip flexion in an able-bodied test. The torque output was independent of initial position of the joint and was linearly related to pressure. Thus, accumulator pressure can be specified to provide assistive torque as needed in exoskeletal devices for walking or stair climbing beyond those possible either volitionally or with electrical stimulation alone. PMID:27017963

  8. Feasibility of a Hydraulic Power Assist System for Use in Hybrid Neuroprostheses.

    PubMed

    Foglyano, Kevin M; Kobetic, Rudi; To, Curtis S; Bulea, Thomas C; Schnellenberger, John R; Audu, Musa L; Nandor, Mark J; Quinn, Roger D; Triolo, Ronald J

    2015-01-01

    Feasibility of using pressurized hydraulic fluid as a source of on-demand assistive power for hybrid neuroprosthesis combining exoskeleton with functional neuromuscular stimulation was explored. Hydraulic systems were selected as an alternative to electric motors for their high torque/mass ratio and ability to be located proximally on the exoskeleton and distribute power distally to assist in moving the joints. The power assist system (PAS) was designed and constructed using off-the-shelf components to test the feasibility of using high pressure fluid from an accumulator to provide assistive torque to an exoskeletal hip joint. The PAS was able to provide 21 Nm of assistive torque at an input pressure of 3171 kPa with a response time of 93 ms resulting in 32° of hip flexion in an able-bodied test. The torque output was independent of initial position of the joint and was linearly related to pressure. Thus, accumulator pressure can be specified to provide assistive torque as needed in exoskeletal devices for walking or stair climbing beyond those possible either volitionally or with electrical stimulation alone.

  9. Design, development and testing of a solar-powered multi-family residential size prototype turbocompressor heat pump

    SciTech Connect

    1981-03-01

    A program described to design, fabricate, and conduct preliminary testing of a prototype solar-powered Rankine cycle turbocompressor heat pump module for a multi-family residential building is presented. A solar system designed to use the turbocompressor heat pump module including all of the subsystems required and the various system operating modes is described in Section I. Section II includes the preliminary design analyses conducted to select the heat pump module components and operating features, working fluid, configuration, size and performance goals, and estimated performance levels in the cooling and heating modes. Section III provides a detailed description of the other subsystems and components required for a complete solar installation. Using realistic performance and cost characteristics for all subsystems, the seasonal performance of the UTC heat pump is described in various US locations. In addition, the estimated energy savings and an assessment of the economic viability of the solar system is presented in Section III. The detailed design of the heat pump module and the arrangement of components and controls selected to conduct the laboratory performance tests are described in Section IV. Section V provides a description of the special laboratory test facility, including the subsystems to simulate the collectors and storage tanks for building load and ambient conditions and the instrumentation, monitoring, and data acquisition equipment. The test results and sample computer analyses and comparisons with predicted performance levels are presented in Section VI. Various appendices provide supplementary and background information concerning working fluid selection (A), configuration selection (B), capacity control concepts (C), building models (D), computer programs used to determine component and system performance and total system economics (E), and weather data (F).

  10. Motor adaptation during dorsiflexion-assisted walking with a powered orthosis

    PubMed Central

    Kao, Pei-Chun; Ferris, Daniel P.

    2009-01-01

    A robotic ankle-foot orthosis (AFO) that provides powered assistance could adjust to varying gait dynamics much better than a rigid AFO. To provide insight into how humans would adapt to a powered AFO, we studied the response of neurologically intact subjects walking with an active dorsiflexion assist orthosis proportionally controlled by tibialis anterior electromyography (EMG). We examined the two mechanical functions of ankle dorsiflexors in gait (power absorption at heel strike and power generation at toe-off) by recruiting two groups of healthy subjects: Group One, called Continuous Control, (n=5) had dorsiflexion assistance both at the initial heel contact and during swing; Group Two, called Swing Control, (n=5) had the assistance only during swing. We hypothesized both groups of subjects would reduce tibialis anterior EMG amplitude with practice walking with the powered dorsiflexion assist. Ten healthy subjects were fitted with custom-made orthoses that included an artificial pneumatic muscle providing dorsiflexor torque. We collected lower body kinematics, EMG, and artificial muscle force while subjects walked on a treadmill for two 30-minute training sessions. We found that subjects walked with increased ankle dorsiflexion by 9 degrees but showed different adaptation responses of the two tibialis anterior EMG bursts. The first EMG burst around heel strike had ~28% lower amplitudes (p<0.05) but the second EMG burst during swing had similar amplitudes. These results provide baseline data of EMG controlled dorsiflexion assist in neurologically intact humans that can be used to guide future studies on neurologically impaired individuals. PMID:18838269

  11. Muscle powered circulatory assist device for diastolic counterpulsator.

    PubMed

    Novoa, R; Jacobs, G; Sakakibara, N; Chen, J F; Davies, C; Cosgrove, D M; Golding, L R; Nosé, Y; Loop, F D

    1989-01-01

    A diastolic counterpulsator that uses either skeletal muscle or pneumatic actuation was developed. The unit is positioned between the latissimus dorsi and the chest wall, without interference with collateral blood supply, and is connected in series with the descending aorta. The system was able to generate stroke volumes between 52 and 16 ccs against pressures of 60 and 140 mmHg, respectively. Stroke work at 200 msec stimulation averaged 2.8 X 10(6) ergs. Power output at an afterload of 100 mmHg, and at a rate of 60 bpm, was 0.51 W. Back-up pneumatic actuation provided by an intraaortic balloon pump resulted in a 46% increase in the endocardial viability ratio (EVR).

  12. Mechanical Prototyping and Manufacturing Internship

    NASA Technical Reports Server (NTRS)

    Grenfell, Peter

    2016-01-01

    The internship was located at the Johnson Space Center (JSC) Innovation Design Center (IDC), which is a facility where the JSC workforce can meet and conduct hands-on innovative design, fabrication, evaluation, and testing of ideas and concepts relevant to NASA's mission. The tasks of the internship included mechanical prototyping design and manufacturing projects in service of research and development as well as assisting the users of the IDC in completing their manufacturing projects. The first project was to manufacture hatch mechanisms for a team in the Systems Engineering and Project Advancement Program (SETMAP) hexacopter competition. These mechanisms were intended to improve the performance of the servomotors and offer an access point that would also seal to prevent cross-contamination. I also assisted other teams as they were constructing and modifying their hexacopters. The success of this competition demonstrated a proof of concept for aerial reconnaissance and sample return to be potentially used in future NASA missions. I also worked with Dr. Kumar Krishen to prototype an improved thermos and a novel, portable solar array. Computer-aided design (CAD) software was used to model the parts for both of these projects. Then, 3D printing as well as conventional techniques were used to produce the parts. These prototypes were then subjected to trials to determine the success of the designs. The solar array is intended to work in a cluster that is easy to set up and take down and doesn't require powered servomechanisms. It could be used terrestrially in areas not serviced by power grids. Both projects improve planetary exploration capabilities to future astronauts. Other projects included manufacturing custom rail brackets for EG-2, assisting engineers working on underwater instrument and tool cases for the NEEMO project, and helping to create mock-up parts for Space Center Houston. The use of the IDC enabled efficient completion of these projects at

  13. Plutonium-238: an ideal power source for intracorporeal ventricular assist devices?

    PubMed

    Tchantchaleishvili, Vakhtang; Bush, Bryan S; Swartz, Michael F; Day, Steven W; Massey, H Todd

    2012-01-01

    Ventricular assist devices emerged as a widely used modality for treatment of end-stage heart failure; however, despite significant advances, external energy supply remains a problem contributing to significant patient morbidity and potential mortality. One potential solution is using the nuclear radioisotope Plutonium-238 as a power source. Given its very high energy density and long half-life, Plutonium-238 could eventually allow a totally intracorporeal ventricular assist system that lasts for the patient's lifetime. Risks, such as leakage and theft identified decades ago, still remain. However, it is possible that newer technologies could be used to overcome the system complexity and unreliability of the previous generations of nuclear-powered mechanical assist systems. Were it not for the remaining safety risks, Plutonium-238 would be an ideal energy source for this purpose.

  14. New consumer load prototype for electricity theft monitoring

    NASA Astrophysics Data System (ADS)

    Abdullateef, A. I.; Salami, M. J. E.; Musse, M. A.; Onasanya, M. A.; Alebiosu, M. I.

    2013-12-01

    Illegal connection which is direct connection to the distribution feeder and tampering of energy meter has been identified as a major process through which nefarious consumers steal electricity on low voltage distribution system. This has contributed enormously to the revenue losses incurred by the power and energy providers. A Consumer Load Prototype (CLP) is constructed and proposed in this study in order to understand the best possible pattern through which the stealing process is effected in real life power consumption. The construction of consumer load prototype will facilitate real time simulation and data collection for the monitoring and detection of electricity theft on low voltage distribution system. The prototype involves electrical design and construction of consumer loads with application of various standard regulations from Institution of Engineering and Technology (IET), formerly known as Institution of Electrical Engineers (IEE). LABVIEW platform was used for data acquisition and the data shows a good representation of the connected loads. The prototype will assist researchers and power utilities, currently facing challenges in getting real time data for the study and monitoring of electricity theft. The simulation of electricity theft in real time is one of the contributions of this prototype. Similarly, the power and energy community including students will appreciate the practical approach which the prototype provides for real time information rather than software simulation which has hitherto been used in the study of electricity theft.

  15. High-Powered, Ultrasonically Assisted Thermal Stir Welding

    NASA Technical Reports Server (NTRS)

    Ding, Robert

    2013-01-01

    distance equal to the thickness of the material being welded. The TSW process can be significantly improved by reducing the draw forces. This can be achieved by reducing the friction forces between the weld workpieces and the containment plates. High-power ultrasonic (HPU) vibrations of the containment plates achieve friction reduction in the TSW process. Furthermore, integration of the HPU energy into the TSW stir rod can increase tool life of the stir rod, and can reduce shear forces to which the stir rod is subjected during the welding process. TSW has been used to successfully join 0.500-in (˜13-mm) thick commercially pure (CP) titanium, titanium 6AL- 4V, and titanium 6AL-4V ELI in weld joint lengths up to 9 ft (˜2.75-m) long. In addition, the TSW process was used to fabricate a sub-scale hexagonally shaped gun turret component for the U.S. Navy. The turret is comprised of six 0.5000-in (˜13-mm) thick angled welds. Each angled weld joint was prepared by machining the mating surfaces to 120deg. The angled weld joint was then fixtured using an upper and lower containment plate of the same geometry of the angled weld joint. The weld joint was then stirred by the stir rod as it and the upper and lower containment plates traverse through the angled joint prep.

  16. Micro-tubular flame-assisted fuel cells for micro-combined heat and power systems

    NASA Astrophysics Data System (ADS)

    Milcarek, Ryan J.; Wang, Kang; Falkenstein-Smith, Ryan L.; Ahn, Jeongmin

    2016-02-01

    Currently the role of fuel cells in future power generation is being examined, tested and discussed. However, implementing systems is more difficult because of sealing challenges, slow start-up and complex thermal management and fuel processing. A novel furnace system with a flame-assisted fuel cell is proposed that combines the thermal management and fuel processing systems by utilizing fuel-rich combustion. In addition, the flame-assisted fuel cell furnace is a micro-combined heat and power system, which can produce electricity for homes or businesses, providing resilience during power disruption while still providing heat. A micro-tubular solid oxide fuel cell achieves a significant performance of 430 mW cm-2 operating in a model fuel-rich exhaust stream.

  17. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system.

    PubMed

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-04-28

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m(2) is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m(2) at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems.

  18. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system

    NASA Astrophysics Data System (ADS)

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-04-01

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems.

  19. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system

    PubMed Central

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-01-01

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems. PMID:24770490

  20. H∞-control of a rack-assisted electric power steering system

    NASA Astrophysics Data System (ADS)

    Dannöhl, C.; Müller, S.; Ulbrich, H.

    2012-04-01

    Electric power steering (EPS) is more and more in use for passenger cars. Compared with hydraulic steering systems there are many advantages, such as reduced CO2 emissions and the possibility to use the EPS motor torque for advanced driver assistance systems. One task of the steering system is to give the driver an adequate steering feel. This includes providing road feedback and the right level of assistance torque. This article describes the steering torque control of a rack-assisted EPS. The controller's task is to follow a reference steering torque quickly and accurately. First, a mechanical model of the EPS is shown. Then, an H∞-controller is designed, implemented and compared with other steering torque controllers. As steering torque discontinuities are a topic when looking at new control algorithms, the phenomenon and its cause are analysed using a detailed mechanical model. The results of this analysis are considered in the controller design.

  1. Development of high speed power thyristor: The gate assisted turn-off thyristor

    NASA Technical Reports Server (NTRS)

    Hamilton, D. R.; Brewster, J.; Frobenius, D.; Desmond, T.

    1972-01-01

    A high speed power switch with unique turn-off capability was developed. This gate-assisted turn-off thyristor was rated at 609 V and 50 A with turn-off times of 2 microsec. Twenty-two units were delivered for evaluation in a series inverter circuit. In addition, test circuits designed to relate to the series inverter application were built and demonstrated.

  2. Greenbrier Prototype

    SciTech Connect

    2010-06-18

    This case study describes a prototype home that is the model home for the Homes at Greenbrier in Oakdale, Connecticut, and demonstrates the builder's concept of “attainable sustainable” of offering high performance homes at mid-market prices.

  3. Prototyping of Computer-Based Training Materials.

    ERIC Educational Resources Information Center

    Gray, D. E.; Black, T. R.

    1994-01-01

    Defines prototyping as an original version or model on which a completed software system for computer-based training is formed; examines the development process of a prototype; describes how prototyping can assist in facilitating communication between educational technology, software engineering, and project management; and discusses why…

  4. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype Electric Power Management and Thruster Control System for a 30 cm ion thruster has been built and is ready to support a first mission application. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The Power Management and Control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is designed to be easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete Power Management and Control system measures 45.7 cm x 15.2 cm x 114.8 cm and weighs 36.2 kg. At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  5. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype electric power management and thruster control system for a 30 cm ion thruster is described. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The power management and control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete power management and control system measures 45.7 cm (18 in.) x 15.2 cm (6 in.) x 114.8 cm (45.2 in.) and weighs 36.2 kg (79.7 lb). At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  6. An upper-limb power-assist exoskeleton using proportional myoelectric control.

    PubMed

    Tang, Zhichuan; Zhang, Kejun; Sun, Shouqian; Gao, Zenggui; Zhang, Lekai; Yang, Zhongliang

    2014-04-10

    We developed an upper-limb power-assist exoskeleton actuated by pneumatic muscles. The exoskeleton included two metal links: a nylon joint, four size-adjustable carbon fiber bracers, a potentiometer and two pneumatic muscles. The proportional myoelectric control method was proposed to control the exoskeleton according to the user's motion intention in real time. With the feature extraction procedure and the classification (back-propagation neural network), an electromyogram (EMG)-angle model was constructed to be used for pattern recognition. Six healthy subjects performed elbow flexion-extension movements under four experimental conditions: (1) holding a 1-kg load, wearing the exoskeleton, but with no actuation and for different periods (2-s, 4-s and 8-s periods); (2) holding a 1-kg load, without wearing the exoskeleton, for a fixed period; (3) holding a 1-kg load, wearing the exoskeleton, but with no actuation, for a fixed period; (4) holding a 1-kg load, wearing the exoskeleton under proportional myoelectric control, for a fixed period. The EMG signals of the biceps brachii, the brachioradialis, the triceps brachii and the anconeus and the angle of the elbow were collected. The control scheme's reliability and power-assist effectiveness were evaluated in the experiments. The results indicated that the exoskeleton could be controlled by the user's motion intention in real time and that it was useful for augmenting arm performance with neurological signal control, which could be applied to assist in elbow rehabilitation after neurological injury.

  7. An Upper-Limb Power-Assist Exoskeleton Using Proportional Myoelectric Control

    PubMed Central

    Tang, Zhichuan; Zhang, Kejun; Sun, Shouqian; Gao, Zenggui; Zhang, Lekai; Yang, Zhongliang

    2014-01-01

    We developed an upper-limb power-assist exoskeleton actuated by pneumatic muscles. The exoskeleton included two metal links: a nylon joint, four size-adjustable carbon fiber bracers, a potentiometer and two pneumatic muscles. The proportional myoelectric control method was proposed to control the exoskeleton according to the user's motion intention in real time. With the feature extraction procedure and the classification (back-propagation neural network), an electromyogram (EMG)-angle model was constructed to be used for pattern recognition. Six healthy subjects performed elbow flexion-extension movements under four experimental conditions: (1) holding a 1-kg load, wearing the exoskeleton, but with no actuation and for different periods (2-s, 4-s and 8-s periods); (2) holding a 1-kg load, without wearing the exoskeleton, for a fixed period; (3) holding a 1-kg load, wearing the exoskeleton, but with no actuation, for a fixed period; (4) holding a 1-kg load, wearing the exoskeleton under proportional myoelectric control, for a fixed period. The EMG signals of the biceps brachii, the brachioradialis, the triceps brachii and the anconeus and the angle of the elbow were collected. The control scheme's reliability and power-assist effectiveness were evaluated in the experiments. The results indicated that the exoskeleton could be controlled by the user's motion intention in real time and that it was useful for augmenting arm performance with neurological signal control, which could be applied to assist in elbow rehabilitation after neurological injury. PMID:24727501

  8. Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun

    2015-06-01

    Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.

  9. Power-assistive finger exoskeleton with a palmar opening at the fingerpad.

    PubMed

    Heo, Pilwon; Kim, Jung

    2014-11-01

    This paper presents a powered finger exoskeleton with an open fingerpad, named the Open Fingerpad eXoskeleton (OFX). The palmar opening at the fingerpad allows for direct contact between the user's fingerpad and objects in order to make use of the wearer's own tactile sensation for dexterous manipulation. Lateral side walls at the end of the OFX's index finger module are equipped with custom load cells for estimating the wearer's pinch grip force. A pneumatic cylinder generates assistance force, which is determined according to the estimated pinch grip force. The OFX transmits the assistance force directly to the objects without exerting pressure on the wearer's finger. The advantage of the OFX over an exoskeleton with a closed fingerpad was validated experimentally. During static and dynamic manipulation of a test object, the OFX exhibited a lower safety margin than the closed exoskeleton, indicating a higher ability to adjust the grip force within an appropriate range. Furthermore, the benefit of force assistance in reducing the muscular burden was observed in terms of muscle fatigue during a static pinch grip. The median frequency (MDF) of the surface electromyography (sEMG) signal from the first dorsal interosseous (FDI) muscle displayed a lower reduction rate for the assisted condition, indicating a lower accumulation rate of muscle fatigue.

  10. Stability analysis of electrical powered wheelchair-mounted robotic-assisted transfer device.

    PubMed

    Wang, Hongwu; Tsai, Chung-Ying; Jeannis, Hervens; Chung, Cheng-Shiu; Kelleher, Annmarie; Grindle, Garrett G; Cooper, Rory A

    2014-01-01

    The ability of people with disabilities to live in their homes and communities with maximal independence often hinges, at least in part, on their ability to transfer or be transferred by an assistant. Because of limited resources and the expense of personal care, robotic transfer assistance devices will likely be in great demand. An easy-to-use system for assisting with transfers, attachable to electrical powered wheelchairs (EPWs) and readily transportable, could have a significant positive effect on the quality of life of people with disabilities. We investigated the stability of our newly developed Strong Arm, which is attached and integrated with an EPW to assist with transfers. The stability of the system was analyzed and verified by experiments applying different loads and using different system configurations. The model predicted the distributions of the system's center of mass very well compared with the experimental results. When real transfers were conducted with 50 and 75 kg loads and an 83.25 kg dummy, the current Strong Arm could transfer all weights safely without tip-over. Our modeling accurately predicts the stability of the system and is suitable for developing better control algorithms to enhance the safety of the device.

  11. Dental Office Assisting; Glossary of Key Words. Vocational Reading Power Project, Title III, E.S.E.A.

    ERIC Educational Resources Information Center

    Kremer, Bonnie

    The glossary is one of twenty in various subject areas of vocational education designed to assist the student in vocabulary mastery for particular vocational education courses. They are part of the Vocational Reading Power Project, Title III, E.S.E.A. This glossary is for a course in dental office assisting. It is divided into two parts: one…

  12. Development of an Upper Limb Power Assist System Using Pneumatic Actuators for Farming Lift-up Motion

    NASA Astrophysics Data System (ADS)

    Yagi, Eiichi; Harada, Daisuke; Kobayashi, Masaaki

    A power assist system has lately attracted considerable attention to lifting-up an object without low back pain. We have been developing power assist systems with pneumatic actuators for the elbow and shoulder to farming support of lifting-up a bag of rice weighing 30kg. This paper describes the mechanism and control method of this power assist system. The pneumatic rotary actuator supports shoulder motion, and the air cylinder supports elbow motion. In this control method, the surface electromyogram(EMG) signals are used as input information of the controller. The joint support torques of human are calculated based on the antigravity term of necessary joint torques, which are estimated on the dynamics of a human approximated link model. The experimental results show the effectiveness of the proposed mechanism and control method of the power assist system.

  13. Hybrid PID and PSO-based control for electric power assist steering system for electric vehicle

    NASA Astrophysics Data System (ADS)

    Hanifah, R. A.; Toha, S. F.; Ahmad, S.

    2013-12-01

    Electric power assist steering (EPAS) system provides an important significance in enhancing the driving performance of a vehicle with its energy-conserving features. This paper presents a hybrid PID (Proportional-Integral-Derivative) and particle swarm optimization (PSO) based control scheme to minimize energy consumption for EPAS. This single objective optimization scheme is realized using the PSO technique in searching for best gain parameters of the PID controller. The fast tuning feature of this optimum PID controller produced high-quality solutions. Simulation results show the performance and effectiveness of the hybrid PSO-PID based controller as opposed to the conventional PID controller.

  14. A Prototype of the Read-out Subsystem of the BESIII DAQ Based on PowerPC

    NASA Astrophysics Data System (ADS)

    Tao, Ning; Chu, Yuanping; Jin, Ge; Zhao, Jingwei

    2005-10-01

    This article describes the prototype of the read-out subsystem which will be subject to the BESIII data acquisition system. According to the purpose of the BESIII, the event rate will be about 4000 Hz and the data rate up to 50 Mbytes/sec after Level 1 trigger. The read-out subsystem consists of some read-out crates and a read-out computer whose function is to initialize the hardware, to collect the event data from the front-end electronics after Level 1 trigger, to transfer data fragments to the computer in online form through two levels of computer pre-processing and high-speed network transmission. In this model, the crate level read-out implementation is based on the commercial single board computer MVME5100 running the VxWorks operating system. The article outlines the structure of the crate level testing platform of hardware and software. It puts emphasis on the framework of the read-out test model, data process flow and test method at crate level. Especially, it enumerates the key technologies in the process of design and analyses the test results. In addition, results which summarize the performance of the single board computer from the data transferring aspects will be presented.

  15. Experimental studies of a prototype model of the multilevel 6KW-power inverter at supply by 12 accumulators

    NASA Astrophysics Data System (ADS)

    Taissariyeva, K.; Issembergenov, N.; Dzhobalaeva, G.; Usembaeva, S.

    2016-09-01

    The given paper considers the multilevel 6 kW-power transistor inverter at supply by 12 accumulators for transformation of solar battery energy to the electric power. At the output of the multilevel transistor inverter, it is possible to receive voltage close to a sinusoidal form. The main objective of this inverter is transformation of solar energy to the electric power of industrial frequency. The analysis of the received output curves of voltage on harmonicity has been carried out. In this paper it is set forth the developed scheme of the multilevel transistor inverter (DC-to-ac converter) which allows receiving at the output the voltage close to sinusoidal form, as well as to regulation of the output voltage level. In the paper, the results of computer modeling and experimental studies are presented.

  16. Field tests of a vertical-fluted-tube condenser in the prototype power plant at the Raft River Geothermal Test Site

    SciTech Connect

    Murphy, R.W.

    1983-04-01

    A vertical-fluted-tube condenser was designed, fabricated, and tested with isobutane as the shell-side working fluid in a binary prototype power plant at the Raft River Geothermal Test Site. After shakedown and contamination removal operations were completed, the four-pass water-cooled unit (with 102 outside-fluted Admiralty tubes) achieved performance predictions while operating with the plant surface evaporator on-line. A sample comparison shows that use of this enhanced condenser concept offers the potential for a reduction of about 65% from the size suggested by corresponding designs using conventional horizontal-smooth-tube concepts. Subsequent substitution of a direct-contact evaporator for the surface evaporator brought drastic reductions in system performance, the apparent consequence of high concentrations of noncondensible gases introduced by the brine/working-fluid interaction.

  17. Develop Prototype Microwave Interferometry Diagnostic

    SciTech Connect

    Tringe, J. W.; Converse, M. C.; Kane, R. J.

    2016-11-15

    A prototype microwave interferometer was created at NSTec to characterize moving conductive fronts in upcoming experiments. The interferometer is capable of operation in the ~26-40 GHz band, and interrogating fronts with more than 1 W of power.

  18. Design and development of solar power-assisted manual/electric wheelchair.

    PubMed

    Chien, Chi-Sheng; Huang, Tung-Yung; Liao, Tze-Yuan; Kuo, Tsung-Yuan; Lee, Tzer-Min

    2014-01-01

    Wheelchairs are an essential assistive device for many individuals with injury or disability. Manual wheelchairs provide a relatively low-cost solution to the mobility needs of such individuals. Furthermore, they provide an effective means of improving the user's cardiopulmonary function and upper-limb muscle strength. However, manual wheelchairs have a loss gross mechanical efficiency, and thus the risk of user fatigue and upper-limb injury is increased. Electric-powered wheelchairs reduce the risk of injury and provide a more convenient means of transportation. However, they have a large physical size and are relatively expensive. Accordingly, the present study utilizes a quality function deployment method to develop a wheelchair with a user-selectable manual/electric propulsion mode and an auxiliary solar power supply system. The auxiliary solar power supply increased the travel range of the wheelchair by approximately 26% compared with that of a wheelchair powered by battery alone. Moreover, the wheelchair has a modular design and can be disassembled and folded for ease of transportation or storage. Overall, the present results suggest that the proposed wheelchair provides an effective and convenient means of meeting the mobility needs of individuals with mobility difficulties.

  19. Evaluation of the prototype Anaesthetic Non-technical Skills for Anaesthetic Practitioners (ANTS-AP) system: a behavioural rating system to assess the non-technical skills used by staff assisting the anaesthetist.

    PubMed

    Rutherford, J S; Flin, R; Irwin, A; McFadyen, A K

    2015-08-01

    This study tested the reliability, validity and usability of a prototype behavioural rating system for the non-technical skills of assistants working with the anaesthetist. Anaesthetic nurses and operating department practitioners (n = 48) used the prototype Anaesthetic Non-technical Skills for Anaesthetic Practitioners (ANTS-AP) system to rate the non-technical skills of anaesthetic assistants in 12 videos of simulated theatre work. Test-retest reliability was assessed with a sub-sample (n = 12). The skill categories assessed were 'situation awareness', 'teamwork and communication' and 'task management'. The internal consistency for the ratings of elements in categories was acceptable (Cronbach's α of 0.78, 0.77 and 0.69, respectively), with more modest inter-rater reliability (intraclass correlations for categories 0.54, 0.70, 0.86), test-retest reliability (intraclass correlations 0.68, 0.58, 0.38) and accuracy (weighted kappa 0.39). Most participants considered the system complete (n = 42, 87%), the wording clear (n = 48, 100%) and the system useful for structuring observation (n = 48, 100%).

  20. Rapid Prototyping

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  1. Simulation of human walking with powered orthosis for designing practical assistive device.

    PubMed

    Uchiyama, Yoshiho; Nagai, Chikara; Obinata, Goro

    2012-01-01

    To design a powered assistive orthosis for human walking, we have simulated walking motion with an orthosis. The model dynamics of the coupled human-orthosis is represented by a 10-rigid-link system. In this model there exist rotational joints at lumbar, both thighs and both legs for orthosis, and each joints are controlled by a couple of central pattern generators (CPG) which imitates neuronal system in the spinal cord of mammals. The CPG controller modeled by 18 oscillators which have the sensory feedbacks and generates the joint torques to move the skeletal model of the coupled human-orthosis. This means that we use five actuators for controlling orthosis in the both of sagittal and frontal plane. The parameters of the CPG and the connecting gains are optimized by using a genetic algorithm. We have achieved the successful simulation of stable walking against disturbances with this model. The simulation results indicate the possibility of a practical assistive orthosis with five active joints for stable walking.

  2. Rapid Prototyping Enters Mainstream Manufacturing.

    ERIC Educational Resources Information Center

    Winek, Gary

    1996-01-01

    Explains rapid prototyping, a process that uses computer-assisted design files to create a three-dimensional object automatically, speeding the industrial design process. Five commercially available systems and two emerging types--the 3-D printing process and repetitive masking and depositing--are described. (SK)

  3. Optimal dye concentration and power density for laser-assisted vascular anatomosis (LAVA)

    NASA Astrophysics Data System (ADS)

    Ren, Zhen; Furnary, Anthony; Xie, Hua; Lagerquist, Kathryn A.; Burke, Allen; Prahl, Scott A.; Gregory, Kenton W.

    2003-06-01

    Laser tissue welding with albumin solder/indocyanine green (ICG) dye is an effective technique in surgical reconstruction. This study was carried out in vitro to find optimal ICG concentration and power density (PD) in laser assisted vascular anastomosis (LAVA). Fresh porcine carotid arteries incised into vascular strips (n = 120) were welded by diode laser in end-to-end with 50% albumin solder of 0.01, 0.1, and 1.0 mM ICG and at power density of 27.7, 56.7, and 76.9 W/cm2. Direct temperature was measured by inserting thermocouples outside and inside vessel. Tensile strength was tested immediately and histological study was performed. Temperature (both outside and inside vessel) significantly gradually decreasd (p < 0.01) with the increasing of ICG concentration at PD 56.7 W/cm2. Tensile strength significantly gradually decreased (p < 0.01) with increasing of ICG concentration at PD 56.7 W/cm2. Histological study showed minimal thermal injury limited to adventitia of vessels and no appreciable difference in all groups. We find that ICG concentration within solder is most important factor affecting both tissue temperature and tensile strength during laser vessel welding. The optimal balance between stronger strength and minimal thermal injury of vessel may be achieved primarily by using PD 56.7 W/cm2 at 0.01 mM ICG within solder during LAVA.

  4. DNA detection on a power-free microchip with laminar flow-assisted dendritic amplification.

    PubMed

    Hosokawa, Kazuo; Sato, Takahiro; Sato, Yasunobu; Maeda, Mizuo

    2010-01-01

    In this paper, we describe DNA detection experiments using our two original technologies, power-free microchip and laminar flow-assisted dendritic amplification (LFDA), which were previously applied to immunoassays. A microchip was fabricated by combining a poly(dimethylsiloxane) (PDMS) part having microchannel patterns and a glass plate modified with probe DNA. We carried out two kinds of experiments: the detection of 21-base biotinylated target DNA and the detection of single-nucleotide polymorphism (SNP) in 56-base unlabeled target DNA by sandwich hybridization with biotinylated probe DNA. For both of the experiments, the necessary solutions were injected into microchannels not by an external power source, but by air dissolution into the PDMS part. After a hybridization reaction, the LFDA was started by injecting FITC-labeled streptavidin and biotinylated anti-streptavidin antibody onto the reaction site. With a detection time of 20 min, the limit of detection (LOD) for the biotinylated target was 2.2 pM, and the LOD for the SNP was 10-30 pM, depending on the SNP type.

  5. Drive Control Scheme of Electric Power Assisted Wheelchair Based on Neural Network Learning of Human Wheelchair Operation Characteristics

    NASA Astrophysics Data System (ADS)

    Tanohata, Naoki; Seki, Hirokazu

    This paper describes a novel drive control scheme of electric power assisted wheelchairs based on neural network learning of human wheelchair operation characteristics. “Electric power assisted wheelchair” which enhances the drive force of the operator by employing electric motors is expected to be widely used as a mobility support system for elderly and disabled people. However, some handicapped people with paralysis of the muscles of one side of the body cannot maneuver the wheelchair as desired because of the difference in the right and left input force. Therefore, this study proposes a neural network learning system of such human wheelchair operation characteristics and a drive control scheme with variable distribution and assistance ratios. Some driving experiments will be performed to confirm the effectiveness of the proposed control system.

  6. Mars Spark Source Prototype

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; Weiland, Karen J.; VanderWal, Randall L.

    1999-01-01

    The Mars Spark Source Prototype (MSSP) hardware has been developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample and detectors measure the optical emission from metals in the plasma that will allow their identification and quantification. Trace metal measurements are vital for the assessment of the potential toxicity of the Martian environment for human exploration. The current method of X-ray fluorescence can yield concentrations only of major species. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The instrument will be developed primarily for use in the Martian environment, but would be adaptable for terrestrial use in environmental monitoring. This paper describes the Mars Spark Source Prototype hardware, the results of the characterization tests, and future plans for hardware development.

  7. Lower-Energy Requirements for Power-Assist HEV Energy Storage Systems--Analysis and Rationale (Presentation)

    SciTech Connect

    Gonder, J.; Pesaran, A.

    2010-03-18

    Presented at the 27th International Battery Seminar and Exhibit, 15-18 March 2010, Fort Lauderdale, Florida. NREL conducted simulations and analysis of vehicle test data with research partners in response to a USABC request; results suggest that power-assist hybrid electric vehicles (HEVs), like conventional HEVs, can achieve high fuel savings with lower energy requirements at potentially lower cost.

  8. NASA Research Announcement Phase 2 Final Report for the Development of a Power Assisted Space Suit Glove

    NASA Technical Reports Server (NTRS)

    Lingo, Robert; Cadogan, Dave; Sanner, Rob; Sorenson, Beth

    1997-01-01

    The main goal of this program was to develop an unobtrusive power-assisted EVA glove metacarpalphalangeal (MCP) joint that could provide the crew member with as close to nude body performance as possible, and to demonstrate the technology feasibility of power assisted space suit components in general. The MCP joint was selected due to its being representative of other space suit joints, such as the shoulder, hip and carpometacarpal joint, that would also greatly benefit from this technology. In order to meet this objective, a development team of highly skilled and experienced personnel was assembled. The team consisted of two main entities. The first was comprised of ILC's experienced EVA space suit glove designers, who had the responsibility of designing and fabricating a low torque MCP joint which would be compatible with power assisted technology. The second part of the team consisted of space robotics experts from the University of Maryland's Space Systems Laboratory. This team took on the responsibility of designing and building the robotics aspects of the power-assist system. Both parties addressed final system integration responsibilities.

  9. A Computuerized Operator Support System Prototype

    SciTech Connect

    Ken Thomas; Ronald Boring; Roger Lew; Tom Ulrich; Richard Villim

    2013-11-01

    A report was published by the Idaho National Laboratory in September of 2012, entitled Design to Achieve Fault Tolerance and Resilience, which described the benefits of automating operator actions for transients. The report identified situations in which providing additional automation in lieu of operator actions would be advantageous. It recognized that managing certain plant upsets is sometimes limited by the operator’s ability to quickly diagnose the fault and to take the needed actions in the time available. Undoubtedly, technology is underutilized in the nuclear power industry for operator assistance during plant faults and operating transients. In contrast, other industry sectors have amply demonstrated that various forms of operator advisory systems can enhance operator performance while maintaining the role and responsibility of the operator as the independent and ultimate decision-maker. A computerized operator support system (COSS) is proposed for use in nuclear power plants to assist control room operators in addressing time-critical plant upsets. A COSS is a collection of technologies to assist operators in monitoring overall plant performance and making timely, informed decisions on appropriate control actions for the projected plant condition. The COSS does not supplant the role of the operator, but rather provides rapid assessments, computations, and recommendations to reduce workload and augment operator judgment and decision-making during fast-moving, complex events. This project proposes a general model for a control room COSS that addresses a sequence of general tasks required to manage any plant upset: detection, validation, diagnosis, recommendation, monitoring, and recovery. The model serves as a framework for assembling a set of technologies that can be interrelated to assist with each of these tasks. A prototype COSS has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based

  10. A Computuerized Operator Support System Prototype

    SciTech Connect

    Ken Thomas; Ronald Boring; Roger Lew; Tom Ulrich; Richard Villim

    2013-08-01

    A report was published by the Idaho National Laboratory in September of 2012, entitled Design to Achieve Fault Tolerance and Resilience, which described the benefits of automating operator actions for transients. The report identified situations in which providing additional automation in lieu of operator actions would be advantageous. It recognized that managing certain plant upsets is sometimes limited by the operator’s ability to quickly diagnose the fault and to take the needed actions in the time available. Undoubtedly, technology is underutilized in the nuclear power industry for operator assistance during plant faults and operating transients. In contrast, other industry sectors have amply demonstrated that various forms of operator advisory systems can enhance operator performance while maintaining the role and responsibility of the operator as the independent and ultimate decision-maker. A computerized operator support system (COSS) is proposed for use in nuclear power plants to assist control room operators in addressing time-critical plant upsets. A COSS is a collection of technologies to assist operators in monitoring overall plant performance and making timely, informed decisions on appropriate control actions for the projected plant condition. The COSS does not supplant the role of the operator, but rather provides rapid assessments, computations, and recommendations to reduce workload and augment operator judgment and decision-making during fast-moving, complex events. This project proposes a general model for a control room COSS that addresses a sequence of general tasks required to manage any plant upset: detection, validation, diagnosis, recommendation, monitoring, and recovery. The model serves as a framework for assembling a set of technologies that can be interrelated to assist with each of these tasks. A prototype COSS has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based

  11. Safety enhancement of a specialized power assisted tricycle for a child with osteogenesis imperfecta type III.

    PubMed

    Geu, Matthew J; Tuffner, Francis F; Madsen, Robert O; Harman, William M; Barrett, Steven F

    2005-01-01

    A child in the community of Laramie, Wyoming was born with Osteogenesis Imperfecta which is a genetic disorder that limits the physical abilities, size, and strength of the child. A customized power assisted tricycle was developed, which offered a unique opportunity to serve multiple purposes in his childhood development. This tricycle will ultimately provide him with the opportunity to gain muscle mass, strength, coordination, and confidence. The tricycle was completed as a senior design project in 2002, funded by the National Science Foundation, Biomedical Engineering Program and research to Aid Persons with Disabilities Program and University of Wyoming, College of Engineering Undergraduate Design Project to Aid Wyoming Persons with Disabilities. Unfortunately, the tricycle did not provide the necessary features to allow him to ride the tricycle safely. For this reason the tricycle was redesigned to include many different redundant safety systems which allows the tricycle to be safe for the child's use. Being funded by the same grant, new systems were added to the tricycle. A panic kill switch, automatic brakes, numerous redundant velocity sensors, tip over prevention circuitry, a redesigned operating system, a battery recharge port, and other systems were added, allowing for the tricycle to provide a high level of safety. A great deal of testing and sound design practices have been taken into consideration throughout the addition of these systems. Without these improvements, the child would not have the opportunity to use the tricycle to help with his development.

  12. Development of a powered mobile module for the ArmAssist home-based telerehabilitation platform.

    PubMed

    Jung, Je Hyung; Valencia, David B; Rodríguez-de-Pablo, Cristina; Keller, Thierry; Perry, Joel C

    2013-06-01

    The ArmAssist, developed by Tecnalia, is a system for at-home telerehabilitation of post-stroke arm impairments. It consists of a wireless mobile base module, a global position and orientation detection mat, a PC with display monitor, and a tele-rehabilitation software platform. This paper presents the recent development results on the mobile module augmenting its functionality by adding actuation components. Three DC servo motors were employed to drive the mobile module and a position control algorithm based on the kinematic model and velocity mode control was implemented such that the module tracks a path defined in the training software. Pilot tests of the powered mobile module were performed in experiments with different load conditions and two unimpaired subjects. Both test results show that the module is able to follow the predefined path within an acceptable error range for reach movement training. Further study and testing of the system in realistic conditions following stroke will be a future topic of research.

  13. Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking

    PubMed Central

    Bryce, Thomas N.; Dijkers, Marcel P.

    2015-01-01

    Background: Powered exoskeletons have been demonstrated as being safe for persons with spinal cord injury (SCI), but little is known about how users learn to manage these devices. Objective: To quantify the time and effort required by persons with SCI to learn to use an exoskeleton for assisted walking. Methods: A convenience sample was enrolled to learn to use the first-generation Ekso powered exoskeleton to walk. Participants were given up to 24 weekly sessions of instruction. Data were collected on assistance level, walking distance and speed, heart rate, perceived exertion, and adverse events. Time and effort was quantified by the number of sessions required for participants to stand up, walk for 30 minutes, and sit down, initially with minimal and subsequently with contact guard assistance. Results: Of 22 enrolled participants, 9 screen-failed, and 7 had complete data. All of these 7 were men; 2 had tetraplegia and 5 had motor-complete injuries. Of these, 5 participants could stand, walk, and sit with contact guard or close supervision assistance, and 2 required minimal to moderate assistance. Walk times ranged from 28 to 94 minutes with average speeds ranging from 0.11 to 0.21 m/s. For all participants, heart rate changes and reported perceived exertion were consistent with light to moderate exercise. Conclusion: This study provides preliminary evidence that persons with neurological weakness due to SCI can learn to walk with little or no assistance and light to somewhat hard perceived exertion using a powered exoskeleton. Persons with different severities of injury, including those with motor complete C7 tetraplegia and motor incomplete C4 tetraplegia, may be able to learn to use this device. PMID:26364280

  14. SmartCard Prototype

    DTIC Science & Technology

    2009-09-01

    prototype. ............................................................................................. 7 Figure 6 Smart Card Prototype main window...a data explorer. Intervention costs Database with a single instance (i.e. one data set). User help framework Figure 6 Smart Card Prototype

  15. Wearable EEG headband using printed electrodes and powered by energy harvesting for emotion monitoring in ambient assisted living

    NASA Astrophysics Data System (ADS)

    Matiko, Joseph W.; Wei, Yang; Torah, Russel; Grabham, Neil; Paul, Gordon; Beeby, Stephen; Tudor, John

    2015-12-01

    Globally, human life expectancy is steadily increasing causing an increase in the elderly population and consequently increased costs of supporting them. Ambient assisted living is an active research area aimed at supporting elderly people to live independently in their preferred living environment. This paper presents the design and testing of a self-powered wearable headband for electroencephalogram (EEG) based detection of emotions allowing the evaluation of the quality of life of assisted people. Printed active electrode fabrication and testing is discussed followed by the design of an energy harvester for powering the headband. The results show that the fabricated electrodes have similar performance to commercial electrodes and that the electronics embedded into the headband, as well as the wireless sensor node used for processing the EEG, can be powered by energy harvested from solar panels integrated on the headband. An average real time emotion classification accuracy of 90 (±9) % was obtained from 12 subjects. The results show that the self-powered wearable headband presented in this paper can be used to measure the wellbeing of assisted people with good accuracy.

  16. Microwave-assisted synthesis and prototype oxygen reduction electrocatalyst application of N-doped carbon-coated Fe3O4 nanorods.

    PubMed

    Hadidi, Lida; Davari, Elaheh; Ivey, Douglas G; Veinot, Jonathan G C

    2017-03-03

    Fe3O4 nanorods coated with nitrogen-doped mesoporous carbon (ND-Fe3O4@mC) shells of defined thicknesses have been prepared via a new microwave-assisted approach. Microstructural characterization of these ND-Fe3O4@mC structures was performed using x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. Following identification, the electrochemical performance of the catalysts was evaluated using linear sweep voltammetry with a rotating disc electrode system. The present investigation reveals enhanced oxygen reduction reaction catalytic activity and the carbon layer thickness influences oxygen diffusion to the active Fe3O4 nanorod core.

  17. Microwave-assisted synthesis and prototype oxygen reduction electrocatalyst application of N-doped carbon-coated Fe3O4 nanorods

    NASA Astrophysics Data System (ADS)

    Hadidi, Lida; Davari, Elaheh; Ivey, Douglas G.; Veinot, Jonathan G. C.

    2017-03-01

    Fe3O4 nanorods coated with nitrogen-doped mesoporous carbon (ND-Fe3O4@mC) shells of defined thicknesses have been prepared via a new microwave-assisted approach. Microstructural characterization of these ND-Fe3O4@mC structures was performed using x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. Following identification, the electrochemical performance of the catalysts was evaluated using linear sweep voltammetry with a rotating disc electrode system. The present investigation reveals enhanced oxygen reduction reaction catalytic activity and the carbon layer thickness influences oxygen diffusion to the active Fe3O4 nanorod core.

  18. Use of Power Assist-Wheels Results in Increased Distance Traveled Compared to Conventional Manual Wheeling

    PubMed Central

    Levy, Charles E.; Buman, Matthew P.; Chow, John W.; Tillman, Mark D.; Fournier, Kimberly A.; Giacobbi, Peter

    2014-01-01

    Objective To evaluate the impact of power assist wheels (PAWs) on the distance traveled by manual wheelchair users and analyze potential cofactors in the magnitude of response: To test the hypothesis that wheelers would travel significantly further with PAWs. Design A 16-week A (Pre-intervention)-B (Intervention)- A (Post-intervention) repeated measures design. Seven women and 13 men (age 43±15 years) full-time wheelers participated. During the pre-intervention and post-intervention phases (4 weeks each), participants used their own unaltered manual wheelchairs. During the 8-week intervention phase, the manual wheels were replaced with PAWs. Daily distance was measured with bicycle-style odometers. A composite score of laboratory wheelchair tasks was used to classify wheelchair performance. Mixed model repeated measures analysis of variance analyzed changes across phases of the trial. A post-hoc analysis tabulated the amount of days wheelers exceeded their individual daily averages in each phase by two standard deviations. Results Wheelers traveled significantly greater distances during the intervention phase compared to pre- or post-intervention phases regardless of baseline wheelchair performance . Wheelers who demonstrated higher baseline wheelchair performance traveled lesser average distances in the first two weeks after receiving PAWs than in the subsequent 6 weeks. Wheelers exceeded their individual daily averages per phase on a significantly greater number of days during the intervention phase. Conclusions PAWs enabled wheelers to travel farther and to travel beyond their usual distances on more days. Future studies may be strengthened by taking into account the two-week “adjustment phase” for PAWs. PMID:20647780

  19. Multimodality gynecomastia repair by cross-chest power-assisted superficial liposuction combined with endoscopic-assisted pull-through excision.

    PubMed

    Ramon, Ytzhack; Fodor, Lucian; Peled, Isaac J; Eldor, Liron; Egozi, Dana; Ullmann, Yehuda

    2005-12-01

    Numerous methods of gynecomastia repair have been described to accomplish removal of breast tissue. Our multimodality surgical approach for the treatment of gynecomastia combines the use of power-assisted superficial cross-chest liposuction with direct pull-through excision of the breast parenchyma under endoscopic supervision. Seventeen patients, aging 17-39, underwent this multimodality approach. According to Simon's grading, 3 patients had grade 1, 5 had grade 2a, 6 had grade 2b, and 3 had grade 3 gynecomastia. Power-assisted liposuction was performed with a 3- or 4-mm triple-hole cannula inserted through the contralateral periareolar medial incision to suction the contralateral prepectoral fatty breast. At the end of the liposuction, the fibrous tissue was easily pulled through the ipsilateral stab wound and excised under endoscopic control. Follow-up time ranged from 6 to 34 months. The amount of fat removed by liposuction varied from 100-800 mL per breast, and the amount of breast parenchyma removed by excision varied from 20-110 g. All patients recovered remarkably well. No complications were recorded. All patients were satisfied with their results. This technique enables an effective treatment of both the fatty and fibrous tissue of the male breast and avoids skin redundancy due to skin contraction. A smooth masculine breast contour is consistently achieved without the stigma of this type of surgery.

  20. The Power of Peers in Employee Assistance: A Unique Program for a Community College.

    ERIC Educational Resources Information Center

    Hills, Marcia D.; And Others

    1989-01-01

    Describes the Red Deer College employee assistance program "Resources for Employee Assistance, Counselling and Health (REACH)" which has moved beyond this traditional approach to become an autonomous program run by employees for employees. Notes REACH is concerned with job performance and coping skills that contribute to individual and…

  1. Thyristor-based current-fed drive with direct power control for permanent magnet-assisted synchronous reluctance generator

    NASA Astrophysics Data System (ADS)

    Baek, J.; Kwak, S.-S.; Toliyat, H. A.

    2015-03-01

    This paper proposes a robust and simple direct power control (DPC) of a thyristor-based current-fed drive for generator applications. A current-fed drive and permanent magnet-assisted synchronous reluctance generator (PMa-SynRG) are investigated to deliver 3 kW power using a combustion engine. The current-fed drive utilises a thyristor-based three-phase rectifier to convert generator power to DC-link power and a single-phase current-fed inverter to supply a single-phase inductive load. In addition, a new control algorithm is developed based on DPC for the current-fed drive. The DC-link voltage-based DPC is proposed in order to directly control the output power. The goal of the DPC is to maintain the DC-link voltage at the required output power operating point. The DPC has advantages such as a simple algorithm for constant speed operation. Another feature of the developed current-fed drive is its inherent capability to provide generating action by making the PMa-SynRG operates as a generator, rectifying the phase voltages by means of the three-phase rectifier and feeding the power into the load. These features make the current-fed drive a good candidate for driving any type of synchronous generators including the proposed PMa-SynRG.

  2. Powered Sit-to-Stand and Assistive Stand-to-Sit Framework for a Powered Transfemoral Prosthesis

    PubMed Central

    Varol, Huseyin Atakan; Sup, Frank; Goldfarb, Michael

    2009-01-01

    This work extends the three level powered knee and ankle prosthesis control framework previously developed by the authors by adding sitting mode. A middle level finite state based impedance controller is designed to accommodate sitting, sit-to-stand and stand-to-sit transitions. Moreover, a high level Gaussian Mixture Model based intent recognizer is developed to distinguish between standing and sitting modes and switch the middle level controllers accordingly. Experimental results with unilateral transfemoral amputee subject show that sitting down and standing up intent can be inferred from the prosthesis sensor signals by the intent recognizer. Furthermore, it is demonstrated that the prosthesis generates net active power of 50 W during standing up and dissipates up to 50 W of power during stand-to-sit transition at the knee joint. PMID:20046838

  3. Design and performance characterization of a hand orthosis prototype to aid activities of daily living in a post-stroke population.

    PubMed

    Gasser, Benjamin W; Goldfarb, Michael

    2015-01-01

    This paper presents the design of a hand orthosis prototype intended to assist persons with hand paresis, as a result of stroke, perform activities of daily living. Among its attributes, the orthosis is characterized by a low mass and small profile, while still offering the power assistance of a robotic exoskeleton. Experimental characterization of the orthosis is presented, including its mass, envelope dimensions, motion bandwidth, and joint torque characteristics.

  4. Computational Design and Prototype Evaluation of Aluminide-Strengthened Ferritic Superalloys for Power-Generating Turbine Applications up to 1,033 K

    SciTech Connect

    Peter Liaw; Gautam Ghosh; Mark Asta; Morris Fine; Chain Liu

    2010-04-30

    prototype Fe-Ni-Cr-Al-Mo alloys. Three-point-bending experiments show that alloys containing more than 5 wt.% Al exhibit poor ductility (< 2%) at room temperature, and their fracture mode is predominantly of a cleavage type. Two major factors governing the poor ductility are (1) the volume fraction of NiAl-type precipitates, and (2) the Al content in the {alpha}-Fe matrix. A bend ductility of more than 5% can be achieved by lowering the Al concentration to 3 wt.% in the alloy. The alloy containing about 6.5 wt.% Al is found to have an optimal combination of hardness, ductility, and minimal creep rate at 973 K. A high volume fraction of precipitates is responsible for the good creep resistance by effectively resisting the dislocation motion through Orowan-bowing and dislocation-climb mechanisms. The effects of stress on the creep rate have been studied. With the threshold-stress compensation, the stress exponent is determined to be 4, indicating power-law dislocation creep. The threshold stress is in the range of 40-53 MPa. The addition of W can significantly reduce the secondary creep rates. Compared to other candidates for steam-turbine applications, FBB-8 does not show superior creep resistance at high stresses (> 100 MPa), but exhibit superior creep resistance at low stresses (< 60 MPa).

  5. Feasibility study on a perceived fatigue prediction dependent power control for an electrically assisted bicycle.

    PubMed

    Kiryu, T; Minagawa, H

    2013-01-01

    Several types of electric motor assists have been developed, as a result, it is important to control muscular fatigue on-site in terms of health promotion and motor rehabilitation. Predicting the perceived fatigue by several biosignal-related variables with the multiple regression model and polynomial approximation, we try to propose a self control design for the electrically assisted bicycle (EAB). We also determine the meaningful muscles during pedaling by muscle synergies in relation to the motion maturity. In field experiments, prediction of ongoing perceived physical fatigue could have the potential of suitable control of EAB.

  6. Evaporation-assisted high-power impulse magnetron sputtering: The deposition of tungsten oxide as a case study

    SciTech Connect

    Hemberg, Axel; Dauchot, Jean-Pierre; Snyders, Rony; Konstantinidis, Stephanos

    2012-07-15

    The deposition rate during the synthesis of tungsten trioxide thin films by reactive high-power impulse magnetron sputtering (HiPIMS) of a tungsten target increases, above the dc threshold, as a result of the appropriate combination of the target voltage, the pulse duration, and the amount of oxygen in the reactive atmosphere. This behavior is likely to be caused by the evaporation of the low melting point tungsten trioxide layer covering the metallic target in such working conditions. The HiPIMS process is therefore assisted by thermal evaporation of the target material.

  7. Synchrophasor-Assisted Prediction of Stability/Instability of a Power System

    NASA Astrophysics Data System (ADS)

    Saha Roy, Biman Kumar; Sinha, Avinash Kumar; Pradhan, Ashok Kumar

    2013-05-01

    This paper presents a technique for real-time prediction of stability/instability of a power system based on synchrophasor measurements obtained from phasor measurement units (PMUs) at generator buses. For stability assessment the technique makes use of system severity indices developed using bus voltage magnitude obtained from PMUs and generator electrical power. Generator power is computed using system information and PMU information like voltage and current phasors obtained from PMU. System stability/instability is predicted when the indices exceeds a threshold value. A case study is carried out on New England 10-generator, 39-bus system to validate the performance of the technique.

  8. Look at energy compression as an assist for high power rf production

    SciTech Connect

    Birx, D.L.; Farkas, Z.D.; Wilson, P.B.

    1984-08-09

    The desire to construct electron linacs of higher and higher energies, coupled with the realities of available funding and real estate, has forced machine designers to reassess the limitations in both accelerator gradient (MeV/m) and energy. The gradients achieved in current radio-frequency (RF) linacs are sometimes set by electrical breakdown in the accelerating structure, but are in most cases determined by the RF power level available to drive the linac. In this paper we will not discuss RF power sources in general, but rather take a brief look at several energy compression schemes which might be of service in helping to make better use of the sources we employ. We will, however, diverge for a bit and discuss what the RF power requirements are. 12 references, 21 figures, 3 tables.

  9. Small Thermophotovoltaic Prototype Systems

    NASA Astrophysics Data System (ADS)

    Durisch, Wilhelm; Bitnar, Bernd; von Roth, Fritz; Palfinger, Günther

    2003-01-01

    In an earlier paper [1], we reported on a small grid-connected thermophotovoltaic (TPV) system consisting of an ytterbia mantle emitter and silicon solar cells with 16 % efficiency (under solar irradiance at Standard Test Conditions, STC). The emitter was heated up using a butane burner with a rated thermal power of 1.35 kW (referring to the lower heating value). This system produced an electrical output of 15 W, which corresponds to a thermal to electric (direct current) conversion efficiency of 1.1 %. In the interim, further progress has been made, and significantly higher efficiencies have been achieved. The most important development steps are: 1) The infrared radiation-absorbing water filter between emitter and silicon cells (to protect the cells against overheating and against contact with flue gasses) has been replaced by a suitable glass tube. By doing this, it has been possible to prevent losses of convertible radiation in water. 2) Cell cooling has been significantly improved, in order to reduce cell temperature, and therefore increase conversion efficiency. 3) The shape of the emitter has been changed from spherical to a quasi-cylindrical geometry, in order to obtain a more homogeneous irradiation of the cells. 4) The metallic burner tube, on which the ytterbia emitter was fixed in the initial prototypes, has been replaced by a heat-resistant metallic rod, carrying ceramic discs as emitter holders. This has prevented the oxidation and clogging of the perforated burner tube. 5) Larger reflectors have been used to reduce losses in useful infrared radiation. 6) Smaller cells have been used, to reduce electrical series resistance losses. Applying all these improvements to the basic 1.35 kW prototype, we attained a system efficiency of 1.5 %. By using preheated air for combustion (at approximately 370 °C), 1.8 % was achieved. In a subsequent step, a photocell generator was constructed, consisting of high-efficiency silicon cells (21% STC efficiency). In this

  10. Power Management Based Current Control Technique for Photovoltaic-Battery Assisted Wind-Hydro Hybrid System

    NASA Astrophysics Data System (ADS)

    Ram Prabhakar, J.; Ragavan, K.

    2013-07-01

    This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.

  11. The Instruments of Power: A Computer-Assisted Game for the ACSC Curriculum

    DTIC Science & Technology

    2005-04-01

    Tolbert, Brian G. "Instruments of Power Game and Rules Development." Air Command and Staff College, 2005. Wang, Wallace. Visual Basic 6 for Dummies . New...Wang, Visual Basic 6 for Dummies (New York, NY: Wiley Publishing, 1998), 56-58. 56 Hasbro, Risk Rules (Pawtucket, RI: 1999). 57 Hasbro, Risk II Game

  12. Virtual prototyping and testing of in-vehicle interfaces.

    PubMed

    Bullinger, Hans-Jörg; Dangelmaier, Manfred

    2003-01-15

    Electronic innovations that are slowly but surely changing the very nature of driving need to be tested before being introduced to the market. To meet this need a system for integrated virtual prototyping and testing has been developed. Functional virtual prototypes of various traffic systems, such as driver assistance, driver information, and multimedia systems can now be easily tested in a driving simulator by a rapid prototyping approach. The system has been applied in recent R&D projects.

  13. CARAPACE: a novel composite advanced robotic actuator powering assistive compliant exoskeleton: preliminary design.

    PubMed

    Masia, Lorenzo; Cappello, Leonardo; Morasso, Pietro; Lachenal, Xavier; Pirrera, Alberto; Weaver, Paul; Mattioni, Filippo

    2013-06-01

    A novel actuator is introduced that combines an elastically compliant composite structure with conventional electromechanical elements. The proposed design is analogous to that used in Series Elastic Actuators, its distinctive feature being that the compliant composite part offers different stable configurations. In other words, its elastic potential presents points of local minima that correspond to robust stable positions (multistability). This potential is known a priori as a function of the structural geometry, thus providing tremendous benefits in terms of control implementation. Such knowledge enables the complexities arising from the additional degrees of freedom associated with link deformations to be overcome and uncover challenges that extends beyond those posed by standard rigidlink robot dynamics. It is thought that integrating a multistable elastic element in a robotic transmission can provide new scenarios in the field of assistive robotics, as the system may help a subject to stand or carry a load without the need for an active control effort by the actuators.

  14. High-power widely tunable all-fiber thulium-assisted optical parametric oscillator at SWIR band.

    PubMed

    Li, Can; Chen, Nan; Wei, Xiaoming; Kang, Jiqiang; Li, Bowen; Tan, Sisi; Song, Liang; Wong, Kenneth K Y

    2016-11-15

    A novel short-wave infrared (SWIR) all-fiber thulium-assisted optical parametric oscillator (TAOPO) that exploits jointly optical parametric conversion and thulium amplification in a highly nonlinear fiber (HNLF) and thulium-doped fiber (TDF) is demonstrated. This is implemented through constructing a joint fiber line by directly fusion splicing 50 m HNLF with 1.5 m TDF. Incorporating a bidirectional-pumping scheme, i.e., forward-pumped by a step-tuned C-band pulsed laser, and simultaneously backward-pumped by an L-band continuous-wave laser, this TAOPO produces a pulsed SWIR laser at output power higher than 200 mW, signal-to-noise ratio over 40 dB, and wavelength tuning range beyond 150 nm from 1815 to 1968 nm. Via separate characterization of the HNLF and TDF joint fiber line, the tunability of the current TAOPO to shorter wavelength is only limited by the employed fiber components, while higher power could be realized by increasing the backward pump power. This TAOPO could be a promising platform for the generation of a highly functional SWIR source that facilitates applications such as bond-selective imaging of deep tissue.

  15. Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors - A review

    NASA Astrophysics Data System (ADS)

    Faraji, Soheila; Ani, Farid Nasir

    2014-10-01

    Electrochemical capacitors (ECs), also known as pseudocapacitors or supercapacitors (SCs), is receiving great attention for its potential applications in electric and hybrid electric vehicles because of their ability to store energy, alongside with the advantage of delivering the stored energy much more rapidly than batteries, namely power density. To become primary devices for power supply, supercapacitors must be developed further to improve their ability to deliver high energy and power simultaneously. In this concern, a lot of effort is devoted to the investigation of pseudocapacitive transition-metal-based oxides/hydroxides such as ruthenium oxide, manganese oxide, cobalt oxide, nickel oxide, cobalt hydroxide, nickel hydroxide, and mixed metal oxides/hydroxides such as nickel cobaltite and nickel-cobalt oxy-hydroxides. This is mainly due to the fact that they can produce much higher specific capacitances than typical carbon-based electric double-layer capacitors and electronically conducting polymers. This review presents supercapacitor performance data of metal oxide thin film electrodes by microwave-assisted as an inexpensive, quick and versatile technique. Supercapacitors have established the specific capacitance (Cs) principles, therefore, it is likely that metal oxide films will continue to play a major role in supercapacitor technology and are expected to considerably increase the capabilities of these devices in near future.

  16. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation.

    PubMed

    Sun, Shi-Peng; Chung, Tai-Shung

    2013-11-19

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m(2), which is equivalent to 13.72 W/m(2) of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation.

  17. The TACIS Nuclear Programme: Assistance in Upgrading Russian Nuclear Power Stations - An Overview of the Individual Projects in the Internet

    SciTech Connect

    Bieth, Michel; Schoels, Hubert

    2006-07-01

    The European Union' TACIS1 programme has been established for the New Independent States (NIS), among them in the Russian Federation since 1991. One priority of TACIS funding is Nuclear Safety. The European Commission has made available a total of 944 Million Euros for nuclear safety programmes covering the period 1991-2003. The TACIS nuclear safety programme is devoted to the improvement of the safety of Soviet designed nuclear installations in providing technology and safety culture transfer. JRC is carrying out works in the following areas: On-Site Assistance for TACIS operating Nuclear Power Plants; Design Safety and Dissemination of TACIS results; Reactor Pressure Vessel Embrittlement for VVER; Regulatory Assistance; Industrial Waste Management; Nuclear Safeguards; All TACIS projects, dealing with these areas of activity are now available in so called Project Description Sheets (PDS) or Project Results Sheets (PRS) in the Internet for everybody. JRC has created in the Internet an easy to open and to browse database which contains the result of works in relation to the above mentioned nuclear activities. This presentation gives an on-line overview of the app. 430 projects which have been implemented so far since the outset of the TACIS Nuclear Programme in the Russian Federation, which is representative to the other CIS countries, benefiting from the TACIS. The presentation will mainly consist of an on-line-demonstration of the TACIS Nuclear WEB Page, created by JRC. (authors)

  18. Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma

    SciTech Connect

    Stranak, Vitezslav; Herrendorf, Ann-Pierra; Drache, Steffen; Bogdanowicz, Robert; Hippler, Rainer; Cada, Martin; Hubicka, Zdenek; Tichy, Milan

    2012-11-01

    This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 {mu}s after the onset of the HiPIMS pulse. Further, a high concentration of double charged Ti{sup ++} with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.

  19. Prototype expert system for infusion pump maintenance.

    PubMed

    Mataban, B A

    1994-01-01

    With today's object-oriented software, knowledge-base building becomes simple. Using ServiceSoft's Service Power tools, an IMED PC-1 infusion pump prototype expert system was built. Approximately three man-weeks of work was expended to build the prototype expert system providing advice on repair to the board level. The prototype was demonstrated to the Department of Defense, and they are considering the inclusion of expert systems technology in medical equipment maintenance as one facet of their consolidation of logistic and administrative functions of the four military services' health care delivery.

  20. Progress in the development of a transcutaneously powered axial flow blood pump ventricular assist system.

    PubMed

    Parnis, S M; Conger, J L; Fuqua, J M; Jarvik, R K; Inman, R W; Tamez, D; Macris, M P; Moore, S; Jacobs, G; Sweeney, M J; Frazier, O H

    1997-01-01

    Development of the Jarvik 2000 intraventricular assist system for long-term support is ongoing. The system integrates the Jarvik 2000 axial flow blood pump with a microprocessor based automatic motor controller to provide response to physiologic demands. Nine devices have been evaluated in vivo (six completed, three ongoing) with durations in excess of 26 weeks. Instrumented experiments include implanted transit-time ultrasonic flow probes and dual micromanometer LV/AoP catheters. Treadmill exercise and heart pacing studies are performed to evaluate control system response to increased heart rates. Pharmacologically induced cardiac dysfunction studies are performed in awake and anesthetized calves to demonstrate control response to simulated heart failure conditions. No deleterious effects or events were encountered during any physiologic studies. No hematologic, renal, hepatic, or pulmonary complications have been encountered in any study. Plasma free hemoglobin levels of 7.0 +/- 5.1 mg/dl demonstrate no device related hemolysis throughout the duration of all studies. Pathologic analysis at explant showed no evidence of thromboembolic events. All pump surfaces were free of thrombus except for a minimal ring of fibrin, (approximately 1 mm) on the inflow bearing. Future developments for permanent implantation will include implanted physiologic control systems, implanted batteries, and transcutaneous energy and data transmission systems.

  1. Data envelopment analysis of space and terrestrially-based large scale commercial power systems for earth: A prototype analysis of their relative economic advantages

    SciTech Connect

    Criswell, D.R.; Thompson, R.G.

    1996-12-31

    Society must develop a large new source of electric power to adequately meet human needs in the 21st Century. The Lunar Solar Power system (LSP) is a new option that is independent of the biosphere. LSP captures sunlight on the moon, converts the solar power to microwaves, and beams the power to receivers on Earth that output electricity. The collimated microwave beams are low in intensity (< 20% of sunlight), safe, and environmentally benign. Data Envelopment Analysis (DEA) enables the detailed quantitative comparison of alternative economic systems. We use DEA methodology to compare the technical efficiency of the large-scale power systems needed to meet the growing energy needs of terrestrial society. This comparison suggests the efficiencies to be gained from LSP are large indeed. Such gains remain even if the resources needed for LSP are 10-fold greater than estimated from United States government studies. In terms of benefits versus costs, normalized to the range of 0-1, DEA reveals that LSP is much more efficient than conventional terrestrial solar-thermal and photovoltaic, fossil, and nuclear systems. LSP is also environmentally benign compared to the conventional systems.. 1 ref., 1 fig., 12 tabs.

  2. Power ultrasound-assisted cleaner leather dyeing technique: influence of process parameters.

    PubMed

    Sivakumar, Venkatasubramanian; Rao, Paruchuri Gangadhar

    2004-03-01

    The application of power ultrasound to leather processing has a significant role in the concept of "clean technology" for leather production. The effect of power ultrasound in leather dyeing has been compared with dyeing in the absence of ultrasound and conventional drumming. The power ultrasound source used in these experiments was ultrasonic cleaner (150 W and 33 kHz). The effect of various process parameters such as amount of dye offer, temperature, and type of dye has been experimentally found out. The effect of presonication of dye solution as well as leather has been studied. Experiments at ultrasonic bath temperature were carried out to find out the combined thermal as well as stirring effects of ultrasound. Dyeing in the presence of ultrasound affords about 37.5 (1.8 times) difference as increase in % dye exhaustion or about 50% decrease in the time required for dyeing compared to dyeing in the absence of ultrasound for 4% acid red dye. About 29 (1.55 times) increase in % dye exhaustion or 30% reduction in time required for dyeing was observed using ultrasound at stationary condition compared with conventional dynamic drumming conditions. The effect of ultrasound at constant temperature conditions with a control experiment has also been studied. The dye exhaustion increases as the temperature increases (30-60 degrees C) and better results are observed at higher temperature due to the use of ultrasound. Presonication of dye solution or crust leather prior to the dyeing process has no significant improvement in dye exhaustion, suggesting ultrasound effect is realized when it is applied during the dyeing process. The results indicate that 1697 and 1416 ppm of dye can be reduced in the spent liquor due to the use of ultrasound for acid red (for 100 min) and acid black (for 3 h) dyes, respectively, thereby reducing the pollution load in the effluent stream. The color yield of the leather as inferred from the reflectance measurement indicates that dye offer can

  3. Vacuum-powered bubble-assisted solvent extraction followed by macroporous resin enrichment for isolation of podophyllotoxin from Sinopodophyllum emodi.

    PubMed

    Liu, Tingting; Yang, Lei; Sui, Xiaoyu; Zhang, Jie; Li, Li; Fu, Shuang; Li, Wenjing; Liang, Xin

    2015-10-01

    A vacuum-powered bubble-assisted solvent extraction (VBE) technique was used to extract podophyllotoxin from the root of Sinopodophyllum emodi. We optimized the VBE procedure and showed it had the highest efficiency of extraction compared to other conventional extraction techniques. Based upon the results of single-factor experiments, a three-factor, three-level experiment design was developed by application of a Box-Behnken design. The method was validated by stability, repeatability and recovery experiments. The optimal conditions were: solvent, 60% (v/v) ethanol; particle size of the sample, 60-80 mesh; soak time, 2h; liquid/solid ratio, 21L/kg; air flow, 32mL/min; vacuum-powered bubble extraction time, 65min. The VBE method we developed achieved efficient extraction of podophyllotoxin from S. emodi. The podophyllotoxin extracted can be enriched and separated by an HPD300 macroporous resin adsorption and desorption process. The results indicated that VBE is a convenient, rapid and efficient sample preparation technique.

  4. Computer modeling of a regenerative solar-assisted Rankine power cycle

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1977-01-01

    A detailed interpretation of the computer program that describes the performance of one of these cycles; namely, a regenerative Rankine power cycle is presented. Water is used as the working medium throughout the cycle. The solar energy collected at relatively low temperature level presents 75 to 80% of the total heat demand and provides mainly the latent heat of vaporization. Another energy source at high temperature level superheats the steam and supplements the solar energy share. A program summary and a numerical example showing the sequency of computations are included. The outcome from the model comprises line temperatures, component heat rates, specific steam consumption, percentage of solar energy contribution, and the overall thermal efficiency.

  5. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.

    PubMed

    Au, Samuel; Berniker, Max; Herr, Hugh

    2008-05-01

    The human ankle varies impedance and delivers net positive work during the stance period of walking. In contrast, commercially available ankle-foot prostheses are passive during stance, causing many clinical problems for transtibial amputees, including non-symmetric gait patterns, higher gait metabolism, and poorer shock absorption. In this investigation, we develop and evaluate a myoelectric-driven, finite state controller for a powered ankle-foot prosthesis that modulates both impedance and power output during stance. The system employs both sensory inputs measured local to the external prosthesis, and myoelectric inputs measured from residual limb muscles. Using local prosthetic sensing, we first develop two finite state controllers to produce biomimetic movement patterns for level-ground and stair-descent gaits. We then employ myoelectric signals as control commands to manage the transition between these finite state controllers. To transition from level-ground to stairs, the amputee flexes the gastrocnemius muscle, triggering the prosthetic ankle to plantar flex at terminal swing, and initiating the stair-descent state machine algorithm. To transition back to level-ground walking, the amputee flexes the tibialis anterior muscle, triggering the ankle to remain dorsiflexed at terminal swing, and initiating the level-ground state machine algorithm. As a preliminary evaluation of clinical efficacy, we test the device on a transtibial amputee with both the proposed controller and a conventional passive-elastic control. We find that the amputee can robustly transition between the finite state controllers through direct muscle activation, allowing rapid transitioning from level-ground to stair walking patterns. Additionally, we find that the proposed finite state controllers result in a more biomimetic ankle response, producing net propulsive work during level-ground walking and greater shock absorption during stair descent. The results of this study highlight the

  6. Enhanced power conversion efficiency of dye-sensitized solar cells assisted with phosphor materials

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Min; Kim, Dong In; Hwang, Ki-Hwan; Nam, Sang Hun; Boo, Jin-Hyo

    2016-07-01

    Theoretically dye-sensitized solar cells (DSSCs) are high efficiency solar cells. However, DSSCs have lower power conversion efficiency (PCE) than silicon based solar cells. In this study, we use scattering layer and phosphor materials, such as ZrO2 and Zn2SiO4:Mn (Green), to enhance the PCE of DSSCs. The scattering layer and phosphor materials were prepared and used as an effective scattering layer on the transparent TiO2 photoelectrode through the doctor blade method. We confirmed that the scattering layer improves the PCE and J sc due to the enhancement of light harvesting by increasing the scattering and absorbance in the visible range. Under sun illumination AM 1.5 conditions, the PCE of the mesoporous TiO2 based DSSCs was 5.18%. The PCE of the DSSCs with ZrO2 scattering layer was 5.61% and Zn2SiO4:Mn as the scattering layer was enhanced to 5.72%. In order to compare the change in optical properties, DSSCs were measured by EQE, reflectance and PCE. At the same time, FE-SEM and XRD were used to confirm the structural changes in each layer. [Figure not available: see fulltext.

  7. Analysis of the solar powered/fuel assisted Rankine cycle cooling system. Phase 1: Revision

    NASA Astrophysics Data System (ADS)

    Lior, N.; Koai, K.; Yeh, H.

    1985-04-01

    The subject of this analysis is a solar cooling system which consists of a conventional open-compressor chiller, driven by a novel hybrid steam Rankine cycle. Steam is generated by the use of solar energy collected at about 100C, and it is then superheated to about 600C in a fossil-fuel fired superheater. The steam drives a novel counter-rotating turbine, some of the heat from it is regenerated, and it is then condensed. Thermal storage is implemented as an integral part of the cycle, by means of hot-water which is flashed to steam when needed for driving the turbine. For the solar energy input, both evacuated and double-glazed flat-plate collectors were considered. A comprehensive computer program was developed to analyze the operation and performance of the entire power/cooling system. Each component was described by a separate subroutine to compute its performance from basic principles, and special attention was given to the parasitic losses, including pumps, fans and pressure drops in the piping and heat exchangers, and to describe the off-design performance of the components. The thermophysical properties of the fluids used are also described in separate subroutines. Transient simulation of the entire system was performed on an hourly basis over a cooling season in two representative climatic regions (Washington, DC, and Phoenix, AZ) for a number of system configurations.

  8. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis

    PubMed Central

    Simon, Ann M.; Hargrove, Levi J.

    2016-01-01

    Powered knee-ankle prostheses are capable of providing net-positive mechanical energy to amputees. Yet, there are limitless ways to deliver this energy throughout the gait cycle. It remains largely unknown how different combinations of active knee and ankle assistance affect the walking mechanics of transfemoral amputees. This study assessed the relative contributions of stance phase knee swing initiation, increasing ankle stiffness and powered plantarflexion as three unilateral transfemoral amputees walked overground at their self-selected walking speed. Five combinations of knee and ankle conditions were evaluated regarding the kinematics and kinetics of the amputated and intact legs using repeated measures analyses of variance. We found eliminating active knee swing initiation or powered plantarflexion was linked to increased compensations of the ipsilateral hip joint during the subsequent swing phase. The elimination of knee swing initiation or powered plantarflexion also led to reduced braking ground reaction forces of the amputated and intact legs, and influenced both sagittal and frontal plane loading of the intact knee joint. Gradually increasing prosthetic ankle stiffness influenced the shape of the prosthetic ankle plantarflexion moment, more closely mirroring the intact ankle moment. Increasing ankle stiffness also corresponded to increased prosthetic ankle power generation (despite a similar maximum stiffness value across conditions) and increased braking ground reaction forces of the amputated leg. These findings further our understanding of how to deliver assistance with powered knee-ankle prostheses and the compensations that occur when specific aspects of assistance are added/removed. PMID:26807889

  9. PRMS Data Warehousing Prototype

    NASA Technical Reports Server (NTRS)

    Guruvadoo, Eranna K.

    2002-01-01

    Project and Resource Management System (PRMS) is a web-based, mid-level management tool developed at KSC to provide a unified enterprise framework for Project and Mission management. The addition of a data warehouse as a strategic component to the PRMS is investigated through the analysis, design and implementation processes of a data warehouse prototype. As a proof of concept, a demonstration of the prototype with its OLAP's technology for multidimensional data analysis is made. The results of the data analysis and the design constraints are discussed. The prototype can be used to motivate interest and support for an operational data warehouse.

  10. PRMS Data Warehousing Prototype

    NASA Technical Reports Server (NTRS)

    Guruvadoo, Eranna K.

    2001-01-01

    Project and Resource Management System (PRMS) is a web-based, mid-level management tool developed at KSC to provide a unified enterprise framework for Project and Mission management. The addition of a data warehouse as a strategic component to the PRMS is investigated through the analysis design and implementation processes of a data warehouse prototype. As a proof of concept, a demonstration of the prototype with its OLAP's technology for multidimensional data analysis is made. The results of the data analysis and the design constraints are discussed. The prototype can be used to motivate interest and support for an operational data warehouse.

  11. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.

    PubMed

    Kloosterman, Marieke G M; Buurke, Jaap H; de Vries, Wiebe; Van der Woude, Lucas H V; Rietman, Johan S

    2015-10-01

    This study aims to compare hand-rim and power-assisted hand-rim propulsion on potential risk factors for shoulder overuse injuries: intensity and repetition of shoulder loading and force generation in the extremes of shoulder motion. Eleven experienced hand-rim wheelchair users propelled an instrumented wheelchair on a treadmill while upper-extremity kinematic, kinetic and surface electromyographical data was collected during propulsion with and without power-assist. As a result during power-assisted propulsion the peak resultant force exerted at the hand-rim decreased and was performed with significantly less abduction and internal rotation at the shoulder. At shoulder level the anterior directed force and internal rotation and flexion moments decreased significantly. In addition, posterior and the minimal inferior directed forces and the external rotation moment significantly increased. The stroke angle decreased significantly, as did maximum shoulder flexion, extension, abduction and internal rotation. Stroke-frequency significantly increased. Muscle activation in the anterior deltoid and pectoralis major also decreased significantly. In conclusion, compared to hand-rim propulsion power-assisted propulsion seems effective in reducing potential risk factors of overuse injuries with the highest gain on decreased range of motion of the shoulder joint, lower peak propulsion force on the rim and reduced muscle activity.

  12. Colleyville Eco House Prototype

    SciTech Connect

    2009-06-16

    This case study describes the construction of a prototype high-performance home that includes a high efficiency ground source heat pump, unvented roof with low density spray foam insulation, and supplemental dehumidification.

  13. Ceramic subsurface marker prototypes

    SciTech Connect

    Lukens, C.E.

    1985-05-02

    The client submitted 5 sets of porcelain and stoneware subsurface (radioactive site) marker prototypes (31 markers each set). The following were determined: compressive strength, thermal shock resistance, thermal crazing resistance, alkali resistance, color retention, and chemical resistance.

  14. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping.

    PubMed

    Samanta, Suman Kalyan; Fritsch, Martin; Scherf, Ullrich; Gomulya, Widianta; Bisri, Satria Zulkarnaen; Loi, Maria Antonietta

    2014-08-19

    The future application of single-walled carbon nanotubes (SWNTs) in electronic (nano)devices is closely coupled to the availability of pure, semiconducting SWNTs and preferably, their defined positioning on suited substrates. Commercial carbon nanotube raw mixtures contain metallic as well as semiconducting tubes of different diameter and chirality. Although many techniques such as density gradient ultracentrifugation, dielectrophoresis, and dispersion by surfactants or polar biopolymers have been developed, so-called conjugated polymer wrapping is one of the most promising and powerful purification and discrimination strategies. The procedure involves debundling and dispersion of SWNTs by wrapping semiflexible conjugated polymers, such as poly(9,9-dialkylfluorene)s (PFx) or regioregular poly(3-alkylthiophene)s (P3AT), around the SWNTs, and is accompanied by SWNT discrimination by diameter and chirality. Thereby, the π-conjugated backbone of the conjugated polymers interacts with the two-dimensional, graphene-like π-electron surface of the nanotubes and the solubilizing alkyl side chains of optimal length support debundling and dispersion in organic solvents. Careful structural design of the conjugated polymers allows for a selective and preferential dispersion of both small and large diameter SWNTs or SWNTs of specific chirality. As an example, with polyfluorenes as dispersing agents, it was shown that alkyl chain length of eight carbons are favored for the dispersion of SWNTs with diameters of 0.8-1.2 nm and longer alkyls with 12-15 carbons can efficiently interact with nanotubes of increased diameter up to 1.5 nm. Polar side chains at the PF backbone produce dispersions with increased SWNT concentration but, unfortunately, cause reduction in selectivity. The selectivity of the dispersion process can be monitored by a combination of absorption, photoluminescence, and photoluminescence excitation spectroscopy, allowing identification of nanotubes with specific

  15. Lightweight composite fighting cover prototype development program

    SciTech Connect

    Wrenn, G.E. Jr.; Frame, B.J.; Gwaltney, R.C.; Akerman, M.A.

    1996-07-01

    The U.S. Army Field Assistance Science and Technology Program requested Oak Ridge National Laboratory (ORNL) to demonstrate the use of lightweight composite materials in construction of overhead covers for reinforced infantry fighting positions. In recent years, ORNL researchers have designed and tested several concepts for lightweight ballistic protection structures, and they have developed numerous prototype composite structures for military and civilian applications. In the current program, composite panel designs and materials are tested and optimized to meet anticipated static and dynamic load conditions for the overhead cover structure. Ten prototype composite covers were built at ORNL for use in Army field tests. Each composite cover has a nominal surface area of 12 ft[sup 2] and a nominal weight of 8 lb. Four of the prototypes are made with folding sections to improve their handling characteristics. The composite covers exhibit equivalent performance in Army field tests to covers made with conventional materials that weigh four times as much.

  16. Power and Time Dependent Microwave Assisted Fabrication of Silver Nanoparticles Decorated Cotton (SNDC) Fibers for Bacterial Decontamination

    PubMed Central

    Bhardwaj, Abhishek K.; Shukla, Abhishek; Mishra, Rohit K.; Singh, S. C.; Mishra, Vani; Uttam, K. N.; Singh, Mohan P.; Sharma, Shivesh; Gopal, R.

    2017-01-01

    Plasmonic nanoparticles (NPs) such as silver and gold have fascinating optical properties due to their enhanced optical sensitivity at a wavelength corresponding to their surface plasmon resonance (SPR) absorption. Present work deals with the fabrication of silver nanoparticles decorated cotton (SNDC) fibers as a cheap and efficient point of contact disinfectant. SNDC fibers were fabricated by a simple microwave assisted route. The microwave power and irradiation time were controlled to optimize size and density of silver nanoparticles (SNPs) on textile fibers. As prepared cotton fabric was characterized for ATR-FTIR, UV-VIS diffuse reflectance, SEM and TEM investigations. Size of SNPs as well as total density of silver atoms on fabric gets increased with the increase of microwave power from 100 W to 600 W. The antibacterial efficacy of SNPs extracted from SNDC fibers was found to be more effective against Gram-negative bacteria than Gram-positive bacteria with MIC 38.5 ± 0.93 μg/mL against Salmonella typhimurium MTCC-98 and 125 ± 2.12 μg/mL against Staphylococcus aureus MTCC-737, a linear correlation coefficient with R2 ranging from ∼0.928–0.935 was also observed. About >50% death cells were observed through Propidium Iodide (PI) internalization after treatment of SNPs extracted from SNDC fibers with concentration 31.25 μg/mL. Generation of ROS and free radical has also been observed which leads to cell death. Excellent Escherichia coli deactivation efficacy suggested that SNDC fibers could be used as potentially safe disinfectants for cleaning of medical equipment, hand, wound, water and preservation of food and beverages. PMID:28316594

  17. Parking Assistance Systems using Human Guidance

    NASA Astrophysics Data System (ADS)

    Wada, Massaki; Yoon, Kang Sup; Hashimoto, Hideki

    This paper dicusses the problem of parking assistance system development. Firstly, we propose the driver assistance systems general architecture based on path planning and human interface modules. A path generation method based on parking possibility area is developed for the parking assistance systems. The human interface designed for the parking assistance systems is then described. A prototype of the parking assistance systems based on the proposed architecture and approaches have been constructed. Proposed algorithms and implementation solutions in the prototype construction are described. The lane and row parking experimental results obtained with the prototype systems are also shown.

  18. Textured PrCo{sub 5} nanoflakes with large coercivity prepared by low power surfactant-assisted ball milling

    SciTech Connect

    Zuo, Wen-Liang Liu, Rong-Ming; Zheng, Xin-Qi; Wu, Rong-Rong; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen

    2014-05-07

    The effect of the milling time on the structure, morphology, coercivity, and remanence ratio of textured PrCo{sub 5} nanoflakes produced by low power surfactant-assisted ball milling (SABM) was investigated. The X-ray powder diffraction (XRD) patterns indicate that the SABM PrCo{sub 5} samples are all CaCu{sub 5}-type hexagonal structure. The average grain size is smaller than 10 nm when the SABM time is equal to or longer than 5.5 h. The thickness of nanoflakes is mainly in the range of 50−100 nm while the length is 0.5−5 μm when the SABM time reaches 8 h. For the field-aligned PrCo{sub 5} nanoflakes, the out-of-plane texture is indicated from the increasing (0 0 l) peaks in the XRD patterns, and the easy magnetization direction is perpendicular to the flake surface. The strong texture of PrCo{sub 5} nanoflakes leads to a large coercivity H{sub c} (7.8 kOe) and obvious anisotropic magnetic behaviors for the aligned samples.

  19. Solar TiO2-assisted photocatalytic degradation of IGCC power station effluents using a Fresnel lens.

    PubMed

    Monteagudo, J M; Durán, A; Guerra, J; García-Peña, F; Coca, P

    2008-03-01

    The heterogeneous TiO2 assisted photocatalytic degradation of wastewater from a thermoelectric power station under concentrated solar light irradiation using a Fresnel lens has been studied. The efficiency of photocatalytic degradation was determined from the analysis of cyanide and formate removal. Firstly, the influence of the initial concentration of H2O2 and TiO2 on the degradation kinetics of cyanides and formates was studied based on a factorial experimental design. Experimental kinetic constants were fitted using neural networks. Results showed that the photocatalytic process was effective for cyanides destruction (mainly following a molecular mechanism), whereas most of formates (degraded mainly via a radical path) remained unaffected. Finally, to improve formates degradation, the effect of lowering pH on their degradation rate was evaluated after complete cyanide destruction. The photooxidation efficiency of formates reaches a maximum at pH around 5-6. Above pH 6, formate anion is subjected to electrostatic repulsion with the negative surface of TiO2. At pH<4.5, formate adsorption and photon absorption are reduced due to some catalyst agglomeration.

  20. HSI Prototypes for Human Systems Simulation Laboratory

    SciTech Connect

    Jokstad, Håkon; McDonald, Rob

    2015-09-01

    This report describes in detail the design and features of three Human System Interface (HSI) prototypes developed by the Institutt for Energiteknikk (IFE) in support of the U.S. Department of Energy’s Light Water Reactor Sustainability Program under Contract 128420 through Idaho National Laboratory (INL). The prototypes are implemented for the Generic Pressurized Water Reactor simulator and installed in the Human Systems Simulation Laboratory at INL. The three prototypes are: 1) Power Ramp display 2) RCS Heat-up and Cool-down display 3) Estimated time to limit display The power ramp display and the RCS heat-up/cool-down display are designed to provide good visual indications to the operators on how well they are performing their task compared to their target ramp/heat-up/cool-down rate. The estimated time to limit display is designed to help operators restore levels or pressures before automatic or required manual actions are activated.

  1. Advances in rapid prototyping

    NASA Astrophysics Data System (ADS)

    Atwood, C. L.; McCarty, G. D.; Pardo, B. T.; Bryce, E. A.

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System's QuickCast(trademark) resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. Sandia uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype parts in support of a Sandia National Laboratories managed program called FASTCAST. As participants in the Beta test program for QuickCast(trademark) resin and software, they experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible, using this technology, to produce highly accurate prototype parts as well as acceptable first article and small lot size production parts. They use the selective laser sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster, with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This presentation will focus on the successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes.

  2. Prototyping the Future

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Advanced Ceramics Research (ACR) of Tucson, Arizona, researches transforming scientific concepts into technological achievement. Through the SBIR (Small Business Innovative Research) program, ACR developed a high pressure and temperature fused deposition system, a prototyping system that is known as extrusion freeform fabrication. This system is useful in manufacturing prosthetics. ACR also developed a three-dimensional rapid prototyping process in which physical models are quickly created directly from computer generated models. Marshall Space Flight Center also contracted ACR to fabricate a set of ceramic engines to be appraised for a solar thermal rocket engine test program.

  3. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  4. MIND performance and prototyping

    SciTech Connect

    Cervera-Villanueva, A.

    2008-02-21

    The performance of MIND (Magnetised Iron Neutrino Detector) at a neutrino factory has been revisited in a new analysis. In particular, the low neutrino energy region is studied, obtaining an efficiency plateau around 5 GeV for a background level below 10{sup -3}. A first look has been given into the detector optimisation and prototyping.

  5. Cost Effective Prototyping

    NASA Technical Reports Server (NTRS)

    Wickman, Jerry L.; Kundu, Nikhil K.

    1996-01-01

    This laboratory exercise seeks to develop a cost effective prototype development. The exercise has the potential of linking part design, CAD, mold development, quality control, metrology, mold flow, materials testing, fixture design, automation, limited parts production and other issues as related to plastics manufacturing.

  6. Recognition by Prototypes

    DTIC Science & Technology

    1992-12-01

    between the prototype and thet and semantic categorization was suggested by Lissauer imag was better than if only rigid transformations wer, [24...122. NJ: Ablexi, 370-428. [24] Lissauer H., 1890. Fall von Seelenblindheit nebst [61 Binford, T.O., 1971. Visual perception by com- einem beitrag zur

  7. Rapid Prototyping Reconsidered

    ERIC Educational Resources Information Center

    Desrosier, James

    2011-01-01

    Continuing educators need additional strategies for developing new programming that can both reduce the time to market and lower the cost of development. Rapid prototyping, a time-compression technique adapted from the high technology industry, represents one such strategy that merits renewed evaluation. Although in higher education rapid…

  8. Prompt and Precise Prototyping

    NASA Technical Reports Server (NTRS)

    2003-01-01

    For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.

  9. Rapid Prototyping in PVS

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.; Butler, Ricky (Technical Monitor)

    2003-01-01

    PVSio is a conservative extension to the PVS prelude library that provides basic input/output capabilities to the PVS ground evaluator. It supports rapid prototyping in PVS by enhancing the specification language with built-in constructs for string manipulation, floating point arithmetic, and input/output operations.

  10. Prototype Facility Educational Specifications.

    ERIC Educational Resources Information Center

    Idaho State Div. of Professional-Technical Education, Boise.

    This document presents prototypical educational specifications to guide the building and renovation of Idaho vocational schools so they can help communities meet the advanced, professional-technical programs of the future. The specifications start with points to consider when determining school site suitability. The document then sets forth…

  11. Advances in rapid prototyping

    SciTech Connect

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1993-12-31

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{trademark} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. Sandia uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype parts in support of a Sandia National Laboratories managed program called FASTCAST. As participants in the Beta test program for QuickCast{trademark} resin and software, they experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible, using this technology, to produce highly accurate prototype parts as well as acceptable firs article and small lots size production parts. They use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster, with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This presentation will focus on the successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes.

  12. Rapid prototyping for biomedical engineering: current capabilities and challenges.

    PubMed

    Lantada, Andrés Díaz; Morgado, Pilar Lafont

    2012-01-01

    A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends.

  13. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis

    PubMed Central

    Miller, Larry E; Zimmermann, Angela K; Herbert, William G

    2016-01-01

    Background Powered exoskeletons are designed to safely facilitate ambulation in patients with spinal cord injury (SCI). We conducted the first meta-analysis of the available published research on the clinical effectiveness and safety of powered exoskeletons in SCI patients. Methods MEDLINE and EMBASE databases were searched for studies of powered exoskeleton-assisted walking in patients with SCI. Main outcomes were analyzed using fixed and random effects meta-analysis models. Results A total of 14 studies (eight ReWalk™, three Ekso™, two Indego®, and one unspecified exoskeleton) representing 111 patients were included in the analysis. Training programs were typically conducted three times per week, 60–120 minutes per session, for 1–24 weeks. Ten studies utilized flat indoor surfaces for training and four studies incorporated complex training, including walking outdoors, navigating obstacles, climbing and descending stairs, and performing activities of daily living. Following the exoskeleton training program, 76% of patients were able to ambulate with no physical assistance. The weighted mean distance for the 6-minute walk test was 98 m. The physiologic demand of powered exoskeleton-assisted walking was 3.3 metabolic equivalents and rating of perceived exertion was 10 on the Borg 6–20 scale, comparable to self-reported exertion of an able-bodied person walking at 3 miles per hour. Improvements in spasticity and bowel movement regularity were reported in 38% and 61% of patients, respectively. No serious adverse events occurred. The incidence of fall at any time during training was 4.4%, all occurring while tethered using a first-generation exoskeleton and none resulting in injury. The incidence of bone fracture during training was 3.4%. These risks have since been mitigated with newer generation exoskeletons and refinements to patient eligibility criteria. Conclusion Powered exoskeletons allow patients with SCI to safely ambulate in real-world settings at

  14. Mechatronic Prototype of Parabolic Solar Tracker.

    PubMed

    Morón, Carlos; Díaz, Jorge Pablo; Ferrández, Daniel; Ramos, Mari Paz

    2016-06-15

    In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses.

  15. Mechatronic Prototype of Parabolic Solar Tracker

    PubMed Central

    Morón, Carlos; Díaz, Jorge Pablo; Ferrández, Daniel; Ramos, Mari Paz

    2016-01-01

    In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses. PMID:27314359

  16. Performance of the SDHCAL technological prototype

    NASA Astrophysics Data System (ADS)

    Grenier, G.

    2016-07-01

    The SDHCAL technological prototype is a 1 × 1 × 1.3 m3 high-granularity Semi-Digital Hadronic CALorimeter using Glass Resistive Plate Chambers as sensitive medium. It is one of the two HCAL options considered by the ILD Collaboration to be proposed for the detector of the future International Linear Collider project. The prototype is made of up to 50 GRPC detectors of 1 m2 size and 3 mm thickness each with an embedded semi-digital electronics readout that is autotriggering and power-pulsed. The GRPC readout is finely segmented into pads of 1 cm2. This proceeding describes the prototype, its operation and its performance in energy reconstruction. Aspects of the GRPC readout modelling and comparisons with simulations are also presented.

  17. Generalizing Prototype Theory: A Formal Quantum Framework

    PubMed Central

    Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro

    2016-01-01

    Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436

  18. Generalizing Prototype Theory: A Formal Quantum Framework.

    PubMed

    Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro

    2016-01-01

    Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper.

  19. Movement Performance of Human-Robot Cooperation Control Based on EMG-driven Hill-type and Proportional Models for an Ankle Power-assist Exoskeleton Robot.

    PubMed

    Ao, Di; Song, Rong; Gao, Jin-Wu

    2016-06-22

    Although the merits of electromyography (EMG)-based control of powered assistive systems have been certified, the factors that affect the performance of EMG-based human-robot cooperation, which are very important, have received little attention. This study investigates whether a more physiologically appropriate model could improve the performance of human-robot cooperation control for an ankle power-assist exoskeleton robot. To achieve the goal, an EMG-driven Hill-type neuromusculoskeletal model (HNM) and a linear proportional model (LPM) were developed and calibrated through maximum isometric voluntary dorsiflexion (MIVD). The two control models could estimate the real-time ankle joint torque, and HNM is more accurate and can account for the change of the joint angle and muscle dynamics. Then, eight healthy volunteers were recruited to wear the ankle exoskeleton robot and complete a series of sinusoidal tracking tasks in the vertical plane. With the various levels of assist based on the two calibrated models, the subjects were instructed to track the target displayed on the screen as accurately as possible by performing ankle dorsiflexion and plantarflexion. Two measurements, the root mean square error (RMSE) and root mean square jerk (RMSJ), were derived from the assistant torque and kinematic signals to characterize the movement performances, whereas the amplitudes of the recorded EMG signals from the tibialis anterior (TA) and the gastrocnemius (GAS) were obtained to reflect the muscular efforts. The results demonstrated that the muscular effort and smoothness of tracking movements decreased with an increase in the assistant ratio. Compared with LPM, subjects made lower physical efforts and generated smoother movements when using HNM, which implied that a more physiologically appropriate model could enable more natural and human-like human-robot cooperation and has potential value for improvement of human-exoskeleton interaction in future applications.

  20. PEP-II prototype klystron

    SciTech Connect

    Fowkes, W.R.; Caryotakis, G.; Lee, T.G.; Pearson, C.; Wright, E.L.

    1993-04-01

    A 540-kW continuous-wave (cw) klystron operating at 476 MHz was developed for use as a power source for testing PEP-II rf accelerating cavities and rf windows. It also serves as a prototype for a 1.2 MW cw klystron presently being developed as a potential rf source for asymmetric colliding ring use. The design incorporates the concepts and many of the parts used in the original 353 MHz PEP klystron developed sixteen years ago. The superior computer simulation codes available today result in improved performance with the cavity frequencies, drift lengths, and output circuit optimized for the higher frequency.The design and operating results of this tube are described with particular emphasis on the factors which affect efficiency and stability.

  1. The power of a collaborative relationship between technical assistance providers and community prevention teams: A correlational and longitudinal study

    PubMed Central

    Chilenski, Sarah M.; Perkins, Daniel F.; Olson, Jonathan; Hoffman, Lesa; Feinberg, Mark E.; Greenberg, Mark; Welsh, Janet; Crowley, D. Max; Spoth, Richard

    2015-01-01

    Background Historically, effectiveness of community collaborative prevention efforts has been mixed. Consequently, research has been undertaken to better understand the factors that support their effectiveness; theory and some related empirical research suggests that the provision of technical assistance is one important supporting factor. The current study examines one aspect of technical assistance that may be important in supporting coalition effectiveness, the collaborative relationship between the technical assistance provider and site lead implementer. Methods Four and one-half years of data were collected from technical assistance providers and prevention team members from the 14 community prevention teams involved in the PROSPER project. Results Spearman correlation analyses with longitudinal data show that the levels of the collaborative relationship during one phase of collaborative team functioning associated with characteristics of internal team functioning in future phases. Conclusions Results suggest that community collaborative prevention work should consider the collaborative nature of the technical assistance provider – prevention community team relationship when designing and conducting technical assistance activities, and it may be important to continually assess these dynamics to support high quality implementation. PMID:26476860

  2. Design of a Prototype EHD Air Pump for Electronic Chip Cooling Applications

    NASA Astrophysics Data System (ADS)

    Emmanouil, D. Fylladitakis; Antonios, X. Moronis; Konstantinos, Kiousis

    2014-05-01

    This paper presents the design, optimization and fabrication of an EHD air pump intended for high-power electronic chip cooling applications. Suitable high-voltage electrode configurations were selected and studied, in terms of the characteristics of the generated electric field, which play an important role in ionic wind flow. For this purpose, dedicated software is used to implement finite element analysis. Critical design parameters, such as the electric field intensity, wind velocity, current flow and power consumption are investigated. Two different laboratory prototypes are fabricated and their performances experimentally assessed. This procedure leads to the fabrication of a final prototype, which is then tested as a replacement of a typical fan for cooling a high power density electronic chip. To assist towards that end, an experimental thermal testing setup is designed and constructed to simulate the size of a personal computer's CPU core of variable power. The parametric study leads to the fabrication of experimental single-stage EHD pumps, the optimal design of which is capable of delivering an air flow of 51 CFM with an operating voltage of 10.5 kV. Finally, the theoretical and experimental results are evaluated and potential applications are proposed.

  3. Step Prototype Development Status

    NASA Astrophysics Data System (ADS)

    Mehls, C.; Bayart, C.; Bower, J.; Clarke, B.; Cox, C.; Gill, D.; Stricker, D.; Vora, N.; Wang, S.; Zhou, P.; Torii, R.; Worden, P.; Debra, D.; Dittus, H.; Loeffler, F.

    2008-09-01

    STEP, the Satellite Test of the Equivalence Principle [1], proposes to test the Equivalence Principle to a part in 1018 by comparing the free-fall acceleration of cylindrical shaped test masses [2] in Earth orbit. Magnetic bearings constrain the test mass motion to their axis of symmetry [3]. The displacement of the test masses is measured using a DC SQUID and superconducting coils [4], enabling a displacement sensitivity as small as 10-15 m. In combination with a small spring stiffness a differential acceleration sensitivity of 10-18 g is achievable. Residual satellite acceleration is reduced to better than 10-14 g by compensating satellite drag forces with thrust provided by helium gas. We report on recent progress in the development of STEP prototype flight accelerometers, in particular the development of the high precision quartz housing for the engineering inner accelerometer and the testing of SQUID and capacitive readout systems using 'brass board' accelerometer prototypes.

  4. Experimental prototype of an electric elevator

    NASA Astrophysics Data System (ADS)

    Gaiceanu, M.; Epure, S.; Ciuta, S.

    2016-08-01

    The main objective is to achieve an elevator prototype powered by a three-phase voltage system via a bidirectional static power converter ac-ac with regenerating capability. In order to diminish the power size of the electric motor up to 1/3 of rated power, the elevator contains two carriages of the same weight, one serving as the payload, and the other as counterweight. Before proper operation of the static power converter, the capacitor must be charged at rated voltage via a precharge circuit. At the moment of stabilizing the DC voltage at nominal value, the AC-AC power converter can operates in the proper limits. The functions of the control structure are: the load control task, speed and torque controls. System includes transducers for current measuring, voltage sensors and encoder. As reserve power sources the hybrid battery-photovoltaic panels are used. The control voltage is modulated by implementing four types of pulse width modulations: sinusoidal, with reduced commutation, third order harmonic insertion, and the space vector modulation. Therefore, the prototype could operates with an increased efficiency, in spite of the existing ones. The experimental results confirm the well design of the chosen solution. The control solution assures bidirectional power flow control, precharge control, and load control and it is implemented on a digital signal processor. The elevator capacity is between 300-450 kg, and it is driven by using a 1.5 kW three-phase asynchronous machine.

  5. Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    SciTech Connect

    Hyungsuk Kang; Chun Tai

    2010-05-01

    The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA

  6. Prototype Slide Stainer

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The prototype slide staining system capable of performing both one-component Wright's staining of blood smears and eight-step Gram staining of heat fixed slides of microorganisms is described. Attention was given to liquid containment, waste handling, absence of contamination from previous staining, and stability of the staining reagents. The unit is self-contained, capable of independent operation under one- or zero-g conditions, and compatible with Skylab A.

  7. Wet chemistry instrument prototype

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A wet chemistry instrument prototype for detecting amino acids in planetary soil samples was developed. The importance of amino acids and their condensation products to the development of life forms is explained. The characteristics of the instrument and the tests which were conducted to determine the materials compatibility are described. Diagrams are provided to show the construction of the instrument. Data obtained from the performance tests are reported.

  8. Ghana Watershed Prototype Products

    USGS Publications Warehouse

    ,

    2007-01-01

    Introduction/Background A number of satellite data sets are available through the U.S. Geological Survey (USGS) for monitoring land surface features. Representative data sets include Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Shuttle Radar Topography Mission (SRTM). The Ghana Watershed Prototype Products cover an area within southern Ghana, Africa, and include examples of the aforementioned data sets along with sample SRTM derivative data sets.

  9. Ghana watershed prototype products

    USGS Publications Warehouse

    ,

    2007-01-01

    A number of satellite data sets are available through the U.S. Geological Survey (USGS) for monitoring land surface features. Representative data sets include Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Shuttle Radar Topography Mission (SRTM). The Ghana Watershed Prototype Products cover an area within southern Ghana, Africa, and include examples of the aforementioned data sets along with sample SRTM derivative data sets.

  10. Common Prototyping Language

    DTIC Science & Technology

    1991-08-01

    1988 17:12 example Lisp, Prolog, SETL, APL, SmallTalk, ML, and others meet many of the requirements. A careful analysis in each case will be helpful...handles unsupplied or incomplete components. A prototype is incomplete if not all procedures, functions, or types are defined or if they are partially...defined. The following are examples of how PC might handle unsupplied or incomplete components: SInvoke a condition handler * Query the user 0 Entering

  11. Electrohydraulic ventricular assist device development.

    PubMed

    Diegel, P D; Mussivand, T; Holfert, J W; Nahon, D; Miller, J; Maclean, G K; Santerre, J P; Bearnson, G B; Juretich, J; Hansen, A C

    1991-01-01

    A 64 ml (effective stroke volume) in vitro electrohydraulic ventricular assist device (VAD) prototype has been built. The energy converter is an axial flow pump driven by a brushless direct current (DC) motor. Systole begins as silicone oil is pumped from the volume displacement chamber (VDC) into the ventricle, displacing the flexing diaphragm separating the oil and the blood. In diastole, the motor reverses, providing active filling by pumping oil from the ventricle into the VDC. The surface mount electronic internal controller provides motor commutator, energy management, telemetry, and physiologic control functions. Energy is supplied externally by either a 12 V DC power supply or a 12 V DC rechargeable battery and is transmitted through the skin by a transcutaneous energy transformer (TET). Energy can also be supplied by a 12 V DC rechargeable internal battery. Bidirectional infrared telemetry is used to transmit information between the internal and external controllers.

  12. MITRE sensor layer prototype

    NASA Astrophysics Data System (ADS)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  13. Majorana Thermosyphon Prototype Experimental Setup

    SciTech Connect

    Reid, Douglas J.; Guzman, Anthony D.; Munley, John T.

    2011-08-01

    This report presents the experimental setup of Pacific Northwest National Laboratory’s MAJORANA DEMONSTRATOR thermosyphon prototype cooling system. A nitrogen thermosyphon prototype of such a system has been built and tested at PNNL. This document presents the experimental setup of the prototype that successfully demonstrated the heat transfer performance of the system.

  14. Understanding Semiotic Technology in University Classrooms: A Social Semiotic Approach to PowerPoint-Assisted Cultural Studies Lectures

    ERIC Educational Resources Information Center

    Zhao, Sumin; van Leeuwen, Theo

    2014-01-01

    In this paper, we propose a social semiotic approach to studying PowerPoint in university classrooms. Our approach is centred on two premises: (1) PowerPoint is a semiotic technology that can be integrated into the pedagogical discourse of classrooms, and (2) PowerPoint technology encompasses three interrelated dimensions of social semiotic…

  15. DOE`s annealing prototype demonstration projects

    SciTech Connect

    Warren, J.; Nakos, J.; Rochau, G.

    1997-02-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy`s Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana`s Marble Hill nuclear power plant. The MPR team`s annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company`s nuclear power plant at Midland, Michigan. This paper describes the Department`s annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges.

  16. Ambient Assistive Technologies (AAT): socio-technology as a powerful tool for facing the inevitable sociodemographic challenges?

    PubMed

    Schülke, Astrid M; Plischke, Herbert; Kohls, Niko B

    2010-06-07

    Due to the socio-demographic change in most developed western countries, elderly populations have been continuously increasing. Therefore, preventive and assistive systems that allow elderly people to independently live in their own homes as long as possible will become an economical if not ethical necessity. These respective technologies are being developed under the term "Ambient Assistive Technologies" (AAT). The EU-funded AAT-project Ambient Lighting Assistance for an Ageing Population (ALADIN) has established the long-term goal to create an adaptive system capable of improving the residential lighting conditions of single living elderly persons also aiming at supporting the preservation of their independence.Results of an earlier survey revealed that the elderly perceived their current lighting situation as satisfactory, whereas interviewers assessed in-house lighting as too dark and risk-laden. The overall results of ALADIN showed a significant increase in well-being from the baseline final testing with the new adaptive lighting system.Positive results for wellbeing and life quality suggest that the outcome effects may be attributed to the introduction of technology as well as to social contacts arising from participating in the study. The technological guidance of the study supervisors, in particular, may have produced a strong social reactivity effect that was first observed in the famous Hawthorne experiments in the 1930s. As older adults seem to benefit both from meaningful social contacts as well as assistive technologies, the question arises how assistive technology can be socially embedded to be able to maximize positive health effects. Therefore ethical guidelines for development and use of new assistive technologies for handicapped/older persons have to be developed and should be discussed with regard to their applicability in the context of AAT.

  17. Flexible thermoelectric generator for ambient assisted living wearable biometric sensors

    NASA Astrophysics Data System (ADS)

    Francioso, L.; De Pascali, C.; Farella, I.; Martucci, C.; Cretì, P.; Siciliano, P.; Perrone, A.

    2011-03-01

    In this work we proposed design, fabrication and functional characterization of a very low cost energy autonomous, maintenance free, flexible and wearable micro thermoelectric generator (μTEG), finalized to power very low consumption electronics ambient assisted living (AAL) applications. The prototype, integrating an array of 100 thin films thermocouples of Sb2Te3 and Bi2Te3, generates, at 40 °C, an open circuit output voltage of 430 mV and an electrical output power up to 32 nW with matched load. In real operation conditions of prototype, which are believed to be very close to a thermal gradient of 15 °C, the device generates an open circuit output voltage of about 160 mV, with an electrical output power up to 4.18 nW. In the first part of work, deposition investigation Sb2Te3 and Bi2Te3 thin films alloys on Kapton HN polyimide foil by RF magnetron co-sputtering technique is discussed. Deposition parameters have been optimized to gain perfect stoichiometric ratio and high thermoelectric power factor; fabricated thermogenerator has been tested at low gradient conditioned to evaluate applications like human skin wearable power generator for ambient assisted living applications.

  18. Device-Training for Individuals with Thoracic and Lumbar Spinal Cord Injury Using a Powered Exoskeleton for Technically Assisted Mobility: Achievements and User Satisfaction.

    PubMed

    Platz, Thomas; Gillner, Annett; Borgwaldt, Nicole; Kroll, Sylvia; Roschka, Sybille

    2016-01-01

    Objective. Results of a device-training for nonambulatory individuals with thoracic and lumbar spinal cord injury (SCI) using a powered exoskeleton for technically assisted mobility with regard to the achieved level of control of the system after training, user satisfaction, and effects on quality of life (QoL). Methods. Observational single centre study with a 4-week to 5-week intensive inpatient device-training using a powered exoskeleton (ReWalk™). Results. All 7 individuals with SCI who commenced the device-training completed the course of training and achieved basic competences to use the system, that is, the ability to stand up, sit down, keep balance while standing, and walk indoors, at least with a close contact guard. User satisfaction with the system and device-training was documented for several aspects. The quality of life evaluation (SF-12v2™) indicated that the use of the powered exoskeleton can have positive effects on the perception of individuals with SCI regarding what they can achieve physically. Few adverse events were observed: minor skin lesions and irritations were observed; no falls occurred. Conclusions. The device-training for individuals with thoracic and lumbar SCI was effective and safe. All trained individuals achieved technically assisted mobility with the exoskeleton while still needing a close contact guard.

  19. Surfactant-free synthesis of metallic bismuth spheres by microwave-assisted solvothermal approach as a function of the power level

    NASA Astrophysics Data System (ADS)

    Estrada Flores, Miriam; Santiago Jacinto, Patricia; Reza San Germán, Carmen M.; Rendón Vázquez, Luis; Borja Urby, Raúl; Cayetano Castro, Nicolás

    2016-10-01

    In the present work, the synthesis of micro- and nano-sized spheres of metallic bismuth by microwave-assisted solvothermal method is reported. The synthesis method was carried out at different power levels and at a unique frequency of microwave irradiation. The sphere sizes were controlled by the microwave power level and the concentration of dissolved precursor. Structural and morphological characterization was performed by SEM, HRTEM, EELS and XRD. The results demonstrated that rhombohedral zero valent Bi spheres were synthesized after microwave radiation at 600 and 1200 W. However, if the power level is decreased to 120W, a monoclinic phase of Bi2O3 is obtained with a flake-like morphology. In comparison with a conventional hydrothermal process, the microwave-assisted solvothermal approach provides many advantages such as shorter reaction time, optimum manipulation of morphologies and provides a specific chemical phase and avoids the mixture of structural phases and morphologies which is essential for further applications such as drug delivery or functionalization with organic materials, thanks to its biocompatibility.

  20. Device-Training for Individuals with Thoracic and Lumbar Spinal Cord Injury Using a Powered Exoskeleton for Technically Assisted Mobility: Achievements and User Satisfaction

    PubMed Central

    Gillner, Annett; Borgwaldt, Nicole; Kroll, Sylvia; Roschka, Sybille

    2016-01-01

    Objective. Results of a device-training for nonambulatory individuals with thoracic and lumbar spinal cord injury (SCI) using a powered exoskeleton for technically assisted mobility with regard to the achieved level of control of the system after training, user satisfaction, and effects on quality of life (QoL). Methods. Observational single centre study with a 4-week to 5-week intensive inpatient device-training using a powered exoskeleton (ReWalk™). Results. All 7 individuals with SCI who commenced the device-training completed the course of training and achieved basic competences to use the system, that is, the ability to stand up, sit down, keep balance while standing, and walk indoors, at least with a close contact guard. User satisfaction with the system and device-training was documented for several aspects. The quality of life evaluation (SF-12v2™) indicated that the use of the powered exoskeleton can have positive effects on the perception of individuals with SCI regarding what they can achieve physically. Few adverse events were observed: minor skin lesions and irritations were observed; no falls occurred. Conclusions. The device-training for individuals with thoracic and lumbar SCI was effective and safe. All trained individuals achieved technically assisted mobility with the exoskeleton while still needing a close contact guard. PMID:27610382

  1. Nightshade Prototype Experiments (Silverleaf)

    SciTech Connect

    Danielson, Jeremy; Bauer, Amy L.

    2016-12-23

    The Red Sage campaign is a series of subcritical dynamic plutonium experiments designed to measure ejecta. Nightshade, the first experiments in Red Sage scheduled for fiscal year 2019, will measure the amount of ejecta emission into vacuum from a double-­shocked plutonium surface. To address the major technical risks in Nightshade, a Level 2 milestone was developed for fiscal year 2016. Silverleaf, a series of four experiments, was executed at the Los Alamos National Laboratory in July and August 2016 to demonstrate a prototype of the Nightshade package and to satisfy this Level 2 milestone. This report is documentation that Red Sage Level 2 milestone requirements were successfully met.

  2. AMS Prototyping Activities

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott

    2008-01-01

    This slide presentation reviews the activity around the Asynchronous Message Service (AMS) prototype. An AMS reference implementation has been available since late 2005. It is aimed at supporting message exchange both in on-board environments and over space links. The implementation incoroporates all mandatory elements of the draft recommendation from July 2007: (1) MAMS, AMS, and RAMS protocols. (2) Failover, heartbeats, resync. (3) "Hooks" for security, but no cipher suites included in the distribution. The performance is reviewed, and a Benchmark latency test over VxWorks Message Queues is shown as histograms of a count vs microseconds per 1000-byte message

  3. JINR LHEP photoinjector prototype

    NASA Astrophysics Data System (ADS)

    Balalykin, N. I.; Minashkin, V. F.; Nozdrin, M. A.; Trubnikov, G. V.; Shirkov, G. D.; Gacheva, E. I.; Katin, E. V.; Khazanov, E. A.; Luchinin, G. A.; Poteomkin, A. K.; Zelenogorskii, V. V.; Huran, J.

    2016-12-01

    A photoinjector prototype for future electron-positron colliders and free-electron lasers (FEL) is being developed at the Joint Institute for Nuclear Research (JINR). A 30-keV photogun stand, transmission (backside irradiated) photocathode concept, and stand investigations of such cathodes in collaboration with Institute of Electrical Engineering (IEE SAS) (Bratislava, the Slovak Republic) are described. A progress report on creating the photoinjector at an electron energy of up to 400 keV with a unique 10-ps laser driver is given.

  4. Prototype ultrasonic instrument for quantitative testing

    NASA Technical Reports Server (NTRS)

    Lynnworth, L. C.; Dubois, J. L.; Kranz, P. R.

    1972-01-01

    A prototype ultrasonic instrument has been designed and developed for quantitative testing. The complete delivered instrument consists of a pulser/receiver which plugs into a standard oscilloscope, an rf power amplifier, a standard decade oscillator, and a set of broadband transducers for typical use at 1, 2, 5 and 10 MHz. The system provides for its own calibration, and on the oscilloscope, presents a quantitative (digital) indication of time base and sensitivity scale factors and some measurement data.

  5. Sudden power loss in a HeartMate II left ventricular assist device due to intermittent pin contact with the battery: case report.

    PubMed

    Belway, Dean; Cleland, Mark; Zakutney, Timothy; Grenon, Jackie; Mielniczuk, Lisa M; Hendry, Paul J

    2013-01-01

    Left ventricular assist device technology has improved such that mechanical malfunction, particularly with newer generation continuous flow devices, is a relatively rare event. We present a case of sudden power loss in a HeartMate II caused by intermittent contact of the battery terminals after a clip was dropped with the battery inserted in it. The clip was replaced and the patient made a complete recovery. A new inspection and testing methodology, and amended approach to patient and caregiver training, designed to prevent future occurrences is described.

  6. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides.

    PubMed Central

    Pieles, U; Zürcher, W; Schär, M; Moser, H E

    1993-01-01

    We report the analysis and characterization of natural and modified oligonucleotides by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The present technology was highly improved for this class of compounds by using a new matrix, 2,4,6-trihydroxy acetophenone, together with di- and triammonium salts of organic or inorganic acids to suppress peak broadening due to multiple ion adducts. This methodology can be used in combination with time dependent degradation of oligonucleotides by exonucleases as powerful tool to determine sequence compositions. PMID:8341593

  7. SXI prototype mirror mount

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve

  8. SXI prototype mirror mount

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve

  9. Web tools for rapid experimental visualization prototyping

    NASA Astrophysics Data System (ADS)

    Decker, Jonathan W.; Livingstion, Mark A.

    2013-01-01

    Quite often a researcher finds themselves looking at spreadsheets of high-dimensional data generated by experimental models and user studies. We can use analysis to challenge or confirm hypothesis, but unexpected results can easily be lost in the shuffle. For this reason, it would be useful to visualize the results so we can explore our data and make new discoveries. Web browsers have become increasingly capable for creating complex, multi-view applications. Javascript is quickly becoming a de facto standard for scripting, online and offline. This work demonstrates the use of web technologies as a powerful tool for rapid visualization prototyping. We have developed two prototypes: One for high-dimensional results of the abELICIT - multi-agent version of the ELICIT platform tasked with collaborating to identify the parameters of a pending attack. Another prototype displays responses to a user study on the effectiveness of multi-layer visualization techniques. We created coordinated multiple views prototypes in the Google Chrome web browser written in Javascript, CSS and HTML. We will discuss the benefits and shortcomings of this approach.

  10. Prototype Stilbene Neutron Collar

    SciTech Connect

    Prasad, M. K.; Shumaker, D.; Snyderman, N.; Verbeke, J.; Wong, J.

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  11. Prototyping user displays using CLIPS

    NASA Technical Reports Server (NTRS)

    Kosta, Charles P.; Miller, Ross; Krolak, Patrick; Vesty, Matt

    1990-01-01

    CLIPS is being used as an integral module of a rapid prototyping system. The prototyping system consists of a display manager for object browsing, a graph program for displaying line and bar charts, and a communications server for routing messages between modules. A CLIPS simulation of a physical model provides dynamic control of the user's display. Currently, a project is well underway to prototype the Advanced Automation System (AAS) for the Federal Aviation Administration.

  12. Guidelines to assist rural electric cooperatives to fulfill the requirements of Sections 201 and 210 of PURPA for cogeneration and small power production

    SciTech Connect

    Not Available

    1981-02-01

    These guidelines were designed to assist National Rural Electric Cooperative Association staff and consultants involved in the implementation of Sections 201 and 210 of the Public Utilities Regulatory Policies Act (PURPA). The guidelines were structured to meet anticipated use as: a self-contained legal, technical and economic reference manual helpful in dealing with small power producers and cogenerators; a roadmap through some of the less obvious obstacles encountered by utilities interacting with small power producers and cogenerators; a starting point for those utilities who have not yet formulated specific policies and procedures, nor developed rates for purchasing power from small power producers and cogenerators; a discussion vehicle to highlight key issues and increase understanding in workshop presentations to rural electric cooperatives; and an evolutionary tool which can be updated to reflect changes in the law as they occur. The chapters in these Guidelines contain both summary information, such as compliance checklists, and detailed information, such as cost rate calculations, on regulatory requirements, operational considerations, and rate considerations. The appendices contain more specific material, e.g. rural electric cooperative sample policy statements. (LCL)

  13. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu

    2016-11-01

    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  14. Fuelcell Prototype Locomotive

    SciTech Connect

    David L. Barnes

    2007-09-28

    An international industry-government consortium is developing a fuelcell hybrid switcher locomotive for commercial railway applications and power-to-grid generation applications. The current phase of this on-going project addresses the practicalities of on-board hydrogen storage, fuelcell technology, and hybridity, all with an emphasis on commercially available products. Through practical evaluation using designs from Vehicle Projects’ Fuelcell-Powered Underground Mine Loader Project, the configuration of the fuelcell switcher locomotive changed from using metal-hydride hydrogen storage and a pure fuelcell power plant to using compressed hydrogen storage, a fuelcell-battery hybrid power plant, and fuelcell stack modules from Ballard Power Systems that have been extensively used in the Citaro bus program in Europe. The new overall design will now use a RailPower battery hybrid Green Goat™ as the locomotive platform. Keeping the existing lead-acid batteries, we will replace the 205 kW diesel gen-set with 225 kW of net fuelcell power, remove the diesel fuel tank, and place 14 compressed hydrogen cylinders, capable of storing 70 kg of hydrogen at 350 bar, on the roof. A detailed design with associated CAD models will allow a complete build of the fuelcell-battery hybrid switcher locomotive in the next funded phase.

  15. Power Teaching

    ERIC Educational Resources Information Center

    Fluellen, Jerry E., Jr.

    2007-01-01

    Power Teaching weaves four factors into a seamless whole: standards, teaching thinking, research based strategies, and critical inquiry. As a prototype in its first year of development with an urban fifth grade class, the power teaching model connects selected district standards, thinking routines from Harvard University Project Zero Research…

  16. The Galileo PPS expert monitoring and diagnostic prototype

    NASA Technical Reports Server (NTRS)

    Bahrami, Khosrow

    1989-01-01

    The Galileo PPS Expert Monitoring Module (EMM) is a prototype system implemented on the SUN workstation that will demonstrate a knowledge-based approach to monitoring and diagnosis for the Galileo spacecraft Power/Pyro subsystems. The prototype will simulate an analysis module functioning within the SFOC Engineering Analysis Subsystem Environment (EASE). This document describes the implementation of a prototype EMM for the Galileo spacecraft Power Pyro Subsystem. Section 2 of this document provides an overview of the issues in monitoring and diagnosis and comparison between traditional and knowledge-based solutions to this problem. Section 3 describes various tradeoffs which must be considered when designing a knowledge-based approach to monitoring and diagnosis, and section 4 discusses how these issues were resolved in constructing the prototype. Section 5 presents conclusions and recommendations for constructing a full-scale demonstration of the EMM. A Glossary provides definitions of terms used in this text.

  17. Innovative Free-range Resonant Electrical Energy Delivery system (FREE-D System) for a ventricular assist device using wireless power.

    PubMed

    Waters, Benjamin H; Smith, Joshua R; Bonde, Pramod

    2014-01-01

    Technological innovation of a smaller, single moving part has an advantage over earlier large pulsatile ventricular assist devices (VADs) prone to mechanical failure. Drivelines limit the potential for extended patient survival durations with newer pumps and act as source for infection, increased morbidity, rehospitalizations, and reduced quality of life. The Free-range Resonant Electrical Energy Delivery (FREE-D) wireless power system uses magnetically coupled resonators to efficiently transfer power. We demonstrate the efficiency over distance of this system. The experimental setup consists of an radiofrequency amplifier and control board which drives the transmit resonator coil, and a receiver unit consisting of a resonant coil attached to a radiofrequency rectifier and power management module. The power management module supplies power to the axial pump, which was set at 9,600 rpm. To achieve a seamless wireless delivery in any room size, we introduced a third relay coil. This relay coil can be installed throughout a room, whereas a single relay coil could be built into a jacket worn by the patient, which would always be within range of the receive coil implanted in the patient's body. The power was delivered over a meter distance without interruptions or fluctuations with coil, rectifier, and regulator efficiency more than 80% and overall system efficiency of 61%. The axial pump worked well throughout the 8 hours of continuous operation. Having same setup on the opposite side can double the distance. A tether-free operation of a VAD can be achieved by FREE-D system in room-size distances. It has the potential to make the VAD therapy more acceptable from the patient perspective.

  18. NIOSH alert: Request for assistance in preventing electrocutions of crane operators and crew members working near overhead power lines

    SciTech Connect

    1995-05-01

    In this alert, NIOSH warned that crane operators and crew members may be electrocuted when working near overhead power lines. Five cases were described which resulted in six electrocutions. Case 1 involved a 29 year old who pushed the crane cable on a 1 yard cement bucket into a 7,200 volt power line. Case 2 involved a 33 year old well driller who was electrocuted when a metal pipe lifted by a truck mounted crane contacted a 12,000 volt overhead power line. The third case involved a 24 year old forman for a telecommunications company who was electrocuted when he grabbed the door handle of a truck mounted crane whose boom was in contact with a 7,200 volt overhead power line. Case 4 involved a 37 year old construction laborer electrocuted while pulling a wire rope attached to a crane cable toward a load. The fifth case involved a 20 year old male truck driver and his 70 year old male employer who were electrocuted when the boom of a truck mounted crane contacted a 7,200 volt conductor of an overhead power line.

  19. Mars Spark Source Prototype Developed

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; VanderWal, Randall L.; Weiland, Karen J.

    2000-01-01

    The Mars Spark Source Prototype (MSSP) hardware was developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample, and detectors measure the optical emission from metals in the plasma to identify and quantify them. Trace metal measurements are vital in assessing whether or not the Martian environment will be toxic to human explorers. The current method of x-ray fluorescence can yield concentrations of major species only. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The new instrument will be developed primarily for use in the Martian environment, but it would be adaptable for terrestrial use in environmental monitoring. The NASA Glenn Research Center at Lewis Field initiated the development of the MSSP as part of Glenn's Director's Discretionary Fund project for the Spark Analysis Detection of Trace Metal Species in Martian Dusts and Soils. The objective of this project is to develop and demonstrate a compact, sensitive optical instrument for the detection of trace hazardous metals in Martian dusts and soils.

  20. Polyimide/PDMS flexible thermoelectric generator for ambient assisted living applications

    NASA Astrophysics Data System (ADS)

    Francioso, L.; De Pascali, C.; Farella, I.; Martucci, C.; Cretì, P.; Siciliano, P.

    2011-06-01

    Present work proposed design, finite element tools simulation and prototype fabrication of a low cost energy autonomous, maintenance free, flexible and wearable micro thermoelectric generator (μTEG), finalized to power very low consumption electronics Ambient Assisted Living (AAL) applications. The prototype, integrating an array of 100 thin films thermocouples of Sb2Te3 and Bi2Te3, generates, at 40 °C, an open circuit output voltage of 430 mV and an electrical output power up to 32 nW with matched load. In real operation conditions of prototype, which are believed to be very close to a thermal gradient of 15°C, the device generates an open circuit output voltage of about 160 mV, with an electrical output power up to 4.18 nW. In this work we proposed design, thermal simulation and fabrication of a preliminary flexible and wearable micro thermoelectric generator (μTEG), finalized to power very low consumption electronics for Ambient Assisted Living (AAL) applications. Presented simulations show the performances of different fabrication solution for the PDMS/Kapton packages, considering flat and sloped walls approach for thermal gradient enhancement.

  1. Virtual Prototyping at CERN

    NASA Astrophysics Data System (ADS)

    Gennaro, Silvano De

    The VENUS (Virtual Environment Navigation in the Underground Sites) project is probably the largest Virtual Reality application to Engineering design in the world. VENUS is just over one year old and offers a fully immersive and stereoscopic "flythru" of the LHC pits for the proposed experiments, including the experimental area equipment and the surface models that are being prepared for a territorial impact study. VENUS' Virtual Prototypes are an ideal replacement for the wooden models traditionally build for the past CERN machines, as they are generated directly from the EUCLID CAD files, therefore they are totally reliable, they can be updated in a matter of minutes, and they allow designers to explore them from inside, in a one-to-one scale. Navigation can be performed on the computer screen, on a stereoscopic large projection screen, or in immersive conditions, with an helmet and 3D mouse. By using specialised collision detection software, the computer can find optimal paths to lower each detector part into the pits and position it to destination, letting us visualize the whole assembly probess. During construction, these paths can be fed to a robot controller, which can operate the bridge cranes and build LHC almost without human intervention. VENUS is currently developing a multiplatform VR browser that will let the whole HEP community access LHC's Virtual Protoypes over the web. Many interesting things took place during the conference on Virtual Reality. For more information please refer to the Virtual Reality section.

  2. Virtual acoustic prototyping

    NASA Astrophysics Data System (ADS)

    Johnson, Marty

    2003-10-01

    In this paper the re-creation of 3-D sound fields so the full psycho-acoustic impact of sound sources can be assessed before the manufacture of a product or environment is examined. Using head related transfer functions (HRTFs) coupled with a head tracked set of headphones the sound field at the left and right ears of a listener can be re-created for a set of sound sources. However, the HRTFs require that sources have a defined location and this is not the typical output from numerical codes which describe the sound field as a set of distributed modes. In this paper a method of creating a set of equivalent sources is described such that the standard set of HRTFs can be applied in real time. A structural-acoustic model of a cylinder driving an enclosed acoustic field will be used as an example. It will be shown that equivalent sources can be used to recreate all of the reverberation of the enclosed space. An efficient singular value decomposition technique allows the large number of sources required to be simulated in real time. An introduction to the requirements necessary for 3-D virtual prototyping using high frequency Statistical Energy Analysis models will be presented. [Work supported by AuSim and NASA.

  3. Pollution prevention opportunity assessment for electronics prototype laboratory.

    SciTech Connect

    Gerard, Morgan Evan

    2005-10-01

    This Pollution Prevention Opportunity Assessment (PPOA) was conducted for Sandia National Laboratories/California Electronics Prototype Laboratory (EPL) in May 2005. The primary purpose of this PPOA is to provide recommendations to assist Electronics Prototype Laboratory personnel in reducing the generation of waste and improving the efficiency of their processes. This report contains a summary of the information collected, analyses performed and recommended options for implementation. The Sandia National Laboratories Pollution Prevention staff will continue to work with the EPL to implement the recommendations.

  4. Transport of ionized metal atoms in high-power pulsed magnetron discharges assisted by inductively coupled plasma

    SciTech Connect

    Konstantinidis, S.; Dauchot, J.P.; Ganciu, M.; Hecq, M.

    2006-01-09

    Transporting metallic ions from the magnetron cathode to the substrate is essential for an efficient thin-film deposition process. This letter examines how inductively coupled plasma superimposed onto a high-power pulsed magnetron discharge can influence the mobility of titanium ions. To this effect, time-resolved optical emission and absorption spectrometry are conducted and the current at the substrate is measured. With this new hybrid technique, ions are found to reach the substrate in two successive waves. Metal ions, only present in the second wave, are found to accelerate proportionally to the power supplied to the inductively coupled plasma. All the measurements in this study are made at 10 and 30 mTorr, with 10 {mu}s long pulses at the magnetron cathode.

  5. Foraging search: Prototypical intelligence

    NASA Astrophysics Data System (ADS)

    Mobus, George

    2000-05-01

    We think because we eat. Or as Descartes might have said, on a little more reflection, "I need to eat, therefore I think." Animals that forage for a living repeatedly face the problem of searching for a sparsely distributed resource in a vast space. Furthermore, the resource may occur sporadically and episodically under conditions of true uncertainty (nonstationary, complex and non-linear dynamics). I assert that this problem is the canonical problem solved by intelligence. It's solution is the basis for the evolution of more advanced intelligence in which the space of search includes that of concepts (objects and relations) encoded in cortical structures. In humans the conscious experience of searching through concept space we call thinking. The foraging search model is based upon a higher-order autopoeitic system (the forager) employing anticipatory processing to enhance its success at finding food while avoiding becoming food or having accidents in a hostile world. I present a semi-formal description of the general foraging search problem and an approach to its solution. The latter is a brain-like structure employing dynamically adaptive neurons. A physical robot, MAVRIC, embodies some principles of foraging. It learns cues that lead to improvements in finding targets in a dynamic and nonstationary environment. This capability is based on a unique learning mechanism that encodes causal relations in the neural-like processing element. An argument is advanced that searching for resources in the physical world, as per the foraging model, is a prototype for generalized search for conceptual resources as when we think. A problem represents a conceptual disturbance in a homeostatic sense. The finding of a solution restores the homeostatic balance. The establishment of links between conceptual cues and solutions (resources) and the later use of those cues to think through to solutions of quasi-isomorphic problems is, essentially, foraging for ideas. It is a quite

  6. Ionic-liquid-assisted synthesis of nanostructured and carbon-coated Li3V2(PO4)3 for high-power electrochemical storage devices.

    PubMed

    Zhang, Xiaofei; Böckenfeld, Nils; Berkemeier, Frank; Balducci, Andrea

    2014-06-01

    Carbon-coated Li3V2(PO4)3 (LVP) displaying nanostructured morphology can be easily prepared by using ionic-liquid-assisted sol-gel synthesis. The selection of highly viscous and thermally stable ionic liquids might promote the formation of nanostructures during the sol-gel synthesis. The presence of these structures shortens the diffusion paths and enlarges the contact area between the active material and the electrolyte; this leads to a significant improvement in lithium-ion diffusion. At the same time, the use of ionic liquids has a positive influence on the coating of the LVP particles, which improves the electronic conductivity of this material; this leads to enhanced charge-transfer properties. At a high current density of 40 C, the LVP/N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide material delivered a reversible capacity of approximately 100 mA h g(-1), and approximately 99 % of the initial capacity value was retained even after 100 cycles at 50 C. The excellent high rate and cycling stability performance make Li3V2(PO4)3 prepared by ionic-liquid-assisted sol-gel synthesis a very promising cathode material for high-power electrochemical storage devices.

  7. Design and testing of a regenerative magnetorheological actuator for assistive knee braces

    NASA Astrophysics Data System (ADS)

    Ma, Hao; Chen, Bing; Qin, Ling; Liao, Wei-Hsin

    2017-03-01

    In this paper, a multifunctional magneto-rheological actuator with power regeneration capability, named regenerative magnetorheological actuator (RMRA), is designed for gait assistance in the knee joint. RMRA has motor and magnetorheological (MR) brake parts working in parallel that can harvest energy through regenerative braking. This novel design provides multiple functions with good energy efficiency. The configuration and basic design of the RMRA are first introduced. Then geometrical optimization of the MR brake is conducted based on a parameterized model, and multiple factors are considered in the design objectives: braking torque, weight, and power consumption. After the optimal design is obtained, an RMRA prototype is fabricated and associated driver circuits are designed. Finally, multiple functions of the RMRA, especially three different braking modes, are modeled and tested. Experimental results of RMRA output performances in all working modes match the modeling and simulation. Assistive knee braces with the developed RMRA are promising for future applications in gait assistance and rehabilitation.

  8. Prototyping of the ILC Baseline Positron Target

    SciTech Connect

    Gronberg, J; Brooksby, C; Piggott, T; Abbott, R; Javedani, J; Cook, E

    2012-02-29

    The ILC positron system uses novel helical undulators to create a powerful photon beam from the main electron beam. This beam is passed through a titanium target to convert it into electron-positron pairs. The target is constructed as a 1 m diameter wheel spinning at 2000 RPM to smear the 1 ms ILC pulse train over 10 cm. A pulsed flux concentrating magnet is used to increase the positron capture efficiency. It is cooled to liquid nitrogen temperatures to maximize the flatness of the magnetic field over the 1 ms ILC pulse train. We report on prototyping effort on this system.

  9. Advanced prototype automated iodine monitor system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The technique of detecting and measuring parts-per-million concentrations of aqueous iodine by direct spectrophotometric means is discussed, and development of a prototype Automated Iodine Monitoring/Controller System (AIMS) is elaborated. The present effort is directed primarily toward reducing the power requirement and the weight of the AIMS. Other objectives include determining the maximum concentration of iodine that can be dissolved in an alcohol solution, and in an aqueous potassium iodide solution. Also discussed are the effects of a no flow condition on iodine measurements and the effect of pH on spectrophotometric iodine determinations.

  10. Improvement and characterization of high-reflective and anti-reflective nanostructured mirrors by ion beam assisted deposition for 944 nm high power diode laser

    NASA Astrophysics Data System (ADS)

    Ghadimi-Mahani, A.; Farsad, E.; Goodarzi, A.; Tahamtan, S.; Abbasi, S. P.; Zabihi, M. S.

    2015-11-01

    Single-layer and multi-layer coatings were applied on the surface of diode laser facets as mirrors. This thin film mirrors were designed, deposited, optimized and characterized. The effects of mirrors on facet passivation and optical properties of InGaAs/AlGaAs/GaAs diode lasers were investigated. High-Reflective (HR) and Anti-Reflective (AR) mirrors comprising of four double-layers of Al2O3/Si and a single layer of Al2O3, respectively, were designed and optimized by Macleod software for 944 nm diode lasers. Optimization of Argon flow rate was studied through Alumina thin film deposition by Ion Beam Assisted Deposition (IBAD) for mirror improvement. The nanostructured HR and AR mirrors were deposited on the front and back facet of the laser respectively, by IBAD system under optimum condition. Atomic Force Microscope (AFM), Vis-IR Spectrophotometer, Field Emission Scanning Electron Microscopy (FESEM) and laser characterization Test (P-I) were used to characterize various properties of mirrors and lasers. AFM images show mirror's root mean square roughness is nearly 1 nm. The Spectrophotometer results of the front facet transmission and the back facet reflection are in good agreement with the simulation results. Optical output power (P) versus driving current (I) characteristics, measured before and after coating the facet, revealed a significant output power enhancement due to optimized AR and HR optical coatings on facets.

  11. In Situ Polymerized PAN-Assisted S/C Nanosphere with Enhanced High-Power Performance as Cathode for Lithium/Sulfur Batteries.

    PubMed

    Hu, Hao; Cheng, Haoyan; Liu, Zhengfei; Li, Guojian; Zhu, Qianchen; Yu, Ying

    2015-08-12

    Carbonaceous and polymer materials are extensively employed as conductor and container to encapsulate sulfur particles and limit polysulfide dissolution. Even so, high-power performance is still far from satisfaction due to the expansion and collapse of the electrode materials during thousands of charge-discharge process. Herein, it is found that colloidal carbon sphere with high elastic coefficient can be utilized as a framework to load sulfur, which can trap soluble polysulfides species in the pores within the sphere and efficaciously improve the electronic conductivity of the cathode. After modified by polyaniline (PAN) through in situ polymerization, PAN-assisted S/C nanosphere (PSCs-73, with 73 wt % sulfur) effectively minimize polysulfide diffusion, enhance the electron transfer rate and overcome the problem of volume expansion. The fabricated PSCs-73 cell shows outstanding long high-power cycling capability over 2500 charge/discharge cycles with a capacity decay of 0.01% per cycle at 5 C. Substantially, this composite can drive 2.28 W white indicators of LED robustly after minutes of charging by three lithium batteries in series, showing a promising potential application in the future.

  12. A 4 Farad high energy electrochemical double layer capacitor prototype operating at 3.2 V (IES prototype)

    NASA Astrophysics Data System (ADS)

    Varzi, A.; Schütter, C.; Krummacher, J.; Raccichini, R.; Wolff, C.; Kim, G.-T.; Rösler, S.; Blumenröder, B.; Schubert, T.; Passerini, S.; Balducci, A.

    2016-09-01

    In this manuscript we report about the realization and testing of a high-voltage electrochemical double layer capacitor (EDLC) prototype (IES prototype), which has been assembled using innovative electrode and electrolyte components. The IES prototype displays a nominal capacitance of 4 F, a maximum voltage of 3.2 V and its maximal energy and power are in the order of 37 Wh kg-1 and 65 kW kg-1, respectively. Furthermore, it also displays good cycling stability, high capacitance retention after 80 h float test and acceptable self-discharge. Taking into account substantial improvements of the cell design and assembly procedure, the performance of the IES prototype indicates that the components utilized in this device might be suitable alternatives to the state-of-the-art materials used in high energy EDLCs.

  13. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) - a response surface approach.

    PubMed

    González-Centeno, María Reyes; Knoerzer, Kai; Sabarez, Henry; Simal, Susana; Rosselló, Carmen; Femenia, Antoni

    2014-11-01

    Aqueous ultrasound-assisted extraction (UAE) of grape pomace was investigated by Response Surface Methodology (RSM) to evaluate the effect of acoustic frequency (40, 80, 120kHz), ultrasonic power density (50, 100, 150W/L) and extraction time (5, 15, 25min) on total phenolics, total flavonols and antioxidant capacity. All the process variables showed a significant effect on the aqueous UAE of grape pomace (p<0.05). The Box-Behnken Design (BBD) generated satisfactory mathematical models which accurately explain the behavior of the system; allowing to predict both the extraction yield of phenolic and flavonol compounds, and also the antioxidant capacity of the grape pomace extracts. The optimal UAE conditions for all response factors were a frequency of 40kHz, a power density of 150W/L and 25min of extraction time. Under these conditions, the aqueous UAE would achieve a maximum of 32.31mg GA/100g fw for total phenolics and 2.04mg quercetin/100g fw for total flavonols. Regarding the antioxidant capacity, the maximum predicted values were 53.47 and 43.66mg Trolox/100g fw for CUPRAC and FRAP assays, respectively. When comparing with organic UAE, in the present research, from 12% to 38% of total phenolic bibliographic values were obtained, but using only water as the extraction solvent, and applying lower temperatures and shorter extraction times. To the best of the authors' knowledge, no studies specifically addressing the optimization of both acoustic frequency and power density during aqueous-UAE of plant materials have been previously published.

  14. Eurobot Ground Prototype Control System Overview & Tests Results

    NASA Astrophysics Data System (ADS)

    Merlo, Andrea; Martelli, Andrea; Pensavalle, Emanuele; Ferraris, Simona; Didot, Frederic

    2010-08-01

    In the planned missions on Moon and Mars, robotics can play a key role, as robots can both assist astronauts and, above all, relieve them of dangerous or too difficult tasks. To this aim, both cooperative capabilities and a great level of autonomy are needed: the robotic crew assistant must be able to work on its own, without supervision by humans, and to help astronauts to accomplish tasks otherwise unfeasible for them. Within this context, a project named Eurobot Ground Prototype, conducted in conjunction with ESA and Thales Alenia Space, is presented. EGP is a dual-arm mobile manipulator and exploits both stereo cameras and force/torque sensors in order to rely on visual and force feedback. This paper provides an overview of the performed and on going activities within the Eurobot Ground Prototype project.

  15. MC and A software assistance to Ukraine

    SciTech Connect

    Ewing, T.; McWilliams, C.; Olson, A.

    1997-09-01

    The US Department of Energy is assisting nuclear facilities in Ukraine to improve their ability to protect, control, and account for the nuclear material under their authority. Early in the assistance program the Ukrainian representatives requested assistance in automating the material accounting at their facilities. A PC-based application, AIMAS (Automated Inventory and Material Accounting System), was designed to provide a starting point for joint US and Ukraine system development. Computers with AIMAS prototypes have been installed at Kiev Institute of Nuclear Research (KINR), South Ukraine Nuclear Power Plant (SUNPP), Kharkiv Institute of Physics and Technology (KIPT), Sevastopol Institute of Nuclear Energy and Industry (SINEI), and the Ministry of Environmental Protection and Nuclear Safety (MEPNS). Microsoft Access 2.0, a windows-based relational database management system, is the application development environment. Since it is necessary to support a wide range of computing infrastructure needs and facility requirements, AIMAS has been designed to be highly flexible and user configurable. AIMAS functions include basic physical inventory tracking, transaction histories, reporting, and system administration functions (system configuration and security). Security measures include multilevel password access controls, all transactions logged with the user ID, and system administration controls. Interfaces to external modules are being designed to provide nuclear fuel burnup adjustment and bar code scanning capabilities for physical inventory taking.

  16. A MEMS turbine prototype for respiration harvesting

    NASA Astrophysics Data System (ADS)

    Goreke, U.; Habibiabad, S.; Azgin, K.; Beyaz, M. I.

    2015-12-01

    The design, manufacturing, and performance characterization of a MEMS-scale turbine prototype is reported. The turbine is designed for integration into a respiration harvester that can convert normal human breathing into electrical power through electromagnetic induction. The device measures 10 mm in radius, and employs 12 blades located around the turbine periphery along with ball bearings around the center. Finite element simulations showed that an average torque of 3.07 μNm is induced at 12 lpm airflow rate, which lies in normal breathing levels. The turbine and a test package were manufactured using CNC milling on PMMA. Tests were performed at respiration flow rates between 5-25 lpm. The highest rotational speed was measured to be 9.84 krpm at 25 lpm, resulting in 8.96 mbar pressure drop across the device and 370 mW actuation power.

  17. MOORE: A prototype expert system for diagnosing spacecraft problems

    NASA Technical Reports Server (NTRS)

    Howlin, Katherine; Weissert, Jerry; Krantz, Kerry

    1988-01-01

    MOORE is a rule-based, prototype expert system that assists in diagnosing operational Tracking and Data Relay Satellite (TDRS) problems. It is intended to assist spacecraft engineers at the TDRS ground terminal in trouble shooting problems that are not readily solved with routine procedures, and without expert counsel. An additional goal of the prototype system is to develop in-house expert system and knowledge engineering skills. The prototype system diagnoses antenna pointing and earth pointing problems that may occur within the TDRS Attitude Control System (ACS). Plans include expansion to fault isolation of problems in the most critical subsystems of the TDRS spacecraft. Long term benefits are anticipated with use of an expert system during future TDRS programs with increased mission support time, reduced problem solving time, and retained expert knowledge and experience. Phase 2 of the project is intended to provide NASA the necessary expertise and capability to define requirements, evaluate proposals, and monitor the development progress of a highly competent expert system for NASA's Tracking Data Relay Satellite. Phase 2 also envisions addressing two unexplored applications for expert systems, spacecraft integration and tests (I and T) and support to launch activities. The concept, goals, domain, tools, knowledge acquisition, developmental approach, and design of the expert system. It will explain how NASA obtained the knowledge and capability to develop the system in-house without assistance from outside consultants. Future plans will also be presented.

  18. Design and fabrication of a prototype system for photovoltaic residences in the Southwest

    NASA Astrophysics Data System (ADS)

    1982-06-01

    Described are the design of a photovoltaic powered residence for the American Southwest, dubbed Casa fotovoltaica, and the construction of a prototype building at the Southwest Residential Experiment Station for testing the performance of the full size photovoltaic (PV) system. Included are architectural drawings of both the residence and the prototype, analysis of the energy requirements of the residence, prediction of PV system output, description of the electrical system, and history of the construction process of the prototype.

  19. PROTOTYPE EICHER FISH SCREEN AND EVALUATION FACILITY, INSTALLED IN 1990 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROTOTYPE EICHER FISH SCREEN AND EVALUATION FACILITY, INSTALLED IN 1990 ON #1 PENSTOCK. PROJECT SPONSORED BY THE ELECTRICAL POWER RESEARCH INSTITUTE TO TRANSFER FISH DOWNSTREAM PAST THE TURBINES. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  20. Prototyping a genetics deductive database

    SciTech Connect

    Hearne, C.; Cui, Zhan; Parsons, S.; Hajnal, S.

    1994-12-31

    We are developing a laboratory notebook system known as the Genetics Deductive Database. Currently our prototype provides storage for biological facts and rules with flexible access via an interactive graphical display. We have introduced a formal basis for the representation and reasoning necessary to order genome map data and handle the uncertainty inherent in biological data. We aim to support laboratory activities by introducing an experiment planner into our prototype. The Genetics Deductive Database is built using new database technology which provides an object-oriented conceptual model, a declarative rule language, and a procedural update language. This combination of features allows the implementation of consistency maintenance, automated reasoning, and data verification.

  1. Fiber Optic Sensing: Prototype Results

    NASA Astrophysics Data System (ADS)

    Ortiz Martin, Jesus; Gonzalez Torres, Jose

    2015-09-01

    Airbus DS Crisa has been developing an interrogator of Fiber Bragg Grating sensors [1], aimed at measuring, mainly, temperature and strain by means of fiber optic links. This activity, funded by Airbus DS Crisa, ESA and HBM Fibersensing, finalizes with the manufacturing of a prototype. The present paper describes in detail the main outcomes of the testing activities of this prototype. At the moment of writing the paper all the functional tests have been concluded. The environmental tests, thermal and mechanical, will be conducted with the FOS interrogator forming part of the RTU2015, described in [2].

  2. Effect of ultrasonic vibration time on the Cu/Sn-Ag-Cu/Cu joint soldered by low-power-high-frequency ultrasonic-assisted reflow soldering.

    PubMed

    Tan, Ai Ting; Tan, Ai Wen; Yusof, Farazila

    2017-01-01

    Techniques to improve solder joint reliability have been the recent research focus in the electronic packaging industry. In this study, Cu/SAC305/Cu solder joints were fabricated using a low-power high-frequency ultrasonic-assisted reflow soldering approach where non-ultrasonic-treated samples were served as control sample. The effect of ultrasonic vibration (USV) time (within 6s) on the solder joint properties was characterized systematically. Results showed that the solder matrix microstructure was refined at 1.5s of USV, but coarsen when the USV time reached 3s and above. The solder matrix hardness increased when the solder matrix was refined, but decreased when the solder matrix coarsened. The interfacial intermetallic compound (IMC) layer thickness was found to decrease with increasing USV time, except for the USV-treated sample with 1.5s. This is attributed to the insufficient USV time during the reflow stage and consequently accelerated the Cu dissolution at the joint interface during the post-ultrasonic reflow stage. All the USV-treated samples possessed higher shear strength than the control sample due to the USV-induced-degassing effect. The shear strength of the USV-treated sample with 6s was the lowest among the USV-treated samples due to the formation of plate-like Ag3Sn that may act as the crack initiation site.

  3. Matrix-assisted laser desorption/ionization mass spectrometry imaging: a powerful tool for probing the molecular topology of plant cutin polymer.

    PubMed

    Veličković, Dušan; Herdier, Hélène; Philippe, Glenn; Marion, Didier; Rogniaux, Hélène; Bakan, Bénédicte

    2014-12-01

    The cutin polymers of different fruit cuticles (tomato, apple, nectarine) were examined using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) after in situ release of the lipid monomers by alkaline hydrolysis. The mass spectra were acquired from each coordinate with a lateral spatial resolution of approximately 100 μm. Specific monomers were released at their original location in the tissue, suggesting that post-hydrolysis diffusion can be neglected. Relative quantification of the species was achieved by introducing an internal standard, and the collection of data was subjected to non-supervised and supervised statistical treatments. The molecular images obtained showed a specific distribution of ions that could unambiguously be ascribed to cutinized and suberized regions observed at the surface of fruit cuticles, thus demonstrating that the method is able to probe some structural changes that affect hydrophobic cuticle polymers. Subsequent chemical assignment of the differentiating ions was performed, and all of these ions could be matched to cutin and suberin molecular markers. Therefore, this MALDI-MSI procedure provides a powerful tool for probing the surface heterogeneity of plant lipid polymers. This method should facilitate rapid investigation of the relationships between cuticle phenotypes and the structure of cutin within a large population of mutants.

  4. Magnetic Amplifier for Power Flow Control

    SciTech Connect

    2012-02-24

    GENI Project: ORNL is developing an electromagnet-based, amplifier-like device that will allow for complete control over the flow of power within the electric grid. To date, complete control of power flow within the grid has been prohibitively expensive. ORNL’s controller could provide a reliable, cost-effective solution to this problem. The team is combining two types of pre-existing technologies to assist in flow control, culminating in a prototype iron-based magnetic amplifier. Ordinarily, such a device would require expensive superconductive wire, but the magnetic iron core of ORNL’s device could serve as a low-cost alternative that is equally adept at regulating power flow.

  5. SIRTF Science Planning Tool Prototype

    NASA Astrophysics Data System (ADS)

    Deutsch, M.; Ebert, R.; Nguyen, P.

    1996-12-01

    The SIRTF project is developing a science planning tool to help the observers scope and plan their observations in preparation for submission of their proposals for observing time on the SIRTF Observatory. Its primary focus is to help the scientist design feasible astronomical observations, such as estimating overall execution time, determine the appropriate SNR or exposure time, provide the required parameters and format for their observation. The tool will be web based and will be capable of interfacing with other tools used as part of a science tool set as well as scheduling and modeling tools used as part of preparation for uplink to the observatory for observation execution. The SIRTF project has been working on a first prototype of the science planning tool. The scope of the current prototype is limited, but does provide insight into the possible ways of using the telescope by allowing a choice of seven modes of operation (will be eight in the future) and gives rough estimates of the sensitivity and wall clock calculations. The modes available through this prototype are the IRAC deep survey, the IRS spectral map mode and staring mode, and the MIPS scan map mode, photometry mode, spectral energy distribution mode and super-resolution mode. The demonstration of the early science planning prototype will give the user the opportunity to see and "feel" the instrument sensitivity capabilities, the spacecraft wall clock estimates as well as the web interface. In addition valuable input will be obtained from the astronomy community for future development.

  6. Prototype operational earthquake prediction system

    USGS Publications Warehouse

    Spall, Henry

    1986-01-01

    An objective if the U.S. Earthquake Hazards Reduction Act of 1977 is to introduce into all regions of the country that are subject to large and moderate earthquakes, systems for predicting earthquakes and assessing earthquake risk. In 1985, the USGS developed for the Secretary of the Interior a program for implementation of a prototype operational earthquake prediction system in southern California.

  7. EUSO-TA prototype telescope

    NASA Astrophysics Data System (ADS)

    Bisconti, Francesca

    2016-07-01

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  8. Rapid 2-axis scanning lidar prototype

    NASA Astrophysics Data System (ADS)

    Hartsell, Daryl; LaRocque, Paul E.; Tripp, Jeffrey

    2016-10-01

    The rapid 2-axis scanning lidar prototype was developed to demonstrate high-precision single-pixel linear-mode lidar performance. The lidar system is a combined integration of components from various commercial products allowing for future customization and performance enhancements. The intent of the prototype scanner is to demonstrate current stateof- the-art high-speed linear scanning technologies. The system consists of two pieces: the sensor head and control unit. The senor head can be installed up to 4 m from the control box and houses the lidar scanning components and a small RGB camera. The control unit houses the power supplies and ranging electronics necessary for operating the electronics housed inside the sensor head. This paper will discuss the benefits of a 2-axis scanning linear-mode lidar system, such as range performance and a userselectable FOV. Other features include real-time processing of 3D image frames consisting of up to 200,000 points per frame.

  9. Power assist EVA glove development

    NASA Technical Reports Server (NTRS)

    Main, John A.; Peterson, Steven W.; Strauss, Alvin M.

    1992-01-01

    Structural modeling of the EVA glove indicates that flexibility in the metacarpophalangeal (MCP) joint can be improved by selectively lowering the elasticity of the glove fabric. Two strategies are used to accomplish this. One method uses coil springs on the back of the glove to carry the tension in the glove skin due to pressurization. These springs carry the loads normally borne by the glove fabric, but are more easily deformed. An active system was also designed for the same purpose and uses gas filled bladders attached to the back of the EVA glove that change the dimensions of the back of the glove and allow the glove to bend at the MCP joint, thus providing greater flexibility at this joint. A threshold control scheme was devised to control the action of the joint actuators. Input to the controller was provided by thin resistive pressure sensors placed between the hand and the pressurized glove. The pressure sensors consist of a layer of polyester film that has a thin layer of ink screened on the surface. The resistivity of the ink is pressure dependent, so an extremely thin pressure sensor can be fabricated by covering the ink patch with another layer of polyester film and measuring the changing resistance of the ink with a bridge circuit. In order to sense the force between the hand and the glove at the MCP joint, a sensor was placed on the palmar face of the middle finger. The resultant signal was used by the controller to decide whether to fill or exhaust the bladder actuators on the back of the glove. The information from the sensor can also be used to evaluate the effectiveness of a given control scheme or glove design since the magnitude of the measured pressures gives some idea of the torque required to bend a glove finger at the MCP joint. Tests of this actuator, sensor, and control system were conducted in an 57.2 kPa glove box by performing a series of 90 degree finger bends with a glove without an MCP joint assembly, a glove with the coil spring assembly, and with the four fingered actuated glove. The tests of these three glove designs confirm the validity of the model.

  10. Concept of using a benchmark part to evaluate rapid prototype processes

    NASA Technical Reports Server (NTRS)

    Cariapa, Vikram

    1994-01-01

    A conceptual benchmark part for guiding manufacturers and users of rapid prototyping technologies is proposed. This is based on a need to have some tool to evaluate the development of this technology and to assist the user in judiciously selecting a process. The benchmark part is designed to have unique product details and features. The extent to which a rapid prototyping process can reproduce these features becomes a measure of the capability of the process. Since rapid prototyping is a dynamic technology, this benchmark part should be used to continuously monitor process capability of existing and developing technologies. Development of this benchmark part is, therefore, based on an understanding of the properties required from prototypes and characteristics of various rapid prototyping processes and measuring equipment that is used for evaluation.

  11. A failure management prototype: DR/Rx

    NASA Technical Reports Server (NTRS)

    Hammen, David G.; Baker, Carolyn G.; Kelly, Christine M.; Marsh, Christopher A.

    1991-01-01

    This failure management prototype performs failure diagnosis and recovery management of hierarchical, distributed systems. The prototype, which evolved from a series of previous prototypes following a spiral model for development, focuses on two functions: (1) the diagnostic reasoner (DR) performs integrated failure diagnosis in distributed systems; and (2) the recovery expert (Rx) develops plans to recover from the failure. Issues related to expert system prototype design and the previous history of this prototype are discussed. The architecture of the current prototype is described in terms of the knowledge representation and functionality of its components.

  12. Prototype tests for a highly granular scintillator-based hadron calorimeter

    NASA Astrophysics Data System (ADS)

    Krüger, K.; CALICE Collaboration

    2015-02-01

    Within the CALICE collaboration, several concepts for the hadronic calorimeter of a future linear collider detector are studied. After having demonstrated the capabilities of the measurement methods in "physics prototypes", the focus now lies on improving their implementation in"technological prototypes", that are scalable to the full linear collider detector. The Analog Hadron Calorimeter (AHCAL) concept is a sampling calorimeter of tungsten or steel absorber plates and plastic scintillator tiles read out by silicon photomultipliers as active material. In the AHCAL technological prototype, the front-end chips are integrated into the active layers of the calorimeter and are designed for minimal power consumption. The versatile electronics allows the prototype to be equipped with different types of scintillator tiles and SiPMs. The current status of the AHCAL engineering prototype is shown and recent beam test measurements as well as plans for future hadron beam tests with a larger prototype will be discussed.

  13. Physisorbed-precursor-assisted atomic layer deposition of reliable ultrathin dielectric films on inert graphene surfaces for low-power electronics

    NASA Astrophysics Data System (ADS)

    Jeong, Seong-Jun; Kim, Hyo Won; Heo, Jinseong; Lee, Min-Hyun; Song, Hyun Jae; Ku, JiYeon; Lee, Yunseong; Cho, Yeonchoo; Jeon, Woojin; Suh, Hwansoo; Hwang, Sungwoo; Park, Seongjun

    2016-09-01

    Among the most fundamental challenges encountered in the successful incorporation of graphene in silicon-based electronics is the conformal growth of ultrathin dielectric films, especially those with thicknesses lower than 5 nm, on chemically inert graphene surfaces. Here, we present physisorbed-precursor-assisted atomic layer deposition (pALD) as an extremely robust method for fabricating such films. Using atomic-scale characterisation, it is confirmed that conformal and intact ultrathin Al2O3 films can be synthesised on graphene by pALD. The mechanism underlying the pALD process is identified through first-principles calculations based on density functional theory. Further, this novel deposition technique is used to fabricate two types of wafer-scale devices. It is found that the incorporation of a 5 nm-thick pALD Al2O3 gate dielectric film improves the performance of metal-oxide-graphene field-effect transistors to a greater extent than does the incorporation of a conventional ALD Al2O3 film. We also employ a 5 nm-thick pALD HfO2 film as a highly scalable dielectric layer with a capacitance equivalent oxide thickness of 1 nm in graphene-based tunnelling field-effect transistors fabricated on a glass wafer and achieve a subthreshold swing of 30 mV/dec. This significant improvement in switching allows for the low-voltage operation of an inverter within 0.5 V of both the drain and the gate voltages, thus paving the way for low-power electronics.

  14. Comparison of cardiac power output and exercise performance in patients with left ventricular assist devices, explanted (recovered) patients, and those with moderate to severe heart failure.

    PubMed

    Jakovljevic, Djordje G; George, Robert S; Donovan, Gay; Nunan, David; Henderson, Keiran; Bougard, Robert S; Yacoub, Magdi H; Birks, Emma J; Brodie, David A

    2010-06-15

    Peak cardiac power output (CPO), as a direct measurement of overall cardiac function, has been shown to be a most powerful predictor of prognosis for patients with chronic heart failure. The present study assessed CPO and exercise performance in patients implanted with a left ventricular assist device (LVAD), those explanted due to myocardial recovery, and those with moderate to severe heart failure. Hemodynamic and respiratory gas exchange measurements were undertaken at rest and at peak graded exercise. These were performed in 54 patients-20 with moderate to severe heart failure, 18 with implanted LVADs, and 16 with explanted LVADs. At rest there was a nonsignificant difference in CPO among groups (p >0.05). Peak CPO was significantly higher in the explanted LVAD than in the heart failure and implanted LVAD groups (heart failure 1.90 +/- 0.45 W, implanted LVAD 2.37 +/- 0.55 W, explanted LVAD 3.39 +/- 0.61 W, p <0.01) as was peak cardiac output (heart failure 9.1 +/- 2.1 L/min, implanted LVAD 12.4 +/- 2.2 L/min, explanted LVD 14.6 +/- 2.9 L/min, p <0.01). Peak oxygen consumption was higher in the explanted LVAD than in the heart failure and implanted LVAD groups (heart failure 15.8 +/- 4.1 ml/kg/min, implanted LVAD 19.8 +/- 5.8 ml/kg/min, explanted LVAD 28.2 +/- 5.0 ml/kg/min, p <0.05) as was anaerobic threshold (heart failure 11.2 +/- 1.9 ml/kg/min, implanted LVAD 14.7 +/- 4.9 ml/kg/min, explanted LVAD 21.4 +/- 5.0 ml/kg/min, p <0.05). In conclusion, peak CPO differentiates well during cardiac restoration using LVADs and emphasizes the benefits of this therapy. CPO has the potential to be a key physiologic marker of heart failure severity and can guide management of patients with LVAD.

  15. Prototype of sun projector device

    NASA Astrophysics Data System (ADS)

    Ihsan; Dermawan, B.

    2016-11-01

    One way to introduce astronomy to public, including students, can be handled by solar observation. The widely held device for this purpose is coelostat and heliostat. Besides using filter attached to a device such as telescope, it is safest to use indirect way for observing the Sun. The main principle of the indirect way is deflecting the sun light and projecting image of the sun on a screen. We design and build a simple and low-cost astronomical device, serving as a supplement to increase public service, especially for solar observation. Without using any digital and intricate supporting equipment, people can watch and relish image of the Sun in comfortable condition, i.e. in a sheltered or shady place. Here we describe a design and features of our prototype of the device, which still, of course, has some limitations. In the future, this prototype can be improved for more efficient and useful applications.

  16. Test report -- Prototype core sampler

    SciTech Connect

    Linschooten, C.G.

    1995-01-17

    The purpose of this test is to determine the adequacy of the prototype sampler, provided to Westinghouse Hanford Company (WHC) by DOE-RL. The sampler was fabricated for DOE-RL by the Concord Company by request of DOE-RL. This prototype sampler was introduced as a technology that can be easily deployed (similar to the current auger system) and will reliably collect representative samples. The sampler is similar to the Universal Sampler i.e., smooth core barrel and piston with an O-ring seal, but lacks a rotary valve near the throat of the sampler. This makes the sampler inappropriate for liquid sampling, but reduces the outside diameter of the sampler considerably, which should improve sample recovery. Recovery testing was performed with the supplied sampler in three different consistencies of Kaolin sludge simulants.

  17. Agile Development of Advanced Prototypes

    DTIC Science & Technology

    2012-11-01

    sound experience that emphasizes the progression of cochlear implant technology. A guest observes and listens to a virtual environment. They are able to...transition their environment through history as well as the simulated fidelity of a contemporary cochlear implant . A visual experience that...patient with a cochlear implant was interviewed. Outcomes of this research guided the design of the first prototype. The technical design was

  18. Prototype Morphing Fan Nozzle Demonstrated

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Song, Gang-Bing

    2004-01-01

    Ongoing research in NASA Glenn Research Center's Structural Mechanics and Dynamics Branch to develop smart materials technologies for aeropropulsion structural components has resulted in the design of the prototype morphing fan nozzle shown in the photograph. This prototype exploits the potential of smart materials to significantly improve the performance of existing aircraft engines by introducing new inherent capabilities for shape control, vibration damping, noise reduction, health monitoring, and flow manipulation. The novel design employs two different smart materials, a shape-memory alloy and magnetorheological fluids, to reduce the nozzle area by up to 30 percent. The prototype of the variable-area fan nozzle implements an overlapping spring leaf assembly to simplify the initial design and to provide ease of structural control. A single bundle of shape memory alloy wire actuators is used to reduce the nozzle geometry. The nozzle is subsequently held in the reduced-area configuration by using magnetorheological fluid brakes. This prototype uses the inherent advantages of shape memory alloys in providing large induced strains and of magnetorheological fluids in generating large resistive forces. In addition, the spring leaf design also functions as a return spring, once the magnetorheological fluid brakes are released, to help force the shape memory alloy wires to return to their original position. A computerized real-time control system uses the derivative-gain and proportional-gain algorithms to operate the system. This design represents a novel approach to the active control of high-bypass-ratio turbofan engines. Researchers have estimated that such engines will reduce thrust specific fuel consumption by 9 percent over that of fixed-geometry fan nozzles. This research was conducted under a cooperative agreement (NCC3-839) at the University of Akron.

  19. Design and fabrication of a prototype system for photovoltaic residences in the northeastern United States

    NASA Astrophysics Data System (ADS)

    Millner, A. R.

    1982-08-01

    Plans for an energy-efficient residence for the Northeastern region of the country with a roof-mounted photovoltaic (PV) solar electric power system which would allow two-way power flow between the utility grid and the house are discussed. A full scale working prototype of the PV system was built to evaluate the performance of that system for one year. Described are the residence design, the prototype description, the construction, and the fabrication history through the first year of operation.

  20. Rapid prototyping applications for manufacturing

    SciTech Connect

    Atwood, C.L.; Maguire, M.C.; Pardo, B.T.; Bryce, E.A.

    1996-01-01

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{sup TM} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. As participants in the Beta test program for QuickCast{sup TM} resin and software, we experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible using this technology to produce highly accurate prototype parts as well as acceptable first article and small lot size production parts. We use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This report will focus on our successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes. 6 refs., 10 figs.

  1. Robotic Lander Prototype Completes Initial Tests

    NASA Video Gallery

    NASA's Robotic Lunar Lander Development Project at Marshall Space Flight Center in Huntsville, Ala., completed an initial series of integrated tests on a new lander prototype. The prototype lander ...

  2. An approach for assessing software prototypes

    NASA Technical Reports Server (NTRS)

    Church, V. E.; Card, D. N.; Agresti, W. W.; Jordan, Q. L.

    1986-01-01

    A procedure for evaluating a software prototype is presented. The need to assess the prototype itself arises from the use of prototyping to demonstrate the feasibility of a design or development stategy. The assessment procedure can also be of use in deciding whether to evolve a prototype into a complete system. The procedure consists of identifying evaluations criteria, defining alterative design approaches, and ranking the alternatives according to the criteria.

  3. 18 CFR 740.6 - Financial assistance.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Financial assistance... MANAGEMENT PLANNING PROGRAM § 740.6 Financial assistance. (a) The Council shall provide financial assistance... factor are equated to the mean-plus-two standard deviations. (d) Financial assistance for the...

  4. Prototype Abstraction by Monkeys ("Macaca Mulatta")

    ERIC Educational Resources Information Center

    Smith, J. David; Redford, Joshua S.; Haas, Sarah M.

    2008-01-01

    The authors analyze the shape categorization of rhesus monkeys ("Macaca mulatta") and the role of prototype- and exemplar-based comparison processes in monkeys' category learning. Prototype and exemplar theories make contrasting predictions regarding performance on the Posner-Homa dot-distortion categorization task. Prototype theory--which…

  5. Development of prototype polychromator system for KSTAR Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Lee, S. H.; Son, S. H.; Ko, W. H.; Seo, D. C.; Yamada, I.; Her, K. H.; Jeon, J. S.; Bog, M. G.

    2015-12-01

    A polychromator is widely used by the Thomson scattering system for measuring the electron temperature and density. This type of spectrometer includes optic elements such as band-pass filters, focusing lens, collimating lens, and avalanche photodiodes (APDs). The characteristics of band-pass filters in the polychromator are determined by the measuring range of the Thomson system. KSTAR edge polychromators were developed by co-works at NIFS in Japan, and the KSTAR core polychromators were developed by NFRI in Korea. The power supply system of these polychromators is connected only to one power supply module and can manually control the APD's voltage at the front side of the power supply by using a potentiometer. In this paper, a prototype polychromator is introduced at the KSTAR. The prototype polychromator system has a built-in power supply unit that includes high voltage for the APD and ± 5 V for an op-amp IC. The high voltage for the APD is finely controlled and monitored using a PC with the LabView software. One out of the six band pass-filters has a center wavelength of 523.5 nm with 2-nm bandwidth, which can measure Zeff, and the other five band-pass filters can simultaneously measure the Thomson signal. In addition, we will show the test result of this prototype polychromator system during the KSTAR experiment campaign (2015).

  6. Solar-Assisted Hemodialysis

    PubMed Central

    Agar, John W. M.; Perkins, Anthony; Tjipto, Alwie

    2012-01-01

    Summary Background and objectives Hemodialysis resource use—especially water and power, smarter processing and reuse of postdialysis waste, and improved ecosensitive building design, insulation, and space use—all need much closer attention. Regarding power, as supply diminishes and costs rise, alternative power augmentation for dialysis services becomes attractive. The first 12 months of a solar-assisted dialysis program in southeastern Australia is reported. Design, setting, participants, & measurements A 24-m2, 3-kWh rated solar array and inverter—total cost of A$16,219—has solar-assisted the dialysis-related power needs of a four-chair home hemodialysis training service. All array-created, grid-donated power and all grid-drawn power to the four hemodialysis machines and minireverse osmosis plant pairings are separately metered. After the grid-drawn and array-generated kilowatt hours have been billed and reimbursed at their respective commercial rates, financial viability, including capital repayment, can be assessed. Results From July of 2010 to July of 2011, the four combined equipment pairings used 4166.5 kWh, 9% more than the array-generated 3811.0 kWh. Power consumption at 26.7 c/kWh cost A$1145.79. Array-generated power reimbursements at 23.5 c/kWh were A$895.59. Power costs were, thus, reduced by 76.5%. As new reimbursement rates (60 c/kWh) take effect, system reimbursements will more than double, allowing both free power and potential capital pay down over 7.7 years. With expected array life of ∼30 years, free power and an income stream should accrue in the second and third operative decades. Conclusions Solar-assisted power is feasible and cost-effective. Dialysis services should assess their local solar conditions and determine whether this ecosensitive power option might suit their circumstance. PMID:22223614

  7. Performance characterization of a rotary centrifugal left ventricular assist device with magnetic suspension.

    PubMed

    Jahanmir, Said; Hunsberger, Andrew Z; Heshmat, Hooshang; Tomaszewski, Michael J; Walton, James F; Weiss, William J; Lukic, Branka; Pae, William E; Zapanta, Conrad M; Khalapyan, Tigran Z

    2008-05-01

    The MiTiHeart (MiTiHeart Corporation, Gaithersburg, MD, USA) left ventricular assist device (LVAD), a third-generation blood pump, is being developed for destination therapy for adult heart failure patients of small to medium frame that are not being served by present pulsatile devices. The pump design is based on a novel, patented, hybrid passive/active magnetic bearing system with backup hydrodynamic thrust bearing and exhibits low power loss, low vibration, and low hemolysis. Performance of the titanium alloy prototype was evaluated in a series of in vitro tests with blood analogue to map out the performance envelop of the pump. The LVAD prototype was implanted in a calf animal model, and the in vivo pump performance was evaluated. The animal's native heart imparted a strong pulsatility to the flow rate. These tests confirmed the efficacy of the MiTiHeart LVAD design and confirmed that the pulsatility does not adversely affect the pump performance.

  8. Ultrasound assisted co-precipitation of nanostructured CuO-ZnO-Al2O3 over HZSM-5: effect of precursor and irradiation power on nanocatalyst properties and catalytic performance for direct syngas to DME.

    PubMed

    Allahyari, Somaiyeh; Haghighi, Mohammad; Ebadi, Amanollah; Hosseinzadeh, Shahin

    2014-03-01

    Nanostructured CuO-ZnO-Al2O3/HZSM-5 was synthesized from nitrate and acetate precursors using ultrasound assisted co-precipitation method under different irradiation powers. The CuO-ZnO-Al2O3/HZSM-5 nanocatalysts were characterized using XRD, FESEM, BET, FTIR and EDX Dot-mapping analyses. The results indicated precursor type and irradiation power have significant influences on phase structure, morphology, surface area and functional groups. It was observed that the acetate formulated CuO-ZnO-Al2O3/HZSM-5 nanocatalyst have smaller CuO crystals with better dispersion and stronger interaction between components in comparison to nitrate based nanocatalysts. Ultrasound assisted co-precipitation synthesis method resulted in nanocatalyst with more uniform morphology compared to conventional method and increasing irradiation power yields smaller particles with better dispersion and higher surface area. Additionally the crystallinity of CuO is lower at high irradiation powers leading to stronger interaction between metal oxides. The nanocatalysts performance were tested at 200-300 °C, 10-40 bar and space velocity of 18,000-36,000 cm(3)/g h with the inlet gas composition of H2/CO = 2/1 in a stainless steel autoclave reactor. The acetate based nanocatalysts irradiated with higher levels of power exhibited better reactivity in terms of CO conversion and DME yield. While there is an optimal temperature for CO conversion and DME yield in direct synthesis of DME, CO conversion and DME yield both increase with the pressure increase. Furthermore ultrasound assisted co-precipitation method yields more stable CuO-ZnO-Al2O3/HZSM-5 nanocatalyst while conventional precipitated nanocatalyst lost their activity ca. 18% and 58% in terms of CO conversion and DME yield respectively in 24 h time on stream test.

  9. The Role of Human Web Assistants in E-Commerce: An Analysis and a Usability Study.

    ERIC Educational Resources Information Center

    Aberg, Johan; Shahmehri, Nahid

    2000-01-01

    Discusses electronic commerce and presents the concept of Web assistants, human assistants working in an electronic Web shop. Presents results of a usability study of a prototype adaptive Web assistant system that show users were enthusiastic about the concept of Web assistants and its implications. (Author/LRW)

  10. Mu2e transport solenoid prototype tests results

    SciTech Connect

    Lopes, Mauricio L.; G. Ambrosio; DiMarco, J.; Evbota, D.; Feher, S.; Friedsam, H.; Galt, A.; Hays, S.; Hocker, J.; Kim, M. J.; Kokoska, L.; Koshelev, S.; Kotelnikov, S.; Lamm, M.; Makulski, A.; Nehring, R.; Nogiec, J.; Orris, D.; Pilipenko, R.; Rabehl, R.; Santini, C.; Sylvester, C.; Tartaglia, M.; Badgley, K.; Fabbricatore, P.; Farinon, S.; Marchevsky, M.

    2016-02-08

    The Fermilab Mu2e experiment has been developed to search for evidence of charged lepton flavor violation through the direct conversion of muons into electrons. The transport solenoid is an s-shaped magnet which guides the muons from the source to the stopping target. It consists of fifty-two superconducting coils arranged in twenty-seven coil modules. A full-size prototype coil module, with all the features of a typical module of the full assembly, was successfully manufactured by a collaboration between INFN-Genoa and Fermilab. The prototype contains two coils that can be powered independently. In order to validate the design, the magnet went through an extensive test campaign. Warm tests included magnetic measurements with a vibrating stretched wire, electrical and dimensional checks. As a result, the cold performance was evaluated by a series of power tests as well as temperature dependence and minimum quench energy studies.

  11. Mu2e transport solenoid prototype tests results

    DOE PAGES

    Lopes, Mauricio L.; G. Ambrosio; DiMarco, J.; ...

    2016-02-08

    The Fermilab Mu2e experiment has been developed to search for evidence of charged lepton flavor violation through the direct conversion of muons into electrons. The transport solenoid is an s-shaped magnet which guides the muons from the source to the stopping target. It consists of fifty-two superconducting coils arranged in twenty-seven coil modules. A full-size prototype coil module, with all the features of a typical module of the full assembly, was successfully manufactured by a collaboration between INFN-Genoa and Fermilab. The prototype contains two coils that can be powered independently. In order to validate the design, the magnet went throughmore » an extensive test campaign. Warm tests included magnetic measurements with a vibrating stretched wire, electrical and dimensional checks. As a result, the cold performance was evaluated by a series of power tests as well as temperature dependence and minimum quench energy studies.« less

  12. The Prototype Solid State Induction Modulator for SLAC NLC

    SciTech Connect

    Cassel, Richard

    2002-08-21

    The Next Linear Collider accelerator proposal at SLAC requires a high efficiency, highly reliable, and low cost pulsed power modulator to drive the X band klystrons. The present NLC envisions a solid-state induction modulator design to drive up to 8 klystrons to 500kV for 3{micro}S at 120 PPS with one modulator (>1,000 megawatt pulse, 500kW average). A prototype modulator is presently under construction, which well power 4 each 5045 SLAC klystron to greater than 380 kV for 3{micro}S (>600 megawatt pulse, >300 kW Ave.). The modulator will be capable of driving the 8 each X band klystrons when they become available. The paper covers the design, construction, fabrication and preliminary testing of the prototype modulator.

  13. NASA's Helios Prototype aircraft taking off from the Pacific Missile Range Facility, Kauai, Hawaii,

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Prototype to fly higher, longer and with a larger payload than the smaller craft. In addition, project engineers added a differential Global Positioning Satellite (GPS) system to improve navigation, an extensive turbulence monitoring system payload to record structural loads on the aircraft both in the air and on the ground, and radiator plates to assist in cooling the avionics at high altitudes where there is little air to dissipate heat. During 2000, more than 65,000 solar cells in 1,800 groups were mounted on the upper surface of Helios' wing. Produced by SunPower, Inc., these bi-facial silicon cells are about 19 percent efficient in the flight regime in which the helios is designed to operate, converting about 19 percent of the solar energy they receive into electrical current. The entire array is capable of producing a maximum output of about 35 kw at high noon on a summer day. The mission to reach and sustain flight at 100,000 feet in 2001 requires use of all 14 motors and minimal ballast to save weight, with the aircraft weighing in at only a little more than 1,600 lbs. The four-day mission above 50,000 feet envisioned for the Helios Prototype in 2003will see only eight motors powering the craft and the addition of the regenerative energy storage system now in development. The system will increase the Helios Prototype's flight weight to a little over 2,000 lbs. Fewer motors are needed for the long-endurance mission due to the lesser altitude requirements, and the excess electrical energy generated by the solar arrays during the daytime will be diverted to the hydrogen-oxygen fuel cell energy storage system, which will release the electricity to power the Helios after dark. With other system reliability improvements, production versions of the Helios are expected to fly missions lasting months at a time, becoming true 'atmospheric satellites.'

  14. The Helios Prototype aircraft during initial climb-out to the west over the Pacific Ocean.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Prototype to fly higher, longer and with a larger payload than the smaller craft. In addition, project engineers added a differential Global Positioning Satellite (GPS) system to improve navigation, an extensive turbulence monitoring system payload to record structural loads on the aircraft both in the air and on the ground, and radiator plates to assist in cooling the avionics at high altitudes where there is little air to dissipate heat. During 2000, more than 65,000 solar cells in 1,800 groups were mounted on the upper surface of Helios' wing. Produced by SunPower, Inc., these bi-facial silicon cells are about 19 percent efficient in the flight regime in which the helios is designed to operate, converting about 19 percent of the solar energy they receive into electrical current. The entire array is capable of producing a maximum output of about 35 kw at high noon on a summer day. The mission to reach and sustain flight at 100,000 feet in 2001 requires use of all 14 motors and minimal ballast to save weight, with the aircraft weighing in at only a little more than 1,600 lbs. The four-day mission above 50,000 feet envisioned for the Helios Prototype in 2003will see only eight motors powering the craft and the addition of the regenerative energy storage system now in development. The system will increase the Helios Prototype's flight weight to a little over 2,000 lbs. Fewer motors are needed for the long-endurance mission due to the lesser altitude requirements, and the excess electrical energy generated by the solar arrays during the daytime will be diverted to the hydrogen-oxygen fuel cell energy storage system, which will release the electricity to power the Helios after dark. With other system reliability improvements, production versions of the Helios are expected to fly missions lasting months at a time, becoming true 'atmospheric satellites.'

  15. Assistive Technology

    MedlinePlus

    ... allcontacts/statewidecontacts.html . Some Area Agencies on Aging (AAA) have programs or link to services that assist ... obtain low-cost assistive technology. To locate your AAA, call the Eldercare Locator at 1-800-677- ...

  16. Assisted Living

    MedlinePlus

    ... but they don't need full-time nursing care. Some assisted living facilities are part of retirement ... change. Assisted living costs less than nursing home care. It is still fairly expensive. Older people or ...

  17. Dental Assistants

    MedlinePlus

    ... help keep the dental office running smoothly. Important Qualities Detail oriented. Dental assistants must follow specific rules and protocols, such as infection control procedures, when helping dentists treat patients. Assistants also ...

  18. Preliminary flight prototype potable water bactericide system

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Allen, E. T.

    1973-01-01

    The development, design, and testing of a preliminary flight prototype potable water bactericide system are described. The system is an assembly of upgraded canisters composed of: (1) A biological filter; (2) an activated charcoal and ion exchange resin canister; (3) a silver chloride canister, (4) a deionizer, (5) a silver bromide canister with a partial bypass, and (6) mock-up instrumentation and circuitry. The system exhibited bactericidal activity against 10 to the 9th power Pseudomonas aeruginosa and/or Type IIIa, and reduced Bacillus subtilis by up to 5 orders of magnitude in 24 hours at ambient temperatures with a 1 ppm silver ion dose. Four efficacy tests were performed with a AgBr canister dosing anticipated fuel cell water. Tests show that a 0.05 ppm silver ion dose was bactericidal against 3 plus or minus 1 x 10 to the 9th power (5 plus or minus 1 x 10,000/ml Pseudomonas aeruginosa and/or Type IIIa in 15 minutes or less.

  19. Power systems

    NASA Astrophysics Data System (ADS)

    Kaplan, G.

    1982-01-01

    Significant events in current, prototype, and experimental utility power generating systems in 1981 are reviewed. The acceleration of licensing and the renewal of plans for reprocessing of fuel for nuclear power plants are discussed, including the rise of French reactor-produced electricity to over 40% of the country's electrical output. A 4.5 MW fuel cell neared completion in New York City, while three 2.5 MW NASA-designed windpowered generators began producing power in the state of Washington. Static bar compensators, nonflammable-liquid cooled power transformers, and ZnO surge arrestors were used by utilities for the first time, and the integration of a coal gasifier-combined cycle power plant approached the planning phase. An MHD generator was run for 1000 hours and produced 50-60 kWe, while a 20 MVA superconducting generator was readied for testing.

  20. The Prototype of GAMMA-400 Apparatus

    NASA Astrophysics Data System (ADS)

    Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Kheymits, M. D.; Runtso, M. F.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu. T.

    Scientific project GAMMA-400 (Gamma-Astronomy Multifunction Modules Apparatus) relates to the new generation of space observatories for investigation of cosmic γ-emission in the energy band from ∼20 MeV up to several TeV, electron/positron fluxes from ∼1 GeV up to ∼10 TeV and cosmic-ray nuclei fluxes with energies up to ∼1015 eV by means of GAMMA-400 gamma-telescope represents the core of the scientific complex. The investigation of gamma ray bursts in the energy band of 10 keV-15 MeV are possible too by means of KONUS-FG apparatus included in the complex. For γ-rays in the energy region from 10 to 100 GeV expected energy resolution changes from ∼3% to ∼1% and angular resolution from ∼0.1% to ∼ 0.01% respectively, γ/protons rejection factor is ∼5·105. The GAMMA-400 satellite will be launched at the beginning of the next decade on the high apogee orbit with following initial parameters: apogee altitude ∼300000 km, perigee altitude ∼500 km, rotation period ∼7 days, inclination to the equator plane 51.4°. The active functioning interval will be 7-10 years. The scientific complex will have next main technical parameters: total weight ∼4100 kg, power consumption ∼2000 W, information quote 100 GByte/day. During the project development, the prototype of apparatus was created for working-off of the main apparatus construction units in laboratory conditions. The main distinctive features of the prototype are presented.

  1. Assistive Technologies

    ERIC Educational Resources Information Center

    Auat Cheein, Fernando A., Ed.

    2012-01-01

    This book offers the reader new achievements within the Assistive Technology field made by worldwide experts, covering aspects such as assistive technology focused on teaching and education, mobility, communication and social interactivity, among others. Each chapter included in this book covers one particular aspect of Assistive Technology that…

  2. Agile manufacturing prototyping system (AMPS)

    SciTech Connect

    Garcia, P.

    1998-05-09

    The Agile Manufacturing Prototyping System (AMPS) is being integrated at Sandia National Laboratories. AMPS consists of state of the industry flexible manufacturing hardware and software enhanced with Sandia advancements in sensor and model based control; automated programming, assembly and task planning; flexible fixturing; and automated reconfiguration technology. AMPS is focused on the agile production of complex electromechanical parts. It currently includes 7 robots (4 Adept One, 2 Adept 505, 1 Staubli RX90), conveyance equipment, and a collection of process equipment to form a flexible production line capable of assembling a wide range of electromechanical products. This system became operational in September 1995. Additional smart manufacturing processes will be integrated in the future. An automated spray cleaning workcell capable of handling alcohol and similar solvents was added in 1996 as well as parts cleaning and encapsulation equipment, automated deburring, and automated vision inspection stations. Plans for 1997 and out years include adding manufacturing processes for the rapid prototyping of electronic components such as soldering, paste dispensing and pick-and-place hardware.

  3. CALIFA Barrel prototype detector characterisation

    NASA Astrophysics Data System (ADS)

    Pietras, B.; Gascón, M.; Álvarez-Pol, H.; Bendel, M.; Bloch, T.; Casarejos, E.; Cortina-Gil, D.; Durán, I.; Fiori, E.; Gernhäuser, R.; González, D.; Kröll, T.; Le Bleis, T.; Montes, N.; Nácher, E.; Robles, M.; Perea, A.; Vilán, J. A.; Winkel, M.

    2013-11-01

    Well established in the field of scintillator detection, Caesium Iodide remains at the forefront of scintillators for use in modern calorimeters. Recent developments in photosensor technology have lead to the production of Large Area Avalanche Photo Diodes (LAAPDs), a huge advancement on traditional photosensors in terms of high internal gain, dynamic range, magnetic field insensitivity, high quantum efficiency and fast recovery time. The R3B physics programme has a number of requirements for its calorimeter, one of the most challenging being the dual functionality as both a calorimeter and a spectrometer. This involves the simultaneous detection of ∼300 MeV protons and gamma rays ranging from 0.1 to 20 MeV. This scintillator - photosensor coupling provides an excellent solution in this capacity, in part due to the near perfect match of the LAAPD quantum efficiency peak to the light output wavelength of CsI(Tl). Modern detector development is guided by use of Monte Carlo simulations to predict detector performance, nonetheless it is essential to benchmark these simulations against real data taken with prototype detector arrays. Here follows an account of the performance of two such prototypes representing different polar regions of the Barrel section of the forthcoming CALIFA calorimeter. Measurements were taken for gamma-ray energies up to 15.1 MeV (Maier-Leibnitz Laboratory, Garching, Germany) and for direct irradiation with a 180 MeV proton beam (The Svedberg Laboratoriet, Uppsala, Sweden). Results are discussed in light of complementary GEANT4 simulations.

  4. The Emergency Smoke Response System (a prototype)

    NASA Astrophysics Data System (ADS)

    Lahm, P.; Larkin, N.; Brown, T. J.; Raffuse, S. M.; Strand, T.; Sullivan, D.

    2009-12-01

    The U.S. Forest Service Emergency Smoke Response System (ESRS) prototype was first launched during the Santa Ana wildfire event of southern California (fall 2007) and after further refinement it was again launched during the lightening wildfire event of northing California (summer 2008). During both wildfire events smoke plumes from the fires caused significant impacts on the air quality in both urban and rural communities, transportation corridors, and aviation landing strips. The ESRS, called up by U.S.F.S. headquarters, is used to provide enhanced information and data on air quality impacts and smoke transport to fire management and the public. The prototype U.S.F.S. ESRS is a combination of efforts that supplement the ongoing smoke and fire modeling information with a high resolution meteorological and smoke modeling domain placed over the wildfire event location. This domain is used to look at fine-scale fire meteorology and smoke transport and air quality impacts. At the same time, additional smoke monitors (EBAMS) are deployed in the area with real-time reporting capabilities. The monitors supplement the existing network to provide air quality information in communities without monitors or in remote (i.e. locations along transportation corridors). The data from the modeling efforts and air quality monitoring are presented to fire managers and air quality regulators through websites, which show the latest available information. To ensure maximum utility of the modeling and monitoring information, an experienced air quality forecast produces daily forecast summaries by region, providing text forecast guidance and model output discussion. The forecaster is available for the daily fire calls that fire managers use to coordinate efforts across the region. Fire managers can request modifications or new graphics which they find useful for dissemination of the information. Fire is a natural ecological process. Policy, climate, and ecological shifts can change the

  5. A Prototype for a Computer-Based Listening Comprehension Proficiency Test. Final Report.

    ERIC Educational Resources Information Center

    Ariew, Robert A.; Dunkel, Patricia A.

    The development of a prototype computer-assisted second language listening comprehension test is reported. The project investigated the feasibility of computer-adaptive second language listening tests using microcomputer equipment and developing model testing software. Tests for French and for English as a Second Language (ESL) were developed. The…

  6. Rapid prototyping and inclined plane technique in the treatment of maxillofacial malformations in a fox.

    PubMed

    Freitas, Elisangela P; Rahal, Sheila C; Teixeira, Carlos R; Silva, Jorge V L; Noritomi, Pedro Y; Villela, Carlos H S; Yamashita, Seizo

    2010-03-01

    An approximately 9-month-old fox (Pseudalopex vetulus) was presented with malocclusion and deviation of the lower jaw to the right side. Orthodontic treatment was performed using the inclined plane technique. Virtual 3D models and prototypes of the head were based on computed tomography (CT) image data to assist in diagnosis and treatment.

  7. The chip-scale atomic clock : prototype evaluation.

    SciTech Connect

    Mescher, Mark; Varghese, Mathew; Lutwak, Robert; Serkland, Darwin Keith; Tepolt, Gary; Geib, Kent Martin; Leblanc, John; Peake, Gregory Merwin; Rashid, Ahmed

    2007-12-01

    The authors have developed a chip-scale atomic clock (CSAC) for applications requiring atomic timing accuracy in portable battery-powered applications. At PTTI/FCS 2005, they reported on the demonstration of a prototype CSAC, with an overall size of 10 cm{sup 3}, power consumption > 150 mW, and short-term stability sy(t) < 1 x 10-9t-1/2. Since that report, they have completed the development of the CSAC, including provision for autonomous lock acquisition and a calibrated output at 10.0 MHz, in addition to modifications to the physics package and system architecture to improve performance and manufacturability.

  8. Air injection test on a Kaplan turbine: prototype - model comparison

    NASA Astrophysics Data System (ADS)

    Angulo, M.; Rivetti, A.; Díaz, L.; Liscia, S.

    2016-11-01

    Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.

  9. Hadron therapy information sharing prototype

    PubMed Central

    Roman, Faustin Laurentiu; Abler, Daniel; Kanellopoulos, Vassiliki; Amoros, Gabriel; Davies, Jim; Dosanjh, Manjit; Jena, Raj; Kirkby, Norman; Peach, Ken; Salt, Jose

    2013-01-01

    The European PARTNER project developed a prototypical system for sharing hadron therapy data. This system allows doctors and patients to record and report treatment-related events during and after hadron therapy. It presents doctors and statisticians with an integrated view of adverse events across institutions, using open-source components for data federation, semantics, and analysis. There is a particular emphasis upon semantic consistency, achieved through intelligent, annotated form designs. The system as presented is ready for use in a clinical setting, and amenable to further customization. The essential contribution of the work reported here lies in the novel data integration and reporting methods, as well as the approach to software sustainability achieved through the use of community-supported open-source components. PMID:23824127

  10. The EUROMEDIES EDI prototype system.

    PubMed

    Pramataris, K; Doukidis, G; Giaglis, G; Raptakis, J

    1996-01-01

    EDI is expected to be the dominant form of business communication between organisations moving to the Electronic Commerce era of 2000. The healthcare sector is already using EDI in the hospital supply function as well as in the clinical area and the reimbursement process. In this paper, we examine the use of EDI in the healthcare administration sector and move specifically its application to the Medical Devices Vigilance System. At a first place, the potential of this approach is examined, after an initial brief presentation of the EDI concept and its application in healthcare. This presentation is followed by an overall description of the EDI prototype system, which was developed in the context of the EUROMEDIES Concerted Action, in order to facilitate the requirements definition phase.

  11. Thermal Oscar Design Test Report and Prototype

    DTIC Science & Technology

    2010-09-01

    1 UNCLAS | CG-926 RDC | D. Decker | Public | Sep 2010 Thermal Oscar Design Test Report and Prototype Distribution Statement...A: Approved for public release; distribution is unlimited. September 2010 Report No: CG-D-05-11 Thermal Oscar Design Test Report and Prototype...06320 Thermal Oscar Design Test Report and Prototype iii UNCLAS | CG-926 RDC | D. Decker | Public | Sep 2010 Technical Report

  12. IMMR Phase 1 Prototyping Plan Inputs

    NASA Technical Reports Server (NTRS)

    Vowell, C. W.; Johnson-Throop, Kathy; Smith, Bryon; Darcy, Jeannette

    2006-01-01

    This viewgraph presentation reviews the phase I plan of the prototype of the IMMR by the Multilateral Medical Operations Panel (MMOP) Medical Informatics & Technology (MIT) Working Group. It reviews the Purpose of IMMR Prototype Phase 1 (IPP1); the IPP1 Plan Overview, the IMMR Prototype Phase 1 Plan for PDDs and MIC and MIC-DDs, Plan for MICs, a nd the IPP1 objectives

  13. Education as Power. Report of Americans for Indian Opportunity Title IV, Part A, Technical Assistance Conference (Albuquerque, New Mexico, October 4-6, 1977).

    ERIC Educational Resources Information Center

    Americans for Indian Opportunity, Inc., Albuquerque, NM.

    Included in this report on the 1977 Title IV Part A Technical Assistance conference held in Albuquerque are: (1) a descriptive narrative of conference events; (2) a summary of the 120 evaluation responses; and (3) the resolutions adopted by conference participants as a specific vehicle to make their concerns known to the Office of Indian Education…

  14. Independent Testing of JWST Detector Prototypes

    NASA Technical Reports Server (NTRS)

    Figer, Donald F.; Rauscher, Bernie J.; Regan, Michael W.; Morse, Ernie; Balleza, Jesus; Bergeron, Louis; Stockman, H. S.

    2004-01-01

    The Independent Detector Testing Laboratory (IDTL) is jointly operated by the Space Telescope Science Institute (STScI) and the Johns Hopkins University (JHU), and is assisting the James Webb Space Telescope (JWST) mission in choosing and operating the best near-infrared detectors. The JWST is the centerpiece of the NASA Office of Space Science theme, the Astronomical Search for Origins, and the highest priority astronomy project for the next decade, according to the National Academy of Science. JWST will need to have the sensitivity to see the first light in the Universe to determine how galaxies formed in the web of dark matter that existed when the Universe was in its infancy (z is approximately 10-20). To achieve this goal, the JWST Project must pursue an aggressive technology program and advance infrared detectors to performance levels beyond what is now possible. As part of this program, NASA has selected the IDTL to verify comparative performance between prototype JWST detectors developed by Rockwell Scientific (HgCdTe) and Raytheon (InSb). The IDTL is charged with obtaining an independent assessment of the ability of these two competing technologies to achieve the demanding specifications of the JWST program within the 0.6-5 micron bandpass and in an ultra-low background (less than 0.01 e(-)/s/pixel) environment. We describe results from the JWST Detector Characterization Project that is being performed in the LDTL. In this project, we are measuring first-order detector parameters, i.e. dark current, read noise, QE, intra-pixel sensitivity, linearity, as functions of temperature, well size, and operational mode.

  15. Independent Testing of JWST Detector Prototypes

    NASA Technical Reports Server (NTRS)

    Figer, D. F.; Rauscher, B. J.; Regan, M. W.; Balleza, J.; Bergeron, L.; Morse, E.; Stockman, H. S.

    2003-01-01

    The Independent Detector Testing Laboratory (IDTL) is jointly operated by the Space Telescope Science Institute (STScI) and the Johns Hopkins University (MU), and is assisting the James Webb Space Telescope (JWST) mission in choosing and operating the best near-infrared detectors under a NASA Grant. The JWST is the centerpiece of the NASA Office of Space Science theme, the Astronomical Search for Origins, and the highest priority astronomy project for the next decade, according to the National Academy of Science. JWST will need to have the sensitivity to see the first light in the Universe to determine how galaxies formed in the web of dark matter that existed when the Universe was in its infancy (z approx. 10 - 20). To achieve this goal, the JWST Project must pursue an aggressive technology program and advance infrared detectors to performance levels beyond what is now possible. As part of this program, NASA has selected the IDTL to verify comparative performance between prototype JWST detectors developed by Rockwell Scientific (HgCdTe) and Raytheon (InSb). The IDTL is charged with obtaining an independent assessment of the ability of these two competing technologies to achieve the demanding specifications of the JWST program within the 0.6 - 5 approx. mum bandpass and in an ultra-low background (less than 0.01 e'/s/pixel) environment. We describe results from the JWST Detector Characterization Project that is being performed in the IDTL. In this project, we are measuring first-order detector parameters, i.e. dark current, read noise, QE, intra-pixel sensitivity, linearity, as functions of temperature, well size, and operational mode.

  16. Concept development for a space solar power station

    NASA Astrophysics Data System (ADS)

    Sysoev, V. K.; Pichkhadze, K. M.; Feldman, L. I.; Arapov, E. A.; Luzyanin, A. S.

    2012-12-01

    This paper introduces a concept for the development of a space solar power station, starting from the manufacture of a photoemissive panel to the creation of a prototype of an industrial power plant. Balloon systems play a special role both in the testing of the power plant and in the operation of prototypes of solar power stations.

  17. Gravitational Assist

    NASA Technical Reports Server (NTRS)

    Diehl, R.

    1995-01-01

    Deep-space missions some times use close gravity-assist 'swingbys' of planets and moons to gain or lose velocity. These maneuvers increase the amount of mass that can be delivered and/or decrease mission flight times. The two Voyager spacecraft used gravity assists to leave the solar system. The Galileo spacecraft is using gravity assists to move among the various moons of Jupiter and the Cassini spacecraft will do similar maneuvers around Saturn.

  18. Prototype Small Footprint Amplifier for Piezoelectric Deformable Mirrors

    NASA Astrophysics Data System (ADS)

    Caputa, Kris; Herriot, Glen; Niebergal, Joel; Zielinski, Adam

    2011-09-01

    AO subsystems of the ELT observatories will incorporate deformable mirrors with an order of magnitude larger number of piezoelectric actuators than the AO systems currently deployed. Simply scaling up the drive electronics that are presently available commercially would substantially drive up the AO cost, pose unacceptably high demands for the supply power and heat dissipation, and occupy large physical volume. We have set out to prototype a high voltage amplifier that is compact enough to allow packaging 100 amplifier channels on a single 6U Eurocard with the goal to have a DM drive channel density of 1200 per 6U VME crate. Individual amplifier circuits should be driven by a multichannel A/D converter, consume no more than 0.5W from the +/-400V power supply, be slew rate limited in hardware, and be short-circuit protected. The component cost should be an order of magnitude less than the integrated circuit high voltage amplifiers currently on the market. We started out with modeling candidate circuits in SPICE, then built physical prototypes using inexpensive off the shelf components. In this paper we present experimental results of exposing several prototype circuits to both normal operating conditions and foreseeable fault conditions. The performance is evaluated against the AO requirements for the output range and bandwidth and the DM actuator safety requirements.

  19. Ground crewmen maneuver the Helios Prototype flying wing on its ground support dolly during function

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Ground crewmen maneuver AeroVironment's solar-powered Helios Prototype flying wing on its ground support dolly during functional checkouts prior to its first flights under solar power from the U.S. Navy's Pacific Missile Range Facility on Kaua'i, Hawaii.

  20. MDLab: a molecular dynamics simulation prototyping environment.

    PubMed

    Cickovski, Trevor; Chatterjee, Santanu; Wenger, Jacob; Sweet, Christopher R; Izaguirre, Jesús A

    2010-05-01

    Molecular dynamics (MD) simulation involves solving Newton's equations of motion for a system of atoms, by calculating forces and updating atomic positions and velocities over a timestep Deltat. Despite the large amount of computing power currently available, the timescale of MD simulations is limited by both the small timestep required for propagation, and the expensive algorithm for computing pairwise forces. These issues are currently addressed through the development of efficient simulation methods, some of which make acceptable approximations and as a result can afford larger timesteps. We present MDLab, a development environment for MD simulations built with Python which facilitates prototyping, testing, and debugging of these methods. MDLab provides constructs which allow the development of propagators, force calculators, and high level sampling protocols that run several instances of molecular dynamics. For computationally demanding sampling protocols which require testing on large biomolecules, MDL includes an interface to the OpenMM libraries of Friedrichs et al. which execute on graphical processing units (GPUs) and achieve considerable speedup over execution on the CPU. As an example of an interesting high level method developed in MDLab, we present a parallel implementation of the On-The-Fly string method of Maragliano and Vanden-Eijnden. MDLab is available at http://mdlab.sourceforge.net.

  1. Performance measurements of the first RAID prototype

    NASA Technical Reports Server (NTRS)

    Chervenak, Ann L.

    1990-01-01

    The performance is examined of Redundant Arrays of Inexpensive Disks (RAID) the First, a prototype disk array. A hierarchy of bottlenecks was discovered in the system that limit overall performance. The most serious is the memory system contention on the Sun 4/280 host CPU, which limits array bandwidth to 2.3 MBytes/sec. The array performs more successfully on small random operations, achieving nearly 300 I/Os per second before the Sun 4/280 becomes CPU limited. Other bottlenecks in the system are the VME backplane, bandwidth on the disk controller, and overheads associated with the SCSI protocol. All are examined in detail. The main conclusion is that to achieve the potential bandwidth of arrays, more powerful CPU's alone will not suffice. Just as important are adequate host memory bandwidth and support for high bandwidth on disk controllers. Current disk controllers are more often designed to achieve large numbers of small random operations, rather than high bandwidth. Operating systems also need to change to support high bandwidth from disk arrays. In particular, they should transfer data in larger blocks, and should support asynchronous I/O to improve sequential write performance.

  2. Development of Prototype HTS Components for Magnetic Suspension Applications

    NASA Technical Reports Server (NTRS)

    Haldar, P.; Hoehn, J., Jr.; Selvamanickam, V.; Farrell, R. A.; Balachandran, U.; Iyer, A. N.; Peterson, E.; Salazar, K.

    1996-01-01

    We have concentrated on developing prototype lengths of bismuth and thallium based silver sheathed superconductors by the powder-in-tube approach to fabricate high temperature superconducting (HTS) components for magnetic suspension applications. Long lengths of mono and multi filament tapes are presently being fabricated with critical current densities useful for maglev and many other applications. We have recently demonstrated the prototype manufacture of lengths exceeding 1 km of Bi-2223 multi filament conductor. Long lengths of thallium based multi-filament conductor have also been fabricated with practical levels of critical current density and improved field dependence behavior. Test coils and magnets have been built from these lengths and characterized over a range of temperatures and background fields to determine their performance. Work is in progress to develop, fabricate and test HTS windings that will be suitable for magnetic suspension, levitation and other electric power related applications.

  3. Engineering Prototype for a Compact Medical Dielectric Wall Accelerator

    NASA Astrophysics Data System (ADS)

    Zografos, Anthony; Hening, Andy; Joshkin, Vladimir; Leung, Kevin; Pearson, Dave; Pearce-Percy, Henry; Rougieri, Mario; Parker, Yoko; Weir, John; Blackfield, Donald; Chen, Yu-Jiuan; Falabella, Steven; Guethlein, Gary; Poole, Brian; Hamm, Robert W.; Becker, Reinard

    2011-12-01

    A compact accelerator system architecture based on the dielectric wall accelerator (DWA) for medical proton beam therapy has been developed by the Compact Particle Acceleration Corporation (CPAC). The major subsystems are a Radio Frequency Quadrupole (RFQ) injector linac, a pulsed kicker to select the desired proton bunches, and a DWA linear accelerator incorporating a high gradient insulator (HGI) with stacked Blumleins to produce the required acceleration energy. The Blumleins are switched with solid state laser-driven optical switches integrated into the Blumlein assemblies. Other subsystems include a high power pulsed laser, fiber optic distribution system, electrical charging system, and beam diagnostics. An engineering prototype has been constructed and characterized, and these results will be used within the next three years to develop an extremely compact 150 MeV system capable of modulating energy, beam current, and spot size on a shot-to-shot basis. This paper presents the details the engineering prototype, experimental results, and commercialization plans.

  4. Engineering Prototype for a Compact Medical Dielectric Wall Accelerator

    SciTech Connect

    Zografos, Anthony; Hening, Andy; Joshkin, Vladimir; Leung, Kevin; Pearson, Dave; Pearce-Percy, Henry; Rougieri, Mario; Parker, Yoko; Weir, John; Blackfield, Donald; Chen, Yu-Jiuan; Falabella, Steven; Guethlein, Gary; Poole, Brian; Hamm, Robert W.; Becker, Reinard

    2011-12-13

    A compact accelerator system architecture based on the dielectric wall accelerator (DWA) for medical proton beam therapy has been developed by the Compact Particle Acceleration Corporation (CPAC). The major subsystems are a Radio Frequency Quadrupole (RFQ) injector linac, a pulsed kicker to select the desired proton bunches, and a DWA linear accelerator incorporating a high gradient insulator (HGI) with stacked Blumleins to produce the required acceleration energy. The Blumleins are switched with solid state laser-driven optical switches integrated into the Blumlein assemblies. Other subsystems include a high power pulsed laser, fiber optic distribution system, electrical charging system, and beam diagnostics. An engineering prototype has been constructed and characterized, and these results will be used within the next three years to develop an extremely compact 150 MeV system capable of modulating energy, beam current, and spot size on a shot-to-shot basis. This paper presents the details the engineering prototype, experimental results, and commercialization plans.

  5. The SiC Direct Target Prototype for SPES

    SciTech Connect

    Rizzi, Valentina; Andrighetto, Alberto; Antonucci, C.; Barbui, Marina; Biasetto, Lisa; Carturan, S.; Celona, L.; Cevolani, S.; Chines, Francesco; Cinausero, Marco; Colombo, P.; Cuttone, G.; Di Bernardo, P.; Giacchini, Mauro; Gramegna, Fabiana; Lollo, M.; Maggioni, G.; Manzolaro, Mattia; Meneghetti, G.; Messina, G. Esteban; Petrovich, C.; Piga, L.; Prete, Gianfranco; Re, Maurizio; Rizzo, D.; Stracener, Daniel W; Tonezzer, Michele; Zanonato, P.

    2007-01-01

    A R&D study for the realization of a Direct Target is in progress within the SPES project for RIBs production at the Laboratori Nazionali of Legnaro. A proton beam (40 MeV energy, 0.2 niA current) is supposed to impinge directly on a UCx multiple thin disks target, the power released by the proton beam is dissipated mainly through irradiation. A SiC target prototype with a 1:5 scale has been developed and tested. Thermal, mechanical and release calculations have been performed to fully characterize the prototype. An online test has been performed at the HRIBF facility of the Oak Ridge National Laboratory (ORNL), showing that our Sic target can sustain a proton beam current considerably higher than the maximum beam current used with the standard HRIBF target configuration.

  6. The SiC Direct Target Prototype for SPES

    SciTech Connect

    Rizzi, V.; Andrighetto, A.; Barbui, M.; Carturan, S.; Cinausero, M.; Giacchini, M.; Gramegna, F.; Lollo, M.; Maggioni, G.; Prete, G.; Tonezzer, M.; Antonucci, C.; Cevolani, S.; Petrovich, C.; Biasetto, L.; Colombo, P.; Manzolaro, M.; Meneghetti, M.; Celona, L.; Chines, F.

    2007-10-26

    A R and D study for the realization of a Direct Target is in progress within the SPES project for RIBs production at the Laboratori Nazionali of Legnaro. A proton beam (40 MeV energy, 0.2 mA current) is supposed to impinge directly on a UCx multiple thin disks target, the power released by the proton beam is dissipated mainly through irradiation. A SiC target prototype with a 1:5 scale has been developed and tested. Thermal, mechanical and release calculations have been performed to fully characterize the prototype. An online test has been performed at the HRIBF facility of the Oak Ridge National Laboratory (ORNL), showing that our SiC target can sustain a proton beam current considerably higher than the maximum beam current used with the standard HRIBF target configuration.

  7. Boudreaux the Robot (a.k.a. EVA Robotic Assistant)

    NASA Technical Reports Server (NTRS)

    Shillcutt, Kimberly; Burridge, Robert; Graham, Jeffrey

    2002-01-01

    The EVA Robotic Assistant is a prototype for an autonomous rover designed to assist human astronauts. The primary focus of the research is to explore the interaction between humans and robots, particularly in extreme environments, and to develop a software infrastructure that could be applied to any type of assistant robot, whether for planetary exploration or orbital missions. This paper describes the background and current status of the project, the types of scenarios addressed in field demonstrations, the hardware and software that comprise the current prototype, and future research plans.

  8. Design Skills and Prototyping for Defense Systems

    DTIC Science & Technology

    2015-04-30

    however, the utility of prototyping has had a demonstrably mixed record in defense acquisition. Some programs, such as the Manhattan Project , were...almost completely undefined. The first production reactors for the Manhattan Project suffered a near- catastrophic engineering design flaw stemming...architecture, as was seen in the F-117 and Manhattan Project development efforts. Architectural Prototyping Simply maintaining design teams or developing

  9. dE/dx prototype test

    SciTech Connect

    Va'vra, J.; Rust, D.

    1980-10-01

    A small prototype of a multiwire dE/dx detector was tested in SLAC's test beam. The basic concept of the detector was similar to the JADE drift cell design. The purpose of the test was to decide on some design parameters for a full size prototype, which is now in construction.

  10. Software Prototyping: Designing Systems for Users.

    ERIC Educational Resources Information Center

    Spies, Phyllis Bova

    1983-01-01

    Reports on major change in computer software development process--the prototype model, i.e., implementation of skeletal system that is enhanced during interaction with users. Expensive and unreliable software, software design errors, traditional development approach, resources required for prototyping, success stories, and systems designer's role…

  11. A prototype space flight intravenous injection system

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.

    1985-01-01

    Medical emergencies, especially those resulting from accidents, frequently require the administration of intravenous fluids to replace lost body liquids. The development of a prototype space flight intravenous injection system is presented. The definition of requirements, injectable concentrates development, water polisher, reconstitution hardware development, administration hardware development, and prototype fabrication and testing are discussed.

  12. In Search of the Prototypical Fraction

    ERIC Educational Resources Information Center

    Wright, Vince

    2013-01-01

    Vince Wright makes a convincing argument for presenting children with a different "prototype" of a fraction to the typical one-half. Consider how the prototype that Wright mentions may be applied to a variety of fraction concepts. We are sure that you will never look at a doughnut in quite the same way.

  13. Rapid Prototyping of Mobile Learning Games

    ERIC Educational Resources Information Center

    Federley, Maija; Sorsa, Timo; Paavilainen, Janne; Boissonnier, Kimo; Seisto, Anu

    2014-01-01

    This position paper presents the first results of an on-going project, in which we explore rapid prototyping method to efficiently produce digital learning solutions that are commercially viable. In this first phase, rapid game prototyping and an iterative approach was tested as a quick and efficient way to create learning games and to evaluate…

  14. A prototype for cartographic human body analysis.

    PubMed

    Carvalho, Elizabeth; Marcos, Adérito; Santos, Maribel Yasmina; Espregueira-Mendes, João

    2008-01-01

    A cartographic-oriented model uses algebraic map operations to perform spatial analysis of medical data relative to the human body. A prototype system uses 3D visualization techniques to deliver analysis results. A prototype implementation suggests the model might provide the basis for a medical application tool that introduces new information insight.

  15. 6000 x 2000 display prototype

    NASA Astrophysics Data System (ADS)

    Masuishi, Tetsuya; Small, David; MacNeil, Ronald L.

    1992-07-01

    While electronic technology has evolved enormously, there are no displays which are both very large and of high resolution. This paper describes our 6 K X 2 K, 60 inch by 20 inch, display prototype which consists of three 2 K X 2 K CRT displays connected seamlessly. Using a custom frame and a half-silvered mirror, the three images are joined by reflecting the center display image from above and transmitting the two side display images directly. Two problems must be solved to achieve a truly seamless effect. First, viewers can still see seams between regular screen images even if the displays are strictly aligned. Second, each physical display has a different geometrical space, and the center display image must be drawn in reverse because it will be reflected by the mirror. We developed a seamless window system to solve these problems. The window system displays overlapping images with translucent borders to enable better blending of the three display screens. Custom application software treats the system as a single 6 K X 2 K area. A concept named ''virtual framebuffer architecture'' enables us to implement the two kinds of seamlessness easily. To evaluate the visual effects, we developed some application systems which include video in a window, stereo sound and a high speed channel to the Connection Machine II for image processing.

  16. Dissipative Prototyping Methods: A Manifesto

    NASA Astrophysics Data System (ADS)

    Beesley, P.

    Taking a designer's unique perspective using examples of practice in experimental installation and digital protoyping, this manifesto acts as provocation for change and unlocking new potential by encouraging changes of perspective about the material realm. Diffusive form-language is proposed as a paradigm for architectural design. This method of design is applied through 3D printing and related digital fabrication methods, offering new qualities that can be implemented in design of realms including present earth and future interplanetary environments. A paradigm shift is encouraged by questioning conventional notions of geometry that minimize interfaces and by proposing the alternatives of maximized interfaces formed by effusive kinds of formal composition. A series of projects from the Canadian research studio of the Hylozoic Architecture group are described, providing examples of component design methods employing diffusive forms within combinations of tension-integrity structural systems integrated with hybrid metabolisms employing synthetic biology. Cultural implications are also discussed, drawing from architectural theory and natural philosophy. The conclusion of this paper suggests that the practice of diffusive prototyping can offer formative strategies contributing to design of future living systems.

  17. Construction of Prototype Lightweight Mirrors

    NASA Technical Reports Server (NTRS)

    Robinson, William G.

    1997-01-01

    This contract and the work described was in support of a Seven Segment Demonstrator (SSD) and demonstration of a different technology for construction of lightweight mirrors. The objectives of the SSD were to demonstrate functionality and performance of a seven segment prototype array of hexagonal mirrors and supporting electromechanical components which address design issues critical to space optics deployed in large space based telescopes for astronomy and for optics used in spaced based optical communications systems. The SSD was intended to demonstrate technologies which can support the following capabilities; Transportation in dense packaging to existing launcher payload envelopes, then deployable on orbit to form space telescope with large aperture. Provide very large (less than 10 meters) primary reflectors of low mass and cost. Demonstrate the capability to form a segmented primary or quaternary mirror into a quasi-continuous surface with individual subapertures phased so that near diffraction limited imaging in the visible wavelength region is achieved. Continuous compensation of optical wavefront due to perturbations caused by imperfections, natural disturbances, and equipment induced vibrations/deflections to provide near diffraction limited imaging performance in the visible wavelength region. Demonstrate the feasibility of fabricating such systems with reduced mass and cost compared to past approaches. While the SSD could not be expected to satisfy all of the above capabilities, the intent was to start identifying and understanding new technologies that might be applicable to these goals.

  18. Wireless Augmented Reality Prototype (WARP)

    NASA Technical Reports Server (NTRS)

    Devereaux, A. S.

    1999-01-01

    Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.

  19. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Technical Reports Server (NTRS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-01-01

    A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, we present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. We compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. We find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. We propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter. The Jet Propulsion Laboratory will design and build the thermal cavity, and JX Crystals will fabricate the gallium antimonide cells, dielectric filters, and resultant receiver panels. With

  20. Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications

    SciTech Connect

    Carlstrom, Charles, M., Jr.

    2009-07-07

    This report is the final technical report for DOE Program DE-FC36-04GO14301 titled “Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications”. Due to the public nature of this report some of the content reported in confidential reports and meetings to the DOE is not covered in detail in this report and some of the content has been normalized to not show actual values. There is a comparison of the projects accomplishments with the objectives, an overview of some of the key subsystem work, and a review of the three levels of prototypes demonstrated during the program. There is also a description of the eventual commercial product and market this work is leading towards. The work completed under this program has significantly increased the understanding of how Direct Methanol Fuel Cells (DMFC) can be deployed successfully to power consumer electronic devices. The prototype testing has demonstrated the benefits a direct methanol fuel cell system has over batteries typically used for powering consumer electronic devices. Three generations of prototypes have been developed and tested for performance, robustness and life. The technologies researched and utilized in the fuel cell stack and related subsystems for these prototypes are leveraged from advances in other industries such as the hydrogen fueled PEM fuel cell industry. The work under this program advanced the state of the art of direct methanol fuel cells. The system developed by MTI micro fuel cells aided by this program differs significantly from conventional DMFC designs and offers compelling advantages in the areas of performance, life, size, and simplicity. The program has progressed as planned resulting in the completion of the scope of work and available funding in December 2008. All 18 of the final P3 prototypes builds have been tested and the results showed significant improvements over P2 prototypes in build yield, initial performance, and durability. The systems have

  1. Exoskeleton plantarflexion assistance for elderly.

    PubMed

    Galle, S; Derave, W; Bossuyt, F; Calders, P; Malcolm, P; De Clercq, D

    2017-02-01

    Elderly are confronted with reduced physical capabilities and increased metabolic energy cost of walking. Exoskeletons that assist walking have the potential to restore walking capacity by reducing the metabolic cost of walking. However, it is unclear if current exoskeletons can reduce energy cost in elderly. Our goal was to study the effect of an exoskeleton that assists plantarflexion during push-off on the metabolic energy cost of walking in physically active and healthy elderly. Seven elderly (age 69.3±3.5y) walked on treadmill (1.11ms(2)) with normal shoes and with the exoskeleton both powered (with assistance) and powered-off (without assistance). After 20min of habituation on a prior day and 5min on the test day, subjects were able to walk with the exoskeleton and assistance of the exoskeleton resulted in a reduction in metabolic cost of 12% versus walking with the exoskeleton powered-off. Walking with the exoskeleton was perceived less fatiguing for the muscles compared to normal walking. Assistance resulted in a statistically nonsignificant reduction in metabolic cost of 4% versus walking with normal shoes, likely due to the penalty of wearing the exoskeleton powered-off. Also, exoskeleton mechanical power was relatively low compared to previously identified optimal assistance magnitude in young adults. Future exoskeleton research should focus on further optimizing exoskeleton assistance for specific populations and on considerate integration of exoskeletons in rehabilitation or in daily life. As such, exoskeletons should allow people to walk longer or faster than without assistance and could result in an increase in physical activity and resulting health benefits.

  2. Artificial lung: progress and prototypes.

    PubMed

    Zwischenberger, Brittany A; Clemson, Lindsey A; Zwischenberger, Joseph B

    2006-07-01

    Lung disease is the fourth leading cause of death (one in seven deaths) in the USA. Acute respiratory distress syndrome (ARDS) affects approximately 150,000 patients a year in the USA, and an estimated 16 million Americans are afflicted with chronic lung disease, accounting for 100,000 deaths per year. Medical management is the standard of care for initial therapy, but is limited by the progression of disease. Chronic mechanical ventilation is readily available, but is cumbersome, expensive and often requires tracheotomy with loss of upper airway defense mechanisms and normal speech. Lung transplantation is an option for less than 1100 patients per year since demand has steadily outgrown supply. For the last 15 years, the authors' group has studied ARDS in order to develop viable alternative treatments. Both extracorporeal gas exchange techniques, including extracorporeal membrane oxygenation, extracorporeal and arteriovenous CO(2) removal, and intravenous oxygenation, aim to allow for a less injurious ventilatory strategy during lung recovery while maintaining near-normal arterial blood gases, but precludes ambulation. The paracorporeal artificial lung (PAL), however, redefines the treatment of both acute and chronic respiratory failure with the goal of ambulatory total respiratory support. PAL prototypes tested on both normal sheep and the absolute lethal dose smoke/burn-induced ARDS sheep model have demonstrated initial success in achieving total gas exchange. Still, clinical trials cannot begin until bio- and hemodynamic compatibility challenges are reconciled. The PAL initial design goals are for a short-term (weeks) bridge to recovery or transplant, but eventually, for long-term support (months).

  3. A prototype wearable tritium monitor

    SciTech Connect

    Surette, R. A.; Dubeau, J.

    2008-07-15

    Sudden unexpected changes in tritium-in-air concentrations in workplace air can result in significant unplanned exposures. Although fixed area monitors are used to monitor areas where there is a potential for elevated tritium in air concentrations, they do not monitor personnel air space and may require some time for acute tritium releases to be detected. There is a need for a small instrument that will quickly alert staff of changing tritium hazards. A moderately sensitive tritium instrument that workers could wear would bring attention to any rise in tritium levels that were above predetermined limits and help in assessing the potential hazard therefore minimizing absorbed dose. Hand-held instruments currently available can be used but require the assistance of a fellow worker or restrict the user to using only one hand to perform some duties. (authors)

  4. Prototype acoustic resonance spectroscopy monitor

    SciTech Connect

    Sinha, D.N.; Olinger, C.T.

    1996-03-01

    This report reports on work performed for the International Atomic Energy Agency (IAEA) through the Program Office for Technical Assistance (POTAS). In this work, we investigate possible applications of nondestructive acoustics measurements to facilitate IAEA safeguards at bulk processing facilities. Two different acoustic techniques for verifying the internal structure of a processing tank were investigated. During this effort we also examined two acoustic techniques for assessing the fill level within a processing tank. The fill-level measurements could be made highly portable and have an added safeguards advantage that they can also detect stratification of fill material. This later application may be particularly useful in confirming the absence of stratification in plutonium processing tanks before accountability samples are withdrawn.

  5. Power subsystem automation study

    NASA Technical Reports Server (NTRS)

    Tietz, J. C.; Sewy, D.; Pickering, C.; Sauers, R.

    1984-01-01

    The purpose of the phase 2 of the power subsystem automation study was to demonstrate the feasibility of using computer software to manage an aspect of the electrical power subsystem on a space station. The state of the art in expert systems software was investigated in this study. This effort resulted in the demonstration of prototype expert system software for managing one aspect of a simulated space station power subsystem.

  6. Review on CNC-Rapid Prototyping

    NASA Astrophysics Data System (ADS)

    Z, M. Nafis O.; Y, Nafrizuan M.; A, Munira M.; J, Kartina

    2012-09-01

    This article reviewed developments of Computerized Numerical Control (CNC) technology in rapid prototyping process. Rapid prototyping (RP) can be classified into three major groups; subtractive, additive and virtual. CNC rapid prototyping is grouped under the subtractive category which involves material removal from the workpiece that is larger than the final part. Richard Wysk established the use of CNC machines for rapid prototyping using sets of 2½-D tool paths from various orientations about a rotary axis to machine parts without refixturing. Since then, there are few developments on this process mainly aimed to optimized the operation and increase the process capabilities to stand equal with common additive type of RP. These developments include the integration between machining and deposition process (hybrid RP), adoption of RP to the conventional machine and optimization of the CNC rapid prototyping process based on controlled parameters. The article ended by concluding that the CNC rapid prototyping research area has a vast space for improvement as in the conventional machining processes. Further developments and findings will enhance the usage of this method and minimize the limitation of current approach in building a prototype.

  7. Rapid prototyping and stereolithography in dentistry.

    PubMed

    Nayar, Sanjna; Bhuminathan, S; Bhat, Wasim Manzoor

    2015-04-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena.

  8. Rapid prototyping and stereolithography in dentistry

    PubMed Central

    Nayar, Sanjna; Bhuminathan, S.; Bhat, Wasim Manzoor

    2015-01-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena. PMID:26015715

  9. Data explorer: a prototype expert system for statistical analysis.

    PubMed Central

    Aliferis, C.; Chao, E.; Cooper, G. F.

    1993-01-01

    The inadequate analysis of medical research data, due mainly to the unavailability of local statistical expertise, seriously jeopardizes the quality of new medical knowledge. Data Explorer is a prototype Expert System that builds on the versatility and power of existing statistical software, to provide automatic analyses and interpretation of medical data. The system draws much of its power by using belief network methods in place of more traditional, but difficult to automate, classical multivariate statistical techniques. Data Explorer identifies statistically significant relationships among variables, and using power-size analysis, belief network inference/learning and various explanatory techniques helps the user understand the importance of the findings. Finally the system can be used as a tool for the automatic development of predictive/diagnostic models from patient databases. PMID:8130501

  10. Laboratory prototype of cochlear implant: design and techniques.

    PubMed

    Ali, Hussnain; Ahmad, Talha J; Ajaz, Asim; Khan, Shoab A

    2009-01-01

    This paper presents design overview of a low cost prototype of Cochlear Implant developed from commercial off-the-shelf components. Design scope includes speech processing module implemented on a commercial digital signal processor, transcutaneous data and power transceiver developed from a single pair of inductive coils and finally a stimulator circuitry for cochlear stimulation. Different speech processing strategies such as CIS, SMSP and F0/F1 have been implemented and tested using a novel, indigenously developed speech processing research module which evaluates the performance of speech processing strategies in software, hardware and practical scenarios. Design overview, simulations and practical results of an optimized inductive link using Class E Power Amplifier are presented. Link was designed at a carrier frequency of 2.5MHz for 100mW output power. Receiver logic design and stimulator circuitry was implemented using a PIC microcontroller and off-the-shelf electronic components. Results indicate 40% link efficiency with 128kbps data transfer rate. This low cost prototype can be used for undertaking cochlear implant research in laboratories.

  11. Assisted Living

    MedlinePlus

    ... Transportation Back to top How to Choose a Facility? The following suggestions can help you get started ... for a safe, comfortable and appropriate assisted living facility: Think ahead. What will the resident’s future needs ...

  12. Assisted Living

    MedlinePlus

    ... Recreational activities Security Transportation How to Choose a Facility A good match between a facility and a resident's needs depends as much on the philosophy and services of the assisted living facility as it does on the quality of care. ...

  13. Physical and Technical Energy Problems: Testing of the Prototype for State Estimation of Large-Scale Power Systems / Lielo Energosistēmu Stāvokļa Novērtēšanas Prototipa Testēšana

    NASA Astrophysics Data System (ADS)

    Kochukov, O.; Briņķis, K.; Mutule, A.

    2013-08-01

    The paper describes the algorithm for distributed state estimation (SE) and is focused on its testing and validation. For this purpose, different events in the modeled power system of the 330-750 kV electrical ring Latvia - Lithuania - Belarus - Smolensk - Moscow - St. Petersburg - Estonia - Latvia were considered. The methods for testing the Inter-TSO SE prototype and dynamic network monitoring & modeling are based on comparison of the available SCADA data about real events with those of SE calculation. In total, four operational states were studied, including initial, accident and two post-accident operational states Rakstā tiek aprakstīti, testēti un novērtēti izkliedēta stāvokļa novērtēšanas algoritmi. Testēšanas nolūkos tika izmantoti dažādi 330-750 kV elektriskā loka Latvija - Lietuva - Baltkrievija - Smoļenska - Maskava - Pēterburga - Igaunija - Latvija modelēti scenāriji. Prototipa testēšanas metodoloģija balstīta uz pieejamo SCADA datu salīdzināšanu ar stāvokļa novērtēšanas prototipa aprēķina rezultātiem. Kopumā apskatīti sākotnējais, avārijas un divi pēcavārijas režīmi

  14. Characterization of Prototype LSST CCDs

    SciTech Connect

    OCONNOR,P.; FRANK, J.; GEARY, J.C.; GILMORE, D.K.; KOTOV, I.; RADEKA, V.; TAKACS, P.; TYSON, J.A.

    2008-06-23

    The ambitious science goals of the Large Synoptic Survey Telescope (LSST) will be achieved in part by a wide-field imager that will achieve a new level of performance in terms of area, speed, and sensitivity. The instrument performance is dominated by the focal plane sensors, which are now in development. These new-generation sensors will make use of advanced semiconductor technology and will be complemented by a highly integrated electronics package located inside the cryostat. A test laboratory has been set up at Brookhaven National Laboratory (BNL) to characterize prototype sensors and to develop test and assembly techniques for eventual integration of production sensors and electronics into modules that will form the final focal plane. As described in [1], the key requirements for LSST sensors are wideband quantum efficiency (QE) extending beyond lpm in the red, control of point spread function (PSF), and fast readout using multiple amplifiers per chip operated in parallel. In addition, LSST's fast optical system (f71.25) places severe constraints on focal plane flatness. At the chip level this involves packaging techniques to minimize warpage of the silicon die, and at the mosaic level careful assembly and metrology to achieve a high coplanarity of the sensor tiles. In view of the long lead time to develop the needed sensor technology, LSST undertook a study program with several vendors to fabricate and test devices which address the most critical performance features [2]. The remainder of this paper presents key results of this study program. Section 2 summarizes the sensor requirements and the results of design optimization studies, and Section 3 presents the sensor development plan. In Section 4 we describe the test bench at BNL. Section 5 reports measurement results obtained to date oh devices fabricated by several vendors. Section 6 presents a summary of the paper and an outlook for the future work. We present characterization methods and results on a

  15. Progress on the PT-1 Prototype Plasmoid Thruster

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard H.; Martin, Adam K.

    2007-01-01

    The design and construction of a plasmoid thruster prototype is described. This thruster operates by expelling inductively formed plasmoids at high velocities. These plasmoids are field reversed configuration plasmas which are formed by reversing a magnetic flux frozen in an ionized gas inside a theta-pinch coil. The pinch coil is a unique multi-turn, multi-lead design chosen for optimization of inductance and field uniformity. A table-top bread-board demonstrator has been built at MSFC, and will be delivered to Radiance Technologies Inc. for further testing at the Auburn Space Power Institute.

  16. Prototype readout electronics for the upgraded ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Sielewicz, K. M.; Aglieri Rinella, G.; Bonora, M.; Ferencei, J.; Giubilato, P.; Rossewij, M. J.; Schambach, J.; Vanat, T.

    2017-01-01

    The ALICE Collaboration is preparing a major upgrade to the experimental apparatus. A key element of the upgrade is the construction of a new silicon-based Inner Tracking System containing 12 Gpixels in an area of 10 m2. Its readout system consists of 192 readout units that control the pixel sensors and the power units, and deliver the sensor data to the counting room. A prototype readout board has been designed to test: the interface between the sensor modules and the readout electronics, the signal integrity and reliability of data transfer, the interface to the ALICE DAQ and trigger, and the susceptibility of the system to the expected radiation level.

  17. Duct injection technology prototype development: Evaluation of engineering data

    SciTech Connect

    Not Available

    1990-07-01

    The objective of the Duct Injection Technology Prototype Development Project is to develop a sound design basis for applying duct injection technology as a post-combustion SO{sub 2}emissions control method to existing coal-fired power plants. The necessary engineering design and scale-up criteria will be developed for the commercialization of duct injection technology for the control of SO{sub 2} emissions from coal-fired boilers in the utility industry. The primary focus of the analyses summarized in this Topical Report is the review of the known technical and economic information associated with duct injection technology. (VC)

  18. The Chip-Scale Atomic Clock - Prototype Evaluation

    DTIC Science & Technology

    2007-11-01

    demonstration of a prototype CSAC, with an overall size of 10 cm3, power consumption ≈150 mW, and short-term stability σy(τ)əx10-9τ- 1 /2. Since that...Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per...penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1 . REPORT DATE NOV 2007

  19. Assisted Ventilation.

    PubMed

    Dries, David J

    2016-01-01

    Controlled Mechanical Ventilation may be essential in the setting of severe respiratory failure but consequences to the patient including increased use of sedation and neuromuscular blockade may contribute to delirium, atelectasis, and diaphragm dysfunction. Assisted ventilation allows spontaneous breathing activity to restore physiological displacement of the diaphragm and recruit better perfused lung regions. Pressure Support Ventilation is the most frequently used mode of assisted mechanical ventilation. However, this mode continues to provide a monotonous pattern of support for respiration which is normally a dynamic process. Noisy Pressure Support Ventilation where tidal volume is varied randomly by the ventilator may improve ventilation and perfusion matching but the degree of support is still determined by the ventilator. Two more recent modes of ventilation, Proportional Assist Ventilation and Neurally Adjusted Ventilatory Assist (NAVA), allow patient determination of the pattern and depth of ventilation. Proposed advantages of Proportional Assist Ventilation and NAVA include decrease in patient ventilator asynchrony and improved adaptation of ventilator support to changing patient demand. Work of breathing can be normalized with these modes as well. To date, however, a clear pattern of clinical benefit has not been demonstrated. Existing challenges for both of the newer assist modes include monitoring patients with dynamic hyperinflation (auto-positive end expiratory pressure), obstructive lung disease, and air leaks in the ventilator system. NAVA is dependent on consistent transduction of diaphragm activity by an electrode system placed in the esophagus. Longevity of effective support with this technique is unclear.

  20. A microbased shared virtual world prototype

    NASA Technical Reports Server (NTRS)

    Pitts, Gerald; Robinson, Mark; Strange, Steve

    1993-01-01

    Virtual reality (VR) allows sensory immersion and interaction with a computer-generated environment. The user adopts a physical interface with the computer, through Input/Output devices such as a head-mounted display, data glove, mouse, keyboard, or monitor, to experience an alternate universe. What this means is that the computer generates an environment which, in its ultimate extension, becomes indistinguishable from the real world. 'Imagine a wraparound television with three-dimensional programs, including three-dimensional sound, and solid objects that you can pick up and manipulate, even feel with your fingers and hands.... 'Imagine that you are the creator as well as the consumer of your artificial experience, with the power to use a gesture or word to remold the world you see and hear and feel. That part is not fiction... three-dimensional computer graphics, input/output devices, computer models that constitute a VR system make it possible, today, to immerse yourself in an artificial world and to reach in and reshape it.' Our research's goal was to propose a feasibility experiment in the construction of a networked virtual reality system, making use of current personal computer (PC) technology. The prototype was built using Borland C compiler, running on an IBM 486 33 MHz and a 386 33 MHz. Each game currently is represented as an IPX client on a non-dedicated Novell server. We initially posed the two questions: (1) Is there a need for networked virtual reality? (2) In what ways can the technology be made available to the most people possible?

  1. The Nutating Engine-Prototype Engine Progress Report and Test Results

    NASA Technical Reports Server (NTRS)

    Meitner, Peter L.; Boruta, Mike

    2006-01-01

    A prototype of a new, internal combustion (IC) engine concept has been completed. The Nutating Engine features an internal disk nutating (wobbling) on a Z-shaped power shaft. The engine is exceedingly compact, and several times more power dense than any conventional (reciprocating or rotary) IC engine. This paper discusses lessons learned during the prototype engine's development and provides details of its construction. In addition, results of the initial performance tests of the various components, as well as the complete engine, are summarized.

  2. Computer Assisted Fluid Power Instruction: A Comparison of Hands-On and Computer-Simulated Laboratory Experiences for Post-Secondary Students

    ERIC Educational Resources Information Center

    Wilson, Scott B.

    2005-01-01

    The primary purpose of this study was to examine the effectiveness of utilizing a combination of lecture and computer resources to train personnel to assume roles as hydraulic system technicians and specialists in the fluid power industry. This study compared computer simulated laboratory instruction to traditional hands-on laboratory instruction,…

  3. GreenCraft Greenspoint House Prototype

    SciTech Connect

    2009-02-16

    This case study describes a prototype house demonstrating energy efficiency and durability upgrades including an unvented roof with low density spray foam insulation and supplemental dehumidification, along with high performance windows and HVAC system.

  4. SpaceX Test Fires Engine Prototype

    NASA Video Gallery

    One of NASA's industry partners, SpaceX, fires its new SuperDraco engine prototype in preparation for the ninth milestone to be completed under SpaceX's funded Space Act Agreement (SAA) with NASA's...

  5. Rapid Production of Composite Prototype Hardware

    NASA Technical Reports Server (NTRS)

    DeLay, T. K.

    2000-01-01

    The objective of this research was to provide a mechanism to cost-effectively produce composite hardware prototypes. The task was to take a hands-on approach to developing new technologies that could benefit multiple future programs.

  6. Norcal Prototype LNG Truck Fleet: Final Results

    SciTech Connect

    Not Available

    2004-07-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

  7. Summary Scientific Performance of EUCLID Detector Prototypes

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.

    2011-01-01

    NASA and the European Space Agency (ESA) plan to partner to build the EUCLID mission. EUCLID is a mission concept for studying the Dark Energy that is hypothesized to account for the accelerating cosmic expansion. For the past year, NASA has been building detector prototypes at Teledyne Imaging Sensors. This talk will summarize the measured scientific performance of these detector prototypes for astrophysical and cosmological applications.

  8. Preliminary Component Integration Using Rapid Prototyping Techniques

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Salvail, Pat; Gordon, Gail (Technical Monitor)

    2001-01-01

    Rapid prototyping is a very important tool that should be used by both design and manufacturing disciplines during the development of elements for the aerospace industry. It helps prevent lack of adequate communication between design and manufacturing engineers (which could lead to costly errors) through mutual consideration of functional models generated from drawings. Rapid prototyping techniques are used to test hardware for design and material compatibility at Marshall Space Flight Center.

  9. Centurion Quarter-scale Prototype on Lakebed Ready for Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A battery-powered, quarter-scale prototype of the solar-powered, remotely piloted Centurion flying wing sits on the lakebed at California's El Mirage Dry Lake before one of its early research flights in March 1997. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager

  10. MPACT Fast Neutron Multiplicity System Prototype Development

    SciTech Connect

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  11. Field evaluation of prototype electrofibrous filters

    SciTech Connect

    Kuhl, W.D.; Bergman, W.; Biermann, A.H.; Lum, B.Y.

    1982-09-30

    New prototype electrofibrous filters were designed, built and evaluated in laboratory tests and in field installations. Two prototypes were designed for use in nuclear ventilation ducts as prefilters to HEPA filters. One prototype is designed to be a permanent component of the ventilation system while the other is a disposable unit. The disposable electrofibrous prefilter was installed in the exhaust stream of a glove box in which barrels of uranium turnings are burned. Preliminary tests show the disposal prefilter is effectively prolonging the HEPA filter life. An earlier prototype of the rolling prefilter was upgraded to meet the increased requirements for installation in a nuclear facility. This upgraded prototype was evaluated in the fire test facility at LLNL and shown to be effective in protecting HEPA filters from plugging under the most severe smoke conditions. The last prototype described in this report is a recirculating air filter. After demonstrating a high performance in laboratory tests the unit was shipped to Savannah River where it is awaiting installation in a Pu fuel fabrication facility. An analysis of the particulate problem in Savannah River indicates that four recirculating air filter will save $172,000 per year in maintenance costs.

  12. Evaluation of Computer-Based Procedure System Prototype

    SciTech Connect

    Johanna Oxstrand; Katya Le Blanc; Seth Hays

    2012-09-01

    relevant for the task and situation at hand, which has potential consequences of taking up valuable time when operators must be responding to the situation, and potentially leading operators down an incorrect response path. Other challenges related to PBPs are the management of multiple procedures, place-keeping, finding the correct procedure for the task at hand, and relying on other sources of additional information to ensure a functional and accurate understanding of the current plant status (Converse, 1995; Fink, Killian, Hanes, & Naser, 2009; Le Blanc & Oxstrand, 2012). The main focus of this report is to describe the research activities conducted to address the remaining two objectives; Develop a prototype CBP system based on requirements identified and Evaluate the CBP prototype. The emphasis will be on the evaluation of an initial CBP prototype in at a Nuclear Power Plant.

  13. Seal Wire Integrity Verification Instrument: Evaluation of Laboratory Prototypes

    SciTech Connect

    Good, Morris S.; Skorpik, James R.; Kravtchenko, Victor; Wishard, Bernard; Prince, James M.; Pardini, Allan F.; Heasler, Patrick G.; Santiago-Rojas, Emiliano; Mathews, Royce; Khayyat, Sakher; Tanner, Jennifer E.; Undem, Halvor A.

    2009-10-07

    Tamper indicating devices (TIDs) provide evidence that sensitive items, to which they have been applied, have been tampered with or not. Passive wire-loop seals, a class of TIDs, are generally comprised of a multi-strand seal wire that is threaded through or around key features and a unique seal body that captures and restrains the seal wire. Seal integrity resides with unique identification of the seal and the integrity of the seal body and the seal wire. Upon inspection, the seal wire may be cut and the full length inspected. A new seal may be applied in the field as a replacement, if desired. Seal wire inspection typically requires visual and tactile examinations, which are both subjective. A need therefore exists to develop seal wire inspection technology that is easy to use in the field, is objective, provides an auditable data trail, and has low error rates. Expected benefits, if successfully implemented, are improved on-site inspection reliability and security. The work scope for this effort was restricted to integrity of seal wire used by the International Atomic Energy Agency (IAEA) and resulted in development of a wire integrity verification instrument (WIVI) laboratory prototype. Work included a performance evaluation of a laboratory-bench-top system, and design and delivery of two WIVI laboratory prototypes. The paper describes the basic physics of the eddy current measurement, a description of the WIVI laboratory prototype, and an initial evaluation performed by IAEA personnel. --- Funding was provided by the U.S. Program for Technical Assistance to IAEA Safeguards (POTAS).

  14. Multimedia extensions to prototyping software for machine vision

    NASA Astrophysics Data System (ADS)

    Batchelor, Bruce G.; Griffiths, Eric C.; Hack, Ralf; Jones, Andrew C.

    1996-10-01

    PIP (prolog image processing) is a prototyping tool, intended to assists designers of intelligent industrial machine vision systems. This article concentrates on the multi-media extensions to PIP, including: 1) on-line HELP, which allows the user to satisfy PIP goals from within the HELP facility, 2) lighting advisor, which gives advice to a vision engineer about which lighting/viewing arrangement is appropriate to use in a given situation, 3) device control, for operating a robot work cell, 4) speech input and (simple) natural language understanding, 5) speech synthesis, 6) remote operation of PIP via a local area network, and 7) remote operation of PIP via a local area network. At the time of writing, on-line access to PIP, via the Internet, is being developed.

  15. SAPPIRE: a prototype mobile tool for pressure ulcer risk assessment.

    PubMed

    Kim, Hyeoneui; Chung, Heejoon; Wang, Shuang; Jiang, Xiaoqian; Choi, Jeeyae

    2014-01-01

    Accurate assessment and documentation of skin conditions facilitate communication among care providers and are critical to effective prevention and mitigation of pressure ulcer. We report developing a prototype mobile system called SAPPIRE (Skin Assessment for Pressure Ulcer Prevention, an Integrated Recording Environment) for an android device to assist nurses with skin assessment and documentation at bedside. SAPPIRE demonstrates (1) data documentation conforming to the relevant terminology standards, (2) data exchange using Continuity of Care Records (CCR) standard and (3) smart display of patient data relevant to risk parameters to promote accurate pressure ulcer risk assessment with the Braden scale. Challenges associated standardizing assessment data faced during this development and the approaches that SAPPIRE took to overcome them are described.

  16. An MBS-Assisted Femtocell Transmit Power Control Scheme with Mobile User QoS Guarantee in 2-Tier Heterogeneous Femtocell Networks

    PubMed Central

    Yang, Chih-Cheng; Sheu, Shiann-Tsong

    2013-01-01

    This study investigates how to adjust the transmit power of femto base station (FBS) to mitigate interference problems between the FBSs and mobile users (MUs) in the 2-tier heterogeneous femtocell networks. A common baseline of deploying the FBS to increase the indoor access bandwidth requires that the FBS operation will not affect outdoor MUs operation with their quality-of-service (QoS) requirements. To tackle this technical problem, an FBS transmit power adjustment (FTPA) algorithm is proposed to adjust the FBS transmit power (FTP) to avoid unwanted cochannel interference (CCI) with the neighboring MUs in downlink transmission. FTPA reduces the FTP to serve its femto users (FUs) according to the QoS requirements of the nearest neighboring MUs to the FBS so that the MU QoS requirement is guaranteed. Simulation results demonstrate that FTPA can achieve a low MU outage probability as well as serve FUs without violating the MU QoS requirements. Simulation results also reveal that FTPA has better performance on voice and video services which are the major trend of future multimedia communication in the NGN. PMID:24391461

  17. An MBS-assisted femtocell transmit power control scheme with mobile user QoS guarantee in 2-tier heterogeneous femtocell networks.

    PubMed

    Chen, Jenhui; Yang, Chih-Cheng; Sheu, Shiann-Tsong

    2013-01-01

    This study investigates how to adjust the transmit power of femto base station (FBS) to mitigate interference problems between the FBSs and mobile users (MUs) in the 2-tier heterogeneous femtocell networks. A common baseline of deploying the FBS to increase the indoor access bandwidth requires that the FBS operation will not affect outdoor MUs operation with their quality-of-service (QoS) requirements. To tackle this technical problem, an FBS transmit power adjustment (FTPA) algorithm is proposed to adjust the FBS transmit power (FTP) to avoid unwanted cochannel interference (CCI) with the neighboring MUs in downlink transmission. FTPA reduces the FTP to serve its femto users (FUs) according to the QoS requirements of the nearest neighboring MUs to the FBS so that the MU QoS requirement is guaranteed. Simulation results demonstrate that FTPA can achieve a low MU outage probability as well as serve FUs without violating the MU QoS requirements. Simulation results also reveal that FTPA has better performance on voice and video services which are the major trend of future multimedia communication in the NGN.

  18. Results from prototype die-to-database reticle inspection system

    NASA Astrophysics Data System (ADS)

    Mu, Bo; Dayal, Aditya; Broadbent, Bill; Lim, Phillip; Goonesekera, Arosha; Chen, Chunlin; Yeung, Kevin; Pinto, Becky

    2009-03-01

    A prototype die-to-database high-resolution reticle defect inspection system has been developed for 32nm and below logic reticles, and 4X Half Pitch (HP) production and 3X HP development memory reticles. These nodes will use predominantly 193nm immersion lithography (with some layers double patterned), although EUV may also be used. Many different reticle types may be used for these generations including: binary (COG, EAPSM), simple tritone, complex tritone, high transmission, dark field alternating (APSM), mask enhancer, CPL, and EUV. Finally, aggressive model based OPC is typically used, which includes many small structures such as jogs, serifs, and SRAF (sub-resolution assist features), accompanied by very small gaps between adjacent structures. The architecture and performance of the prototype inspection system is described. This system is designed to inspect the aforementioned reticle types in die-todatabase mode. Die-to-database inspection results are shown on standard programmed defect test reticles, as well as advanced 32nm logic, and 4X HP and 3X HP memory reticles from industry sources. Direct comparisons with currentgeneration inspection systems show measurable sensitivity improvement and a reduction in false detections.

  19. The Helios Prototype aircraft at approximately 10,000 feet flying above cloud cover northwest of Kau

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Prototype to fly higher, longer and with a larger payload than the smaller craft. In addition, project engineers added a differential Global Positioning Satellite (GPS) system to improve navigation, an extensive turbulence monitoring system payload to record structural loads on the aircraft both in the air and on the ground, and radiator plates to assist in cooling the avionics at high altitudes where there is little air to dissipate heat. During 2000, more than 65,000 solar cells in 1,800 groups were mounted on the upper surface of Helios' wing. Produced by SunPower, Inc., these bi-facial silicon cells are about 19 percent efficient in the flight regime in which the helios is designed to operate, converting about 19 percent of the solar energy they receive into electrical current. The entire array is capable of producing a maximum output of about 35 kw at high noon on a summer day. The mission to reach and sustain flight at 100,000 feet in 2001 requires use of all 14 motors and minimal ballast to save weight, with the aircraft weighing in at only a little more than 1,600 lbs. The four-day mission above 50,000 feet envisioned for the Helios Prototype in 2003will see only eight motors powering the craft and the addition of the regenerative energy storage system now in development. The system will increase the Helios Prototype's flight weight to a little over 2,000 lbs. Fewer motors are needed for the long-endurance mission due to the lesser altitude requirements, and the excess electrical energy generated by the solar arrays during the daytime will be diverted to the hydrogen-oxygen fuel cell energy storage system, which will release the electricity to power the Helios after dark. With other system reliability improvements, production versions of the Helios are expected to fly missions lasting months at a time, becoming true 'atmospheric satellites.'

  20. The Helios Prototype aircraft in a northerly climb over Niihau Island, Hawaii, at about 8,000 feet a

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Prototype to fly higher, longer and with a larger payload than the smaller craft. In addition, project engineers added a differential Global Positioning Satellite (GPS) system to improve navigation, an extensive turbulence monitoring system payload to record structural loads on the aircraft both in the air and on the ground, and radiator plates to assist in cooling the avionics at high altitudes where there is little air to dissipate heat. During 2000, more than 65,000 solar cells in 1,800 groups were mounted on the upper surface of Helios' wing. Produced by SunPower, Inc., these bi-facial silicon cells are about 19 percent efficient in the flight regime in which the helios is designed to operate, converting about 19 percent of the solar energy they receive into electrical current. The entire array is capable of producing a maximum output of about 35 kw at high noon on a summer day. The mission to reach and sustain flight at 100,000 feet in 2001 requires use of all 14 motors and minimal ballast to save weight, with the aircraft weighing in at only a little more than 1,600 lbs. The four-day mission above 50,000 feet envisioned for the Helios Prototype in 2003will see only eight motors powering the craft and the addition of the regenerative energy storage system now in development. The system will increase the Helios Prototype's flight weight to a little over 2,000 lbs. Fewer motors are needed for the long-endurance mission due to the lesser altitude requirements, and the excess electrical energy generated by the solar arrays during the daytime will be diverted to the hydrogen-oxygen fuel cell energy storage system, which will release the electricity to power the Helios after dark. With other system reliability improvements, production versions of the Helios are expected to fly missions lasting months at a time, becoming true 'atmospheric satellites.'

  1. Centurion Quarter-scale Prototype Pre-flight Checkout

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Technicians perform pre-test checks of a battery-powered quarter-scale prototype of the remotely-piloted Centurion flying wing during taxi tests In March 1997 at California's El Mirage Dry Lake. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered

  2. Centurion Quarter-scale Prototype Pre-flight Checklist

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Centurion designer Bill Parks and remote pilot Wyatt Sadler go over the checklist for a test flight of the battery-powered quarter-scale prototype of the Centurion flying wing during taxi tests in March 1997 at California's El Mirage Dry Lake. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del

  3. Centurion Quarter-scale Prototype Pre-flight Taxi Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As crewmen jog and cycle alongside, a battery-powered, quarter-scale prototype of the remotely-piloted Centurion flying wing rolls across the El Mirage Dry Lake during pre-flight taxi tests. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered

  4. Centurion Quarter-scale Prototype Prepared for Taxi Tests

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As sunlight breaks over Southern California's El Mirage Dry Lake, Crew members prepare a battery-powered quarter-scale prototype of the remotely-piloted Centurion flying wing for a taxi test. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered

  5. Expert system prototype developments for NASA-KSC business and engineering applications

    NASA Technical Reports Server (NTRS)

    Ragusa, James M.; Gonzalez, Avelino J.

    1988-01-01

    Prototype expert systems developed for a variety of NASA projects in the business/management and engineering domains are discussed. Business-related problems addressed include an assistant for simulating launch vehicle processing, a plan advisor for the acquisition of automated data processing equipment, and an expert system for the identification of customer requirements. Engineering problems treated include an expert system for detecting potential ignition sources in LOX and gaseous-oxygen transportation systems and an expert system for hazardous-gas detection.

  6. Pacific Northwest Electric Power Planning and Conservation Act : Legislative History of the Act to Assist the Electrical Consumers of the Pacific Northwest through use of the Federal Columbia River Power System to Achieve Cost-Effective Energy Conservation : P.L. 96-501, 94 Stat. 2697.

    SciTech Connect

    United States. Bonneville Power Administration.

    1981-01-01

    The Pacific Northwest Electric Power Planning and Conservation Act became effective when it was signed into law by President Carter on December 5, 1980. This ended a four-year debate over legislation designed to plan and coordinate the region's energy future. This legislative history is an abbreviated version taken from the larger historical file maintained by the BPA Law Library. It is intended to assist BPA personnel and others who are studying the Northwest Power Act and working on its implementation. The documents included were selected for their value in determining what Congress meant in enacting the statute and to provide the researcher with a starting point for further investigation. These documents include: a history of the Act, a chronology of the legislative action leading to passage of the law; a section-by-section analysis of the Act; the Congressional Records of Senate and House debates on the bill and its amendments, and a list of Congressional committee hearings.

  7. A world-to-chip socket for microfluidic prototype development

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Maeda, Ryutaro

    2002-11-01

    This paper reports a prototype for a standard connector between a microfluidic chip and the macro world. This prototype is the first to demonstrate a fully functioning socket for a microchip to access the outside world by means of fluids, data and energy supply, as well as providing process visibility. It has 20 channels for the input and output of liquids or gases, as well as compressed air or vacuum lines for pneumatic power lines. It also contains 42 pins for electrical signals and power. All these connections were designed in a planar configuration with linear orthogonal arrays. The vertical space was opened for optical measurement and evaluation. The die (29.1 mm x 27.5 mm x 0.9 mm) can be easily mounted and dismounted from the socket. No adhesives or solders are used at any contact points. The pressure limit for the connection of working fluids was 0.2 MPa and the current limit for the electrical connections was 1 A. This socket supports both serial and parallel processing applications. It exhibits great potential for developing microfluidic system efficiently.

  8. The energy performance of prototype holographic glazings

    NASA Astrophysics Data System (ADS)

    Papamichael, K.; Beltran, L.; Furler, R.; Lee, E. S.; Selkowitz, S.; Rubin, M.

    1993-02-01

    We report on the simulation of the energy performance of prototype holographic glazings in commercial office buildings in a California climate. These prototype glazings, installed above conventional side windows, are designed to diffract the transmitted solar radiation and reflect it off the ceiling, providing adequate daylight illumination for typical office tasks up to 10m from the window. In this study, we experimentally determined a comprehensive set of solar-optical properties and characterized the contribution of the prototype holographic glazings to workplane illuminance in a scale model of a typical office space. We then used the scale model measurements to simulate the energy performance of the holographic glazings over the course of an entire year for four window orientations (North, East, South and West) for the inland Los Angeles climate, using the DOE-2.lD building energy analysis computer program. The results of our experimental analyses indicate that these prototype holographic glazings diffract only a small fraction of the incident light. The results of this study indicate that these prototype holographic glazings will not save energy in commercial office buildings. Their performance is very similar to that of clear glass, which, through side windows, cannot efficiently illuminate more than a 4-6 m depth of a building's perimeter, because the cooling penalties due to solar heat gain are greater than the electric lighting savings due to daylighting.

  9. The O2-assisted Al/CO2 electrochemical cell: A system for CO2 capture/conversion and electric power generation

    PubMed Central

    Al Sadat, Wajdi I.; Archer, Lynden A.

    2016-01-01

    Economical and efficient carbon capture, utilization, and sequestration technologies are a requirement for successful implementation of global action plans to reduce carbon emissions and to mitigate climate change. These technologies are also essential for longer-term use of fossil fuels while reducing the associated carbon footprint. We demonstrate an O2-assisted Al/CO2 electrochemical cell as a new approach to sequester CO2 emissions and, at the same time, to generate substantial amounts of electrical energy. We report on the fundamental principles that guide operations of these cells using multiple intrusive electrochemical and physical analytical methods, including chronopotentiometry, cyclic voltammetry, direct analysis in real-time mass spectrometry, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and coupled thermogravimetric analysis–Fourier transform infrared spectroscopy. On this basis, we demonstrate that an electrochemical cell that uses metallic aluminum as anode and a carbon dioxide/oxygen gas mixture as the active material in the cathode provides a path toward electrochemical generation of a valuable (C2) species and electrical energy. Specifically, we show that the cell first reduces O2 at the cathode to form superoxide intermediates. Chemical reaction of the superoxide with CO2 sequesters the CO2 in the form of aluminum oxalate, Al2(C2O4)3, as the dominant product. On the basis of an analysis of the overall CO2 footprint, which considers emissions associated with the production of the aluminum anode and the CO2 captured/abated by the Al/CO2-O2 electrochemical cell, we conclude that the proposed process offers an important strategy for net reduction of CO2 emissions. PMID:27453949

  10. The O2-assisted Al/CO2 electrochemical cell: A system for CO2 capture/conversion and electric power generation.

    PubMed

    Al Sadat, Wajdi I; Archer, Lynden A

    2016-07-01

    Economical and efficient carbon capture, utilization, and sequestration technologies are a requirement for successful implementation of global action plans to reduce carbon emissions and to mitigate climate change. These technologies are also essential for longer-term use of fossil fuels while reducing the associated carbon footprint. We demonstrate an O2-assisted Al/CO2 electrochemical cell as a new approach to sequester CO2 emissions and, at the same time, to generate substantial amounts of electrical energy. We report on the fundamental principles that guide operations of these cells using multiple intrusive electrochemical and physical analytical methods, including chronopotentiometry, cyclic voltammetry, direct analysis in real-time mass spectrometry, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and coupled thermogravimetric analysis-Fourier transform infrared spectroscopy. On this basis, we demonstrate that an electrochemical cell that uses metallic aluminum as anode and a carbon dioxide/oxygen gas mixture as the active material in the cathode provides a path toward electrochemical generation of a valuable (C2) species and electrical energy. Specifically, we show that the cell first reduces O2 at the cathode to form superoxide intermediates. Chemical reaction of the superoxide with CO2 sequesters the CO2 in the form of aluminum oxalate, Al2(C2O4)3, as the dominant product. On the basis of an analysis of the overall CO2 footprint, which considers emissions associated with the production of the aluminum anode and the CO2 captured/abated by the Al/CO2-O2 electrochemical cell, we conclude that the proposed process offers an important strategy for net reduction of CO2 emissions.

  11. Medical Assistants

    MedlinePlus

    ... medical assistants often fill out insurance forms or code patients’ medical information. They often answer telephones and ... charts and diagnoses. They may be required to code a patient’s medical records for billing purposes. Detail ...

  12. 16 CFR 1633.4 - Prototype testing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Prototype testing requirements. 1633.4... STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS The Standard § 1633.4 Prototype testing... prototype, unless the manufacturer complies with the prototype pooling and confirmation testing...

  13. Homogeneous deposition-assisted synthesis of iron-nitrogen composites on graphene as highly efficient non-precious metal electrocatalysts for microbial fuel cell power generation

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Jin, Xiao-Jun; Dionysiou, Dionysios D.; Liu, Hong; Huang, Yu-Ming

    2015-03-01

    This work proposed a novel strategy for synthesizing highly efficient non-precious metal oxygen reduction reaction (ORR) electrocatalysts. Fe complexes were homogeneously deposited (HD) on graphene oxide through in situ hydrolysis of urea, followed by two-step pyrolysis under Ar and NH3 atmospheres, resulting in formation of Fe- and N-functionalized graphene (HD-FeN/G). The morphology, crystalline structure and elemental composition of HD-FeN/G were characterized. ORR activity was evaluated by using a rotary disk electrode (RDE) electrochemical system. HD improved the loading and distribution of the Fe-Nx composites on graphene. The ORR activity of the as-prepared HD-FeN/G in neutral medium was comparable to that of the state-of-the-art commercial Pt/C and significantly superior to a FeN/G counterpart produced via traditional approach. The ORR electron transfer number of HD-FeN/G was as high as 3.83 ± 0.08, which suggested that ORR catalysis proceeds through a four-electron pathway. HD-FeN/G was used as a cathodic electrocatalyst in microbial fuel cells (MFCs), and the resultant HD-FeN/G-MFC showed comparable voltage output and maximum power density to those of Pt/C-MFC. The HD-FeN/G-MFC achieved a maximum power density of 885 mW m-2, which was much higher than that of FeN/G-MFC (708 mW m-2). These findings demonstrate that HD-FeN/G produced through the novel synthesis strategy proposed in this work would be a good candidate as cathodic electrocatalyst in MFCs.

  14. NEON Citizen Science: Planning and Prototyping

    NASA Astrophysics Data System (ADS)

    Newman, S. J.; Henderson, S.; Gardiner, L. S.; Ward, D.; Gram, W.

    2011-12-01

    The National Ecological Observatory Network (NEON) will be a national resource for ecological research and education. NEON citizen science projects are being designed to increase awareness and educate citizen scientists about the impacts of climate change, land-use change, and invasive species on continental-scale ecological processes as well as expand NEON data collection capacity by enabling laypersons to collect geographically distributed data. The citizen science area of the NEON web portal will enable citizen scientists to collect, contribute, interpret, and visualize scientific data, as well as access training modules, collection protocols and targeted learning experiences related to citizen science project topics. For NEON, citizen science projects are a means for interested people to interact with and contribute to NEON science. Investigations at vast spatial and temporal scales often require rapid acquisition of large amounts of data from a geographically distributed population of "human sensors." As a continental-scale ecological observatory, NEON is uniquely positioned to develop strategies to effectively integrate data collected by non-scientists into scientific databases. Ultimately, we plan to work collaboratively to transform the practice of science to include "citizens" or non-scientists in the process. Doing science is not limited to scientists, and breaking down the barriers between scientists and citizens will help people better understand the power of using science in their own decision making. In preparation for fully developing the NEON citizen science program, we are partnering with Project BudBurst (PBB), a citizen science project focused on monitoring plant phenology. The educational goals of PBB are to: (1) increase awareness of climate change, (2) educate citizen scientists about the impacts of climate change on plants and the environment, and (3) increase science literacy by engaging participants in the scientific process. Phenology was

  15. NEON Citizen Science: Planning and Prototyping (Invited)

    NASA Astrophysics Data System (ADS)

    Gram, W.

    2010-12-01

    The National Ecological Observatory Network (NEON) will be a national resource for ecological research and education. NEON citizen science projects are being designed to increase awareness and educate citizen scientists about the impacts of climate change, land-use change, and invasive species on continental-scale ecological processes as well as expand NEON data collection capacity by enabling laypersons to collect geographically distributed data. The citizen science area of the NEON web portal will enable citizen scientists to collect, contribute, interpret, and visualize scientific data, as well as access training modules, collection protocols and targeted learning experiences related to citizen science project topics. For NEON, citizen science projects are a means for interested people to interact with and contribute to NEON science. Investigations at vast spatial and temporal scales often require rapid acquisition of large amounts of data from a geographically distributed population of “human sensors.” As a continental-scale ecological observatory, NEON is uniquely positioned to develop strategies to effectively integrate data collected by non-scientists into scientific databases. Ultimately, we plan to work collaboratively to transform the practice of science to include “citizens” or non-scientists in the process. Doing science is not limited to scientists, and breaking down the barriers between scientists and citizens will help people better understand the power of using science in their own decision making. In preparation for fully developing the NEON citizen science program, we are partnering with Project BudBurst (PBB), a citizen science project focused on monitoring plant phenology. The educational goals of PBB are to: (1) increase awareness of climate change, (2) educate citizen scientists about the impacts of climate change on plants and the environment, and (3) increase science literacy by engaging participants in the scientific process

  16. Piezoelectrically assisted ultrafiltration

    SciTech Connect

    Ahner, N.; Gottschlich, D.; Narang, S.; Roberts, D.; Sharma, S.; Ventura, S.

    1993-01-01

    The authors have demonstrated the feasibility of using piezoelectrically assisted ultrafiltration to reduce membrane fouling and enhance the flux through ultrafiltration membranes. A preliminary economic evaluation, accounting for the power consumption of the piezoelectric driver and the extent of permeate flow rate enhancement, has also shown that piezoelectrically assisted ultrafiltration is cost effective and economically competitive in comparison with traditional separation processes. Piezoelectric transducers, such as a piezoelectric lead zirconate titanate (PZT) disc or a piezoelectric horn, driven by moderate power, significantly enhance the permeate flux on fouled membranes, presumably because they promote local turbulence. Several experiments were conducted on polysulfone and regenerated cellulose UF membranes fouled during filtration of model feed solutions. Solutions of poly(ethylene glycol) and of high-molecular weight dextran were used as models. The authors found that they could significantly increase the permeate flux by periodically driving the piezoelectric transducer, horn or PZT disc, by application of moderate power over short periods of time, from 20 to 90 seconds. Enhancements as high as a factor of 8 were recorded within a few seconds, and enhanced permeate fluxes were maintained over a prolonged period (up to 3 hours). The prolonged flux enhancement makes it feasible to drive the piezoelectric transducer intermittently, thereby reducing the power consumption of the piezoelectric driver. As piezoelectric drivers of sonically assisted ultrafiltration, PZT disc transducers are preferred over the piezoelectric horn because of their small size and ease of adaptability to ultrafiltration test cells. The horn transmits sonic energy to the UF membrane through a titanium element driven by a separate piezoelectric transducer, but a piezoelectric ceramic disc transmits energy directly to the UF membrane.

  17. Mechanical cardiac assistance.

    PubMed

    Sezai, Y

    1998-08-01

    In our institute, we have intensively introduced both pulsatile and non-pulsatile mechanical cardiac assist devices, such as the pneumatic ventricular assist device (VAD) and percutaneous cardiopulmonary support (PCPS), using a centrifugal pump. From various kinds of clinical views, these cases were estimated and evaluated retrospectively according to the weaning results, long-term survival rate and cause of death. Based upon our experiences and clinical results, an alternate strategy of mechanical cardiac assistance for severe heart failure is suggested as follows. In the case of post-cardiotomy cardiogenic shock or low output syndrome, PCPS system should be applied firstly under intra-aortic balloon pumping (IABP) assist for a maximum of 2-3 days. If the native cardiac function does not recover and more long-term support is needed, several types of VAD, which are more powerful and durable devices should be introduced, according to end organ function and expected support duration. In order to obtain better clinical results, we have to select an appropriate device depending on the limited availability of supporting duration. Generally speaking, centrifugal pumps can support in short-term duration, while pulsatile devices cover the broad spectrum of the supporting period. Pneumatic VADs can cover short-term to long-term support up to a year, and electric VADs can cover over 1 year, and can be used as a bridge to heart transplantation.

  18. Advance prototype silver ion water bactericide system

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Allen, E. T.

    1974-01-01

    An advance prototype unit was designed and fabricated to treat anticipated fuel cell water. The unit is a single canister that contains a membrane-type prefilter and a silver bromide contacting bed. A seven day baseline simulated mission test was performed; the performance was satisfactory and the effluent water was within all specifications for potability. After random vibrations another seven day simulated mission test was performed, and results indicate that simulated launch vibrations have no effects on the design and performance of the advanced prototype. Bench tests and accelerated breadboard tests were conducted to define the characteristics of an upgraded model of the advance prototype unit which would have 30 days of operating capability. A preliminary design of a silver ion generator for the shuttle orbiter was also prepared.

  19. NASA DFRC Practices for Prototype Qualification

    NASA Technical Reports Server (NTRS)

    Lokos, William A.

    2009-01-01

    This slide presentation reviews the practices that Dryden uses for qualification of the prototypes of aircraft. There are many views of aircraft that Dryden has worked with. Included is a discussion of basic considerations for strength, a listing of standards and references, a discussion of typical safety of flight approaches, a discussion of the prototype design, using the X-29A as an example, and requirements for new shapes (i.e., the DAST-ARW1 , F-8 Super Critical Wing, AFTI/F-111 MAW), new control laws (i.e., AAW F-18), new operating envelope (i.e., F-18 HARV), limited sope add-on or substitute structure (i.e., SR-71 LASRE, ECLIPSE, F-16XL SLFC), and extensively modified or replaced structure (i.e., SOFIA, B747SP). There is a listing of causes for the failure of the prototype.

  20. Preliminary test results of LAr prototype detector

    NASA Astrophysics Data System (ADS)

    Li, Pei-Xian; Guan, Meng-Yun; Yang, Chang-Gen; Zhang, Peng; Liu, Jin-Chang; Zhang, Yong-Peng; Guo, Cong; Wang, Yi

    2016-11-01

    Liquid argon (LAr) is an attractive target for the direct detection of WIMPs. A LAr prototype detector was designed to study the technology and properties of LAr detectors. The prototype detector had an active volume containing 0.65 kg of liquid argon. A liquid nitrogen (LN) cooling system allowed the temperature fluctuation of the liquid argon to be controlled within less than 0.1 K during a one month run. In the 22Na calibration run, the LAr prototype obtained 1.59±0.02 p.e./keV light yield for 511 keV gamma rays using a domestic-made argon purification system. Supported by China Ministry of Science and Technology (2010CB833003), National Nature Science Foundation of China, Youth Science Found (11305188)

  1. Water Powered Tools

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Space Spin-Offs, Inc. under a contract with Lewis Research Center and Marshall Space Flight Center produced a new water-powered saw that cuts through concrete and steel plate reducing danger of explosion or electric shock in rescue and other operations. In prototype unit efficient water-powered turbine drives an 8 inch diameter grinding disk at 6,600 rpm. Exhaust water cools disk and workpiece quenching any sparks produced by cutting head. At maximum power, tool easily cuts through quarter inch steel plate. Adapter heads for chain saws, impact wrenches, heavy duty drills, and power hack saws can be fitted.

  2. Dielectric assist accelerating structure

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  3. Accelerator Tests of the KLEM Prototypes

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J. H.; Bashindzhagyan, P.; Baranova, N.; Christl, M.; Chilingarian, A.; Chupin, I.; Derrickson, J.; Drury, L.; Egorov, N.

    2003-01-01

    The Kinematic Lightweight Energy Meter (KLEM) device is planned for direct measurement of the elemental energy spectra of high-energy (10(exp 11)-10(exp 16) eV) cosmic rays. The first KLEM prototype has been tested at CERN with 180 GeV pion beam in 2001. A modified KLEM prototype will be tested in proton and heavy ion beams to give more experimental data on energy resolution and charge resolution with KLEM method. The first test results are presented and compared with simulations.

  4. Operational prototyping a tool for delivering value.

    PubMed

    Flink, Rebecca

    2014-06-01

    Operational prototyping is a disciplined approach to developing best practices that enable an organization to enhance value through improved quality of care and reduced costs. The aim of operational prototyping is to fine-tune performance to the level of best practices by considering every element involved in a care process, including the design of the facilities required to support the process. The broad goal of this approach is to be able to standardize and replicate the identified best practices in every location across a health system.

  5. An artificial intelligence system for assisting nuclear power plant operators in the diagnosis of the response to plant faults and transients

    SciTech Connect

    Hajek, B.K.; Stasenko, J.E.; Bhatnagar, R.; Hashemi, S.

    1987-01-01

    An artificial intelligence system is being developed using the Conceptual Structures and Representation Language (CSRL) developed at The Ohio State University Laboratory for Artificial Intelligence Research (LAIR). This system combines three subsystems, which have been independently developed to perform the following tasks: (1) detecting changes in the state of the plant that may lead to conditions requiring operator response and then managing the actions taken by the other two subsystems, (2) diagnosing the plant status independent of alarm states by analyzing the status of basic operating parameters, such as flow rates, pressures, temperatures, and water levels, and providing a determination of the validity of sensor indications, and (3) providing and/or synthesizing an appropriate procedure for the operator to follow to correct the transient of abnormal state of the plant. These three system are tied into the main plant computers, including both the process computer and the safety parameter and display system computer, through the use of a compatible data base. The system is being developed using the Perry Nuclear Power Plant (a BWR/6) as the reference plant, and the General Electric ERIS and GEPAC Plus systems as key data sources. Scenarios are run on by the Perry plant referenced simulator for testing of the artificial intelligence system. Future testing plans call for the system to be interfaced directly to the Perry simulator.

  6. An artificial intelligence system for assisting nuclear power plant operators in the diagnosis of and response to plant faults and transients

    SciTech Connect

    Hajek, B.K.; Stasenko, J.E.; Bhatnagar, R.; Hashemi, S.

    1987-12-01

    This report discusses the Artificial Intelligence (AI) system being developed using the Conceptual Structures and Representation Language (CSRL) developed at the Ohio State University Laboratory for Artificial Intelligence Research (LAIR). This system combines three sub-systems which have been independently developed to perform the tasks of: detecting changes in the state of the plant that may lead to conditions requiring operator response, and then managing the actions taken by the other two subsystems; diagnosing the plant status independent of alarm states by analyzing the status of basic operating parameters such as flow rates, pressures, temperatures, and water levels, and providing a determination of the validity of sensor indications; and providing and/or synthesizing an appropriate procedure for the operator to follow to correct the transient or abnormal state of the plant. These three systems are tied into the main plant computers, including both the process computer and the safety parameter and display system computer, through the use of a compatible database. The architecture of the system is shown in Figure 1. The system is being developed using the Perry Nuclear Power Plant (a BWR/6) as the reference plant, and the General Electric ERIS and GEPAC Plus systems as key data sources. Scenarios are run on the Perry plant referenced simulator for testing of the AI system. Future testing plans call for the system to be interfaced directly to the Perry simulator.

  7. All-optical SOA-based wavelength converter assisted by optical filters with wide operation wavelength and large dynamic input power range

    NASA Astrophysics Data System (ADS)

    Li, J.; Wang, J.; Marculescu, A.; Vorreau, P.; Zhang, Z.; Freude, W.; Leuthold, J.

    2008-11-01

    All-optical wavelength converters (AOWCs) based on nonlinear processes of semiconductor optical amplifiers (SOAs) have attracted interest to overcome the wavelength blocking issues in future transparent networks. While many schemes work well, pattern effect impairments that are due to the finite lifetime of charge carriers are an issue most of the time. Recently, wavelength conversion and pattern effect mitigation techniques that work by properly shaping the passband of filters following the converter have been introduced. However, due to the necessity of selecting filter slope and position precisely, one would expect that the schemes are extremely sensitive to any drift of the center wavelength. In this work, we demonstrate a 40 Gbit/s SOA-based wavelength converter with more than 15 dB dynamic input power range. In addition, the center wavelength of the converted signal has a tolerance of ~0.2 nm towards the red spectral region and of ~0.1nm towards blue spectral region, respectively. This success is due to combining advantageously pattern effect mitigation techniques connected to the pulse reformatting optical filter, the red-shift and the blue-shift optical filter.

  8. Evaluation of the Oxygen Concentrator Prototypes: Pressure Swing Adsorption Prototype and Electrochemical Prototype

    NASA Technical Reports Server (NTRS)

    Gilkey, Kelly M.; Olson, Sandra L.

    2015-01-01

    An oxygen concentrator is needed to provide enriched oxygen in support of medical contingency operations for future exploration human spaceflight programs. It would provide continuous oxygen to an ill or injured crew member in a closed cabin environment. Oxygen concentration technology is being pursued to concentrate oxygen from the ambient environment so oxygen as a consumable resource can be reduced. Because oxygen is a critical resource in manned spaceflight, using an oxygen concentrator to pull oxygen out of the ambient environment instead of using compressed oxygen can provide better optimization of resources. The overall goal of this project is to develop an oxygen concentrator module that minimizes the hardware mass, volume, and power footprint while still performing at the required clinical capabilities. Should a medical event occur that requires patient oxygenation, the release of 100 percent oxygen into a small closed cabin environment can rapidly raise oxygen levels to the vehicles fire limit. The use of an oxygen concentrator to enrich oxygen from the ambient air and concentrate it to the point where it can be used for medical purposes means no oxygen is needed from the ultra-high purity (99.5+% O2) oxygen reserve tanks. By not adding oxygen from compressed tanks to the cabin environment, oxygen levels can be kept below the vehicle fire limit thereby extending the duration of care provided to an oxygenated patient without environmental control system intervention to keep the cabin oxygen levels below the fire limits. The oxygen concentrator will be a Food and Drug Administration (FDA) clearable device. A demonstration unit for the International Space Station (ISS) is planned to verify the technology and provide oxygen capability. For the ISS, the demonstration unit should not exceed 10 kg (approximately 22 lb), which is the soft stowage mass limit for launch on resupply vehicles for the ISS. The unit's size should allow for transport within the

  9. Validation of thermal models for a prototypical MEMS thermal actuator.

    SciTech Connect

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2008-09-01

    This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the

  10. Indoor Free Space Optic: a new prototype, realization and evaluation

    NASA Astrophysics Data System (ADS)

    Bouchet, Olivier; Besnard, Pascal; Mihaescu, Adrian

    2008-08-01

    The Free Space Optic (FSO) communication is a daily reality used by an increasing number of companies. For indoor environment, optical wireless communication becomes a good alternative with respect to radio proposals. For both technologies, the architecture is similar: emission/reception base station (Gateway or Bridge) are installed to cover zones, which are defined to ensure a quality of service. The customers may be connected to the Wireless Local Area Network (WLAN) with an adapter or module that emits and receives on this network. But due to its specific characteristics, wireless optical technology could present important advantages such as: Transmitted data security, medical immunity, high data rate, etc... Nevertheless, the optical system may have a limit on the network management aspect and link budget. The scope of this paper is to present a proposal at crossroads between optical fibre telecom system and data processing. In this document, we will present a prototype developed in Brittany during a regional collaborative project (Techim@ges). In order to answer to the management aspect and the link budget, this prototype uses an optical multiplexing technique in 1550 nm band: the Wavelength Division Multiple Access (WDMA). Moreover it also proposes a new class 1 high power emission solution. This full duplex system transmits these various wavelengths in free space, by using optical Multiplexer/Demultiplexer and optical modules. Each module has a defined and personal wavelength associated to the terminal identification (addresses MAC or IP). This approach permits a data rate at a minimum of a ten's Mbit/s per customer and potentially hundred Mbps for a line of sight system. The application field for the achieved and proposed prototype is potentially investigated from WLAN to WPAN.

  11. A Kinect-Based Real-Time Compressive Tracking Prototype System for Amphibious Spherical Robots

    PubMed Central

    Pan, Shaowu; Shi, Liwei; Guo, Shuxiang

    2015-01-01

    A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system. PMID:25856331

  12. A Kinect-based real-time compressive tracking prototype system for amphibious spherical robots.

    PubMed

    Pan, Shaowu; Shi, Liwei; Guo, Shuxiang

    2015-04-08

    A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system.

  13. Integrating Rapid Prototyping into Graphic Communications

    ERIC Educational Resources Information Center

    Xu, Renmei; Flowers, Jim

    2015-01-01

    Integrating different science, technology, engineering, and mathematics (STEM) areas can help students learn and leverage both the equipment and expertise at a single school. In comparing graphic communications classes with classes that involve rapid prototyping (RP) technologies like 3D printing, there are sufficient similarities between goals,…

  14. Conceptual Design of a Prototype LSST Database

    SciTech Connect

    Nikolaev, S; Huber, M E; Cook, K H; Abdulla, G; Brase, J

    2004-10-07

    This document describes a preliminary design for Prototype LSST Database (LSST DB). They identify key components and data structures and provide an expandable conceptual schema for the database. The authors discuss the potential user applications and post-processing algorithm to interact with the database, and give a set of example queries.

  15. Prototype air flat-plate solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Four reports trace development from preliminary design through delivery of hardware. Developmental test, including airflow, air temperature, and efficiency are discussed in reports, as are qualification tests on prototypes and final acceptance tests. Qualification test program includes measurements tests, and structural analysis.

  16. Design data brochure: SIMS prototype system 2

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Information is provided on the design and performance of the IBM SIMS Prototype System 2, solar domestic hot water system, for single family residences. The document provides sufficient data to permit procurement, installation, operation, and maintenance by qualified architectural engineers or contractors.

  17. Marine Natural Products as Prototype Agrochemical Agents

    PubMed Central

    Peng, Jiangnan; Shen, Xiaoyu; El Sayed, Khalid A.; Dunbar, D. C Harles; Perry, Tony L.; Wilkins, Scott P.; Hamann, Mark T.; Bobzin, Steve; Huesing, Joseph; Camp, Robin; Prinsen, Mike; Krupa, Dan; Wideman, Margaret A.

    2016-01-01

    In the interest of identifying new leads that could serve as prototype agrochemical agents, 18 structurally diverse marine-derived compounds were examined for insecticidal, herbicidal, and fungicidal activities. Several new classes of compounds have been shown to be insecticidal, herbicidal, and fungicidal, which suggests that marine natural products represent an intriguing source for the discovery of new agrochemical agents. PMID:12670165

  18. Utilizing Rapid Prototyping for Architectural Modeling

    ERIC Educational Resources Information Center

    Kirton, E. F.; Lavoie, S. D.

    2006-01-01

    This paper will discuss our approach to, success with and future direction in rapid prototyping for architectural modeling. The premise that this emerging technology has broad and exciting applications in the building design and construction industry will be supported by visual and physical evidence. This evidence will be presented in the form of…

  19. Prototype solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of monthly status reports on the development of eight prototype solar heating and cooling systems is presented. The effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3, 25, and 75 ton size units.

  20. Installation package - SIMS prototype system 1A

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This report consists of details for the installation, operation and maintenance of a prototype heating and hot water system, designed for residential or light commercial applications. This system consists of the following subsystems: air type collectors, pebble bed thermal storage, air handling unit, air to water heat exchanger, hot water preheat tank, auxiliary energy, ducting system.

  1. LSST data pipeline prototyping plans and strategy

    SciTech Connect

    Abdulla, G M; Brase, J; Cook, K; Miller, M

    2004-05-27

    In this document we describe our approach and strategy for building the prototype for the image-stream analysis data pipeline. We start by describing the main research areas upon which we will be focusing; we then describe our plans on how to carry these research ideas to implement the data pipeline.

  2. Experimental prototype instruments for nondestructive testing

    SciTech Connect

    Smolyakova, L.E.

    1987-10-01

    Results are given of state acceptance tests on experimental prototype nondestructive testing instruments along with their technical specifications and advantages over the better Soviet and foreign counterparts. The instruments include the UF-10P ultrasonic hydrostatic testing instrument, the PRIZ-12 piezoelectric transducer, and the RTVK-2K and LEB-1K radioisotope thickness gages.

  3. Automatic TLI recognition system beta prototype testing

    SciTech Connect

    Lassahn, G.D.

    1996-06-01

    This report describes the beta prototype automatic target recognition system ATR3, and some performance tests done with this system. This is a fully operational system, with a high computational speed. It is useful for findings any kind of target in digitized image data, and as a general purpose image analysis tool.

  4. A Prototype Expert System for Fishway Design.

    ERIC Educational Resources Information Center

    Bender, Michael J.; And Others

    1992-01-01

    Describes the development of a prototype expert system to recommend the most suitable type of fishway for given design conditions. Recommendations are provided on the basis of fishway hydraulics, fish passage performance, and cost requirements. An appendix provides an example consultation. (MDH)

  5. PyTrilinos Rapid Prototyping Package

    SciTech Connect

    Spotz, William F.

    2005-03-01

    PyTrilinos provides access to selected Trilinos packages from the python scripting language. This allows interactive and dynamic creation of Trilinos objects, rapid prototyping that does not require compilation, and "gluing" Trilinos scripts to other python modules, such as plotting, etc. The currently supported packages are Epetra, EpetraExt, and NOX.

  6. Integration of rapid prototyping into product development

    SciTech Connect

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1993-12-31

    Sandia National Laboratories is a vertically multi-disciplined research and development laboratory with a long history of designing and developing d electro-mechanical products in the national interest. Integrating new technologies into the prototyping phase of our development cycle is necessary to reduce the cycle time from initial design to finished product. The introduction of rapid prototyping machines into the marketplace promises to revolutionize the process of producing prototype parts with relative speed and production-like quality. Issues of accuracy, feature definition, and surface finish continue to drive research and development of these processes. Sandia uses Stereolithography (SL) and Selective Laser Sintering (SLS) capabilities to support internal product development efforts. The primary use of SL and SLS is to produce patterns for investment casting in support of a Sandia managed program called FASTCAST that integrates computational technologies and experimental data into the investment casting process. These processes are also used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit-check models, visual aids for manufacturing, and functional parts in assemblies. This presentation will provide an overview of the SL and SLS processes and an update of our experience and success in integrating these technologies into the product development cycle. Also presented will be several examples of prototype parts manufactured using SL and SLS with a focus on application, accuracy, surface and feature definition.

  7. Hazard Communication and Training. A Prototype.

    ERIC Educational Resources Information Center

    Barry, Dana M.

    1987-01-01

    Describes a prototype hazard communication and training program for manufacturers. Discusses the necessary ingredients of such a program, including chemical inventorying, labeling hazardous chemicals, maintaining a current file of material safety data sheets, and written training programs. Includes samples of material safety data sheets, labeling…

  8. A Prototype Grammar Kit in Prolog.

    ERIC Educational Resources Information Center

    Kahn, Kenneth M.

    1984-01-01

    Presents a prototype of a computerized grammar kit written in PROLOG and designed for children interested in exploring language. PROLOG's advantages for building parsers, generators, translators, and question-answering systems are discussed, and a scenario of a child working on a grammar project using the kit and implementation issues are…

  9. Rapid prototyping applications at Sandia National Laboratories

    SciTech Connect

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1994-02-01

    In an effort to reduce the cycle time for producing prototypical mechanical and electro-mechanical components, Sandia National Laboratories has integrated rapid prototyping processes into the design and manufacturing process. The processes currently in operation within the Rapid Prototyping Laboratory are Stereolithography (SL), Selective Laser Sintering (SLS), and Direct Shell Production Casting (DSPC). These emerging technologies have proven to be valuable tools for reducing lead times and fabrication costs. Sandia uses the SL and SLS processes to support internal product development efforts. Their primary use is to fabricate patterns for investment casting in support of a Sandia-managed program called FASTCAST that integrates computational technologies and experimental data into the investment casting process. These processes are also used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit-check models, visual aids for manufacturing, and functional parts in assemblies. The DSPC process is currently being developed as a method of fabricating ceramic investment casting molds directly from a CAD solid model. Sandia is an Alpha machine test site for this process. This presentation will provide an overview of the SL and SLS processes and an update of our experience and success in integrating these technologies into the product development cycle. It will also provide a lead-in for a tour of the Rapid Prototyping Laboratory, where these processes will be demonstrated.

  10. Ares I-X Ground Diagnostic Prototype

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark A.; Martin, Rodney Alexander; Waterman, Robert D.; Oostdyk, Rebecca Lynn; Ossenfort, John P.; Matthews, Bryan

    2010-01-01

    The automation of pre-launch diagnostics for launch vehicles offers three potential benefits: improving safety, reducing cost, and reducing launch delays. The Ares I-X Ground Diagnostic Prototype demonstrated anomaly detection, fault detection, fault isolation, and diagnostics for the Ares I-X first-stage Thrust Vector Control and for the associated ground hydraulics while the vehicle was in the Vehicle Assembly Building at Kennedy Space Center (KSC) and while it was on the launch pad. The prototype combines three existing tools. The first tool, TEAMS (Testability Engineering and Maintenance System), is a model-based tool from Qualtech Systems Inc. for fault isolation and diagnostics. The second tool, SHINE (Spacecraft Health Inference Engine), is a rule-based expert system that was developed at the NASA Jet Propulsion Laboratory. We developed SHINE rules for fault detection and mode identification, and used the outputs of SHINE as inputs to TEAMS. The third tool, IMS (Inductive Monitoring System), is an anomaly detection tool that was developed at NASA Ames Research Center. The three tools were integrated and deployed to KSC, where they were interfaced with live data. This paper describes how the prototype performed during the period of time before the launch, including accuracy and computer resource usage. The paper concludes with some of the lessons that we learned from the experience of developing and deploying the prototype.

  11. Performance Evaluation of the Prototype Model NEXT Ion Thruster

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2008-01-01

    The performance testing results of the first prototype model NEXT ion engine, PM1, are presented. The NEXT program has developed the next generation ion propulsion system to enhance and enable Discovery, New Frontiers, and Flagship-type NASA missions. The PM1 thruster exhibits operational behavior consistent with its predecessors, the engineering model thrusters, with substantial mass savings, enhanced thermal margins, and design improvements for environmental testing compliance. The dry mass of PM1 is 12.7 kg. Modifications made in the thruster design have resulted in improved performance and operating margins, as anticipated. PM1 beginning-of-life performance satisfies all of the electric propulsion thruster mission-derived technical requirements. It demonstrates a wide range of throttleability by processing input power levels from 0.5 to 6.9 kW. At 6.9 kW, the PM1 thruster demonstrates specific impulse of 4190 s, 237 mN of thrust, and a thrust efficiency of 0.71. The flat beam profile, flatness parameters vary from 0.66 at low-power to 0.88 at full-power, and advanced ion optics reduce localized accelerator grid erosion and increases margins for electron backstreaming, impingement-limited voltage, and screen grid ion transparency. The thruster throughput capability is predicted to exceed 750 kg of xenon, an equivalent of 36,500 hr of continuous operation at the full-power operating condition.

  12. A new high-power klystron for the DSN

    NASA Technical Reports Server (NTRS)

    Goldfinger, A.; Gregg, M. A.; Hartop, R.

    1982-01-01

    A very high reliability 100 kW klystron for the Deep Space Network (DSN) high power transmitters in support of spacecrafts to the distant planets was studied. The last phases included electron gun fabrication and beam analyzer evaluation and klystron prototype fabrication, mechanical and electrical design improvements resulted in the delivery of a prototype klystron meeting all requirements. It is concluded that the development of a new high power klystron for the DSN was very successful as demonstrated by the prototype results.

  13. A new high-power klystron for the DSN

    NASA Astrophysics Data System (ADS)

    Goldfinger, A.; Gregg, M. A.; Hartop, R.

    1982-06-01

    A very high reliability 100 kW klystron for the Deep Space Network (DSN) high power transmitters in support of spacecrafts to the distant planets was studied. The last phases included electron gun fabrication and beam analyzer evaluation and klystron prototype fabrication, mechanical and electrical design improvements resulted in the delivery of a prototype klystron meeting all requirements. It is concluded that the development of a new high power klystron for the DSN was very successful as demonstrated by the prototype results.

  14. Ares I-X Ground Diagnostic Prototype

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark; Martin, Rodney; Waterman, Robert; Oostdyk, Rebecca; Ossenfort, John; Matthews, Bryan

    2010-01-01

    Automating prelaunch diagnostics for launch vehicles offers three potential benefits. First, it potentially improves safety by detecting faults that might otherwise have been missed so that they can be corrected before launch. Second, it potentially reduces launch delays by more quickly diagnosing the cause of anomalies that occur during prelaunch processing. Reducing launch delays will be critical to the success of NASA's planned future missions that require in-orbit rendezvous. Third, it potentially reduces costs by reducing both launch delays and the number of people needed to monitor the prelaunch process. NASA is currently developing the Ares I launch vehicle to bring the Orion capsule and its crew of four astronauts to low-earth orbit on their way to the moon. Ares I-X will be the first unmanned test flight of Ares I. It is scheduled to launch on October 27, 2009. The Ares I-X Ground Diagnostic Prototype is a prototype ground diagnostic system that will provide anomaly detection, fault detection, fault isolation, and diagnostics for the Ares I-X first-stage thrust vector control (TVC) and for the associated ground hydraulics while it is in the Vehicle Assembly Building (VAB) at John F. Kennedy Space Center (KSC) and on the launch pad. It will serve as a prototype for a future operational ground diagnostic system for Ares I. The prototype combines three existing diagnostic tools. The first tool, TEAMS (Testability Engineering and Maintenance System), is a model-based tool that is commercially produced by Qualtech Systems, Inc. It uses a qualitative model of failure propagation to perform fault isolation and diagnostics. We adapted an existing TEAMS model of the TVC to use for diagnostics and developed a TEAMS model of the ground hydraulics. The second tool, Spacecraft Health Inference Engine (SHINE), is a rule-based expert system developed at the NASA Jet Propulsion Laboratory. We developed SHINE rules for fault detection and mode identification. The prototype

  15. Test results for three prototype models of a linear induction launcher

    SciTech Connect

    Zabar, Z.; Lu, X.N.; He, J.L.; Birenbaum, L.; Levi, E.; Kuznetsov, S.B.; Nahemow, M.D. )

    1991-01-01

    This paper reports on the work on the linear induction launcher (LIL) started with an analytical study tht was followed by computer simulations and then was tested by laboratory models. Two mathematical representations have been developed to describe the launcher. The first, based on the field approach with sinusoidal excitation, has been validated by static tests on a small scale prototype fed at constant current and variable frequency. The second, a transient representation using computer simulation allows consideration of energization by means of a capacitor bank and a power conditioner. Tests performed on three small-scale prototypes up to 100 m/s muzzle velocities show good agreement with predicted performance.

  16. Preliminary test of the prototype modular cryostat for a 10 MW offshore superconducting wind turbine

    NASA Astrophysics Data System (ADS)

    Sun, Jiuce; Ramalingam, R.; Sanz, Santiago; Neumann, Holger

    2017-02-01

    The SUPerconducting Reliable lightweight And more POWERful offshore wind turbine (SUPRAPOWER), an EU FP7 funded research project, are under development for an innovative superconducting 10 MW class offshore wind turbine. Due to the requirements of handling, maintenance, reliability of long term and offshore operation, the cryostats are divided in two major parts: the modular cryostat able to accommodate a single coil and a thermal collector that links all the modules. The prototype modular cryostat was designed, manufactured and assembled in Karlsruhe Institute of Technology (KIT). The paper reports preliminary test results of proto-type modular cryostat with a two-stage Gifford-McMahon (GM) cryocooler.

  17. ALICE inner tracking system readout electronics prototype testing with the CERN ``Giga Bit Transceiver''

    NASA Astrophysics Data System (ADS)

    Schambach, J.; Rossewij, M. J.; Sielewicz, K. M.; Aglieri Rinella, G.; Bonora, M.; Ferencei, J.; Giubilato, P.; Vanat, T.

    2016-12-01

    The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. This contribution describes laboratory and radiation testing results with this prototype board set.

  18. NORD's Patient Assistance Programs

    MedlinePlus

    ... provide medication, financial assistance with insurance premiums and co-pays, diagnostic testing assistance, and travel assistance for ... 7178 para asistencia. Acute Lymphocytic Leukemia | Accepting Applications Co-Pay Assistance Program Contact: 1-844-251-7425 ...

  19. The global light system laser station prototype

    NASA Astrophysics Data System (ADS)

    Hunt, Patrick R.

    2015-08-01

    We describe the design and fabrication of a prototype Global Light System (GLS) laser station for the JEM-EUSO project. The GLS will consist of a network of ground-based Ultraviolet (UV) light-emitting diodes (LEDs) and steered lasers to monitor and calibrate the cosmic ray detector planned for install on the International Space Station (ISS). The GLS units will generate optical signatures in the atmosphere that are comparable to tracks from cosmic ray extensive air showers (EASs). Unlike an EAS, the number, time, energy, location and direction (for lasers) of GLS events can be specified as JEM-EUSO passes 400 km overhead. Laser tracks from the GLS prototype will be recorded by prototype detectors in ground-to-ground tests. Distant tracks with low angular speed are of particular interest because these are the types of EAS tracks that will be measured by JEM-EUSO. To do these ground-to-ground tests, the prototype detectors will need to measure the laser through the atmosphere at low elevation viewing angles. The beam energy can be adjusted from 1 to 90 mJ to compensate for this additional atmospheric attenuation. The frequency-tripled Nd:YAG laser produces 355 nm (7 ns pulse) light. This wavelength is near the center of the UV EAS fluorescence spectrum. The system is housed in a utility trailer that can be transported by a small truck for domestic campaigns or shipped in an industry standard 20 foot container for global deployment. In operation mode, the laser platform inside the trailer is isolated mechanically to maintain beam pointing accuracy. A retractable two stage steering head can point in any direction above the horizon. A slip ring eliminates cable wrap problems. The GLS prototype will be used to test the EUSO-TA detector and will also be used in preflight tests of the EUSO-balloon payload planned for a super pressure balloon mission.

  20. Laser assisted deposition

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1983-01-01

    Applications of laser-based processing techniques to solar cell metallization are discussed. Laser-assisted thermal or photolytic maskless deposition from organometallic vapors or solutions may provide a viable alternative to photovoltaic metallization systems currently in use. High power, defocused excimer lasers may be used in conjunction with masks as an alternative to direct laser writing to provide higher throughput. Repeated pulsing with excimer lasers may eliminate the need for secondary plating techniques for metal film buildup. A comparison between the thermal and photochemical deposition processes is made.

  1. UWB Two-Cluster AOA Tracking Prototype System Design

    NASA Technical Reports Server (NTRS)

    Ngo, Phong H.; Arndt, D.; Phan, C.; Gross, J.; Jianjun; Rafford, Melinda

    2006-01-01

    This presentation discusses a design effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar/Mars rovers during early exploration missions when satellite navigation systems are not available. The UWB technology is exploited to implement the tracking system due to its properties such as fine time resolution, low power spectral density and multipath immunity. A two cluster prototype design using commercially available UWB radios is employed to implement the Angle of Arrival (AOA) tracking methodology in this design effort. In order to increase the tracking range, low noise amplifiers (LNA) and high gain horns are used at the receiving sides. Field tests were conducted jointly with the Science and Crew Operation Utility Testbed (SCOUT) vehicle near the Meteor Crater in Arizona to test the tracking capability for a moving target in an operational environment. These tests demonstrate that the UWB tracking system can co-exist with other on-board radio frequency (RF) communication systems (such as Global Positioning System (GPS), video, voice and telemetry systems), and that a tracking resolution less than 1% of the range can be achieved.

  2. Development of a compressive sampling hyperspectral imager prototype

    NASA Astrophysics Data System (ADS)

    Barducci, Alessandro; Guzzi, Donatella; Lastri, Cinzia; Nardino, Vanni; Marcoionni, Paolo; Pippi, Ivan

    2013-10-01

    Compressive sensing (CS) is a new technology that investigates the chance to sample signals at a lower rate than the traditional sampling theory. The main advantage of CS is that compression takes place during the sampling phase, making possible significant savings in terms of the ADC, data storage memory, down-link bandwidth, and electrical power absorption. The CS technology could have primary importance for spaceborne missions and technology, paving the way to noteworthy reductions of payload mass, volume, and cost. On the contrary, the main CS disadvantage is made by the intensive off-line data processing necessary to obtain the desired source estimation. In this paper we summarize the CS architecture and its possible implementations for Earth observation, giving evidence of possible bottlenecks hindering this technology. CS necessarily employs a multiplexing scheme, which should produce some SNR disadvantage. Moreover, this approach would necessitate optical light modulators and 2-dim detector arrays of high frame rate. This paper describes the development of a sensor prototype at laboratory level that will be utilized for the experimental assessment of CS performance and the related reconstruction errors. The experimental test-bed adopts a push-broom imaging spectrometer, a liquid crystal plate, a standard CCD camera and a Silicon PhotoMultiplier (SiPM) matrix. The prototype is being developed within the framework of the ESA ITI-B Project titled "Hyperspectral Passive Satellite Imaging via Compressive Sensing".

  3. RAMGEN ROTOR CARTRIDGE FOR THE PRE-PROTOTYPE RAMGEN ENGINE

    SciTech Connect

    Aaron Koopman

    2003-09-01

    The research and development of a unique combustion engine is presented. The engine converts the thrust from ramjet modules located on the rim of a disk into shaft torque, which in turn can be used for electrical power generation or mechanical drive applications. A test program was undertaken that included evaluation of the pre-prototype engine and incorporation of improvements to the thrust modules and supporting systems. Fuel mixing studies with vortex generators and bluff body flame holders demonstrated the importance of increasing the shear-layer area and spreading angle to augment flame volume. Evaluation of flame-holding configurations (with variable fuel injection methods) concluded that the heat release zone, and therefore combustion efficiency, could be manipulated by judicious selection of bluff body geometry, and is less influenced by fuel injection distribution. Finally, successful operation of novel fuel and cooling air delivery systems have resolved issues of gas (fuel and air) delivery to the individual rotor segments. The lessons learned from the pre-prototype engine are currently being applied to the development of a 2.8MW engine.

  4. Benchmark tests for a Formula SAE Student car prototyping

    NASA Astrophysics Data System (ADS)

    Mariasiu, Florin

    2011-12-01

    Aerodynamic characteristics of a vehicle are important elements in its design and construction. A low drag coefficient brings significant fuel savings and increased engine power efficiency. In designing and developing vehicles trough computer simulation process to determine the vehicles aerodynamic characteristics are using dedicated CFD (Computer Fluid Dynamics) software packages. However, the results obtained by this faster and cheaper method, are validated by experiments in wind tunnels tests, which are expensive and were complex testing equipment are used in relatively high costs. Therefore, the emergence and development of new low-cost testing methods to validate CFD simulation results would bring great economic benefits for auto vehicles prototyping process. This paper presents the initial development process of a Formula SAE Student race-car prototype using CFD simulation and also present a measurement system based on low-cost sensors through which CFD simulation results were experimentally validated. CFD software package used for simulation was Solid Works with the FloXpress add-on and experimental measurement system was built using four piezoresistive force sensors FlexiForce type.

  5. A soft actuator for Prototype Segmented Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Deshmukh, Prasanna; Parihar, Padmakar; Mishra, Deepta Sundar; Prakash, Ajin; Kemkar, P. M. M.

    2016-07-01

    The Segmented Mirror Telescopes (SMT) are built using small hexagonal mirror segments placed side by side to form a monolithic primary mirror of very large size. The effective figure of such a segmented primary mirror is maintained against external disturbances introduced by gravity, temperature, wind and vibration with the help of primary mirror active control system. This active control system consists of two levels of control - global and local level. At the global scale, three actuators per segment and two edge sensors per intersegment sides are used to maintain the shape of the primary mirror. At the local level, actuator control system executes the commands generated by the global control loop. Every mirror segment is controlled with the help of three actuators, where the major role of these actuators is to provide a tip, tilt, and piston to the mirror segments. In this paper, we describe the actuator developed for 1.5m diameter Prototype Segmented Mirror Telescope (PSMT). The actuator for this telescope is a soft actuator based on the voice coil mechanism. This actuator is designed for with the range of travel of +/-1.5mm and the force range of 25N along with an offloading capability to reduce the power consumption. The prototype actuator is undergoing different tests at Indian Institute of Astrophysics (IIA), Bangalore. The tracking rate of 324nm/s is achieved with the tracking error of 22.5 nm RMS.

  6. 2Q-LEBT Prototype for the RIA Facility

    SciTech Connect

    Vinogradov, N.E.; Aseev, V.N.; Kern, M.R.L.; Ostroumov, P.N.; Pardo, R.C.; Scott, R.; Vondrasek, R.C.

    2005-03-15

    The Rare Isotope Accelerator (RIA) facility utilizes the concept of simultaneous acceleration of two charge states from the ion source. We are building a prototype two charge-state (2Q) injector of the RIA Driver Linac, which includes an ECR ion source, a LEBT and one-segment of the prototype RFQ. Currently, the 2Q-LEBT Facility consists of Berkeley Ion Equipment Corporation BIE-100 ECR ion source. The rf transmitters, high voltage power supplies, turbo pumps and other related equipment were received with the source. BIE-100 is an all-permanent-magnet source and has the highest magnetic field strengths for an ECR ion source of this type ever built. The magnetic field achieves a maximum strength of 11 kG at the plasma chamber surface and 13 kG on the axis. The source can operate with two-frequency plasma heating of 12.75 and 14.5 GHz. The reassembly of the source has been completed and beam production was achieved in the June 2004. This report includes measured beam current and emittance for 16O from the source along with the beam dynamics simulations. Detailed design of the 2Q-LEBT and the current project status are also presented.

  7. 18 CFR 1317.430 - Financial assistance.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Financial assistance... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 1317.430 Financial...

  8. 18 CFR 1317.430 - Financial assistance.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Financial assistance... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 1317.430 Financial...

  9. End effector monitoring system: An illustrated case of operational prototyping

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Land, Sherry A.; Thronesbery, Carroll

    1994-01-01

    Operational prototyping is introduced to help developers apply software innovations to real-world problems, to help users articulate requirements, and to help develop more usable software. Operational prototyping has been applied to an expert system development project. The expert system supports fault detection and management during grappling operations of the Space Shuttle payload bay arm. The dynamic exchanges among operational prototyping team members are illustrated in a specific prototyping session. We discuss the requirements for operational prototyping technology, types of projects for which operational prototyping is best suited and when it should be applied to those projects.

  10. High density wireless EEG prototype: Design and evaluation against reference equipment.

    PubMed

    Rossi, Stefano; Patki, Shrishail; Passoni, Marco; Perko, Hannes; Gritsch, Gerhard; Ossenblok, Pauly; Yazicioglu, Refet Firat

    2014-01-01

    A high density wireless electroencephalographic (EEG) platform has been designed. It is able to record up to 64 EEG channels with electrode to tissue impedance (ETI) monitoring. The analog front-end is based on two kinds of low power ASICs implementing the active electrodes and the amplifier. A power efficient compression algorithm enables the use of continuous wireless transmission of data through Bluetooth for real-time monitoring with an overall power consumption of about 350 mW. EEG acquisitions on five subjects (one healthy subject and four patients suffering from epilepsy) have been recorded in parallel with a reference system commonly used in clinical practice and data of the wireless prototype and reference system have been processed with an automatic tool for seizure detection and localization. The false alarm rates (0.1-0.5 events per hour) are comparable between the two system and wireless prototype also detected the seizure correctly and allowed its localization.

  11. Joint Program on Rapid Prototyping. RaPIER (Rapid Prototyping to Investigate End-User Requirements).

    DTIC Science & Technology

    1985-03-28

    Prototype System Description Language," ISSI Technical Report, unnumbered, January 30,198 6 ., . [JONES84] T. Capers Jones. "Reusability in Programming: A...Systems, Inc.. "PSDL: Prototype System * Description Language," ISSI Technical Report, unnumbered, January 30, 1986. T. Capers Jones. "Reusability in...Game Design," IEEE Software, Vol. 1, No. 4, October 1984, pp. 28-38. -[LISKOV5] -5. Barbara H. Liskov, Stephen N. Zilles. "Specification Techniques for j

  12. Prototype development of a Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR)

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Tanner, Alan; Wilson, William; Dinardo, Steve; Lambrigsten, Bjorn

    2005-01-01

    Weather prediction and hurricane tracking would greatly benefit of a continuous imaging capability of a hemisphere at millimeter wave frequencies. We are developing a synthetic thinned aperture radiometer (STAR) prototype operating from 50 to 56 GHz as a ground-based testbed to demonstrate the technologies needed to do full earth disk atmospheric temperature soundings from Geostationary orbit with very high spatial resolution. The prototype consists of a Y-array of 24 MMIC receivers that are compact units implemented with low noise InP MMIC LNAs, second harmonic I-Q mixers, low power IF amplifiers and include internal digital bias control with serial line communication to enable low cost testing and system integration. Furthermore, this prototype STAR includes independent LO and noise calibration signal phase switching circuitry for each arm of the Y-array to verify the operation and calibration of the system.

  13. Half-Wave, beta=0.43 Cavity Prototyping for a Heavy Ion Linac

    SciTech Connect

    Popielarski, John; Compton, Chris C.; Hartung, Walter; Johnson, Mat; Oliva, John; York, R. C.; Marti, Felix

    2008-04-01

    A medium velocity half wave resonator has been designed and prototyped at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) for use in a heavy ion linac. The cavity is designed to provide 3.7 MV of accelerating voltage at an optimum beta = v/c = 0.53, with peak surface electric and magnetic fields of 32.5 MV/m and 79 mT, respectively. The cavity was designed for stiffness and tunability, as well as straightforward fabrication, assembly and cleaning. Measurements were performed to confirm Finite Element Analysis (FEA) predictions for modal analysis, bath pressure sensitivity, tuner stiffness and tuning range. A copper cavity prototype has been fabricated to confirm tolerances and formability. A tuner prototype has been built. The helium vessel and power coupler have been designed.

  14. Advanced Propulsion and TPS for a Rapidly-Prototyped CEV

    NASA Astrophysics Data System (ADS)

    Hudson, Gary C.

    2005-02-01

    Transformational Space Corporation (t/Space) is developing for NASA the initial designs for the Crew Exploration Vehicle family, focusing on a Launch CEV for transporting NASA and civilian passengers from Earth to orbit. The t/Space methodology is rapid prototyping of major vehicle systems, and deriving detailed specifications from the resulting hardware, avoiding "written-in-advance" specs that can force the costly invention of new capabilities simply to meet such specs. A key technology shared by the CEV family is Vapor Pressurized propulsion (Vapak) for simplicity and reliability, which provides electrical power, life support gas and a heat sink in addition to propulsion. The CEV family also features active transpiration cooling of re-entry surfaces (for reusability) backed up by passive thermal protection.

  15. Rapid, Reliable Shape Setting of Superelastic Nitinol for Prototyping Robots

    PubMed Central

    Gilbert, Hunter B.; Webster, Robert J.

    2016-01-01

    Shape setting Nitinol tubes and wires in a typical laboratory setting for use in superelastic robots is challenging. Obtaining samples that remain superelastic and exhibit desired precurvatures currently requires many iterations, which is time consuming and consumes a substantial amount of Nitinol. To provide a more accurate and reliable method of shape setting, in this paper we propose an electrical technique that uses Joule heating to attain the necessary shape setting temperatures. The resulting high power heating prevents unintended aging of the material and yields consistent and accurate results for the rapid creation of prototypes. We present a complete algorithm and system together with an experimental analysis of temperature regulation. We experimentally validate the approach on Nitinol tubes that are shape set into planar curves. We also demonstrate the feasibility of creating general space curves by shape setting a helical tube. The system demonstrates a mean absolute temperature error of 10°C. PMID:27648473

  16. Development and Test of a Prototype 100MVA Superconducting Generator

    SciTech Connect

    Fogarty, James M.; Bray, James W.

    2007-05-25

    In 2002, General Electric and the US Department of Energy (DOE) entered into a cooperative agreement for the development of a commercialized 100 MVA generator using high temperature superconductors (HTS) in the field winding. The intent of the program was to: • Identify and develop technologies that would be needed for such a generator. • Develop conceptual designs for generators with ratings of 100 MVA and higher using HTS technology. • Perform proof of concept tests at the 1.5 MW level for GE’s proprietary warm iron rotor HTS generator concept. • Design, build, and test a prototype of a commercially viable 100 MVA generator that could be placed on the power grid. This report summarizes work performed during the program and is provided as one of the final program deliverables.

  17. An FPGA-based rapid prototyping platform for wavelet coprocessors

    NASA Astrophysics Data System (ADS)

    Vera, Alonzo; Meyer-Baese, Uwe; Pattichis, Marios

    2007-04-01

    MatLab/Simulink-based design flows are being used by DSP designers to improve time-to-market of FPGA implementations. 1 Commonly, digital signal processing cores are integrated in an embedded system as coprocessors. Existing CAD tools do not fully address the integration of a DSP coprocessor into an embedded system design. This integration might prove to be time consuming and error prone. It also requires that the DSP designer has an excellent knowledge of embedded systems and computer architecture details. We present a prototyping platform and design flow that allows rapid integration of embedded systems with a wavelet coprocessor. The platform comprises of software and hardware modules that allow a DSP designer a painless integration of a coprocessor with a PowerPC-based embedded system. The platform has a wide range of applications, from industrial to educational environments.

  18. High altitude aerodynamic platform concept evaluation and prototype engine testing

    NASA Technical Reports Server (NTRS)

    Akkerman, J. W.

    1984-01-01

    A design concept has been developed for maintaining a 150-pound payload at 60,000 feet altitude for about 50 hours. A 600-pound liftoff weight aerodynamic vehicle is used which operates at sufficient speeds to withstand prevailing winds. It is powered by a turbocharged four-stoke cycle gasoline fueled engine. Endurance time of 100 hours or more appears to be feasible with hydrogen fuel and a lighter payload. A prototype engine has been tested to 40,000 feet simulated altitude. Mismatch of the engine and the turbocharger system flow and problems with fuel/air mixture ratio control characteristics prohibited operation beyond 40,000 feet. But there seems to be no reason why the concept cannot be developed to function as analytically predicted.

  19. TOPAZ II Anti-Criticality Device Rapid Prototype

    NASA Astrophysics Data System (ADS)

    Campbell, Donald R.; Otting, William D.

    1994-07-01

    The Ballistic Missile Defense Organization (BMDO) has been working on a Nuclear Electric Propulsion Space Test Project (NEPSTP) using an existing Russian Topaz II reactor system to power the NEPSTP satellite. Safety investigations have shown that it will be possible to safely launch the Topaz II system in the United States with some modification to preclude water flooded criticality. A ``fuel-out'' water subcriticality concept was selected by the Los Alamos National Laboratory (LANL) as the baseline concept. A fuel-out anti-criticality device (ACD) conceptual design was developed by Rockwell. The concept functions to hold the fuel from the four centermost thermionic fuel elements (TFEs) outside the reactor during launch and reliably inserts the fuel into the reactor once the operational orbit is achieved. A four-tenths scale ACD rapid prototype model, fabricated from the CATIA solids design model, clearly shows in three dimensions the relative size and spatial relationship of the ACD components.

  20. Rapid, Reliable Shape Setting of Superelastic Nitinol for Prototyping Robots.

    PubMed

    Gilbert, Hunter B; Webster, Robert J

    Shape setting Nitinol tubes and wires in a typical laboratory setting for use in superelastic robots is challenging. Obtaining samples that remain superelastic and exhibit desired precurvatures currently requires many iterations, which is time consuming and consumes a substantial amount of Nitinol. To provide a more accurate and reliable method of shape setting, in this paper we propose an electrical technique that uses Joule heating to attain the necessary shape setting temperatures. The resulting high power heating prevents unintended aging of the material and yields consistent and accurate results for the rapid creation of prototypes. We present a complete algorithm and system together with an experimental analysis of temperature regulation. We experimentally validate the approach on Nitinol tubes that are shape set into planar curves. We also demonstrate the feasibility of creating general space curves by shape setting a helical tube. The system demonstrates a mean absolute temperature error of 10°C.

  1. Evolution of Automotive Chopper Circuits Towards Ultra High Efficiency and Power Density

    NASA Astrophysics Data System (ADS)

    Pavlovsky, Martin; Tsuruta, Yukinori; Kawamura, Atsuo

    Automotive industry is considered to be one of the main contributors to environmental pollution and global warming. Therefore, many car manufacturers are in near future planning to introduce hybrid electric vehicles (HEV), fuel cell electric vehicles (FCEV) and pure electric vehicles (EV) to make our cars more environmentally friendly. These new vehicles require highly efficient and small power converters. In recent years, considerable improvements were made in designing such converters. In this paper, an approach based on so called Snubber Assisted Zero Voltage and Zero Current Switching topology otherwise also known as SAZZ is presented. This topology has evolved to be one of the leaders in the field of highly efficient converters with high power densities. Evolution and main features of this topology are briefly discussed. Capabilities of the topology are demonstrated on two case study prototypes based on different design approaches. The prototypes are designed to be fully bi-directional for peak power output of 30kW. Both designs reached efficiencies close to 99% in wide load range. Power densities over 40kW/litre are attainable in the same time. Combination of MOSFET technology and SAZZ topology is shown to be very beneficial to converters designed for EV applications.

  2. Human Factors and Technical Considerations for a Computerized Operator Support System Prototype

    SciTech Connect

    Ulrich, Thomas Anthony; Lew, Roger Thomas; Medema, Heather Dawne; Boring, Ronald Laurids; Thomas, Kenneth David

    2015-09-01

    A prototype computerized operator support system (COSS) has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, PI&D system representations, and a recommender module for mitigation actions. At this point, the prototype simulates an interface to a sensor validation module and a fault diagnosis module. These two modules will be fully integrated in the next version of the prototype. The initial version of the prototype is now operational at the Idaho National Laboratory using the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). The HSSL is a full-scope, full-scale glass top simulator capable of simulating existing and future nuclear power plant main control rooms. The COSS is interfaced to the Generic Pressurized Water Reactor (gPWR) simulator with industry-typical control board layouts. The glass top panels display realistic images of the control boards that can be operated by touch gestures. A section of the simulated control board was dedicated to the COSS human-system interface (HSI), which resulted in a seamless integration of the COSS into the normal control room environment. A COSS demonstration scenario has been developed for the prototype involving the Chemical & Volume Control System (CVCS) of the PWR simulator. It involves a primary coolant leak outside of containment that would require tripping the reactor if not mitigated in a very short timeframe. The COSS prototype presents a series of operator screens that provide the needed information and soft controls to successfully mitigate the event.

  3. Modification and prototype test of staple gun

    NASA Astrophysics Data System (ADS)

    Tsue, Kuang-Yih; Wu, Gwo-Jen

    2008-10-01

    This paper presents how to design a staple gun and verify its data through simulation. The staple gun was estimated and analyzed using 'ANSYS' software and the results were compared with those obtained through experiments. In this research, a supporting position for the spring inside the staple gun was damaged after hundreds of loads, and there was no data about the impact force when staples were shot into the targets. Therefore, a prototype test system is developed to validate the data through simulation. In this case, the results are quite close to each other before they can be used to help the manufacturer to improve its structure. This prototype test system is completed through PC-based automation software. The simulation model was modified to develop the next new products for saving costs and time. Because the impact force, coming out from the staple gun is pretty large, it should be restricted within a certain limit to keep the user safe.

  4. ECCE Toolkit: Prototyping Sensor-Based Interaction.

    PubMed

    Bellucci, Andrea; Aedo, Ignacio; Díaz, Paloma

    2017-02-23

    Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators). Prototyping physical interaction is hindered by the challenges of: (1) programming interactions among physical sensors/actuators and digital interfaces; (2) implementing functionality for different platforms in different programming languages; and (3) building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems), a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit.

  5. The NASA Langley Mars Tumbleweed Rover Prototype

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Chattin, Richard L.; Copeland, Benjamin M.; Krizann, Shawn A.

    2005-01-01

    Mars Tumbleweed is a concept for an autonomous rover that would achieve mobility through use of the natural winds on Mars. The wind-blown nature of this vehicle make it an ideal platform for conducting random surveys of the surface, scouting for signs of past or present life as well as examining the potential habitability of sites for future human exploration. NASA Langley Research Center (LaRC) has been studying the dynamics, aerodynamics, and mission concepts of Tumbleweed rovers and has recently developed a prototype Mars Tumbleweed Rover for demonstrating mission concepts and science measurement techniques. This paper will provide an overview of the prototype design, instrumentation to be accommodated, preliminary test results, and plans for future development and testing of the vehicle.

  6. SIMS prototype system 4: Design data brochure

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A pre-package prototype unit having domestic hot water and room solar heating capability that uses air as the collector fluid is described. This system is designed to be used with a small single-family dwelling where a roof mounted collector array is not feasible. The prototype unit is an assemble containing 203 square feet of effective collector surface with 113 cubic feet of rock storage. The design of structure and storage is modular, which permits expansion and reduction of the collector array and storage bed in 68 square feet and 37 cubic feet increments respectively. The system is designed to be transportable. This permitted assemble and certification testing in one area and installation in another area without tear down and reassemble. Design, installation, operation, performance and maintenance of this system are described.

  7. Babar On-Line Prototype Development

    NASA Astrophysics Data System (ADS)

    Abrams, G. S.; Jacobsen, R. G.; Lewis, S. A.; Ogren, Z.; Glanzman, T.; Weinstein, A.; White, J. L.

    The BaBar On-line system has begun construction of a prototype which will serve as a test bench and beam test system. The system architecture is based on single board computers running VxWorks, linked to Unix workstations via ethernet (as well as tests with FDDI). This early system is based on the Experimental Physics and Industrial Control System, which provides both control of state transitions and monitoring facilities. This functionality is achieved with no software investment: native EPICS utilities are used to develop screen displays and control panels. Emphasis at this time is on the incorporation of reusable code. The first application of this prototype is the creation of a testbed for the BaBar dataflow research and development.

  8. ECCE Toolkit: Prototyping Sensor-Based Interaction

    PubMed Central

    Bellucci, Andrea; Aedo, Ignacio; Díaz, Paloma

    2017-01-01

    Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators). Prototyping physical interaction is hindered by the challenges of: (1) programming interactions among physical sensors/actuators and digital interfaces; (2) implementing functionality for different platforms in different programming languages; and (3) building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems), a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit. PMID:28241502

  9. Relatively Inexpensive Rapid Prototyping of Small Parts

    NASA Technical Reports Server (NTRS)

    Swan, Scott A.

    2003-01-01

    Parts with complex three-dimensional shapes and with dimensions up to 8 by 8 by 10 in. (20.3 by 20.3 by 25.4 cm) can be made as unitary pieces of a room-temperature-curing polymer, with relatively little investment in time and money, by a process now in use at Johnson Space Center. The process is one of a growing number of processes and techniques that are known collectively as the art of rapid prototyping. The main advantages of this process over other rapid-prototyping processes are greater speed and lower cost: There is no need to make paper drawings and take them to a shop for fabrication, and thus no need for the attendant paperwork and organizational delays. Instead, molds for desired parts are made automatically on a machine that is guided by data from a computer-aided design (CAD) system and can reside in an engineering office.

  10. Z-1 Prototype Space Suit Testing Summary

    NASA Technical Reports Server (NTRS)

    Ross, Amy J.

    2012-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two -fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z -2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z -1 prototype and to suit testing techniques will be presented.

  11. Performance of a Micro-UAV lifting system built with the usage of rapid prototyping methods

    NASA Astrophysics Data System (ADS)

    Dalewski, R. T.; Gumowski, K.; Barczak, T.; Godek, J.

    2014-08-01

    This article presents results of the aerodynamic testing of a micro unmanned aerial vehicle rotor efficiency. The rotors were prepared as a set of two rotors in a counter-rotating ducted drive. Prototypes of the drives were made using two rapid prototyping techniques - FDM - fused deposition modelling method and SLS - selective laser sintering. Rotors were made then treated by introducing additional finishing cyanoacrylate coating and abrasive processing. Main differences between those models were observed in fan shape, porosity, surface roughness and mechanical properties - stiffness. An influence of these factors was observed on an aerodynamic efficiency. For the obtained prototypes both simulations and experimental testing were conducted with thrust, power, torque measurements, as well as the measurement of velocity and pressure distribution at the outlet of the duct. The results show the possibility of using rapid prototyping techniques to produce prototypes of drives operating in the low and medium Reynolds numbers (6000-60000), and the aerodynamic shape relevant factors affecting the preparation and performance of such drives. In addition, simulation studies were performed using the Fluent environment where experimental results were confronted with the results of simulation studies.

  12. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.

    PubMed

    Li, Jinyang; Lu, Dan-feng; Qi, Zhi-mei

    2015-09-01

    A prototype stationary Fourier transform spectrometer (FTS) was constructed with a fiber-coupled lithium niobate (LiNbO3) waveguide Mach-Zehnder interferometer (MZI) for the purpose of rapid on-site spectroscopy of biological and chemical measurands. The MZI contains push-pull electrodes for electro-optic modulation, and its interferogram as a plot of intensity against voltage was obtained by scanning the modulating voltage from -60 to +60 V in 50 ms. The power spectrum of input signal was retrieved by Fourier transform processing of the interferogram combined with the wavelength dispersion of half-wave voltage determined for the MZI used. The prototype FTS operates in the single-mode wavelength range from 1200 to 1700 nm and allows for reproducible spectroscopy. A linear concentration dependence of the absorbance at λmax = 1451 nm for water in ethanolic solution was obtained using the prototype FTS. The near-infrared spectroscopy of solid samples was also implemented, and the different spectra obtained with different materials evidenced the chemical recognition capability of the prototype FTS. To make this prototype FTS practically applicable, work on improving its spectral resolution by increasing the maximum optical path length difference is in progress.

  13. Demonstrating a Realistic IP Mission Prototype

    NASA Technical Reports Server (NTRS)

    Rash, James; Ferrer, Arturo B.; Goodman, Nancy; Ghazi-Tehrani, Samira; Polk, Joe; Johnson, Lorin; Menke, Greg; Miller, Bill; Criscuolo, Ed; Hogie, Keith

    2003-01-01

    Flight software and hardware and realistic space communications environments were elements of recent demonstrations of the Internet Protocol (IP) mission concept in the lab. The Operating Missions as Nodes on the Internet (OMNI) Project and the Flight Software Branch at NASA/GSFC collaborated to build the prototype of a representative space mission that employed unmodified off-the-shelf Internet protocols and technologies for end-to-end communications between the spacecraft/instruments and the ground system/users. The realistic elements used in the prototype included an RF communications link simulator and components of the TRIANA mission flight software and ground support system. A web-enabled camera connected to the spacecraft computer via an Ethernet LAN represented an on-board instrument creating image data. In addition to the protocols at the link layer (HDLC), transport layer (UDP, TCP), and network (IP) layer, a reliable file delivery protocol (MDP) at the application layer enabled reliable data delivery both to and from the spacecraft. The standard Network Time Protocol (NTP) performed on-board clock synchronization with a ground time standard. The demonstrations of the prototype mission illustrated some of the advantages of using Internet standards and technologies for space missions, but also helped identify issues that must be addressed. These issues include applicability to embedded real-time systems on flight-qualified hardware, range of applicability of TCP, and liability for and maintenance of commercial off-the-shelf (COTS) products. The NASA Earth Science Technology Office (ESTO) funded the collaboration to build and demonstrate the prototype IP mission.

  14. Far-forward life support system prototype

    NASA Astrophysics Data System (ADS)

    Wenstrand, Douglas S.; Smith, Dexter G.; Cutchis, Protagoras N.

    2001-08-01

    The Far Forward Life Support System (FFLSS) is intended for US Army use in far forward, battlefield situations. The primary patient population is young, otherwise healthy, adult males. The FFLSS must provide stabilizing medical care in the far forward environment. The device must be easily operated, highly mobile, compact and rugged, and provide automated, definitive support for a minimum of one hour. This project design, fabricated and tested a prototype FFLSS.

  15. Evaluation of a prototype 6 tone modem

    NASA Astrophysics Data System (ADS)

    Bagwell, R. C.

    1989-08-01

    A prototype 6 tone Multi-Frequency Shift Keying (MFSK) modem intended for tactical data transmissions in the HF band is evaluated. The main testing consisted of extensive trials using the Cobbett Hill HF Channel Simulator. Some limited live ratio trials between Bodo, northern Norway, and Cobbett Hill, southern England, are included. The modem performed satisfactorily during the evaluation period and returned good availability figures, both on the simulator, and during the radio trials.

  16. Bipolar transistor in VESTIC technology: prototype

    NASA Astrophysics Data System (ADS)

    Mierzwiński, Piotr; Kuźmicz, Wiesław; Domański, Krzysztof; Tomaszewski, Daniel; Głuszko, Grzegorz

    2016-12-01

    VESTIC technology is an alternative for traditional CMOS technology. This paper presents first measurement data of prototypes of VES-BJT: bipolar transistors in VESTIC technology. The VES-BJT is a bipolar transistor on the SOI substrate with symmetric lateral structure and both emitter and collector made of polysilicon. The results indicate that VES-BJT can be a device with useful characteristics. Therefore, VESTIC technology has the potential to become a new BiCMOS-type technology with some unique properties.

  17. Development of Prototype Reactive Armor Tile

    DTIC Science & Technology

    2015-05-13

    Information 1. Technology or technologies being worked on: Improvements to the Objective Gunner Protection Kit: Neptune Ammunition Handling System...The Neptune Ammunition Storage System was prototyped to safely increase the ammunition storage capacity within the OGPK. The Neptune system provides...capability. Neptune allows for the capability to safely carry and store: 12.7 mm (M2); 40 mm (MK19); 7.62 mm (MK240B); 5.56 mm (M240 SAW). 2. 3

  18. Rapid Prototyping Of Layered Composite Parts

    NASA Technical Reports Server (NTRS)

    Wolff, Edwin D.

    1992-01-01

    Numerically controlled cutting accelerates fabrication of layers. Proposed method derived from stereoscopic lithography. CATIA or CAEDS computer program used to generate three-dimensional mathematical model of prototype part. In model, geometry of part specified in layers, as in stereoscopic lithography. Model data for each layer fed to computer-numerically-controlled ultrasonic cutting machine. Sheet of prepreg (uncured composite material) of specified layer thickness placed in machine and cut, under control of model data, to specified shape of layer.

  19. Building a parabolic solar concentrator prototype

    NASA Astrophysics Data System (ADS)

    Escobar-Romero, J. F. M.; Montiel, S. Vázquez y.; Granados-Agustín, F.; Cruz-Martínez, V. M.; Rodríguez-Rivera, E.; Martínez-Yáñez, L.

    2011-01-01

    In order to not further degrade the environment, people have been seeking to replace non-renewable natural resources such as fossil fuels by developing technologies that are based on renewable resources. An example of these technologies is solar energy. In this paper, we show the building and test of a solar parabolic concentrator as a prototype for the production of steam that can be coupled to a turbine to generate electricity or a steam engine in any particular industrial process.

  20. Once-through testing of the CRBRP prototype steam generator

    SciTech Connect

    Kim, K.; Gabler, M.J.; Carlson, R.D.

    1987-01-01

    The prototype steam generator for the Clinch River Breeder Reactor Plant (CRBRP) was designed, built, and tested by Rockwell International. A portion of these tests, performed by the Energy Technology Engineering Center during early 1983, had the specific objective of supporting the design of a hockey-stick-type steam generator for use in the once-through cycle mode, including demonstration of steady-state operation, startup and shutdown in a once-through mode, and stable operation at low power. Eighteen steady-state performance tests were performed at power levels from 33 to 70 MWt, which represented 20 to 42 percent full power per tube of a commercial design. Pretest predictions are compared with test results. Startup and shutdown operations under a full-liquid condition in the steam generator are described. Steam generator tube inlet orifices, removed during the CRBRP test program, were not replaced for these tests. Therefore, dynamic instability was encountered during certain tests, and the results are compared with the DYNAM code for predicting flow instability conditions. Sodium and steam temperature maldistributions cause by testing at off-design conditions for this unit are also discussed.