Science.gov

Sample records for prototype power assist

  1. Power API Prototype

    SciTech Connect

    2014-12-04

    The software serves two purposes. The first purpose of the software is to prototype the Sandia High Performance Computing Power Application Programming Interface Specification effort. The specification can be found at http://powerapi.sandia.gov . Prototypes of the specification were developed in parallel with the development of the specification. Release of the prototype will be instructive to anyone who intends to implement the specification. More specifically, our vendor collaborators will benefit from the availability of the prototype. The second is in direct support of the PowerInsight power measurement device, which was co-developed with Penguin Computing. The software provides a cluster wide measurement capability enabled by the PowerInsight device. The software can be used by anyone who purchases a PowerInsight device. The software will allow the user to easily collect power and energy information of a node that is instrumented with PowerInsight. The software can also be used as an example prototype implementation of the High Performance Computing Power Application Programming Interface Specification.

  2. Power API Prototype

    SciTech Connect

    2014-12-04

    The software serves two purposes. The first purpose of the software is to prototype the Sandia High Performance Computing Power Application Programming Interface Specification effort. The specification can be found at http://powerapi.sandia.gov . Prototypes of the specification were developed in parallel with the development of the specification. Release of the prototype will be instructive to anyone who intends to implement the specification. More specifically, our vendor collaborators will benefit from the availability of the prototype. The second is in direct support of the PowerInsight power measurement device, which was co-developed with Penguin Computing. The software provides a cluster wide measurement capability enabled by the PowerInsight device. The software can be used by anyone who purchases a PowerInsight device. The software will allow the user to easily collect power and energy information of a node that is instrumented with PowerInsight. The software can also be used as an example prototype implementation of the High Performance Computing Power Application Programming Interface Specification.

  3. Computer-assisted trauma care prototype.

    PubMed

    Holzman, T G; Griffith, A; Hunter, W G; Allen, T; Simpson, R J

    1995-01-01

    Each year, civilian accidental injury results in 150,000 deaths and 400,000 permanent disabilities in the United States alone. The timely creation of and access to dynamically updated trauma patient information at the point of injury is critical to improving the state of care. Such information is often non-existent, incomplete, or inaccurate, resulting in less than adequate treatment by medics and the loss of precious time by medical personnel at the hospital or battalion aid station as they attempt to reassess and treat the patient. The Trauma Care Information Management System (TCIMS) is a prototype system for facilitating information flow and patient processing decisions in the difficult circumstances of civilian and military trauma care activities. The program is jointly supported by the United States Advanced Research Projects Agency (ARPA) and a consortium of universities, medical centers, and private companies. The authors' focus has been the human-computer interface for the system. We are attempting to make TCIMS powerful in the functions it delivers to its users in the field while also making it easy to understand and operate. To develop such a usable system, an approach known as user-centered design is being followed. Medical personnel themselves are collaborating with the authors in its needs analysis, design, and evaluation. Specifically, the prototype being demonstrated was designed through observation of actual civilian trauma care episodes, military trauma care exercises onboard a hospital ship, interviews with civilian and military trauma care providers, repeated evaluation of evolving prototypes by potential users, and study of the literature on trauma care and human factors engineering. This presentation at MedInfo '95 is still another avenue for soliciting guidance from medical information system experts and users. The outcome of this process is a system that provides the functions trauma care personnel desire in a manner that can be easily and

  4. Rapid prototyping of clinical software assistants

    NASA Astrophysics Data System (ADS)

    Rexilius, Jan; Peitgen, Heinz-Otto

    2008-03-01

    Computer assistance in image-based diagnosis and therapy are continuously growing fields that have gained importance in several medical disciplines. Today, various free and commercial tools are available. However, only few are routinely applied in clinical practice. Especially tools that provide a flsupport of the whole design process from development and evaluation to the actual deployment in a clinical environment are missing. In this work, we introduce a categorization of the design process into different types and fields of application. To this end, we propose a novel framework that allows the development of software assistants that can be integrated into the design process of new algorithms and systems. We focus on the specific features of software prototypes that are valuable for engineers and clinicians, rather than on product development. An important aspect in this work is the categorization of the software design process into different components. Furthermore, we examine the interaction between these categories based on a new knowledge flow model. Finally, an encapsulation of these tasks within an application framework is proposed. We discuss general requirements and present a layered architecture. Several components for data- and workflow-management provide a generic functionality that can be customized on the developer and the user level. A flexible handling of is offered through the use of a visual programming and rapid prototyping platform. Currently, the framework is used in 15 software prototypes and as a basis of commercial products. More than 90 clinical partners all over the world work with these tools.

  5. Laser-assisted rapid prototyping in Japan

    NASA Astrophysics Data System (ADS)

    Kathuria, Yash P.

    2002-04-01

    In the recent past years, developments in the rapid prototyping of various parts have taken new dynamic turns in manufacturing technology. Besides the use of new materials, unrelenting demands for the downsizing of miniature components in the micro-domain have expanded the application area of the rapid prototype product. Their requirements with reduced time lag have forced the manufacturers to adopt and develop innovative techniques which meet these demands. In order to overcome this problem, several techniques, predominantly laser stereolithography, have successfully been used in Japan for the past several years to generate a complex micro-/macro part of polymer resin based in two- or three-dimensional domains. The main disadvantage of this process is that they consist of two or more steps for producing metallic/metal-matrix composite microstructures. But recently developed new technologies of selective laser sintering/generating and ballistic particles manufacturing processes offer the possibility of the direct generation of these microstructures in a single step process. The last two processes actually have limitations on the feature size produced, due to the minimum size of the molten droplet. But the selective laser sintering technique can bind the particles by melting together at the interfacial grain contact area only and thus producing smaller feature sizes. Based upon these techniques, the present paper aims to review the current status and the future prospective of laser assisted rapid prototyping in Japan.

  6. Rapid prototyping-assisted maxillofacial reconstruction.

    PubMed

    Peng, Qian; Tang, Zhangui; Liu, Ousheng; Peng, Zhiwei

    2015-05-01

    Rapid prototyping (RP) technologies have found many uses in dentistry, and especially oral and maxillofacial surgery, due to its ability to promote product development while at the same time reducing cost and depositing a part of any degree of complexity theoretically. This paper provides an overview of RP technologies for maxillofacial reconstruction covering both fundamentals and applications of the technologies. Key fundamentals of RP technologies involving the history, characteristics, and principles are reviewed. A number of RP applications to the main fields of oral and maxillofacial surgery, including restoration of maxillofacial deformities and defects, reduction of functional bone tissues, correction of dento-maxillofacial deformities, and fabrication of maxillofacial prostheses, are discussed. The most remarkable challenges for development of RP-assisted maxillofacial surgery and promising solutions are also elaborated.

  7. Prototype Low Temperature Low Power Cryocooler,

    DTIC Science & Technology

    1982-02-01

    Zimmerman successfully operated a point-Contact Nb SQUID on a four- stage stirling cycle cryocooler with a mechanical drive power of approxi- mately 15...AD-ADL2 622 LAKE SHORE CRYOTRONICS INC WESTERVILLE OH F/6 13/1 PROTOTYPE LOW TEMPERATURE LOW POWER CRYOCOOLER ,(U) FE13 82 W G P IERC E N0001INROC...pPrototype Low Temperature Low Power Cryocooler // It by Warren G. Pierce February 1982 Prepared under Contract No. N00014-80-C-0825 by LAKE SHORE

  8. Approaches for Evaluating the Usability of Assistive Technology Product Prototypes

    ERIC Educational Resources Information Center

    Choi, Young Mi; Sprigle, Stephen H.

    2011-01-01

    User input is an important component to help guide designers in producing a more usable product. Evaluation of prototypes is one method of obtaining this input, but methods for evaluating assistive technology prototypes during design have not been adequately described or evaluated. This project aimed to compare different methods of evaluating…

  9. Approaches for Evaluating the Usability of Assistive Technology Product Prototypes

    ERIC Educational Resources Information Center

    Choi, Young Mi; Sprigle, Stephen H.

    2011-01-01

    User input is an important component to help guide designers in producing a more usable product. Evaluation of prototypes is one method of obtaining this input, but methods for evaluating assistive technology prototypes during design have not been adequately described or evaluated. This project aimed to compare different methods of evaluating…

  10. ICD9 Code Assistant: A prototype.

    PubMed

    Erdal, Selnur; Ding, Jing; Osborn, Carol; Mekhjian, Hagop; Kamal, Jyoti

    2007-10-11

    At The Ohio State University Medical Center (OSUMC) patient reports are available in real time along with other clinical and financial data in the OSUMC Information Warehouse (IW). Using the UMLS Meta Thesaurus we have leveraged the IW to develop a tool that can assist the medical record coders as well as administrators, physicians and researchers to quickly identify clinical concepts and their associated ICD-9 codes.

  11. Teaching Assistants' Perceptions of Power

    ERIC Educational Resources Information Center

    Lowe, Michelle; Pugh, Jim

    2007-01-01

    During May 2006 a group of teaching assistants were asked a series of questions about their opinions of morality, power and leadership to inform a conference on this topic funded by the three bodies involved in educational leadership (BELMAS, BERA and SCRELM). This article investigates how teaching assistants perceive the location of power within…

  12. A prototype power assist EVA glove

    NASA Technical Reports Server (NTRS)

    Main, John A.; Peterson, Steven W.; Strauss, Alvin M.

    1991-01-01

    The most recent generation of space suit EVA gloves has addressed the problem of loose fit and stiffness in the fingers, but it remains difficult to build a glove assembly with low metacarpophalangeal joint stiffness. Fatigue due to constantly displacing the glove from a neutral position has been reported as the limiting factor in some EVA activities. This paper outlines an actuation system that uses gas filled bladders attached to the back of the EVA glove to provide the necessary force to bend the glove at the metacarpal joint, thus providing greater endurance during finger grasping tasks. A simple on-off controller senses hand movement through small pressure sensors between the finger and the glove restraint. The controller then fills or exhausts the bladders on the back of the glove to effectively move the neutral position of the glove as the hand inside moves.

  13. Electric prototype power processor for a 30cm ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Inouye, L. Y.; Schoenfeld, A. D.

    1977-01-01

    An electrical prototype power processor unit was designed, fabricated and tested with a 30 cm mercury ion engine for primary space propulsion. The power processor unit used the thyristor series resonant inverter as the basic power stage for the high power beam and discharge supplies. A transistorized series resonant inverter processed the remaining power for the low power outputs. The power processor included a digital interface unit to process all input commands and internal telemetry signals so that electric propulsion systems could be operated with a central computer system. The electrical prototype unit included design improvement in the power components such as thyristors, transistors, filters and resonant capacitors, and power transformers and inductors in order to reduce component weight, to minimize losses, and to control the component temperature rise. A design analysis for the electrical prototype is also presented on the component weight, losses, part count and reliability estimate. The electrical prototype was tested in a thermal vacuum environment. Integration tests were performed with a 30 cm ion engine and demonstrated operational compatibility. Electromagnetic interference data was also recorded on the design to provide information for spacecraft integration.

  14. Prototype low temperature low power cryocooler

    SciTech Connect

    Pierce, W.G.

    1982-02-01

    Over the past several years considerable interest has developed for low power, low cost mechanical cryocoolers for use in cooling SQUIDS and other superconducting devices. In 1977 Dr. Jim Zimmerman of National Bureau of Standards, Boulder, CO described a stirling cycle cryocooler that exhibited the following desirable characteristics: (1) Low input power (approximately 50 watts connected load); (2) Modest cooling capacity at very low temperature; (3) Constructed of non-ferromagnetic materials; and (4) Simple design. Dr. Zimmerman's intent was to demonstrate the feasibility of constructing a simple low power cryocooler capable of cooling an operational SQUID. After several modifications of the original cryocooler, Dr. Zimmerman successfully operated a point-Contact Nb SQUID on a four-stage stirling cycle cryocooler with a mechanical drive power of approximately 15 watts, and a capacity of few milliwatts at less than 9 Kelvin. During this period Lake Shore Cryotronics, Inc. successfully negotiated an exclusive licensing (for the U.S.) agreement with Oxford Instruments Ltd. concerning a simple patented single stage cryocooler utilizing a slide-valve-controlled gas driven displacer drive head, powered by a remote conventional high speed compressor. The lowest temperature achieved was less than 20 Kelvin with the two stage cylinder/displacer operating at a cycle rate of 2Hz, 100 psi inlet (pressure), and 20 psi outlet pressure.

  15. Prototype of a mechanical assistance device for the wrists' flexion-extension movement

    NASA Astrophysics Data System (ADS)

    Politti, Julio C.; Puglisi, Lisandro J.; Farfán, Fernando D.

    2007-11-01

    Using CMU actuators, a Prototype of Mechanical Assistance Device for the Wrist's Flexion Movement (PMA) was developed and probed in a mechanical model, in order to be implemented in a future as a dynamic powered orthosis or as a rehabilitation assistant instrument. Two Mayor Actuators conformed by three CMU actuators arranged in a series configuration, allows to an artificial hand to be placed in four predefined positions: 0°, 20°, 40° and 60°. The synchronism and control of the actuators is achieved with the Programmable Control Module (PCM). It is capable to drive up to six CMU actuators, and possess two different modes of execution: a Manual mode and an Exercise mode. In the Manual Mode, the position of the hand responds directly to the commands of the keyboard of the front panel, and in the Exercise mode, the hand realizes a repetitive and programmed movement. The prototype was tested in 100 positions in the Manual Mode and for 225 works cycles in the Exercise Mode. The relative repetition error was less than 5% for both test. This prototype only consumes 4,15W, which makes it possible to be powered by small rechargeable batteries, allowing its use as a portable device.

  16. Prototype ventricular assist device supported on magnetic bearings

    SciTech Connect

    Allaire, P.E.; Maslen, E.H.; Kim, H.C.; Olsen, D.B.; Bearnson, G.D.

    1995-12-31

    Mechanical artificial hearts are now expected to be used as assist or total replacements for failing human hearts, if a reliable, anatomically appropriate design is developed. Initially, ventricular assist or total replacement devices were pulsatile air driven units containing a flexing polymeric diaphragm and two valves for each ventricle. Many reliability problems were encountered. Recently, attention has been focused on axial or centrifugal continuous flow blood pumps. Magnetic bearings employed in such devices offer the advantages of no required lubrication and large operating clearances. This paper describes a prototype continuous flow pump supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. It delivered 6 liters/min of flow at 100 mm Hg differential head operating at 2,400 rpm in water. The pump is totally magnetically supported in four magnetic bearings - two radial and two thrust. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity, current gains, and open loop stiffness are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water.

  17. RHIC GAMMA TRANSITION JUMP POWER SUPPLY PROTOTYPE TEST.

    SciTech Connect

    MI,J.; GANETIS,G.; LOUIE,W.; BRUNO,D.; ZAPASEK,R.; SANDBERG,J.; ZHANG,W.

    2001-06-18

    This paper describes the principle and test results of the prototype RHIC Gamma Transition Jump Power Supply. The jump power supply principle is introduced and illustrated along with diagrams in this paper. The prototype is built with Insulated Gate Bipolar Transistors (IGBT) as current direction switch components. Optically coupled IGBT drivers are used for the jump control switch. The jump time among the power supplies is synchronized from 40 to 60 milliseconds to meet the RHIC beam transition-crossing requirement. The short jump time is needed to avoid particle loss and to preserve the initial bunch area during the transition, thus successfully transferring the ion beams from the acceleration RF system to storage system. There are a total of twenty four jump power supplies that will be used. They synchronously switch the direction of the magnets current while the beam is being accelerated through the transition to reach the top storage energy. Each power supply will energize a group of super conducting magnets, which consists of four magnets that are connected in series. At the end, test results are listed, accompanied with the dummy load current waveform and prototype power supply picture.

  18. Development of Power Assisting Suit

    NASA Astrophysics Data System (ADS)

    Yamamoto, Keijiro; Ishii, Mineo; Hyodo, Kazuhito; Yoshimitsu, Toshihiro; Matsuo, Takashi

    In order to realize a wearable power assisting suit for assisting a nurse to carry a patient in her arms, the power supply and control systems of the suit have to be miniaturized, and it has to be wireless and pipeline-less. The new wearable suit consists of shoulders, arms, back, waist and legs units to be fitted on the nurse's body. The arms, waist and legs have new pneumatic rotary actuators driven directly by micro air pumps supplied by portable Ni-Cd batteries. The muscle forces are sensed by a new muscle hardness sensor utilizing a sensing tip mounted on a force sensing film device. An embedded microcomputer is used for the calculations of control signals. The new wearable suit was applied practically to a human body and a series of movement experiments that weights in the arms were held and taken up and down was performed. Each unit of the suit could transmit assisting torque directly to each joint verifying its practicability.

  19. Sandwich module prototype progress for space solar power

    NASA Astrophysics Data System (ADS)

    Jaffe, Paul; Hodkin, Jason; Harrington, Forest; Person, Clark; Nurnberger, Michael; Nguyen, Bang; LaCava, Susie; Scheiman, Dave; Stewart, Grant; Han, Andrew; Hettwer, Ethan; Rhoades, Daniel

    2014-02-01

    Space solar power (SSP) has been broadly defined as the collection of solar energy in space and its wireless transmission for use on earth. This approach potentially gives the benefit of provision of baseload power while avoiding the losses due to the day/night cycle and tropospheric effects that are associated with terrestrial solar power. Proponents have contended that the implementation of such systems could offer energy security, environmental, and technological advantages to those who would undertake their development. Among recent implementations commonly proposed for SSP, the modular symmetrical concentrator (MSC) and other modular concepts have received considerable attention. Each employs an array of modules for performing conversion of concentrated sunlight into microwaves or laser beams for transmission to earth. While prototypes of such modules have been designed and developed previously by several groups, none have been subjected to the challenging conditions inherent to the space environment and the possible solar concentration levels in which an array of modules might be required to operate. The research described herein details our team's efforts in the development of photovoltaic arrays, power electronics, microwave conversion electronics, and antennas for microwave-based "sandwich" module prototypes. The implementation status and testing results of the prototypes are reviewed.

  20. Prototype Combined Heater/Thermoelectric Power Generator for Remote Applications

    NASA Astrophysics Data System (ADS)

    Champier, D.; Favarel, C.; Bédécarrats, J. P.; Kousksou, T.; Rozis, J. F.

    2013-07-01

    This study presents a prototype thermoelectric generator (TEG) developed for remote applications in villages that are not connected to the electrical power grid. For ecological and economic reasons, there is growing interest in harvesting waste heat from biomass stoves to produce some electricity. Because regular maintenance is not required, TEGs are an attractive choice for small-scale power generation in inaccessible areas. The prototype developed in our laboratory is especially designed to be implemented in stoves that are also used for domestic hot water heating. The aim of this system is to provide a few watts to householders, so they have the ability to charge cellular phones and radios, and to get some light at night. A complete prototype TEG using commercial (bismuth telluride) thermoelectric modules has been built, including system integration with an electric DC/DC converter. The DC/DC converter has a maximum power point tracker (MPPT) driven by an MC9SO8 microcontroller, which optimizes the electrical energy stored in a valve-regulated lead-acid battery. Physical models were used to study the behavior of the thermoelectric system and to optimize the performance of the MPPT. Experiments using a hot gas generator to simulate the exhaust of the combustion chamber of a stove are used to evaluate the system. Additionally, potential uses of such generators are presented.

  1. Expert System For Pilot Assistance: The Challenge Of An Intensive Prototyping

    NASA Astrophysics Data System (ADS)

    Gallo, Paolo; Dabbene, Danilo; Luise, Federica; Giordanengo, Patrizia

    1989-03-01

    It's a common opinion that in the 1990s combat aircraft a new generation of avionic systems with a more integrated hardware and software will take place, involving innovative software about signal processing, sensor fusion and especially expert system software to reduce pilot workload and to improve system performance. AI theories, methodologies and techniques seem to be generally adequate to these purposes, even for complex applications such as those of Pilot Assistance. In some cases, it is not completely clear yet, if the state of the art in this technology is adequate to meet the needs of such a complex project, and we are still in a phase in which the cost-effectiveness of the AI techniques must be fully demonstrated. A lot of companies are carrying on researches and projects in order to evaluate suitability, maturity and costs of these techniques. An effective approach to the acquisition and use of AI techniques may be the definition of a wide project involving the development of prototypes with increasing functions and performance. The real challenge of an intensive and rapid prototyping is double: from the technical point of view one can investigate technologies and pick up information on the suitability and the adequacy of certain techniques; from the project management point of view one can redefine the purposes of the project and their timing considering the gathered experiences. In this paper we describe the methodologies and techniques employed to develop an Expert System for Pilot Assistance while performing route planning or replanning, the functional characteristics of a first prototype working on Lisp machine, and its current architecture. This prototype is able to provide the pilot with dynamic information about the geography of terrain (accessing an object-oriented database), the tactical situation, the meteo conditions and the current state of the aircraft; further, static information about threats characteristics, fuel consumption, aircraft

  2. Hub River: A private power prototype. [Independent Power Production

    SciTech Connect

    Sachs, J.L.

    1992-10-01

    This article examines the challenges of financing an independent power project in a developing country. The oil-fired plant is to be located on the Hub River in Baluchistan on the Arabian Sea coast. The topics of the article include a description of the team that put the project together, the financing plans, the risk in the face of political unrest and change of governments, and the beginning of construction of the project.

  3. A Description of a Prototype System at NTID which Merges Computer Assisted Instruction and Instructional Television.

    ERIC Educational Resources Information Center

    vonFeldt, James R.

    The development of a prototype system is described which merges the strengths of computer assisted instruction, data gathering, interactive learning, individualized instruction, and the motion in color, and audio features of television. Creation of the prototype system will allow testing of both TV and interactive CAI/TV strategies in auditory and…

  4. Prototype continuous flow ventricular assist device supported on magnetic bearings.

    PubMed

    Allaire, P E; Kim, H C; Maslen, E H; Olsen, D B; Bearnson, G B

    1996-06-01

    This article describes a prototype continuous flow pump (CFVAD2) fully supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. The pump delivered 6 L/min of flow at 100 mm Hg of differential pressure head operating at 2,400 rpm in water. The pump is totally supported in 4 magnetic bearings: 2 radial and 2 thrust. Magnetic bearings offer the advantages of no required lubrication and large operating clearances. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity and current gains are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water. Much lower levels of force were found than were expected, allowing for a very significant reduction in the size of the next prototype. Hemolysis levels were measured in the prototype pump and found not to indicate damage to the blood cells.

  5. Design and performance of a prototype fuel cell powered vehicle

    SciTech Connect

    Lehman, P.A.; Chamberlin, C.E.

    1996-12-31

    The Schatz Energy Research Center (SERC) is now engaged in the Palm Desert Renewable Hydrogen Transportation System Project. The Project involves a consortium which includes the City of Palm Desert, SERC, the U.S. Department of Energy, the South Coast Air Quality Management District, and Sandia and Lawrence Livermore National Laboratories. Its goal to develop a clean and sustainable transportation system for a community will be accomplished by producing a fleet of fuel cell vehicles, installing a refueling infrastructure utilizing hydrogen generated from solar and wind power, and developing and staffing a fuel cell service and diagnostic center. We will describe details of the project and performance goals for the fuel cell vehicles and associated peripheral systems. In the past year during the first stage in the project, SERC has designed and built a prototype fuel cell powered personal utility vehicle (PUV). These steps included: (1) Designing, building, and testing a 4.0 kW proton exchange membrane (PEM) fuel cell as a power plant for the PUV. (2) Designing, building and testing peripherals including the air delivery, fuel storage/delivery, refueling, water circulation, cooling, and electrical systems. (3) Devising a control algorithm for the fuel cell power plant in the PUV. (4) Designing and building a test bench in which running conditions in the PUV could be simulated and the fuel cell and its peripheral systems tested. (5) Installing an onboard computer and associated electronics into the PUV (6) Assembling and road testing the PUV.

  6. Rapid algorithm prototyping and implementation for power quality measurement

    NASA Astrophysics Data System (ADS)

    Kołek, Krzysztof; Piątek, Krzysztof

    2015-12-01

    This article presents a Model-Based Design (MBD) approach to rapidly implement power quality (PQ) metering algorithms. Power supply quality is a very important aspect of modern power systems and will become even more important in future smart grids. In this case, maintaining the PQ parameters at the desired level will require efficient implementation methods of the metering algorithms. Currently, the development of new, advanced PQ metering algorithms requires new hardware with adequate computational capability and time intensive, cost-ineffective manual implementations. An alternative, considered here, is an MBD approach. The MBD approach focuses on the modelling and validation of the model by simulation, which is well-supported by a Computer-Aided Engineering (CAE) packages. This paper presents two algorithms utilized in modern PQ meters: a phase-locked loop based on an Enhanced Phase Locked Loop (EPLL), and the flicker measurement according to the IEC 61000-4-15 standard. The algorithms were chosen because of their complexity and non-trivial development. They were first modelled in the MATLAB/Simulink package, then tested and validated in a simulation environment. The models, in the form of Simulink diagrams, were next used to automatically generate C code. The code was compiled and executed in real-time on the Zynq Xilinx platform that combines a reconfigurable Field Programmable Gate Array (FPGA) with a dual-core processor. The MBD development of PQ algorithms, automatic code generation, and compilation form a rapid algorithm prototyping and implementation path for PQ measurements. The main advantage of this approach is the ability to focus on the design, validation, and testing stages while skipping over implementation issues. The code generation process renders production-ready code that can be easily used on the target hardware. This is especially important when standards for PQ measurement are in constant development, and the PQ issues in emerging smart

  7. Development of Power Assisting Suit for Assisting Nurse Labor

    NASA Astrophysics Data System (ADS)

    Yamamoto, Keijiro; Hyodo, Kazuhito; Ishii, Mineo; Matsuo, Takashi

    In order to realize a power assisting suit for assisting a nurse caring a patient in her arm, a hardness sensor of muscle using load cell and a pneumatic rotary actuator utilizing pressure cuffs have been developed. The power assisting suit consists of shoulders, arms, waist and legs made of aluminum, and is fitted on the nurse body. The power assisting suit is originated with the concept of a master and slave system in one body. The arms, waist and legs have the pneumatic rotary actuators. The pneumatic rotary actuators are constructed with pressure cuffs sandwiched between thin plates. The action of the arms, waist and legs of the nurse are sensed with the muscle hardness sensor utilizing load cell with diaphragm mounted on a sensing tip. The dent of the sensing tip corresponds to the hardness of the muscle so that exerting muscle force produces electric signal. This paper gives the design and characteristics of the power assisting suit using the cuff type pneumatic rotary actuators and the muscle hardness sensor verifying its practicability.

  8. Design and implementation of a prototype with a standardized interface for transducers in ambient assisted living.

    PubMed

    Dorronzoro, Enrique; Gómez, Isabel; Medina, Ana Verónica; Gómez, José Antonio

    2015-01-29

    Solutions in the field of Ambient Assisted Living (AAL) do not generally use standards to implement a communication interface between sensors and actuators. This makes these applications isolated solutions because it is so difficult to integrate them into new or existing systems. The objective of this research was to design and implement a prototype with a standardized interface for sensors and actuators to facilitate the integration of different solutions in the field of AAL. Our work is based on the roadmap defined by AALIANCE, using motes with TinyOS telosb, 6LoWPAN, sensors, and the IEEE 21451 standard protocol. This prototype allows one to upgrade sensors to a smart status for easy integration with new applications and already existing ones. The prototype has been evaluated for autonomy and performance. As a use case, the prototype has been tested in a serious game previously designed for people with mobility problems, and its advantages and disadvantages have been analysed.

  9. Design and Implementation of a Prototype with a Standardized Interface for Transducers in Ambient Assisted Living

    PubMed Central

    Dorronzoro, Enrique; Gómez, Isabel; Medina, Ana Verónica; Gómez, José Antonio

    2015-01-01

    Solutions in the field of Ambient Assisted Living (AAL) do not generally use standards to implement a communication interface between sensors and actuators. This makes these applications isolated solutions because it is so difficult to integrate them into new or existing systems. The objective of this research was to design and implement a prototype with a standardized interface for sensors and actuators to facilitate the integration of different solutions in the field of AAL. Our work is based on the roadmap defined by AALIANCE, using motes with TinyOS telosb, 6LoWPAN, sensors, and the IEEE 21451 standard protocol. This prototype allows one to upgrade sensors to a smart status for easy integration with new applications and already existing ones. The prototype has been evaluated for autonomy and performance. As a use case, the prototype has been tested in a serious game previously designed for people with mobility problems, and its advantages and disadvantages have been analysed. PMID:25643057

  10. Zero Power Warming (ZPW) Chamber Prototype Measurements, Barrow, Alaska, 2016

    DOE Data Explorer

    Shawn Serbin; Alistair Rogers; Kim Ely

    2017-02-10

    Data were collected during one season of prototyping associated with the development of a passive warming technology. An experimental chamber, the Zero Power Warming (ZPW) chamber, was fitted with apparatus to modulate venting of a field enclosure and enhance elevation of air temperature by solar radiation. The ZPW chamber was compared with a control chamber (Control) and an ambient open air plot (Ambient). The control chamber was identical to the ZPW chamber but lacked the apparatus necessary to modulate venting, the chamber vents in the control chamber were fixed open for the majority of the trial period. The three plots were located over Carex aquatilis growing in an area of moderately degraded permafrost. Chambers were placed on the same footprints that were used for a similar exercise in 2015 (no data) and therefore those plots had experienced some thaw and degradation prior to 2016. The following data were collected for 80 days at 1 minute intervals from within two chambers and an ambient plot: solar input, chamber venting, air temperature, relative humidity, soil temperature (at 5, 10 and 15 cm), soil moisture, downward and upward NIR.

  11. Design of an immersive simulator for assisted power wheelchair driving.

    PubMed

    Devigne, Louise; Babel, Marie; Nouviale, Florian; Narayanan, Vishnu K; Pasteau, Francois; Gallien, Philippe

    2017-07-01

    Driving a power wheelchair is a difficult and complex visual-cognitive task. As a result, some people with visual and/or cognitive disabilities cannot access the benefits of a power wheelchair because their impairments prevent them from driving safely. In order to improve their access to mobility, we have previously designed a semi-autonomous assistive wheelchair system which progressively corrects the trajectory as the user manually drives the wheelchair and smoothly avoids obstacles. Developing and testing such systems for wheelchair driving assistance requires a significant amount of material resources and clinician time. With Virtual Reality technology, prototypes can be developed and tested in a risk-free and highly flexible Virtual Environment before equipping and testing a physical prototype. Additionally, users can "virtually" test and train more easily during the development process. In this paper, we introduce a power wheelchair driving simulator allowing the user to navigate with a standard wheelchair in an immersive 3D Virtual Environment. The simulation framework is designed to be flexible so that we can use different control inputs. In order to validate the framework, we first performed tests on the simulator with able-bodied participants during which the user's Quality of Experience (QoE) was assessed through a set of questionnaires. Results show that the simulator is a promising tool for future works as it generates a good sense of presence and requires rather low cognitive effort from users.

  12. Development of a prototype magnetically suspended rotor ventricular assist device.

    PubMed

    Bearnson, G B; Maslen, E H; Olsen, D B; Allaire, P E; Khanwilkar, P S; Long, J W; Kim, H C

    1996-01-01

    A continuous flow centrifugal blood pump with magnetically suspended impeller has been designed, constructed, and tested. The system can be functionally divided into three subsystem designs: 1) centrifugal pump and flow paths, 2) magnetic bearings, and 3) brushless DC motor. The centrifugal pump is a Francis vane type design with a designed operating point of 6 L/min flow and 100 mmHg pressure rise at 2,300 RPM. Peak hydraulic efficiency is over 50%. The magnetic bearing system is an all active design with five axes of control. Rotor position sensors were developed as part of the system to provide feedback to a proportional-integral-derivative controller. The motor is a sensorless brushless DC motor. Back electromotive force voltage generated by the motor is used to provide commutation for the motor. No slots are employed in the motor design in order to reduce the radial force that the bearings must generate. Tests pumping blood in vitro were very encouraging; an index of hemolysis of 0.0086 +/- 0.0012 was measured. Further design refinement is needed to reduce power dissipation and size of the device. The concept of using magnetic bearings in a blood pump shows promise in a long-term implantable blood pump.

  13. Innovative power conversion system for the French SFR prototype, ASTRID

    SciTech Connect

    Cachon, L.; Biscarrat, C.; Morin, F.; Haubensack, D.; Rigal, E.; Moro, I.; Baque, F.; Madeleine, S.; Rodriguez, G.; Laffont, G.

    2012-07-01

    In the framework of the French Act of 28 June 2006 about nuclear materials and waste management, the prototype ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), foreseen in operation by the 20's, will have to demonstrate not only the minor actinide transmutation capability, but also the progress made in Sodium Fast Reactor (SFR) technology on an industrial scale, by qualifying innovative options. Some of these options still require improvements, especially in the field of operability and safety. In fact, one of the main issues with the standard steam/water Power Conversion System (PCS) of SFR is the fast and energetic chemical reaction between water and sodium, which could occur in steam generators in case of tube failure. To manage the sodium/water reaction, one way consists in minimizing the impact of such event: hence studies are carried out on steam generator design, improvement of the physical knowledge of this phenomenon, development of numerical simulation to predict the reaction onset and consequences, and associated detection improvement. On the other hand, the other way consists in eliminating sodium/water reaction. In this frame, the CEA contribution to the feasibility evaluation of an alternative innovative PCS (replacing steam/water by 180 bar pressurised nitrogen) is focused on the following main topics: - The parametric study leading to nitrogen selection: the thermodynamic cycle efficiency optimisation on Brayton cycles is performed with several gases at different pressures. - The design of innovative compact heat exchangers for the gas loop: here the key points are the nuclear codification associated with inspection capability, the innovative welding process and the thermal-hydraulic and thermal-mechanic optimisations. After a general introduction of the ASTRID project, this paper presents in detail these different feasibility studies being led on the innovative gas PCS for an SFR. (authors)

  14. Toast: The power system operators assistant

    SciTech Connect

    Talukdar, S.N.; Cardozo, E.; Leao, L.

    1986-07-01

    The environments in which power system operators work are becoming more complex. New constraints are appearing, old constraints are tightening, and the number of decision variables is increasing. To cope with these trends, operators need intelligent assistants to help manage information and lighten their decision-making burdens. Such assistants can be divided into two types: Phase-1 assistants for off-line uses and Phase-2 assistants for on-line uses and Phase-2 assistants for on-line, real-time uses. Toast is an evolving Phase-1 assistant. Of the nine possible functions of an assistant, Toast has immediate potential in two-diagnosis and criticism. Its diagnostic knowledge, though hardly complete, is extensive enough to be useful to human operators. In contrast, its abilities to critique proposed courses of action are much less developed and, as yet, consist only of facilities to simulate some of the these courses of action. Toast has been written in Cops, a programming environment that allows for distributed processing and has a readily extensible library of both symbolic and numerical programs. These features should make the task of expanding Toast relatively painless. Of the many directions in which expansions could occur, we plan on adding diagnostic capabilities in the area of power system security. This area was identified in a study as the most worthy of development.

  15. Basic Characteristics of New Developed Higher-Voltage Direct-Current Power-Feeding Prototype System

    NASA Astrophysics Data System (ADS)

    Babasaki, Tadatoshi; Tanaka, Toshimitsu; Tanaka, Toru; Nozaki, Yousuke; Aoki, Tadahito; Kurokawa, Fujio

    High efficiency power feeding systems are effective solutions for reducing the ICT power consumption with reducing power consumption of the ICT equipment and cooling systems. A higher voltage direct current (HVDC) power feeding system prototype was produced. This system is composed of a rectifier equipment, power distribution unit, batteries, and the ICT equipment. The configuration is similar to a -48V DC power supply system. The output of the rectifier equipment is 100kW, and the output voltage is 401.4V. This paper present the configuration of the HVDC power feeding system and discuss its basic characteristics in the prototype system.

  16. The Design, Prototyping, and Formative Evaluation of an Assistive Robotic Table (ART) for Stroke Patients.

    PubMed

    Threatt, Anthony L; Merino, Jessica; Brooks, Johnell O; Healy, Stan; Truesdail, Constance; Manganelli, Joseph; Walker, Ian; Green, Keith Evan

    2017-04-01

    This article presents the results of an exploratory study in which 14 healthcare subject matter experts (H-SMEs) in addition to four research and design subject matter experts (RD-SMEs) at a regional rehabilitation hospital engaged in a series of complementary, participatory activities in order to design an assistive robotic table (ART). As designers, human factor experts, and healthcare professionals continue to work to integrate assistive human-robot technologies in healthcare, it is imperative to understand how the technology affects patient care from clinicians' perspectives. Fourteen clinical H-SMEs rated a subset of conceptual ART design ideas; participated in the iterative design process of ART; and evaluated a final cardboard prototype, the rehabilitation hospital's current over-the-bed table (OBT), an ART built with true materials, and two therapy surface prototypes. Four RD-SMEs conducted a heuristic evaluation on the ART built with true materials. Data were analyzed by frequency and content analysis. The results include a design and prototype for the next generation ART and a pneumatically controlled therapy surface, a broadened list of specifications for the future design and implementation of assistive robotic furniture, and final observations. When compared to the rehabilitation hospital's current OBT, the developed ART in this study was successful. Designing novel features is dependent upon ensuring patient safety. The inclusion of clinicians in the participatory iterative design and evaluation process and the use of personas provided a broadened list of specifications for the successful implementation of assistive robotic furniture.

  17. A prototype case-based reasoning human assistant for space crew assessment and mission management

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Holland, Albert W.; Wood, Joanna

    1993-01-01

    We present a prototype human assistant system for space crew assessment and mission management. Our system is based on case episodes from American and Russian space missions and analog environments such as polar stations and undersea habitats. The general domain of small groups in isolated and confined environments represents a near ideal application area for case-based reasoning (CBR) - there are few reliable rules to follow, and most domain knowledge is in the form of cases. We define the problem domain and outline a unique knowledge representation system driven by conflict and communication triggers. The prototype system is able to represent, index, and retrieve case studies of human performance. We index by social, behavioral, and environmental factors. We present the problem domain, our current implementation, our research approach for an operational system, and prototype performance and results.

  18. A prototype case-based reasoning human assistant for space crew assessment and mission management

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Holland, Albert W.; Wood, Joanna

    1993-01-01

    We present a prototype human assistant system for space crew assessment and mission management. Our system is based on case episodes from American and Russian space missions and analog environments such as polar stations and undersea habitats. The general domain of small groups in isolated and confined environments represents a near ideal application area for case-based reasoning (CBR) - there are few reliable rules to follow, and most domain knowledge is in the form of cases. We define the problem domain and outline a unique knowledge representation system driven by conflict and communication triggers. The prototype system is able to represent, index, and retrieve case studies of human performance. We index by social, behavioral, and environmental factors. We present the problem domain, our current implementation, our research approach for an operational system, and prototype performance and results.

  19. Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model.

    PubMed

    Ueta, Takashi; Yamaguchi, Yoshiharu; Shirakawa, Yoshihiro; Nakano, Taiga; Ideta, Ryuichi; Noda, Yasuo; Morita, Akio; Mochizuki, Ryo; Sugita, Naohiko; Mitsuishi, Mamoru; Tamaki, Yasuhiro

    2009-08-01

    To develop a prototype robotic system designed to assist vitreoretinal surgery and to evaluate its accuracy and maneuverability. Experimental study. This study used harvested porcine eyes. After development of a prototype robotic system, pointing accuracy tests of the system were performed on graph paper and in harvested porcine eyes. The average maximal deviation from the aiming point to the actual position of the tip of the instrument was compared between manually conducted procedures and those conducted with robotic assistance. The feasibility of creating posterior vitreous detachment (PVD), retinal vessel sheathotomy (RVS), and retinal vessel microcannulation also were evaluated in porcine eye models, and the success rates of 4 consecutive attempts for each kind of procedure were evaluated. The average maximum deviation in pointing accuracy tests both on graph paper and in animal eye models was a main outcome measure. The success rate of making PVD, RVS, and retinal vessel microcannulation was the other primary outcome measure. The pointing accuracy was superior with robotic assistance both on graph paper (327.0 microm vs. 32.3 microm) and in animal eye models (140.8 microm vs. 33.5 microm). Creating PVD, RVS, and retinal vessel microcannulation was feasible in 4 of 4 attempts, 4 of 4 attempts, and 2 of 4 attempts, respectively. The 2 failures in microcannulation were considered to be the result of difficulty in visual differentiation between the retinal vessel and retina in harvested porcine eyes. Improved accuracy and desirable feasibility of a prototype robotic system to assist vitreoretinal surgery were shown in this study. Research for wider implementation of robot-assisted surgery should be continued; there are some hurdles to overcome.

  20. Performance evaluation of a serially powered pixel detector prototype for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Gonella, L.; Filimonov, V.; Hügging, F.; Hemperek, T.; Janssen, J.; Krüger, H.; Pohl, D.-L.; Wermes, N.

    2017-03-01

    Efficient and low mass power distribution presents a challenge for vertex and tracking detectors at the HL-LHC . Different approaches have been considered to transmit power at low current and high voltage. This paper presents the serial powering scheme proposed as baseline for the ATLAS and CMS pixel detectors at the HL-LHC . A serially powered detector prototype with six pixel modules has been built, featuring all elements needed for current distribution, redundancy, data transmission, and sensor biasing. Results of the characterisation of the prototype in standard operating conditions as well as in more challenging scenarios including increased digital activity are presented.

  1. Design and Development of a Miniaturized Percutaneously Deployable Wireless Left Ventricular Assist Device: Early Prototypes and Feasibility Testing.

    PubMed

    Letzen, Brian; Park, Jiheum; Tuzun, Zeynep; Bonde, Pramod

    2017-09-21

    The current left ventricular assist devices (LVADs) are limited by a highly invasive implantation procedure in a severely unstable group of advanced heart failure patients. Additionally, the current transcutaneous power drive line acts as a nidus for infection resulting in significant morbidity and mortality. In an effort to decrease this invasiveness and eliminate drive line complications, we have conceived a wireless miniaturized percutaneous LVAD, capable of being delivered endovascularly with a tether-free operation. The system obviates the need for a transcutaneous fluid purge line required in existing temporary devices by utilizing an incorporated magnetically coupled impeller for a complete seal. The objective of this article was to demonstrate early development and proof-of-concept feasibility testing to serve as the groundwork for future formalized device development. Five early prototypes were designed and constructed to iteratively minimize the pump size and improve fluid dynamic performance. Various magnetic coupling configurations were tested. Using SolidWorks and ANSYS software for modeling and simulation, several geometric parameters were varied. HQ curves were constructed from preliminary in vitro testing to characterize the pump performance. Bench top tests showed no-slip magnetic coupling of the impeller to the driveshaft up to the current limit of the motor. The pump power requirements were tested in vitro and were within the appropriate range for powering via a wireless energy transfer system. Our results demonstrate the proof-of-concept feasibility of a novel endovascular cardiac assist device with the potential to eventually offer patients an untethered, minimally invasive support.

  2. Wind-assist irrigation and electrical-power generation

    NASA Astrophysics Data System (ADS)

    Nelson, V.; Starcher, K.

    1982-07-01

    A wind turbine is mechanically connected to an existing irrigation well. The system can be operated in three modes: electric motor driving the water turbine pump. Wind assist mode where wind turbine supplements power from the utility line to drive the water turbine pump. At wind speeds of 12 m/s and greater, the wind turbine can pump water (15 kW) and feed power (10 kW) back into the utility grid at the same time. Electrical generation mode where the water pump is disconnected and all power is fed back to the utility grid. The concept is technically viable as the mechanical connection allows for a smooth transfer of power in parallel with an existing power source. Minor problems caused delays and major problems of two rotor failures precluded enough operation time to obtain a good estimation of the economics. Because reliability and maintenance are difficult problems with prototype or limited production wind energy conversion systems, the expense of the demonstration project has exceeded the estimated cost by a large amount.

  3. Variable-ratio pushrim-activated power-assist wheelchair eases wheeling over a variety of terrains for elders.

    PubMed

    Levy, Charles E; Chow, John W; Tillman, Mark D; Hanson, Carolyn; Donohue, Tara; Mann, William C

    2004-01-01

    To test (1) whether a prototype variable-ratio pushrim-activated power-assist wheelchair would decrease effort and perceived exertion associated with wheeling and (2) whether the prototype would be acceptable to elders. Repeated-measures design. Biomechanics laboratory. Eleven elderly wheelers (mean age +/- standard deviation, 70.7+/-7.8 y). Wheelers propelled their own wheelchairs and the prototype on a level surface, a carpet, and an incline. Surface electromyographic activity from upper limb and torso, heart rate, number of pushes, category-ratio scale of perceived exertion, and Consumer Assessment of Power Assist Wheelchairs. Compared with subjects' own manual wheelchairs, the prototype was associated with lower heart rate elevation (P<.0125), lower perceived exertion (P<.0125), and reduced electromyographic activity in 5 of 8 muscles. Of the 11 participants, 10 found the prototype to be "very easy" or "easy" to push on level and inclined surfaces; 9 gave that assessment on carpeted and inclined surfaces. Seven would "definitely" or "probably" trade their manual chairs for the power-assist chair if given the opportunity. Nine thought they would venture to new and different places in a power-assist wheelchair. Time and number of pushes to complete tasks did not differ significantly between chairs. The prototype reduced the effort associated with wheeling and was an acceptable alternative to manual wheelchairs. Further testing outside the laboratory is warranted.

  4. Development and Testing of a Prototype Grid-Tied Photovoltaic Power System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed and tested a prototype 2 kW DC grid-tied photovoltaic (PV) power system at the Center. The PV system has generated in excess of 6700 kWh since operation commenced in July 2006. The PV system is providing power to the GRC grid for use by all. Operation of the prototype PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the prototype PV system, additional PV power system expansion at GRC is under consideration. The prototype grid-tied PV power system was successfully designed and developed which served to validate the basic principles described, and the theoretical work that was performed. The report concludes that grid-tied photovoltaic power systems are reliable, maintenance free, long life power systems, and are of significant value to NASA and the community.

  5. Power Teaching Prototype: New Paradigm Education at Edward Waters College. Occasional Paper #7

    ERIC Educational Resources Information Center

    Fluellen, Jerry Ellsworth, Jr.

    2009-01-01

    Since, its early development in our nation's capital, the Power Teaching Prototype (PTP) has evolved to connect three factors likely to characterize 21st Century teaching and learning. Teaching for understanding requires a clear method of designing instruction and a simple, yet powerful, way of delivering. For the design of instruction, Harvard…

  6. Design and Prototype Development of a Wireless Power Transmission System for a Micro Air Vehicle (MAV).

    DTIC Science & Technology

    1999-06-01

    assembled, each consisting of microwave rectifier, antenna and a miniature DC motor . It was demonstrated that a 1.8-Watt, 1.3-GHz microwave signal could...power the DC motor at free space distance of 30 inches from transmitting antenna to prototype MAV. Greater operating distances are proposed by using higher transmitting power and antenna gain.

  7. Using CamiTK for rapid prototyping of interactive computer assisted medical intervention applications.

    PubMed

    Promayon, Emmanuel; Fouard, Céline; Bailet, Mathieu; Deram, Aurélien; Fiard, Gaëlle; Hungr, Nikolai; Luboz, Vincent; Payan, Yohan; Sarrazin, Johan; Saubat, Nicolas; Selmi, Sonia Yuki; Voros, Sandrine; Cinquin, Philippe; Troccaz, Jocelyne

    2013-01-01

    Computer Assisted Medical Intervention (CAMI hereafter) is a complex multi-disciplinary field. CAMI research requires the collaboration of experts in several fields as diverse as medicine, computer science, mathematics, instrumentation, signal processing, mechanics, modeling, automatics, optics, etc. CamiTK is a modular framework that helps researchers and clinicians to collaborate together in order to prototype CAMI applications by regrouping the knowledge and expertise from each discipline. It is an open-source, cross-platform generic and modular tool written in C++ which can handle medical images, surgical navigation, biomedicals simulations and robot control. This paper presents the Computer Assisted Medical Intervention ToolKit (CamiTK) and how it is used in various applications in our research team.

  8. Prototype Rhenium Component for Stirling Engine Power Conversion

    NASA Astrophysics Data System (ADS)

    Leonhardt, Todd; Ritzert, Frank

    2005-02-01

    The Stirling engine power conversion concept is a candidate to provide electrical power for deep space missions. A key element for qualifying potential flight hardware is the long-term durability assessment for critical hot section components of the power converter. One such critical component is the power converter heater head, which is a high-temperature pressure vessel that transfers heat to the working gas medium of the converter. Rhenium is a candidate material for the heater head application because of its high melting point (3453 K), high elastic modulus (420 GPa), high yield and ultimate tensile strengths at both ambient and elevated temperatures, excellent ductility, and exceptional creep properties. Rhenium is also attractive due to the potential of near-net-shape (NNS) manufacturing techniques that allow components to be produced using less material, which lowers the overall cost of the component. The objective of this research was to demonstrate the manufacturing method using rhenium for this high-temperature power conversion application to provide space power system designers with generally applicable technology for future applications.

  9. Perfect Power Prototype for Illinois Institute of Technology

    SciTech Connect

    Shahidehpour, Mohammad

    2014-09-30

    Starting in October 2008, Illinois Institute of Technology (IIT), in collaboration with over 20 participating members, led an extensive effort to develop, demonstrate, promote, and commercialize a microgrid system and offer supporting technologies that will achieve Perfect Power at the main campus of IIT. A Perfect Power system, as defined by the Galvin Electricity Initiative (GEI), is a system that cannot fail to meet the electric needs of the individual end-user. The Principle Investigator of this Perfect Power project was Dr. Mohammad Shahidehpour, Director of the Robert W. Galvin Center for Electricity Innovation at IIT. There were six overall objectives of the Perfect Power project: (1) Demonstrate the higher reliability introduced by the microgrid system at IIT; (2) Demonstrate the economics of microgrid operations; (3) Allow for a decrease of fifty percent (50%) of grid electricity load; (4) Create a permanent twenty percent (20%) decrease in peak load from 2007 level; (5) Defer planned substation through load reduction; (6) Offer a distribution system design that can be replicated in urban communities.

  10. Construction of a power plant with prototype DLN combustion turbines

    SciTech Connect

    Wilkinson, M.L.; Drummond, L.J.

    1996-12-31

    Design and construction of a power plant is always a difficult process and this is especially true when the main keystone, the combustion turbine engine, is being modified by the manufacturer resulting in numerous changes in the design interfaces. The development of the design and construction of the Orange Cogeneration Facility has been in parallel with major modification of the LM6000 to DLE technology (a Dry Low NO{sub x} combustion system). The Dry Low NO{sub x} Combustion System for a combustion turbine offered a means to reduce water usage, lower Zero Liquid Discharge System operating costs and reduce emissions to meet Florida Department of Environmental Protection requirements. This development was successfully accomplished by Owner, EPC contractor and Combustion Turbine Manufacturer by maintaining flexibility in the design and construction while the design interfaces and performance of the combustion turbines were being finalized.

  11. In vivo demonstration of a self-sustaining, implantable, stimulated-muscle-powered piezoelectric generator prototype.

    PubMed

    Lewandowski, B E; Kilgore, K L; Gustafson, K J

    2009-11-01

    An implantable, stimulated-muscle-powered piezoelectric active energy harvesting generator was previously designed to exploit the fact that the mechanical output power of muscle is substantially greater than the electrical power necessary to stimulate the muscle's motor nerve. We reduced to practice the concept by building a prototype generator and stimulator. We demonstrated its feasibility in vivo, using rabbit quadriceps to drive the generator. The generated power was sufficient for self-sustaining operation of the stimulator and additional harnessed power was dissipated through a load resistor. The prototype generator was developed and the power generating capabilities were tested with a mechanical muscle analog. In vivo generated power matched the mechanical muscle analog, verifying its usefulness as a test-bed for generator development. Generator output power was dependent on the muscle stimulation parameters. Simulations and in vivo testing demonstrated that for a fixed number of stimuli/minute, two stimuli applied at a high frequency generated greater power than single stimuli or tetanic contractions. Larger muscles and circuitry improvements are expected to increase available power. An implanted, self-replenishing power source has the potential to augment implanted battery or transcutaneously powered electronic medical devices.

  12. Preliminary evaluation of a personal healthcare system prototype for cognitive eRehabilitation in a living assistance domain.

    PubMed

    Pastorino, Matteo; Fioravanti, Alessio; Arredondo, Maria Teresa; Cogollor, José M; Rojo, Javier; Ferre, Manuel; Bienkiewicz, Marta; Hermsdörfer, Joachim; Fringi, Evangelia; Wing, Alan M

    2014-06-11

    The integration of rehabilitation systems in an ambient assisted living environment can provide a powerful and versatile tool for long-term stroke rehabilitation goals. This paper introduces a novel concept of a personalized cognitive rehabilitation system in a naturalistic setting. The proposed platform was developed within the CogWatch project, with the intent of fostering independence in activities of daily living in patients with apraxia and action disorganization syndrome. Technical usability was evaluated in a series of pilot experiments, which illustrate how this approach may help to retrain patients in activities of daily living. The first system prototype has been tested with 36 participants divided into three groups, providing an exploratory evaluation of the usability of this solution and its acceptability. The technical solutions used within the CogWatch project are targeted to meet both the end users' needs from the interaction and usability point of views and the clinical requirements associated with the use of such systems. The challenges behind the development of ambient assisted living systems for cognitive rehabilitation are discussed.

  13. Preliminary Evaluation of a Personal Healthcare System Prototype for Cognitive eRehabilitation in a Living Assistance Domain

    PubMed Central

    Pastorino, Matteo; Fioravanti, Alessio; Arredondo, Maria Teresa; Cogollor, José M.; Rojo, Javier; Ferre, Manuel; Bienkiewicz, Marta; Hermsdörfer, Joachim; Fringi, Evangelia; Wing, Alan M.

    2014-01-01

    The integration of rehabilitation systems in an ambient assisted living environment can provide a powerful and versatile tool for long-term stroke rehabilitation goals. This paper introduces a novel concept of a personalized cognitive rehabilitation system in a naturalistic setting. The proposed platform was developed within the CogWatch project, with the intent of fostering independence in activities of daily living in patients with apraxia and action disorganization syndrome. Technical usability was evaluated in a series of pilot experiments, which illustrate how this approach may help to retrain patients in activities of daily living. The first system prototype has been tested with 36 participants divided into three groups, providing an exploratory evaluation of the usability of this solution and its acceptability. The technical solutions used within the CogWatch project are targeted to meet both the end users' needs from the interaction and usability point of views and the clinical requirements associated with the use of such systems. The challenges behind the development of ambient assisted living systems for cognitive rehabilitation are discussed. PMID:24922452

  14. PowerCore{trademark}, NiMH production prototype for portable electronics. Quarterly report R02

    SciTech Connect

    Lyman, P.C.

    1998-01-30

    The objective of this project is to build a production prototype of Power Core structural battery for applications as a hard case for portable electronic devices. The reports summarizes the work completed since the last report. It briefly describes the problems that were experienced. It also gives details of progress versus statement of work task definitions.

  15. Trade-off study on the power capacity of a prototype SFR in Korea

    SciTech Connect

    Baek, M. H.; Kim, S. J.; Yoo, J.; Bae, I. H.

    2012-07-01

    The major roles of a prototype SFR are to provide irradiation test capability for the fuel and structure materials, and to obtain operational experiences of systems. Due to a compromise between the irradiation capability and construction costs, the power level should be properly determined. In this paper, a trade-off study on the power level of the prototype SFR was performed from a neutronics viewpoint. To select candidate cores, the parametric study of pin diameters was estimated using 20 wt.% uranium fuel. The candidate cores of different power levels, 125 MWt, 250 MWt, 400 MWt, and 500 MWt, were compared with the 1500 MWt reference core. The resulting core performance and economic efficiency indices became insensitive to the power at about 400-500 MWt and sharply deteriorated at about 125-250 MWt with decreasing core sizes. Fuel management scheme, TRU core performance comparing with uranium core, and sodium void reactivity were also evaluated with increasing power levels. It is found that increasing the number of batches showed higher burnup performance and economic efficiency. However, increasing the cycle length showed the trends in lower economic efficiency. Irradiation performance of TRU and enriched TRU cores was improved about 20 % and 50 %, respectively. The maximum sodium void reactivity of 5.2$ was confirmed less than the design limit of 7.5$. As a result, the power capacity of the prototype SFR should not be less than 250 MWt and would be appropriate at {approx} 500 MWt considering the performance and economic efficiency. (authors)

  16. Ka-Band Wide-Bandgap Solid-State Power Amplifier: Prototype Combiner Spurious Mode Suppression and Power Constraints

    NASA Astrophysics Data System (ADS)

    Khan, P.; Epp, L.

    2006-02-01

    Results of prototype hardware activities related to a 120-W, 32-GHz (Ka-band) solid-state power amplifier (SSPA) architecture study are presented. Spurious mode suppression and the power-handling capability of a prototype 24-way radial combiner and a prototype 2-way septum binary combiner were investigated. Experimental data indicate that a commercial absorptive filter, designed to pass the circular TE_01 mode, effectively suppressed the higher-order modes generated by a narrowband, flower-petal-type mode transducer. However, the same filter was not effective in suppressing higher-order modes generated by the broadband Marie mode transducer that is used in the prototype waveguide radial combiner. Should greater filtering be required by a particular SSPA application, a broadband mode filter that can suppress specifically those higher-order modes that are generated by the Marie transducer will need to be developed. A back-to-back configuration of the prototype radial combiner was tested with drive power up to approximately 50 W. No anomalous behavior was observed. Power measurements of the septum combiner indicate that up to 10-W radio frequency (RF) can be dissipated in the integrated resistive element before a permanent performance shift is observed. Thus, a given adder (a single-stage, 2-way combiner) can safely combine two 20-W sources, and the adder will not be damaged in the event of a source failure. This result is used to calculate the maximum source power that can be safely combined as a function of the number of sources combined and the number of source failures allowed in a multi-stage combiner. The analysis shows that SSPA power greater than 140 W can be generated by power combining 16 sources producing 10 W each. In this configuration, up to three sources could fail with the guarantee that the combiner would not be damaged. Finally, a modified prototype septum combiner design was verified. The improved design reduced the assembly time from over 2 hours

  17. Ka-Band Wide-Bandgap Solid-State Power Amplifier: Prototype Combiner Spurious Mode Suppression and Power Constraints

    NASA Technical Reports Server (NTRS)

    Khan, P.; Epp, L.

    2006-01-01

    Results of prototype hardware activities related to a 120-W, 32-GHz (Ka-band) solid-state power amplifier (SSPA) architecture study are presented. Spurious mode suppression and the power-handling capability of a prototype 24-way radial combiner and a prototype 2-way septum binary combiner were investigated. Experimental data indicate that a commercial absorptive filter, designed to pass the circular TE01 mode, effectively suppressed the higher-order modes generated by a narrowband, flower-petal-type mode transducer. However, the same filter was not effective in suppressing higher-order modes generated by the broadband Marie mode transducer that is used in the prototype waveguide radial combiner. Should greater filtering be required by a particular SSPA application, a broadband mode filter that can suppress specifically those higher-order modes that are generated by the Marie transducer will need to be developed. A back-to-back configuration of the prototype radial combiner was tested with drive power up to approximately 50 W. No anomalous behavior was observed. Power measurements of the septum combiner indicate that up to 10-W radio frequency (RF) can be dissipated in the integrated resistive element before a permanent performance shift is observed. Thus, a given adder (a single-stage, 2-way combiner) can safely combine two 20-W sources, and the adder will not be damaged in the event of a source failure. This result is used to calculate the maximum source power that can be safely combined as a function of the number of sources combined and the number of source failures allowed in a multi-stage combiner. The analysis shows that SSPA power >140 W can be generated by power combining 16 sources producing 10 W each. In this configuration, up to three sources could fail with the guarantee that the combiner would not be damaged. Finally, a modified prototype septum combiner design was verified. The improved design reduced the assembly time from over 2 hours to about 15

  18. Monitoring the thermal power of nuclear reactors with a prototype cubic meter antineutrino detector

    NASA Astrophysics Data System (ADS)

    Bernstein, A.; Bowden, N. S.; Misner, A.; Palmer, T.

    2008-04-01

    In this paper, we estimate how quickly and how precisely a reactor's operational status and thermal power can be monitored over hour to month time scales, using the antineutrino rate as measured by a cubic meter scale detector. Our results are obtained from a detector we have deployed and operated at 25m standoff from a reactor core. This prototype can detect a prompt reactor shutdown within 5h and monitor relative thermal power to within 7days. Monitoring of short-term power changes in this way may be useful in the context of International Atomic Energy Agency's reactor safeguards regime or other cooperative monitoring regimes.

  19. Testing Procedures and Results of the Prototype Fundamental Power Coupler for the Spallation Neutron Source

    SciTech Connect

    Stirbet, M; Campisi, I E; Daly, E F; Davis, G K; Drury, M; Kneisel, P; Myneni, G; Powers, T; Schneider, W J; Wilson, K M; Kang, Y; Cummings, K A; Hardek, T

    2001-06-01

    High-power RF testing with peak power in excess of 500 kW has been performed on prototype Fundamental Power Couplers (FPC) for the Spallation Neutron Source superconducting (SNS) cavities. The testing followed the development of procedures for cleaning, assembling and preparing the FPC for installation in the test stand. The qualification of the couplers has occurred for the time being only in a limited set of conditions (travelling wave, 20 pps) as the available RF system and control instrumentation are under improvement.

  20. Electrical Prototype Power Processor for the 30-cm Mercury electric propulsion engine

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Frye, R. J.

    1978-01-01

    An Electrical Prototpye Power Processor has been designed to the latest electrical and performance requirements for a flight-type 30-cm ion engine and includes all the necessary power, command, telemetry and control interfaces for a typical electric propulsion subsystem. The power processor was configured into seven separate mechanical modules that would allow subassembly fabrication, test and integration into a complete power processor unit assembly. The conceptual mechanical packaging of the electrical prototype power processor unit demonstrated the relative location of power, high voltage and control electronic components to minimize electrical interactions and to provide adequate thermal control in a vacuum environment. Thermal control was accomplished with a heat pipe simulator attached to the base of the modules.

  1. Electrical Prototype Power Processor for the 30-cm Mercury electric propulsion engine

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Frye, R. J.

    1978-01-01

    An Electrical Prototpye Power Processor has been designed to the latest electrical and performance requirements for a flight-type 30-cm ion engine and includes all the necessary power, command, telemetry and control interfaces for a typical electric propulsion subsystem. The power processor was configured into seven separate mechanical modules that would allow subassembly fabrication, test and integration into a complete power processor unit assembly. The conceptual mechanical packaging of the electrical prototype power processor unit demonstrated the relative location of power, high voltage and control electronic components to minimize electrical interactions and to provide adequate thermal control in a vacuum environment. Thermal control was accomplished with a heat pipe simulator attached to the base of the modules.

  2. 100kW Energy Transfer Multiplexer Power Converter Prototype Development Project

    SciTech Connect

    S. Merrill Skeist; Richard H. Baker; Anthony G.P. Marini; DOE Project Officer - Keith Bennett

    2006-03-21

    Project Final Report for "100kW Energy Transfer Multiplexer Power Converter Prototype Development Project" prepared under DOE grant number DE-FG36-03GO13138. This project relates to the further development and prototype construction/evaluation for the Energy Transfer Multiplexer (ETM) power converter topology concept. The ETM uses a series resonant link to transfer energy from any phase of a multiphase input to any phase of a multiphase output, converting any input voltage and frequency to any output voltage and frequency. The basic form of the ETM converter consists of an eight (8)-switch matrix (six phase power switches and two ground power switches) and a series L-C resonant circuit. Electronic control of the switches allows energy to be transferred in the proper amount from any phase to any other phase. Depending upon the final circuit application, the switches may be either SCRs or IGBTs. The inherent characteristics of the ETM converter include the following: Power processing in either direction (bidirectional); Large voltage gain without the need of low frequency magnetics; High efficiency independent of output load and frequency; Wide bandwidth with fast transient response and; Operation as a current source. The ETM is able to synthesize true sinusoidal waveforms with low harmonic distortions. For a low power PM wind generation system, the ETM has the following characteristics and advantages: It provides voltage gain without the need of low frequency magnetics (DC inductors) and; It has constant high efficiency independent of the load. The ETM converter can be implemented into a PM wind power system with smaller size, reduced weight and lower cost. As a result of our analyses, the ETM offers wind power generation technology for the reduction of the cost and size as well as the increase in performance of low power, low wind speed power generation. This project is the further theoretical/analytical exploration of the ETM converter concept in relationship to

  3. A prototype of wireless power and data acquisition system for large detectors

    NASA Astrophysics Data System (ADS)

    De Lurgio, P.; Djurcic, Z.; Drake, G.; Hashemian, R.; Kreps, A.; Oberling, M.; Pearson, T.; Sahoo, H.

    2015-06-01

    We have developed a prototype detector and data acquisition module that incorporates wireless power and wireless data transmission techniques. The module has no electrical connections. It receives power using photovoltaic devices, and communicates control, timing, trigger, and data using the 802.11n wireless communication standard. The work is part of a study for building a large detector having many readout channels, where it is desirable to reduce the cable plant and infrastructure. The system could also be deployed in smaller detectors that require mobility or are difficult to cable due to extreme conditions. We describe the design and operation of the prototype module, including benchmark performance measurements, and discuss aspect and issues in extrapolating to a large detector system.

  4. Distributing Power Grid State Estimation on HPC Clusters A System Architecture Prototype

    SciTech Connect

    Liu, Yan; Jiang, Wei; Jin, Shuangshuang; Rice, Mark J.; Chen, Yousu

    2012-08-20

    The future power grid is expected to further expand with highly distributed energy sources and smart loads. The increased size and complexity lead to increased burden on existing computational resources in energy control centers. Thus the need to perform real-time assessment on such systems entails efficient means to distribute centralized functions such as state estimation in the power system. In this paper, we present our early prototype of a system architecture that connects distributed state estimators individually running parallel programs to solve non-linear estimation procedure. The prototype consists of a middleware and data processing toolkits that allows data exchange in the distributed state estimation. We build a test case based on the IEEE 118 bus system and partition the state estimation of the whole system model to available HPC clusters. The measurement from the testbed demonstrates the low overhead of our solution.

  5. Evaluation of a Prototype Hybrid Vacuum Pump to Provide Vacuum-Assisted Suspension for Above-Knee Prostheses

    PubMed Central

    Major, Matthew J.; Caldwell, Ryan; Fatone, Stefania

    2015-01-01

    Vacuum-assisted suspension (VAS) of prosthetic sockets utilizes a pump to evacuate air from between the prosthetic liner and socket, and are available as mechanical or electric systems. This technical note describes a hybrid pump that benefits from the advantages of mechanical and electric systems, and evaluates a prototype as proof-of-concept. Cyclical bench testing of the hybrid pump mechanical system was performed using a materials testing system to assess the relationship between compression cycles and vacuum pressure. Phase 1 in vivo testing of the hybrid pump was performed by an able-bodied individual using prosthesis simulator boots walking on a treadmill, and phase 2 involved an above-knee prosthesis user walking with the hybrid pump and a commercial electric pump for comparison. Bench testing of 300 compression cycles produced a maximum vacuum of 24 in-Hg. In vivo testing demonstrated that the hybrid pump continued to pull vacuum during walking, and as opposed to the commercial electric pump, did not require reactivation of the electric system during phase 2 testing. The novelty of the hybrid pump is that while the electric system provides rapid, initial vacuum suspension, the mechanical system provides continuous air evacuation while walking to maintain suspension without reactivation of the electric system, thereby allowing battery power to be reserved for monitoring vacuum levels. PMID:27462383

  6. Evaluation of a Prototype Hybrid Vacuum Pump to Provide Vacuum-Assisted Suspension for Above-Knee Prostheses.

    PubMed

    Major, Matthew J; Caldwell, Ryan; Fatone, Stefania

    2015-12-01

    Vacuum-assisted suspension (VAS) of prosthetic sockets utilizes a pump to evacuate air from between the prosthetic liner and socket, and are available as mechanical or electric systems. This technical note describes a hybrid pump that benefits from the advantages of mechanical and electric systems, and evaluates a prototype as proof-of-concept. Cyclical bench testing of the hybrid pump mechanical system was performed using a materials testing system to assess the relationship between compression cycles and vacuum pressure. Phase 1 in vivo testing of the hybrid pump was performed by an able-bodied individual using prosthesis simulator boots walking on a treadmill, and phase 2 involved an above-knee prosthesis user walking with the hybrid pump and a commercial electric pump for comparison. Bench testing of 300 compression cycles produced a maximum vacuum of 24 in-Hg. In vivo testing demonstrated that the hybrid pump continued to pull vacuum during walking, and as opposed to the commercial electric pump, did not require reactivation of the electric system during phase 2 testing. The novelty of the hybrid pump is that while the electric system provides rapid, initial vacuum suspension, the mechanical system provides continuous air evacuation while walking to maintain suspension without reactivation of the electric system, thereby allowing battery power to be reserved for monitoring vacuum levels.

  7. HelioTrope: An innovative and efficient prototype for solar power production

    NASA Astrophysics Data System (ADS)

    Papageorgiou, George; Maimaris, Athanasios; Hadjixenophontos, Savvas; Ioannou, Petros

    2014-12-01

    The solar energy alternative could provide us with all the energy we need as it exist in vast quantities all around us. We only should be innovative enough in order to improve the efficiency of our systems in capturing and converting solar energy in usable forms of power. By making a case for the solar energy alternative, we identify areas where efficiency can be improved and thereby Solar Energy can become a competitive energy source. This paper suggests an innovative approach to solar energy power production, which is manifested in a prototype given the name HelioTrope. The Heliotrope Solar Energy Production prototype is tested on its' capabilities to efficiently covert solar energy to generation of electricity and other forms of energy for storage or direct use. HelioTrope involves an innovative Stirling engine design and a parabolic concentrating dish with a sun tracking system implementing a control algorithm to maximize the capturing of solar energy. Further, it utilizes a patent developed by the authors where a mechanism is designed for the transmission of reciprocating motion of variable amplitude into unidirectional circular motion. This is employed in our prototype for converting linear reciprocating motion into circular for electricity production, which gives a significant increase in efficiency and reduces maintenance costs. Preliminary calculations indicate that the Heliotrope approach constitutes a competitive solution to solar power production.

  8. Computer-assisted laser tattoo removal: a proposed prototype system - biomed 2009.

    PubMed

    Barrett, Steven F; Wright, Cameron H G

    2009-01-01

    It is estimated that there are 7-20 million tattooed people in the United States. This number will probably grow as evidenced by reported increases in the number of tattoo studios and the sales of tattoo related supplies. Consistent with this growth in tattoo placement is anticipated increase in the demand for tattoo removals. Studies by Armstrong et al. indicate that many people want to have tattoos removed. Most participants in the studies indicated they had "impulsively obtained their tattoos for internal expectations of self-identity at an early age and were still internally motivated to dissociate from the past and improve self-identity [1]." Currently there are several lasers approved for tattoo removal: the Q-switched ruby (694 nm), the Q-switched Nd:YAG (532 nm, 1064 nm) and Nd:YAG pumped dye lasers at 585 nm and 650 nm.. A technique called Selective Photothermolysis is used to remove the tattoos. The goal of this project was to investigate the feasibility of a computer-assisted laser tattoo removal system to limit damage to collateral areas and scarring while significantly reducing the length and the number of treatment sessions. This was accomplished by characterizing the absorption properties of common tattoo inks, reviewing the limitations of current laser tattoo removal systems, and proposing a prototype system configuration.

  9. Link monitor and control operator assistant: A prototype demonstrating semiautomated monitor and control

    NASA Technical Reports Server (NTRS)

    Lee, L. F.; Cooper, L. P.

    1993-01-01

    This article describes the approach, results, and lessons learned from an applied research project demonstrating how artificial intelligence (AI) technology can be used to improve Deep Space Network operations. Configuring antenna and associated equipment necessary to support a communications link is a time-consuming process. The time spent configuring the equipment is essentially overhead and results in reduced time for actual mission support operations. The NASA Office of Space Communications (Code O) and the NASA Office of Advanced Concepts and Technology (Code C) jointly funded an applied research project to investigate technologies which can be used to reduce configuration time. This resulted in the development and application of AI-based automated operations technology in a prototype system, the Link Monitor and Control Operator Assistant (LMC OA). The LMC OA was tested over the course of three months in a parallel experimental mode on very long baseline interferometry (VLBI) operations at the Goldstone Deep Space Communications Center. The tests demonstrated a 44 percent reduction in pre-calibration time for a VLBI pass on the 70-m antenna. Currently, this technology is being developed further under Research and Technology Operating Plan (RTOP)-72 to demonstrate the applicability of the technology to operations in the entire Deep Space Network.

  10. Wheelchair users' perceptions of and experiences with power assist wheels.

    PubMed

    Giacobbi, Peter R; Levy, Charles E; Dietrich, Frederick D; Winkler, Sandra Hubbard; Tillman, Mark D; Chow, John W

    2010-03-01

    To assess wheelchair users' perceptions of and experiences with power assist wheels using qualitative interview methods. Qualitative evaluations were conducted in a laboratory setting with a focus on users' experiences using power assist wheel in their naturalistic environments. Participants consisted of seven women and 13 men (M(age) = 42.75, SD = 14.68) that included one African American, one Hispanic, 17 whites, and one individual from Zambia. Qualitative interviews were conducted before, during, and after use of a power assist wheel. Main outcome measures included the wheelchair users' evaluations and experiences related to the use of power assist wheels. The primary evaluations included wheeling on challenging terrains, performance of novel activities, social/family aspects, fatigue, and pain. These descriptions indicated that most participants perceived positive experiences with the power assist wheels, including access to new and different activities. Secondary evaluations indicated that the unit was cumbersome and prohibitive for some participants because of difficulties with transport in and out of a vehicle and battery life. Most participants felt that power assist wheels provided more independence and social opportunities. The power assist wheel seems to offer physical and social benefits for most wheelers. Clinicians should consider users' home environment and overall life circumstances before prescribing.

  11. Pathologists' Computer-Assisted Diagnosis: A Mock-up of a Prototype Information System to Facilitate Automation of Pathology Sign-out.

    PubMed

    Farahani, Navid; Liu, Zheng; Jutt, Dylan; Fine, Jeffrey L

    2017-10-01

    - Pathologists' computer-assisted diagnosis (pCAD) is a proposed framework for alleviating challenges through the automation of their routine sign-out work. Currently, hypothetical pCAD is based on a triad of advanced image analysis, deep integration with heterogeneous information systems, and a concrete understanding of traditional pathology workflow. Prototyping is an established method for designing complex new computer systems such as pCAD. - To describe, in detail, a prototype of pCAD for the sign-out of a breast cancer specimen. - Deidentified glass slides and data from breast cancer specimens were used. Slides were digitized into whole-slide images with an Aperio ScanScope XT, and screen captures were created by using vendor-provided software. The advanced workflow prototype was constructed by using PowerPoint software. - We modeled an interactive, computer-assisted workflow: pCAD previews whole-slide images in the context of integrated, disparate data and predefined diagnostic tasks and subtasks. Relevant regions of interest (ROIs) would be automatically identified and triaged by the computer. A pathologist's sign-out work would consist of an interactive review of important ROIs, driven by required diagnostic tasks. The interactive session would generate a pathology report automatically. - Using animations and real ROIs, the pCAD prototype demonstrates the hypothetical sign-out in a stepwise fashion, illustrating various interactions and explaining how steps can be automated. The file is publicly available and should be widely compatible. This mock-up is intended to spur discussion and to help usher in the next era of digitization for pathologists by providing desperately needed and long-awaited automation.

  12. Simulations of the high average power selene free electron laser prototype. Master's thesis

    SciTech Connect

    Quick, D.D.

    1994-06-01

    Free electron laser (FEL) technology continues to advance, providing alternative solutions to existing and potential problems. The capabilities of an FEL with respect to tunability, power and efficiency make it an attractive choice when moving into new laser utilization fields. The initial design parameters, for any new system, offer a good base to begin system simulation tests in an effort to determine the best possible design. This is a study of the Novosibirsk design which is a prototype for the proposed SELENE FEL. The design uses a three-section, low-power optical klystron followed by a single-pass, high-power radiator. This system is inherently sensitive to electron beam quality, but affords flexibility in achieving the final design. The performance of the system is studied using the initial parameters. An FEL, configured as a simple, two section optical klystron is studied to determine the basic operating characteristics of a high current FEL klystron.

  13. Report on Performance of Prototype Dynatronix Power Supplies Developed Under a Phase I DOE SBIR

    SciTech Connect

    Hoppe, Eric W.; Merriman, Jason H.

    2011-03-01

    The purpose of this study is to evaluate the prototype power supplies fabricated by Dynatronix, Inc. This project supports the advancement of electroforming capabilities to produce ultra-high purity copper. Ultra-high purity copper is an essential material used for a range of current and future fundamental nuclear physics programs such as the MAJORANA DEMONSTRATOR. The Mach 30 power supplies are a new design built to the specifications from the requirements of Pacific Northwest National Laboratory (PNNL) with regard to timing, voltage, current output, and the required tolerances. The parameters used in these tests were developed empirically over a number of years based on a combination of thermodynamic and kinetics of the electroplating process. The power supplies were operated in a typical cleanroom environment for the production electroforming at PNNL. The units that were received by PNNL in July, 2010 have performed satisfactorily and have demonstrated short term durability.

  14. NASA Research Announcement Phase 1 Report and Phase 2 Proposal for the Development of a Power Assisted Space Suit Glove Assembly

    NASA Technical Reports Server (NTRS)

    Cadogan, Dave; Lingo, Bob

    1996-01-01

    In July of 1996, ILC Dover was awarded Phase 1 of a contract for NASA to develop a prototype Power Assisted Space Suit glove to enhance the performance of astronauts during Extra-Vehicular Activity (EVA). This report summarizes the work performed to date on Phase 1, and details the work to be conducted on Phase 2 of the program. Phase 1 of the program consisted of research and review of related technical sources, concept brainstorming, baseline design development, modeling and analysis, component mock-up testing, and test data analysis. ILC worked in conjunction with the University of Maryland's Space Systems Laboratory (SSL) to develop the power assisted glove. Phase 2 activities will focus on the design maturation and the manufacture of a working prototype system. The prototype will be tested and evaluated in conjunction with existing space suit glove technology to determine the performance enhancement anticipated with the implementation of the power assisted joint technology in space suit gloves.

  15. Irradiation tests of prototype self-powered gamma and neutron detectors

    SciTech Connect

    Vermeeren, L.; Carcreff, H.

    2011-07-01

    In the framework of the SCK.CEN-CEA Joint Instrumentation Laboratory, we are developing and optimizing a self-powered detector for selective in-core monitoring of the gamma field. Several prototypes with bismuth emitters were developed and tested in a pure gamma field (the PAGURE gamma irradiation facility at CEA) and in mixed neutron and gamma fields (in the OSIRIS reactor at CEA and in the BR2 reactor at SCK.CEN). Detailed MCNP modelling was performed to calculate the gamma and neutron sensitivities. Apart from a few failing prototypes, all detectors showed equilibrium signals proportional to the gamma field with a good long-term stability (under irradiation during several weeks). A tubular geometry design was finally selected as the most appropriate for in-core gamma detection, coupling a larger sensitivity with better response characteristics. In the same experiment in BR2 six prototype Self-Powered Neutron Detectors (SPNDs) with continuous sheaths (i.e. without any weld between the sensitive part and the cable) were extensively tested: two SPNDs with Co emitter, two with V emitter and two with Rh emitters, with varying geometries. All detector responses were verified to be proportional to the reactor power. The prompt and delayed response contributions were quantified. The signal contributions due to the impact of gamma rays were experimentally determined. The evolution of the signals was continuously followed during the full irradiation period. The signal-to-noise level was observed to be well below 1% in typical irradiation conditions. The absolute neutron and gamma responses for all SPNDs are consistent. (authors)

  16. Wireless ultra-wide-band transmission prototype ASICs for low-power space and radiation applications

    NASA Astrophysics Data System (ADS)

    Gabrielli, A.; Crepaldi, M.; Demarchi, D.; Motto Ros, P.; Villani, G.

    2014-11-01

    The paper describes the design and the fabrication of a microelectronic circuit composed of a sensor, an oscillator, a modulator, a transmitter and an antenna. The chip embeds a custom radiation sensor, provided by the silicon foundry that has fabricated the prototypes, but in principle the entire system can read a general sensor, as long as a proper interface circuit is used. The natural application for this circuit is radiation monitoring but the low-power budget extends the applications to space where wireless readout circuits can be applied to any type of sensors, even if not radiation sensitive devices.

  17. Single-phase ac losses in prototype HTS conductors for superconducting power transmission lines

    SciTech Connect

    Daney, D.E.; Maley, M.P.; Boenig, H.J.; Willis, J.O.; Coulter, J.Y.; Gherardi, L.; Coletta, G.

    1998-12-01

    The authors report single-phase ac loss measurements on 8, 4, and 3-layer, multi-strand, HTS prototype conductors for power transmission lines. They use both calorimetric and electrical techniques. The agreement between the two techniques suggests that the interlayer current distribution in one-meter long conductors are representative of those in long conductors. The losses for the 8 and 4-layer conductors are in rough agreement, with the 8-layer losses being somewhat lower. The 3-layer conductor losses are substantially higher--probably due to unbalanced azimuthal currents for this configuration.

  18. Direct containment heating experiments in Zion Nuclear Power Plant geometry using prototypic materials

    SciTech Connect

    Binder, J.L.; McUmber, L.M.; Spencer, B.W.

    1993-12-31

    Direct Containment Heating (DCH) experiments have been completed which utilize prototypic core materials. The experiments reported on here are a continuation of the Integral Effects Testing (IET) DCH program. The experiments incorporated a 1/40 scale model of the Zion Nuclear Power Plant containment structures. The model included representations of the primary system volume, RPV lower head, cavity and instrument tunnel, and the lower containment structures. The experiments were steam driven. Iron-alumina thermite with chromium was used as a core melt stimulant in the earlier IET experiments. These earlier IET experiments at Argonne National Laboratory (ANL) and Sandia National Laboratories (SNL) provided useful data on the effect of scale on DCH phenomena; however, a significant question concerns the potential experiment distortions introduced by the use of non-prototypic iron/alumina thermite. Therefore, further testing with prototypic materials has been carried out at ANL. Three tests have been completed, DCH-U1A, U1B and U2. DCH-U1A and U1B employed an inerted containment atmosphere and are counterpart to the IET-1RR test with iron/alumina thermite. DCH-U2 employed nominally the same atmosphere composition of its counterpart iron/alumina test, IET-6. All tests, with prototypic material, have produced lower peak containment pressure rises; 45, 111 and 185 kPa in U1A, U1B and U2, compared to 150 and 250 kPa IET-1RR and 6. Hydrogen production, due to metal-steam reactions, was 33% larger in U1B and U2 compared to IET-1RR and IET-6. The pressurization efficiency was consistently lower for the corium tests compared to the IET tests.

  19. Federal financial assistance for hydroelectric power

    SciTech Connect

    Not Available

    1980-09-01

    The Rural Energy Initiative seeks to maximize the effectiveness of Federal programs in developing certain energy resources, including small-scale hydropower. The REI target is to arrange financing for 100 hydro sites by 1981, with about 300 MWe of additional capacity. The REI financial assistance programs for small hydropower development in the US DOE; Economic Development Administration; REA; HUD; Farmers Home Administration; DOI; DOL's CETA programs; and the Community Services Administration are described. (MCW)

  20. Prediction of Francis Turbine Prototype Part Load Pressure and Output Power Fluctuations with Hydroelectric Model

    NASA Astrophysics Data System (ADS)

    Alligné, S.; Nicolet, C.; Béguin, A.; Landry, C.; Gomes, J.; Avellan, F.

    2017-04-01

    The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope from the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of ν = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed for all technologies to analyse potential interactions between hydraulic excitation sources and electrical components. Three technologies have been compared: the classical fixed speed configuration with Synchronous Machine (SM) and the two variable speed technologies which are Doubly Fed Induction Machine (DFIM) and Full Size Frequency Converter (FSFC).

  1. Final Report Providing the Design for Low-Cost Wireless Current Transducer and Electric Power Sensor Prototype

    SciTech Connect

    Kintner-Meyer, Michael CW; Burghard, Brion J.; Reid, Larry D.

    2005-01-31

    This report describes the design and development of a wireless current transducer and electric power sensor prototype. The report includes annotated schematics of the power sensor circuitry and the printed circuit board. The application program used to illustrate the functionality of the wireless sensors is described in this document as well.

  2. Security Assistance Dependence - Wielding American Power

    DTIC Science & Technology

    2002-12-09

    INTERNATIONAL. July 24, 2001. Dougherty, James E. and Robert L. Pfaltzgraff, Jr. “From Realist to Neorealist Theory .” In Contending Theories of...International Traffic in Arms Regulation. US Code. Vol. 22 sec 2751. 22 CFR parts 120-130 (1999). Waltz , Kenneth . Theory of International Politics. Reading...respect to a state’s capabilities and its ability and willingness to express its power.25 Kenneth Waltz proposes that it is possible to rank

  3. Atmospheric freeze drying assisted by power ultrasound

    NASA Astrophysics Data System (ADS)

    Santacatalina, J. V.; Cárcel, J. A.; Simal, S.; Garcia-Perez, J. V.; Mulet, A.

    2012-12-01

    Atmospheric freeze drying (AFD) is considered an alternative to vacuum freeze drying to keep the quality of fresh product. AFD allows continuous drying reducing fix and operating costs, but presents, as main disadvantage, a long drying time required. The application of power ultrasound (US) can accelerate AFD process. The main objective of the present study was to evaluate the application of power ultrasound to improve atmospheric freeze drying of carrot. For that purpose, AFD experiments were carried out with carrot cubes (10 mm side) at constant air velocity (2 ms-1), temperature (-10°C) and relative humidity (10%) with (20.5 kWm-3,USAFD) and without (AFD) ultrasonic application. A diffusion model was used in order to quantify the influence of US in drying kinetics. To evaluate the quality of dry products, rehydration capacity and textural properties were determined. The US application during AFD of carrot involved the increase of drying rate. The effective moisture diffusivity identified in USAFD was 73% higher than in AFD experiments. On the other hand, the rehydration capacity was higher in USAFD than in AFD and the hardness of dried samples did not show significant (p<0.05) differences. Therefore, US application during AFD significantly (p<0.05) sped-up the drying process preserving the quality properties of the dry product.

  4. Electromagnetic Investigations and Power Converter Efficiency Studies on a Laboratory Made Induction Heating Prototype

    NASA Astrophysics Data System (ADS)

    Roy, M.; Sengupta, M.

    2013-09-01

    In this paper electromagnetic analysis and power converter efficiency has been studied on a laboratory prototype induction heating coil. An electromagnetic field based study was first done for the induction heating coil used in the experimental set-up using available Finite Element Analysis package software (FEMM 4.2). The results of the FEM based study are also used in the choice of the operating frequency depending on the applications. Thereafter verifications are done experimentally on a small-scale laboratory developed setup. The approach to be adopted for choice of induction heating operating frequency and the choice of converter type, based on the efficiency and performance, are also briefly presented here. Oscilloscope traces uphold the accuracy of the practical tests conducted.

  5. Design of a Power-Assisted Spacesuit Glove Actuator

    NASA Technical Reports Server (NTRS)

    Howard, Russell D.

    2000-01-01

    This paper presents the details of the design and implementation of an electromechanical power-assisted spacesuit glove actuator. The project was a joint effort by the University of Maryland's Space Systems Laboratory and ILC Dover, Inc., and involved innovative approaches to power augmentation and compact actuator packaging. The first actuator built validated several basic design concepts, and the second demonstrated improved performance and met many of the goals for flight qualification of the technology.

  6. Design of a Power-Assisted Spacesuit Glove Actuator

    NASA Technical Reports Server (NTRS)

    Howard, Russell D.

    2000-01-01

    This paper presents the details of the design and implementation of an electromechanical power-assisted spacesuit glove actuator. The project was a joint effort by the University of Maryland's Space Systems Laboratory and ILC Dover, Inc., and involved innovative approaches to power augmentation and compact actuator packaging. The first actuator built validated several basic design concepts, and the second demonstrated improved performance and met many of the goals for flight qualification of the technology.

  7. [Computer-assisted design and manufacture of an orbital cavity prototype].

    PubMed

    Bauchat, J L; Devauchelle, B; Wattelier, A

    1995-02-01

    Based on the results obtained in two dimensions or extrapolated into three dimensions by current medical imaging techniques (CT scan, magnetic resonance imaging), it is possible, under certain conditions, to create hard complex anatomical specimens, of obvious value in cold surgery. Two successive approaches of design and manufacture of an orbital cavity prototype are presented, as a preliminary to industrial productions soon to be released onto the market.

  8. Developing a Prototype Handbook for Monitoring and Evaluating Department of Defense Humanitarian Assistance Projects

    DTIC Science & Technology

    2011-01-01

    1. REPORT DATE 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Developing a Prototype Handbook for...systematic approach to developing and refining the proto- type handbook, which is included as an appendix to this report. To develop the initial...aspects of the handbook’s use could not be tested, including its use across all types of HA projects, its use over time (particularly when a project

  9. Shot-noise-limited laser power stabilization for the AEI 10  m Prototype interferometer.

    PubMed

    Junker, Jonas; Oppermann, Patrick; Willke, Benno

    2017-02-15

    The AEI 10 m Prototype interferometer is an experiment to investigate the standard quantum limit of interferometry and, in particular, its relevance in gravitational-wave detection. As such it has stringent requirements on the power stability of its high-power light source. In this Letter we present the power stabilization concept of the 35 W Nd:YAG laser system used in the AEI 10 m Prototype. With a shot-noise-limited multiphotodetector sensing scheme we achieved a relative power noise level of 1.8×10-9  Hz-1/2 in a frequency band of 100 Hz to 1 kHz. The limiting noise sources at lower and higher frequencies are analyzed, and possible improvements on the power noise sensing are discussed.

  10. Mechanical efficiency and user power requirement with a pushrim activated power assisted wheelchair.

    PubMed

    Arva, J; Fitzgerald, S G; Cooper, R A; Boninger, M L

    2001-12-01

    The objective of this study was to quantify the difference in mechanical efficiency and user power generation between traditional manual wheelchairs and a pushrim activated power assisted wheelchair (PAPAW). Ten manual wheelchair users were evaluated in a repeated measures design trial with and without the PAPAW for propulsion efficiency. Subjects propelled a Quickie GP equipped with the PAPAW and their own chair on a computer controlled wheelchair dynamometer at five different resistance levels. Power output, user power with the PAPAW hubs, subjects' oxygen consumption per minute and mechanical efficiency were analyzed. Metabolic energy and user power were significantly lower (p<0.05), and mechanical efficiency significantly higher with the PAPAW than with subjects' own chairs. Subjects needed to generate on average 3.65 times more power when propelling their own wheelchairs as compared to PAPAW. Mean mechanical efficiency over all trials was 80.33% higher with the power assisted hubs. PAPAW provides on average 73% of the total power when subjects propel with power assistance. Significantly increased efficiency and reduced requirement of user power is achieved using the PAPAW. With use, the PAPAW may contribute to delaying secondary injuries of manual wheelchair users. In addition, it may be suitable for people who have (or at risk for) upper extremity joint degeneration, reduced exercise capacity, low strength or endurance who currently use electric powered wheelchairs.

  11. The 247-foot length of the Helios prototype wing is in evidence as the solar-powered flying wing res

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The 247-foot length of the Helios prototype wing is in evidence as the high-altitude, solar-powered flying wing rests on its ground dolly during pre-flight tests at the U.S. Navy's Pacific Missile Range Facility on Kaua'i, Hawaii.

  12. The 247-foot length of the Helios prototype wing is in evidence as the solar-powered flying wing res

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The 247-foot length of the Helios prototype wing is in evidence as the high-altitude, solar-powered flying wing rests on its ground dolly during pre-flight tests at the U.S. Navy's Pacific Missile Range Facility on Kaua'i, Hawaii.

  13. Development of a hybrid (numerical-hydraulic) circulatory model: prototype testing and its response to IABP assistance.

    PubMed

    Ferrari, G; Kozarski, M; De Lazzari, C; Górczyńska, K; Tosti, G; Darowski, M

    2005-07-01

    Merging numerical and physical models of the circulation makes it possible to develop a new class of circulatory models defined as hybrid. This solution reduces the costs, enhances the flexibility and opens the way to many applications ranging from research to education and heart assist devices testing. In the prototype described in this paper, a hydraulic model of systemic arterial tree is connected to a lumped parameters numerical model including pulmonary circulation and the remaining parts of systemic circulation. The hydraulic model consists of a characteristic resistance, of a silicon rubber tube to allow the insertion of an Intra-Aortic Balloon Pump (IABP) and of a lumped parameters compliance. Two electro-hydraulic interfaces, realized by means of gear pumps driven by DC motors, connect the numerical section with both terminals of the hydraulic section. The lumped parameters numerical model and the control system (including analog to digital and digital to analog converters)are developed in LabVIEW environment. The behavior of the model is analyzed by means of the ventricular pressure-volume loops and the time courses of arterial and ventricular pressures and flows in different circulatory conditions. A simulated pathological condition was set to test the IABP and verify the response of the system to this type of mechanical circulatory assistance. The results show that the model can represent hemodynamic relationships in different ventricular and circulatory conditions and is able to react to the IABP assistance.

  14. Power Assist Control of Robotic Wheelchair Based on Visual Feedback

    NASA Astrophysics Data System (ADS)

    Oda, Naoki; Shimizu, Hiroyuki

    This paper describes a vision based self-velocity estimation and its feedback system under force/torque sensor-less power assisting control of wheelchair robot. In this method, three dimensional information obtained by stereo images, and the optical flow vectors are also used for self-velocity estimation in real-time. The human force is estimated by sensor-less reaction force observer, and the assisting force is calculated by using its estimated force and virtual impedance model. In the paper, the force based assist function is integrated into visual feedback motion controller. This approach using vision and force based assist control makes it possible to facilitate the direct intelligent interactions between human force and environments such as human following assist, obstacle avoidance one and so on. Such assist functions are changeable by the selection of the weighting matrix in the velocity estimation, which is based on weighted least square solutions from optical flow vectors. The validity of the proposed approach is verified by several experimental results.

  15. The Casualty Assistance Readiness Enhancement System: A Case Study in Rapid Prototyping and Design for Flexibility

    NASA Astrophysics Data System (ADS)

    Goerger, Simon R.; Wong, Ernest Y.; Henderson, Dale L.; Sperling, Brian K.; Bland, William

    Numerous government benefits are available to the surviving family of fallen U.S. military service members. Unfortunately, most of these entitlements require a considerable amount of paperwork to process correctly, necessitating a great deal of patience, attention to detail, and composure from families at a time when their grief is raw. Even though the U.S. Army appoints a Casualty Assistance Officer (CAO) to help surviving family members through this process, the soldiers serving as CAOs tend to be inexperienced and oftentimes find themselves challenged to provide accurate and thorough assistance. Consequently, some families do not receive all benefits in a timely manner, and some entitlements may be overlooked entirely. To help with the military's Casualty Program, we have developed the Casualty Assistance Readiness Enhancement System (CARES), an information system that improves how the Department of the Army cares for military families in arguably their greatest time of need. The tool and associated process reduced the time required to complete forms, reduced the potential for errors on repetitive information, assisted CAOs through the process, and provided electronic copies of completed forms.

  16. Development of a prototype of the tele-localisation system in radiotherapy using personal digital assistant via wireless communication.

    PubMed

    Wu, Vincent Wing-Cheung; Tang, Fuk-hay; Cheung, Wai-kwan; Chan, Kit-chi

    2013-02-01

    In localisation of radiotherapy treatment field, the oncologist is present at the simulator to approve treatment details produced by the therapist. Problems may arise if the oncologist is not available and the patient requires urgent treatment. The development of a tele-localisation system is a potential solution, where the oncologist uses a personal digital assistant (PDA) to localise the treatment field on the image sent from the simulator through wireless communication and returns the information to the therapist after his or her approval. Our team developed the first tele-localisation prototype, which consisted of a server workstation (simulator) for the administration of digital imaging and communication in medicine localisation images including viewing and communication with the PDA via a Wi-Fi network; a PDA (oncologist's site) installed with the custom-built programme that synchronises with the server workstation and performs treatment field editing. Trial tests on accuracy and speed of the prototype system were conducted on 30 subjects with the treatment regions covering the neck, skull, chest and pelvis. The average time required in performing the localisation using the PDA was less than 1.5 min, with the blocked field longer than the open field. The transmission speed of the four treatment regions was similar. The average physical distortion of the images was within 4.4% and the accuracy of field size indication was within 5.3%. Compared with the manual method, the tele-localisation system presented with an average deviation of 5.5%. The prototype system fulfilled the planned objectives of tele-localisation procedure with reasonable speed and accuracy.

  17. Alstom's Chemical Looping Combustion Prototype for CO2 Capture from Existing Pulverized Coal-Fired Power Plants

    SciTech Connect

    Andrus, Jr., Herbert E.; Chiu, John H.; Edberg, Carl D.; Thibeault, Paul R.; Turek, David G.

    2012-09-30

    Alstom’s Limestone Chemical Looping (LCL™) process has the potential to capture CO2 from new and existing coal-fired power plants while maintaining high plant power generation efficiency. This new power plant concept is based on a hybrid combustion- gasification process utilizing high temperature chemical and thermal looping technology. This process could also be potentially configured as a hybrid combustion-gasification process producing a syngas or hydrogen for various applications while also producing a separate stream of CO2 for use or sequestration. The targets set for this technology is to capture over 90% of the total carbon in the coal at cost of electricity which is less than 20% greater than Conventional PC or CFB units. Previous work with bench scale test and a 65 kWt Process Development Unit Development (PDU) has validated the chemistry required for the chemical looping process and provided for the investigation of the solids transport mechanisms and design requirements. The objective of this project is to continue development of the combustion option of chemical looping (LCL-C™) by designing, building and testing a 3 MWt prototype facility. The prototype includes all of the equipment that is required to operate the chemical looping plant in a fully integrated manner with all major systems in service. Data from the design, construction, and testing will be used to characterize environmental performance, identify and address technical risks, reassess commercial plant economics, and develop design information for a demonstration plant planned to follow the proposed Prototype. A cold flow model of the prototype will be used to predict operating conditions for the prototype and help in operator training. Operation of the prototype will provide operator experience with this new technology and performance data of the LCL-C™ process, which will be applied to the commercial design and economics and plan for a future demonstration

  18. The prototype design of most powerful exoplanet tracker based on LAMOST

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhu, Yongtian; Wang, Lei

    2010-07-01

    Chinese national science project-LAMOST successfully received its official blessing in June, 2009. Its aperture is about 4m, and its focal plane of 1.75m in diameter, corresponding to a 5° field of view, can accommodate as many as 4000 optical fibers, and feed 16 multi-object low-medium resolution spectrometers (LRS). In addition, a new technique called External Dispersed Interferometry (EDI) is successfully used to enhance the accuracy of radial velocity measurement by heterodyning an interference spectrum with absorption lines. For further enhancing the survey power of LAMOST, a major astronomical project, Multi-object Exoplanet Survey System (MESS) based on this advanced technique, is being developed by Nanjing Institute of Astronomical Optics and Technology (NIAOT) and National Astronomical Observatories of China (NAOC), and funded by Joint Fund of Astronomy, which is set up by National Natural Sciences Foundation of China (NSFC) and Chinese Academy of Sciences (CAS). This system is composed of a multi-object fixed delay Michelson interferometer (FDMI) and a multi-object medium resolution spectrometer (R=5000). In this paper, a prototype design of FDMI is given, including optical system and mechanical structure.

  19. Concentrated solar power on demand demonstration: Construction and operation of a 25 kW prototype

    NASA Astrophysics Data System (ADS)

    Gil, Antoni; Codd, Daniel S.; Zhou, Lei; Trumper, David; Calvet, Nicolas; Slocum, Alexander H.

    2016-05-01

    Currently, the majority of concentrated solar power (CSP) plants built worldwide integrate thermal energy storage (TES) systems which enable dispatchable output and higher global plant efficiencies. TES systems are typically based on two tank molten salt technology which involves inherent drawbacks such as parasitic pumping losses and electric tracing of pipes, risk of solidification and high capital costs. The concept presented in this paper is based on a single tank where the concentrated sunlight is directly focused on the molten salt. Hot and cold volumes of salt (at 565 °C and 280 °C, respectively) are axially separated by an insulated divider plate which helps maintain the thermal gradient. The concept, based on existing technologies, seeks to avoid the listed drawbacks as well as reducing the final cost of the TES system. In order to demonstrate its feasibility, Masdar Institute (MI) and Massachusetts Institute of Technology are developing a 25 kW prototype to be tested in the Masdar Solar Platform beam down facility.

  20. Neuromechanical adaptations during a robotic powered exoskeleton assisted walking session.

    PubMed

    Ramanujam, Arvind; Cirnigliaro, Christopher M; Garbarini, Erica; Asselin, Pierre; Pilkar, Rakesh; Forrest, Gail F

    2017-04-20

    To evaluate gait parameters and neuromuscular profiles of exoskeleton-assisted walking under Max Assist condition during a single-session for; (i) able bodied (AB) individuals walking assisted with (EXO) and without (non-EXO) a powered exoskeleton, (ii) non-ambulatory SCI individuals walking assisted with a powered exoskeleton. Single-session. Motion analysis laboratory. Four AB individuals and four individuals with SCI. Powered lower extremity exoskeleton. Temporal-spatial parameters, kinematics, walking velocity and electromyography data. AB individuals in exoskeleton showed greater stance time and a significant reduction in walking velocity (P < 0.05) compared to non-EXO walking. Interestingly, when the AB individuals voluntarily assisted the exoskeleton movements, they walked with an increased velocity and lowered stance time to resemble that of slow walking. For SCI individuals, mean percent stance time was higher and walking velocity was lower compared to all AB walking conditions (P < 0.05). There was muscle activation in several lower limb muscles for SCI group. For AB individuals, there were similarities among EXO and non-EXO walking conditions however there were differences in several lower limb EMGs for phasing of muscle activation. The data suggests that our AB individuals experienced reduction in walking velocity and muscle activation amplitudes while walking in the exoskeleton and moreover with voluntary control there is a greater temporal-spatial response of the lower limbs. Also, there are neuromuscular phasic adaptions for both AB and SCI groups while walking in the exoskeleton that are inconsistent to non-EXO gait muscle activation.

  1. Concept, Design, and Prototyping of XSAS: A High Power Extendable Solar Array for CubeSat Applications

    NASA Technical Reports Server (NTRS)

    Senatore, Patrick; Klesh, Andrew; Zurbuchen, Thomas H.; McKague, Darren; Cutler, James

    2010-01-01

    CubeSats have proven themselves as a reliable and cost-effective method to perform experiments in space, but they are highly constrained by their specifications and size. One such constraint is the average continuous power, about 5 W, which is available to the typical CubeSat. To improve this constraint, we have developed the eXtendable Solar Array System (XSAS), a deployable solar array prototype in a CubeSat package, which can provide an average 23 W of continuous power. The prototype served as a technology demonstrator for the high risk mechanisms needed to release, deploy, and control the solar array. Aside from this drastic power increase, it is in the integration of each mechanism, their application within the small CubeSat form-factor, and the inherent passive control benefit of the deployed geometry that make XSAS a novel design. In this paper, we discuss the requirements and design process for the XSAS system and mechanical prototype, and provide qualitative and quantitative results from numerical simulations and prototype tests. We also discuss future work, including an upcoming NASA zero-gravity flight campaign, to further improve on XSAS and prepare it for future launch opportunities.

  2. Development of a prototype movement assistance system for extravehicular activity gloves

    NASA Astrophysics Data System (ADS)

    Hill, Tyler N.

    Spacesuits utilized a rubberized layer of material to contain a pressurized atmosphere to facilitate respiration and maintain the physiologic functions of the astronaut residing within. However, the elasticity of the material makes it resistant to deformation increasing the amount of work required during movement. This becomes particularly fatiguing for the muscle groups controlling the motion of the hands and fingers. To mitigate this a robotic system was proposed and developed. The system built upon previous concepts and prototypes discovered through research efforts. It utilized electric motors to pull the index, ring, and middle fingers of the right hand closed, ideally overcoming the resistive force posed by the pressurized elastic material. The effect of the system was determined by comparing qualitative and quantitative data obtained during activities conducted with and without it within a glove box. It was found that the system was able to offload some of this elastic force though several characteristics of the design limited the full potential this device offered. None the less, the project was met with success and provides a solid platform for continued research and development.

  3. Infrastructure development assistance modeling for nuclear power plant

    SciTech Connect

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M.

    2012-07-01

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to

  4. The development and evaluation of CADMIUM: a prototype system to assist in the interpretation of mammograms.

    PubMed

    Taylor, P; Fox, J; Pokropek, A T

    1999-12-01

    We have developed CADMIUM, a novel approach for the design of systems to assist in the interpretation of medical images. CADMIUM uses symbolic reasoning to relate information obtained from image processing to the decisions radiologists take. The approach is based on a symbolic decision procedure which has already been used successfully in a variety of nonimaging clinical decision systems. In CADMIUM this decision procedure is extended with models of three generic image interpretation tasks: detection, measurement and classification of image features. The extended procedure is used to construct the lines of reasoning needed in each task and to control the acquisition of information by image processing. CADMIUM has been evaluated as an aid to the differential diagnosis of microcalcifications on mammographic images. Radiographers who had been trained to interpret images performed better when using the advice provided by the system.

  5. Optimal Time Allocation in Backscatter Assisted Wireless Powered Communication Networks

    PubMed Central

    Lyu, Bin; Yang, Zhen; Gui, Guan; Sari, Hikmet

    2017-01-01

    This paper proposes a wireless powered communication network (WPCN) assisted by backscatter communication (BackCom). This model consists of a power station, an information receiver and multiple users that can work in either BackCom mode or harvest-then-transmit (HTT) mode. The time block is mainly divided into two parts corresponding to the data backscattering and transmission periods, respectively. The users first backscatter data to the information receiver in time division multiple access (TDMA) during the data backscattering period. When one user works in the BackCom mode, the other users harvest energy from the power station. During the data transmission period, two schemes, i.e., non-orthogonal multiple access (NOMA) and TDMA, are considered. To maximize the system throughput, the optimal time allocation policies are obtained. Simulation results demonstrate the superiority of the proposed model. PMID:28587171

  6. Economic viability of photovoltaic power for development assistance applications

    NASA Technical Reports Server (NTRS)

    Bifano, W. J.

    1982-01-01

    This paper briefly discusses the development assistance market and examines a number of specific photovoltaic (PV) development assistance field tests, including water pumping/grain grinding (Tangaye, Upper Volta), vaccine refrigerators slated for deployment in 24 countries, rural medical centers to be installed in Ecuador, Guyana, Kenya and Zimbabwe, and remote earth stations to be deployed in the near future. A comparison of levelized energy cost for diesel generators and PV systems covering a range of annual energy consumptions is also included. The analysis does not consider potential societal, environmental or political benefits associated with PV power. PV systems are shown to be competitive with diesel generators, based on life cycle cost considerations, assuming a system price of $20/W(peak), for applications having an annual energy demand of up to 6000 kilowatt-hours per year.

  7. Economic viability of photovoltaic power for development assistance applications

    NASA Technical Reports Server (NTRS)

    Bifano, W. J.

    1982-01-01

    This paper briefly discusses the development assistance market and examines a number of specific photovoltaic (PV) development assistance field tests, including water pumping/grain grinding (Tangaye, Upper Volta), vaccine refrigerators slated for deployment in 24 countries, rural medical centers to be installed in Ecuador, Guyana, Kenya and Zimbabwe, and remote earth stations to be deployed in the near future. A comparison of levelized energy cost for diesel generators and PV systems covering a range of annual energy consumptions is also included. The analysis does not consider potential societal, environmental or political benefits associated with PV power. PV systems are shown to be competitive with diesel generators, based on life cycle cost considerations, assuming a system price of $20/W(peak), for applications having an annual energy demand of up to 6000 kilowatt-hours per year.

  8. Economic viability of photovoltaic power for development assistance applications

    SciTech Connect

    Bifano, W.J.

    1982-09-01

    This paper briefly discusses the development assistance market and examines a number of specific PV development assistance field tests including water pumping/grain grinding (Tangaye, Upper Volta), vaccine refrigerators slated for deployment in 24 countries, rural medical centers to be installed in Ecuador, Guyana, Kenya and Zimbabwe, and remote earth stations to be deployed in the near future. A comparison of levelized energy cost for diesel generators and PV systems covering a range of annual energy consumptions is also included. The analysis does not consider potential societal, environmental or political benefits associated with PV power. PV systems are shown to be competitive with diesel generators based on life cycle cost considerations, assuming a system price of $20/W(peak), for applications having an annual energy demand of up to 6000 kilowatt-hours per year.

  9. A prototype of a beam steering assistant tool for accelerator operations

    SciTech Connect

    M. Bickley; P. Chevtsov

    2006-10-24

    The CEBAF accelerator provides nuclear physics experiments at Jefferson Lab with high quality electron beams. Three experimental end stations can simultaneously receive the beams with different energies and intensities. For each operational mode, the accelerator setup procedures are complicated and require very careful checking of beam spot sizes and positions on multiple beam viewers. To simplify these procedures and make them reproducible, a beam steering assistant GUI tool has been created. The tool is implemented as a multi-window control screen. The screen has an interactive graphical object window, which is an overlay on top of a digitized live video image from a beam viewer. It allows a user to easily create and edit any graphical objects consisting of text, ellipses, and lines, right above the live beam viewer image and then save them in a file that is called a beam steering template. The template can show, for example, the area within which the beam must always be on the viewer. Later, this template can be loaded in the interactive graphical object window to help accelerator operators steer the beam to the specified area on the viewer.

  10. Development of a prototype personal digital assistant-decision support system for the management of adult obesity.

    PubMed

    Lee, Nam-Ju; Bakken, Suzanne

    2007-10-01

    The purpose of this study was to develop a prototype personal digital assistant-decision support system (PDA-DSS) based on a clinical practice guideline (CPG) for the management of obesity. The study was composed of four phases: (1) analysis of advanced practice nurse (APN) students' documentation related to the management of obesity using the Clinical Log-APN (CL-APN), (2) identification of functional requirements and data modeling through use case analysis and unified modeling language (UML), (3) evaluation of representation of obesity-related concepts with standardized terminologies, and (4) design of a web-based prototype user interface. The analysis revealed the documentation rate of obesity as an assessment diagnosis and adherence to the CPG for obesity was low. Through use case analysis and UML modeling, the functional requirements - screening, assessment, and documentation of CPG-based obesity treatment plan - were identified and a data model was built. Overall, the standardized terminologies that are used in the database for the CL-APN could represent about 80% of the obesity-related concepts. However, the terms of these standardized terminologies were not specific enough to represent all the concepts. The systematized nomenclature of medicine-clinical terms (SNOMED CT) could represent 83% of the concepts and was used to extend the knowledge base. Based on the functional requirements specification, four prototype screens were designed. The PDA-DSS for the management of obesity has potential uses for education, nursing practice, and research. As an educational tool, it can be used to improve APN students' adherence to the CPG's recommendations and to enhance informatics competencies. The PDA-DSS has the potential to improve APN students' clinical decision making at the point-of-care and delivery of CPG-based care, thereby improving patients' outcomes related to the management of obesity. A randomized trial is underway to investigate the PDA-DSS's impact on

  11. Hybrid power supplies: A capacitor-assisted battery

    NASA Astrophysics Data System (ADS)

    Catherino, Henry A.; Burgel, Joseph F.; Shi, Peter L.; Rusek, Andrew; Zou, Xiulin

    A hybrid electrochemical power supply is a concept that circumvents the need for designing any single power source to meet some extraordinary application requirement. A hybrid allows using components designed for near optimal operation without having to make unnecessary performance sacrifices. In many cases some additional synergistic effects appear. In this study, an electrochemical capacitor was employed as a power assist for a battery. An engine starting load was numerically modeled in the time domain and simulations were carried out. Actual measurements were then taken on the cranking of a diesel engine removed from a 5.0-tonne military truck and cranked in an environmental chamber. The cranking currents delivered by each power source were measured in the accessible current loops. This permitted the model parameters to be identified and, by doing that, studies using the analytical model demonstrated the merit of this hybrid application. The general system response of the battery/capacitor configuration was then modeled as a function of temperature. Doing this revealed electrical the interaction between the hybrid components. This study illustrates another case for advocating hybridized power systems.

  12. Computational Fluid Dynamics (CFD) study of the 4th generation prototype of a continuous flow Ventricular Assist Device (VAD).

    PubMed

    Song, Xinwei; Wood, Houston G; Olsen, Don

    2004-04-01

    The continuous flow ventricular assist device (VAD) is a miniature centrifugal pump, fully suspended by magnetic bearings, which is being developed for implantation in humans. The CF4 model is the first actual prototype of the final design product. The overall performances of blood flow in CF4 have been simulated using computational fluid dynamics (CFD) software: CFX, which is commercially available from ANSYS Inc. The flow regions modeled in CF4 include the inlet elbow, the five-blade impeller, the clearance gap below the impeller, and the exit volute. According to different needs from patients, a wide range of flow rates and revolutions per minute (RPM) have been studied. The flow rate-pressure curves are given. The streamlines in the flow field are drawn to detect stagnation points and vortices that could lead to thrombosis. The stress is calculated in the fluid field to estimate potential hemolysis. The stress is elevated to the decreased size of the blood flow paths through the smaller pump, but is still within the safe range. The thermal study on the pump, the blood and the surrounding tissue shows the temperature rise due to magnetoelectric heat sources and thermal dissipation is insignificant. CFD simulation proved valuable to demonstrate and to improve the performance of fluid flow in the design of a small size pump.

  13. Prototypes of self-powered radiation detectors employing intrinsic high-energy current

    SciTech Connect

    Zygmanski, Piotr Briovio, Davide; Shrestha, Suman; Karellas, Andrew; Sajo, Erno

    2016-01-15

    Purpose: The authors experimentally investigate the effect of direct energy conversion of x-rays via selfpowered Auger- and photocurrent, potentially suitable to practical radiation detection and dosimetry in medical applications. Experimental results are compared to computational predictions. The detector the authors consider is a thin-film multilayer device, composed of alternating disparate electrically conductive and insulating layers. This paper focuses on the experiments while a companion paper introduces the fundamental concepts of high-energy current (HEC) detectors. Methods: The energy of ionizing radiation is directly converted to detector signal via electric current induced by high-energy secondary electrons generated in the detector material by the incident primary radiation. The HEC electrons also ionize the dielectric and the resultant charge carriers are selfcollected due to the contact potential of the disparate electrodes. Thus, an electric current is induced in the conductors in two different ways without the need for externally applied bias voltage or amplification. Thus, generated signal in turn is digitized by a data acquisition system. To determine the fundamental properties of the HEC detector and to demonstrate its feasibility for medical applications, the authors used a planar geometry composed of multilayer microstructures. Various detectors with up to seven conducting layers with different combinations of materials (250 μm Al, 35 μm Cu, 100 μm Pb) and air gaps (100 μm) were exposed to nearly plane-parallel 60–120 kVp x-ray beams. For the experimental design and verification, the authors performed coupled electron–photon radiation transport computations. The detector signal was measured using a commercial data acquisition system with 24 bits dynamic range, 0.4 fC sensitivity, and 0.9 ms sampling time. Results: Measured signals for the prototype detector varied depending on the number of layers, material type, and incident photon

  14. Powered orthosis and attachable power-assist device with Hydraulic Bilateral Servo System.

    PubMed

    Ohnishi, Kengo; Saito, Yukio; Oshima, Toru; Higashihara, Takanori

    2013-01-01

    This paper discusses the developments and control strategies of exoskeleton-type robot systems for the application of an upper limb powered orthosis and an attachable power-assist device for care-givers. Hydraulic Bilateral Servo System, which consist of a computer controlled motor, parallel connected hydraulic actuators, position sensors, and pressure sensors, are installed in the system to derive the joint motion of the exoskeleton arm. The types of hydraulic component structure and the control strategy are discussed in relation to the design philosophy and target joints motions.

  15. Plasma"anti-assistance" and"self-assistance" to high power impulse magnetron sputtering

    SciTech Connect

    Anders, Andre; Yushkov, Georgy Yu.

    2009-01-30

    A plasma assistance system was investigated with the goal to operate high power impulse magnetron sputtering (HiPIMS) at lower pressure than usual, thereby to enhance the utilization of the ballistic atoms and ions with high kinetic energy in the film growth process. Gas plasma flow from a constricted plasma source was aimed at the magnetron target. Contrary to initial expectations, such plasma assistance turned out to be contra-productive because it led to the extinction of the magnetron discharge. The effect can be explained by gas rarefaction. A better method of reducing the necessary gas pressure is operation at relatively high pulse repetition rates where the afterglow plasma of one pulse assists in the development of the next pulse. Here we show that this method, known from medium-frequency (MF) pulsed sputtering, is also very important at the much lower pulse repetition rates of HiPIMS. A minimum in the possible operational pressure is found in the frequency region between HiPIMS and MF pulsed sputtering.

  16. Prototype Development and Evaluation of Self-Cleaning Concentrated Solar Power Collectors

    SciTech Connect

    Mazumder, Malay K.; Horenstein, Mark N.; Joglekar, Nitin R.

    2015-03-31

    The feasibility of integrating and retrofitting transparent electrodynamic screens (EDS) on the front surfaces of solar collectors was established as a means to provide active self-cleaning properties for parabolic trough and heliostat reflectors, solar panels, and Fresnel lenses. Prototype EDS-integrated solar collectors, including second-surface glass mirrors, metallized Acrylic-film mirrors, and dielectric mirrors, were produced and tested in environmental test chambers for removing the dust layer deposited on the front surface of the mirrors. The evaluation of the prototype EDS-integrated mirrors was conducted using dust and environmental conditions that simulate the field conditions of the Mojave Desert. Test results showed that the specular reflectivity of the mirrors could be maintained at over 90% over a wide range of dust loadings ranging from 0 to 10 g/m2, with particle diameter varying from 1 to 50 μm. The measurement of specular reflectivity (SR) was performed using a D&S Reflectometer at wavelength 660 nm. A non-contact reflectometer was designed and constructed for rapid measurement of specular reflectivity at the same wavelength. The use of this new noncontact instrument allowed us to measure SR before and after EDS activation. Several EDS prototypes were constructed and evaluated with different electrode configurations, electrode materials, and encapsulating dielectric materials.

  17. A Study of a Handrim-Activated Power-Assist Wheelchair Based on a Non-Contact Torque Sensor

    PubMed Central

    Nam, Ki-Tae; Jang, Dae-Jin; Kim, Yong Chol; Heo, Yoon; Hong, Eung-Pyo

    2016-01-01

    Demand for wheelchairs is increasing with growing numbers of aged and disabled persons. Manual wheelchairs are the most commonly used assistive device for mobility because they are convenient to transport. Manual wheelchairs have several advantages but are not easy to use for the elderly or those who lack muscular strength. Therefore, handrim-activated power-assist wheelchairs (HAPAW) that can aid driving power with a motor by detecting user driving intentions through the handrim are being researched. This research will be on HAPAW that judge user driving intentions by using non-contact torque sensors. To deliver the desired motion, which is sensed from handrim rotation relative to a fixed controller, a new driving wheel mechanism is designed by applying a non-contact torque sensor, and corresponding torques are simulated. Torques are measured by a driving wheel prototype and compared with simulation results. The HAPAW prototype was developed using the wheels and a driving control algorithm that uses left and right input torques and time differences are used to check if the non-contact torque sensor can distinguish users’ driving intentions. Through this procedure, it was confirmed that the proposed sensor can be used effectively in HAPAW. PMID:27509508

  18. Fast prototyping of high-aspect ratio, high-resolution x-ray masks by gas-assisted focused ion beam

    NASA Technical Reports Server (NTRS)

    Hartley, F.; Malek, C.; Neogi, J.

    2001-01-01

    The capacity of chemically-assisted focused ion beam (fib) etching systems to undertake direct and highly anisotropic erosion of thin and thick gold (or other high atomic number [Z])coatings on x-ray mask membranes/substrates provides new levels of precision, flexibility, simplification and rapidity in the manufacture of mask absorber patterns, allowing the fast prototyping of high aspect ratio, high-resolution masks for deep x-ray lithography.

  19. Fast prototyping of high-aspect ratio, high-resolution x-ray masks by gas-assisted focused ion beam

    NASA Technical Reports Server (NTRS)

    Hartley, F.; Malek, C.; Neogi, J.

    2001-01-01

    The capacity of chemically-assisted focused ion beam (fib) etching systems to undertake direct and highly anisotropic erosion of thin and thick gold (or other high atomic number [Z])coatings on x-ray mask membranes/substrates provides new levels of precision, flexibility, simplification and rapidity in the manufacture of mask absorber patterns, allowing the fast prototyping of high aspect ratio, high-resolution masks for deep x-ray lithography.

  20. Design of 154 kV Extra-High-Voltage Prototype SF6 Bushing for Superconducting Electric Power Applications

    NASA Astrophysics Data System (ADS)

    Koo, Ja-yoon; Seong, Jae-gyu; Hwang, Jae-sang; Lee, Bang-wook; Lee, Sang-hwa

    2012-09-01

    One of the critical components to be developed for high-voltage superconducting devices, such as superconducting transformers, cables, and fault current limiters, is a high-voltage bushing to supply a high current to devices without insulation difficulties in cryogenic environments. Unfortunately, suitable bushings for high-temperature-superconductivity (HTS) equipment have not been fully developed to address cryogenic insulation issues. As a fundamental step towards developing the optimum design of the 154 kV prototype SF6 bushing of HTS devices, the puncture and creepage breakdown voltages of glass-fiber-reinforced-plastic (GFRP) were analyzed with a variety of configurations of electrodes and gap distances in the insulation material. And design factors of high-voltage cryogenic bushings were obtained from the result of tests. Finally, the withstand voltage tests of manufacturing a 154 kV extra-high-voltage (EHV) prototype bushing has been performed. Consequently, we verified the insulation level of the newly designed 154 kV EHV cryogenic prototype bushings for superconducting electric power applications.

  1. Software Prototyping

    PubMed Central

    Del Fiol, Guilherme; Hanseler, Haley; Crouch, Barbara Insley; Cummins, Mollie R.

    2016-01-01

    Summary Background Health information exchange (HIE) between Poison Control Centers (PCCs) and Emergency Departments (EDs) could improve care of poisoned patients. However, PCC information systems are not designed to facilitate HIE with EDs; therefore, we are developing specialized software to support HIE within the normal workflow of the PCC using user-centered design and rapid prototyping. Objective To describe the design of an HIE dashboard and the refinement of user requirements through rapid prototyping. Methods Using previously elicited user requirements, we designed low-fidelity sketches of designs on paper with iterative refinement. Next, we designed an interactive high-fidelity prototype and conducted scenario-based usability tests with end users. Users were asked to think aloud while accomplishing tasks related to a case vignette. After testing, the users provided feedback and evaluated the prototype using the System Usability Scale (SUS). Results Survey results from three users provided useful feedback that was then incorporated into the design. After achieving a stable design, we used the prototype itself as the specification for development of the actual software. Benefits of prototyping included having 1) subject-matter experts heavily involved with the design; 2) flexibility to make rapid changes, 3) the ability to minimize software development efforts early in the design stage; 4) rapid finalization of requirements; 5) early visualization of designs; 6) and a powerful vehicle for communication of the design to the programmers. Challenges included 1) time and effort to develop the prototypes and case scenarios; 2) no simulation of system performance; 3) not having all proposed functionality available in the final product; and 4) missing needed data elements in the PCC information system. PMID:27081404

  2. Design, development and testing of a solar-powered multi-family residential-size prototype turbocompressor heat pump

    SciTech Connect

    Not Available

    1982-10-01

    An experimental program was conducted to further define, improve and demonstrate the performance characteristics and operational features of an existing 18-ton solar-powered prototype heat pump. The prototype heat pump is nominally sized for multi-family residential applications and provides both space heating and cooling. It incorporates a turbocompressor specially designed to operate at peak temperatures consistent with medium concentration collectors. The major efforts in this program phase included modification and improvement of the instrumentation sensors, the laboratory simulation equipment and selected heat pump components. After implementing these modifications, performance testing was conducted for a total operating time of approximately 250 hours. Experimental test results compared favorably with performance data calculated using the UTRC computer prediction program for the same boundary conditions. A series of tests was conducted continuously over a 12-h period to simulate operation (in the cooling mode) of the prototype heat pump under conditions typical of an actual installation. The test demonstrated that the heat pump could match the cooling load profile of a multi-family residential building. During the system performance testing, sufficient data were taken to identify the performance of each of the major components (e.g. turbine, compressor, heat exchangers, R11 pump). Component performance is compared with that calculated using the UTRC computer predict program and with data supplied by their manufacturers. The performance capabilities of the prototype heat pump system have been documented and recommendations are made for further design improvements which could be included in a MOD-2 configuration. The MOD-2 configuration would incorporate features that would improve system performance, reduce capital cost and most importantly improve system reliability.

  3. An Educational Laboratory for Digital Control and Rapid Prototyping of Power Electronic Circuits

    ERIC Educational Resources Information Center

    Choi, Sanghun; Saeedifard, M.

    2012-01-01

    This paper describes a new educational power electronics laboratory that was developed primarily to reinforce experimentally the fundamental concepts presented in a power electronics course. The developed laboratory combines theoretical design, simulation studies, digital control, fabrication, and verification of power-electronic circuits based on…

  4. An Educational Laboratory for Digital Control and Rapid Prototyping of Power Electronic Circuits

    ERIC Educational Resources Information Center

    Choi, Sanghun; Saeedifard, M.

    2012-01-01

    This paper describes a new educational power electronics laboratory that was developed primarily to reinforce experimentally the fundamental concepts presented in a power electronics course. The developed laboratory combines theoretical design, simulation studies, digital control, fabrication, and verification of power-electronic circuits based on…

  5. Laser assisted die bending: a new application of high power diode lasers

    NASA Astrophysics Data System (ADS)

    Schuöcker, D.; Schumi, T.; Spitzer, O.; Bammer, F.; Schuöcker, G.; Sperrer, G.

    2015-02-01

    Nowadays high power lasers are mainly used for cutting of sheet metals, for welding, hardening and rapid prototyping. In the forming of sheet metals as bending or deep drawing lasers are not used. Nevertheless a few years ago a new application of high power lasers has been invented, where bending of materials that break at room temperature becomes possible by heating them along the bending edge with high power lasers thus allowing their treatment without cracks and rupture. For this purpose a large number of diode lasers are arranged in the bottom tool of a bending machine (a V-shaped die) which heat up the initially flat sheet metal during the bending process what is performed by pressing it into the die with a knife shaped upper tool where due to the laser heating the material is softened and thus cracks are avoided. For the technical realization of the new process of laser assisted die bending, modules equipped with numerous laser diodes and a total beam power of 2,5 kW are used. The light emitted by these modules enters a tool with a length of 15cm and is deflected towards the workpiece. By using ten of these modules with adjacent dies and by integrating those in a bending press a bending edge of sheet metals with a length of 1500mm can be realized. Such a bending press with laser assistance also needs energization with a power of practically 50kW, a respective water flow, a heat exchanger system and also a control for all functions of this system. Special measures have also been developed to avoid radiating of those tools that are not covered by a workpiece in the case of bending edges shorter than the full length of the bending tools whereas individual short circuiting of diode modules can be performed. Specific measures to ensure a safe operation without any harm to the operational person have been realized. Exploitation of the bending process has been carried out for titanium, where material thicknesses up to 3mm have been bent successfully.

  6. The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hanga

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hangar at NASA's Dryden flight Research Center, Edwards, California. The elongated 247-foot span lightweight aircraft, resting on its ground maneuvering dolly, stretched almost the full length of the 300-foot long hangar while on display during a visit of NASA Administrator Sean O'Keefe and other NASA officials on Jan. 31, 2002. The unique solar-electric flying wing reached an altitude of 96,863 feet during an almost 17-hour flight near Hawaii on Aug. 13, 2001, a world record for sustained horizontal flight by a non-rocket powered aircraft. Developed by AeroVironment, Inc., under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude uninhabited aerial vehicles (UAV) which can serve as 'atmospheric satellites,' performing Earth science missions or functioning as telecommunications relay platforms in the stratosphere.

  7. The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hanga

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hangar at NASA's Dryden flight Research Center, Edwards, California. The elongated 247-foot span lightweight aircraft, resting on its ground maneuvering dolly, stretched almost the full length of the 300-foot long hangar while on display during a visit of NASA Administrator Sean O'Keefe and other NASA officials on Jan. 31, 2002. The unique solar-electric flying wing reached an altitude of 96,863 feet during an almost 17-hour flight near Hawaii on Aug. 13, 2001, a world record for sustained horizontal flight by a non-rocket powered aircraft. Developed by AeroVironment, Inc., under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude uninhabited aerial vehicles (UAV) which can serve as 'atmospheric satellites,' performing Earth science missions or functioning as telecommunications relay platforms in the stratosphere.

  8. Development of a Prototype Thermophotovoltaic Power Generation System Using Super-Adiabatic Combustion in Porous Quartz Glass

    NASA Astrophysics Data System (ADS)

    Kumano, Tomoyuki; Hanamura, Katsunori

    A prototype thermophotovoltaic (TPV) generation system based on super-adiabatic combustion with reciprocating flow in porous media was developed experimentally. Stacked porous quartz glass plates in the system were used as an optical filter and for heat storage. The distributions of temperature and spectral radiation indicated that both energy recirculation and spectral control were realized with the quartz glass plates. In addition, electric power was obtained by introducing the spectral controlled radiation into GaSb cells. The measured output power was in close agreement with that estimated using a parallel ray-tracing model. Application of a one-dimensional configuration to this system is expected to result in a total fuel to electricity conversion efficiency that would reach 10%. Consequently, a spherical super-adiabatic combustion TPV system is proposed as an idealized one-dimensional system to achieve this.

  9. Model measurement based identification of Francis turbine vortex rope parameters for prototype part load pressure and power pulsation prediction

    NASA Astrophysics Data System (ADS)

    Manderla, M.; Weber, W.; Koutnik, J.

    2016-11-01

    Pressure and power fluctuations of hydro-electric power plants in part-load operation are an important measure for the quality of the power which is delivered to the electrical grid. It is well known that the unsteadiness is driven by the flow patterns in the draft tube where a vortex rope is present. However, until today the equivalent vortex rope parameters for common numerical 1D-models are a major source of uncertainty. In this work, a new optimization-based grey box method for experimental vortex rope modelling and parameter identification is presented. The combination of analytical vortex rope and test rig modelling and the usage of dynamic measurements allow the identification of the unknown vortex rope parameters. Upscaling from model to prototype size is achieved via existing nondimensional parameters. In this work, a new experimental setup and system identification method is proposed which are suitable for the determination of the full set of part load vortex rope parameters in the lab. For the vortex rope, a symmetric model with cavity compliance, bulk viscosity and two pressure excitation sources is developed and implemented which shows the best correspondence with available measurement data. Due to the non-dimensional parameter definition, scaling is possible. This finally provides a complete method for the prediction of prototype part-load pressure and power oscillations. Since the proposed method is based on a simple limited control domain, limited modelling effort and also small modelling uncertainties are some major advantages. Due to the generality of the approach, a future application to other operating conditions such as full load will be straightforward.

  10. A prototype ground support system security monitor for space based power system health monitoring

    NASA Astrophysics Data System (ADS)

    Janik, Donald F.; Gholdston, Edward W.

    This paper reports on the work Rocketdyne is performing in the area of power system security monitoring for space-based system health monitoring. The Integrated Power Advisory Controller, which represents a portion of a ground-based system security monitor and uses an object-oriented knowledge design, is discussed. The simulation environment used to develop and test the system is described.

  11. Development and testing of a prototype on-line radioiodine monitor for nuclear power stations

    SciTech Connect

    Tseng, T.T.; Jester, W.A.; Baratta, A.J.; McMaster, I.B.; Miller, D.W.

    1986-01-01

    A prototype on-line monitor has been developed which is capable of detecting radioiodine in the presence of as much as 1 X 10(6) higher concentration of noble gases. The system contains two identical radiation monitoring chambers through which the monitored air and a purging gas alternately cycle. Each chamber contains a silver zeolite filter which has a high retention of the various forms of airborne radioiodine but low retention of noble gases. During the purging cycle the radioactive noble gases are quickly purged from the filter and chamber and the lower levels of radioiodine accumulated on the filter are detected. This system has been successfully tested using short-lived radionuclides simulating vented reactor gases resulting from an abnormal condition.

  12. Deep proton writing: a powerful rapid prototyping technology for various micro-optical components

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Vervaeke, Michael; Debaes, Christof; Ottevaere, Heidi; Van Overmeire, Sara; Hermanne, Alex; Thienpont, Hugo

    2010-05-01

    One of the important challenges for the deployment of the emerging breed of nanotechnology components is interfacing them with the external world, preferably accomplished with low-cost micro-optical devices. For the fabrication of this kind of micro-optical modules, we make use of deep proton writing (DPW) as a generic rapid prototyping technology. DPW consists of bombarding polymer samples with swift protons, which results after chemical processing steps in high quality micro-optical components. The strength of the DPW micro-machining technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we give an overview of the process steps of the technology and we present several examples of micro-optical and micro-mechanical components, fabricated through DPW, targeting applications in optical interconnections and in bio-photonics. These include: high-precision 2-D fiber connectors, out-of-plane coupling structures featuring high-quality 45° and curved micro-mirrors, arrays of high aspect ratio micro-pillars, and fluorescence and absorption detection bio-photonics modules. While DPW is clearly not a mass fabrication technique as such, one of its assets is that once the master component has been prototyped, a metal mould can be generated from the DPW master by applying electroplating. After removal of the plastic master, this metal mould can be used as a shim in a final microinjection moulding or hot embossing step. This way, the master component can be mass-produced at low cost in a wide variety of high-tech plastics.

  13. 76 FR 15221 - Organization and Delegation of Powers and Duties; Assistant Secretary for Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... 49 CFR Part 1 RIN 9991-AA56 Organization and Delegation of Powers and Duties; Assistant Secretary for... Security Act of 2007 (Act) (Pub. L. 110-140; December 19, 2007) to the Assistant Secretary for... was signed into law. Title 49 of the Code of Federal Regulations (CFR) 1.59 delegates to the Assistant...

  14. Design of a Ship Service Converter Module for a Reduced-Scale Prototype Integrated Power System

    DTIC Science & Technology

    2001-12-01

    John G. Ciezki Co-Advisor: Robert W. Ashton Form SF298 Citation Data Report Date ("DD MON YYYY") 15 Jun 2001...Brad L. Stallings Approved by: John G. Ciezki, Thesis Advisor Robert W. Ashton, Co-Advisor Jeffrey B. Knorr...back). The software and necessary hardware were available at the Naval Postgraduate School. ET3 Yenko , lab assistant, manufactured all printed

  15. Control of an Omni-directional Power-assisted Cart

    NASA Astrophysics Data System (ADS)

    Maeda, Hiroshi; Fujiwara, Shigeki; Kitano, Hitoshi; Yamashita, Hideki; Fukunaga, Hideo

    This paper describes an easy-to-operate, omni-directional cart. This cart includes power assist technology that acts for both the longitudinal and rotational motions of the cart. Two objectives are set for this development. The first objective is to overcome the difficulty of shifting the cart laterally. Therefore, the equation for calculating the cart turning speed is modified so that the moment, which is driven by the operating force in the right/left direction, is offset. As a result, it becomes possible to stabilize the balance between the operating force in the right/left direction and the operating moment, and improve the operating performance. The second objective is to overcome the other difficulty whereby, during the one-hand pull-operation, the cart tended to run off course to the right/left. To solve this problem, we add a positional control in the right/left direction. As a result, we reduce the lateral deviation of the cart, and improve the operating performance.

  16. The Prototype Fundamental Power Coupler For The Spallation Neutron Source Superconducting Cavities: Design And Initial Test Results

    SciTech Connect

    K. M. Wilson; I. E. Campisi; E. F. Daly; G. K. Davis; M. Drury; J. E. Henry; P. Kneisel; G. Myneni; T. Powers; W. J. Schneider; M. Stirbet; Y. Kang; K. Cummings; T. Hardek

    2001-09-01

    Each of the 805 MHz superconducting cavities of the Spallation Neutron Source (SNS) is powered via a coaxial Fundamental Power Coupler (FPC) with a 50 Omega impedance and a warm planar alumina window. The design is derived from the experience of other laboratories; in particular, a number of details are based on the coupler developed for the KEK B-Factory superconducting cavities. However, other design features have been modified to account for the fact that the SNS FPC will transfer a considerably lower average power than the KEK-B coupler. Four prototypes have been manufactured so far, and preliminary tests performed on two of them at Los Alamos National Laboratory (LANL). During these tests, peak powers of over 500 kW were transferred through the couplers in the test stand designed and built for this purpose. This paper gives details of the coupler design and of the results obtained from the RF tests on the test stand during the last few months. A more comprehensive set of tests is planned for the near future.

  17. Performance Testing of a Prototypic Annular Linear Induction Pump for Fission Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Pearson, J. B.; Schoenfeld, M. P.; Webster, K.; Houts, M. G.; Godfroy, T. J.; Bossard, J. A.

    2010-01-01

    Results of performance testing of an annular linear induction pump are presented. The pump electromagnetically pumps liquid metal (NaK) through a circuit specially designed to allow for quantification of the performance. Testing was conducted over a range of conditions, including frequencies of 33, 36, 39, and 60 Hz, liquid metal temperatures from 25 to 525 C, and input voltages from 5 to 120 V. Pump performance spanned a range of flow rates from roughly 0.16 to 5.7 L/s (2.5 to 90 gpm), and pressure head <1 to 90 kPa (<0.145 to 13 psi). The maximum efficiency measured during testing was slightly greater than 6%. The efficiency was fairly insensitive to input frequency from 33 to 39 Hz, and was markedly lower at 60 Hz. In addition, the efficiency decreased as the NaK temperature was raised. While the pump was powered, the fluid responded immediately to changes in the input power level, but when power was removed altogether, there was a brief slow-down period before the fluid would come to rest. The performance of the pump operating on a variable frequency drive providing 60 Hz power compared favorably with the same pump operating on 60 Hz power drawn directly from the electrical grid.

  18. Performance evaluation of the hydrogen-powered prototype locomotive 'Hydrogen Pioneer'

    NASA Astrophysics Data System (ADS)

    Hoffrichter, Andreas; Fisher, Peter; Tutcher, Jonathan; Hillmansen, Stuart; Roberts, Clive

    2014-03-01

    The narrow-gauge locomotive 'Hydrogen Pioneer', which was developed and constructed at the University of Birmingham, was employed to establish the performance of a hydrogen-hybrid railway traction vehicle. To achieve this several empirical tests were conducted. The locomotive utilises hydrogen gas in a Proton Exchange Membrane Fuel Cell power-plant to supply electricity to the traction motors or charge the on-board lead-acid batteries. First, the resistance to motion of the vehicle was determined, then operating tests were conducted for the speeds 2 km h-1, 6 km h-1, 7 km h-1, and 10 km h-1 on a 30 m straight, level alignment resembling light running. The power-plant and vehicle efficiency as well as the performance of the hybrid system were recorded. The observed overall duty cycle efficiency of the power-plant was from 28% to 40% and peak-power demand, such as during acceleration, was provided by the battery-pack, while average power during the duty cycle was met by the fuel cell stack, as designed. The tests establish the proof-of-concept for a hydrogen-hybrid railway traction vehicle and the results indicate that the traction system can be applied to full-scale locomotives.

  19. Wind-tunnel evaluation of a 21-percent-scale powered model of a prototype advanced scout helicopter

    NASA Technical Reports Server (NTRS)

    Phelps, A. E., III; Berry, J. D.

    1985-01-01

    An exploratory wind tunnel investigation of a 21 percent scale powered model of a prototype advanced scout helicopter was conducted in the Langley 4 by 7 Meter Tunnel. The investigation was conducted to define the overall aerodynamic characteristics of the Army Helicopter Improvement Program (AHIP), to determine the effects of the rotor on the aerodynamic characteristics and to evaluate the effect of a mast mounted sight on the aircraft stability characteristics. Tests covered a range of thrust coefficients, advance ratios, angles of attack and angles of sideslip and were run for both rotor on and rotor off configurations. Results of the investigation showed that the prototype configuration was longitudinally unstable with angle of attack for all configurations tested. The instability was due to unfavorable interference effects between the horizontal tail and the wake shed from the engine pylon and rotor hub, which caused a loss of horizontal tail effectiveness. The addition of the mast mounted sight had little effect on the stability of the model, but it caused an alteration in the rotor lift distribution that resulted in substantial interference drag for the sight.

  20. Prototype of a high-power, high-energy industrial XeCl laser

    NASA Astrophysics Data System (ADS)

    Borisov, V. M.; Demin, A. I.; Khristoforov, O. B.

    2015-03-01

    We discuss the results of fabrication and experimental study of a high-power excimer XeCl laser for industrial applications. Compactness of the laser is achieved by the employment of a laser chamber based on a ceramic tube made of Al2O3. High laser output energy (1.5 - 2.5 J pulse-1) is obtained using a wide-aperture (up to 55 × 30 mm) volume discharge with pre-ionisation by a creeping discharge. The pre-ionisation is realised through a semitransparent electrode by the UV radiation of a creeping discharge in the form of uniform plasma sheet on a surface of a plane sapphire plate. The operating lifetime of the gas mixture amounts to ~57 × 106 pulses at a stabilised average laser power of 450 W. The results obtained demonstrate real prospects for developing a new class of excimer XeCl lasers with an average power of ~1 kW.

  1. Direct containment heating experiments in Zion Nuclear Power Plant Geometry using prototypic core materials, the U2 test

    SciTech Connect

    Binder, J.L.; McUmber, L.M.; Spencer, B.W.

    1993-05-01

    A third Direct Containment Heating (DCH) experiments has been completed which utilizes prototypic core materials. The reactor material tests are a follow on to the Integral Effects Testing (IET) DCH program. The IET series of tests primarily addressed the effect of scale on DCH phenomena. This was accomplished by completing a series of counterpart tests in 1/40 and 1/10th linear scale DCH facilities at Argonne National Laboratory (ANL) and Sandia National Laboratories (SNL), respectively. The IET experiments modeled the Zion Nuclear Power Plant Geometry. The scale models included representations of the primary system volume, RPV lower head, cavity and instrument tunnel, and the lower containment structures. The experiments were steam driven at nominally 6.2 MPa. Iron-alumina thermite with chromium was used as a core melt simulant in the IET experiments. While the IET experiments at ANL and SNL provided useful data on the effect of scale on DCH phenomena, a significant question concerns the potential experiment distortions introduced by the use of non-prototypic iron/alumina thermite. Therefore, further testing with prototypic materials has been carried out at ANL. A prototypic core melt was produced for the experiment by first mixing powders of uranium, zirconium, iron oxide (Fe{sub 2}O{sub 3}), and chromium trioxide (CrO{sub 3}). When ignited the powders react exothermically to produce a molten mixture. The amounts of each powder were selected to produce the anticipated composition for a core melt following a station blackout: 57.8 mass% UO{sub 2} 10.5 mass% ZrO{sub 2} 14.3 mass% Fe, 13.7 mass% Zr, and 3.7 mass% Cr. Development tests measured the initial melt temperature to be in the range of 2600 - 2700 K. The total thermal specific energy content of the melt at 2700 K is 1.2 MJ/kg compared to 2.25 MJ/kg for the iron-alumina simulant at its measured initial temperature of 2500 K.

  2. High power RF conditioning of 2856 MHz, 40 keV prototype buncher cavity system

    SciTech Connect

    Mondal, J.; Chandan, Shiv; Tillu, A.R.; and others

    2014-07-01

    An on axis biperiodic buncher cavity system at 2856 MHz with three bunching cells plus one power feed cell has been designed and fabricated for 40 keV pulsed electron beam injection from a thermionic gun. The vacuum and high power RF conditioning prior to the beam injection is presented in this paper. Initially the cavity system along with the in-flange fast current transformer and the beam diagnostics chamber has been baked at 60-65 °C for 22 hours under a vacuum ≤ 6 x 10{sup -6} mbar. The final ultimate vacuum was 2.3 x 10{sup -6} mbar and it took 195 seconds to reach to 1 x 10{sup -5} mbar with the gate valve closed. After this the high power RF conditioning was done from 0.3 MW to 1.2 MW input RF power with 4μsec. pulse at 1 Hz PRF. At this point the ultimate vacuum reached to 2.3 x 10{sup -6} mbar and reached to 1 x 10{sup -5} mbar in 195 seconds after closing the gate valve. Finally the system was conditioned with 1MW, 4μsec. RF pulses at 20 Hz PRF. (author)

  3. High Power Electric Propulsion Using The VASIMR VX-200: A Flight Technology Prototype

    NASA Astrophysics Data System (ADS)

    Bering, Edgar, III; Longmier, Benjamin; Glover, Tim; Chang-Diaz, Franklin; Squire, Jared; Brukardt, Michael

    2008-11-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is a high power magnetoplasma rocket, capable of Isp/thrust modulation at constant power. The plasma is produced by a helicon discharge. The bulk of the energy is added by ion cyclotron resonance heating (ICRH.) Axial momentum is obtained by adiabatic expansion of the plasma in a magnetic nozzle. Thrust/specific impulse ratio control in the VASIMR is primarily achieved by the partitioning of the RF power to the helicon and ICRH systems, with the proper adjustment of the propellant flow. Ion dynamics in the exhaust were studied using probes, gridded energy analyzers (RPA's), microwave interferometry and optical techniques. Results are summarize from high power ICRH experiments performed on the VX-100 using argon plasma during 2007, and on the VX-200 using argon plasma during 2008. The VX-100 has demonstrated ICRH antenna efficiency >90% and a total coupling efficiency of ˜75%. The rocket performance parameters inferred by integrating the moments of the ion energy distribution corresponds to a thrust of 2 N at an exhaust velocity of 20 km/s with the VX-100 device. The new VX-200 machine is described.

  4. Prototype Power and Communications System for EeV Cosmic Rays Studies

    SciTech Connect

    Russ, James S.

    2010-08-31

    An analysis of improving the power output of small wind turbines by adding a venturi housing was done. Including the effects of back pressure developed at the input to the housing lowers the efficiency gain from a factor of 5 to a factor of 2 for a turbine blade radius of 24 inches. The gain is small enough that only large systems could profit from the application.

  5. Prototype of a high-power, high-energy industrial XeCl laser

    SciTech Connect

    Borisov, V M; Demin, A I; Khristoforov, O B

    2015-03-31

    We discuss the results of fabrication and experimental study of a high-power excimer XeCl laser for industrial applications. Compactness of the laser is achieved by the employment of a laser chamber based on a ceramic tube made of Al{sub 2}O{sub 3}. High laser output energy (1.5 – 2.5 J pulse{sup -1}) is obtained using a wide-aperture (up to 55 × 30 mm) volume discharge with pre-ionisation by a creeping discharge. The pre-ionisation is realised through a semitransparent electrode by the UV radiation of a creeping discharge in the form of uniform plasma sheet on a surface of a plane sapphire plate. The operating lifetime of the gas mixture amounts to ∼57 × 10{sup 6} pulses at a stabilised average laser power of 450 W. The results obtained demonstrate real prospects for developing a new class of excimer XeCl lasers with an average power of ∼1 kW. (lasers)

  6. Complex of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment

    NASA Astrophysics Data System (ADS)

    Smorodin, A. I.; Red'kin, V. V.; Frolov, Y. D.; Korobkov, A. A.; Kemaev, O. V.; Kulik, M. V.; Shabalin, O. V.

    2015-07-01

    A set of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment is offered. The following technologies are regarded as core technologies for the complex: cryogenic technology nitrogen for displacement of hydrogen from the cooling circuit of turbine generators, cryo blasting of the power units by dioxide granules, preservation of the shutdown power units by dehydrated air, and dismantling and severing of equipment and structural materials of power units. Four prototype systems for eco-friendly shutdown of the power units may be built on the basis of selected technologies: Multimode nitrogen cryogenic system with four subsystems, cryo blasting system with CO2 granules for thermal-mechanical and electrical equipment of power units, and compressionless air-drainage systems for drying and storage of the shutdown power units and cryo-gas system for general severing of the steam-turbine power units. Results of the research and pilot and demonstration tests of the operational units of the considered technological systems allow applying the proposed technologies and systems in the prototype systems for shutdown of the power-generating, process, capacitive, and transport equipment.

  7. A COMPUTERIZED OPERATOR SUPPORT SYSTEM PROTOTYPE

    SciTech Connect

    Thomas A. Ulrich; Roger Lew; Ronald L. Boring; Ken Thomas

    2015-03-01

    A computerized operator support system (COSS) is proposed for use in nuclear power plants to assist control room operators in addressing time-critical plant upsets. A COSS is a collection of technologies to assist operators in monitoring overall plant performance and making timely, informed decisions on appropriate control actions for the projected plant condition. A prototype COSS was developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, piping and instrumentation diagram system representations, and a recommender module for mitigation actions. The initial version of the prototype is now operational at the Idaho National Laboratory using the Human System Simulation Laboratory.

  8. Overturning the Case for Gravitational Powering in the Prototypical Cooling Lyα Nebula

    NASA Astrophysics Data System (ADS)

    Prescott, Moire K. M.; Momcheva, Ivelina; Brammer, Gabriel B.; Fynbo, Johan P. U.; Møller, Palle

    2015-03-01

    The Nilsson et al. Lyα nebula has often been cited as the most plausible example of an Lyα nebula powered by gravitational cooling. In this paper, we bring together new data from the Hubble Space Telescope and the Herschel Space Observatory as well as comparisons to recent theoretical simulations in order to revisit the questions of the local environment and most likely power source for the Lyα nebula. In contrast to previous results, we find that this Lyα nebula is associated with six nearby galaxies and an obscured AGN that is offset by ˜4″ ≈ 30 kpc from the Lyα peak. The local region is overdense relative to the field, by a factor of ˜10, and at low surface brightness levels the Lyα emission appears to encircle the position of the obscured AGN, highly suggestive of a physical association. At the same time, we confirm that there is no compact continuum source located within ˜2-3″ ≈ 15-23 kpc of the Lyα peak. Since the latest cold accretion simulations predict that the brightest Lyα emission will be coincident with a central growing galaxy, we conclude that this is actually a strong argument against, rather than for, the idea that the nebula is gravitationally powered. While we may be seeing gas within cosmic filaments, this gas is primarily being lit up, not by gravitational energy, but due to illumination from a nearby buried AGN.

  9. OVERTURNING THE CASE FOR GRAVITATIONAL POWERING IN THE PROTOTYPICAL COOLING LYα NEBULA

    SciTech Connect

    Prescott, Moire K. M.; Fynbo, Johan P. U.; Momcheva, Ivelina; Brammer, Gabriel B.; Møller, Palle

    2015-03-20

    The Nilsson et al. Lyα nebula has often been cited as the most plausible example of an Lyα nebula powered by gravitational cooling. In this paper, we bring together new data from the Hubble Space Telescope and the Herschel Space Observatory as well as comparisons to recent theoretical simulations in order to revisit the questions of the local environment and most likely power source for the Lyα nebula. In contrast to previous results, we find that this Lyα nebula is associated with six nearby galaxies and an obscured AGN that is offset by ∼4″ ≈ 30 kpc from the Lyα peak. The local region is overdense relative to the field, by a factor of ∼10, and at low surface brightness levels the Lyα emission appears to encircle the position of the obscured AGN, highly suggestive of a physical association. At the same time, we confirm that there is no compact continuum source located within ∼2–3″ ≈ 15–23 kpc of the Lyα peak. Since the latest cold accretion simulations predict that the brightest Lyα emission will be coincident with a central growing galaxy, we conclude that this is actually a strong argument against, rather than for, the idea that the nebula is gravitationally powered. While we may be seeing gas within cosmic filaments, this gas is primarily being lit up, not by gravitational energy, but due to illumination from a nearby buried AGN.

  10. Experience from design, prototyping and production of a DC-DC conversion powering scheme for the CMS Phase-1 Pixel Upgrade

    NASA Astrophysics Data System (ADS)

    Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max; Schmitz, Stefan; Wlochal, Michael

    2017-02-01

    The CMS pixel detector will be replaced during the technical stop 2016/2017. To allow the new pixel detector to be powered with the legacy cable plant and power supplies, a novel powering scheme based on DC-DC conversion will be employed. After the successful conclusion of an extensive development and prototyping phase, mass production of 1800 DC-DC converters as well as motherboards and other power PCBs has now been completed. This contribution reviews the lessons learned from the development of the power system for the Phase-1 pixel detector, and summarizes the experience gained from the production phase.

  11. Geospatial Analysis and Technical Assistance for Power Plant Siting Interagency

    SciTech Connect

    Neher, L A

    2002-03-07

    The focus of this contract (in the summer and fall of 2001) was originally to help the California Energy Commission (CEC) locate and evaluate potential sites for electric power generation facilities and to assist the CEC in addressing areas of congestion on transmission lines and natural gas supply line corridors. Subsequent events have reduced the immediate urgency, although not the ultimate need for such analyses. Software technology for deploying interactive geographic information systems (GIS) accessible over the Internet have developed to the point that it is now practical to develop and publish GIS web sites that have substantial viewing, movement, query, and even map-making capabilities. As part of a separate project not funded by the CEC, the GIS Center at LLNL, on an experimental basis, has developed a web site to explore the technical difficulties as well as the interest in such a web site by agencies and others concerned with energy research. This exploratory effort offers the potential or developing an interactive GIS web site for use by the CEC for energy research, policy analysis, site evaluation, and permit and regulatory matters. To help ground the geospatial capabilities in the realistic requirements and needs of the CEC staff, the CEC requested that the GIS Center conduct interviews of several CEC staff persons to establish their current and envisioned use of spatial data and requirements for geospatial analyses. This survey will help define a web-accessible central GIS database for the CEC, which will augment the well-received work of the CEC Cartography Unit. Individuals within each siting discipline have been contacted and their responses to three question areas have been summarized. The web-based geospatial data and analytical tools developed within this project will be available to CEC staff for initial area studies, queries, and informal, small-format maps. It is not designed for fine cartography or for large-format posters such as the

  12. Design and development of a prototype 25 kV, 10 A long pulse Marx modulator for high power klystron.

    PubMed

    Acharya, Mahesh; Shrivastava, Purushottam

    2016-02-01

    Research, design, and development of high average power modulators for the proposed Indian Spallation Neutron Source are in progress at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of 25 kV, 10 A, 1 ms Marx modulator at repetition rate of 1 Hz has been designed and developed which serves as a proof of principle and technology assessment stage for further development of high repetition rate high voltage high average power modulators. Insulated Gate Bipolar Transistor (IGBT) based modules of 2.8 kV switching capability have been used as main modules. The modulator had 8.2% droop in output voltage pulse without any droop compensation circuit. A droop compensation involving 15 corrector modules has been used to reduce the droop up to 1%. We have used IGBT based 250 V switches to realize the corrector module. A microcontroller based control unit was designed and developed for triggering the main and corrector modules. With this control unit, programmable output pulse has been achieved. Electrical isolation between high voltage circuits and control circuit has been achieved by the use of fiber optic based control signal transmission. Output pulses of 1 ms pulse width, 800 ns rise time, and 5 μs fall time have been achieved. The modulator has advantages of modular design, adjustable pulse width, adjustable rise time, and fall time.

  13. Design and development of a prototype 25 kV, 10 A long pulse Marx modulator for high power klystron

    NASA Astrophysics Data System (ADS)

    Acharya, Mahesh; Shrivastava, Purushottam

    2016-02-01

    Research, design, and development of high average power modulators for the proposed Indian Spallation Neutron Source are in progress at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of 25 kV, 10 A, 1 ms Marx modulator at repetition rate of 1 Hz has been designed and developed which serves as a proof of principle and technology assessment stage for further development of high repetition rate high voltage high average power modulators. Insulated Gate Bipolar Transistor (IGBT) based modules of 2.8 kV switching capability have been used as main modules. The modulator had 8.2% droop in output voltage pulse without any droop compensation circuit. A droop compensation involving 15 corrector modules has been used to reduce the droop up to 1%. We have used IGBT based 250 V switches to realize the corrector module. A microcontroller based control unit was designed and developed for triggering the main and corrector modules. With this control unit, programmable output pulse has been achieved. Electrical isolation between high voltage circuits and control circuit has been achieved by the use of fiber optic based control signal transmission. Output pulses of 1 ms pulse width, 800 ns rise time, and 5 μs fall time have been achieved. The modulator has advantages of modular design, adjustable pulse width, adjustable rise time, and fall time.

  14. On the Prototyping of an ICT-Enhanced Toilet System for Assisting Older Persons Living Independently and Safely at Home.

    PubMed

    Panek, Paul; Fazekas, Gabor; Lüftenegger, Theresa; Mayer, Peter; Pilissy, Tamas; Raffaelli, Matteo; Rist, Atilla; Rosenthal, Ramona; Savanovic, Arso; Sobjak, Anna; Sonntag, Franziska; Toth, Andras; Unger, Birgit

    2017-01-01

    Standard toilets often do not meet the needs of a significant number of older persons and persons with disabilities. The EU funded iToilet project aims at design and development of a new type of ICT enhanced modular toilet system which shall be able to support autonomy, dignity and safety of older persons living at home. Methodologically the project started with gathering user requirements by means of questionnaires, interviews and focus group discussion involving a total of 74 persons, thereof 41 subjects with movement disorders (primary users), 21 caregivers (secondary users) and 12 healthcare managers (tertiary users). Most important wishes were bilateral removable handrails, height and tilt adjustment, emergency detection, simplicity. In parallel to the ongoing technical development participatory design activities have been carried out at user test sites in order to continuously involve users into the design process and to allow quick feedback with regards to early prototype parts. The project currently is working on the finalization of the first prototype ready to enter the lab trial stage in spring 2017. The experiences will be used for redesigning a prototype 2 which is planned to be tested in real life settings early 2018.

  15. Computer-aided design and rapid prototyping-assisted contouring of costal cartilage graft for facial reconstructive surgery.

    PubMed

    Lee, Shu Jin; Lee, Heow Pueh; Tse, Kwong Ming; Cheong, Ee Cherk; Lim, Siak Piang

    2012-06-01

    Complex 3-D defects of the facial skeleton are difficult to reconstruct with freehand carving of autogenous bone grafts. Onlay bone grafts are hard to carve and are associated with imprecise graft-bone interface contact and bony resorption. Autologous cartilage is well established in ear reconstruction as it is easy to carve and is associated with minimal resorption. In the present study, we aimed to reconstruct the hypoplastic orbitozygomatic region in a patient with left hemifacial microsomia using computer-aided design and rapid prototyping to facilitate costal cartilage carving and grafting. A three-step process of (1) 3-D reconstruction of the computed tomographic image, (2) mirroring the facial skeleton, and (3) modeling and rapid prototyping of the left orbitozygomaticomalar region and reconstruction template was performed. The template aided in donor site selection and extracorporeal contouring of the rib cartilage graft to allow for an accurate fit of the graft to the bony model prior to final fixation in the patient. We are able to refine the existing computer-aided design and rapid prototyping methods to allow for extracorporeal contouring of grafts and present rib cartilage as a good alternative to bone for autologous reconstruction.

  16. Rolling resistance and propulsion efficiency of manual and power-assisted wheelchairs.

    PubMed

    Pavlidou, Efthymia; Kloosterman, Marieke G M; Buurke, Jaap H; Rietman, Johan S; Janssen, Thomas W J

    2015-11-01

    Rolling resistance is one of the main forces resisting wheelchair propulsion and thus affecting stress exerted on the upper limbs. The present study investigates the differences in rolling resistance, propulsion efficiency and energy expenditure required by the user during power-assisted and manual propulsion. Different tire pressures (50%, 75%, 100%) and two different levels of motor assistance were tested. Drag force, energy expenditure and propulsion efficiency were measured in 10 able-bodied individuals under different experimental settings on a treadmill. Results showed that drag force levels were significantly higher in the 50%, compared to the 75% and 100% inflation conditions. In terms of wheelchair type, the manual wheelchair displayed significantly lower drag force values than the power-assisted one. The use of extra-power-assisted wheelchair appeared to be significantly superior to conventional power-assisted and manual wheelchairs concerning both propulsion efficiency and energy expenditure required by the user. Overall, the results of the study suggest that the use of power-assisted wheelchair was more efficient and required less energy input by the user, depending on the motor assistance provided.

  17. Biomechanical Evaluation of an Electric Power-Assisted Bicycle by a Musculoskeletal Model

    NASA Astrophysics Data System (ADS)

    Takehara, Shoichiro; Murakami, Musashi; Hase, Kazunori

    In this study, we construct an evaluation system for the muscular activity of the lower limbs when a human pedals an electric power-assisted bicycle. The evaluation system is composed of an electric power-assisted bicycle, a numerical simulator and a motion capture system. The electric power-assisted bicycle in this study has a pedal with an attached force sensor. The numerical simulator for pedaling motion is a musculoskeletal model of a human. The motion capture system measures the joint angles of the lower limb. We examine the influence of the electric power-assisted force on each muscle of the human trunk and legs. First, an experiment of pedaling motion is performed. Then, the musculoskeletal model is calculated by using the experimental data. We discuss the influence on each muscle by electric power-assist. It is found that the muscular activity is decreased by the electric power-assist bicycle, and the reduction of the muscular force required for pedaling motion was quantitatively shown for every muscle.

  18. Development of a Power Assist System of a Walking Chair Based on Human Arm Characteristics

    NASA Astrophysics Data System (ADS)

    Wu, Yunfeng; Nakamura, Hitoshi; Takeda, Yukio; Higuchi, Masaru; Sugimoto, Koichi

    In this paper, design of control system and power combination mechanism of a power assist system of the walking chair was discussed based on kinetostatic characteristics of human arm. The walking chair is a welfare walking machine which is an alternative vehicle of the wheelchair, and expected to be driven by user's cranking operation with assisting actuator. To efficiently utilize user power as much as possible for long locomotion without giving much fatigue to the user while providing comfortable driving feeling to the user, the human arm characteristics were taken into consideration. Kinetostatic characteristics of the human arm were experimentally investigated for its modeling. This model was applied to the design of mechanism and control system of the power assist system of the walking chair, and design parameters were determined for achieving comfortable driving feeling and efficient utilization of user power.

  19. Humanitarian Assistance and ’Soft’ Power Projection

    DTIC Science & Technology

    2012-05-04

    challenge the current dogma that U.S. military humanitarian support must maintain the ‘status quo’ and remain reactionary. The decoupling will occur in...future challenges that go beyond humanitarian assistance. These were not an all inclusive list of similarities between Peace Operations and...Civil Authorities  Intergovernmental organizations (United Nations)  Local population This is not an all inclusive list, but it helps set the

  20. A Novel Prototype of Auxiliary Edge Resonant Bridge Leg-Link Snubber-Assisted Soft-Switching Sinewave PWM Inverter

    NASA Astrophysics Data System (ADS)

    Nakamura, Mantaro; Yamazaki, Takayuki; Fujii, Yuma; Ahmed, Tarek; Nakaoka, Mutsuo

    This paper proposes a new circuit topology of the three-phase soft switching PWM inverter and PFC converter using IGBT power modules, which has the improved active auxiliary switch and edge resonant bridge leg-commutation-link soft-switching snubber circuit with pulse current regenerative feedback loop as compared with the typical auxiliary resonant pole snubber discussed previously. This three-phase soft switching PWM double converter is more suitable and acceptable for a large capacity uninterruptible power supply, PFC converter, utility-interactive bi-directional converter and so forth. In this paper, the soft switching operation and optimum circuit design of the novel type active auxiliary edge resonant bridge leg commutation link snubber treated here are described for high power applications. Both the main active power switches and the auxiliary active power switches achieve soft switching under the principles of ZVS or ZCS in this three-phase inverter switching. This three-phase soft switching commutation scheme can effectively minimize the switching surge related electromagnetic noise and the switching power losses of the power semiconductor devices; IGBTs and modules used here. This three-phase inverter and rectifier coupled double converter system does not need any sensing circuit and its peripheral logic control circuits to detect the voltage or the current and does not require any unwanted chemical electrolytic capacitor to make the neutral point of the DC power supply voltage source. The performances of this power conditioner are proved on the basis of the experimental and simulation results. Because the power semiconductor switches (IGBT module packages) have the relation of the trade-off in the switching fall time and tail current interval characteristics as well as the conductive saturation voltage characteristics, this three-phase soft-switching PWM double converter can perform to improve actual efficiency in the output power ranges with a trench

  1. Disturbance road adaptive driving control of power-assisted wheelchair using fuzzy inference.

    PubMed

    Seki, Hirokazu; Kiso, Atsushi

    2011-01-01

    This paper describes a novel driving control scheme of electric power-assisted wheelchairs for assistive driving on various large disturbance roads. The "electric power-assisted wheelchair" which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people; however, there are lots of large disturbance roads such as uphill roads and rough roads and operators need to row the hand-rims with the larger power load on such roads in order to obtain the enough driving velocity. For example the wheelchair might move backward on uphill roads due to the driving torque shortage. Therefore this study proposes a fuzzy algorithm based adaptive control scheme in order to realize the assistive driving without the operator's power load on large disturbance roads. The proposed fuzzy rules are designed from the driving distance information and the control parameters are inferred by the fuzzy algorithm. The assisted torque can be adjusted so that the enough distance and velocity are kept even on large disturbance roads. Driving experimental results are provided to verify the effectiveness of the proposed control system.

  2. Design, development and testing of a solar-powered multi-family residential size prototype turbocompressor heat pump

    SciTech Connect

    1981-03-01

    A program described to design, fabricate, and conduct preliminary testing of a prototype solar-powered Rankine cycle turbocompressor heat pump module for a multi-family residential building is presented. A solar system designed to use the turbocompressor heat pump module including all of the subsystems required and the various system operating modes is described in Section I. Section II includes the preliminary design analyses conducted to select the heat pump module components and operating features, working fluid, configuration, size and performance goals, and estimated performance levels in the cooling and heating modes. Section III provides a detailed description of the other subsystems and components required for a complete solar installation. Using realistic performance and cost characteristics for all subsystems, the seasonal performance of the UTC heat pump is described in various US locations. In addition, the estimated energy savings and an assessment of the economic viability of the solar system is presented in Section III. The detailed design of the heat pump module and the arrangement of components and controls selected to conduct the laboratory performance tests are described in Section IV. Section V provides a description of the special laboratory test facility, including the subsystems to simulate the collectors and storage tanks for building load and ambient conditions and the instrumentation, monitoring, and data acquisition equipment. The test results and sample computer analyses and comparisons with predicted performance levels are presented in Section VI. Various appendices provide supplementary and background information concerning working fluid selection (A), configuration selection (B), capacity control concepts (C), building models (D), computer programs used to determine component and system performance and total system economics (E), and weather data (F).

  3. Comparison of Conventional Methods and Laser-Assisted Rapid Prototyping for Manufacturing Fixed Dental Prostheses: An In Vitro Study.

    PubMed

    Pompa, Giorgio; Di Carlo, Stefano; De Angelis, Francesca; Cristalli, Maria Paola; Annibali, Susanna

    2015-01-01

    This study assessed whether there are differences in marginal fit between laser-fusion and conventional techniques to produce fixed dental prostheses (FDPs). A master steel die with 2 abutments was produced to receive a posterior 4-unit FDPs and single copings. These experimental models were divided into three groups (n = 20/group) manufactured: group 1, Ni-Cr alloy, with a lost-wax casting technique; group 2, Co-Cr alloy, with selective laser melting (SLM); and group 3, yttria-tetragonal zirconia polycrystal (Y-TZP), with a milling system. All specimens were cut along the longitudinal axis and their adaptation was measured at the marginal and shoulder areas on the right and left sides of each abutment. Measurements were made using a stereomicroscope (×60 magnification) and a scanning electron microscope (×800 magnification). The data were analyzed using one-way analysis of variance and the Bonferroni post hoc test, with a significance cutoff of 5%. Significant differences (P < 0.05) were observed between group 3 and the other groups. The marginal opening was smallest with Co-Cr alloy substructures, while the shoulder opening was smallest with Ni-Cr alloy substructures. Within the limitations of this study, the marginal fit of an FDP is better with rapid prototyping (RP) via SLM than conventional manufacturing systems.

  4. Comparison of Conventional Methods and Laser-Assisted Rapid Prototyping for Manufacturing Fixed Dental Prostheses: An In Vitro Study

    PubMed Central

    Pompa, Giorgio; Di Carlo, Stefano; De Angelis, Francesca; Cristalli, Maria Paola; Annibali, Susanna

    2015-01-01

    This study assessed whether there are differences in marginal fit between laser-fusion and conventional techniques to produce fixed dental prostheses (FDPs). A master steel die with 2 abutments was produced to receive a posterior 4-unit FDPs and single copings. These experimental models were divided into three groups (n = 20/group) manufactured: group 1, Ni-Cr alloy, with a lost-wax casting technique; group 2, Co-Cr alloy, with selective laser melting (SLM); and group 3, yttria-tetragonal zirconia polycrystal (Y-TZP), with a milling system. All specimens were cut along the longitudinal axis and their adaptation was measured at the marginal and shoulder areas on the right and left sides of each abutment. Measurements were made using a stereomicroscope (×60 magnification) and a scanning electron microscope (×800 magnification). The data were analyzed using one-way analysis of variance and the Bonferroni post hoc test, with a significance cutoff of 5%. Significant differences (P < 0.05) were observed between group 3 and the other groups. The marginal opening was smallest with Co-Cr alloy substructures, while the shoulder opening was smallest with Ni-Cr alloy substructures. Within the limitations of this study, the marginal fit of an FDP is better with rapid prototyping (RP) via SLM than conventional manufacturing systems. PMID:26576419

  5. Operationality Improvement Control of Electric Power Assisted Wheelchair by Fuzzy Algorithm Considering Posture Angle

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroki; Seki, Hirokazu; Minakata, Hideaki; Tadakuma, Susumu

    This paper describes a novel operationality improvement control for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel operationality improvement control by fuzzy algorithm to realize the stable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity, the posture angle of the wheelchair, the human input torque proportion and the total human torque of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.

  6. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study.

    PubMed

    Takahashi, Kota Z; Lewek, Michael D; Sawicki, Gregory S

    2015-02-25

    In persons post-stroke, diminished ankle joint function can contribute to inadequate gait propulsion. To target paretic ankle impairments, we developed a neuromechanics-based powered ankle exoskeleton. Specifically, this exoskeleton supplies plantarflexion assistance that is proportional to the user's paretic soleus electromyography (EMG) amplitude only during a phase of gait when the stance limb is subjected to an anteriorly directed ground reaction force (GRF). The purpose of this feasibility study was to examine the short-term effects of the powered ankle exoskeleton on the mechanics and energetics of gait. Five subjects with stroke walked with a powered ankle exoskeleton on the paretic limb for three 5 minute sessions. We analyzed the peak paretic ankle plantarflexion moment, paretic ankle positive work, symmetry of GRF propulsion impulse, and net metabolic power. The exoskeleton increased the paretic plantarflexion moment by 16% during the powered walking trials relative to unassisted walking condition (p < .05). Despite this enhanced paretic ankle moment, there was no significant increase in paretic ankle positive work, or changes in any other mechanical variables with the powered assistance. The exoskeleton assistance appeared to reduce the net metabolic power gradually with each 5 minute repetition, though no statistical significance was found. In three of the subjects, the paretic soleus activation during the propulsion phase of stance was reduced during the powered assistance compared to unassisted walking (35% reduction in the integrated EMG amplitude during the third powered session). This feasibility study demonstrated that the exoskeleton can enhance paretic ankle moment. Future studies with greater sample size and prolonged sessions are warranted to evaluate the effects of the powered ankle exoskeleton on overall gait outcomes in persons post-stroke.

  7. Feasibility of a Hydraulic Power Assist System for Use in Hybrid Neuroprostheses

    PubMed Central

    Foglyano, Kevin M.; Kobetic, Rudi; To, Curtis S.; Bulea, Thomas C.; Schnellenberger, John R.; Audu, Musa L.; Nandor, Mark J.; Quinn, Roger D.; Triolo, Ronald J.

    2015-01-01

    Feasibility of using pressurized hydraulic fluid as a source of on-demand assistive power for hybrid neuroprosthesis combining exoskeleton with functional neuromuscular stimulation was explored. Hydraulic systems were selected as an alternative to electric motors for their high torque/mass ratio and ability to be located proximally on the exoskeleton and distribute power distally to assist in moving the joints. The power assist system (PAS) was designed and constructed using off-the-shelf components to test the feasibility of using high pressure fluid from an accumulator to provide assistive torque to an exoskeletal hip joint. The PAS was able to provide 21 Nm of assistive torque at an input pressure of 3171 kPa with a response time of 93 ms resulting in 32° of hip flexion in an able-bodied test. The torque output was independent of initial position of the joint and was linearly related to pressure. Thus, accumulator pressure can be specified to provide assistive torque as needed in exoskeletal devices for walking or stair climbing beyond those possible either volitionally or with electrical stimulation alone. PMID:27017963

  8. Feasibility of a Hydraulic Power Assist System for Use in Hybrid Neuroprostheses.

    PubMed

    Foglyano, Kevin M; Kobetic, Rudi; To, Curtis S; Bulea, Thomas C; Schnellenberger, John R; Audu, Musa L; Nandor, Mark J; Quinn, Roger D; Triolo, Ronald J

    2015-01-01

    Feasibility of using pressurized hydraulic fluid as a source of on-demand assistive power for hybrid neuroprosthesis combining exoskeleton with functional neuromuscular stimulation was explored. Hydraulic systems were selected as an alternative to electric motors for their high torque/mass ratio and ability to be located proximally on the exoskeleton and distribute power distally to assist in moving the joints. The power assist system (PAS) was designed and constructed using off-the-shelf components to test the feasibility of using high pressure fluid from an accumulator to provide assistive torque to an exoskeletal hip joint. The PAS was able to provide 21 Nm of assistive torque at an input pressure of 3171 kPa with a response time of 93 ms resulting in 32° of hip flexion in an able-bodied test. The torque output was independent of initial position of the joint and was linearly related to pressure. Thus, accumulator pressure can be specified to provide assistive torque as needed in exoskeletal devices for walking or stair climbing beyond those possible either volitionally or with electrical stimulation alone.

  9. Use of power assist wheels results in increased distance traveled compared with conventional manual wheeling.

    PubMed

    Levy, Charles E; Buman, Matthew P; Chow, John W; Tillman, Mark D; Fournier, Kimberly A; Giacobbi, Peter

    2010-08-01

    To evaluate the impact of power assist wheels on the distance traveled by manual wheelchair users and analyze potential cofactors in the magnitude of response and to test the hypothesis that wheelers would travel significantly further with power assist wheels. A 16-wk A (Preintervention)-B (Intervention)-A (Postintervention) repeated measures design. Seven women and 13 men (age, 43 +/- 15 yrs) full-time wheelers participated. During the pre- and postintervention phases (4 wks each), participants used their own unaltered manual wheelchairs. During the 8-wk intervention phase, the manual wheels were replaced with power assist wheels. Daily distance was measured with bicycle-style odometers. A composite score of laboratory wheelchair tasks was used to classify wheelchair performance. Mixed model repeated measures analysis of variance analyzed changes across phases of the trial. A post hoc analysis tabulated the amount of days wheelers exceeded their individual daily averages in each phase by two SDs. Wheelers traveled significantly greater distances during the intervention phase compared with pre- or postintervention phases regardless of baseline wheelchair performance. Wheelers who demonstrated higher baseline wheelchair performance traveled lesser average distances in the first 2 wks after receiving power assist wheels than in the subsequent 6 wks. Wheelers exceeded their individual daily averages per phase on a significantly greater number of days during the intervention phase. Power assist wheels enabled wheelers to travel farther and to travel beyond their usual distances on more days. Further studies may be strengthened by taking into account the 2-wk "adjustment phase" for power assist wheels.

  10. Displacement-load force-perceived weight relationships in lifting objects with power-assist

    NASA Astrophysics Data System (ADS)

    Rahman, S. M. Mizanoor; Ikeura, Ryojun; Nobe, Masaya; Sawai, Hideki

    2010-01-01

    This paper deals with the design of a 1-DOF power assist system (PAS) for lifting objects in vertical direction based on a hypothesis that pertains to operator's weight perception. We particularly studied the relationships among object's displacement, load force (vertical lifting force) and perceived weight for the objects lifted with the PAS. We also compared the load force features for power-assist-lifted objects to that for manually lifted objects for equal heaviness. Finally, we proposed using the findings to develop human-friendly PASs for lifting heavy objects in industries such as construction, military operations, manufacturing and assembly, logistics and transport, mining etc.

  11. Displacement-load force-perceived weight relationships in lifting objects with power-assist

    NASA Astrophysics Data System (ADS)

    Rahman, S. M. Mizanoor; Ikeura, Ryojun; Nobe, Masaya; Sawai, Hideki

    2009-12-01

    This paper deals with the design of a 1-DOF power assist system (PAS) for lifting objects in vertical direction based on a hypothesis that pertains to operator's weight perception. We particularly studied the relationships among object's displacement, load force (vertical lifting force) and perceived weight for the objects lifted with the PAS. We also compared the load force features for power-assist-lifted objects to that for manually lifted objects for equal heaviness. Finally, we proposed using the findings to develop human-friendly PASs for lifting heavy objects in industries such as construction, military operations, manufacturing and assembly, logistics and transport, mining etc.

  12. Muscle powered circulatory assist device for diastolic counterpulsator.

    PubMed

    Novoa, R; Jacobs, G; Sakakibara, N; Chen, J F; Davies, C; Cosgrove, D M; Golding, L R; Nosé, Y; Loop, F D

    1989-01-01

    A diastolic counterpulsator that uses either skeletal muscle or pneumatic actuation was developed. The unit is positioned between the latissimus dorsi and the chest wall, without interference with collateral blood supply, and is connected in series with the descending aorta. The system was able to generate stroke volumes between 52 and 16 ccs against pressures of 60 and 140 mmHg, respectively. Stroke work at 200 msec stimulation averaged 2.8 X 10(6) ergs. Power output at an afterload of 100 mmHg, and at a rate of 60 bpm, was 0.51 W. Back-up pneumatic actuation provided by an intraaortic balloon pump resulted in a 46% increase in the endocardial viability ratio (EVR).

  13. Motor adaptation during dorsiflexion-assisted walking with a powered orthosis

    PubMed Central

    Kao, Pei-Chun; Ferris, Daniel P.

    2009-01-01

    A robotic ankle-foot orthosis (AFO) that provides powered assistance could adjust to varying gait dynamics much better than a rigid AFO. To provide insight into how humans would adapt to a powered AFO, we studied the response of neurologically intact subjects walking with an active dorsiflexion assist orthosis proportionally controlled by tibialis anterior electromyography (EMG). We examined the two mechanical functions of ankle dorsiflexors in gait (power absorption at heel strike and power generation at toe-off) by recruiting two groups of healthy subjects: Group One, called Continuous Control, (n=5) had dorsiflexion assistance both at the initial heel contact and during swing; Group Two, called Swing Control, (n=5) had the assistance only during swing. We hypothesized both groups of subjects would reduce tibialis anterior EMG amplitude with practice walking with the powered dorsiflexion assist. Ten healthy subjects were fitted with custom-made orthoses that included an artificial pneumatic muscle providing dorsiflexor torque. We collected lower body kinematics, EMG, and artificial muscle force while subjects walked on a treadmill for two 30-minute training sessions. We found that subjects walked with increased ankle dorsiflexion by 9 degrees but showed different adaptation responses of the two tibialis anterior EMG bursts. The first EMG burst around heel strike had ~28% lower amplitudes (p<0.05) but the second EMG burst during swing had similar amplitudes. These results provide baseline data of EMG controlled dorsiflexion assist in neurologically intact humans that can be used to guide future studies on neurologically impaired individuals. PMID:18838269

  14. Mechanical Prototyping and Manufacturing Internship

    NASA Technical Reports Server (NTRS)

    Grenfell, Peter

    2016-01-01

    The internship was located at the Johnson Space Center (JSC) Innovation Design Center (IDC), which is a facility where the JSC workforce can meet and conduct hands-on innovative design, fabrication, evaluation, and testing of ideas and concepts relevant to NASA's mission. The tasks of the internship included mechanical prototyping design and manufacturing projects in service of research and development as well as assisting the users of the IDC in completing their manufacturing projects. The first project was to manufacture hatch mechanisms for a team in the Systems Engineering and Project Advancement Program (SETMAP) hexacopter competition. These mechanisms were intended to improve the performance of the servomotors and offer an access point that would also seal to prevent cross-contamination. I also assisted other teams as they were constructing and modifying their hexacopters. The success of this competition demonstrated a proof of concept for aerial reconnaissance and sample return to be potentially used in future NASA missions. I also worked with Dr. Kumar Krishen to prototype an improved thermos and a novel, portable solar array. Computer-aided design (CAD) software was used to model the parts for both of these projects. Then, 3D printing as well as conventional techniques were used to produce the parts. These prototypes were then subjected to trials to determine the success of the designs. The solar array is intended to work in a cluster that is easy to set up and take down and doesn't require powered servomechanisms. It could be used terrestrially in areas not serviced by power grids. Both projects improve planetary exploration capabilities to future astronauts. Other projects included manufacturing custom rail brackets for EG-2, assisting engineers working on underwater instrument and tool cases for the NEEMO project, and helping to create mock-up parts for Space Center Houston. The use of the IDC enabled efficient completion of these projects at

  15. New consumer load prototype for electricity theft monitoring

    NASA Astrophysics Data System (ADS)

    Abdullateef, A. I.; Salami, M. J. E.; Musse, M. A.; Onasanya, M. A.; Alebiosu, M. I.

    2013-12-01

    Illegal connection which is direct connection to the distribution feeder and tampering of energy meter has been identified as a major process through which nefarious consumers steal electricity on low voltage distribution system. This has contributed enormously to the revenue losses incurred by the power and energy providers. A Consumer Load Prototype (CLP) is constructed and proposed in this study in order to understand the best possible pattern through which the stealing process is effected in real life power consumption. The construction of consumer load prototype will facilitate real time simulation and data collection for the monitoring and detection of electricity theft on low voltage distribution system. The prototype involves electrical design and construction of consumer loads with application of various standard regulations from Institution of Engineering and Technology (IET), formerly known as Institution of Electrical Engineers (IEE). LABVIEW platform was used for data acquisition and the data shows a good representation of the connected loads. The prototype will assist researchers and power utilities, currently facing challenges in getting real time data for the study and monitoring of electricity theft. The simulation of electricity theft in real time is one of the contributions of this prototype. Similarly, the power and energy community including students will appreciate the practical approach which the prototype provides for real time information rather than software simulation which has hitherto been used in the study of electricity theft.

  16. Plutonium-238: an ideal power source for intracorporeal ventricular assist devices?

    PubMed

    Tchantchaleishvili, Vakhtang; Bush, Bryan S; Swartz, Michael F; Day, Steven W; Massey, H Todd

    2012-01-01

    Ventricular assist devices emerged as a widely used modality for treatment of end-stage heart failure; however, despite significant advances, external energy supply remains a problem contributing to significant patient morbidity and potential mortality. One potential solution is using the nuclear radioisotope Plutonium-238 as a power source. Given its very high energy density and long half-life, Plutonium-238 could eventually allow a totally intracorporeal ventricular assist system that lasts for the patient's lifetime. Risks, such as leakage and theft identified decades ago, still remain. However, it is possible that newer technologies could be used to overcome the system complexity and unreliability of the previous generations of nuclear-powered mechanical assist systems. Were it not for the remaining safety risks, Plutonium-238 would be an ideal energy source for this purpose.

  17. Field-assisted sintering of effective materials for alternative power engineering

    NASA Astrophysics Data System (ADS)

    Bulat, L. P.; Novotel'nova, A. V.; Osvenskii, V. B.; Sorokin, A. I.; Pshenai-Severin, D. A.; Tukmakova, A. S.; Yerezhep, D.

    2017-07-01

    The process of field-assisted sintering of nanostructured thermoelectrics for the formation of effective materials for alternative power engineering has been numerically simulated. Functionally graded thermoelectrics and segmented thermoelement branches have been sintered in a temperature-gradient field. Modified die tooling elements are proposed that allow the desired thermal conditions to be created for the sintering of inhomogeneous effective materials.

  18. Elimination of Power Overshoot at Bioanode through Assistance Current in Microbial Fuel Cells.

    PubMed

    Kim, Bongkyu; An, Junyeong; Chang, In Seop

    2017-02-08

    The power overshoot generated by electron depletion in microbial fuel cells (MFCs) was characterized in this study. Various causes of power overshoot, identified in previous studies, are discussed in terms of their plausible contributions to electron depletion. We found that power overshoot occurred if the anodic overpotential generated by electron depletion exceeded the cathodic overpotential. The introduction of assistance current from anode connections, which ameliorated the electron depletion in the MFCs, immediately eliminated the power overshoot. As a result, if the electron production at the anode exceeded electron reduction at the cathode, a power overshoot was not generated. The results revealed that introducing assistance current supplied from an additional anode to the limited anode eliminated power overshoot. The power overshoot is not generated by kinetic limitation at the cathode; it is only generated by the kinetic limitation at the anode. The mechanism underlying power overshoot should be considered in the design of MFCs to improve reliability, particularly in scaled-up plant applications. The proposed technique is more practical than previously proposed methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High-Powered, Ultrasonically Assisted Thermal Stir Welding

    NASA Technical Reports Server (NTRS)

    Ding, Robert

    2013-01-01

    distance equal to the thickness of the material being welded. The TSW process can be significantly improved by reducing the draw forces. This can be achieved by reducing the friction forces between the weld workpieces and the containment plates. High-power ultrasonic (HPU) vibrations of the containment plates achieve friction reduction in the TSW process. Furthermore, integration of the HPU energy into the TSW stir rod can increase tool life of the stir rod, and can reduce shear forces to which the stir rod is subjected during the welding process. TSW has been used to successfully join 0.500-in (˜13-mm) thick commercially pure (CP) titanium, titanium 6AL- 4V, and titanium 6AL-4V ELI in weld joint lengths up to 9 ft (˜2.75-m) long. In addition, the TSW process was used to fabricate a sub-scale hexagonally shaped gun turret component for the U.S. Navy. The turret is comprised of six 0.5000-in (˜13-mm) thick angled welds. Each angled weld joint was prepared by machining the mating surfaces to 120deg. The angled weld joint was then fixtured using an upper and lower containment plate of the same geometry of the angled weld joint. The weld joint was then stirred by the stir rod as it and the upper and lower containment plates traverse through the angled joint prep.

  20. Voltage-Assisted Calorimetric Detection of Gamma Interactions in a Prototype Cryogenic Ge Detector of the EDELWEISS Collaboration for Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Broniatowski, A.; Piro, M.-C.; Marnieros, S.; Bergé, L.; Dumoulin, L.; Chapellier, M.

    2016-07-01

    As a part of an R&D program to improve the sensitivity of its detectors to low-mass (<10 GeV) weakly interacting massive particles, the Edelweiss dark matter collaboration is developing cryogenic ionization-and-heat coplanar grid germanium detectors, operated in a high-bias mode where advantage is taken of the voltage-assisted amplification of the ionization signals for enhanced sensitivity to low-energy (prototype detector, capable of sustaining collection voltages up to 180 V with a corresponding gain of 60 in the heat measurement channel for electron recoil interactions. Event populations are analyzed based on ionization and heat data and on computer modeling of the detector signals, and a tentative interpretation of the results for the heat resolution is presented, involving athermal ballistic phonon losses in the device with consequent fluctuations in the thermometer response to the energy deposit of a particle.

  1. Micro-tubular flame-assisted fuel cells for micro-combined heat and power systems

    NASA Astrophysics Data System (ADS)

    Milcarek, Ryan J.; Wang, Kang; Falkenstein-Smith, Ryan L.; Ahn, Jeongmin

    2016-02-01

    Currently the role of fuel cells in future power generation is being examined, tested and discussed. However, implementing systems is more difficult because of sealing challenges, slow start-up and complex thermal management and fuel processing. A novel furnace system with a flame-assisted fuel cell is proposed that combines the thermal management and fuel processing systems by utilizing fuel-rich combustion. In addition, the flame-assisted fuel cell furnace is a micro-combined heat and power system, which can produce electricity for homes or businesses, providing resilience during power disruption while still providing heat. A micro-tubular solid oxide fuel cell achieves a significant performance of 430 mW cm-2 operating in a model fuel-rich exhaust stream.

  2. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system

    NASA Astrophysics Data System (ADS)

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-04-01

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems.

  3. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system

    PubMed Central

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-01-01

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems. PMID:24770490

  4. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system.

    PubMed

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-04-28

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m(2) is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m(2) at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems.

  5. Rapid sealing of porcine renal blood vessels, ex vivo, using a high power, 1470-nm laser, and laparoscopic prototype.

    PubMed

    Hardy, Luke A; Hutchens, Thomas C; Larson, Eric R; Gonzalez, David A; Chang, Chun-Hung; Nau, William H; Fried, Nathaniel M

    2017-05-01

    Energy-based, radiofrequency (RF) and ultrasonic (US) devices currently provide rapid sealing of blood vessels during laparoscopic procedures. We are exploring infrared lasers as an alternate energy modality for vessel sealing, capable of generating less collateral thermal damage. Previous studies demonstrated feasibility of sealing vessels in an in vivo porcine model using a 1470-nm laser. However, the initial prototype was designed for testing in open surgery and featured tissue clasping and light delivery mechanisms incompatible with laparoscopic surgery. In this study, a laparoscopic prototype similar to devices currently in surgical use was developed, and performance tests were conducted on porcine renal blood vessels, ex vivo. The 5-mm outer-diameter laparoscopic prototype featured a traditional Maryland jaw configuration that enables tissue manipulation and blunt dissection. Laser energy was delivered through a 550 - ? m -core-diameter optical fiber with side-delivery from the lower jaw and beam dimensions of 18 - mm ? length × 1.2 - mm ? width . The 1470-nm diode laser delivered 68 W with 3-s activation time, consistent with vessel seal times associated with RF and US-based devices. A total of 69 fresh porcine renal vessels with mean diameter of 3.3 ± 1.7 ?? mm were tested, ex vivo. Vessels smaller than 5-mm diameter were consistently sealed (48/51) with burst pressures greater than malignant hypertension blood pressure (180 mmHg), averaging 1038 ± 474 ?? mmHg . Vessels larger than 5 mm were not consistently sealed (6/18), yielding burst pressures of only 174 ± 221 ?? mmHg . Seal width, thermal damage zone, and thermal spread averaged 1.7 ± 0.8 , 3.4 ± 0.7 , and 1.0 ±

  6. H∞-control of a rack-assisted electric power steering system

    NASA Astrophysics Data System (ADS)

    Dannöhl, C.; Müller, S.; Ulbrich, H.

    2012-04-01

    Electric power steering (EPS) is more and more in use for passenger cars. Compared with hydraulic steering systems there are many advantages, such as reduced CO2 emissions and the possibility to use the EPS motor torque for advanced driver assistance systems. One task of the steering system is to give the driver an adequate steering feel. This includes providing road feedback and the right level of assistance torque. This article describes the steering torque control of a rack-assisted EPS. The controller's task is to follow a reference steering torque quickly and accurately. First, a mechanical model of the EPS is shown. Then, an H∞-controller is designed, implemented and compared with other steering torque controllers. As steering torque discontinuities are a topic when looking at new control algorithms, the phenomenon and its cause are analysed using a detailed mechanical model. The results of this analysis are considered in the controller design.

  7. Rapid sealing of porcine renal blood vessels, ex vivo, using a high power, 1470-nm laser, and laparoscopic prototype

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Hutchens, Thomas C.; Larson, Eric R.; Gonzalez, David A.; Chang, Chun-Hung; Nau, William H.; Fried, Nathaniel M.

    2017-05-01

    Energy-based, radiofrequency (RF) and ultrasonic (US) devices currently provide rapid sealing of blood vessels during laparoscopic procedures. We are exploring infrared lasers as an alternate energy modality for vessel sealing, capable of generating less collateral thermal damage. Previous studies demonstrated feasibility of sealing vessels in an in vivo porcine model using a 1470-nm laser. However, the initial prototype was designed for testing in open surgery and featured tissue clasping and light delivery mechanisms incompatible with laparoscopic surgery. In this study, a laparoscopic prototype similar to devices currently in surgical use was developed, and performance tests were conducted on porcine renal blood vessels, ex vivo. The 5-mm outer-diameter laparoscopic prototype featured a traditional Maryland jaw configuration that enables tissue manipulation and blunt dissection. Laser energy was delivered through a 550-μm-core-diameter optical fiber with side-delivery from the lower jaw and beam dimensions of 18-mm length×1.2-mm width. The 1470-nm diode laser delivered 68 W with 3-s activation time, consistent with vessel seal times associated with RF and US-based devices. A total of 69 fresh porcine renal vessels with mean diameter of 3.3±1.7 mm were tested, ex vivo. Vessels smaller than 5-mm diameter were consistently sealed (48/51) with burst pressures greater than malignant hypertension blood pressure (180 mmHg), averaging 1038±474 mmHg. Vessels larger than 5 mm were not consistently sealed (6/18), yielding burst pressures of only 174±221 mmHg. Seal width, thermal damage zone, and thermal spread averaged 1.7±0.8, 3.4±0.7, and 1.0±0.4 mm, respectively. Results demonstrated that the 5-mm optical laparoscopic prototype consistently sealed vessels less than 5-mm diameter with low thermal spread. Further in vivo studies are planned to test the performance across a variety of vessels and tissues.

  8. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype electric power management and thruster control system for a 30 cm ion thruster is described. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The power management and control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete power management and control system measures 45.7 cm (18 in.) x 15.2 cm (6 in.) x 114.8 cm (45.2 in.) and weighs 36.2 kg (79.7 lb). At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  9. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype Electric Power Management and Thruster Control System for a 30 cm ion thruster has been built and is ready to support a first mission application. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The Power Management and Control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is designed to be easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete Power Management and Control system measures 45.7 cm x 15.2 cm x 114.8 cm and weighs 36.2 kg. At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  10. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype Electric Power Management and Thruster Control System for a 30 cm ion thruster has been built and is ready to support a first mission application. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The Power Management and Control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is designed to be easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete Power Management and Control system measures 45.7 cm x 15.2 cm x 114.8 cm and weighs 36.2 kg. At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  11. Development of high speed power thyristor: The gate assisted turn-off thyristor

    NASA Technical Reports Server (NTRS)

    Hamilton, D. R.; Brewster, J.; Frobenius, D.; Desmond, T.

    1972-01-01

    A high speed power switch with unique turn-off capability was developed. This gate-assisted turn-off thyristor was rated at 609 V and 50 A with turn-off times of 2 microsec. Twenty-two units were delivered for evaluation in a series inverter circuit. In addition, test circuits designed to relate to the series inverter application were built and demonstrated.

  12. Psychometric properties of a Power Mobility Caregiver Assistive Technology Outcome Measure.

    PubMed

    Mortenson, W Ben; Demers, Louise; Rushton, Paula W; Auger, Claudine; Routhier, François; Miller, William C

    2017-01-01

    Caregiver burnout is a serious concern among informal caregivers, especially for those who provide care to individuals with more severe limitations such as power mobility users. The Power Wheelchair Caregiver Assistive Technology Outcome Measure tool measures device specific and overall burden experienced by informal caregivers of power mobility users. A one-month, test-retest study was conducted to examine the reliability, internal consistency, and construct validity of the Power Wheelchair Caregiver Assistive Technology Outcome Measure. Two construct validity measures were administered: the Hospital Anxiety and Depression Scale and the Late Life Disability Index. The test-retest-reliabilities of part 1 (power wheelchair specific burden) and part 2 (general caregiving burden) were 0.769 and 0.843 respectively. Scores on part 1 were moderately and positively correlated with part 2 and with frequency of participation. Scores on part 2 were moderately and negatively correlated with anxiety, depression, and positively with perceived limitation of participation. The strength and direction of these correlations provide support for the construct validity of the measure and suggest part 1 and part 2 provide complementary information. Further testing is needed to assess the clinical utility and responsiveness of the measure.

  13. Greenbrier Prototype

    SciTech Connect

    2010-06-18

    This case study describes a prototype home that is the model home for the Homes at Greenbrier in Oakdale, Connecticut, and demonstrates the builder's concept of “attainable sustainable” of offering high performance homes at mid-market prices.

  14. Efficacy of a skeletal muscle-powered dynamic patch: Part 1. Left ventricular assistance.

    PubMed

    Takahashi, M; Misaki, T; Watanabe, G; Ohtake, H; Tsunezuka, Y; Wada, M; Sakakibara, N; Matsunaga, Y; Kawasuji, M; Watanabe, Y

    1995-02-01

    In this study, we examined the capability of a skeletal muscle-powered, dynamic patch to provide left ventricular assistance. An actuator was developed that used linear traction power furnished by the latissimus dorsi muscle and liquid as the medium for power transfer. The proximal portion of the muscle was dissected and was reattached to the actuator. The left ventricular apex was excised, and the dynamic patch lined with autologous pericardium was implanted during cardiopulmonary bypass. Hemodynamic studies were performed in 8 dogs after weaning from cardiopulmonary bypass. Muscle stimulation was found to significantly increase the systolic aortic pressure (91.6 versus 112.1 mm Hg; p < 0.01), the mean aortic pressure (65.2 versus 73.0 mm Hg; p < 0.01), and aortic blood flow (0.77 versus 0.92 L/min; p < 0.01). The left atrial pressure decreased from 17.9 to 16.6 mm Hg (p < 0.01). This "hybrid" left ventricular assist device possesses notable clinical advantages because of its remarkable efficacy in assisting circulation. Further experimental studies using preconditioned skeletal muscle are necessary to assess the long-term effects of this technique.

  15. Prototyping of Computer-Based Training Materials.

    ERIC Educational Resources Information Center

    Gray, D. E.; Black, T. R.

    1994-01-01

    Defines prototyping as an original version or model on which a completed software system for computer-based training is formed; examines the development process of a prototype; describes how prototyping can assist in facilitating communication between educational technology, software engineering, and project management; and discusses why…

  16. Prototyping of Computer-Based Training Materials.

    ERIC Educational Resources Information Center

    Gray, D. E.; Black, T. R.

    1994-01-01

    Defines prototyping as an original version or model on which a completed software system for computer-based training is formed; examines the development process of a prototype; describes how prototyping can assist in facilitating communication between educational technology, software engineering, and project management; and discusses why…

  17. Evaluation of semiautonomous navigation assistance system for power wheelchairs with blindfolded nondisabled individuals.

    PubMed

    Sharma, Vinod; Simpson, Richard; Lopresti, Edmund; Schmeler, Mark

    2010-01-01

    Some individuals with disabilities are denied powered mobility because they lack the visual, motor, and/or cognitive skills required to safely operate a power wheelchair. The Drive-Safe System (DSS) is an add-on, distributed, shared-control navigation assistance system for power wheelchairs intended to provide safe and independent mobility to such individuals. The DSS is a human-machine system in which the user is responsible for high-level control of the wheelchair, such as choosing the destination, path planning, and basic navigation actions, while the DSS overrides unsafe maneuvers through autonomous collision avoidance, wall following, and door crossing. In this project, the DSS was clinically evaluated in a controlled laboratory with blindfolded, nondisabled individuals. Further, these individuals' performance with the DSS was compared with standard cane use for navigation assistance by people with visual impairments. Results indicate that compared with a cane, the DSS significantly reduced the number of collisions. Users rated the DSS favorably even though they took longer to navigate the same obstacle course than they would have using a standard long cane. Participants experienced less physical demand, effort, and frustration when using the DSS as compared with a cane. These findings suggest that the DSS can be a viable powered mobility solution for wheelchair users with visual impairments.

  18. An Upper-Limb Power-Assist Exoskeleton Using Proportional Myoelectric Control

    PubMed Central

    Tang, Zhichuan; Zhang, Kejun; Sun, Shouqian; Gao, Zenggui; Zhang, Lekai; Yang, Zhongliang

    2014-01-01

    We developed an upper-limb power-assist exoskeleton actuated by pneumatic muscles. The exoskeleton included two metal links: a nylon joint, four size-adjustable carbon fiber bracers, a potentiometer and two pneumatic muscles. The proportional myoelectric control method was proposed to control the exoskeleton according to the user's motion intention in real time. With the feature extraction procedure and the classification (back-propagation neural network), an electromyogram (EMG)-angle model was constructed to be used for pattern recognition. Six healthy subjects performed elbow flexion-extension movements under four experimental conditions: (1) holding a 1-kg load, wearing the exoskeleton, but with no actuation and for different periods (2-s, 4-s and 8-s periods); (2) holding a 1-kg load, without wearing the exoskeleton, for a fixed period; (3) holding a 1-kg load, wearing the exoskeleton, but with no actuation, for a fixed period; (4) holding a 1-kg load, wearing the exoskeleton under proportional myoelectric control, for a fixed period. The EMG signals of the biceps brachii, the brachioradialis, the triceps brachii and the anconeus and the angle of the elbow were collected. The control scheme's reliability and power-assist effectiveness were evaluated in the experiments. The results indicated that the exoskeleton could be controlled by the user's motion intention in real time and that it was useful for augmenting arm performance with neurological signal control, which could be applied to assist in elbow rehabilitation after neurological injury. PMID:24727501

  19. An upper-limb power-assist exoskeleton using proportional myoelectric control.

    PubMed

    Tang, Zhichuan; Zhang, Kejun; Sun, Shouqian; Gao, Zenggui; Zhang, Lekai; Yang, Zhongliang

    2014-04-10

    We developed an upper-limb power-assist exoskeleton actuated by pneumatic muscles. The exoskeleton included two metal links: a nylon joint, four size-adjustable carbon fiber bracers, a potentiometer and two pneumatic muscles. The proportional myoelectric control method was proposed to control the exoskeleton according to the user's motion intention in real time. With the feature extraction procedure and the classification (back-propagation neural network), an electromyogram (EMG)-angle model was constructed to be used for pattern recognition. Six healthy subjects performed elbow flexion-extension movements under four experimental conditions: (1) holding a 1-kg load, wearing the exoskeleton, but with no actuation and for different periods (2-s, 4-s and 8-s periods); (2) holding a 1-kg load, without wearing the exoskeleton, for a fixed period; (3) holding a 1-kg load, wearing the exoskeleton, but with no actuation, for a fixed period; (4) holding a 1-kg load, wearing the exoskeleton under proportional myoelectric control, for a fixed period. The EMG signals of the biceps brachii, the brachioradialis, the triceps brachii and the anconeus and the angle of the elbow were collected. The control scheme's reliability and power-assist effectiveness were evaluated in the experiments. The results indicated that the exoskeleton could be controlled by the user's motion intention in real time and that it was useful for augmenting arm performance with neurological signal control, which could be applied to assist in elbow rehabilitation after neurological injury.

  20. Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun

    2015-06-01

    Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.

  1. Stability analysis of electrical powered wheelchair-mounted robotic-assisted transfer device.

    PubMed

    Wang, Hongwu; Tsai, Chung-Ying; Jeannis, Hervens; Chung, Cheng-Shiu; Kelleher, Annmarie; Grindle, Garrett G; Cooper, Rory A

    2014-01-01

    The ability of people with disabilities to live in their homes and communities with maximal independence often hinges, at least in part, on their ability to transfer or be transferred by an assistant. Because of limited resources and the expense of personal care, robotic transfer assistance devices will likely be in great demand. An easy-to-use system for assisting with transfers, attachable to electrical powered wheelchairs (EPWs) and readily transportable, could have a significant positive effect on the quality of life of people with disabilities. We investigated the stability of our newly developed Strong Arm, which is attached and integrated with an EPW to assist with transfers. The stability of the system was analyzed and verified by experiments applying different loads and using different system configurations. The model predicted the distributions of the system's center of mass very well compared with the experimental results. When real transfers were conducted with 50 and 75 kg loads and an 83.25 kg dummy, the current Strong Arm could transfer all weights safely without tip-over. Our modeling accurately predicts the stability of the system and is suitable for developing better control algorithms to enhance the safety of the device.

  2. Power-assistive finger exoskeleton with a palmar opening at the fingerpad.

    PubMed

    Heo, Pilwon; Kim, Jung

    2014-11-01

    This paper presents a powered finger exoskeleton with an open fingerpad, named the Open Fingerpad eXoskeleton (OFX). The palmar opening at the fingerpad allows for direct contact between the user's fingerpad and objects in order to make use of the wearer's own tactile sensation for dexterous manipulation. Lateral side walls at the end of the OFX's index finger module are equipped with custom load cells for estimating the wearer's pinch grip force. A pneumatic cylinder generates assistance force, which is determined according to the estimated pinch grip force. The OFX transmits the assistance force directly to the objects without exerting pressure on the wearer's finger. The advantage of the OFX over an exoskeleton with a closed fingerpad was validated experimentally. During static and dynamic manipulation of a test object, the OFX exhibited a lower safety margin than the closed exoskeleton, indicating a higher ability to adjust the grip force within an appropriate range. Furthermore, the benefit of force assistance in reducing the muscular burden was observed in terms of muscle fatigue during a static pinch grip. The median frequency (MDF) of the surface electromyography (sEMG) signal from the first dorsal interosseous (FDI) muscle displayed a lower reduction rate for the assisted condition, indicating a lower accumulation rate of muscle fatigue.

  3. Development of an Upper Limb Power Assist System Using Pneumatic Actuators for Farming Lift-up Motion

    NASA Astrophysics Data System (ADS)

    Yagi, Eiichi; Harada, Daisuke; Kobayashi, Masaaki

    A power assist system has lately attracted considerable attention to lifting-up an object without low back pain. We have been developing power assist systems with pneumatic actuators for the elbow and shoulder to farming support of lifting-up a bag of rice weighing 30kg. This paper describes the mechanism and control method of this power assist system. The pneumatic rotary actuator supports shoulder motion, and the air cylinder supports elbow motion. In this control method, the surface electromyogram(EMG) signals are used as input information of the controller. The joint support torques of human are calculated based on the antigravity term of necessary joint torques, which are estimated on the dynamics of a human approximated link model. The experimental results show the effectiveness of the proposed mechanism and control method of the power assist system.

  4. Dental Office Assisting; Glossary of Key Words. Vocational Reading Power Project, Title III, E.S.E.A.

    ERIC Educational Resources Information Center

    Kremer, Bonnie

    The glossary is one of twenty in various subject areas of vocational education designed to assist the student in vocabulary mastery for particular vocational education courses. They are part of the Vocational Reading Power Project, Title III, E.S.E.A. This glossary is for a course in dental office assisting. It is divided into two parts: one…

  5. A Prototype of the Read-out Subsystem of the BESIII DAQ Based on PowerPC

    NASA Astrophysics Data System (ADS)

    Tao, Ning; Chu, Yuanping; Jin, Ge; Zhao, Jingwei

    2005-10-01

    This article describes the prototype of the read-out subsystem which will be subject to the BESIII data acquisition system. According to the purpose of the BESIII, the event rate will be about 4000 Hz and the data rate up to 50 Mbytes/sec after Level 1 trigger. The read-out subsystem consists of some read-out crates and a read-out computer whose function is to initialize the hardware, to collect the event data from the front-end electronics after Level 1 trigger, to transfer data fragments to the computer in online form through two levels of computer pre-processing and high-speed network transmission. In this model, the crate level read-out implementation is based on the commercial single board computer MVME5100 running the VxWorks operating system. The article outlines the structure of the crate level testing platform of hardware and software. It puts emphasis on the framework of the read-out test model, data process flow and test method at crate level. Especially, it enumerates the key technologies in the process of design and analyses the test results. In addition, results which summarize the performance of the single board computer from the data transferring aspects will be presented.

  6. Experimental studies of a prototype model of the multilevel 6KW-power inverter at supply by 12 accumulators

    NASA Astrophysics Data System (ADS)

    Taissariyeva, K.; Issembergenov, N.; Dzhobalaeva, G.; Usembaeva, S.

    2016-09-01

    The given paper considers the multilevel 6 kW-power transistor inverter at supply by 12 accumulators for transformation of solar battery energy to the electric power. At the output of the multilevel transistor inverter, it is possible to receive voltage close to a sinusoidal form. The main objective of this inverter is transformation of solar energy to the electric power of industrial frequency. The analysis of the received output curves of voltage on harmonicity has been carried out. In this paper it is set forth the developed scheme of the multilevel transistor inverter (DC-to-ac converter) which allows receiving at the output the voltage close to sinusoidal form, as well as to regulation of the output voltage level. In the paper, the results of computer modeling and experimental studies are presented.

  7. Field tests of a vertical-fluted-tube condenser in the prototype power plant at the Raft River Geothermal Test Site

    SciTech Connect

    Murphy, R.W.

    1983-04-01

    A vertical-fluted-tube condenser was designed, fabricated, and tested with isobutane as the shell-side working fluid in a binary prototype power plant at the Raft River Geothermal Test Site. After shakedown and contamination removal operations were completed, the four-pass water-cooled unit (with 102 outside-fluted Admiralty tubes) achieved performance predictions while operating with the plant surface evaporator on-line. A sample comparison shows that use of this enhanced condenser concept offers the potential for a reduction of about 65% from the size suggested by corresponding designs using conventional horizontal-smooth-tube concepts. Subsequent substitution of a direct-contact evaporator for the surface evaporator brought drastic reductions in system performance, the apparent consequence of high concentrations of noncondensible gases introduced by the brine/working-fluid interaction.

  8. Hybrid PID and PSO-based control for electric power assist steering system for electric vehicle

    NASA Astrophysics Data System (ADS)

    Hanifah, R. A.; Toha, S. F.; Ahmad, S.

    2013-12-01

    Electric power assist steering (EPAS) system provides an important significance in enhancing the driving performance of a vehicle with its energy-conserving features. This paper presents a hybrid PID (Proportional-Integral-Derivative) and particle swarm optimization (PSO) based control scheme to minimize energy consumption for EPAS. This single objective optimization scheme is realized using the PSO technique in searching for best gain parameters of the PID controller. The fast tuning feature of this optimum PID controller produced high-quality solutions. Simulation results show the performance and effectiveness of the hybrid PSO-PID based controller as opposed to the conventional PID controller.

  9. Develop Prototype Microwave Interferometry Diagnostic

    SciTech Connect

    Tringe, J. W.; Converse, M. C.; Kane, R. J.

    2016-11-15

    A prototype microwave interferometer was created at NSTec to characterize moving conductive fronts in upcoming experiments. The interferometer is capable of operation in the ~26-40 GHz band, and interrogating fronts with more than 1 W of power.

  10. Associations among occupational roles, independence, assistive technology, and purchasing power of individuals with physical disabilities.

    PubMed

    da Cruz, Daniel Marinho Cezar; Emmel, Maria Luisa Guillaumon

    2013-01-01

    to verify whether there are associations among occupational roles, independence to perform Activities of Daily Living, purchasing power, and assistive technology for individuals with physical disabilities. 91 individuals with physical disabilities participated in the study. The instruments used were: Role Checklist, Brazilian Economic Classification Criterion, Barthel Index, and a Questionnaire to characterize the subjects. an association with a greater number of roles was found among more independent individuals using a lower number of technological devices. Higher purchasing power was associated with a lower functional status of dependence. even though technology was not directly associated with independence, the latter was associated with a greater number of occupational roles, which requires reflection upon independence issues when considering the participation in occupational roles. These findings support interdisciplinary actions designed to promote occupational roles in individuals with physical disabilities.

  11. C constant: new concept for ray tracing-assisted intraocular lens power calculation.

    PubMed

    Olsen, Thomas; Hoffmann, Peter

    2014-05-01

    To evaluate the accuracy of the C constant for ray tracing-assisted intraocular lens (IOL) power calculation. Case series. Public university hospital and private clinic. Preoperatively, all intraocular distances were measured using laser biometry. Various IOL designs were studied; powers ranged from -5.0 diopters (D) to +38.0 D. The IOL power calculation was performed with the Olsen formula using the C constant and compared with the Haigis, Hoffer Q, Holladay 1, and the SRK/T formulas on optimized datasets. Outcome measures were the error of the prediction, expressed as the arithmetic error, and the absolute error between the observed refraction and the predicted refraction. Two thousand forty-three cases from the 2 centers were studied. No significant differences were found between the Haigis, Hoffer Q, Holladay 1, and SRK/T formulas with the exception of the SRK/T formula, which performed better than the other thin-lens formulas in eyes with an axial length (AL) greater than 27.0 mm (P<.01). Compared with the SRK/T formula, the Olsen formula showed an improvement of 15% and 14% in the mean absolute error and a 39% and 85% reduction in the number of large errors (>1.0 D) for the 2 series, respectively (P<.0001). Contrary to the Olsen formula, all thin-lens formulas showed a significant bias in terms of the AL, keratometry reading, and anterior segment length (P<.0001). The C constant is a promising concept for ray tracing-assisted IOL power calculation. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  12. Electric-field-assisted gain control in a high-power picosecond laser diode

    NASA Astrophysics Data System (ADS)

    Vainshtein, Sergey N.; Yuferev, Valentin; Kostamovaara, Juha T.

    2003-03-01

    A laser diode structure has lately been reported that is capable of generating high-power picosecond optical pulses (~ 50 W / 20 ps) in the near-infrared range for laser radars and other applications. The physical idea consists of achieving fast gain control through the effect of a transverse electric field on the carrier distribution across the active region, which controls the local gain and local absorption at each instant. The mechanism of field-assisted gain control, which has so far been formulated only as a qualitative idea, is justified in this work by simulations of the carrier transport and laser response using the semiconductor device simulator "Atlas" (Silvaco Inc.). A simplified approach is adopted which replaces photon-assisted carrier transport with carrier penetration over the lowered potential barrier. This points to reasonably good agreement between the experimental and simulation results for picosecond pulse generation, provided that the carrier mobilities are assumed to be higher than those in the heavily doped semiconductor structure by a factor of ~ 4. One important conclusion is that comprehensive modelling of the operation of the experimental laser diode is not possible without considering photon-assisted carrier transport, which has not been studied so far at very high carrier densities (exceeding the transparency concentration).

  13. Starshade Prototype

    NASA Image and Video Library

    2016-08-09

    This image shows the bare bones of the first prototype starshade by NASA's Jet Propulsion Laboratory, Pasadena, California. The prototype was shown in technology partner Astro Aerospace/Northrup Grumman's facility in Santa Barbara, California in 2013. In order for the petals of the starshade to diffract starlight away from the camera of a space telescope, they must be deployed with accuracy once the starshade reaches space. The four petals pictured in the image are being measured for this positional accuracy with a laser. As shown by this 66-foot (20-meter) model, starshades can come in many shapes and sizes. This design shows petals that are more extreme in shape which properly diffracts starlight for smaller telescopes. http://photojournal.jpl.nasa.gov/catalog/PIA20903

  14. Design and development of solar power-assisted manual/electric wheelchair.

    PubMed

    Chien, Chi-Sheng; Huang, Tung-Yung; Liao, Tze-Yuan; Kuo, Tsung-Yuan; Lee, Tzer-Min

    2014-01-01

    Wheelchairs are an essential assistive device for many individuals with injury or disability. Manual wheelchairs provide a relatively low-cost solution to the mobility needs of such individuals. Furthermore, they provide an effective means of improving the user's cardiopulmonary function and upper-limb muscle strength. However, manual wheelchairs have a loss gross mechanical efficiency, and thus the risk of user fatigue and upper-limb injury is increased. Electric-powered wheelchairs reduce the risk of injury and provide a more convenient means of transportation. However, they have a large physical size and are relatively expensive. Accordingly, the present study utilizes a quality function deployment method to develop a wheelchair with a user-selectable manual/electric propulsion mode and an auxiliary solar power supply system. The auxiliary solar power supply increased the travel range of the wheelchair by approximately 26% compared with that of a wheelchair powered by battery alone. Moreover, the wheelchair has a modular design and can be disassembled and folded for ease of transportation or storage. Overall, the present results suggest that the proposed wheelchair provides an effective and convenient means of meeting the mobility needs of individuals with mobility difficulties.

  15. Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia.

    PubMed

    Fineberg, Drew B; Asselin, Pierre; Harel, Noam Y; Agranova-Breyter, Irina; Kornfeld, Stephen D; Bauman, William A; Spungen, Ann M

    2013-07-01

    To use vertical ground reaction force (vGRF) to show the magnitude and pattern of mechanical loading in persons with spinal cord injury (SCI) during powered exoskeleton-assisted walking. A cross-sectional study was performed to analyze vGRF during powered exoskeleton-assisted walking (ReWalk™: Argo Medical Technologies, Inc, Marlborough, MA, USA) compared with vGRF of able-bodied gait. Veterans Affairs Medical Center. Six persons with thoracic motor-complete SCI (T1-T11 AIS A/B) and three age-, height-, weight- and gender-matched able-bodied volunteers participated. SCI participants were trained to ambulate over ground using a ReWalk™. vGRF was recorded using the F-Scan™ system (TekScan, Boston, MA, USA). Peak stance average (PSA) was computed from vGRF and normalized across all participants by percent body weight. Peak vGRF was determined for heel strike, mid-stance, and toe-off. Relative linear impulse and harmonic analysis provided quantitative support for analysis of powered exoskeletal gait. Participants with motor-complete SCI, ambulating independently with a ReWalk™, demonstrated mechanical loading magnitudes and patterns similar to able-bodied gait. Harmonic analysis of PSA profile by Fourier transform contrasted frequency of stance phase gait components between able-bodied and powered exoskeleton-assisted walking. Powered exoskeleton-assisted walking in persons with motor-complete SCI generated vGRF similar in magnitude and pattern to that of able-bodied walking. This suggests the potential for powered exoskeleton-assisted walking to provide a mechanism for mechanical loading to the lower extremities. vGRF profile can be used to examine both magnitude of loading and gait mechanics of powered exoskeleton-assisted walking among participants of different weight, gait speed, and level of assist.

  16. Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia

    PubMed Central

    Fineberg, Drew B.; Asselin, Pierre; Harel, Noam Y.; Agranova-Breyter, Irina; Kornfeld, Stephen D.; Bauman,, William A.; Spungen, Ann M.

    2013-01-01

    Objective To use vertical ground reaction force (vGRF) to show the magnitude and pattern of mechanical loading in persons with spinal cord injury (SCI) during powered exoskeleton-assisted walking. Research design A cross-sectional study was performed to analyze vGRF during powered exoskeleton-assisted walking (ReWalk™: Argo Medical Technologies, Inc, Marlborough, MA, USA) compared with vGRF of able-bodied gait. Setting Veterans Affairs Medical Center. Participants Six persons with thoracic motor-complete SCI (T1–T11 AIS A/B) and three age-, height-, weight- and gender-matched able-bodied volunteers participated. Interventions SCI participants were trained to ambulate over ground using a ReWalk™. vGRF was recorded using the F-Scan™ system (TekScan, Boston, MA, USA). Outcome measures Peak stance average (PSA) was computed from vGRF and normalized across all participants by percent body weight. Peak vGRF was determined for heel strike, mid-stance, and toe-off. Relative linear impulse and harmonic analysis provided quantitative support for analysis of powered exoskeletal gait. Results Participants with motor-complete SCI, ambulating independently with a ReWalk™, demonstrated mechanical loading magnitudes and patterns similar to able-bodied gait. Harmonic analysis of PSA profile by Fourier transform contrasted frequency of stance phase gait components between able-bodied and powered exoskeleton-assisted walking. Conclusion Powered exoskeleton-assisted walking in persons with motor-complete SCI generated vGRF similar in magnitude and pattern to that of able-bodied walking. This suggests the potential for powered exoskeleton-assisted walking to provide a mechanism for mechanical loading to the lower extremities. vGRF profile can be used to examine both magnitude of loading and gait mechanics of powered exoskeleton-assisted walking among participants of different weight, gait speed, and level of assist. PMID:23820147

  17. Rapid Prototyping

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  18. Electronic prototyping

    NASA Technical Reports Server (NTRS)

    Hopcroft, J.

    1987-01-01

    The potential benefits of automation in space are significant. The science base needed to support this automation not only will help control costs and reduce lead-time in the earth-based design and construction of space stations, but also will advance the nation's capability for computer design, simulation, testing, and debugging of sophisticated objects electronically. Progress in automation will require the ability to electronically represent, reason about, and manipulate objects. Discussed here is the development of representations, languages, editors, and model-driven simulation systems to support electronic prototyping. In particular, it identifies areas where basic research is needed before further progress can be made.

  19. Expert System Detects Power-Distribution Faults

    NASA Technical Reports Server (NTRS)

    Walters, Jerry L.; Quinn, Todd M.

    1994-01-01

    Autonomous Power Expert (APEX) computer program is prototype expert-system program detecting faults in electrical-power-distribution system. Assists human operators in diagnosing faults and deciding what adjustments or repairs needed for immediate recovery from faults or for maintenance to correct initially nonthreatening conditions that could develop into faults. Written in Lisp.

  20. Evaluation of the prototype Anaesthetic Non-technical Skills for Anaesthetic Practitioners (ANTS-AP) system: a behavioural rating system to assess the non-technical skills used by staff assisting the anaesthetist.

    PubMed

    Rutherford, J S; Flin, R; Irwin, A; McFadyen, A K

    2015-08-01

    This study tested the reliability, validity and usability of a prototype behavioural rating system for the non-technical skills of assistants working with the anaesthetist. Anaesthetic nurses and operating department practitioners (n = 48) used the prototype Anaesthetic Non-technical Skills for Anaesthetic Practitioners (ANTS-AP) system to rate the non-technical skills of anaesthetic assistants in 12 videos of simulated theatre work. Test-retest reliability was assessed with a sub-sample (n = 12). The skill categories assessed were 'situation awareness', 'teamwork and communication' and 'task management'. The internal consistency for the ratings of elements in categories was acceptable (Cronbach's α of 0.78, 0.77 and 0.69, respectively), with more modest inter-rater reliability (intraclass correlations for categories 0.54, 0.70, 0.86), test-retest reliability (intraclass correlations 0.68, 0.58, 0.38) and accuracy (weighted kappa 0.39). Most participants considered the system complete (n = 42, 87%), the wording clear (n = 48, 100%) and the system useful for structuring observation (n = 48, 100%).

  1. Simulation of human walking with powered orthosis for designing practical assistive device.

    PubMed

    Uchiyama, Yoshiho; Nagai, Chikara; Obinata, Goro

    2012-01-01

    To design a powered assistive orthosis for human walking, we have simulated walking motion with an orthosis. The model dynamics of the coupled human-orthosis is represented by a 10-rigid-link system. In this model there exist rotational joints at lumbar, both thighs and both legs for orthosis, and each joints are controlled by a couple of central pattern generators (CPG) which imitates neuronal system in the spinal cord of mammals. The CPG controller modeled by 18 oscillators which have the sensory feedbacks and generates the joint torques to move the skeletal model of the coupled human-orthosis. This means that we use five actuators for controlling orthosis in the both of sagittal and frontal plane. The parameters of the CPG and the connecting gains are optimized by using a genetic algorithm. We have achieved the successful simulation of stable walking against disturbances with this model. The simulation results indicate the possibility of a practical assistive orthosis with five active joints for stable walking.

  2. Powered aero-gravity-assist maneuvers considering lift and drag around the Earth

    NASA Astrophysics Data System (ADS)

    Piñeros, Jhonathan Orlando Murcia; Prado, Antonio Fernando Bertachini de Almeida

    2017-07-01

    The goal of this research is to study the energy variations in trajectories of a spacecraft that performs a powered aero-gravity-assist maneuver considering the effects of the lift and drag forces around the Earth. It means that the spacecraft makes a passage by the Earth that is close enough to get effects from the atmosphere. Besides those effects, an impulse is applied to the spacecraft when it is passing by the periapsis of the trajectory, which also helps to modify its trajectory. It is varied the ballistic coefficient, lift to drag ratio, magnitude and direction of the impulse and the angle of approach of the maneuver. The mathematical model assumes that a spacecraft comes from an orbit around the Sun, traveling under the restricted three-body problem dynamics, makes a close approach passing inside the atmosphere of the Earth and then goes back to another orbit around the Sun, which is different from the initial orbit. The initial position and velocity of the spacecraft are given according to the usual pure gravity-assisted parameters, using the angle of approach and the perigee altitude and velocity. The energy is measured before and after the passage. The equations of motion are numerically integrated using a Runge-Kutta-Fehlberg 7/8 method. For the numerical examples, the perigee altitude is fixed in 120 km and the velocity at this point is fixed in 0.5 canonical units, which is near 14.89 km/s.

  3. Rapid Prototyping Enters Mainstream Manufacturing.

    ERIC Educational Resources Information Center

    Winek, Gary

    1996-01-01

    Explains rapid prototyping, a process that uses computer-assisted design files to create a three-dimensional object automatically, speeding the industrial design process. Five commercially available systems and two emerging types--the 3-D printing process and repetitive masking and depositing--are described. (SK)

  4. Rapid Prototyping Enters Mainstream Manufacturing.

    ERIC Educational Resources Information Center

    Winek, Gary

    1996-01-01

    Explains rapid prototyping, a process that uses computer-assisted design files to create a three-dimensional object automatically, speeding the industrial design process. Five commercially available systems and two emerging types--the 3-D printing process and repetitive masking and depositing--are described. (SK)

  5. Optimal dye concentration and power density for laser-assisted vascular anatomosis (LAVA)

    NASA Astrophysics Data System (ADS)

    Ren, Zhen; Furnary, Anthony; Xie, Hua; Lagerquist, Kathryn A.; Burke, Allen; Prahl, Scott A.; Gregory, Kenton W.

    2003-06-01

    Laser tissue welding with albumin solder/indocyanine green (ICG) dye is an effective technique in surgical reconstruction. This study was carried out in vitro to find optimal ICG concentration and power density (PD) in laser assisted vascular anastomosis (LAVA). Fresh porcine carotid arteries incised into vascular strips (n = 120) were welded by diode laser in end-to-end with 50% albumin solder of 0.01, 0.1, and 1.0 mM ICG and at power density of 27.7, 56.7, and 76.9 W/cm2. Direct temperature was measured by inserting thermocouples outside and inside vessel. Tensile strength was tested immediately and histological study was performed. Temperature (both outside and inside vessel) significantly gradually decreasd (p < 0.01) with the increasing of ICG concentration at PD 56.7 W/cm2. Tensile strength significantly gradually decreased (p < 0.01) with increasing of ICG concentration at PD 56.7 W/cm2. Histological study showed minimal thermal injury limited to adventitia of vessels and no appreciable difference in all groups. We find that ICG concentration within solder is most important factor affecting both tissue temperature and tensile strength during laser vessel welding. The optimal balance between stronger strength and minimal thermal injury of vessel may be achieved primarily by using PD 56.7 W/cm2 at 0.01 mM ICG within solder during LAVA.

  6. Study on heat pipe assisted thermoelectric power generation system from exhaust gas

    NASA Astrophysics Data System (ADS)

    Chi, Ri-Guang; Park, Jong-Chan; Rhi, Seok-Ho; Lee, Kye-Bock

    2017-04-01

    Currently, most fuel consumed by vehicles is released to the environment as thermal energy through the exhaust pipe. Environmentally friendly vehicle technology needs new methods to increase the recycling efficiency of waste exhaust thermal energy. The present study investigated how to improve the maximum power output of a TEG (Thermoelectric generator) system assisted with a heat pipe. Conventionally, the driving energy efficiency of an internal combustion engine is approximately less than 35%. TEG with Seebeck elements is a new idea for recycling waste exhaust heat energy. The TEG system can efficiently utilize low temperature waste heat, such as industrial waste heat and solar energy. In addition, the heat pipe can transfer heat from the automobile's exhaust gas to a TEG. To improve the efficiency of the thermal power generation system with a heat pipe, effects of various parameters, such as inclination angle, charged amount of the heat pipe, condenser temperature, and size of the TEM (thermoelectric element), were investigated. Experimental studies, CFD simulation, and the theoretical approach to thermoelectric modules were carried out, and the TEG system with heat pipe (15-20% charged, 20°-30° inclined configuration) showed the best performance.

  7. DNA detection on a power-free microchip with laminar flow-assisted dendritic amplification.

    PubMed

    Hosokawa, Kazuo; Sato, Takahiro; Sato, Yasunobu; Maeda, Mizuo

    2010-01-01

    In this paper, we describe DNA detection experiments using our two original technologies, power-free microchip and laminar flow-assisted dendritic amplification (LFDA), which were previously applied to immunoassays. A microchip was fabricated by combining a poly(dimethylsiloxane) (PDMS) part having microchannel patterns and a glass plate modified with probe DNA. We carried out two kinds of experiments: the detection of 21-base biotinylated target DNA and the detection of single-nucleotide polymorphism (SNP) in 56-base unlabeled target DNA by sandwich hybridization with biotinylated probe DNA. For both of the experiments, the necessary solutions were injected into microchannels not by an external power source, but by air dissolution into the PDMS part. After a hybridization reaction, the LFDA was started by injecting FITC-labeled streptavidin and biotinylated anti-streptavidin antibody onto the reaction site. With a detection time of 20 min, the limit of detection (LOD) for the biotinylated target was 2.2 pM, and the LOD for the SNP was 10-30 pM, depending on the SNP type.

  8. Efficacy of a skeletal muscle-powered dynamic patch: Part 2. Right ventricular assistance.

    PubMed

    Watanabe, G; Misaki, T; Takahashi, M; Ohtake, H; Tsunezuka, Y; Wada, M; Watanabe, Y

    1995-02-01

    The purpose of this study was to assess the feasibility of using a skeletal muscle-powered dynamic patch to assist the failing right ventricle. Seven adult mongrel dogs were used in the study. The proximal portion of the left latissimus dorsi muscle was harvested and reattached to the actuator to serve as a skeletal muscle energy convertor. The right ventricular free wall was fully excised and the dynamic patch was implanted under cardiopulmonary bypass. After weaning from cardiopulmonary bypass, the latissimus dorsi muscle was stimulated using a burst frequency of 33 Hz, a burst duration of 200 ms, and 1:2 synchronous mode stimulation with the native R wave. Latissimus dorsi muscle stimulation increased systolic aortic pressure (78 versus 91 mm Hg; p < 0.01), mean aortic pressure (56 versus 62 mm Hg; p < 0.05), aortic blood flow (0.73 versus 0.97 mL; p < 0.01), and systolic right ventricular pressure (41 versus 56 mm Hg; p < 0.01). The mean right atrial pressure decreased from 14 to 9.6 mm Hg (p < 0.01). Our results demonstrate that the use of a right ventricular dynamic patch powered by a skeletal muscle linear-type actuator can not only function as a right ventricular free wall substitute but also lead to the augmentation of right ventricular and global cardiac function.

  9. Mars Spark Source Prototype

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; Weiland, Karen J.; VanderWal, Randall L.

    1999-01-01

    The Mars Spark Source Prototype (MSSP) hardware has been developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample and detectors measure the optical emission from metals in the plasma that will allow their identification and quantification. Trace metal measurements are vital for the assessment of the potential toxicity of the Martian environment for human exploration. The current method of X-ray fluorescence can yield concentrations only of major species. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The instrument will be developed primarily for use in the Martian environment, but would be adaptable for terrestrial use in environmental monitoring. This paper describes the Mars Spark Source Prototype hardware, the results of the characterization tests, and future plans for hardware development.

  10. Drive Control Scheme of Electric Power Assisted Wheelchair Based on Neural Network Learning of Human Wheelchair Operation Characteristics

    NASA Astrophysics Data System (ADS)

    Tanohata, Naoki; Seki, Hirokazu

    This paper describes a novel drive control scheme of electric power assisted wheelchairs based on neural network learning of human wheelchair operation characteristics. “Electric power assisted wheelchair” which enhances the drive force of the operator by employing electric motors is expected to be widely used as a mobility support system for elderly and disabled people. However, some handicapped people with paralysis of the muscles of one side of the body cannot maneuver the wheelchair as desired because of the difference in the right and left input force. Therefore, this study proposes a neural network learning system of such human wheelchair operation characteristics and a drive control scheme with variable distribution and assistance ratios. Some driving experiments will be performed to confirm the effectiveness of the proposed control system.

  11. Lower-Energy Requirements for Power-Assist HEV Energy Storage Systems--Analysis and Rationale (Presentation)

    SciTech Connect

    Gonder, J.; Pesaran, A.

    2010-03-18

    Presented at the 27th International Battery Seminar and Exhibit, 15-18 March 2010, Fort Lauderdale, Florida. NREL conducted simulations and analysis of vehicle test data with research partners in response to a USABC request; results suggest that power-assist hybrid electric vehicles (HEVs), like conventional HEVs, can achieve high fuel savings with lower energy requirements at potentially lower cost.

  12. NASA Research Announcement Phase 2 Final Report for the Development of a Power Assisted Space Suit Glove

    NASA Technical Reports Server (NTRS)

    Lingo, Robert; Cadogan, Dave; Sanner, Rob; Sorenson, Beth

    1997-01-01

    The main goal of this program was to develop an unobtrusive power-assisted EVA glove metacarpalphalangeal (MCP) joint that could provide the crew member with as close to nude body performance as possible, and to demonstrate the technology feasibility of power assisted space suit components in general. The MCP joint was selected due to its being representative of other space suit joints, such as the shoulder, hip and carpometacarpal joint, that would also greatly benefit from this technology. In order to meet this objective, a development team of highly skilled and experienced personnel was assembled. The team consisted of two main entities. The first was comprised of ILC's experienced EVA space suit glove designers, who had the responsibility of designing and fabricating a low torque MCP joint which would be compatible with power assisted technology. The second part of the team consisted of space robotics experts from the University of Maryland's Space Systems Laboratory. This team took on the responsibility of designing and building the robotics aspects of the power-assist system. Both parties addressed final system integration responsibilities.

  13. A Computuerized Operator Support System Prototype

    SciTech Connect

    Ken Thomas; Ronald Boring; Roger Lew; Tom Ulrich; Richard Villim

    2013-08-01

    A report was published by the Idaho National Laboratory in September of 2012, entitled Design to Achieve Fault Tolerance and Resilience, which described the benefits of automating operator actions for transients. The report identified situations in which providing additional automation in lieu of operator actions would be advantageous. It recognized that managing certain plant upsets is sometimes limited by the operator’s ability to quickly diagnose the fault and to take the needed actions in the time available. Undoubtedly, technology is underutilized in the nuclear power industry for operator assistance during plant faults and operating transients. In contrast, other industry sectors have amply demonstrated that various forms of operator advisory systems can enhance operator performance while maintaining the role and responsibility of the operator as the independent and ultimate decision-maker. A computerized operator support system (COSS) is proposed for use in nuclear power plants to assist control room operators in addressing time-critical plant upsets. A COSS is a collection of technologies to assist operators in monitoring overall plant performance and making timely, informed decisions on appropriate control actions for the projected plant condition. The COSS does not supplant the role of the operator, but rather provides rapid assessments, computations, and recommendations to reduce workload and augment operator judgment and decision-making during fast-moving, complex events. This project proposes a general model for a control room COSS that addresses a sequence of general tasks required to manage any plant upset: detection, validation, diagnosis, recommendation, monitoring, and recovery. The model serves as a framework for assembling a set of technologies that can be interrelated to assist with each of these tasks. A prototype COSS has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based

  14. A Computuerized Operator Support System Prototype

    SciTech Connect

    Ken Thomas; Ronald Boring; Roger Lew; Tom Ulrich; Richard Villim

    2013-11-01

    A report was published by the Idaho National Laboratory in September of 2012, entitled Design to Achieve Fault Tolerance and Resilience, which described the benefits of automating operator actions for transients. The report identified situations in which providing additional automation in lieu of operator actions would be advantageous. It recognized that managing certain plant upsets is sometimes limited by the operator’s ability to quickly diagnose the fault and to take the needed actions in the time available. Undoubtedly, technology is underutilized in the nuclear power industry for operator assistance during plant faults and operating transients. In contrast, other industry sectors have amply demonstrated that various forms of operator advisory systems can enhance operator performance while maintaining the role and responsibility of the operator as the independent and ultimate decision-maker. A computerized operator support system (COSS) is proposed for use in nuclear power plants to assist control room operators in addressing time-critical plant upsets. A COSS is a collection of technologies to assist operators in monitoring overall plant performance and making timely, informed decisions on appropriate control actions for the projected plant condition. The COSS does not supplant the role of the operator, but rather provides rapid assessments, computations, and recommendations to reduce workload and augment operator judgment and decision-making during fast-moving, complex events. This project proposes a general model for a control room COSS that addresses a sequence of general tasks required to manage any plant upset: detection, validation, diagnosis, recommendation, monitoring, and recovery. The model serves as a framework for assembling a set of technologies that can be interrelated to assist with each of these tasks. A prototype COSS has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based

  15. Exercise capacity in ventricular assist device patients: clinical relevance of pump speed and power.

    PubMed

    Fresiello, Libera; Buys, Roselien; Timmermans, Philippe; Vandersmissen, Katrien; Jacobs, Steven; Droogne, Walter; Ferrari, Gianfranco; Rega, Filip; Meyns, Bart

    2016-10-01

    Patients with ventricular assist device (VAD) show a limited exercise capacity. The aim of this work is to investigate whether VAD speed increase has an effect on exercise performance in the upright position. Fourteen patients implanted with a HeartMate II underwent two cardiopulmonary maximal exercise tests on an upright bicycle ergometer the same day. During one test, VAD speed was set as constant (CONST) and during the other test, VAD speed was increased by 200 rpm each minute (INCR). No statistical differences were found between the two tests in terms of maximum heart rate, peak oxygen uptake, peak minute ventilation, ventilation efficiency slope and arterial blood pressure. Patients' fatigue perception, measured with a Borg scale, was similar between the two tests over the entire group (15 ± 1 for both CONST and INCR). VAD flow increased from 4.5 ± 0.7 to 6.0 ± 1.0 l/min during CONST and to 7.6 ± 1.4 l/min during INCR. Four patients experienced an easier cycling during INCR, and the other patients noticed no difference. One patient had a suction event during INCR and another had non-sustained ventricular tachycardia at peak exercise. A negative correlation was found between the rate of increase in VAD power during exercise and peak oxygen uptake. Although VAD speed increase provided an additional pump flow of 1.6 l/min at peak exercise, no significant objective and subjective benefits on patients' exercise performance were observed. Finally, VAD power could be a useful parameter to monitor patients during exercise. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  16. Safety enhancement of a specialized power assisted tricycle for a child with osteogenesis imperfecta type III.

    PubMed

    Geu, Matthew J; Tuffner, Francis F; Madsen, Robert O; Harman, William M; Barrett, Steven F

    2005-01-01

    A child in the community of Laramie, Wyoming was born with Osteogenesis Imperfecta which is a genetic disorder that limits the physical abilities, size, and strength of the child. A customized power assisted tricycle was developed, which offered a unique opportunity to serve multiple purposes in his childhood development. This tricycle will ultimately provide him with the opportunity to gain muscle mass, strength, coordination, and confidence. The tricycle was completed as a senior design project in 2002, funded by the National Science Foundation, Biomedical Engineering Program and research to Aid Persons with Disabilities Program and University of Wyoming, College of Engineering Undergraduate Design Project to Aid Wyoming Persons with Disabilities. Unfortunately, the tricycle did not provide the necessary features to allow him to ride the tricycle safely. For this reason the tricycle was redesigned to include many different redundant safety systems which allows the tricycle to be safe for the child's use. Being funded by the same grant, new systems were added to the tricycle. A panic kill switch, automatic brakes, numerous redundant velocity sensors, tip over prevention circuitry, a redesigned operating system, a battery recharge port, and other systems were added, allowing for the tricycle to provide a high level of safety. A great deal of testing and sound design practices have been taken into consideration throughout the addition of these systems. Without these improvements, the child would not have the opportunity to use the tricycle to help with his development.

  17. Development of a powered mobile module for the ArmAssist home-based telerehabilitation platform.

    PubMed

    Jung, Je Hyung; Valencia, David B; Rodríguez-de-Pablo, Cristina; Keller, Thierry; Perry, Joel C

    2013-06-01

    The ArmAssist, developed by Tecnalia, is a system for at-home telerehabilitation of post-stroke arm impairments. It consists of a wireless mobile base module, a global position and orientation detection mat, a PC with display monitor, and a tele-rehabilitation software platform. This paper presents the recent development results on the mobile module augmenting its functionality by adding actuation components. Three DC servo motors were employed to drive the mobile module and a position control algorithm based on the kinematic model and velocity mode control was implemented such that the module tracks a path defined in the training software. Pilot tests of the powered mobile module were performed in experiments with different load conditions and two unimpaired subjects. Both test results show that the module is able to follow the predefined path within an acceptable error range for reach movement training. Further study and testing of the system in realistic conditions following stroke will be a future topic of research.

  18. Evaluation of Environmentally Assisted Cracking of Armour Wires in Flexible Pipes, Power Cables and Umbilicals

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiying

    Environmentally assisted cracking (EAC) of armour wires in flexible pipes, power cables and umbilicals is a major concern with the development of oil and gas fields and wind farms in harsh environments. Hydrogen induced cracking (HIC) or hydrogen embrittlement (HE) of steel armour wires used in deep-water and ultra-deep-water has been evaluated. Simulated tests have been carried out in simulated sea water, under conditions where the susceptibility is the highest, i.e. at room temperature, at the maximum negative cathodic potential and at the maximum stress level expected in service for 150 hours. Examinations of the tested specimens have not revealed cracking or blistering, and measurement of hydrogen content has confirmed hydrogen charging. In addition, sulphide stress cracking (SSC) and chloride stress cracking (CSC) of nickel-based alloy armour wires used in harsh down-hole environments has been evaluated. Simulated tests have been carried out in simulated solution containing high concentration of chloride, with high hydrogen sulphide partial pressure, at high stress level and at 120 °C for 720 hours. Examinations of the tested specimens have not revealed cracking or blistering. Subsequent tensile tests of the tested specimens at ambient pressure and temperature have revealed properties similar to the as-received specimens.

  19. Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking.

    PubMed

    Kozlowski, Allan J; Bryce, Thomas N; Dijkers, Marcel P

    2015-01-01

    Powered exoskeletons have been demonstrated as being safe for persons with spinal cord injury (SCI), but little is known about how users learn to manage these devices. To quantify the time and effort required by persons with SCI to learn to use an exoskeleton for assisted walking. A convenience sample was enrolled to learn to use the first-generation Ekso powered exoskeleton to walk. Participants were given up to 24 weekly sessions of instruction. Data were collected on assistance level, walking distance and speed, heart rate, perceived exertion, and adverse events. Time and effort was quantified by the number of sessions required for participants to stand up, walk for 30 minutes, and sit down, initially with minimal and subsequently with contact guard assistance. Of 22 enrolled participants, 9 screen-failed, and 7 had complete data. All of these 7 were men; 2 had tetraplegia and 5 had motor-complete injuries. Of these, 5 participants could stand, walk, and sit with contact guard or close supervision assistance, and 2 required minimal to moderate assistance. Walk times ranged from 28 to 94 minutes with average speeds ranging from 0.11 to 0.21 m/s. For all participants, heart rate changes and reported perceived exertion were consistent with light to moderate exercise. This study provides preliminary evidence that persons with neurological weakness due to SCI can learn to walk with little or no assistance and light to somewhat hard perceived exertion using a powered exoskeleton. Persons with different severities of injury, including those with motor complete C7 tetraplegia and motor incomplete C4 tetraplegia, may be able to learn to use this device.

  20. Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking

    PubMed Central

    Bryce, Thomas N.; Dijkers, Marcel P.

    2015-01-01

    Background: Powered exoskeletons have been demonstrated as being safe for persons with spinal cord injury (SCI), but little is known about how users learn to manage these devices. Objective: To quantify the time and effort required by persons with SCI to learn to use an exoskeleton for assisted walking. Methods: A convenience sample was enrolled to learn to use the first-generation Ekso powered exoskeleton to walk. Participants were given up to 24 weekly sessions of instruction. Data were collected on assistance level, walking distance and speed, heart rate, perceived exertion, and adverse events. Time and effort was quantified by the number of sessions required for participants to stand up, walk for 30 minutes, and sit down, initially with minimal and subsequently with contact guard assistance. Results: Of 22 enrolled participants, 9 screen-failed, and 7 had complete data. All of these 7 were men; 2 had tetraplegia and 5 had motor-complete injuries. Of these, 5 participants could stand, walk, and sit with contact guard or close supervision assistance, and 2 required minimal to moderate assistance. Walk times ranged from 28 to 94 minutes with average speeds ranging from 0.11 to 0.21 m/s. For all participants, heart rate changes and reported perceived exertion were consistent with light to moderate exercise. Conclusion: This study provides preliminary evidence that persons with neurological weakness due to SCI can learn to walk with little or no assistance and light to somewhat hard perceived exertion using a powered exoskeleton. Persons with different severities of injury, including those with motor complete C7 tetraplegia and motor incomplete C4 tetraplegia, may be able to learn to use this device. PMID:26364280

  1. SmartCard Prototype

    DTIC Science & Technology

    2009-09-01

    prototype. ............................................................................................. 7 Figure 6 Smart Card Prototype main window...a data explorer. Intervention costs Database with a single instance (i.e. one data set). User help framework Figure 6 Smart Card Prototype

  2. Wearable EEG headband using printed electrodes and powered by energy harvesting for emotion monitoring in ambient assisted living

    NASA Astrophysics Data System (ADS)

    Matiko, Joseph W.; Wei, Yang; Torah, Russel; Grabham, Neil; Paul, Gordon; Beeby, Stephen; Tudor, John

    2015-12-01

    Globally, human life expectancy is steadily increasing causing an increase in the elderly population and consequently increased costs of supporting them. Ambient assisted living is an active research area aimed at supporting elderly people to live independently in their preferred living environment. This paper presents the design and testing of a self-powered wearable headband for electroencephalogram (EEG) based detection of emotions allowing the evaluation of the quality of life of assisted people. Printed active electrode fabrication and testing is discussed followed by the design of an energy harvester for powering the headband. The results show that the fabricated electrodes have similar performance to commercial electrodes and that the electronics embedded into the headband, as well as the wireless sensor node used for processing the EEG, can be powered by energy harvested from solar panels integrated on the headband. An average real time emotion classification accuracy of 90 (±9) % was obtained from 12 subjects. The results show that the self-powered wearable headband presented in this paper can be used to measure the wellbeing of assisted people with good accuracy.

  3. Wearable Power-Assist Locomotor (WPAL) for supporting upright walking in persons with paraplegia.

    PubMed

    Tanabe, Shigeo; Hirano, Satoshi; Saitoh, Eiichi

    2013-01-01

    Due to physical and psychosocial issues associated with long-term sitting in a wheelchair, devising new ways to facilitate upright mobility is a key issue in rehabilitation medicine. Wearable Power-Assist Locomotor (WPAL) is a motorized orthosis and is developed for providing independent and comfortable walking for paraplegic patients. The WPAL consists of a wearable robotic orthosis and custom walker. To facilitate alternate usage with a wheelchair, the wearable robotic orthosis is based on a medial system with motors located at the bilateral hip, knee and ankle joints to reduce the increase in heart rate during gait. The gait parameters include stride length, toe clearance height, swing time, double support time, etc. (gait speed: up to 1.3 km/h). Independent gait with the walker can be learned through a five-stage gait exercise sequence. The first two stages are stepping and gait exercises with parallel bars. The third stage is gait exercise on treadmill. The subsequent two stages are gait exercise with walker. Seven motor-complete paraplegic patients (spinal cord functional levels: T6-T12) participated. Through a series of exercises, all users achieved independent gait on a level floor (Functional Ambulation Categories: 4). The mean duration and distance of consecutively walking were 14.1 ± 11.4 minutes and 165.6 ± 202.6 m, respectively. The most competent user was able to walk continuously for as long as 40 minutes and 640 m whereas only for 6 minutes and 107 m with a conventional orthosis. These results suggest that WPAL might be useful device for supporting upright walking in persons with paraplegia.

  4. Evaluation of 3 pushrim-activated power-assisted wheelchairs in patients with spinal cord injury.

    PubMed

    Guillon, Bruno; Van-Hecke, Gary; Iddir, Jérome; Pellegrini, Nadine; Beghoul, Nabil; Vaugier, Isabelle; Figère, Marjorie; Pradon, Didier; Lofaso, Frédéric

    2015-05-01

    To assess differences between manual wheelchairs and 3 pushrim-activated power-assisted wheelchairs (PAPAWs): Servomatic A and B and E-motion. Repeated measures. Rehabilitation hospital. Volunteers with spinal cord injuries (N=52). Ten subjects propelled the wheelchairs on a dynamometer, 46 evaluated each wheelchair on indoor and outdoor courses, and 10 evaluated their ability to transfer themselves and their wheelchairs into and out of their car. Oxygen consumption per unit time (V˙o2) and heart rate were measured during propulsion on the dynamometer. Wheelchair efficiency on the indoor and outdoor courses was evaluated on the basis of heart rate, completion time, handrim push frequency, and patient satisfaction. On the dynamometer, decreases in V˙o2 and heart rate were similar with the 3 PAPAWs compared with manual wheelchairs. On the outdoor course, heart rate was significantly decreased by PAPAWs compared with manual wheelchairs and patient satisfaction was better with Servomatic devices than with the E-motion device. Indoors, the course completion time was longer with the E-motion wheelchair than with other wheelchairs in the overall population, and handrim push frequency was higher with the E-motion wheelchair than with other wheelchairs in the subgroup with T12 to L1 injuries. Car transfer ability was lower with PAPAWs than with manual wheelchairs. Differences exist across PAPAWs. Compared with E-motion, the 2 Servomatic PAPAWs were easier to use outdoors, and difficulty transferring into/out of the car was similarly increased with all 3 PAPAWs. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Use of Power Assist-Wheels Results in Increased Distance Traveled Compared to Conventional Manual Wheeling

    PubMed Central

    Levy, Charles E.; Buman, Matthew P.; Chow, John W.; Tillman, Mark D.; Fournier, Kimberly A.; Giacobbi, Peter

    2014-01-01

    Objective To evaluate the impact of power assist wheels (PAWs) on the distance traveled by manual wheelchair users and analyze potential cofactors in the magnitude of response: To test the hypothesis that wheelers would travel significantly further with PAWs. Design A 16-week A (Pre-intervention)-B (Intervention)- A (Post-intervention) repeated measures design. Seven women and 13 men (age 43±15 years) full-time wheelers participated. During the pre-intervention and post-intervention phases (4 weeks each), participants used their own unaltered manual wheelchairs. During the 8-week intervention phase, the manual wheels were replaced with PAWs. Daily distance was measured with bicycle-style odometers. A composite score of laboratory wheelchair tasks was used to classify wheelchair performance. Mixed model repeated measures analysis of variance analyzed changes across phases of the trial. A post-hoc analysis tabulated the amount of days wheelers exceeded their individual daily averages in each phase by two standard deviations. Results Wheelers traveled significantly greater distances during the intervention phase compared to pre- or post-intervention phases regardless of baseline wheelchair performance . Wheelers who demonstrated higher baseline wheelchair performance traveled lesser average distances in the first two weeks after receiving PAWs than in the subsequent 6 weeks. Wheelers exceeded their individual daily averages per phase on a significantly greater number of days during the intervention phase. Conclusions PAWs enabled wheelers to travel farther and to travel beyond their usual distances on more days. Future studies may be strengthened by taking into account the two-week “adjustment phase” for PAWs. PMID:20647780

  6. Powered Exoskeletons for Walking Assistance in Persons with Central Nervous System Injuries: A Narrative Review.

    PubMed

    Esquenazi, Alberto; Talaty, Mukul; Jayaraman, Arun

    2017-01-01

    Individuals with central nervous system injuries are a large and apparently rapidly expanding population-as suggested by 2013 statistics from the American Heart Association. Increasing survival rates and lifespans emphasize the need to improve the quality of life for this population. In persons with central nervous system injuries, mobility limitations are among the most important factors contributing to reduced life satisfaction. Decreased mobility and subsequently reduced overall activity levels also contribute to lower levels of physical health. Braces to assist walking are options for greater-functioning individuals but still limit overall mobility as the result of increased energy expenditure and difficulty of use. For individuals with greater levels of mobility impairment, wheelchairs remain the preferred mobility aid yet still fall considerably short compared with upright bipedal walking. Furthermore, the promise of functional electrical stimulation as a means to achieve walking has yet to materialize. None of these options allow individuals to achieve walking at speeds or levels comparable with those seen in individuals with unimpaired gait. Medical exoskeletons hold much promise to fulfill this unmet need and have advanced as a viable option in both therapeutic and personal mobility state, particularly during the past decade. The present review highlights the major developments in this technology, with a focus on exoskeletons for lower limb that may encompass the spine and that aim to allow independent upright walking for those who otherwise do not have this option. Specifically reviewed are powered exoskeletons that are either commercially available or have the potential to restore upright walking function. This paper includes a basic description of how each exoskeleton device works, a summation of key features, their known limitations, and a discussion of current and future clinical applicability. Copyright © 2017 American Academy of Physical Medicine

  7. Microwave-assisted synthesis and prototype oxygen reduction electrocatalyst application of N-doped carbon-coated Fe3O4 nanorods

    NASA Astrophysics Data System (ADS)

    Hadidi, Lida; Davari, Elaheh; Ivey, Douglas G.; Veinot, Jonathan G. C.

    2017-03-01

    Fe3O4 nanorods coated with nitrogen-doped mesoporous carbon (ND-Fe3O4@mC) shells of defined thicknesses have been prepared via a new microwave-assisted approach. Microstructural characterization of these ND-Fe3O4@mC structures was performed using x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. Following identification, the electrochemical performance of the catalysts was evaluated using linear sweep voltammetry with a rotating disc electrode system. The present investigation reveals enhanced oxygen reduction reaction catalytic activity and the carbon layer thickness influences oxygen diffusion to the active Fe3O4 nanorod core.

  8. Microwave-assisted synthesis and prototype oxygen reduction electrocatalyst application of N-doped carbon-coated Fe3O4 nanorods.

    PubMed

    Hadidi, Lida; Davari, Elaheh; Ivey, Douglas G; Veinot, Jonathan G C

    2017-03-03

    Fe3O4 nanorods coated with nitrogen-doped mesoporous carbon (ND-Fe3O4@mC) shells of defined thicknesses have been prepared via a new microwave-assisted approach. Microstructural characterization of these ND-Fe3O4@mC structures was performed using x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. Following identification, the electrochemical performance of the catalysts was evaluated using linear sweep voltammetry with a rotating disc electrode system. The present investigation reveals enhanced oxygen reduction reaction catalytic activity and the carbon layer thickness influences oxygen diffusion to the active Fe3O4 nanorod core.

  9. The Power of Peers in Employee Assistance: A Unique Program for a Community College.

    ERIC Educational Resources Information Center

    Hills, Marcia D.; And Others

    1989-01-01

    Describes the Red Deer College employee assistance program "Resources for Employee Assistance, Counselling and Health (REACH)" which has moved beyond this traditional approach to become an autonomous program run by employees for employees. Notes REACH is concerned with job performance and coping skills that contribute to individual and…

  10. The Power of Peers in Employee Assistance: A Unique Program for a Community College.

    ERIC Educational Resources Information Center

    Hills, Marcia D.; And Others

    1989-01-01

    Describes the Red Deer College employee assistance program "Resources for Employee Assistance, Counselling and Health (REACH)" which has moved beyond this traditional approach to become an autonomous program run by employees for employees. Notes REACH is concerned with job performance and coping skills that contribute to individual and…

  11. Multimodality gynecomastia repair by cross-chest power-assisted superficial liposuction combined with endoscopic-assisted pull-through excision.

    PubMed

    Ramon, Ytzhack; Fodor, Lucian; Peled, Isaac J; Eldor, Liron; Egozi, Dana; Ullmann, Yehuda

    2005-12-01

    Numerous methods of gynecomastia repair have been described to accomplish removal of breast tissue. Our multimodality surgical approach for the treatment of gynecomastia combines the use of power-assisted superficial cross-chest liposuction with direct pull-through excision of the breast parenchyma under endoscopic supervision. Seventeen patients, aging 17-39, underwent this multimodality approach. According to Simon's grading, 3 patients had grade 1, 5 had grade 2a, 6 had grade 2b, and 3 had grade 3 gynecomastia. Power-assisted liposuction was performed with a 3- or 4-mm triple-hole cannula inserted through the contralateral periareolar medial incision to suction the contralateral prepectoral fatty breast. At the end of the liposuction, the fibrous tissue was easily pulled through the ipsilateral stab wound and excised under endoscopic control. Follow-up time ranged from 6 to 34 months. The amount of fat removed by liposuction varied from 100-800 mL per breast, and the amount of breast parenchyma removed by excision varied from 20-110 g. All patients recovered remarkably well. No complications were recorded. All patients were satisfied with their results. This technique enables an effective treatment of both the fatty and fibrous tissue of the male breast and avoids skin redundancy due to skin contraction. A smooth masculine breast contour is consistently achieved without the stigma of this type of surgery.

  12. Thyristor-based current-fed drive with direct power control for permanent magnet-assisted synchronous reluctance generator

    NASA Astrophysics Data System (ADS)

    Baek, J.; Kwak, S.-S.; Toliyat, H. A.

    2015-03-01

    This paper proposes a robust and simple direct power control (DPC) of a thyristor-based current-fed drive for generator applications. A current-fed drive and permanent magnet-assisted synchronous reluctance generator (PMa-SynRG) are investigated to deliver 3 kW power using a combustion engine. The current-fed drive utilises a thyristor-based three-phase rectifier to convert generator power to DC-link power and a single-phase current-fed inverter to supply a single-phase inductive load. In addition, a new control algorithm is developed based on DPC for the current-fed drive. The DC-link voltage-based DPC is proposed in order to directly control the output power. The goal of the DPC is to maintain the DC-link voltage at the required output power operating point. The DPC has advantages such as a simple algorithm for constant speed operation. Another feature of the developed current-fed drive is its inherent capability to provide generating action by making the PMa-SynRG operates as a generator, rectifying the phase voltages by means of the three-phase rectifier and feeding the power into the load. These features make the current-fed drive a good candidate for driving any type of synchronous generators including the proposed PMa-SynRG.

  13. First World Report of Internal Power Cable Repair in Left Ventricular Assist Device Jarvik 2000: Case Report.

    PubMed

    Sassi, C G; Cameli, M; Dokollari, A; Diciolla, F; Scolletta, S; Ricci, C; Lucatelli, P; Mondillo, S; Maccherini, M

    2017-05-01

    There are limited clinical reports concerning internal power cable fixing in left ventricular assist device (L-VAD) patients. Actually there are no reports in the literature about Jarvik 2000 internal cable repair. We show the first description of a technique for surgical reparation of such a fatal complication. The patient was a 62-year-old woman who had L-VAD implantation (Jarvik 2000) with outflow graft apposition in descending thoracic aorta through left thoracotomy access, in 2009. She arrived urgently on January 25, 2014 for Jarvik 2000 dysfunction correlated with head movements. The neck X-rays revealed the rupture of one of the nine power cables located inside the neck and the damaging of two more cables nearby to be ruptured. On the same day she got pump failure due to the final interruption of the remaining two cables, we were obliged to install femoro-femoral extracorporeal membrane oxygenation (ECMO) assistance, to repair the power cables, approaching them through a pacemaker extension cable. The L-VAD outflow was occluded with vascular ball occluder inserted via right axillary artery under fluoroscopy before ECMO installation. At the end the ECMO assistance was interrupted and the Jarvik 2000 was turned back on. The patient was dismissed from the hospital 12 days after the procedure. At the moment the international literature is poor regarding this issue. This case provides evidence that in emergency conditions ECMO assistance is mandatory and a hybrid surgical and radiological approach could help to repair the damage in safe conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Computational Design and Prototype Evaluation of Aluminide-Strengthened Ferritic Superalloys for Power-Generating Turbine Applications up to 1,033 K

    SciTech Connect

    Peter Liaw; Gautam Ghosh; Mark Asta; Morris Fine; Chain Liu

    2010-04-30

    prototype Fe-Ni-Cr-Al-Mo alloys. Three-point-bending experiments show that alloys containing more than 5 wt.% Al exhibit poor ductility (< 2%) at room temperature, and their fracture mode is predominantly of a cleavage type. Two major factors governing the poor ductility are (1) the volume fraction of NiAl-type precipitates, and (2) the Al content in the {alpha}-Fe matrix. A bend ductility of more than 5% can be achieved by lowering the Al concentration to 3 wt.% in the alloy. The alloy containing about 6.5 wt.% Al is found to have an optimal combination of hardness, ductility, and minimal creep rate at 973 K. A high volume fraction of precipitates is responsible for the good creep resistance by effectively resisting the dislocation motion through Orowan-bowing and dislocation-climb mechanisms. The effects of stress on the creep rate have been studied. With the threshold-stress compensation, the stress exponent is determined to be 4, indicating power-law dislocation creep. The threshold stress is in the range of 40-53 MPa. The addition of W can significantly reduce the secondary creep rates. Compared to other candidates for steam-turbine applications, FBB-8 does not show superior creep resistance at high stresses (> 100 MPa), but exhibit superior creep resistance at low stresses (< 60 MPa).

  15. Powered Sit-to-Stand and Assistive Stand-to-Sit Framework for a Powered Transfemoral Prosthesis

    PubMed Central

    Varol, Huseyin Atakan; Sup, Frank; Goldfarb, Michael

    2009-01-01

    This work extends the three level powered knee and ankle prosthesis control framework previously developed by the authors by adding sitting mode. A middle level finite state based impedance controller is designed to accommodate sitting, sit-to-stand and stand-to-sit transitions. Moreover, a high level Gaussian Mixture Model based intent recognizer is developed to distinguish between standing and sitting modes and switch the middle level controllers accordingly. Experimental results with unilateral transfemoral amputee subject show that sitting down and standing up intent can be inferred from the prosthesis sensor signals by the intent recognizer. Furthermore, it is demonstrated that the prosthesis generates net active power of 50 W during standing up and dissipates up to 50 W of power during stand-to-sit transition at the knee joint. PMID:20046838

  16. Rapid prototype and test

    SciTech Connect

    Gregory, D.L.; Hansche, B.D.

    1996-06-01

    In order to support advanced manufacturing, Sandia has acquired the capability to produce plastic prototypes using stereolithography. Currently, these prototypes are used mainly to verify part geometry and ``fit and form`` checks. This project investigates methods for rapidly testing these plastic prototypes, and inferring from prototype test data actual metal part performance and behavior. Performances examined include static load/stress response, and structural dynamic (modal) and vibration behavior. The integration of advanced non-contacting measurement techniques including scanning laser velocimetry, laser holography, and thermoelasticity into testing of these prototypes is described. Photoelastic properties of the epoxy prototypes to reveal full field stress/strain fields are also explored.

  17. Design and performance characterization of a hand orthosis prototype to aid activities of daily living in a post-stroke population.

    PubMed

    Gasser, Benjamin W; Goldfarb, Michael

    2015-01-01

    This paper presents the design of a hand orthosis prototype intended to assist persons with hand paresis, as a result of stroke, perform activities of daily living. Among its attributes, the orthosis is characterized by a low mass and small profile, while still offering the power assistance of a robotic exoskeleton. Experimental characterization of the orthosis is presented, including its mass, envelope dimensions, motion bandwidth, and joint torque characteristics.

  18. Feasibility study on a perceived fatigue prediction dependent power control for an electrically assisted bicycle.

    PubMed

    Kiryu, T; Minagawa, H

    2013-01-01

    Several types of electric motor assists have been developed, as a result, it is important to control muscular fatigue on-site in terms of health promotion and motor rehabilitation. Predicting the perceived fatigue by several biosignal-related variables with the multiple regression model and polynomial approximation, we try to propose a self control design for the electrically assisted bicycle (EAB). We also determine the meaningful muscles during pedaling by muscle synergies in relation to the motion maturity. In field experiments, prediction of ongoing perceived physical fatigue could have the potential of suitable control of EAB.

  19. Assessment of the power and height of radial aspheres reported by a computer-assisted keratoscope.

    PubMed

    Cohen, K L; Tripoli, N K; Holmgren, D E; Coggins, J M

    1995-06-01

    The two purposes of this study were (a) to assess the accuracy with which a keratoscope, the Topographic Modeling System (TMS-1), calculated the heights and powers of rotationally symmetric, radially aspheric test surfaces and (b) to determine whether the TMS-1 used an axial solution for radius of curvature to determine the power of a sphere that would produce the same semichord as would the test surface on a keratograph. The TMS-1 heights and powers were studied for four test surfaces that had radial profiles similar to those of normal corneas. The powers of the surfaces were calculated from the local radius of curvature derived from the surfaces' manufacturing formulas. The heights and powers that would result from an axial solution were calculated in a TMS-1 simulator. TMS-1 data were compared with data from the surfaces' formulas and with data from the simulation. The TMS-1 data were almost identical to the heights and powers calculated from the simulated axial solution. The TMS-1 data were similar to the heights and powers calculated from the mathematical formulas from the apex to 2 mm from the apex but differed by up to 85 microns of height and 10 diopters of power in the periphery. The TMS-1 appeared to use the axial solution that does not calculate power from local radius of curvature. Clinicians should use caution when inferring corneal shape from power maps based on an axial solution, especially outside the central 2-mm radius of a normal cornea, because such power does not depict corneal curvature.

  20. Oxygen plasma power dependence on ZnO grown on porous silicon substrates by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Nam, Giwoong; Kim, Min Su; Kim, Do Yeob; Yim, Kwang Gug; Kim, Soaram; Kim, Sung-O.; Lee, Dong-Yul; Leem, Jae-Young

    2012-10-15

    ZnO thin films were deposited on porous silicon by plasma-assisted molecular beam epitaxy using different radio frequency power settings. Optical emission spectrometry was applied to study the characteristics of the oxygen plasma, and the effects of the radio frequency power on the properties of the ZnO thin films were evaluated by X-ray diffraction, scanning electron microscopy, and photoluminescence. The grain sizes for radio frequency powers of 100, 200, and 300 W were 46, 48, and 62 nm, respectively. In addition, the photoluminescence intensities of the ultraviolet and the visible range increased at 300 W, because the density of the atomic oxygen transitions increased. The quality of the ZnO thin films was enhanced, but the deep-level emission peaks increased with increasing radio frequency power. The structural and optical properties of the ZnO thin films were improved at the radio frequency power of 300 W. Moreover, the optical properties of the ZnO thin films were improved with porous silicon, instead of Si.

  1. The Perils of Prototyping.

    ERIC Educational Resources Information Center

    Lowry, Christina; Little, Robert

    1985-01-01

    The benefits of prototyping as a basis for system design include better specifications, earlier discovery of omissions and extensions, and the likelihood of salvaging much of the effort expended on the prototype. Risks and methods of prototyping during rapid systems development are also noted. (Author/MLW)

  2. A comparative study on the accuracy of pedicle screw placement assisted by personalized rapid prototyping template between pre- and post-operation in patients with relatively normal mid-upper thoracic spine.

    PubMed

    Hu, Yong; Yuan, Zhen-Shan; Spiker, William Ryan; Dong, Wei-Xin; Sun, Xiao-Yang; Yuan, Jian-Bing; Zhang, Jiao; Zhu, Bingke

    2016-06-01

    The aim of this study was to assess the accuracy of rapid prototyping drill template technique for placing pedicle screws in the mid-upper thoracic vertebrae in clinics. 151 consecutive patients underwent thoracic instrumentation and fusion for a total of 582 pedicle screws placed in the mid-upper thoracic vertebrae. Using computer software, the authors constructed drill templates that fit onto the posterior elements of the mid-upper thoracic vertebrae with drill guides designed to instrument the pedicles. The start point and three dimensional location of the planned and inserted screws were measured and compared. Grading of the CT scans revealed 559 (96.1 %) out of 582 screws completely within the desired pedicle. The direction of pedicle violation included 5 medial, 2 airball, and 16 lateral. The paired t test suggested that these results were statistically significant in more than half of the locations (T1-left-TA(P = 0.024), T2-left-SA(P = 0.031), T3-left-SA(P = 0.014), T4-left-TA(P = 0.004), T5-left-TA(P = 0.034), T7-left-TA(P = 0.000). T1-right-TA(P = 0.049), T2-right-TA(P = 0.044), T3-right-TA(P = 0.014), T5-right-TA(P = 0.013)). The paired t-test suggested that these results were statistically significant at several locations (T4-left-Δy(P = 0.041), T5-left-Δx(P = 0.016), T3-right-Δy(P = 0.015)). Use of a rapid prototyping drill template to assist in the placement of mid and upper thoracic pedicle screws may lead to increased accuracy. This patient specific technology must be combined with an understanding of the patients' anatomy and carefully secured to the posterior elements intraoperatively to avoid nerve or vascular complications.

  3. Rapid and sensitive microRNA detection with laminar flow-assisted dendritic amplification on power-free microfluidic chip.

    PubMed

    Arata, Hideyuki; Komatsu, Hiroshi; Hosokawa, Kazuo; Maeda, Mizuo

    2012-01-01

    Detection of microRNAs, small noncoding single-stranded RNAs, is one of the key topics in the new generation of cancer research because cancer in the human body can be detected or even classified by microRNA detection. This report shows rapid and sensitive microRNA detection using a power-free microfluidic device, which is driven by degassed poly(dimethylsiloxane), thus eliminating the need for an external power supply. MicroRNA is detected by sandwich hybridization, and the signal is amplified by laminar flow-assisted dendritic amplification. This method allows us to detect microRNA of specific sequences at a limit of detection of 0.5 pM from a 0.5 µL sample solution with a detection time of 20 min. Together with the advantages of self-reliance of this device, this method might contribute substantially to future point-of-care early-stage cancer diagnosis.

  4. Synchrophasor-Assisted Prediction of Stability/Instability of a Power System

    NASA Astrophysics Data System (ADS)

    Saha Roy, Biman Kumar; Sinha, Avinash Kumar; Pradhan, Ashok Kumar

    2013-05-01

    This paper presents a technique for real-time prediction of stability/instability of a power system based on synchrophasor measurements obtained from phasor measurement units (PMUs) at generator buses. For stability assessment the technique makes use of system severity indices developed using bus voltage magnitude obtained from PMUs and generator electrical power. Generator power is computed using system information and PMU information like voltage and current phasors obtained from PMU. System stability/instability is predicted when the indices exceeds a threshold value. A case study is carried out on New England 10-generator, 39-bus system to validate the performance of the technique.

  5. Small Thermophotovoltaic Prototype Systems

    NASA Astrophysics Data System (ADS)

    Durisch, Wilhelm; Bitnar, Bernd; von Roth, Fritz; Palfinger, Günther

    2003-01-01

    In an earlier paper [1], we reported on a small grid-connected thermophotovoltaic (TPV) system consisting of an ytterbia mantle emitter and silicon solar cells with 16 % efficiency (under solar irradiance at Standard Test Conditions, STC). The emitter was heated up using a butane burner with a rated thermal power of 1.35 kW (referring to the lower heating value). This system produced an electrical output of 15 W, which corresponds to a thermal to electric (direct current) conversion efficiency of 1.1 %. In the interim, further progress has been made, and significantly higher efficiencies have been achieved. The most important development steps are: 1) The infrared radiation-absorbing water filter between emitter and silicon cells (to protect the cells against overheating and against contact with flue gasses) has been replaced by a suitable glass tube. By doing this, it has been possible to prevent losses of convertible radiation in water. 2) Cell cooling has been significantly improved, in order to reduce cell temperature, and therefore increase conversion efficiency. 3) The shape of the emitter has been changed from spherical to a quasi-cylindrical geometry, in order to obtain a more homogeneous irradiation of the cells. 4) The metallic burner tube, on which the ytterbia emitter was fixed in the initial prototypes, has been replaced by a heat-resistant metallic rod, carrying ceramic discs as emitter holders. This has prevented the oxidation and clogging of the perforated burner tube. 5) Larger reflectors have been used to reduce losses in useful infrared radiation. 6) Smaller cells have been used, to reduce electrical series resistance losses. Applying all these improvements to the basic 1.35 kW prototype, we attained a system efficiency of 1.5 %. By using preheated air for combustion (at approximately 370 °C), 1.8 % was achieved. In a subsequent step, a photocell generator was constructed, consisting of high-efficiency silicon cells (21% STC efficiency). In this

  6. Look at energy compression as an assist for high power rf production

    SciTech Connect

    Birx, D.L.; Farkas, Z.D.; Wilson, P.B.

    1984-08-09

    The desire to construct electron linacs of higher and higher energies, coupled with the realities of available funding and real estate, has forced machine designers to reassess the limitations in both accelerator gradient (MeV/m) and energy. The gradients achieved in current radio-frequency (RF) linacs are sometimes set by electrical breakdown in the accelerating structure, but are in most cases determined by the RF power level available to drive the linac. In this paper we will not discuss RF power sources in general, but rather take a brief look at several energy compression schemes which might be of service in helping to make better use of the sources we employ. We will, however, diverge for a bit and discuss what the RF power requirements are. 12 references, 21 figures, 3 tables.

  7. Safety and Efficacy of Power-Assisted Pedicle Tract Preparation and Screw Placement.

    PubMed

    Seehausen, Derek A; Skaggs, David L; Andras, Lindsay M; Javidan, Yashar

    2015-03-01

    Retrospective review of 1 surgeon's posterior spinal fusion cases. To assess the safety and efficacy of using power tools versus using manual tools to create pedicle tracts and place pedicle screws. This is the first study to report on the safety and efficacy of pedicle tract creation and pedicle screw placement using power tools. The study included 442 cases and 6412 pedicle screws. The manual tool cohort included 159 cases (1,870 screws, January 1, 2004 to June 30, 2007). The power tool cohort included 283 cases (4,542 screws, January 1, 2008 to August 29, 2012). Patient charts and radiographs were reviewed. The researchers recorded the number of screws placed and their positions. Screws were classified as failed if the patient returned to surgery for revision or removal of the screw. Operating and fluoroscopy times were analyzed by cohort overall and for diagnosis-specific subsets. The incidence of injury resulting from pedicle screw placement was 0.00% (0 of 1,870) with the manual method and 0.02% (1 of 4,542) with power (p = .5211). One screw, placed with power, was assumed to have caused a minor hemothorax, which was successfully treated with a chest tube. There were no neurologic or vascular injuries or other complications attributable to a pedicle screw in either group. Screws placed with power were removed or revised because of problems attributable to the pedicle screw one-sixth as often as those placed using manual tools: 2 of 1,410 (0.14%) versus 8 of 948 (0.84%) (p = .024). Fluoroscopy times in the power cohort were two-thirds as long as those in the manual cohort (p < .001). Operating times were not significantly different (p = .109). The use of power tools to create pedicle tracts and place pedicle screws was associated with shorter fluoroscopy times and a lower revision rate compared with using manual tools. Both techniques posed similar low risks of injury to the patient. Copyright © 2015 Scoliosis Research Society. Published by Elsevier Inc. All

  8. Power Management Based Current Control Technique for Photovoltaic-Battery Assisted Wind-Hydro Hybrid System

    NASA Astrophysics Data System (ADS)

    Ram Prabhakar, J.; Ragavan, K.

    2013-07-01

    This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.

  9. The Instruments of Power: A Computer-Assisted Game for the ACSC Curriculum

    DTIC Science & Technology

    2005-04-01

    Tolbert, Brian G. "Instruments of Power Game and Rules Development." Air Command and Staff College, 2005. Wang, Wallace. Visual Basic 6 for Dummies . New...Wang, Visual Basic 6 for Dummies (New York, NY: Wiley Publishing, 1998), 56-58. 56 Hasbro, Risk Rules (Pawtucket, RI: 1999). 57 Hasbro, Risk II Game

  10. Virtual prototyping and testing of in-vehicle interfaces.

    PubMed

    Bullinger, Hans-Jörg; Dangelmaier, Manfred

    2003-01-15

    Electronic innovations that are slowly but surely changing the very nature of driving need to be tested before being introduced to the market. To meet this need a system for integrated virtual prototyping and testing has been developed. Functional virtual prototypes of various traffic systems, such as driver assistance, driver information, and multimedia systems can now be easily tested in a driving simulator by a rapid prototyping approach. The system has been applied in recent R&D projects.

  11. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation.

    PubMed

    Sun, Shi-Peng; Chung, Tai-Shung

    2013-11-19

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m(2), which is equivalent to 13.72 W/m(2) of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation.

  12. High-power widely tunable all-fiber thulium-assisted optical parametric oscillator at SWIR band.

    PubMed

    Li, Can; Chen, Nan; Wei, Xiaoming; Kang, Jiqiang; Li, Bowen; Tan, Sisi; Song, Liang; Wong, Kenneth K Y

    2016-11-15

    A novel short-wave infrared (SWIR) all-fiber thulium-assisted optical parametric oscillator (TAOPO) that exploits jointly optical parametric conversion and thulium amplification in a highly nonlinear fiber (HNLF) and thulium-doped fiber (TDF) is demonstrated. This is implemented through constructing a joint fiber line by directly fusion splicing 50 m HNLF with 1.5 m TDF. Incorporating a bidirectional-pumping scheme, i.e., forward-pumped by a step-tuned C-band pulsed laser, and simultaneously backward-pumped by an L-band continuous-wave laser, this TAOPO produces a pulsed SWIR laser at output power higher than 200 mW, signal-to-noise ratio over 40 dB, and wavelength tuning range beyond 150 nm from 1815 to 1968 nm. Via separate characterization of the HNLF and TDF joint fiber line, the tunability of the current TAOPO to shorter wavelength is only limited by the employed fiber components, while higher power could be realized by increasing the backward pump power. This TAOPO could be a promising platform for the generation of a highly functional SWIR source that facilitates applications such as bond-selective imaging of deep tissue.

  13. Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors - A review

    NASA Astrophysics Data System (ADS)

    Faraji, Soheila; Ani, Farid Nasir

    2014-10-01

    Electrochemical capacitors (ECs), also known as pseudocapacitors or supercapacitors (SCs), is receiving great attention for its potential applications in electric and hybrid electric vehicles because of their ability to store energy, alongside with the advantage of delivering the stored energy much more rapidly than batteries, namely power density. To become primary devices for power supply, supercapacitors must be developed further to improve their ability to deliver high energy and power simultaneously. In this concern, a lot of effort is devoted to the investigation of pseudocapacitive transition-metal-based oxides/hydroxides such as ruthenium oxide, manganese oxide, cobalt oxide, nickel oxide, cobalt hydroxide, nickel hydroxide, and mixed metal oxides/hydroxides such as nickel cobaltite and nickel-cobalt oxy-hydroxides. This is mainly due to the fact that they can produce much higher specific capacitances than typical carbon-based electric double-layer capacitors and electronically conducting polymers. This review presents supercapacitor performance data of metal oxide thin film electrodes by microwave-assisted as an inexpensive, quick and versatile technique. Supercapacitors have established the specific capacitance (Cs) principles, therefore, it is likely that metal oxide films will continue to play a major role in supercapacitor technology and are expected to considerably increase the capabilities of these devices in near future.

  14. CARAPACE: a novel composite advanced robotic actuator powering assistive compliant exoskeleton: preliminary design.

    PubMed

    Masia, Lorenzo; Cappello, Leonardo; Morasso, Pietro; Lachenal, Xavier; Pirrera, Alberto; Weaver, Paul; Mattioni, Filippo

    2013-06-01

    A novel actuator is introduced that combines an elastically compliant composite structure with conventional electromechanical elements. The proposed design is analogous to that used in Series Elastic Actuators, its distinctive feature being that the compliant composite part offers different stable configurations. In other words, its elastic potential presents points of local minima that correspond to robust stable positions (multistability). This potential is known a priori as a function of the structural geometry, thus providing tremendous benefits in terms of control implementation. Such knowledge enables the complexities arising from the additional degrees of freedom associated with link deformations to be overcome and uncover challenges that extends beyond those posed by standard rigidlink robot dynamics. It is thought that integrating a multistable elastic element in a robotic transmission can provide new scenarios in the field of assistive robotics, as the system may help a subject to stand or carry a load without the need for an active control effort by the actuators.

  15. Power of Peer-Assisted Learning: An Interdisciplinary Mobility Laboratory Experience.

    PubMed

    Lorio, Anne K; Florman, Terri M; Gore, Jane B; Housley, Stephen N; Nelson, Michelle A

    2016-02-01

    The benefits of early patient mobility in the hospital environment has been well established. This article highlights an interactive peer-assisted learning (PAL) mobility laboratory. Physical therapy (PT) students taught patient mobility skills to nursing students, with the goal of enhancing mobility knowledge and improved understanding of the two disciplines' roles and responsibilities. The students were divided into 10 groups, with six nursing and three PT students in each group; each group rotated through the 10 mobility stations every 20 minutes. After completing all stations, the nursing students reviewed a case scenario requiring application of the recently learned knowledge and skills. Analysis revealed that the nursing students demonstrated significant improvement in overall knowledge of safe patient mobility, as well as improved confidence in the instruction of safe patient mobility. Both groups reported that the PAL strategy was successful in achieving the intended goals of improved interprofessional understanding. Copyright 2016, SLACK Incorporated.

  16. Data envelopment analysis of space and terrestrially-based large scale commercial power systems for earth: A prototype analysis of their relative economic advantages

    SciTech Connect

    Criswell, D.R.; Thompson, R.G.

    1996-12-31

    Society must develop a large new source of electric power to adequately meet human needs in the 21st Century. The Lunar Solar Power system (LSP) is a new option that is independent of the biosphere. LSP captures sunlight on the moon, converts the solar power to microwaves, and beams the power to receivers on Earth that output electricity. The collimated microwave beams are low in intensity (< 20% of sunlight), safe, and environmentally benign. Data Envelopment Analysis (DEA) enables the detailed quantitative comparison of alternative economic systems. We use DEA methodology to compare the technical efficiency of the large-scale power systems needed to meet the growing energy needs of terrestrial society. This comparison suggests the efficiencies to be gained from LSP are large indeed. Such gains remain even if the resources needed for LSP are 10-fold greater than estimated from United States government studies. In terms of benefits versus costs, normalized to the range of 0-1, DEA reveals that LSP is much more efficient than conventional terrestrial solar-thermal and photovoltaic, fossil, and nuclear systems. LSP is also environmentally benign compared to the conventional systems.. 1 ref., 1 fig., 12 tabs.

  17. Solar-assisted MED treatment of Eskom power station waste water

    NASA Astrophysics Data System (ADS)

    Roos, Thomas H.; Rogers, David E. C.; Gericke, Gerhard

    2017-06-01

    The comparative benefits of multi-effect distillation (MED) used in conjunction with Nano Filtration (NF), Reverse Osmosis (RO) and Eutectic Freeze Crystallization (EFC) are determined for waste water minimization for inland coal fired power stations for Zero Liquid Effluent Discharge (ZLED). A sequence of technologies is proposed to achieve maximal water recovery and brine concentration: NF - physico-chemical treatment - MED - EFC. The possibility of extending the concentration of RO reject arising from minewater treatment at the Lethabo power station with MED alone is evaluated with mineral formation modelling using the thermochemical modelling software Phreeq-C. It is shown that pretreatment is essential to extend the amount of water that can be recovered, and this can be beneficially supported by NF.

  18. Prototype expert system for infusion pump maintenance.

    PubMed

    Mataban, B A

    1994-01-01

    With today's object-oriented software, knowledge-base building becomes simple. Using ServiceSoft's Service Power tools, an IMED PC-1 infusion pump prototype expert system was built. Approximately three man-weeks of work was expended to build the prototype expert system providing advice on repair to the board level. The prototype was demonstrated to the Department of Defense, and they are considering the inclusion of expert systems technology in medical equipment maintenance as one facet of their consolidation of logistic and administrative functions of the four military services' health care delivery.

  19. Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia.

    PubMed

    Asselin, Pierre; Knezevic, Steven; Kornfeld, Stephen; Cirnigliaro, Christopher; Agranova-Breyter, Irina; Bauman, William A; Spungen, Ann M

    2015-01-01

    Historically, persons with paralysis have limited options for overground ambulation. Recently, powered exoskeletons have become available, which are systems that translate the user's body movements to activate motors to move the lower limbs through a predetermined gait pattern. As part of an ongoing clinical study (NCT01454570), eight nonambulatory persons with paraplegia were trained to ambulate with a powered exoskeleton. Measurements of oxygen uptake (VO2) and heart rate (HR) were recorded for 6 min each during each maneuver while sitting, standing, and walking. The average value of VO2 during walking (11.2 +/- 1.7 mL/kg/min) was significantly higher than those for sitting and standing (3.5 +/- 0.4 and 4.3 +/- 0.9 mL/kg/min, respectively; p < 0.001). The HR response during walking was significantly greater than that of either sitting or standing (118 +/- 21vs 70 +/- 10 and 81 +/- 12 beats per minute, respectively: p < 0.001). Persons with paraplegia were able to ambulate efficiently using the powered exoskeleton for overground ambulation, providing potential for functional gain and improved fitness. ClinicalTrials.gov; NCT01454570; "The ReWalk Exoskeletal Walking System for Persons with Paraplegia (VA_ReWalk)"; https://clinicaltrials.gov/ct2/show/NCT01454570.

  20. Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma

    SciTech Connect

    Stranak, Vitezslav; Herrendorf, Ann-Pierra; Drache, Steffen; Bogdanowicz, Robert; Hippler, Rainer; Cada, Martin; Hubicka, Zdenek; Tichy, Milan

    2012-11-01

    This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 {mu}s after the onset of the HiPIMS pulse. Further, a high concentration of double charged Ti{sup ++} with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.

  1. The TACIS Nuclear Programme: Assistance in Upgrading Russian Nuclear Power Stations - An Overview of the Individual Projects in the Internet

    SciTech Connect

    Bieth, Michel; Schoels, Hubert

    2006-07-01

    The European Union' TACIS1 programme has been established for the New Independent States (NIS), among them in the Russian Federation since 1991. One priority of TACIS funding is Nuclear Safety. The European Commission has made available a total of 944 Million Euros for nuclear safety programmes covering the period 1991-2003. The TACIS nuclear safety programme is devoted to the improvement of the safety of Soviet designed nuclear installations in providing technology and safety culture transfer. JRC is carrying out works in the following areas: On-Site Assistance for TACIS operating Nuclear Power Plants; Design Safety and Dissemination of TACIS results; Reactor Pressure Vessel Embrittlement for VVER; Regulatory Assistance; Industrial Waste Management; Nuclear Safeguards; All TACIS projects, dealing with these areas of activity are now available in so called Project Description Sheets (PDS) or Project Results Sheets (PRS) in the Internet for everybody. JRC has created in the Internet an easy to open and to browse database which contains the result of works in relation to the above mentioned nuclear activities. This presentation gives an on-line overview of the app. 430 projects which have been implemented so far since the outset of the TACIS Nuclear Programme in the Russian Federation, which is representative to the other CIS countries, benefiting from the TACIS. The presentation will mainly consist of an on-line-demonstration of the TACIS Nuclear WEB Page, created by JRC. (authors)

  2. Exploration of shoulder load during hand-rim wheelchair start-up with and without power-assisted propulsion in experienced wheelchair users.

    PubMed

    Kloosterman, Marieke G M; Buurke, Jaap H; Schaake, Leendert; Van der Woude, Lucas H V; Rietman, Johan S

    2016-05-01

    Frequent start movements occurred during the day, yielding high upper-extremity stress. The high incidence and impact of shoulder injury on daily life wheelchair use made it clinically relevant to investigate whether power-assisted propulsion is beneficial during the start. Eleven hand-rim wheelchair users performed a start-movement in an instrumented wheelchair on a flat surface. Test order was randomly assigned to propulsion with and without power-assist. For each subject, parameters were averaged over 3 repeated starts. For statistical analysis Wilcoxon Signed Rank test was used. Intensity of mechanical shoulder loading decreased during power-assisted propulsion for anterior (147.0 (44.8) versus 121.9 (27.4) N; effect size (r)=-.75), posterior (4.8 (14.1) versus 2.7 (11.6) N; r=-.64) and inferior directed forces (82.6 (27.9) versus 68.9 (22.6) N; r=-.78) and abduction (20.2 (14.6) versus 12.9 (7.8) Nm; r=-.88) and extension moments (20.3 (10.7) versus 13.7 (9.1 Nm; r=-.88). Peak resultant force at the rim significantly decreased from 133.5 (38.4) N to 112.2 (25.4) N (r=-.64) and was accompanied by significant decreased shoulder abduction (35.3 (6.7) versus 33.3 (6.8); r=-.67) and significant increased shoulder extension (13.6 (16.3) versus 20.3 (19.1); r=-.78) during power-assisted start-up. Power-assist hand-rim wheelchairs are effective in reducing external shoulder load and partly effective in reducing force generation in extremes of shoulder motion during start-up. The use of power-assist wheels might reduce the risk of developing shoulder overuse injuries. NTR2661. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Progress in the development of a transcutaneously powered axial flow blood pump ventricular assist system.

    PubMed

    Parnis, S M; Conger, J L; Fuqua, J M; Jarvik, R K; Inman, R W; Tamez, D; Macris, M P; Moore, S; Jacobs, G; Sweeney, M J; Frazier, O H

    1997-01-01

    Development of the Jarvik 2000 intraventricular assist system for long-term support is ongoing. The system integrates the Jarvik 2000 axial flow blood pump with a microprocessor based automatic motor controller to provide response to physiologic demands. Nine devices have been evaluated in vivo (six completed, three ongoing) with durations in excess of 26 weeks. Instrumented experiments include implanted transit-time ultrasonic flow probes and dual micromanometer LV/AoP catheters. Treadmill exercise and heart pacing studies are performed to evaluate control system response to increased heart rates. Pharmacologically induced cardiac dysfunction studies are performed in awake and anesthetized calves to demonstrate control response to simulated heart failure conditions. No deleterious effects or events were encountered during any physiologic studies. No hematologic, renal, hepatic, or pulmonary complications have been encountered in any study. Plasma free hemoglobin levels of 7.0 +/- 5.1 mg/dl demonstrate no device related hemolysis throughout the duration of all studies. Pathologic analysis at explant showed no evidence of thromboembolic events. All pump surfaces were free of thrombus except for a minimal ring of fibrin, (approximately 1 mm) on the inflow bearing. Future developments for permanent implantation will include implanted physiologic control systems, implanted batteries, and transcutaneous energy and data transmission systems.

  4. Fiber optic sensor for angular position measurement: application for an electrical power-assisted steering system

    NASA Astrophysics Data System (ADS)

    Javahiraly, Nicolas; Chakari, Ayoub

    2013-05-01

    To achieve a very effective automotive power steering system, we need two important data, the angular position of the wheel and the torque applied on the shaft by the driver of the car. We present a new accurate optical fiber angular position sensor connected to an automotive power steering column. In this new design, the sensor allows the measurement of the angular position of a car steering wheel over a large and adjustable range (± several turns of the wheel). The wheel rotation induces micro-bending in the transducer part of the optical fiber sensing system. This system operates as an amplitude modulation sensor based on mode coupling in the transducing fiber in the case when all the modes are equally excited. We study the sensor response both theoretically and experimentally with a multimode step index optical fiber [rf (fiber radius) = 300 μm rc (core radius) = 50 μm nc (core index) = 1,457; N.A. = 0, 22 and the wavelength is 632,8 nm at the ambient Temperature (20°C)]. We show that the sensitivity can be controlled as a function of the sensor's length. We compare modeling and experimental validation and we conclude with a perspective on what could soon be an industrial sensor.

  5. Design and analysis of trench-assisted leaky channel waveguide for high power applications

    NASA Astrophysics Data System (ADS)

    Pandey, Himanshu; Saini, Than Singh; Kumar, Ajeet

    2016-05-01

    We purpose a leaky channel waveguide design that supports a single guided mode. The waveguide works on the principle of higher-order mode discrimination. The cladding of waveguide is formed by alternate low and high index regions, which helps to leak out of higher-order modes while retaining the fundamental mode over the entire length of the waveguide. The Structure is analysed by the finite element method 'Comsol Multiphysics' and the leakage losses of the modes along with effective mode area have been calculated. We show that a waveguide formed in silica with core width 6 µm can be designed to exhibit single mode operation at 1550 nm wavelength. The Fundamental loss E11 = 0.076 dB/mm and the higher order loss E21 = 11.4 dB/mm with the rectangular core area as large as 50 µm2. Such large-core-area waveguide structure efficiently suppresses unwanted non-linear optical effects and is suitable for high power devices such as high power Waveguide Laser and Amplifier.

  6. An Autonomous High-rate GNSS Receiver with Iridium Messaging, Real-time Signal Processing, and Power System Part 2: Results from Prototype Testing

    NASA Astrophysics Data System (ADS)

    Passmore, P. R.; Inglis, D.; Hoar, G.; Clemente, F.; Davis, E. J.

    2016-12-01

    A low power GNSS receiver capable of real time kinematic position corrections is integrated with a low cost Iridium satellite communications transceiver or cellular telemetry is demonstrated as well as input from a auxiliary sensors to indicate a movement event. Empirical results are presented that show the response to instantaneous rover movements. Various filtering algorithms are compared with respect to response time and measurement resolution.

  7. Power ultrasound-assisted cleaner leather dyeing technique: influence of process parameters.

    PubMed

    Sivakumar, Venkatasubramanian; Rao, Paruchuri Gangadhar

    2004-03-01

    The application of power ultrasound to leather processing has a significant role in the concept of "clean technology" for leather production. The effect of power ultrasound in leather dyeing has been compared with dyeing in the absence of ultrasound and conventional drumming. The power ultrasound source used in these experiments was ultrasonic cleaner (150 W and 33 kHz). The effect of various process parameters such as amount of dye offer, temperature, and type of dye has been experimentally found out. The effect of presonication of dye solution as well as leather has been studied. Experiments at ultrasonic bath temperature were carried out to find out the combined thermal as well as stirring effects of ultrasound. Dyeing in the presence of ultrasound affords about 37.5 (1.8 times) difference as increase in % dye exhaustion or about 50% decrease in the time required for dyeing compared to dyeing in the absence of ultrasound for 4% acid red dye. About 29 (1.55 times) increase in % dye exhaustion or 30% reduction in time required for dyeing was observed using ultrasound at stationary condition compared with conventional dynamic drumming conditions. The effect of ultrasound at constant temperature conditions with a control experiment has also been studied. The dye exhaustion increases as the temperature increases (30-60 degrees C) and better results are observed at higher temperature due to the use of ultrasound. Presonication of dye solution or crust leather prior to the dyeing process has no significant improvement in dye exhaustion, suggesting ultrasound effect is realized when it is applied during the dyeing process. The results indicate that 1697 and 1416 ppm of dye can be reduced in the spent liquor due to the use of ultrasound for acid red (for 100 min) and acid black (for 3 h) dyes, respectively, thereby reducing the pollution load in the effluent stream. The color yield of the leather as inferred from the reflectance measurement indicates that dye offer can

  8. Computer modeling of a regenerative solar-assisted Rankine power cycle

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1977-01-01

    A detailed interpretation of the computer program that describes the performance of one of these cycles; namely, a regenerative Rankine power cycle is presented. Water is used as the working medium throughout the cycle. The solar energy collected at relatively low temperature level presents 75 to 80% of the total heat demand and provides mainly the latent heat of vaporization. Another energy source at high temperature level superheats the steam and supplements the solar energy share. A program summary and a numerical example showing the sequency of computations are included. The outcome from the model comprises line temperatures, component heat rates, specific steam consumption, percentage of solar energy contribution, and the overall thermal efficiency.

  9. Computer modeling of a regenerative solar-assisted Rankine power cycle

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1977-01-01

    A detailed interpretation of the computer program that describes the performance of one of these cycles; namely, a regenerative Rankine power cycle is presented. Water is used as the working medium throughout the cycle. The solar energy collected at relatively low temperature level presents 75 to 80% of the total heat demand and provides mainly the latent heat of vaporization. Another energy source at high temperature level superheats the steam and supplements the solar energy share. A program summary and a numerical example showing the sequency of computations are included. The outcome from the model comprises line temperatures, component heat rates, specific steam consumption, percentage of solar energy contribution, and the overall thermal efficiency.

  10. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.

    PubMed

    Au, Samuel; Berniker, Max; Herr, Hugh

    2008-05-01

    The human ankle varies impedance and delivers net positive work during the stance period of walking. In contrast, commercially available ankle-foot prostheses are passive during stance, causing many clinical problems for transtibial amputees, including non-symmetric gait patterns, higher gait metabolism, and poorer shock absorption. In this investigation, we develop and evaluate a myoelectric-driven, finite state controller for a powered ankle-foot prosthesis that modulates both impedance and power output during stance. The system employs both sensory inputs measured local to the external prosthesis, and myoelectric inputs measured from residual limb muscles. Using local prosthetic sensing, we first develop two finite state controllers to produce biomimetic movement patterns for level-ground and stair-descent gaits. We then employ myoelectric signals as control commands to manage the transition between these finite state controllers. To transition from level-ground to stairs, the amputee flexes the gastrocnemius muscle, triggering the prosthetic ankle to plantar flex at terminal swing, and initiating the stair-descent state machine algorithm. To transition back to level-ground walking, the amputee flexes the tibialis anterior muscle, triggering the ankle to remain dorsiflexed at terminal swing, and initiating the level-ground state machine algorithm. As a preliminary evaluation of clinical efficacy, we test the device on a transtibial amputee with both the proposed controller and a conventional passive-elastic control. We find that the amputee can robustly transition between the finite state controllers through direct muscle activation, allowing rapid transitioning from level-ground to stair walking patterns. Additionally, we find that the proposed finite state controllers result in a more biomimetic ankle response, producing net propulsive work during level-ground walking and greater shock absorption during stair descent. The results of this study highlight the

  11. Vacuum-powered bubble-assisted solvent extraction followed by macroporous resin enrichment for isolation of podophyllotoxin from Sinopodophyllum emodi.

    PubMed

    Liu, Tingting; Yang, Lei; Sui, Xiaoyu; Zhang, Jie; Li, Li; Fu, Shuang; Li, Wenjing; Liang, Xin

    2015-10-01

    A vacuum-powered bubble-assisted solvent extraction (VBE) technique was used to extract podophyllotoxin from the root of Sinopodophyllum emodi. We optimized the VBE procedure and showed it had the highest efficiency of extraction compared to other conventional extraction techniques. Based upon the results of single-factor experiments, a three-factor, three-level experiment design was developed by application of a Box-Behnken design. The method was validated by stability, repeatability and recovery experiments. The optimal conditions were: solvent, 60% (v/v) ethanol; particle size of the sample, 60-80 mesh; soak time, 2h; liquid/solid ratio, 21L/kg; air flow, 32mL/min; vacuum-powered bubble extraction time, 65min. The VBE method we developed achieved efficient extraction of podophyllotoxin from S. emodi. The podophyllotoxin extracted can be enriched and separated by an HPD300 macroporous resin adsorption and desorption process. The results indicated that VBE is a convenient, rapid and efficient sample preparation technique.

  12. Improvement of power conversion efficiency in photovoltaic-assisted UHF rectifiers by non-silicide technique applied to photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Kotani, Koji

    2015-04-01

    Non-silicide PV cell structures were successfully applied to the photovoltaic (PV)-assisted UHF rectifier, which is one example realization of the “synergistic ambient energy harvesting” concept. Silicide blocking of PV cell area was experimentally verified to be effective for increasing photo-generated bias voltage, which resulted in the improved power conversion efficiency (PCE) of the rectifier by enhanced VTH compensation effect. Increase in both transparency of light and quantum efficiency of PV cells obtained by eliminating silicide layer affects the PCE improvement almost equally. 25.8% of PCE was achieved under the conditions of an RF input power of -20 dBm, a frequency of 920 MHz, an output load of 47 kΩ, and a typical indoor light irradiance level of 1 W/m2. In addition, when the non-silicide PV cell technique was applied to the voltage-boosted PV-cell structures, 32.1% peak PCE was achieved at 10 W/m2.

  13. Composite outcomes: weighting component events according to severity assisted interpretation but reduced statistical power.

    PubMed

    Sampson, Uchechukwu K A; Metcalfe, Chris; Pfeffer, Marc A; Solomon, Scott D; Zou, Kelly H

    2010-10-01

    In trials of chronic disease therapy, each patient may experience several nonfatal illnesses and death. "Composite" outcome measures combine information from these different components of disease burden. Most common is the binary distinction between patients undergoing one or more events and those undergoing no events. We compare this approach with a composite score that preserves information on the number and severity of events. The binary composite measure and composite score were derived for each patient in a trial of cardiovascular therapy. All nonfatal events contributed to the composite score according to their severity: recurrent myocardial infarction (weight 0.5), congestive heart failure that required the use of open-label angiotensin-converting enzyme (ACE) inhibitors (weight 0.2), and hospitalization to treat congestive heart failure (weight 0.5). In the example data set, the composite score required a 10% larger sample size to achieve the same power as the binary measure. However, the composite score suggested that the treatment impacted on the first nonfatal event and mortality only. The composite score provides a more informative measure of disease burden and may avoid overestimating the evidence supporting a treatment effect when that evidence is largely from less severe early events. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  14. Analysis of the solar powered/fuel assisted Rankine cycle cooling system. Phase 1: Revision

    NASA Astrophysics Data System (ADS)

    Lior, N.; Koai, K.; Yeh, H.

    1985-04-01

    The subject of this analysis is a solar cooling system which consists of a conventional open-compressor chiller, driven by a novel hybrid steam Rankine cycle. Steam is generated by the use of solar energy collected at about 100C, and it is then superheated to about 600C in a fossil-fuel fired superheater. The steam drives a novel counter-rotating turbine, some of the heat from it is regenerated, and it is then condensed. Thermal storage is implemented as an integral part of the cycle, by means of hot-water which is flashed to steam when needed for driving the turbine. For the solar energy input, both evacuated and double-glazed flat-plate collectors were considered. A comprehensive computer program was developed to analyze the operation and performance of the entire power/cooling system. Each component was described by a separate subroutine to compute its performance from basic principles, and special attention was given to the parasitic losses, including pumps, fans and pressure drops in the piping and heat exchangers, and to describe the off-design performance of the components. The thermophysical properties of the fluids used are also described in separate subroutines. Transient simulation of the entire system was performed on an hourly basis over a cooling season in two representative climatic regions (Washington, DC, and Phoenix, AZ) for a number of system configurations.

  15. Semi-autonomous mobility assistance for power wheelchair users navigating crowded environments.

    PubMed

    Ashley, Daniel; Ashley, Kyle; Alqasemi, Redwan; Dubey, Rajiv

    2017-07-01

    Power wheelchair users suffering from cognitive or physical impairment often face difficulties in maneuvering their wheelchairs through crowded environments. Currently, users need to be continuously aware of all traffic around them to actively avoid all collisions. This is an especially difficult task since many wheelchair users are unable to accurately view or perceive their surroundings. Additionally, imprecise joystick control, slowed reaction time, or imperfect interpretation of the environment can lead to unintended collisions with objects in the environment. This work looks to augment user's input with data gathered from an ultrasonic sensor ring to prevent accidental collisions. Using data gathered from the sensors, we detect objects within a certain radius of the chair. This sensor information is combined with the user input from a joystick to generate a potential field description for the intended motion of the wheelchair. An optimal motion vector is calculated which works to avoid collision with obstacles. Ultimately, this control method reduces the cognitive load on the user and enables them to navigate complex environments by providing simple and/or imprecise input to the system.

  16. Enhanced power conversion efficiency of dye-sensitized solar cells assisted with phosphor materials

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Min; Kim, Dong In; Hwang, Ki-Hwan; Nam, Sang Hun; Boo, Jin-Hyo

    2016-07-01

    Theoretically dye-sensitized solar cells (DSSCs) are high efficiency solar cells. However, DSSCs have lower power conversion efficiency (PCE) than silicon based solar cells. In this study, we use scattering layer and phosphor materials, such as ZrO2 and Zn2SiO4:Mn (Green), to enhance the PCE of DSSCs. The scattering layer and phosphor materials were prepared and used as an effective scattering layer on the transparent TiO2 photoelectrode through the doctor blade method. We confirmed that the scattering layer improves the PCE and J sc due to the enhancement of light harvesting by increasing the scattering and absorbance in the visible range. Under sun illumination AM 1.5 conditions, the PCE of the mesoporous TiO2 based DSSCs was 5.18%. The PCE of the DSSCs with ZrO2 scattering layer was 5.61% and Zn2SiO4:Mn as the scattering layer was enhanced to 5.72%. In order to compare the change in optical properties, DSSCs were measured by EQE, reflectance and PCE. At the same time, FE-SEM and XRD were used to confirm the structural changes in each layer. [Figure not available: see fulltext.

  17. Prototype vein contrast enhancer

    NASA Astrophysics Data System (ADS)

    Zeman, Herbert D.; Lovhoiden, Gunnar; Vrancken, Carlos

    2004-07-01

    A proof-of-principle prototype Vein Contrast Enhancer (VCE) has been designed and constructed. The VCE is an instrument that makes vein access easier by capturing an infrared image of peripheral veins, enhancing the vein-contrast using software image processing, and projecting the enhanced vein-image back onto the skin using a modified commercial projector. The prototype uses software alignment to achieve alignment accuracy between the captured infrared image and the projected visible image of better than 0.06 mm. Figure 1 shows the prototype demonstrated in our laboratory.

  18. PRMS Data Warehousing Prototype

    NASA Technical Reports Server (NTRS)

    Guruvadoo, Eranna K.

    2002-01-01

    Project and Resource Management System (PRMS) is a web-based, mid-level management tool developed at KSC to provide a unified enterprise framework for Project and Mission management. The addition of a data warehouse as a strategic component to the PRMS is investigated through the analysis, design and implementation processes of a data warehouse prototype. As a proof of concept, a demonstration of the prototype with its OLAP's technology for multidimensional data analysis is made. The results of the data analysis and the design constraints are discussed. The prototype can be used to motivate interest and support for an operational data warehouse.

  19. PRMS Data Warehousing Prototype

    NASA Technical Reports Server (NTRS)

    Guruvadoo, Eranna K.

    2001-01-01

    Project and Resource Management System (PRMS) is a web-based, mid-level management tool developed at KSC to provide a unified enterprise framework for Project and Mission management. The addition of a data warehouse as a strategic component to the PRMS is investigated through the analysis design and implementation processes of a data warehouse prototype. As a proof of concept, a demonstration of the prototype with its OLAP's technology for multidimensional data analysis is made. The results of the data analysis and the design constraints are discussed. The prototype can be used to motivate interest and support for an operational data warehouse.

  20. PRMS Data Warehousing Prototype

    NASA Technical Reports Server (NTRS)

    Guruvadoo, Eranna K.

    2002-01-01

    Project and Resource Management System (PRMS) is a web-based, mid-level management tool developed at KSC to provide a unified enterprise framework for Project and Mission management. The addition of a data warehouse as a strategic component to the PRMS is investigated through the analysis, design and implementation processes of a data warehouse prototype. As a proof of concept, a demonstration of the prototype with its OLAP's technology for multidimensional data analysis is made. The results of the data analysis and the design constraints are discussed. The prototype can be used to motivate interest and support for an operational data warehouse.

  1. PRMS Data Warehousing Prototype

    NASA Technical Reports Server (NTRS)

    Guruvadoo, Eranna K.

    2001-01-01

    Project and Resource Management System (PRMS) is a web-based, mid-level management tool developed at KSC to provide a unified enterprise framework for Project and Mission management. The addition of a data warehouse as a strategic component to the PRMS is investigated through the analysis design and implementation processes of a data warehouse prototype. As a proof of concept, a demonstration of the prototype with its OLAP's technology for multidimensional data analysis is made. The results of the data analysis and the design constraints are discussed. The prototype can be used to motivate interest and support for an operational data warehouse.

  2. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis

    PubMed Central

    Simon, Ann M.; Hargrove, Levi J.

    2016-01-01

    Powered knee-ankle prostheses are capable of providing net-positive mechanical energy to amputees. Yet, there are limitless ways to deliver this energy throughout the gait cycle. It remains largely unknown how different combinations of active knee and ankle assistance affect the walking mechanics of transfemoral amputees. This study assessed the relative contributions of stance phase knee swing initiation, increasing ankle stiffness and powered plantarflexion as three unilateral transfemoral amputees walked overground at their self-selected walking speed. Five combinations of knee and ankle conditions were evaluated regarding the kinematics and kinetics of the amputated and intact legs using repeated measures analyses of variance. We found eliminating active knee swing initiation or powered plantarflexion was linked to increased compensations of the ipsilateral hip joint during the subsequent swing phase. The elimination of knee swing initiation or powered plantarflexion also led to reduced braking ground reaction forces of the amputated and intact legs, and influenced both sagittal and frontal plane loading of the intact knee joint. Gradually increasing prosthetic ankle stiffness influenced the shape of the prosthetic ankle plantarflexion moment, more closely mirroring the intact ankle moment. Increasing ankle stiffness also corresponded to increased prosthetic ankle power generation (despite a similar maximum stiffness value across conditions) and increased braking ground reaction forces of the amputated leg. These findings further our understanding of how to deliver assistance with powered knee-ankle prostheses and the compensations that occur when specific aspects of assistance are added/removed. PMID:26807889

  3. RK-TBA prototype RF source

    SciTech Connect

    Houck, T.; Anderson, D.; Giordano, G.

    1996-04-11

    A prototype rf power source based on the Relativistic Klystron Two-Beam Accelerator (RK-TBA) concept is being constructed at the Lawrence Berkeley National Laboratory to study physics, engineering, and costing issues. The prototype is described and compared to a full scale design appropriate for driving the Next Linear Collider (NLC). Specific details of the induction core tests and pulsed power system are presented. The 1-MeV, 1.2-kA induction gun currently under construction is also described in detail.

  4. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.

    PubMed

    Kloosterman, Marieke G M; Buurke, Jaap H; de Vries, Wiebe; Van der Woude, Lucas H V; Rietman, Johan S

    2015-10-01

    This study aims to compare hand-rim and power-assisted hand-rim propulsion on potential risk factors for shoulder overuse injuries: intensity and repetition of shoulder loading and force generation in the extremes of shoulder motion. Eleven experienced hand-rim wheelchair users propelled an instrumented wheelchair on a treadmill while upper-extremity kinematic, kinetic and surface electromyographical data was collected during propulsion with and without power-assist. As a result during power-assisted propulsion the peak resultant force exerted at the hand-rim decreased and was performed with significantly less abduction and internal rotation at the shoulder. At shoulder level the anterior directed force and internal rotation and flexion moments decreased significantly. In addition, posterior and the minimal inferior directed forces and the external rotation moment significantly increased. The stroke angle decreased significantly, as did maximum shoulder flexion, extension, abduction and internal rotation. Stroke-frequency significantly increased. Muscle activation in the anterior deltoid and pectoralis major also decreased significantly. In conclusion, compared to hand-rim propulsion power-assisted propulsion seems effective in reducing potential risk factors of overuse injuries with the highest gain on decreased range of motion of the shoulder joint, lower peak propulsion force on the rim and reduced muscle activity.

  5. Colleyville Eco House Prototype

    SciTech Connect

    2009-06-16

    This case study describes the construction of a prototype high-performance home that includes a high efficiency ground source heat pump, unvented roof with low density spray foam insulation, and supplemental dehumidification.

  6. LENS: Prototyping Program

    NASA Astrophysics Data System (ADS)

    Rountree, S. Derek

    2013-04-01

    The Low-Energy Neutrino Spectrometer (LENS) prototyping program is broken into two phases. The first of these is μLENS, a small prototype to study the light transmission in the as built LENS scintillation lattice--- a novel detector method of high segmentation in a large liquid scintillation detector. The μLENS prototype is currently deployed and taking data at the Kimballton Underground Research Facility (KURF) near Virginia Tech. I will discuss the Scintillation Lattice construction methods and schemes of the μLENS program for running with minimal channels instrumented to date ˜41 compared to full coverage 216). The second phase of prototyping is the miniLENS detector for which construction is under way. I will discuss the overall design from the miniLENS Scintillation Lattice to the shielding.

  7. Ceramic subsurface marker prototypes

    SciTech Connect

    Lukens, C.E.

    1985-05-02

    The client submitted 5 sets of porcelain and stoneware subsurface (radioactive site) marker prototypes (31 markers each set). The following were determined: compressive strength, thermal shock resistance, thermal crazing resistance, alkali resistance, color retention, and chemical resistance.

  8. Computer-Assisted Monitoring Of A Complex System

    NASA Technical Reports Server (NTRS)

    Beil, Bob J.; Mickelson, Eric M.; Sterritt, John M.; Costantino, Rob W.; Houvener, Bob C.; Super, Mike A.

    1995-01-01

    Propulsion System Advisor (PSA) computer-based system assists engineers and technicians in analyzing masses of sensory data indicative of operating conditions of space shuttle propulsion system during pre-launch and launch activities. Designed solely for monitoring; does not perform any control functions. Although PSA developed for highly specialized application, serves as prototype of noncontrolling, computer-based subsystems for monitoring other complex systems like electric-power-distribution networks and factories.

  9. A Primer on Prototyping.

    PubMed

    Lynch, Dylan; Biron, David

    2015-01-01

    Standard mechanical components, such as adapters or mounts, are ubiquitous in research laboratories, C. elegans labs included. Recently, in-house prototyping and fabricating both standard and custom mechanical parts has become simple and cost effective. Here we describe the basic steps, equipment, and considerations required for rapid prototyping of a handful of simple yet useful designs. These examples were chosen for their simplicity, as well as for demonstrating specific practicalities. They are thus appropriate as training exercises.

  10. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping.

    PubMed

    Samanta, Suman Kalyan; Fritsch, Martin; Scherf, Ullrich; Gomulya, Widianta; Bisri, Satria Zulkarnaen; Loi, Maria Antonietta

    2014-08-19

    The future application of single-walled carbon nanotubes (SWNTs) in electronic (nano)devices is closely coupled to the availability of pure, semiconducting SWNTs and preferably, their defined positioning on suited substrates. Commercial carbon nanotube raw mixtures contain metallic as well as semiconducting tubes of different diameter and chirality. Although many techniques such as density gradient ultracentrifugation, dielectrophoresis, and dispersion by surfactants or polar biopolymers have been developed, so-called conjugated polymer wrapping is one of the most promising and powerful purification and discrimination strategies. The procedure involves debundling and dispersion of SWNTs by wrapping semiflexible conjugated polymers, such as poly(9,9-dialkylfluorene)s (PFx) or regioregular poly(3-alkylthiophene)s (P3AT), around the SWNTs, and is accompanied by SWNT discrimination by diameter and chirality. Thereby, the π-conjugated backbone of the conjugated polymers interacts with the two-dimensional, graphene-like π-electron surface of the nanotubes and the solubilizing alkyl side chains of optimal length support debundling and dispersion in organic solvents. Careful structural design of the conjugated polymers allows for a selective and preferential dispersion of both small and large diameter SWNTs or SWNTs of specific chirality. As an example, with polyfluorenes as dispersing agents, it was shown that alkyl chain length of eight carbons are favored for the dispersion of SWNTs with diameters of 0.8-1.2 nm and longer alkyls with 12-15 carbons can efficiently interact with nanotubes of increased diameter up to 1.5 nm. Polar side chains at the PF backbone produce dispersions with increased SWNT concentration but, unfortunately, cause reduction in selectivity. The selectivity of the dispersion process can be monitored by a combination of absorption, photoluminescence, and photoluminescence excitation spectroscopy, allowing identification of nanotubes with specific

  11. Lightweight composite fighting cover prototype development program

    SciTech Connect

    Wrenn, G.E. Jr.; Frame, B.J.; Gwaltney, R.C.; Akerman, M.A.

    1996-07-01

    The U.S. Army Field Assistance Science and Technology Program requested Oak Ridge National Laboratory (ORNL) to demonstrate the use of lightweight composite materials in construction of overhead covers for reinforced infantry fighting positions. In recent years, ORNL researchers have designed and tested several concepts for lightweight ballistic protection structures, and they have developed numerous prototype composite structures for military and civilian applications. In the current program, composite panel designs and materials are tested and optimized to meet anticipated static and dynamic load conditions for the overhead cover structure. Ten prototype composite covers were built at ORNL for use in Army field tests. Each composite cover has a nominal surface area of 12 ft[sup 2] and a nominal weight of 8 lb. Four of the prototypes are made with folding sections to improve their handling characteristics. The composite covers exhibit equivalent performance in Army field tests to covers made with conventional materials that weigh four times as much.

  12. Power and Time Dependent Microwave Assisted Fabrication of Silver Nanoparticles Decorated Cotton (SNDC) Fibers for Bacterial Decontamination

    PubMed Central

    Bhardwaj, Abhishek K.; Shukla, Abhishek; Mishra, Rohit K.; Singh, S. C.; Mishra, Vani; Uttam, K. N.; Singh, Mohan P.; Sharma, Shivesh; Gopal, R.

    2017-01-01

    Plasmonic nanoparticles (NPs) such as silver and gold have fascinating optical properties due to their enhanced optical sensitivity at a wavelength corresponding to their surface plasmon resonance (SPR) absorption. Present work deals with the fabrication of silver nanoparticles decorated cotton (SNDC) fibers as a cheap and efficient point of contact disinfectant. SNDC fibers were fabricated by a simple microwave assisted route. The microwave power and irradiation time were controlled to optimize size and density of silver nanoparticles (SNPs) on textile fibers. As prepared cotton fabric was characterized for ATR-FTIR, UV-VIS diffuse reflectance, SEM and TEM investigations. Size of SNPs as well as total density of silver atoms on fabric gets increased with the increase of microwave power from 100 W to 600 W. The antibacterial efficacy of SNPs extracted from SNDC fibers was found to be more effective against Gram-negative bacteria than Gram-positive bacteria with MIC 38.5 ± 0.93 μg/mL against Salmonella typhimurium MTCC-98 and 125 ± 2.12 μg/mL against Staphylococcus aureus MTCC-737, a linear correlation coefficient with R2 ranging from ∼0.928–0.935 was also observed. About >50% death cells were observed through Propidium Iodide (PI) internalization after treatment of SNPs extracted from SNDC fibers with concentration 31.25 μg/mL. Generation of ROS and free radical has also been observed which leads to cell death. Excellent Escherichia coli deactivation efficacy suggested that SNDC fibers could be used as potentially safe disinfectants for cleaning of medical equipment, hand, wound, water and preservation of food and beverages. PMID:28316594

  13. Study on optimum maneuverability in horizontal manipulation of objects with power-assist based on weight perception

    NASA Astrophysics Data System (ADS)

    Rahman, S. M. Mizanoor; Ikeura, Ryojun; Nobe, Masaya; Sawai, Hideki

    2009-12-01

    This paper presents the design of a 1-DOF (horizontal forward-backward translational motion) power assist system (PAS) for manipulating objects in horizontal direction based on human operator's perception of object weight. We adopt a hypothesis that pertains to human's weight perception. The hypothesis means that the human must consider the mass parameter for the inertial force different from the mass parameter for the gravitational force when programming (feedforward) the load force (tangential to grip surfaces) for manipulating an object with a PAS because the perception and the reality regarding the object weight are different in this case. We simulated the system using Matlab/Simulink. Five subjects manipulated objects of three different sizes with the PAS during the simulation. Subjects subjectively determined the optimum values for the mass parameters of the inertial and the gravitational force components. Optimum mass parameters resulted in optimum maneuverability. Finally, we proposed using the findings to develop humanfriendly PASs for manipulating heavy objects in industries such as manufacturing and assembly, mining, logistics and transport, construction, disaster management, military operations etc.

  14. Study on optimum maneuverability in horizontal manipulation of objects with power-assist based on weight perception

    NASA Astrophysics Data System (ADS)

    Rahman, S. M. Mizanoor; Ikeura, Ryojun; Nobe, Masaya; Sawai, Hideki

    2010-01-01

    This paper presents the design of a 1-DOF (horizontal forward-backward translational motion) power assist system (PAS) for manipulating objects in horizontal direction based on human operator's perception of object weight. We adopt a hypothesis that pertains to human's weight perception. The hypothesis means that the human must consider the mass parameter for the inertial force different from the mass parameter for the gravitational force when programming (feedforward) the load force (tangential to grip surfaces) for manipulating an object with a PAS because the perception and the reality regarding the object weight are different in this case. We simulated the system using Matlab/Simulink. Five subjects manipulated objects of three different sizes with the PAS during the simulation. Subjects subjectively determined the optimum values for the mass parameters of the inertial and the gravitational force components. Optimum mass parameters resulted in optimum maneuverability. Finally, we proposed using the findings to develop humanfriendly PASs for manipulating heavy objects in industries such as manufacturing and assembly, mining, logistics and transport, construction, disaster management, military operations etc.

  15. Textured PrCo{sub 5} nanoflakes with large coercivity prepared by low power surfactant-assisted ball milling

    SciTech Connect

    Zuo, Wen-Liang Liu, Rong-Ming; Zheng, Xin-Qi; Wu, Rong-Rong; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen

    2014-05-07

    The effect of the milling time on the structure, morphology, coercivity, and remanence ratio of textured PrCo{sub 5} nanoflakes produced by low power surfactant-assisted ball milling (SABM) was investigated. The X-ray powder diffraction (XRD) patterns indicate that the SABM PrCo{sub 5} samples are all CaCu{sub 5}-type hexagonal structure. The average grain size is smaller than 10 nm when the SABM time is equal to or longer than 5.5 h. The thickness of nanoflakes is mainly in the range of 50−100 nm while the length is 0.5−5 μm when the SABM time reaches 8 h. For the field-aligned PrCo{sub 5} nanoflakes, the out-of-plane texture is indicated from the increasing (0 0 l) peaks in the XRD patterns, and the easy magnetization direction is perpendicular to the flake surface. The strong texture of PrCo{sub 5} nanoflakes leads to a large coercivity H{sub c} (7.8 kOe) and obvious anisotropic magnetic behaviors for the aligned samples.

  16. Solar TiO2-assisted photocatalytic degradation of IGCC power station effluents using a Fresnel lens.

    PubMed

    Monteagudo, J M; Durán, A; Guerra, J; García-Peña, F; Coca, P

    2008-03-01

    The heterogeneous TiO2 assisted photocatalytic degradation of wastewater from a thermoelectric power station under concentrated solar light irradiation using a Fresnel lens has been studied. The efficiency of photocatalytic degradation was determined from the analysis of cyanide and formate removal. Firstly, the influence of the initial concentration of H2O2 and TiO2 on the degradation kinetics of cyanides and formates was studied based on a factorial experimental design. Experimental kinetic constants were fitted using neural networks. Results showed that the photocatalytic process was effective for cyanides destruction (mainly following a molecular mechanism), whereas most of formates (degraded mainly via a radical path) remained unaffected. Finally, to improve formates degradation, the effect of lowering pH on their degradation rate was evaluated after complete cyanide destruction. The photooxidation efficiency of formates reaches a maximum at pH around 5-6. Above pH 6, formate anion is subjected to electrostatic repulsion with the negative surface of TiO2. At pH<4.5, formate adsorption and photon absorption are reduced due to some catalyst agglomeration.

  17. HSI Prototypes for Human Systems Simulation Laboratory

    SciTech Connect

    Jokstad, Håkon; McDonald, Rob

    2015-09-01

    This report describes in detail the design and features of three Human System Interface (HSI) prototypes developed by the Institutt for Energiteknikk (IFE) in support of the U.S. Department of Energy’s Light Water Reactor Sustainability Program under Contract 128420 through Idaho National Laboratory (INL). The prototypes are implemented for the Generic Pressurized Water Reactor simulator and installed in the Human Systems Simulation Laboratory at INL. The three prototypes are: 1) Power Ramp display 2) RCS Heat-up and Cool-down display 3) Estimated time to limit display The power ramp display and the RCS heat-up/cool-down display are designed to provide good visual indications to the operators on how well they are performing their task compared to their target ramp/heat-up/cool-down rate. The estimated time to limit display is designed to help operators restore levels or pressures before automatic or required manual actions are activated.

  18. Advances in rapid prototyping

    NASA Astrophysics Data System (ADS)

    Atwood, C. L.; McCarty, G. D.; Pardo, B. T.; Bryce, E. A.

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System's QuickCast(trademark) resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. Sandia uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype parts in support of a Sandia National Laboratories managed program called FASTCAST. As participants in the Beta test program for QuickCast(trademark) resin and software, they experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible, using this technology, to produce highly accurate prototype parts as well as acceptable first article and small lot size production parts. They use the selective laser sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster, with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This presentation will focus on the successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes.

  19. Prototype wood chunker used on Populus 'Tristis'

    Treesearch

    Rodger A. Arola; Roger C. Radcliffe; Sharon A. Winsauer

    1983-01-01

    Populus 'Tristis' trees grown under short-rotation, intensive culture were sampled and chunked in a prototype experimental wood chunking machine. Data presented describe the character of the trees chunked, the energy and power requirements for chunking, and the chunking rates Specific energy requirements for chunking Populus 'Tristis...

  20. Parking Assistance Systems using Human Guidance

    NASA Astrophysics Data System (ADS)

    Wada, Massaki; Yoon, Kang Sup; Hashimoto, Hideki

    This paper dicusses the problem of parking assistance system development. Firstly, we propose the driver assistance systems general architecture based on path planning and human interface modules. A path generation method based on parking possibility area is developed for the parking assistance systems. The human interface designed for the parking assistance systems is then described. A prototype of the parking assistance systems based on the proposed architecture and approaches have been constructed. Proposed algorithms and implementation solutions in the prototype construction are described. The lane and row parking experimental results obtained with the prototype systems are also shown.

  1. Prototyping the Future

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Advanced Ceramics Research (ACR) of Tucson, Arizona, researches transforming scientific concepts into technological achievement. Through the SBIR (Small Business Innovative Research) program, ACR developed a high pressure and temperature fused deposition system, a prototyping system that is known as extrusion freeform fabrication. This system is useful in manufacturing prosthetics. ACR also developed a three-dimensional rapid prototyping process in which physical models are quickly created directly from computer generated models. Marshall Space Flight Center also contracted ACR to fabricate a set of ceramic engines to be appraised for a solar thermal rocket engine test program.

  2. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  3. Fabrication of graphene embedded LiFePO₄ using a catalyst assisted self assembly method as a cathode material for high power lithium-ion batteries.

    PubMed

    Kim, WonKeun; Ryu, WonHee; Han, DongWook; Lim, SungJin; Eom, JiYong; Kwon, HyukSang

    2014-04-09

    We have designed a unique microstructure of graphene embedded LiFePO4 by a catalyst assisted self assembly method as a cathode material for high power lithium-ion batteries. The stable amide bonds between LiFePO4 and graphene were formed by the catalyst assisted self assembly. High conductive graphene provides a fast electron transfer path, and many pores inside the structure facilitate the lithium-ion diffusion. The graphene embedded LiFePO4 fabricated by the novel method shows enhanced cycling performance and rate-capability compared with that of carbon coated LiFePO4 as a cathode material for high power lithium-ion batteries.

  4. MIND performance and prototyping

    SciTech Connect

    Cervera-Villanueva, A.

    2008-02-21

    The performance of MIND (Magnetised Iron Neutrino Detector) at a neutrino factory has been revisited in a new analysis. In particular, the low neutrino energy region is studied, obtaining an efficiency plateau around 5 GeV for a background level below 10{sup -3}. A first look has been given into the detector optimisation and prototyping.

  5. AGS Booster prototype magnets

    SciTech Connect

    Danby, G.; Jackson, J.; Lee, Y.Y.; Phillips, R.; Brodowski, J.; Jablonski, E.; Keohane, G.; McDowell, B.; Rodger, E.

    1987-03-19

    Prototype magnets have been designed and constructed for two half cells of the AGS Booster. The lattice requires 2.4m long dipoles, each curved by 10/sup 0/. The multi-use Booster injector requires several very different standard magnet cycles, capable of instantaneous interchange using computer control from dc up to 10 Hz.

  6. Rapid Prototyping Reconsidered

    ERIC Educational Resources Information Center

    Desrosier, James

    2011-01-01

    Continuing educators need additional strategies for developing new programming that can both reduce the time to market and lower the cost of development. Rapid prototyping, a time-compression technique adapted from the high technology industry, represents one such strategy that merits renewed evaluation. Although in higher education rapid…

  7. Rapid Prototyping in PVS

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.; Butler, Ricky (Technical Monitor)

    2003-01-01

    PVSio is a conservative extension to the PVS prelude library that provides basic input/output capabilities to the PVS ground evaluator. It supports rapid prototyping in PVS by enhancing the specification language with built-in constructs for string manipulation, floating point arithmetic, and input/output operations.

  8. Cost Effective Prototyping

    NASA Technical Reports Server (NTRS)

    Wickman, Jerry L.; Kundu, Nikhil K.

    1996-01-01

    This laboratory exercise seeks to develop a cost effective prototype development. The exercise has the potential of linking part design, CAD, mold development, quality control, metrology, mold flow, materials testing, fixture design, automation, limited parts production and other issues as related to plastics manufacturing.

  9. Prompt and Precise Prototyping

    NASA Technical Reports Server (NTRS)

    2003-01-01

    For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.

  10. Cost Effective Prototyping

    NASA Technical Reports Server (NTRS)

    Wickman, Jerry L.; Kundu, Nikhil K.

    1996-01-01

    This laboratory exercise seeks to develop a cost effective prototype development. The exercise has the potential of linking part design, CAD, mold development, quality control, metrology, mold flow, materials testing, fixture design, automation, limited parts production and other issues as related to plastics manufacturing.

  11. Rapid Prototyping Reconsidered

    ERIC Educational Resources Information Center

    Desrosier, James

    2011-01-01

    Continuing educators need additional strategies for developing new programming that can both reduce the time to market and lower the cost of development. Rapid prototyping, a time-compression technique adapted from the high technology industry, represents one such strategy that merits renewed evaluation. Although in higher education rapid…

  12. Prototype Facility Educational Specifications.

    ERIC Educational Resources Information Center

    Idaho State Div. of Professional-Technical Education, Boise.

    This document presents prototypical educational specifications to guide the building and renovation of Idaho vocational schools so they can help communities meet the advanced, professional-technical programs of the future. The specifications start with points to consider when determining school site suitability. The document then sets forth…

  13. Advances in rapid prototyping

    SciTech Connect

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1993-12-31

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{trademark} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. Sandia uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype parts in support of a Sandia National Laboratories managed program called FASTCAST. As participants in the Beta test program for QuickCast{trademark} resin and software, they experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible, using this technology, to produce highly accurate prototype parts as well as acceptable firs article and small lots size production parts. They use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster, with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This presentation will focus on the successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes.

  14. Virtual Prototyping of RF Weapons

    NASA Astrophysics Data System (ADS)

    Cartwright, Keith

    2002-08-01

    We are attempting to perform virtual prototyping of RF systems, from pulse power through to antennas, with the ICEPIC (Improved Concurrent Electromagnetic Particle-in-Cell) HPC software that we have developed over the past several years with funding from AFOSR. This code simulates from first principles (Maxwell's equations and Lorenz's force law) the electrodynamics and charged particle dynamics of the RF-producing part of the system. Such simulations require major computational resources. In the past, we have simulated GigaWatt-class sources that have already been built in the laboratory including the relativistic klystron oscillator (RKO) and the magnetically insulated line oscillator (MILO). Our simulations have uncovered undesirable features of these sources, and have led us to suggest ways to improve them. We are now taking the next step in our evolution towards true virtual prototyping. We have begun to simulate the relativistic magnetron before it is been built at our lab. The details of the device that will eventually be built, including the geometric structure and the externally generated magnetic field distribution, will be based on our simulations. In this paper, we present results from ICEPIC simulations that lead to the improvement of the RKO and MILO as well as predicted characteristics the relativistic magnetron that we plan to build in the fall of 2002.

  15. Mechatronic Prototype of Parabolic Solar Tracker.

    PubMed

    Morón, Carlos; Díaz, Jorge Pablo; Ferrández, Daniel; Ramos, Mari Paz

    2016-06-15

    In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses.

  16. Mechatronic Prototype of Parabolic Solar Tracker

    PubMed Central

    Morón, Carlos; Díaz, Jorge Pablo; Ferrández, Daniel; Ramos, Mari Paz

    2016-01-01

    In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses. PMID:27314359

  17. Rapid prototyping for biomedical engineering: current capabilities and challenges.

    PubMed

    Lantada, Andrés Díaz; Morgado, Pilar Lafont

    2012-01-01

    A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends.

  18. Generalizing Prototype Theory: A Formal Quantum Framework

    PubMed Central

    Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro

    2016-01-01

    Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436

  19. Generalizing Prototype Theory: A Formal Quantum Framework.

    PubMed

    Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro

    2016-01-01

    Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper.

  20. Performance of the SDHCAL technological prototype

    NASA Astrophysics Data System (ADS)

    Grenier, G.

    2016-07-01

    The SDHCAL technological prototype is a 1 × 1 × 1.3 m3 high-granularity Semi-Digital Hadronic CALorimeter using Glass Resistive Plate Chambers as sensitive medium. It is one of the two HCAL options considered by the ILD Collaboration to be proposed for the detector of the future International Linear Collider project. The prototype is made of up to 50 GRPC detectors of 1 m2 size and 3 mm thickness each with an embedded semi-digital electronics readout that is autotriggering and power-pulsed. The GRPC readout is finely segmented into pads of 1 cm2. This proceeding describes the prototype, its operation and its performance in energy reconstruction. Aspects of the GRPC readout modelling and comparisons with simulations are also presented.

  1. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis.

    PubMed

    Miller, Larry E; Zimmermann, Angela K; Herbert, William G

    2016-01-01

    Powered exoskeletons are designed to safely facilitate ambulation in patients with spinal cord injury (SCI). We conducted the first meta-analysis of the available published research on the clinical effectiveness and safety of powered exoskeletons in SCI patients. MEDLINE and EMBASE databases were searched for studies of powered exoskeleton-assisted walking in patients with SCI. Main outcomes were analyzed using fixed and random effects meta-analysis models. A total of 14 studies (eight ReWalk™, three Ekso™, two Indego(®), and one unspecified exoskeleton) representing 111 patients were included in the analysis. Training programs were typically conducted three times per week, 60-120 minutes per session, for 1-24 weeks. Ten studies utilized flat indoor surfaces for training and four studies incorporated complex training, including walking outdoors, navigating obstacles, climbing and descending stairs, and performing activities of daily living. Following the exoskeleton training program, 76% of patients were able to ambulate with no physical assistance. The weighted mean distance for the 6-minute walk test was 98 m. The physiologic demand of powered exoskeleton-assisted walking was 3.3 metabolic equivalents and rating of perceived exertion was 10 on the Borg 6-20 scale, comparable to self-reported exertion of an able-bodied person walking at 3 miles per hour. Improvements in spasticity and bowel movement regularity were reported in 38% and 61% of patients, respectively. No serious adverse events occurred. The incidence of fall at any time during training was 4.4%, all occurring while tethered using a first-generation exoskeleton and none resulting in injury. The incidence of bone fracture during training was 3.4%. These risks have since been mitigated with newer generation exoskeletons and refinements to patient eligibility criteria. Powered exoskeletons allow patients with SCI to safely ambulate in real-world settings at a physical activity intensity conducive to

  2. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis

    PubMed Central

    Miller, Larry E; Zimmermann, Angela K; Herbert, William G

    2016-01-01

    Background Powered exoskeletons are designed to safely facilitate ambulation in patients with spinal cord injury (SCI). We conducted the first meta-analysis of the available published research on the clinical effectiveness and safety of powered exoskeletons in SCI patients. Methods MEDLINE and EMBASE databases were searched for studies of powered exoskeleton-assisted walking in patients with SCI. Main outcomes were analyzed using fixed and random effects meta-analysis models. Results A total of 14 studies (eight ReWalk™, three Ekso™, two Indego®, and one unspecified exoskeleton) representing 111 patients were included in the analysis. Training programs were typically conducted three times per week, 60–120 minutes per session, for 1–24 weeks. Ten studies utilized flat indoor surfaces for training and four studies incorporated complex training, including walking outdoors, navigating obstacles, climbing and descending stairs, and performing activities of daily living. Following the exoskeleton training program, 76% of patients were able to ambulate with no physical assistance. The weighted mean distance for the 6-minute walk test was 98 m. The physiologic demand of powered exoskeleton-assisted walking was 3.3 metabolic equivalents and rating of perceived exertion was 10 on the Borg 6–20 scale, comparable to self-reported exertion of an able-bodied person walking at 3 miles per hour. Improvements in spasticity and bowel movement regularity were reported in 38% and 61% of patients, respectively. No serious adverse events occurred. The incidence of fall at any time during training was 4.4%, all occurring while tethered using a first-generation exoskeleton and none resulting in injury. The incidence of bone fracture during training was 3.4%. These risks have since been mitigated with newer generation exoskeletons and refinements to patient eligibility criteria. Conclusion Powered exoskeletons allow patients with SCI to safely ambulate in real-world settings at

  3. PEP-II prototype klystron

    SciTech Connect

    Fowkes, W.R.; Caryotakis, G.; Lee, T.G.; Pearson, C.; Wright, E.L.

    1993-04-01

    A 540-kW continuous-wave (cw) klystron operating at 476 MHz was developed for use as a power source for testing PEP-II rf accelerating cavities and rf windows. It also serves as a prototype for a 1.2 MW cw klystron presently being developed as a potential rf source for asymmetric colliding ring use. The design incorporates the concepts and many of the parts used in the original 353 MHz PEP klystron developed sixteen years ago. The superior computer simulation codes available today result in improved performance with the cavity frequencies, drift lengths, and output circuit optimized for the higher frequency.The design and operating results of this tube are described with particular emphasis on the factors which affect efficiency and stability.

  4. Experimental prototype of an electric elevator

    NASA Astrophysics Data System (ADS)

    Gaiceanu, M.; Epure, S.; Ciuta, S.

    2016-08-01

    The main objective is to achieve an elevator prototype powered by a three-phase voltage system via a bidirectional static power converter ac-ac with regenerating capability. In order to diminish the power size of the electric motor up to 1/3 of rated power, the elevator contains two carriages of the same weight, one serving as the payload, and the other as counterweight. Before proper operation of the static power converter, the capacitor must be charged at rated voltage via a precharge circuit. At the moment of stabilizing the DC voltage at nominal value, the AC-AC power converter can operates in the proper limits. The functions of the control structure are: the load control task, speed and torque controls. System includes transducers for current measuring, voltage sensors and encoder. As reserve power sources the hybrid battery-photovoltaic panels are used. The control voltage is modulated by implementing four types of pulse width modulations: sinusoidal, with reduced commutation, third order harmonic insertion, and the space vector modulation. Therefore, the prototype could operates with an increased efficiency, in spite of the existing ones. The experimental results confirm the well design of the chosen solution. The control solution assures bidirectional power flow control, precharge control, and load control and it is implemented on a digital signal processor. The elevator capacity is between 300-450 kg, and it is driven by using a 1.5 kW three-phase asynchronous machine.

  5. Design of a Prototype EHD Air Pump for Electronic Chip Cooling Applications

    NASA Astrophysics Data System (ADS)

    Emmanouil, D. Fylladitakis; Antonios, X. Moronis; Konstantinos, Kiousis

    2014-05-01

    This paper presents the design, optimization and fabrication of an EHD air pump intended for high-power electronic chip cooling applications. Suitable high-voltage electrode configurations were selected and studied, in terms of the characteristics of the generated electric field, which play an important role in ionic wind flow. For this purpose, dedicated software is used to implement finite element analysis. Critical design parameters, such as the electric field intensity, wind velocity, current flow and power consumption are investigated. Two different laboratory prototypes are fabricated and their performances experimentally assessed. This procedure leads to the fabrication of a final prototype, which is then tested as a replacement of a typical fan for cooling a high power density electronic chip. To assist towards that end, an experimental thermal testing setup is designed and constructed to simulate the size of a personal computer's CPU core of variable power. The parametric study leads to the fabrication of experimental single-stage EHD pumps, the optimal design of which is capable of delivering an air flow of 51 CFM with an operating voltage of 10.5 kV. Finally, the theoretical and experimental results are evaluated and potential applications are proposed.

  6. Movement Performance of Human-Robot Cooperation Control Based on EMG-driven Hill-type and Proportional Models for an Ankle Power-assist Exoskeleton Robot.

    PubMed

    Ao, Di; Song, Rong; Gao, Jin-Wu

    2016-06-22

    Although the merits of electromyography (EMG)-based control of powered assistive systems have been certified, the factors that affect the performance of EMG-based human-robot cooperation, which are very important, have received little attention. This study investigates whether a more physiologically appropriate model could improve the performance of human-robot cooperation control for an ankle power-assist exoskeleton robot. To achieve the goal, an EMG-driven Hill-type neuromusculoskeletal model (HNM) and a linear proportional model (LPM) were developed and calibrated through maximum isometric voluntary dorsiflexion (MIVD). The two control models could estimate the real-time ankle joint torque, and HNM is more accurate and can account for the change of the joint angle and muscle dynamics. Then, eight healthy volunteers were recruited to wear the ankle exoskeleton robot and complete a series of sinusoidal tracking tasks in the vertical plane. With the various levels of assist based on the two calibrated models, the subjects were instructed to track the target displayed on the screen as accurately as possible by performing ankle dorsiflexion and plantarflexion. Two measurements, the root mean square error (RMSE) and root mean square jerk (RMSJ), were derived from the assistant torque and kinematic signals to characterize the movement performances, whereas the amplitudes of the recorded EMG signals from the tibialis anterior (TA) and the gastrocnemius (GAS) were obtained to reflect the muscular efforts. The results demonstrated that the muscular effort and smoothness of tracking movements decreased with an increase in the assistant ratio. Compared with LPM, subjects made lower physical efforts and generated smoother movements when using HNM, which implied that a more physiologically appropriate model could enable more natural and human-like human-robot cooperation and has potential value for improvement of human-exoskeleton interaction in future applications.

  7. Step Prototype Development Status

    NASA Astrophysics Data System (ADS)

    Mehls, C.; Bayart, C.; Bower, J.; Clarke, B.; Cox, C.; Gill, D.; Stricker, D.; Vora, N.; Wang, S.; Zhou, P.; Torii, R.; Worden, P.; Debra, D.; Dittus, H.; Loeffler, F.

    2008-09-01

    STEP, the Satellite Test of the Equivalence Principle [1], proposes to test the Equivalence Principle to a part in 1018 by comparing the free-fall acceleration of cylindrical shaped test masses [2] in Earth orbit. Magnetic bearings constrain the test mass motion to their axis of symmetry [3]. The displacement of the test masses is measured using a DC SQUID and superconducting coils [4], enabling a displacement sensitivity as small as 10-15 m. In combination with a small spring stiffness a differential acceleration sensitivity of 10-18 g is achievable. Residual satellite acceleration is reduced to better than 10-14 g by compensating satellite drag forces with thrust provided by helium gas. We report on recent progress in the development of STEP prototype flight accelerometers, in particular the development of the high precision quartz housing for the engineering inner accelerometer and the testing of SQUID and capacitive readout systems using 'brass board' accelerometer prototypes.

  8. Prototype Slide Stainer

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The prototype slide staining system capable of performing both one-component Wright's staining of blood smears and eight-step Gram staining of heat fixed slides of microorganisms is described. Attention was given to liquid containment, waste handling, absence of contamination from previous staining, and stability of the staining reagents. The unit is self-contained, capable of independent operation under one- or zero-g conditions, and compatible with Skylab A.

  9. Wet chemistry instrument prototype

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A wet chemistry instrument prototype for detecting amino acids in planetary soil samples was developed. The importance of amino acids and their condensation products to the development of life forms is explained. The characteristics of the instrument and the tests which were conducted to determine the materials compatibility are described. Diagrams are provided to show the construction of the instrument. Data obtained from the performance tests are reported.

  10. Ghana watershed prototype products

    USGS Publications Warehouse

    ,

    2007-01-01

    A number of satellite data sets are available through the U.S. Geological Survey (USGS) for monitoring land surface features. Representative data sets include Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Shuttle Radar Topography Mission (SRTM). The Ghana Watershed Prototype Products cover an area within southern Ghana, Africa, and include examples of the aforementioned data sets along with sample SRTM derivative data sets.

  11. Ghana Watershed Prototype Products

    USGS Publications Warehouse

    ,

    2007-01-01

    Introduction/Background A number of satellite data sets are available through the U.S. Geological Survey (USGS) for monitoring land surface features. Representative data sets include Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Shuttle Radar Topography Mission (SRTM). The Ghana Watershed Prototype Products cover an area within southern Ghana, Africa, and include examples of the aforementioned data sets along with sample SRTM derivative data sets.

  12. Common Prototyping Language

    DTIC Science & Technology

    1991-08-01

    1988 17:12 example Lisp, Prolog, SETL, APL, SmallTalk, ML, and others meet many of the requirements. A careful analysis in each case will be helpful...handles unsupplied or incomplete components. A prototype is incomplete if not all procedures, functions, or types are defined or if they are partially...defined. The following are examples of how PC might handle unsupplied or incomplete components: SInvoke a condition handler * Query the user 0 Entering

  13. The power of a collaborative relationship between technical assistance providers and community prevention teams: A correlational and longitudinal study

    PubMed Central

    Chilenski, Sarah M.; Perkins, Daniel F.; Olson, Jonathan; Hoffman, Lesa; Feinberg, Mark E.; Greenberg, Mark; Welsh, Janet; Crowley, D. Max; Spoth, Richard

    2015-01-01

    Background Historically, effectiveness of community collaborative prevention efforts has been mixed. Consequently, research has been undertaken to better understand the factors that support their effectiveness; theory and some related empirical research suggests that the provision of technical assistance is one important supporting factor. The current study examines one aspect of technical assistance that may be important in supporting coalition effectiveness, the collaborative relationship between the technical assistance provider and site lead implementer. Methods Four and one-half years of data were collected from technical assistance providers and prevention team members from the 14 community prevention teams involved in the PROSPER project. Results Spearman correlation analyses with longitudinal data show that the levels of the collaborative relationship during one phase of collaborative team functioning associated with characteristics of internal team functioning in future phases. Conclusions Results suggest that community collaborative prevention work should consider the collaborative nature of the technical assistance provider – prevention community team relationship when designing and conducting technical assistance activities, and it may be important to continually assess these dynamics to support high quality implementation. PMID:26476860

  14. The power of a collaborative relationship between technical assistance providers and community prevention teams: A correlational and longitudinal study.

    PubMed

    Chilenski, Sarah M; Perkins, Daniel F; Olson, Jonathan; Hoffman, Lesa; Feinberg, Mark E; Greenberg, Mark; Welsh, Janet; Crowley, D Max; Spoth, Richard

    2016-02-01

    Historically, effectiveness of community collaborative prevention efforts has been mixed. Consequently, research has been undertaken to better understand the factors that support their effectiveness; theory and some related empirical research suggests that the provision of technical assistance is one important supporting factor. The current study examines one aspect of technical assistance that may be important in supporting coalition effectiveness, the collaborative relationship between the technical assistance provider and site lead implementer. Four and one-half years of data were collected from technical assistance providers and prevention team members from the 14 community prevention teams involved in the PROSPER project. Spearman correlation analyses with longitudinal data show that the levels of the collaborative relationship during one phase of collaborative team functioning associated with characteristics of internal team functioning in future phases. Results suggest that community collaborative prevention work should consider the collaborative nature of the technical assistance provider - prevention community team relationship when designing and conducting technical assistance activities, and it may be important to continually assess these dynamics to support high quality implementation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    SciTech Connect

    Hyungsuk Kang; Chun Tai

    2010-05-01

    The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA

  16. Feasibility and Safety of a Powered Exoskeleton for Assisted Walking for Persons With Multiple Sclerosis: A Single-Group Preliminary Study.

    PubMed

    Kozlowski, Allan J; Fabian, Michelle; Lad, Dipan; Delgado, Andrew D

    2017-07-01

    To examine the feasibility, safety, and secondary benefit potential of exoskeleton-assisted walking with one device for persons with multiple sclerosis (MS). Single-group longitudinal preliminary study with 8-week baseline, 8-week intervention, and 4-week follow-up. Outpatient MS clinic, tertiary care hospital. Participants (N=13; age range, 38-62y) were mostly women with Expanded Disability Status Scale scores ranging from 5.5 to 7.0. Exoskeleton-assisted walk training. Primary outcomes were accessibility (enrollment/screen pass), tolerability (completion/dropout), learnability (time to event for standing, walking, and sitting with little or no assistance), acceptability (satisfaction on the device subscale of the Quebec User Evaluation of Satisfaction with Assistive Technology version 2), and safety (event rates standardized to person-time exposure in the powered exoskeleton). Secondary outcomes were walking without the device (timed 25-foot walk test and 6-minute walk test distance), spasticity (Modified Ashworth Scale), and health-related quality of life (Patient-Reported Outcomes Measurement and Information System pain interference and Quality of Life in Neurological Conditions fatigue, sleep disturbance, depression, and positive affect and well-being). The device was accessible to 11 and tolerated by 5 participants. Learnability was moderate, with 5 to 15 sessions required to walk with minimal assistance. Safety was good; the highest adverse event rate was for skin issues at 151 per 1000 hours' exposure. Acceptability ranged from not very satisfied to very satisfied. Participants who walked routinely improved qualitatively on sitting, standing, or walking posture. Two participants improved and 2 worsened on ≥1 quality of life domain. The pattern of spasticity scores may indicate potential benefit. The device appeared feasible and safe for about a third of our sample, for whom routine exoskeleton-assisted walking may offer secondary benefits. Copyright

  17. NASA's Wireless Augmented Reality Prototype (WARP)

    NASA Astrophysics Data System (ADS)

    Agan, Martin; Voisinet, Leeann; Devereaux, Ann

    1998-01-01

    The objective of Wireless Augmented Reality Prototype (WARP) effort is to develop and integrate advanced technologies for real-time personal display of information relevant to the health and safety of space station/shuttle personnel. The WARP effort will develop and demonstrate technologies that will ultimately be incorporated into operational Space Station systems and that have potential earth applications such as aircraft pilot alertness monitoring and in various medical and consumer environments where augmented reality is required. To this end a two phase effort will be undertaken to rapidly develop a prototype (Phase I) and an advanced prototype (Phase II) to demonstrate the following key technology features that could be applied to astronaut internal vehicle activity (IVA) and potentially external vehicle activity (EVA) as well: 1) mobile visualization, and 2) distributed information system access. Specifically, Phase I will integrate a low power, miniature wireless communication link and a commercial biosensor with a head mounted display. The Phase I design will emphasize the development of a relatively small, lightweight, and unobtrusive body worn prototype system. Phase II will put increased effort on miniaturization, power consumption reduction, increased throughput, higher resolution, and ``wire removal'' of the subsystems developed in Phase I.

  18. DOE`s annealing prototype demonstration projects

    SciTech Connect

    Warren, J.; Nakos, J.; Rochau, G.

    1997-02-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy`s Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana`s Marble Hill nuclear power plant. The MPR team`s annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company`s nuclear power plant at Midland, Michigan. This paper describes the Department`s annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges.

  19. MITRE sensor layer prototype

    NASA Astrophysics Data System (ADS)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  20. Understanding Semiotic Technology in University Classrooms: A Social Semiotic Approach to PowerPoint-Assisted Cultural Studies Lectures

    ERIC Educational Resources Information Center

    Zhao, Sumin; van Leeuwen, Theo

    2014-01-01

    In this paper, we propose a social semiotic approach to studying PowerPoint in university classrooms. Our approach is centred on two premises: (1) PowerPoint is a semiotic technology that can be integrated into the pedagogical discourse of classrooms, and (2) PowerPoint technology encompasses three interrelated dimensions of social semiotic…

  1. Understanding Semiotic Technology in University Classrooms: A Social Semiotic Approach to PowerPoint-Assisted Cultural Studies Lectures

    ERIC Educational Resources Information Center

    Zhao, Sumin; van Leeuwen, Theo

    2014-01-01

    In this paper, we propose a social semiotic approach to studying PowerPoint in university classrooms. Our approach is centred on two premises: (1) PowerPoint is a semiotic technology that can be integrated into the pedagogical discourse of classrooms, and (2) PowerPoint technology encompasses three interrelated dimensions of social semiotic…

  2. Majorana Thermosyphon Prototype Experimental Setup

    SciTech Connect

    Reid, Douglas J.; Guzman, Anthony D.; Munley, John T.

    2011-08-01

    This report presents the experimental setup of Pacific Northwest National Laboratory’s MAJORANA DEMONSTRATOR thermosyphon prototype cooling system. A nitrogen thermosyphon prototype of such a system has been built and tested at PNNL. This document presents the experimental setup of the prototype that successfully demonstrated the heat transfer performance of the system.

  3. Electrohydraulic ventricular assist device development.

    PubMed

    Diegel, P D; Mussivand, T; Holfert, J W; Nahon, D; Miller, J; Maclean, G K; Santerre, J P; Bearnson, G B; Juretich, J; Hansen, A C

    1991-01-01

    A 64 ml (effective stroke volume) in vitro electrohydraulic ventricular assist device (VAD) prototype has been built. The energy converter is an axial flow pump driven by a brushless direct current (DC) motor. Systole begins as silicone oil is pumped from the volume displacement chamber (VDC) into the ventricle, displacing the flexing diaphragm separating the oil and the blood. In diastole, the motor reverses, providing active filling by pumping oil from the ventricle into the VDC. The surface mount electronic internal controller provides motor commutator, energy management, telemetry, and physiologic control functions. Energy is supplied externally by either a 12 V DC power supply or a 12 V DC rechargeable battery and is transmitted through the skin by a transcutaneous energy transformer (TET). Energy can also be supplied by a 12 V DC rechargeable internal battery. Bidirectional infrared telemetry is used to transmit information between the internal and external controllers.

  4. Ambient Assistive Technologies (AAT): socio-technology as a powerful tool for facing the inevitable sociodemographic challenges?

    PubMed

    Schülke, Astrid M; Plischke, Herbert; Kohls, Niko B

    2010-06-07

    Due to the socio-demographic change in most developed western countries, elderly populations have been continuously increasing. Therefore, preventive and assistive systems that allow elderly people to independently live in their own homes as long as possible will become an economical if not ethical necessity. These respective technologies are being developed under the term "Ambient Assistive Technologies" (AAT). The EU-funded AAT-project Ambient Lighting Assistance for an Ageing Population (ALADIN) has established the long-term goal to create an adaptive system capable of improving the residential lighting conditions of single living elderly persons also aiming at supporting the preservation of their independence.Results of an earlier survey revealed that the elderly perceived their current lighting situation as satisfactory, whereas interviewers assessed in-house lighting as too dark and risk-laden. The overall results of ALADIN showed a significant increase in well-being from the baseline final testing with the new adaptive lighting system.Positive results for wellbeing and life quality suggest that the outcome effects may be attributed to the introduction of technology as well as to social contacts arising from participating in the study. The technological guidance of the study supervisors, in particular, may have produced a strong social reactivity effect that was first observed in the famous Hawthorne experiments in the 1930s. As older adults seem to benefit both from meaningful social contacts as well as assistive technologies, the question arises how assistive technology can be socially embedded to be able to maximize positive health effects. Therefore ethical guidelines for development and use of new assistive technologies for handicapped/older persons have to be developed and should be discussed with regard to their applicability in the context of AAT.

  5. Assessment of In-Hospital Walking Velocity and Level of Assistance in a Powered Exoskeleton in Persons with Spinal Cord Injury

    PubMed Central

    Yang, Ajax; Asselin, Pierre; Knezevic, Steven; Kornfeld, Stephen

    2015-01-01

    Background: Individuals with spinal cord injury (SCI) often use a wheelchair for mobility due to paralysis. Powered exoskeletal-assisted walking (EAW) provides a modality for walking overground with crutches. Little is known about the EAW velocities and level of assistance (LOA) needed for these devices. Objective: The primary aim was to evaluate EAW velocity, number of sessions, and LOA and the relationships among them. The secondary aims were to report on safety and the qualitative analysis of gait and posture during EAW in a hospital setting. Methods: Twelve individuals with SCI ≥1.5 years who were wheelchair users participated. They wore a powered exoskeleton (ReWalk; ReWalk Robotics, Inc., Marlborough, MA) with Lofstrand crutches to complete 10-meter (10MWT) and 6-minute (6MWT) walk tests. LOA was defined as modified independence (MI), supervision (S), minimal assistance (Min), and moderate assistance (Mod). Best effort EAW velocity, LOA, and observational gait analysis were recorded. Results: Seven of 12 participants ambulated ≥0.40 m/s. Five participants walked with MI, 3 with S, 3 with Min, and 1 with Mod. Significant inverse relationships were noted between LOA and EAW velocity for both 6MWT (Z value = 2.63, Rho = 0.79, P = .0086) and 10MWT (Z value = 2.62, Rho = 0.79, P = .0088). There were 13 episodes of mild skin abrasions. MI and S groups ambulated with 2-point alternating crutch pattern, whereas the Min and Mod groups favored 3-point crutch gait. Conclusion: Seven of 12 individuals studied were able to ambulate at EAW velocities ≥0.40 m/s, which is a velocity that may be conducive to outdoor activity-related community ambulation. The ReWalk is a safe device for in-hospital ambulation. PMID:26364279

  6. Surfactant-free synthesis of metallic bismuth spheres by microwave-assisted solvothermal approach as a function of the power level

    NASA Astrophysics Data System (ADS)

    Estrada Flores, Miriam; Santiago Jacinto, Patricia; Reza San Germán, Carmen M.; Rendón Vázquez, Luis; Borja Urby, Raúl; Cayetano Castro, Nicolás

    2016-10-01

    In the present work, the synthesis of micro- and nano-sized spheres of metallic bismuth by microwave-assisted solvothermal method is reported. The synthesis method was carried out at different power levels and at a unique frequency of microwave irradiation. The sphere sizes were controlled by the microwave power level and the concentration of dissolved precursor. Structural and morphological characterization was performed by SEM, HRTEM, EELS and XRD. The results demonstrated that rhombohedral zero valent Bi spheres were synthesized after microwave radiation at 600 and 1200 W. However, if the power level is decreased to 120W, a monoclinic phase of Bi2O3 is obtained with a flake-like morphology. In comparison with a conventional hydrothermal process, the microwave-assisted solvothermal approach provides many advantages such as shorter reaction time, optimum manipulation of morphologies and provides a specific chemical phase and avoids the mixture of structural phases and morphologies which is essential for further applications such as drug delivery or functionalization with organic materials, thanks to its biocompatibility.

  7. Device-Training for Individuals with Thoracic and Lumbar Spinal Cord Injury Using a Powered Exoskeleton for Technically Assisted Mobility: Achievements and User Satisfaction.

    PubMed

    Platz, Thomas; Gillner, Annett; Borgwaldt, Nicole; Kroll, Sylvia; Roschka, Sybille

    2016-01-01

    Objective. Results of a device-training for nonambulatory individuals with thoracic and lumbar spinal cord injury (SCI) using a powered exoskeleton for technically assisted mobility with regard to the achieved level of control of the system after training, user satisfaction, and effects on quality of life (QoL). Methods. Observational single centre study with a 4-week to 5-week intensive inpatient device-training using a powered exoskeleton (ReWalk™). Results. All 7 individuals with SCI who commenced the device-training completed the course of training and achieved basic competences to use the system, that is, the ability to stand up, sit down, keep balance while standing, and walk indoors, at least with a close contact guard. User satisfaction with the system and device-training was documented for several aspects. The quality of life evaluation (SF-12v2™) indicated that the use of the powered exoskeleton can have positive effects on the perception of individuals with SCI regarding what they can achieve physically. Few adverse events were observed: minor skin lesions and irritations were observed; no falls occurred. Conclusions. The device-training for individuals with thoracic and lumbar SCI was effective and safe. All trained individuals achieved technically assisted mobility with the exoskeleton while still needing a close contact guard.

  8. Surfactant-free synthesis of metallic bismuth spheres by microwave-assisted solvothermal approach as a function of the power level

    NASA Astrophysics Data System (ADS)

    Estrada Flores, Miriam; Santiago Jacinto, Patricia; Reza San Germán, Carmen M.; Rendón Vázquez, Luis; Borja Urby, Raúl; Cayetano Castro, Nicolás

    2016-12-01

    In the present work, the synthesis of micro- and nano-sized spheres of metallic bismuth by microwave-assisted solvothermal method is reported. The synthesis method was carried out at different power levels and at a unique frequency of microwave irradiation. The sphere sizes were controlled by the microwave power level and the concentration of dissolved precursor. Structural and morphological characterization was performed by SEM, HRTEM, EELS and XRD. The results demonstrated that rhombohedral zero valent Bi spheres were synthesized after microwave radiation at 600 and 1200 W. However, if the power level is decreased to 120W, a monoclinic phase of Bi2O3 is obtained with a flake-like morphology. In comparison with a conventional hydrothermal process, the microwave-assisted solvothermal approach provides many advantages such as shorter reaction time, optimum manipulation of morphologies and provides a specific chemical phase and avoids the mixture of structural phases and morphologies which is essential for further applications such as drug delivery or functionalization with organic materials, thanks to its biocompatibility.

  9. Device-Training for Individuals with Thoracic and Lumbar Spinal Cord Injury Using a Powered Exoskeleton for Technically Assisted Mobility: Achievements and User Satisfaction

    PubMed Central

    Gillner, Annett; Borgwaldt, Nicole; Kroll, Sylvia; Roschka, Sybille

    2016-01-01

    Objective. Results of a device-training for nonambulatory individuals with thoracic and lumbar spinal cord injury (SCI) using a powered exoskeleton for technically assisted mobility with regard to the achieved level of control of the system after training, user satisfaction, and effects on quality of life (QoL). Methods. Observational single centre study with a 4-week to 5-week intensive inpatient device-training using a powered exoskeleton (ReWalk™). Results. All 7 individuals with SCI who commenced the device-training completed the course of training and achieved basic competences to use the system, that is, the ability to stand up, sit down, keep balance while standing, and walk indoors, at least with a close contact guard. User satisfaction with the system and device-training was documented for several aspects. The quality of life evaluation (SF-12v2™) indicated that the use of the powered exoskeleton can have positive effects on the perception of individuals with SCI regarding what they can achieve physically. Few adverse events were observed: minor skin lesions and irritations were observed; no falls occurred. Conclusions. The device-training for individuals with thoracic and lumbar SCI was effective and safe. All trained individuals achieved technically assisted mobility with the exoskeleton while still needing a close contact guard. PMID:27610382

  10. Nightshade Prototype Experiments (Silverleaf)

    SciTech Connect

    Danielson, Jeremy; Bauer, Amy L.

    2016-12-23

    The Red Sage campaign is a series of subcritical dynamic plutonium experiments designed to measure ejecta. Nightshade, the first experiments in Red Sage scheduled for fiscal year 2019, will measure the amount of ejecta emission into vacuum from a double-­shocked plutonium surface. To address the major technical risks in Nightshade, a Level 2 milestone was developed for fiscal year 2016. Silverleaf, a series of four experiments, was executed at the Los Alamos National Laboratory in July and August 2016 to demonstrate a prototype of the Nightshade package and to satisfy this Level 2 milestone. This report is documentation that Red Sage Level 2 milestone requirements were successfully met.

  11. Furled Starshade Prototype

    NASA Image and Video Library

    2016-08-09

    A furled first prototype starshade developed by NASA's Jet Propulsion Laboratory, shown in technology partner Astro Aerospace/Northrup Grumman's facility in Santa Barbara, California, in 2013. This design shows petals that are more extreme in shape, which properly diffracts starlight for smaller telescopes. For launch, the petals of the starshade will be wrapped around the spacecraft, then unfurled into the familiar flower-like design once in space. As shown by this 66-foot (20-meter) model, starshades can come in many shapes and sizes. http://photojournal.jpl.nasa.gov/catalog/PIA20905

  12. AMS Prototyping Activities

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott

    2008-01-01

    This slide presentation reviews the activity around the Asynchronous Message Service (AMS) prototype. An AMS reference implementation has been available since late 2005. It is aimed at supporting message exchange both in on-board environments and over space links. The implementation incoroporates all mandatory elements of the draft recommendation from July 2007: (1) MAMS, AMS, and RAMS protocols. (2) Failover, heartbeats, resync. (3) "Hooks" for security, but no cipher suites included in the distribution. The performance is reviewed, and a Benchmark latency test over VxWorks Message Queues is shown as histograms of a count vs microseconds per 1000-byte message

  13. AMS Prototyping Activities

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott

    2008-01-01

    This slide presentation reviews the activity around the Asynchronous Message Service (AMS) prototype. An AMS reference implementation has been available since late 2005. It is aimed at supporting message exchange both in on-board environments and over space links. The implementation incoroporates all mandatory elements of the draft recommendation from July 2007: (1) MAMS, AMS, and RAMS protocols. (2) Failover, heartbeats, resync. (3) "Hooks" for security, but no cipher suites included in the distribution. The performance is reviewed, and a Benchmark latency test over VxWorks Message Queues is shown as histograms of a count vs microseconds per 1000-byte message

  14. JINR LHEP photoinjector prototype

    NASA Astrophysics Data System (ADS)

    Balalykin, N. I.; Minashkin, V. F.; Nozdrin, M. A.; Trubnikov, G. V.; Shirkov, G. D.; Gacheva, E. I.; Katin, E. V.; Khazanov, E. A.; Luchinin, G. A.; Poteomkin, A. K.; Zelenogorskii, V. V.; Huran, J.

    2016-12-01

    A photoinjector prototype for future electron-positron colliders and free-electron lasers (FEL) is being developed at the Joint Institute for Nuclear Research (JINR). A 30-keV photogun stand, transmission (backside irradiated) photocathode concept, and stand investigations of such cathodes in collaboration with Institute of Electrical Engineering (IEE SAS) (Bratislava, the Slovak Republic) are described. A progress report on creating the photoinjector at an electron energy of up to 400 keV with a unique 10-ps laser driver is given.

  15. Prototype ultrasonic instrument for quantitative testing

    NASA Technical Reports Server (NTRS)

    Lynnworth, L. C.; Dubois, J. L.; Kranz, P. R.

    1972-01-01

    A prototype ultrasonic instrument has been designed and developed for quantitative testing. The complete delivered instrument consists of a pulser/receiver which plugs into a standard oscilloscope, an rf power amplifier, a standard decade oscillator, and a set of broadband transducers for typical use at 1, 2, 5 and 10 MHz. The system provides for its own calibration, and on the oscilloscope, presents a quantitative (digital) indication of time base and sensitivity scale factors and some measurement data.

  16. Power Teaching

    ERIC Educational Resources Information Center

    Fluellen, Jerry E., Jr.

    2007-01-01

    Power Teaching weaves four factors into a seamless whole: standards, teaching thinking, research based strategies, and critical inquiry. As a prototype in its first year of development with an urban fifth grade class, the power teaching model connects selected district standards, thinking routines from Harvard University Project Zero Research…

  17. Flexible thermoelectric generator for ambient assisted living wearable biometric sensors

    NASA Astrophysics Data System (ADS)

    Francioso, L.; De Pascali, C.; Farella, I.; Martucci, C.; Cretì, P.; Siciliano, P.; Perrone, A.

    2011-03-01

    In this work we proposed design, fabrication and functional characterization of a very low cost energy autonomous, maintenance free, flexible and wearable micro thermoelectric generator (μTEG), finalized to power very low consumption electronics ambient assisted living (AAL) applications. The prototype, integrating an array of 100 thin films thermocouples of Sb2Te3 and Bi2Te3, generates, at 40 °C, an open circuit output voltage of 430 mV and an electrical output power up to 32 nW with matched load. In real operation conditions of prototype, which are believed to be very close to a thermal gradient of 15 °C, the device generates an open circuit output voltage of about 160 mV, with an electrical output power up to 4.18 nW. In the first part of work, deposition investigation Sb2Te3 and Bi2Te3 thin films alloys on Kapton HN polyimide foil by RF magnetron co-sputtering technique is discussed. Deposition parameters have been optimized to gain perfect stoichiometric ratio and high thermoelectric power factor; fabricated thermogenerator has been tested at low gradient conditioned to evaluate applications like human skin wearable power generator for ambient assisted living applications.

  18. OMS FDIR: Initial prototyping

    NASA Technical Reports Server (NTRS)

    Taylor, Eric W.; Hanson, Matthew A.

    1990-01-01

    The Space Station Freedom Program (SSFP) Operations Management System (OMS) will automate major management functions which coordinate the operations of onboard systems, elements and payloads. The objectives of OMS are to improve safety, reliability and productivity while reducing maintenance and operations cost. This will be accomplished by using advanced automation techniques to automate much of the activity currently performed by the flight crew and ground personnel. OMS requirements have been organized into five task groups: (1) Planning, Execution and Replanning; (2) Data Gathering, Preprocessing and Storage; (3) Testing and Training; (4) Resource Management; and (5) Caution and Warning and Fault Management for onboard subsystems. The scope of this prototyping effort falls within the Fault Management requirements group. The prototyping will be performed in two phases. Phase 1 is the development of an onboard communications network fault detection, isolation, and reconfiguration (FDIR) system. Phase 2 will incorporate global FDIR for onboard systems. Research into the applicability of expert systems, object-oriented programming, fuzzy sets, neural networks and other advanced techniques will be conducted. The goals and technical approach for this new SSFP research project are discussed here.

  19. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides.

    PubMed Central

    Pieles, U; Zürcher, W; Schär, M; Moser, H E

    1993-01-01

    We report the analysis and characterization of natural and modified oligonucleotides by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The present technology was highly improved for this class of compounds by using a new matrix, 2,4,6-trihydroxy acetophenone, together with di- and triammonium salts of organic or inorganic acids to suppress peak broadening due to multiple ion adducts. This methodology can be used in combination with time dependent degradation of oligonucleotides by exonucleases as powerful tool to determine sequence compositions. PMID:8341593

  20. Sudden power loss in a HeartMate II left ventricular assist device due to intermittent pin contact with the battery: case report.

    PubMed

    Belway, Dean; Cleland, Mark; Zakutney, Timothy; Grenon, Jackie; Mielniczuk, Lisa M; Hendry, Paul J

    2013-01-01

    Left ventricular assist device technology has improved such that mechanical malfunction, particularly with newer generation continuous flow devices, is a relatively rare event. We present a case of sudden power loss in a HeartMate II caused by intermittent contact of the battery terminals after a clip was dropped with the battery inserted in it. The clip was replaced and the patient made a complete recovery. A new inspection and testing methodology, and amended approach to patient and caregiver training, designed to prevent future occurrences is described.

  1. Web tools for rapid experimental visualization prototyping

    NASA Astrophysics Data System (ADS)

    Decker, Jonathan W.; Livingstion, Mark A.

    2013-01-01

    Quite often a researcher finds themselves looking at spreadsheets of high-dimensional data generated by experimental models and user studies. We can use analysis to challenge or confirm hypothesis, but unexpected results can easily be lost in the shuffle. For this reason, it would be useful to visualize the results so we can explore our data and make new discoveries. Web browsers have become increasingly capable for creating complex, multi-view applications. Javascript is quickly becoming a de facto standard for scripting, online and offline. This work demonstrates the use of web technologies as a powerful tool for rapid visualization prototyping. We have developed two prototypes: One for high-dimensional results of the abELICIT - multi-agent version of the ELICIT platform tasked with collaborating to identify the parameters of a pending attack. Another prototype displays responses to a user study on the effectiveness of multi-layer visualization techniques. We created coordinated multiple views prototypes in the Google Chrome web browser written in Javascript, CSS and HTML. We will discuss the benefits and shortcomings of this approach.

  2. SXI prototype mirror mount

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve

  3. SXI prototype mirror mount

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve

  4. Rapid Prototyping Roadmapping

    NASA Technical Reports Server (NTRS)

    Cooper, Kenneth G.

    1998-01-01

    Roadmapping has long been thought of as a process for getting from point A to point B within a single discipline. Roadmapping for Rapid Prototyping has multiple paths of which we will diagram in this meeting. When you consider the dynamic change that the computer has made in both developing as well as manufacturing products, we could only assume that further electronic medium matched with mechanical inventions will continue. This industry roadmap is intended to point and lead us to the promised manufacturing land. We hope to reduce the inherent risk associated with technology development by providing a clear goal of mapping to a manufacturing process. The work of DoE in 1994 was excellent and began a journey that would benefit the decision makers and allow for choices that would be good investment decisions. While this work included government agencies, this map is broader and includes industry and academia input.

  5. Prototype Stilbene Neutron Collar

    SciTech Connect

    Prasad, M. K.; Shumaker, D.; Snyderman, N.; Verbeke, J.; Wong, J.

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  6. Design and analysis of high-power segmented-core trench-assisted Yb-free erbium doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Gaur, Ankita; Rastogi, Vipul

    2017-10-01

    Limited power handling capacity of single mode fiber compels to design effective-single mode large-core fiber for high power amplifiers. This article proposes a 0.15 NA, large-mode-area, bend-insensitive, Yb-free EDFA for the selective amplification of fundamental mode. The fiber uses a leaky design to ensure fundamental-mode amplification by higher-order mode discrimination. The segmented-core design in the fiber helps in achieving large-mode-area. The annular segments and low index trench in the fiber control the leakage losses and gains of the modes. We show an EDFA design with 811 μm2 mode-area, 0.014 dB bending loss for 10 mm diameter loop at 1530 nm wavelength and highly selective single-mode output. Our calculations also show a linear increase in the output signal power with pump power with a slope efficiency of 52.8%.

  7. Prototyping user displays using CLIPS

    NASA Technical Reports Server (NTRS)

    Kosta, Charles P.; Miller, Ross; Krolak, Patrick; Vesty, Matt

    1990-01-01

    CLIPS is being used as an integral module of a rapid prototyping system. The prototyping system consists of a display manager for object browsing, a graph program for displaying line and bar charts, and a communications server for routing messages between modules. A CLIPS simulation of a physical model provides dynamic control of the user's display. Currently, a project is well underway to prototype the Advanced Automation System (AAS) for the Federal Aviation Administration.

  8. The Galileo PPS expert monitoring and diagnostic prototype

    NASA Technical Reports Server (NTRS)

    Bahrami, Khosrow

    1989-01-01

    The Galileo PPS Expert Monitoring Module (EMM) is a prototype system implemented on the SUN workstation that will demonstrate a knowledge-based approach to monitoring and diagnosis for the Galileo spacecraft Power/Pyro subsystems. The prototype will simulate an analysis module functioning within the SFOC Engineering Analysis Subsystem Environment (EASE). This document describes the implementation of a prototype EMM for the Galileo spacecraft Power Pyro Subsystem. Section 2 of this document provides an overview of the issues in monitoring and diagnosis and comparison between traditional and knowledge-based solutions to this problem. Section 3 describes various tradeoffs which must be considered when designing a knowledge-based approach to monitoring and diagnosis, and section 4 discusses how these issues were resolved in constructing the prototype. Section 5 presents conclusions and recommendations for constructing a full-scale demonstration of the EMM. A Glossary provides definitions of terms used in this text.

  9. Structured prototyping as risk management

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda SH.; Gardner, J. A.; Willoughby, J. K.

    1991-01-01

    A methodology is presented for integrating the systems-engineering management recommendation of prototyping into the traditional project-management process for developing large-scale systems. The suggested methodology begins with the identification of life-cycle risk areas, outlines the structure and conduct of the prototyping process, and defines the composition of the prototyping team. The methodology includes a step-by-step procedure for creating, executing, and documenting a prototyping test plan to evaluate design alternatives. It is argued that managers who adopt this methodology and apply it rigorously will increase the likelihood that the systems they build will be operationally effective and will be accepted by the intended users.

  10. Fuelcell Prototype Locomotive

    SciTech Connect

    David L. Barnes

    2007-09-28

    An international industry-government consortium is developing a fuelcell hybrid switcher locomotive for commercial railway applications and power-to-grid generation applications. The current phase of this on-going project addresses the practicalities of on-board hydrogen storage, fuelcell technology, and hybridity, all with an emphasis on commercially available products. Through practical evaluation using designs from Vehicle Projects’ Fuelcell-Powered Underground Mine Loader Project, the configuration of the fuelcell switcher locomotive changed from using metal-hydride hydrogen storage and a pure fuelcell power plant to using compressed hydrogen storage, a fuelcell-battery hybrid power plant, and fuelcell stack modules from Ballard Power Systems that have been extensively used in the Citaro bus program in Europe. The new overall design will now use a RailPower battery hybrid Green Goat™ as the locomotive platform. Keeping the existing lead-acid batteries, we will replace the 205 kW diesel gen-set with 225 kW of net fuelcell power, remove the diesel fuel tank, and place 14 compressed hydrogen cylinders, capable of storing 70 kg of hydrogen at 350 bar, on the roof. A detailed design with associated CAD models will allow a complete build of the fuelcell-battery hybrid switcher locomotive in the next funded phase.

  11. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu

    2016-11-01

    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  12. Guidelines to assist rural electric cooperatives to fulfill the requirements of Sections 201 and 210 of PURPA for cogeneration and small power production

    SciTech Connect

    Not Available

    1981-02-01

    These guidelines were designed to assist National Rural Electric Cooperative Association staff and consultants involved in the implementation of Sections 201 and 210 of the Public Utilities Regulatory Policies Act (PURPA). The guidelines were structured to meet anticipated use as: a self-contained legal, technical and economic reference manual helpful in dealing with small power producers and cogenerators; a roadmap through some of the less obvious obstacles encountered by utilities interacting with small power producers and cogenerators; a starting point for those utilities who have not yet formulated specific policies and procedures, nor developed rates for purchasing power from small power producers and cogenerators; a discussion vehicle to highlight key issues and increase understanding in workshop presentations to rural electric cooperatives; and an evolutionary tool which can be updated to reflect changes in the law as they occur. The chapters in these Guidelines contain both summary information, such as compliance checklists, and detailed information, such as cost rate calculations, on regulatory requirements, operational considerations, and rate considerations. The appendices contain more specific material, e.g. rural electric cooperative sample policy statements. (LCL)

  13. Innovative Free-range Resonant Electrical Energy Delivery system (FREE-D System) for a ventricular assist device using wireless power.

    PubMed

    Waters, Benjamin H; Smith, Joshua R; Bonde, Pramod

    2014-01-01

    Technological innovation of a smaller, single moving part has an advantage over earlier large pulsatile ventricular assist devices (VADs) prone to mechanical failure. Drivelines limit the potential for extended patient survival durations with newer pumps and act as source for infection, increased morbidity, rehospitalizations, and reduced quality of life. The Free-range Resonant Electrical Energy Delivery (FREE-D) wireless power system uses magnetically coupled resonators to efficiently transfer power. We demonstrate the efficiency over distance of this system. The experimental setup consists of an radiofrequency amplifier and control board which drives the transmit resonator coil, and a receiver unit consisting of a resonant coil attached to a radiofrequency rectifier and power management module. The power management module supplies power to the axial pump, which was set at 9,600 rpm. To achieve a seamless wireless delivery in any room size, we introduced a third relay coil. This relay coil can be installed throughout a room, whereas a single relay coil could be built into a jacket worn by the patient, which would always be within range of the receive coil implanted in the patient's body. The power was delivered over a meter distance without interruptions or fluctuations with coil, rectifier, and regulator efficiency more than 80% and overall system efficiency of 61%. The axial pump worked well throughout the 8 hours of continuous operation. Having same setup on the opposite side can double the distance. A tether-free operation of a VAD can be achieved by FREE-D system in room-size distances. It has the potential to make the VAD therapy more acceptable from the patient perspective.

  14. NIOSH alert: Request for assistance in preventing electrocutions of crane operators and crew members working near overhead power lines

    SciTech Connect

    1995-05-01

    In this alert, NIOSH warned that crane operators and crew members may be electrocuted when working near overhead power lines. Five cases were described which resulted in six electrocutions. Case 1 involved a 29 year old who pushed the crane cable on a 1 yard cement bucket into a 7,200 volt power line. Case 2 involved a 33 year old well driller who was electrocuted when a metal pipe lifted by a truck mounted crane contacted a 12,000 volt overhead power line. The third case involved a 24 year old forman for a telecommunications company who was electrocuted when he grabbed the door handle of a truck mounted crane whose boom was in contact with a 7,200 volt overhead power line. Case 4 involved a 37 year old construction laborer electrocuted while pulling a wire rope attached to a crane cable toward a load. The fifth case involved a 20 year old male truck driver and his 70 year old male employer who were electrocuted when the boom of a truck mounted crane contacted a 7,200 volt conductor of an overhead power line.

  15. Mars Spark Source Prototype Developed

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; VanderWal, Randall L.; Weiland, Karen J.

    2000-01-01

    The Mars Spark Source Prototype (MSSP) hardware was developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample, and detectors measure the optical emission from metals in the plasma to identify and quantify them. Trace metal measurements are vital in assessing whether or not the Martian environment will be toxic to human explorers. The current method of x-ray fluorescence can yield concentrations of major species only. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The new instrument will be developed primarily for use in the Martian environment, but it would be adaptable for terrestrial use in environmental monitoring. The NASA Glenn Research Center at Lewis Field initiated the development of the MSSP as part of Glenn's Director's Discretionary Fund project for the Spark Analysis Detection of Trace Metal Species in Martian Dusts and Soils. The objective of this project is to develop and demonstrate a compact, sensitive optical instrument for the detection of trace hazardous metals in Martian dusts and soils.

  16. Virtual acoustic prototyping

    NASA Astrophysics Data System (ADS)

    Johnson, Marty

    2003-10-01

    In this paper the re-creation of 3-D sound fields so the full psycho-acoustic impact of sound sources can be assessed before the manufacture of a product or environment is examined. Using head related transfer functions (HRTFs) coupled with a head tracked set of headphones the sound field at the left and right ears of a listener can be re-created for a set of sound sources. However, the HRTFs require that sources have a defined location and this is not the typical output from numerical codes which describe the sound field as a set of distributed modes. In this paper a method of creating a set of equivalent sources is described such that the standard set of HRTFs can be applied in real time. A structural-acoustic model of a cylinder driving an enclosed acoustic field will be used as an example. It will be shown that equivalent sources can be used to recreate all of the reverberation of the enclosed space. An efficient singular value decomposition technique allows the large number of sources required to be simulated in real time. An introduction to the requirements necessary for 3-D virtual prototyping using high frequency Statistical Energy Analysis models will be presented. [Work supported by AuSim and NASA.

  17. Virtual Prototyping at CERN

    NASA Astrophysics Data System (ADS)

    Gennaro, Silvano De

    The VENUS (Virtual Environment Navigation in the Underground Sites) project is probably the largest Virtual Reality application to Engineering design in the world. VENUS is just over one year old and offers a fully immersive and stereoscopic "flythru" of the LHC pits for the proposed experiments, including the experimental area equipment and the surface models that are being prepared for a territorial impact study. VENUS' Virtual Prototypes are an ideal replacement for the wooden models traditionally build for the past CERN machines, as they are generated directly from the EUCLID CAD files, therefore they are totally reliable, they can be updated in a matter of minutes, and they allow designers to explore them from inside, in a one-to-one scale. Navigation can be performed on the computer screen, on a stereoscopic large projection screen, or in immersive conditions, with an helmet and 3D mouse. By using specialised collision detection software, the computer can find optimal paths to lower each detector part into the pits and position it to destination, letting us visualize the whole assembly probess. During construction, these paths can be fed to a robot controller, which can operate the bridge cranes and build LHC almost without human intervention. VENUS is currently developing a multiplatform VR browser that will let the whole HEP community access LHC's Virtual Protoypes over the web. Many interesting things took place during the conference on Virtual Reality. For more information please refer to the Virtual Reality section.

  18. Polyimide/PDMS flexible thermoelectric generator for ambient assisted living applications

    NASA Astrophysics Data System (ADS)

    Francioso, L.; De Pascali, C.; Farella, I.; Martucci, C.; Cretì, P.; Siciliano, P.

    2011-06-01

    Present work proposed design, finite element tools simulation and prototype fabrication of a low cost energy autonomous, maintenance free, flexible and wearable micro thermoelectric generator (μTEG), finalized to power very low consumption electronics Ambient Assisted Living (AAL) applications. The prototype, integrating an array of 100 thin films thermocouples of Sb2Te3 and Bi2Te3, generates, at 40 °C, an open circuit output voltage of 430 mV and an electrical output power up to 32 nW with matched load. In real operation conditions of prototype, which are believed to be very close to a thermal gradient of 15°C, the device generates an open circuit output voltage of about 160 mV, with an electrical output power up to 4.18 nW. In this work we proposed design, thermal simulation and fabrication of a preliminary flexible and wearable micro thermoelectric generator (μTEG), finalized to power very low consumption electronics for Ambient Assisted Living (AAL) applications. Presented simulations show the performances of different fabrication solution for the PDMS/Kapton packages, considering flat and sloped walls approach for thermal gradient enhancement.

  19. Direct matrix assisted laser desorption ionization mass spectrometry-based analysis of wine as a powerful tool for classification purposes.

    PubMed

    Nunes-Miranda, J D; Santos, Hugo M; Reboiro-Jato, Miguel; Fdez-Riverola, Florentino; Igrejas, G; Lodeiro, Carlos; Capelo, J L

    2012-03-15

    The variables affecting the direct matrix assisted laser desorption ionization mass spectrometry-based analysis of wine for classification purposes have been studied. The type of matrix, the number of bottles of wine, the number of technical replicates and the number of spots used for the sample analysis have been carefully assessed to obtain the best classification possible. Ten different algorithms have been assessed as classification tools using the experimental data collected after the analysis of fourteen types of wine. The best matrix was found to be α-Cyano with a sample to matrix ratio of 1:0.75. To correctly classify the wines, profiling a minimum of five bottles per type of wine is suggested, with a minimum of three MALDI spot replicates for each bottle. The best algorithm to classify the wines was found to be Bayes Net. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Patterning ITO by Template-Assisted Colloidal-Lithography for Enhancing Power Conversion Efficiency in Organic Photovoltaic.

    PubMed

    Lee, Jin-Su; Yu, Jung-Hun; Hwang, Ki-Hwan; Nam, Sang-Hun; Boo, Jin-Hyo; Yun, Sang H

    2016-05-01

    Highly structured interfaces are very desirable in organic photovoltaic solar cells (OPVs), in order to enhance power conversion efficiency (PCE) by decreasing of the transport path for excited charge carriers in the absorber and increasing the optical path length for photon absorption. Many complicated, high-cost lithographic methods have been attempted to modify the surface of the absorber or substrate. However, solution-based colloidal-lithography processes are scalable and cost-effective, but generally result in non-uniform structured surfaces. In this report, we demonstrated an optimized silica-templated colloidal lithographical approach to create a well-defined and controlled transparent ITO layer for enhancing power conversion efficiency (PCE). Additionally, morphological effects of the patterned ITO on optical properties and PCE were analyzed in detail.

  1. Transport of ionized metal atoms in high-power pulsed magnetron discharges assisted by inductively coupled plasma

    SciTech Connect

    Konstantinidis, S.; Dauchot, J.P.; Ganciu, M.; Hecq, M.

    2006-01-09

    Transporting metallic ions from the magnetron cathode to the substrate is essential for an efficient thin-film deposition process. This letter examines how inductively coupled plasma superimposed onto a high-power pulsed magnetron discharge can influence the mobility of titanium ions. To this effect, time-resolved optical emission and absorption spectrometry are conducted and the current at the substrate is measured. With this new hybrid technique, ions are found to reach the substrate in two successive waves. Metal ions, only present in the second wave, are found to accelerate proportionally to the power supplied to the inductively coupled plasma. All the measurements in this study are made at 10 and 30 mTorr, with 10 {mu}s long pulses at the magnetron cathode.

  2. Foraging search: Prototypical intelligence

    NASA Astrophysics Data System (ADS)

    Mobus, George

    2000-05-01

    We think because we eat. Or as Descartes might have said, on a little more reflection, "I need to eat, therefore I think." Animals that forage for a living repeatedly face the problem of searching for a sparsely distributed resource in a vast space. Furthermore, the resource may occur sporadically and episodically under conditions of true uncertainty (nonstationary, complex and non-linear dynamics). I assert that this problem is the canonical problem solved by intelligence. It's solution is the basis for the evolution of more advanced intelligence in which the space of search includes that of concepts (objects and relations) encoded in cortical structures. In humans the conscious experience of searching through concept space we call thinking. The foraging search model is based upon a higher-order autopoeitic system (the forager) employing anticipatory processing to enhance its success at finding food while avoiding becoming food or having accidents in a hostile world. I present a semi-formal description of the general foraging search problem and an approach to its solution. The latter is a brain-like structure employing dynamically adaptive neurons. A physical robot, MAVRIC, embodies some principles of foraging. It learns cues that lead to improvements in finding targets in a dynamic and nonstationary environment. This capability is based on a unique learning mechanism that encodes causal relations in the neural-like processing element. An argument is advanced that searching for resources in the physical world, as per the foraging model, is a prototype for generalized search for conceptual resources as when we think. A problem represents a conceptual disturbance in a homeostatic sense. The finding of a solution restores the homeostatic balance. The establishment of links between conceptual cues and solutions (resources) and the later use of those cues to think through to solutions of quasi-isomorphic problems is, essentially, foraging for ideas. It is a quite

  3. Flight research with the MIT Daedalus prototype

    NASA Technical Reports Server (NTRS)

    Bussolari, Steven R.; Youngren, Harold H.; Langford, John S.

    1987-01-01

    The MIT Light Eagle human-powered aircraft underwent long-duration testing over Rogers Dry Lake in California during January, 1987. Designed as a prototype for the MIT Daedalus Project, the Light Eagle's forty-eight flights provided pilot training, established new distance records for human-powered flight, and provided quantitative data through a series of instrumented flight experiments. The experiments focused on: (1) evaluating physiological loads on the pilot, (2) determining airframe power requirements, and (3) developing an electronic flight control system. This paper discusses the flight test program, its results and their implications for the follow-on Daedalus aircraft, and the potential uses of the Light Eagle as a low Reynolds number testbed.

  4. Pollution prevention opportunity assessment for electronics prototype laboratory.

    SciTech Connect

    Gerard, Morgan Evan

    2005-10-01

    This Pollution Prevention Opportunity Assessment (PPOA) was conducted for Sandia National Laboratories/California Electronics Prototype Laboratory (EPL) in May 2005. The primary purpose of this PPOA is to provide recommendations to assist Electronics Prototype Laboratory personnel in reducing the generation of waste and improving the efficiency of their processes. This report contains a summary of the information collected, analyses performed and recommended options for implementation. The Sandia National Laboratories Pollution Prevention staff will continue to work with the EPL to implement the recommendations.

  5. Ionic-liquid-assisted synthesis of nanostructured and carbon-coated Li3V2(PO4)3 for high-power electrochemical storage devices.

    PubMed

    Zhang, Xiaofei; Böckenfeld, Nils; Berkemeier, Frank; Balducci, Andrea

    2014-06-01

    Carbon-coated Li3V2(PO4)3 (LVP) displaying nanostructured morphology can be easily prepared by using ionic-liquid-assisted sol-gel synthesis. The selection of highly viscous and thermally stable ionic liquids might promote the formation of nanostructures during the sol-gel synthesis. The presence of these structures shortens the diffusion paths and enlarges the contact area between the active material and the electrolyte; this leads to a significant improvement in lithium-ion diffusion. At the same time, the use of ionic liquids has a positive influence on the coating of the LVP particles, which improves the electronic conductivity of this material; this leads to enhanced charge-transfer properties. At a high current density of 40 C, the LVP/N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide material delivered a reversible capacity of approximately 100 mA h g(-1), and approximately 99 % of the initial capacity value was retained even after 100 cycles at 50 C. The excellent high rate and cycling stability performance make Li3V2(PO4)3 prepared by ionic-liquid-assisted sol-gel synthesis a very promising cathode material for high-power electrochemical storage devices.

  6. A prototype on-line work procedure system for radioisotope thermoelectric generator production

    SciTech Connect

    Kiebel, G.R.

    1991-09-01

    An on-line system to manage work procedures is being developed to support radioisotope thermoelectric generator (RTG) assembly and testing in a new production facility. This system implements production work procedures as interactive electronic documents executed at the work site with no intermediate printed form. It provides good control of the creation and application of work procedures and provides active assistance to the worker in performing them and in documenting the results. An extensive prototype of this system is being evaluated to ensure that it will have all the necessary features and that it will fit the user's needs and expectations. This effort has involved the Radioisotope Power Systems Facility (RPSF) operations organization and technology transfer between Westinghouse Hanford Company (Westinghouse Hanford) and EG G Mound Applied Technologies Inc. (Mound) at the US Department of Energy (DOE) Mound Site. 1 ref.

  7. Advanced prototype automated iodine monitor system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The technique of detecting and measuring parts-per-million concentrations of aqueous iodine by direct spectrophotometric means is discussed, and development of a prototype Automated Iodine Monitoring/Controller System (AIMS) is elaborated. The present effort is directed primarily toward reducing the power requirement and the weight of the AIMS. Other objectives include determining the maximum concentration of iodine that can be dissolved in an alcohol solution, and in an aqueous potassium iodide solution. Also discussed are the effects of a no flow condition on iodine measurements and the effect of pH on spectrophotometric iodine determinations.

  8. Prototyping of the ILC Baseline Positron Target

    SciTech Connect

    Gronberg, J; Brooksby, C; Piggott, T; Abbott, R; Javedani, J; Cook, E

    2012-02-29

    The ILC positron system uses novel helical undulators to create a powerful photon beam from the main electron beam. This beam is passed through a titanium target to convert it into electron-positron pairs. The target is constructed as a 1 m diameter wheel spinning at 2000 RPM to smear the 1 ms ILC pulse train over 10 cm. A pulsed flux concentrating magnet is used to increase the positron capture efficiency. It is cooled to liquid nitrogen temperatures to maximize the flatness of the magnetic field over the 1 ms ILC pulse train. We report on prototyping effort on this system.

  9. Microprocessor control of power sharing and solar array peak power tracking for high power (2. 5 kW) switching power converters

    SciTech Connect

    Speer, J.H. Jr.

    1981-01-01

    A prototype system of twin power converters for solar array supplement of spacecraft power buses is described. Analog circuits are used for inner control loops and a microprocessor directs power sharing and peak power tracking. 3 refs.

  10. The ESIS Correlation Environment Prototype

    NASA Astrophysics Data System (ADS)

    Giommi, P.; Ansari, S. G.; Ciarlo, A.; Donzelli, P.; Stokke, H.; Torrente, P.; Walker, S.; Zampognaro, V.

    This paper gives a brief description of the Correlation Environment Prototype currently under development at ESRIN (Frascati, Italy) as part of the European Space Information System (ESIS) project. The prototype consists of a C program that acts as graphical user-interface, as tasks scheduler and as data-handler within the general ESIS system. This program will provide a uniform view to a number of applications that allow the user to retrieve, inspect and compare Astronomy and Space-Physics data. The prototype architecture is object oriented and open so that new packages can easily be included as they become available. The prototype will run on VAX-VMS and on UNIX systems.

  11. Design and testing of a regenerative magnetorheological actuator for assistive knee braces

    NASA Astrophysics Data System (ADS)

    Ma, Hao; Chen, Bing; Qin, Ling; Liao, Wei-Hsin

    2017-03-01

    In this paper, a multifunctional magneto-rheological actuator with power regeneration capability, named regenerative magnetorheological actuator (RMRA), is designed for gait assistance in the knee joint. RMRA has motor and magnetorheological (MR) brake parts working in parallel that can harvest energy through regenerative braking. This novel design provides multiple functions with good energy efficiency. The configuration and basic design of the RMRA are first introduced. Then geometrical optimization of the MR brake is conducted based on a parameterized model, and multiple factors are considered in the design objectives: braking torque, weight, and power consumption. After the optimal design is obtained, an RMRA prototype is fabricated and associated driver circuits are designed. Finally, multiple functions of the RMRA, especially three different braking modes, are modeled and tested. Experimental results of RMRA output performances in all working modes match the modeling and simulation. Assistive knee braces with the developed RMRA are promising for future applications in gait assistance and rehabilitation.

  12. Analysis of Ada as a prototyping language

    NASA Technical Reports Server (NTRS)

    Holloway, C. Michael

    1987-01-01

    This paper examines the suitability of Ada as a language for developing software prototypes. The differences between software prototypes and traditional engineering prototypes are discussed; the approaches to software prototyping are identified. Ada's potential as a language for prototyping is evaluated according to the writability, expressiveness, and flexibility of the language; Ada is found to be inadequate as a prototyping language because it lacks writability and expressiveness. Possible approaches to improving the expressiveness of the language are discussed.

  13. Requirements Elicitation Using Paper Prototype

    NASA Astrophysics Data System (ADS)

    Vijayan, Jaya; Raju, G.

    Requirements engineering is both the hardest and critical part of software development since errors at this beginning stage propagate through the development process and are the hardest to repair later. This paper proposes an improved approach for requirements elicitation using paper prototype. The paper progresses through an assessment of the new approach using student projects developed for various organizations. The scope of implementation of paper prototype and its advantages are unveiled.

  14. In Situ Polymerized PAN-Assisted S/C Nanosphere with Enhanced High-Power Performance as Cathode for Lithium/Sulfur Batteries.

    PubMed

    Hu, Hao; Cheng, Haoyan; Liu, Zhengfei; Li, Guojian; Zhu, Qianchen; Yu, Ying

    2015-08-12

    Carbonaceous and polymer materials are extensively employed as conductor and container to encapsulate sulfur particles and limit polysulfide dissolution. Even so, high-power performance is still far from satisfaction due to the expansion and collapse of the electrode materials during thousands of charge-discharge process. Herein, it is found that colloidal carbon sphere with high elastic coefficient can be utilized as a framework to load sulfur, which can trap soluble polysulfides species in the pores within the sphere and efficaciously improve the electronic conductivity of the cathode. After modified by polyaniline (PAN) through in situ polymerization, PAN-assisted S/C nanosphere (PSCs-73, with 73 wt % sulfur) effectively minimize polysulfide diffusion, enhance the electron transfer rate and overcome the problem of volume expansion. The fabricated PSCs-73 cell shows outstanding long high-power cycling capability over 2500 charge/discharge cycles with a capacity decay of 0.01% per cycle at 5 C. Substantially, this composite can drive 2.28 W white indicators of LED robustly after minutes of charging by three lithium batteries in series, showing a promising potential application in the future.

  15. Improvement and characterization of high-reflective and anti-reflective nanostructured mirrors by ion beam assisted deposition for 944 nm high power diode laser

    NASA Astrophysics Data System (ADS)

    Ghadimi-Mahani, A.; Farsad, E.; Goodarzi, A.; Tahamtan, S.; Abbasi, S. P.; Zabihi, M. S.

    2015-11-01

    Single-layer and multi-layer coatings were applied on the surface of diode laser facets as mirrors. This thin film mirrors were designed, deposited, optimized and characterized. The effects of mirrors on facet passivation and optical properties of InGaAs/AlGaAs/GaAs diode lasers were investigated. High-Reflective (HR) and Anti-Reflective (AR) mirrors comprising of four double-layers of Al2O3/Si and a single layer of Al2O3, respectively, were designed and optimized by Macleod software for 944 nm diode lasers. Optimization of Argon flow rate was studied through Alumina thin film deposition by Ion Beam Assisted Deposition (IBAD) for mirror improvement. The nanostructured HR and AR mirrors were deposited on the front and back facet of the laser respectively, by IBAD system under optimum condition. Atomic Force Microscope (AFM), Vis-IR Spectrophotometer, Field Emission Scanning Electron Microscopy (FESEM) and laser characterization Test (P-I) were used to characterize various properties of mirrors and lasers. AFM images show mirror's root mean square roughness is nearly 1 nm. The Spectrophotometer results of the front facet transmission and the back facet reflection are in good agreement with the simulation results. Optical output power (P) versus driving current (I) characteristics, measured before and after coating the facet, revealed a significant output power enhancement due to optimized AR and HR optical coatings on facets.

  16. A 4 Farad high energy electrochemical double layer capacitor prototype operating at 3.2 V (IES prototype)

    NASA Astrophysics Data System (ADS)

    Varzi, A.; Schütter, C.; Krummacher, J.; Raccichini, R.; Wolff, C.; Kim, G.-T.; Rösler, S.; Blumenröder, B.; Schubert, T.; Passerini, S.; Balducci, A.

    2016-09-01

    In this manuscript we report about the realization and testing of a high-voltage electrochemical double layer capacitor (EDLC) prototype (IES prototype), which has been assembled using innovative electrode and electrolyte components. The IES prototype displays a nominal capacitance of 4 F, a maximum voltage of 3.2 V and its maximal energy and power are in the order of 37 Wh kg-1 and 65 kW kg-1, respectively. Furthermore, it also displays good cycling stability, high capacitance retention after 80 h float test and acceptable self-discharge. Taking into account substantial improvements of the cell design and assembly procedure, the performance of the IES prototype indicates that the components utilized in this device might be suitable alternatives to the state-of-the-art materials used in high energy EDLCs.

  17. Voltage stability modelling and real-time monitoring using expert system for operation assistance

    SciTech Connect

    Belhadj, C.; Mohamedi, R.; Do, X.D.; Lefebvre, S.; Lagace, P.J.

    1996-05-01

    This paper describes a prototype expert system to determine a viable voltage stability control scheme. A new model for generator bus for reaching their limits of reactive power output is presented. This expert system is designed to assist the power system operator in taking the most appropriate VAR control action in a timely fashion. Sensitivity of a fast voltage stability indicator is used to correct voltage stability limit violations. Results of tests conducted on the AEP57 bus and 118 bus IEEE test systems, are presented and discussed.

  18. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) - a response surface approach.

    PubMed

    González-Centeno, María Reyes; Knoerzer, Kai; Sabarez, Henry; Simal, Susana; Rosselló, Carmen; Femenia, Antoni

    2014-11-01

    Aqueous ultrasound-assisted extraction (UAE) of grape pomace was investigated by Response Surface Methodology (RSM) to evaluate the effect of acoustic frequency (40, 80, 120kHz), ultrasonic power density (50, 100, 150W/L) and extraction time (5, 15, 25min) on total phenolics, total flavonols and antioxidant capacity. All the process variables showed a significant effect on the aqueous UAE of grape pomace (p<0.05). The Box-Behnken Design (BBD) generated satisfactory mathematical models which accurately explain the behavior of the system; allowing to predict both the extraction yield of phenolic and flavonol compounds, and also the antioxidant capacity of the grape pomace extracts. The optimal UAE conditions for all response factors were a frequency of 40kHz, a power density of 150W/L and 25min of extraction time. Under these conditions, the aqueous UAE would achieve a maximum of 32.31mg GA/100g fw for total phenolics and 2.04mg quercetin/100g fw for total flavonols. Regarding the antioxidant capacity, the maximum predicted values were 53.47 and 43.66mg Trolox/100g fw for CUPRAC and FRAP assays, respectively. When comparing with organic UAE, in the present research, from 12% to 38% of total phenolic bibliographic values were obtained, but using only water as the extraction solvent, and applying lower temperatures and shorter extraction times. To the best of the authors' knowledge, no studies specifically addressing the optimization of both acoustic frequency and power density during aqueous-UAE of plant materials have been previously published. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Eurobot Ground Prototype Control System Overview & Tests Results

    NASA Astrophysics Data System (ADS)

    Merlo, Andrea; Martelli, Andrea; Pensavalle, Emanuele; Ferraris, Simona; Didot, Frederic

    2010-08-01

    In the planned missions on Moon and Mars, robotics can play a key role, as robots can both assist astronauts and, above all, relieve them of dangerous or too difficult tasks. To this aim, both cooperative capabilities and a great level of autonomy are needed: the robotic crew assistant must be able to work on its own, without supervision by humans, and to help astronauts to accomplish tasks otherwise unfeasible for them. Within this context, a project named Eurobot Ground Prototype, conducted in conjunction with ESA and Thales Alenia Space, is presented. EGP is a dual-arm mobile manipulator and exploits both stereo cameras and force/torque sensors in order to rely on visual and force feedback. This paper provides an overview of the performed and on going activities within the Eurobot Ground Prototype project.

  20. A MEMS turbine prototype for respiration harvesting

    NASA Astrophysics Data System (ADS)

    Goreke, U.; Habibiabad, S.; Azgin, K.; Beyaz, M. I.

    2015-12-01

    The design, manufacturing, and performance characterization of a MEMS-scale turbine prototype is reported. The turbine is designed for integration into a respiration harvester that can convert normal human breathing into electrical power through electromagnetic induction. The device measures 10 mm in radius, and employs 12 blades located around the turbine periphery along with ball bearings around the center. Finite element simulations showed that an average torque of 3.07 μNm is induced at 12 lpm airflow rate, which lies in normal breathing levels. The turbine and a test package were manufactured using CNC milling on PMMA. Tests were performed at respiration flow rates between 5-25 lpm. The highest rotational speed was measured to be 9.84 krpm at 25 lpm, resulting in 8.96 mbar pressure drop across the device and 370 mW actuation power.

  1. Design and fabrication of a prototype system for photovoltaic residences in the Southwest

    NASA Astrophysics Data System (ADS)

    1982-06-01

    Described are the design of a photovoltaic powered residence for the American Southwest, dubbed Casa fotovoltaica, and the construction of a prototype building at the Southwest Residential Experiment Station for testing the performance of the full size photovoltaic (PV) system. Included are architectural drawings of both the residence and the prototype, analysis of the energy requirements of the residence, prediction of PV system output, description of the electrical system, and history of the construction process of the prototype.

  2. PROTOTYPE EICHER FISH SCREEN AND EVALUATION FACILITY, INSTALLED IN 1990 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROTOTYPE EICHER FISH SCREEN AND EVALUATION FACILITY, INSTALLED IN 1990 ON #1 PENSTOCK. PROJECT SPONSORED BY THE ELECTRICAL POWER RESEARCH INSTITUTE TO TRANSFER FISH DOWNSTREAM PAST THE TURBINES. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  3. Assisting the Assistant Principal

    ERIC Educational Resources Information Center

    Davis, James

    2008-01-01

    Retaining quality staff members is a hot topic in the public school arena. Although teachers are often the focus of concern, hiring and retaining quality assistant principals must be addressed as well. Interviewing and hiring the right assistant principal--and then ensuring that he or she remains on in a campus for several years--can do a great…

  4. Magnetic Amplifier for Power Flow Control

    SciTech Connect

    2012-02-24

    GENI Project: ORNL is developing an electromagnet-based, amplifier-like device that will allow for complete control over the flow of power within the electric grid. To date, complete control of power flow within the grid has been prohibitively expensive. ORNL’s controller could provide a reliable, cost-effective solution to this problem. The team is combining two types of pre-existing technologies to assist in flow control, culminating in a prototype iron-based magnetic amplifier. Ordinarily, such a device would require expensive superconductive wire, but the magnetic iron core of ORNL’s device could serve as a low-cost alternative that is equally adept at regulating power flow.

  5. MOORE: A prototype expert system for diagnosing spacecraft problems

    NASA Technical Reports Server (NTRS)

    Howlin, Katherine; Weissert, Jerry; Krantz, Kerry

    1988-01-01

    MOORE is a rule-based, prototype expert system that assists in diagnosing operational Tracking and Data Relay Satellite (TDRS) problems. It is intended to assist spacecraft engineers at the TDRS ground terminal in trouble shooting problems that are not readily solved with routine procedures, and without expert counsel. An additional goal of the prototype system is to develop in-house expert system and knowledge engineering skills. The prototype system diagnoses antenna pointing and earth pointing problems that may occur within the TDRS Attitude Control System (ACS). Plans include expansion to fault isolation of problems in the most critical subsystems of the TDRS spacecraft. Long term benefits are anticipated with use of an expert system during future TDRS programs with increased mission support time, reduced problem solving time, and retained expert knowledge and experience. Phase 2 of the project is intended to provide NASA the necessary expertise and capability to define requirements, evaluate proposals, and monitor the development progress of a highly competent expert system for NASA's Tracking Data Relay Satellite. Phase 2 also envisions addressing two unexplored applications for expert systems, spacecraft integration and tests (I and T) and support to launch activities. The concept, goals, domain, tools, knowledge acquisition, developmental approach, and design of the expert system. It will explain how NASA obtained the knowledge and capability to develop the system in-house without assistance from outside consultants. Future plans will also be presented.

  6. MOORE: A prototype expert system for diagnosing spacecraft problems

    NASA Technical Reports Server (NTRS)

    Howlin, Katherine; Weissert, Jerry; Krantz, Kerry

    1988-01-01

    MOORE is a rule-based, prototype expert system that assists in diagnosing operational Tracking and Data Relay Satellite (TDRS) problems. It is intended to assist spacecraft engineers at the TDRS ground terminal in trouble shooting problems that are not readily solved with routine procedures, and without expert counsel. An additional goal of the prototype system is to develop in-house expert system and knowledge engineering skills. The prototype system diagnoses antenna pointing and earth pointing problems that may occur within the TDRS Attitude Control System (ACS). Plans include expansion to fault isolation of problems in the most critical subsystems of the TDRS spacecraft. Long term benefits are anticipated with use of an expert system during future TDRS programs with increased mission support time, reduced problem solving time, and retained expert knowledge and experience. Phase 2 of the project is intended to provide NASA the necessary expertise and capability to define requirements, evaluate proposals, and monitor the development progress of a highly competent expert system for NASA's Tracking Data Relay Satellite. Phase 2 also envisions addressing two unexplored applications for expert systems, spacecraft integration and tests (I and T) and support to launch activities. The concept, goals, domain, tools, knowledge acquisition, developmental approach, and design of the expert system. It will explain how NASA obtained the knowledge and capability to develop the system in-house without assistance from outside consultants. Future plans will also be presented.

  7. The MANIFEST prototyping design study

    NASA Astrophysics Data System (ADS)

    Lawrence, Jonathan S.; Ben-Ami, Sagi; Brown, David M.; Brown, Rebecca A.; Case, Scott; Chapman, Steve; Churilov, Vladimir; Colless, Matthew; Content, Robert; Depoy, Darren; Evans, Ian; Farrell, Tony; Goodwin, Michael; Jacoby, George; Klauser, Urs; Kuehn, Kyler; Lorente, Nuria P. F.; Mali, Slavko; Marshall, Jennifer; Muller, Rolf; Nichani, Vijay; Pai, Naveen; Prochaska, Travis; Saunders, Will; Schmidt, Luke; Shortridge, Keith; Staszak, Nicholas F.; Szentgyorgyi, Andrew; Tims, Julia; Vuong, Minh V.; Waller, Lewis G.; Zhelem, Ross

    2016-08-01

    MANIFEST is a facility multi-object fibre system for the Giant Magellan Telescope, which uses `Starbug' fibre positioning robots. MANIFEST, when coupled to the telescope's planned seeing-limited instruments, GMACS, and G-CLEF, offers access to: larger fields of view; higher multiplex gains; versatile reformatting of the focal plane via IFUs; image-slicers; and in some cases higher spatial and spectral resolution. The Prototyping Design Study phase for MANIFEST, nearing completion, has focused on developing a working prototype of a Starbugs system, called TAIPAN, for the UK Schmidt Telescope, which will conduct a stellar and galaxy survey of the Southern sky. The Prototyping Design Study has also included work on the GMT instrument interfaces. In this paper, we outline the instrument design features of TAIPAN, highlight the modifications that will be necessary for the MANIFEST implementation, and provide an update on the MANIFEST/instrument interfaces.

  8. Fiber Optic Sensing: Prototype Results

    NASA Astrophysics Data System (ADS)

    Ortiz Martin, Jesus; Gonzalez Torres, Jose

    2015-09-01

    Airbus DS Crisa has been developing an interrogator of Fiber Bragg Grating sensors [1], aimed at measuring, mainly, temperature and strain by means of fiber optic links. This activity, funded by Airbus DS Crisa, ESA and HBM Fibersensing, finalizes with the manufacturing of a prototype. The present paper describes in detail the main outcomes of the testing activities of this prototype. At the moment of writing the paper all the functional tests have been concluded. The environmental tests, thermal and mechanical, will be conducted with the FOS interrogator forming part of the RTU2015, described in [2].

  9. Prototyping a genetics deductive database

    SciTech Connect

    Hearne, C.; Cui, Zhan; Parsons, S.; Hajnal, S.

    1994-12-31

    We are developing a laboratory notebook system known as the Genetics Deductive Database. Currently our prototype provides storage for biological facts and rules with flexible access via an interactive graphical display. We have introduced a formal basis for the representation and reasoning necessary to order genome map data and handle the uncertainty inherent in biological data. We aim to support laboratory activities by introducing an experiment planner into our prototype. The Genetics Deductive Database is built using new database technology which provides an object-oriented conceptual model, a declarative rule language, and a procedural update language. This combination of features allows the implementation of consistency maintenance, automated reasoning, and data verification.

  10. MC and A software assistance to Ukraine

    SciTech Connect

    Ewing, T.; McWilliams, C.; Olson, A.

    1997-09-01

    The US Department of Energy is assisting nuclear facilities in Ukraine to improve their ability to protect, control, and account for the nuclear material under their authority. Early in the assistance program the Ukrainian representatives requested assistance in automating the material accounting at their facilities. A PC-based application, AIMAS (Automated Inventory and Material Accounting System), was designed to provide a starting point for joint US and Ukraine system development. Computers with AIMAS prototypes have been installed at Kiev Institute of Nuclear Research (KINR), South Ukraine Nuclear Power Plant (SUNPP), Kharkiv Institute of Physics and Technology (KIPT), Sevastopol Institute of Nuclear Energy and Industry (SINEI), and the Ministry of Environmental Protection and Nuclear Safety (MEPNS). Microsoft Access 2.0, a windows-based relational database management system, is the application development environment. Since it is necessary to support a wide range of computing infrastructure needs and facility requirements, AIMAS has been designed to be highly flexible and user configurable. AIMAS functions include basic physical inventory tracking, transaction histories, reporting, and system administration functions (system configuration and security). Security measures include multilevel password access controls, all transactions logged with the user ID, and system administration controls. Interfaces to external modules are being designed to provide nuclear fuel burnup adjustment and bar code scanning capabilities for physical inventory taking.

  11. Prototype Methodology for Designing and Developing Computer-Assisted Instruction

    DTIC Science & Technology

    1986-08-01

    cafeteria menu for Tuesday includes: • Asparagues with Hollandaise sauce and almonds • Sirloin steak • Peanut butter and jelly sandwiches Use numbers...track with the original plan or will alert you to deviations from the plan that may impact your CAI effort. 3.2 Step 2: Review Products of ISD

  12. Effect of ultrasonic vibration time on the Cu/Sn-Ag-Cu/Cu joint soldered by low-power-high-frequency ultrasonic-assisted reflow soldering.

    PubMed

    Tan, Ai Ting; Tan, Ai Wen; Yusof, Farazila

    2017-01-01

    Techniques to improve solder joint reliability have been the recent research focus in the electronic packaging industry. In this study, Cu/SAC305/Cu solder joints were fabricated using a low-power high-frequency ultrasonic-assisted reflow soldering approach where non-ultrasonic-treated samples were served as control sample. The effect of ultrasonic vibration (USV) time (within 6s) on the solder joint properties was characterized systematically. Results showed that the solder matrix microstructure was refined at 1.5s of USV, but coarsen when the USV time reached 3s and above. The solder matrix hardness increased when the solder matrix was refined, but decreased when the solder matrix coarsened. The interfacial intermetallic compound (IMC) layer thickness was found to decrease with increasing USV time, except for the USV-treated sample with 1.5s. This is attributed to the insufficient USV time during the reflow stage and consequently accelerated the Cu dissolution at the joint interface during the post-ultrasonic reflow stage. All the USV-treated samples possessed higher shear strength than the control sample due to the USV-induced-degassing effect. The shear strength of the USV-treated sample with 6s was the lowest among the USV-treated samples due to the formation of plate-like Ag3Sn that may act as the crack initiation site.

  13. Impact of the Great East Japan Earthquake and Fukushima Nuclear Power Plant Accident on Assisted Reproductive Technology in Fukushima Prefecture: The Fukushima Health Management Survey.

    PubMed

    Hayashi, Masako; Fujimori, Keiya; Yasumura, Seiji; Nakai, Akihito

    2017-09-01

    The aim of the study was to evaluate the incidences and obstetric outcomes of women who conceived using assisted reproductive technology (ART) procedures in Fukushima Prefecture before and after the Great East Japan Earthquake and Fukushima nuclear power plant accident. Information was collected and analyzed from 12,070 women who conceived with or without ART in Fukushima Prefecture during the 9 months before and after the disaster. During the 9 months before and after the disaster, 138 (2.0%) and 102 (1.9%) women conceived with in vitro fertilization-embryo transfer (IVF-ET), respectively. The proportion of women who conceived with IVF-ET decreased during the 2 months immediately after the disaster, but returned to pre-disaster levels 3 months after the disaster. In the case of women who conceived without IVF-ET, the incidences of preterm birth and low birth weight increased after the disaster. In contrast, women who conceived with IVF-ET did not differ significantly in obstetric outcomes before and after the disaster but had a higher incidence of cesarean section and low birth weight compared to those conceived without IVF-ET, regardless of the study period. The influence of the disaster on woman who conceived using ART procedures was minimal.

  14. Impact of the Great East Japan Earthquake and Fukushima Nuclear Power Plant Accident on Assisted Reproductive Technology in Fukushima Prefecture: The Fukushima Health Management Survey

    PubMed Central

    Hayashi, Masako; Fujimori, Keiya; Yasumura, Seiji; Nakai, Akihito

    2017-01-01

    Background The aim of the study was to evaluate the incidences and obstetric outcomes of women who conceived using assisted reproductive technology (ART) procedures in Fukushima Prefecture before and after the Great East Japan Earthquake and Fukushima nuclear power plant accident. Methods Information was collected and analyzed from 12,070 women who conceived with or without ART in Fukushima Prefecture during the 9 months before and after the disaster. Results During the 9 months before and after the disaster, 138 (2.0%) and 102 (1.9%) women conceived with in vitro fertilization-embryo transfer (IVF-ET), respectively. The proportion of women who conceived with IVF-ET decreased during the 2 months immediately after the disaster, but returned to pre-disaster levels 3 months after the disaster. In the case of women who conceived without IVF-ET, the incidences of preterm birth and low birth weight increased after the disaster. In contrast, women who conceived with IVF-ET did not differ significantly in obstetric outcomes before and after the disaster but had a higher incidence of cesarean section and low birth weight compared to those conceived without IVF-ET, regardless of the study period. Conclusion The influence of the disaster on woman who conceived using ART procedures was minimal. PMID:28811855

  15. Matrix-assisted laser desorption/ionization mass spectrometry imaging: a powerful tool for probing the molecular topology of plant cutin polymer.

    PubMed

    Veličković, Dušan; Herdier, Hélène; Philippe, Glenn; Marion, Didier; Rogniaux, Hélène; Bakan, Bénédicte

    2014-12-01

    The cutin polymers of different fruit cuticles (tomato, apple, nectarine) were examined using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) after in situ release of the lipid monomers by alkaline hydrolysis. The mass spectra were acquired from each coordinate with a lateral spatial resolution of approximately 100 μm. Specific monomers were released at their original location in the tissue, suggesting that post-hydrolysis diffusion can be neglected. Relative quantification of the species was achieved by introducing an internal standard, and the collection of data was subjected to non-supervised and supervised statistical treatments. The molecular images obtained showed a specific distribution of ions that could unambiguously be ascribed to cutinized and suberized regions observed at the surface of fruit cuticles, thus demonstrating that the method is able to probe some structural changes that affect hydrophobic cuticle polymers. Subsequent chemical assignment of the differentiating ions was performed, and all of these ions could be matched to cutin and suberin molecular markers. Therefore, this MALDI-MSI procedure provides a powerful tool for probing the surface heterogeneity of plant lipid polymers. This method should facilitate rapid investigation of the relationships between cuticle phenotypes and the structure of cutin within a large population of mutants.

  16. Prototype operational earthquake prediction system

    USGS Publications Warehouse

    Spall, Henry

    1986-01-01

    An objective if the U.S. Earthquake Hazards Reduction Act of 1977 is to introduce into all regions of the country that are subject to large and moderate earthquakes, systems for predicting earthquakes and assessing earthquake risk. In 1985, the USGS developed for the Secretary of the Interior a program for implementation of a prototype operational earthquake prediction system in southern California.

  17. SIRTF Science Planning Tool Prototype

    NASA Astrophysics Data System (ADS)

    Deutsch, M.; Ebert, R.; Nguyen, P.

    1996-12-01

    The SIRTF project is developing a science planning tool to help the observers scope and plan their observations in preparation for submission of their proposals for observing time on the SIRTF Observatory. Its primary focus is to help the scientist design feasible astronomical observations, such as estimating overall execution time, determine the appropriate SNR or exposure time, provide the required parameters and format for their observation. The tool will be web based and will be capable of interfacing with other tools used as part of a science tool set as well as scheduling and modeling tools used as part of preparation for uplink to the observatory for observation execution. The SIRTF project has been working on a first prototype of the science planning tool. The scope of the current prototype is limited, but does provide insight into the possible ways of using the telescope by allowing a choice of seven modes of operation (will be eight in the future) and gives rough estimates of the sensitivity and wall clock calculations. The modes available through this prototype are the IRAC deep survey, the IRS spectral map mode and staring mode, and the MIPS scan map mode, photometry mode, spectral energy distribution mode and super-resolution mode. The demonstration of the early science planning prototype will give the user the opportunity to see and "feel" the instrument sensitivity capabilities, the spacecraft wall clock estimates as well as the web interface. In addition valuable input will be obtained from the astronomy community for future development.

  18. OTF Mission Operations Prototype Status

    NASA Technical Reports Server (NTRS)

    Reynolds, Walter F.; Lucord, Steven A.; Stevens, John E.

    2009-01-01

    Reports on the progress of the JSC/OTF prototype of a CCSDS SM&C protocol based communications link between two space flight operations control centers. Varied implementations using software architectures from current web enterprise venues are presented. The AMS protocol (CCSDS Blue Book standard 735.1) was used for messaging and link communications.

  19. Rapid 2-axis scanning lidar prototype

    NASA Astrophysics Data System (ADS)

    Hartsell, Daryl; LaRocque, Paul E.; Tripp, Jeffrey

    2016-10-01

    The rapid 2-axis scanning lidar prototype was developed to demonstrate high-precision single-pixel linear-mode lidar performance. The lidar system is a combined integration of components from various commercial products allowing for future customization and performance enhancements. The intent of the prototype scanner is to demonstrate current stateof- the-art high-speed linear scanning technologies. The system consists of two pieces: the sensor head and control unit. The senor head can be installed up to 4 m from the control box and houses the lidar scanning components and a small RGB camera. The control unit houses the power supplies and ranging electronics necessary for operating the electronics housed inside the sensor head. This paper will discuss the benefits of a 2-axis scanning linear-mode lidar system, such as range performance and a userselectable FOV. Other features include real-time processing of 3D image frames consisting of up to 200,000 points per frame.

  20. Power assist EVA glove development

    NASA Technical Reports Server (NTRS)

    Main, John A.; Peterson, Steven W.; Strauss, Alvin M.

    1992-01-01

    Structural modeling of the EVA glove indicates that flexibility in the metacarpophalangeal (MCP) joint can be improved by selectively lowering the elasticity of the glove fabric. Two strategies are used to accomplish this. One method uses coil springs on the back of the glove to carry the tension in the glove skin due to pressurization. These springs carry the loads normally borne by the glove fabric, but are more easily deformed. An active system was also designed for the same purpose and uses gas filled bladders attached to the back of the EVA glove that change the dimensions of the back of the glove and allow the glove to bend at the MCP joint, thus providing greater flexibility at this joint. A threshold control scheme was devised to control the action of the joint actuators. Input to the controller was provided by thin resistive pressure sensors placed between the hand and the pressurized glove. The pressure sensors consist of a layer of polyester film that has a thin layer of ink screened on the surface. The resistivity of the ink is pressure dependent, so an extremely thin pressure sensor can be fabricated by covering the ink patch with another layer of polyester film and measuring the changing resistance of the ink with a bridge circuit. In order to sense the force between the hand and the glove at the MCP joint, a sensor was placed on the palmar face of the middle finger. The resultant signal was used by the controller to decide whether to fill or exhaust the bladder actuators on the back of the glove. The information from the sensor can also be used to evaluate the effectiveness of a given control scheme or glove design since the magnitude of the measured pressures gives some idea of the torque required to bend a glove finger at the MCP joint. Tests of this actuator, sensor, and control system were conducted in an 57.2 kPa glove box by performing a series of 90 degree finger bends with a glove without an MCP joint assembly, a glove with the coil spring assembly, and with the four fingered actuated glove. The tests of these three glove designs confirm the validity of the model.

  1. Power assist EVA glove development

    NASA Technical Reports Server (NTRS)

    Main, John A.; Peterson, Steven W.; Strauss, Alvin M.

    1992-01-01

    The design of the EVA glove is examined, emphasizing the development of a more flexible metacarpophalangeal (MCP) joint for the EVA glove. The analysis of the EVA glove MCP joint is reviewed and the glove design process is recapitulated. Experimental tests of the glove are summarized.

  2. 46 CFR 160.115-13 - Approval inspections and tests for prototype winches.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... fluid power and control system, a test of the hydraulic controls must be conducted in accordance with 46... prototype testing that the falls wind evenly on and off each drum. (e) Test waiver. The Commandant may...

  3. A failure management prototype: DR/Rx

    NASA Technical Reports Server (NTRS)

    Hammen, David G.; Baker, Carolyn G.; Kelly, Christine M.; Marsh, Christopher A.

    1991-01-01

    This failure management prototype performs failure diagnosis and recovery management of hierarchical, distributed systems. The prototype, which evolved from a series of previous prototypes following a spiral model for development, focuses on two functions: (1) the diagnostic reasoner (DR) performs integrated failure diagnosis in distributed systems; and (2) the recovery expert (Rx) develops plans to recover from the failure. Issues related to expert system prototype design and the previous history of this prototype are discussed. The architecture of the current prototype is described in terms of the knowledge representation and functionality of its components.

  4. Concept of using a benchmark part to evaluate rapid prototype processes

    NASA Technical Reports Server (NTRS)

    Cariapa, Vikram

    1994-01-01

    A conceptual benchmark part for guiding manufacturers and users of rapid prototyping technologies is proposed. This is based on a need to have some tool to evaluate the development of this technology and to assist the user in judiciously selecting a process. The benchmark part is designed to have unique product details and features. The extent to which a rapid prototyping process can reproduce these features becomes a measure of the capability of the process. Since rapid prototyping is a dynamic technology, this benchmark part should be used to continuously monitor process capability of existing and developing technologies. Development of this benchmark part is, therefore, based on an understanding of the properties required from prototypes and characteristics of various rapid prototyping processes and measuring equipment that is used for evaluation.

  5. Biomechanical evaluation of a prototype foot/ankle prosthesis.

    PubMed

    Quesada, P M; Pitkin, M; Colvin, J

    2000-03-01

    In this paper, we report on our pilot evaluation of a prototype foot/ankle prosthesis. This prototype has been designed and fabricated with the intention of providing decreased ankle joint stiffness during the middle portion of the stance phase of gait, and increased (i.e., more normal) knee range of motion during stance. Our evaluation involved fitting the existing prototype foot/ankle prosthesis, as well as a traditional solid ankle cushioned heel (SACH) foot, to an otherwise healthy volunteer with a below-knee (BK) amputation. We measured this individual's lower extremity joint kinematics and kinetics during walking using a video motion analysis system and force platform. These measurements permitted direct comparison of prosthetic ankle joint stiffness and involved side knee joint motion, as well as prosthetic ankle joint moment and power.

  6. Prototype tests for a highly granular scintillator-based hadron calorimeter

    NASA Astrophysics Data System (ADS)

    Krüger, K.; CALICE Collaboration

    2015-02-01

    Within the CALICE collaboration, several concepts for the hadronic calorimeter of a future linear collider detector are studied. After having demonstrated the capabilities of the measurement methods in "physics prototypes", the focus now lies on improving their implementation in"technological prototypes", that are scalable to the full linear collider detector. The Analog Hadron Calorimeter (AHCAL) concept is a sampling calorimeter of tungsten or steel absorber plates and plastic scintillator tiles read out by silicon photomultipliers as active material. In the AHCAL technological prototype, the front-end chips are integrated into the active layers of the calorimeter and are designed for minimal power consumption. The versatile electronics allows the prototype to be equipped with different types of scintillator tiles and SiPMs. The current status of the AHCAL engineering prototype is shown and recent beam test measurements as well as plans for future hadron beam tests with a larger prototype will be discussed.

  7. A prototype of intersatellite laser communications terminals

    NASA Astrophysics Data System (ADS)

    Liu, Liren; Zhu, Xiaolei; Hu, Yanzhi; Luan, Zhu; Wang, Lijuan; Liu, De'an; Gao, Ruichang; Xie, Latang; Yuan, Jiahu

    2005-08-01

    In this paper, a prototype of intersatellite laser communication terminal for a principle demonstration is reported, and the corresponding ground support equipments are described, too. The terminal has two main subsystems, the first is one for the laser communication and the second for the pointing, acquisition and tracking. Laser diodes are used for the communication link, and with the average laser power of more than 200mW and the data-rate up to 600Mbps. The PAT unit consists of a fine pointing mechanism and a coarse pointing assemble, which reaches a tracking accuracy of ~5μrad. The on-ground test equipments are included in a communication test bed with a long-distance beam propagation simulator, a PAT test bed with an optical satellite trajectory simulator, and a wavefront test bed with deferent lateral-shearing interferometers.

  8. Design and fabrication of a prototype system for photovoltaic residences in the northeastern United States

    NASA Astrophysics Data System (ADS)

    Millner, A. R.

    1982-08-01

    Plans for an energy-efficient residence for the Northeastern region of the country with a roof-mounted photovoltaic (PV) solar electric power system which would allow two-way power flow between the utility grid and the house are discussed. A full scale working prototype of the PV system was built to evaluate the performance of that system for one year. Described are the residence design, the prototype description, the construction, and the fabrication history through the first year of operation.

  9. Comparison of cardiac power output and exercise performance in patients with left ventricular assist devices, explanted (recovered) patients, and those with moderate to severe heart failure.

    PubMed

    Jakovljevic, Djordje G; George, Robert S; Donovan, Gay; Nunan, David; Henderson, Keiran; Bougard, Robert S; Yacoub, Magdi H; Birks, Emma J; Brodie, David A

    2010-06-15

    Peak cardiac power output (CPO), as a direct measurement of overall cardiac function, has been shown to be a most powerful predictor of prognosis for patients with chronic heart failure. The present study assessed CPO and exercise performance in patients implanted with a left ventricular assist device (LVAD), those explanted due to myocardial recovery, and those with moderate to severe heart failure. Hemodynamic and respiratory gas exchange measurements were undertaken at rest and at peak graded exercise. These were performed in 54 patients-20 with moderate to severe heart failure, 18 with implanted LVADs, and 16 with explanted LVADs. At rest there was a nonsignificant difference in CPO among groups (p >0.05). Peak CPO was significantly higher in the explanted LVAD than in the heart failure and implanted LVAD groups (heart failure 1.90 +/- 0.45 W, implanted LVAD 2.37 +/- 0.55 W, explanted LVAD 3.39 +/- 0.61 W, p <0.01) as was peak cardiac output (heart failure 9.1 +/- 2.1 L/min, implanted LVAD 12.4 +/- 2.2 L/min, explanted LVD 14.6 +/- 2.9 L/min, p <0.01). Peak oxygen consumption was higher in the explanted LVAD than in the heart failure and implanted LVAD groups (heart failure 15.8 +/- 4.1 ml/kg/min, implanted LVAD 19.8 +/- 5.8 ml/kg/min, explanted LVAD 28.2 +/- 5.0 ml/kg/min, p <0.05) as was anaerobic threshold (heart failure 11.2 +/- 1.9 ml/kg/min, implanted LVAD 14.7 +/- 4.9 ml/kg/min, explanted LVAD 21.4 +/- 5.0 ml/kg/min, p <0.05). In conclusion, peak CPO differentiates well during cardiac restoration using LVADs and emphasizes the benefits of this therapy. CPO has the potential to be a key physiologic marker of heart failure severity and can guide management of patients with LVAD.

  10. Physisorbed-precursor-assisted atomic layer deposition of reliable ultrathin dielectric films on inert graphene surfaces for low-power electronics

    NASA Astrophysics Data System (ADS)

    Jeong, Seong-Jun; Kim, Hyo Won; Heo, Jinseong; Lee, Min-Hyun; Song, Hyun Jae; Ku, JiYeon; Lee, Yunseong; Cho, Yeonchoo; Jeon, Woojin; Suh, Hwansoo; Hwang, Sungwoo; Park, Seongjun

    2016-09-01

    Among the most fundamental challenges encountered in the successful incorporation of graphene in silicon-based electronics is the conformal growth of ultrathin dielectric films, especially those with thicknesses lower than 5 nm, on chemically inert graphene surfaces. Here, we present physisorbed-precursor-assisted atomic layer deposition (pALD) as an extremely robust method for fabricating such films. Using atomic-scale characterisation, it is confirmed that conformal and intact ultrathin Al2O3 films can be synthesised on graphene by pALD. The mechanism underlying the pALD process is identified through first-principles calculations based on density functional theory. Further, this novel deposition technique is used to fabricate two types of wafer-scale devices. It is found that the incorporation of a 5 nm-thick pALD Al2O3 gate dielectric film improves the performance of metal-oxide-graphene field-effect transistors to a greater extent than does the incorporation of a conventional ALD Al2O3 film. We also employ a 5 nm-thick pALD HfO2 film as a highly scalable dielectric layer with a capacitance equivalent oxide thickness of 1 nm in graphene-based tunnelling field-effect transistors fabricated on a glass wafer and achieve a subthreshold swing of 30 mV/dec. This significant improvement in switching allows for the low-voltage operation of an inverter within 0.5 V of both the drain and the gate voltages, thus paving the way for low-power electronics.

  11. Customer-experienced rapid prototyping

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Zhang, Fu; Li, Anbo

    2008-12-01

    In order to describe accurately and comprehend quickly the perfect GIS requirements, this article will integrate the ideas of QFD (Quality Function Deployment) and UML (Unified Modeling Language), and analyze the deficiency of prototype development model, and will propose the idea of the Customer-Experienced Rapid Prototyping (CE-RP) and describe in detail the process and framework of the CE-RP, from the angle of the characteristics of Modern-GIS. The CE-RP is mainly composed of Customer Tool-Sets (CTS), Developer Tool-Sets (DTS) and Barrier-Free Semantic Interpreter (BF-SI) and performed by two roles of customer and developer. The main purpose of the CE-RP is to produce the unified and authorized requirements data models between customer and software developer.

  12. Rapid mask prototyping for microfluidics.

    PubMed

    Maisonneuve, B G C; Honegger, T; Cordeiro, J; Lecarme, O; Thiry, T; Fuard, D; Berton, K; Picard, E; Zelsmann, M; Peyrade, D

    2016-03-01

    With the rise of microfluidics for the past decade, there has come an ever more pressing need for a low-cost and rapid prototyping technology, especially for research and education purposes. In this article, we report a rapid prototyping process of chromed masks for various microfluidic applications. The process takes place out of a clean room, uses a commercially available video-projector, and can be completed in less than half an hour. We quantify the ranges of fields of view and of resolutions accessible through this video-projection system and report the fabrication of critical microfluidic components (junctions, straight channels, and curved channels). To exemplify the process, three common devices are produced using this method: a droplet generation device, a gradient generation device, and a neuro-engineering oriented device. The neuro-engineering oriented device is a compartmentalized microfluidic chip, and therefore, required the production and the precise alignment of two different masks.

  13. JUNO PMT system and prototyping

    NASA Astrophysics Data System (ADS)

    Wang, Zhimin; JUNO Collaboration

    2017-09-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose underground experiment and the largest liquid scintillator (LS) detector going for neutrino mass hierarchy, precise neutrino oscillation parameter measurement and studies of other rare processes, including but not limited to, solar neutrino, geo-neutrino, supernova neutrinos and the diffuse supernova neutrinos background. The 20” PMT system with ∼17000 high quantum efficiency tubes, including Hamamatsu 20” and newly developed MCP 20” tubes, is one of the keys of JUNO experiment for better energy resolution, good detector response etc. We are doing prototypes for PMTs, detectors to study/understand more detailed characteristics of the future detector. Here plans to give you a full view about the JUNO PMT system and its prototyping, including the PMT system layout, PMT testing system design, PMT water proof potting with electronics, installation ideas and the basics PMT performance.

  14. Prototype of sun projector device

    NASA Astrophysics Data System (ADS)

    Ihsan; Dermawan, B.

    2016-11-01

    One way to introduce astronomy to public, including students, can be handled by solar observation. The widely held device for this purpose is coelostat and heliostat. Besides using filter attached to a device such as telescope, it is safest to use indirect way for observing the Sun. The main principle of the indirect way is deflecting the sun light and projecting image of the sun on a screen. We design and build a simple and low-cost astronomical device, serving as a supplement to increase public service, especially for solar observation. Without using any digital and intricate supporting equipment, people can watch and relish image of the Sun in comfortable condition, i.e. in a sheltered or shady place. Here we describe a design and features of our prototype of the device, which still, of course, has some limitations. In the future, this prototype can be improved for more efficient and useful applications.

  15. Prototyping the PANDA Barrel DIRC

    NASA Astrophysics Data System (ADS)

    Schwarz, C.; Kalicy, G.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Dodokhov, V. Kh.; Britting, A.; Eyrich, W.; Lehmann, A.; Uhlig, F.; Düren, M.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Cowie, E.; Keri, T.; Montgomery, R.; Rosner, G.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Sfienti, C.; Thiel, M.; Bühler, P.; Gruber, L.; Marton, J.; Suzuki, K.

    2014-12-01

    The design of the Barrel DIRC detector for the future PANDA experiment at FAIR contains several important improvements compared to the successful BABAR DIRC, such as focusing and fast timing. To test those improvements as well as other design options a prototype was build and successfully tested in 2012 with particle beams at CERN. The prototype comprises a radiator bar, focusing lens, mirror, and a prism shaped expansion volume made of synthetic fused silica. An array of micro-channel plate photomultiplier tubes measures the location and arrival time of the Cherenkov photons with sub-nanosecond resolution. The development of a fast reconstruction algorithm allowed to tune construction details of the detector setup with test beam data and Monte-Carlo simulations.

  16. Test report -- Prototype core sampler

    SciTech Connect

    Linschooten, C.G.

    1995-01-17

    The purpose of this test is to determine the adequacy of the prototype sampler, provided to Westinghouse Hanford Company (WHC) by DOE-RL. The sampler was fabricated for DOE-RL by the Concord Company by request of DOE-RL. This prototype sampler was introduced as a technology that can be easily deployed (similar to the current auger system) and will reliably collect representative samples. The sampler is similar to the Universal Sampler i.e., smooth core barrel and piston with an O-ring seal, but lacks a rotary valve near the throat of the sampler. This makes the sampler inappropriate for liquid sampling, but reduces the outside diameter of the sampler considerably, which should improve sample recovery. Recovery testing was performed with the supplied sampler in three different consistencies of Kaolin sludge simulants.

  17. Agile Development of Advanced Prototypes

    DTIC Science & Technology

    2012-11-01

    sound experience that emphasizes the progression of cochlear implant technology. A guest observes and listens to a virtual environment. They are able to...transition their environment through history as well as the simulated fidelity of a contemporary cochlear implant . A visual experience that...patient with a cochlear implant was interviewed. Outcomes of this research guided the design of the first prototype. The technical design was

  18. Glatz Prototype Seat Impact Testing

    DTIC Science & Technology

    2013-07-03

    from design drawings. A Pure Horizontal test was also conducted to determine structural strength of the Glatz prototype seat. Biodynamic response...Aerospace Biodynamics and Performance Research Team of the Applied Neuroscience Branch of the Human Effectiveness Directorate (711HPW/RHCP), under Workunit...test methodology. This testing focuses solely on the survivability of the seat and occupant biodynamics during primary aircraft impact. Secondary

  19. Competitive Prototyping: A PMO Perspective

    DTIC Science & Technology

    2013-04-01

    24p9.6 in width. The second paragraph will revert to the body text style, and the bio text aligns with this text block. giam vullaor sustissed eum ...doloreros nostrud ero ero dio ent euipit, venisse dionsendre dunt at, volenis eum iriure feu feum vel et volutat. Agnis alit aut aut volore eu faccums...prototyping process during a program’s Technology Development ( TD ) phase. Our specific example is the Joint and Allied Threat Aware- ness System (JATAS–AN

  20. Prototype Morphing Fan Nozzle Demonstrated

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Song, Gang-Bing

    2004-01-01

    Ongoing research in NASA Glenn Research Center's Structural Mechanics and Dynamics Branch to develop smart materials technologies for aeropropulsion structural components has resulted in the design of the prototype morphing fan nozzle shown in the photograph. This prototype exploits the potential of smart materials to significantly improve the performance of existing aircraft engines by introducing new inherent capabilities for shape control, vibration damping, noise reduction, health monitoring, and flow manipulation. The novel design employs two different smart materials, a shape-memory alloy and magnetorheological fluids, to reduce the nozzle area by up to 30 percent. The prototype of the variable-area fan nozzle implements an overlapping spring leaf assembly to simplify the initial design and to provide ease of structural control. A single bundle of shape memory alloy wire actuators is used to reduce the nozzle geometry. The nozzle is subsequently held in the reduced-area configuration by using magnetorheological fluid brakes. This prototype uses the inherent advantages of shape memory alloys in providing large induced strains and of magnetorheological fluids in generating large resistive forces. In addition, the spring leaf design also functions as a return spring, once the magnetorheological fluid brakes are released, to help force the shape memory alloy wires to return to their original position. A computerized real-time control system uses the derivative-gain and proportional-gain algorithms to operate the system. This design represents a novel approach to the active control of high-bypass-ratio turbofan engines. Researchers have estimated that such engines will reduce thrust specific fuel consumption by 9 percent over that of fixed-geometry fan nozzles. This research was conducted under a cooperative agreement (NCC3-839) at the University of Akron.

  1. Power systems

    NASA Astrophysics Data System (ADS)

    Kaplan, G.

    1982-01-01

    Significant events in current, prototype, and experimental utility power generating systems in 1981 are reviewed. The acceleration of licensing and the renewal of plans for reprocessing of fuel for nuclear power plants are discussed, including the rise of French reactor-produced electricity to over 40% of the country's electrical output. A 4.5 MW fuel cell neared completion in New York City, while three 2.5 MW NASA-designed windpowered generators began producing power in the state of Washington. Static bar compensators, nonflammable-liquid cooled power transformers, and ZnO surge arrestors were used by utilities for the first time, and the integration of a coal gasifier-combined cycle power plant approached the planning phase. An MHD generator was run for 1000 hours and produced 50-60 kWe, while a 20 MVA superconducting generator was readied for testing.

  2. Robotic Lander Prototype Completes Initial Tests

    NASA Image and Video Library

    NASA's Robotic Lunar Lander Development Project at Marshall Space Flight Center in Huntsville, Ala., completed an initial series of integrated tests on a new lander prototype. The prototype lander ...

  3. Iteration and Prototyping in Creating Technical Specifications.

    ERIC Educational Resources Information Center

    Flynt, John P.

    1994-01-01

    Claims that the development process for computer software can be greatly aided by the writers of specifications if they employ basic iteration and prototyping techniques. Asserts that computer software configuration management practices provide ready models for iteration and prototyping. (HB)

  4. Solid state fluorometer: Prototype development

    NASA Astrophysics Data System (ADS)

    Czarnaski, Joseph; Foster, Karen; Hardgrove, John; Oprison, Richard; Hickman, James

    1994-03-01

    The development of new detectors for chemical and biological warfare agents is of interest to the DOD. One way to detect these agents is by fluorescent labeling of one of the species involved in a binding event. The U.S. Air Force has developed a system that combines a biological assay with a fluorescent molecule tag. The binding event is quantified by measuring the ratio of red to green fluorescence. With a solid state fluorometer fast binding detection is possible in a small, lightweight package that could easily be interfaced to a microprocessor with readout. We have begun the development of a solid state microfluorometer. The development has been divided into three phases: (1) prototype development, (2) device operational parameter investigation, and (3) design and construction. This report details the construction of the prototype device. The prototype has a 488-nm laser for excitation, and red and green detectors for fluorescent emission. The calibration of the detectors and the computer interface construction is described. It can be used as a fluorescent imaging system as well.

  5. Majorana Thermosyphon Prototype Experimental Results

    SciTech Connect

    Fast, James E.; Reid, Douglas J.; Aguayo Navarrete, Estanislao

    2010-12-17

    Objective The Majorana demonstrator will operate at liquid Nitrogen temperatures to ensure optimal spectrometric performance of its High Purity Germanium (HPGe) detector modules. In order to transfer the heat load of the detector module, the Majorana demonstrator requires a cooling system that will maintain a stable liquid nitrogen temperature. This cooling system is required to transport the heat from the detector chamber outside the shield. One approach is to use the two phase liquid-gas equilibrium to ensure constant temperature. This cooling technique is used in a thermosyphon. The thermosyphon can be designed so the vaporization/condensing process transfers heat through the shield while maintaining a stable operating temperature. A prototype of such system has been built at PNNL. This document presents the experimental results of the prototype and evaluates the heat transfer performance of the system. The cool down time, temperature gradient in the thermosyphon, and heat transfer analysis are studied in this document with different heat load applied to the prototype.

  6. Rapid prototyping applications for manufacturing

    SciTech Connect

    Atwood, C.L.; Maguire, M.C.; Pardo, B.T.; Bryce, E.A.

    1996-01-01

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{sup TM} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. As participants in the Beta test program for QuickCast{sup TM} resin and software, we experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible using this technology to produce highly accurate prototype parts as well as acceptable first article and small lot size production parts. We use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This report will focus on our successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes. 6 refs., 10 figs.

  7. An approach for assessing software prototypes

    NASA Technical Reports Server (NTRS)

    Church, V. E.; Card, D. N.; Agresti, W. W.; Jordan, Q. L.

    1986-01-01

    A procedure for evaluating a software prototype is presented. The need to assess the prototype itself arises from the use of prototyping to demonstrate the feasibility of a design or development stategy. The assessment procedure can also be of use in deciding whether to evolve a prototype into a complete system. The procedure consists of identifying evaluations criteria, defining alterative design approaches, and ranking the alternatives according to the criteria.

  8. Development of prototype polychromator system for KSTAR Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Lee, S. H.; Son, S. H.; Ko, W. H.; Seo, D. C.; Yamada, I.; Her, K. H.; Jeon, J. S.; Bog, M. G.

    2015-12-01

    A polychromator is widely used by the Thomson scattering system for measuring the electron temperature and density. This type of spectrometer includes optic elements such as band-pass filters, focusing lens, collimating lens, and avalanche photodiodes (APDs). The characteristics of band-pass filters in the polychromator are determined by the measuring range of the Thomson system. KSTAR edge polychromators were developed by co-works at NIFS in Japan, and the KSTAR core polychromators were developed by NFRI in Korea. The power supply system of these polychromators is connected only to one power supply module and can manually control the APD's voltage at the front side of the power supply by using a potentiometer. In this paper, a prototype polychromator is introduced at the KSTAR. The prototype polychromator system has a built-in power supply unit that includes high voltage for the APD and ± 5 V for an op-amp IC. The high voltage for the APD is finely controlled and monitored using a PC with the LabView software. One out of the six band pass-filters has a center wavelength of 523.5 nm with 2-nm bandwidth, which can measure Zeff, and the other five band-pass filters can simultaneously measure the Thomson signal. In addition, we will show the test result of this prototype polychromator system during the KSTAR experiment campaign (2015).

  9. Spreadsheet Applications: Prototyping an Innovative Blended Course

    ERIC Educational Resources Information Center

    Baker, J. Howard

    2004-01-01

    After teaching the advanced spreadsheet course at a major university in Louisiana as a traditional classroom course for a number of years, it was decided to create a prototype-blended course, with a considerable portion offered via distance education. This research, which uses a prototyping methodology, is exploratory in nature. Prototyping can…

  10. Prototype Abstraction by Monkeys ("Macaca Mulatta")

    ERIC Educational Resources Information Center

    Smith, J. David; Redford, Joshua S.; Haas, Sarah M.

    2008-01-01

    The authors analyze the shape categorization of rhesus monkeys ("Macaca mulatta") and the role of prototype- and exemplar-based comparison processes in monkeys' category learning. Prototype and exemplar theories make contrasting predictions regarding performance on the Posner-Homa dot-distortion categorization task. Prototype theory--which…

  11. Prototype Abstraction by Monkeys ("Macaca Mulatta")

    ERIC Educational Resources Information Center

    Smith, J. David; Redford, Joshua S.; Haas, Sarah M.

    2008-01-01

    The authors analyze the shape categorization of rhesus monkeys ("Macaca mulatta") and the role of prototype- and exemplar-based comparison processes in monkeys' category learning. Prototype and exemplar theories make contrasting predictions regarding performance on the Posner-Homa dot-distortion categorization task. Prototype theory--which…

  12. Rapid Prototyping in the Instructional Design Process.

    ERIC Educational Resources Information Center

    Nixon, Elizabeth Krick; Lee, Doris

    2001-01-01

    Discusses instructional design models and examines rapid prototyping, a model that combines computer design strategies, constructivist learning theory, and cognitive psychology. Highlights include limitations of linear models; instructional problems appropriate and those not appropriate for rapid prototyping; and rapid prototyping as a paradigm…

  13. Implicit face prototype learning from geometric information.

    PubMed

    Or, Charles C-F; Wilson, Hugh R

    2013-04-19

    There is evidence that humans implicitly learn an average or prototype of previously studied faces, as the unseen face prototype is falsely recognized as having been learned (Solso & McCarthy, 1981). Here we investigated the extent and nature of face prototype formation where observers' memory was tested after they studied synthetic faces defined purely in geometric terms in a multidimensional face space. We found a strong prototype effect: The basic results showed that the unseen prototype averaged from the studied faces was falsely identified as learned at a rate of 86.3%, whereas individual studied faces were identified correctly 66.3% of the time and the distractors were incorrectly identified as having been learned only 32.4% of the time. This prototype learning lasted at least 1 week. Face prototype learning occurred even when the studied faces were further from the unseen prototype than the median variation in the population. Prototype memory formation was evident in addition to memory formation of studied face exemplars as demonstrated in our models. Additional studies showed that the prototype effect can be generalized across viewpoints, and head shape and internal features separately contribute to prototype formation. Thus, implicit face prototype extraction in a multidimensional space is a very general aspect of geometric face learning.

  14. Ultrasound assisted co-precipitation of nanostructured CuO-ZnO-Al2O3 over HZSM-5: effect of precursor and irradiation power on nanocatalyst properties and catalytic performance for direct syngas to DME.

    PubMed

    Allahyari, Somaiyeh; Haghighi, Mohammad; Ebadi, Amanollah; Hosseinzadeh, Shahin

    2014-03-01

    Nanostructured CuO-ZnO-Al2O3/HZSM-5 was synthesized from nitrate and acetate precursors using ultrasound assisted co-precipitation method under different irradiation powers. The CuO-ZnO-Al2O3/HZSM-5 nanocatalysts were characterized using XRD, FESEM, BET, FTIR and EDX Dot-mapping analyses. The results indicated precursor type and irradiation power have significant influences on phase structure, morphology, surface area and functional groups. It was observed that the acetate formulated CuO-ZnO-Al2O3/HZSM-5 nanocatalyst have smaller CuO crystals with better dispersion and stronger interaction between components in comparison to nitrate based nanocatalysts. Ultrasound assisted co-precipitation synthesis method resulted in nanocatalyst with more uniform morphology compared to conventional method and increasing irradiation power yields smaller particles with better dispersion and higher surface area. Additionally the crystallinity of CuO is lower at high irradiation powers leading to stronger interaction between metal oxides. The nanocatalysts performance were tested at 200-300 °C, 10-40 bar and space velocity of 18,000-36,000 cm(3)/g h with the inlet gas composition of H2/CO = 2/1 in a stainless steel autoclave reactor. The acetate based nanocatalysts irradiated with higher levels of power exhibited better reactivity in terms of CO conversion and DME yield. While there is an optimal temperature for CO conversion and DME yield in direct synthesis of DME, CO conversion and DME yield both increase with the pressure increase. Furthermore ultrasound assisted co-precipitation method yields more stable CuO-ZnO-Al2O3/HZSM-5 nanocatalyst while conventional precipitated nanocatalyst lost their activity ca. 18% and 58% in terms of CO conversion and DME yield respectively in 24 h time on stream test.

  15. The Prototype Solid State Induction Modulator for SLAC NLC

    SciTech Connect

    Cassel, Richard

    2002-08-21

    The Next Linear Collider accelerator proposal at SLAC requires a high efficiency, highly reliable, and low cost pulsed power modulator to drive the X band klystrons. The present NLC envisions a solid-state induction modulator design to drive up to 8 klystrons to 500kV for 3{micro}S at 120 PPS with one modulator (>1,000 megawatt pulse, 500kW average). A prototype modulator is presently under construction, which well power 4 each 5045 SLAC klystron to greater than 380 kV for 3{micro}S (>600 megawatt pulse, >300 kW Ave.). The modulator will be capable of driving the 8 each X band klystrons when they become available. The paper covers the design, construction, fabrication and preliminary testing of the prototype modulator.

  16. Mu2e transport solenoid prototype tests results

    SciTech Connect

    Lopes, Mauricio L.; G. Ambrosio; DiMarco, J.; Evbota, D.; Feher, S.; Friedsam, H.; Galt, A.; Hays, S.; Hocker, J.; Kim, M. J.; Kokoska, L.; Koshelev, S.; Kotelnikov, S.; Lamm, M.; Makulski, A.; Nehring, R.; Nogiec, J.; Orris, D.; Pilipenko, R.; Rabehl, R.; Santini, C.; Sylvester, C.; Tartaglia, M.; Badgley, K.; Fabbricatore, P.; Farinon, S.; Marchevsky, M.

    2016-02-08

    The Fermilab Mu2e experiment has been developed to search for evidence of charged lepton flavor violation through the direct conversion of muons into electrons. The transport solenoid is an s-shaped magnet which guides the muons from the source to the stopping target. It consists of fifty-two superconducting coils arranged in twenty-seven coil modules. A full-size prototype coil module, with all the features of a typical module of the full assembly, was successfully manufactured by a collaboration between INFN-Genoa and Fermilab. The prototype contains two coils that can be powered independently. In order to validate the design, the magnet went through an extensive test campaign. Warm tests included magnetic measurements with a vibrating stretched wire, electrical and dimensional checks. As a result, the cold performance was evaluated by a series of power tests as well as temperature dependence and minimum quench energy studies.

  17. Mu2e transport solenoid prototype tests results

    DOE PAGES

    Lopes, Mauricio L.; G. Ambrosio; DiMarco, J.; ...

    2016-02-08

    The Fermilab Mu2e experiment has been developed to search for evidence of charged lepton flavor violation through the direct conversion of muons into electrons. The transport solenoid is an s-shaped magnet which guides the muons from the source to the stopping target. It consists of fifty-two superconducting coils arranged in twenty-seven coil modules. A full-size prototype coil module, with all the features of a typical module of the full assembly, was successfully manufactured by a collaboration between INFN-Genoa and Fermilab. The prototype contains two coils that can be powered independently. In order to validate the design, the magnet went throughmore » an extensive test campaign. Warm tests included magnetic measurements with a vibrating stretched wire, electrical and dimensional checks. As a result, the cold performance was evaluated by a series of power tests as well as temperature dependence and minimum quench energy studies.« less

  18. NASA's Helios Prototype aircraft taking off from the Pacific Missile Range Facility, Kauai, Hawaii,

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Prototype to fly higher, longer and with a larger payload than the smaller craft. In addition, project engineers added a differential Global Positioning Satellite (GPS) system to improve navigation, an extensive turbulence monitoring system payload to record structural loads on the aircraft both in the air and on the ground, and radiator plates to assist in cooling the avionics at high altitudes where there is little air to dissipate heat. During 2000, more than 65,000 solar cells in 1,800 groups were mounted on the upper surface of Helios' wing. Produced by SunPower, Inc., these bi-facial silicon cells are about 19 percent efficient in the flight regime in which the helios is designed to operate, converting about 19 percent of the solar energy they receive into electrical current. The entire array is capable of producing a maximum output of about 35 kw at high noon on a summer day. The mission to reach and sustain flight at 100,000 feet in 2001 requires use of all 14 motors and minimal ballast to save weight, with the aircraft weighing in at only a little more than 1,600 lbs. The four-day mission above 50,000 feet envisioned for the Helios Prototype in 2003will see only eight motors powering the craft and the addition of the regenerative energy storage system now in development. The system will increase the Helios Prototype's flight weight to a little over 2,000 lbs. Fewer motors are needed for the long-endurance mission due to the lesser altitude requirements, and the excess electrical energy generated by the solar arrays during the daytime will be diverted to the hydrogen-oxygen fuel cell energy storage system, which will release the electricity to power the Helios after dark. With other system reliability improvements, production versions of the Helios are expected to fly missions lasting months at a time, becoming true 'atmospheric satellites.'

  19. NASA's Helios Prototype aircraft taking off from the Pacific Missile Range Facility, Kauai, Hawaii,

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Prototype to fly higher, longer and with a larger payload than the smaller craft. In addition, project engineers added a differential Global Positioning Satellite (GPS) system to improve navigation, an extensive turbulence monitoring system payload to record structural loads on the aircraft both in the air and on the ground, and radiator plates to assist in cooling the avionics at high altitudes where there is little air to dissipate heat. During 2000, more than 65,000 solar cells in 1,800 groups were mounted on the upper surface of Helios' wing. Produced by SunPower, Inc., these bi-facial silicon cells are about 19 percent efficient in the flight regime in which the helios is designed to operate, converting about 19 percent of the solar energy they receive into electrical current. The entire array is capable of producing a maximum output of about 35 kw at high noon on a summer day. The mission to reach and sustain flight at 100,000 feet in 2001 requires use of all 14 motors and minimal ballast to save weight, with the aircraft weighing in at only a little more than 1,600 lbs. The four-day mission above 50,000 feet envisioned for the Helios Prototype in 2003will see only eight motors powering the craft and the addition of the regenerative energy storage system now in development. The system will increase the Helios Prototype's flight weight to a little over 2,000 lbs. Fewer motors are needed for the long-endurance mission due to the lesser altitude requirements, and the excess electrical energy generated by the solar arrays during the daytime will be diverted to the hydrogen-oxygen fuel cell energy storage system, which will release the electricity to power the Helios after dark. With other system reliability improvements, production versions of the Helios are expected to fly missions lasting months at a time, becoming true 'atmospheric satellites.'

  20. The Helios Prototype aircraft during initial climb-out to the west over the Pacific Ocean.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Prototype to fly higher, longer and with a larger payload than the smaller craft. In addition, project engineers added a differential Global Positioning Satellite (GPS) system to improve navigation, an extensive turbulence monitoring system payload to record structural loads on the aircraft both in the air and on the ground, and radiator plates to assist in cooling the avionics at high altitudes where there is little air to dissipate heat. During 2000, more than 65,000 solar cells in 1,800 groups were mounted on the upper surface of Helios' wing. Produced by SunPower, Inc., these bi-facial silicon cells are about 19 percent efficient in the flight regime in which the helios is designed to operate, converting about 19 percent of the solar energy they receive into electrical current. The entire array is capable of producing a maximum output of about 35 kw at high noon on a summer day. The mission to reach and sustain flight at 100,000 feet in 2001 requires use of all 14 motors and minimal ballast to save weight, with the aircraft weighing in at only a little more than 1,600 lbs. The four-day mission above 50,000 feet envisioned for the Helios Prototype in 2003will see only eight motors powering the craft and the addition of the regenerative energy storage system now in development. The system will increase the Helios Prototype's flight weight to a little over 2,000 lbs. Fewer motors are needed for the long-endurance mission due to the lesser altitude requirements, and the excess electrical energy generated by the solar arrays during the daytime will be diverted to the hydrogen-oxygen fuel cell energy storage system, which will release the electricity to power the Helios after dark. With other system reliability improvements, production versions of the Helios are expected to fly missions lasting months at a time, becoming true 'atmospheric satellites.'

  1. The Helios Prototype aircraft during initial climb-out to the west over the Pacific Ocean.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Prototype to fly higher, longer and with a larger payload than the smaller craft. In addition, project engineers added a differential Global Positioning Satellite (GPS) system to improve navigation, an extensive turbulence monitoring system payload to record structural loads on the aircraft both in the air and on the ground, and radiator plates to assist in cooling the avionics at high altitudes where there is little air to dissipate heat. During 2000, more than 65,000 solar cells in 1,800 groups were mounted on the upper surface of Helios' wing. Produced by SunPower, Inc., these bi-facial silicon cells are about 19 percent efficient in the flight regime in which the helios is designed to operate, converting about 19 percent of the solar energy they receive into electrical current. The entire array is capable of producing a maximum output of about 35 kw at high noon on a summer day. The mission to reach and sustain flight at 100,000 feet in 2001 requires use of all 14 motors and minimal ballast to save weight, with the aircraft weighing in at only a little more than 1,600 lbs. The four-day mission above 50,000 feet envisioned for the Helios Prototype in 2003will see only eight motors powering the craft and the addition of the regenerative energy storage system now in development. The system will increase the Helios Prototype's flight weight to a little over 2,000 lbs. Fewer motors are needed for the long-endurance mission due to the lesser altitude requirements, and the excess electrical energy generated by the solar arrays during the daytime will be diverted to the hydrogen-oxygen fuel cell energy storage system, which will release the electricity to power the Helios after dark. With other system reliability improvements, production versions of the Helios are expected to fly missions lasting months at a time, becoming true 'atmospheric satellites.'

  2. Performance characterization of a rotary centrifugal left ventricular assist device with magnetic suspension.

    PubMed

    Jahanmir, Said; Hunsberger, Andrew Z; Heshmat, Hooshang; Tomaszewski, Michael J; Walton, James F; Weiss, William J; Lukic, Branka; Pae, William E; Zapanta, Conrad M; Khalapyan, Tigran Z

    2008-05-01

    The MiTiHeart (MiTiHeart Corporation, Gaithersburg, MD, USA) left ventricular assist device (LVAD), a third-generation blood pump, is being developed for destination therapy for adult heart failure patients of small to medium frame that are not being served by present pulsatile devices. The pump design is based on a novel, patented, hybrid passive/active magnetic bearing system with backup hydrodynamic thrust bearing and exhibits low power loss, low vibration, and low hemolysis. Performance of the titanium alloy prototype was evaluated in a series of in vitro tests with blood analogue to map out the performance envelop of the pump. The LVAD prototype was implanted in a calf animal model, and the in vivo pump performance was evaluated. The animal's native heart imparted a strong pulsatility to the flow rate. These tests confirmed the efficacy of the MiTiHeart LVAD design and confirmed that the pulsatility does not adversely affect the pump performance.

  3. Rapid prototyping of pulse oximeter.

    PubMed

    Jalan, P; Bracio, B R; Rider, P J; Toniolo, H

    2006-01-01

    Measurement of oxygen saturation levels in blood is a vital activity during most medical treatments. A pulse oximeter is a device most commonly used to perform this measurement. It provides convenient, non-invasive and continuous monitoring of oxygen levels in a human body. However, it is often a tedious task to select the appropriate hardware and software components to manufacture a pulse oximeter that gives accurate results. This paper describes a student project, which had the goals to expose the student to this important technique of applying rapid prototyping methods to the design of a state of the art pulse oximeter.

  4. The ATLAS IBL BOC prototype

    NASA Astrophysics Data System (ADS)

    Schroer, N.

    2011-12-01

    The Pixel Detector of the ATLAS experiment at CERN will be upgraded with an Insertable B-Layer (IBL) in 2013. To handle the data readout the currently used VME card pairs consisting of a back of crate card (BOC) and a read out driver (ROD) are being redesigned. This paper presents details of the hardware design of the new BOC prototype, which takes advantage from modern FPGA technology and commercial optical modules and abandons the need for a variety of custom components used on the old card. Also the throughput is four times higher and additional features are implemented.

  5. Preliminary flight prototype potable water bactericide system

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Allen, E. T.

    1973-01-01

    The development, design, and testing of a preliminary flight prototype potable water bactericide system are described. The system is an assembly of upgraded canisters composed of: (1) A biological filter; (2) an activated charcoal and ion exchange resin canister; (3) a silver chloride canister, (4) a deionizer, (5) a silver bromide canister with a partial bypass, and (6) mock-up instrumentation and circuitry. The system exhibited bactericidal activity against 10 to the 9th power Pseudomonas aeruginosa and/or Type IIIa, and reduced Bacillus subtilis by up to 5 orders of magnitude in 24 hours at ambient temperatures with a 1 ppm silver ion dose. Four efficacy tests were performed with a AgBr canister dosing anticipated fuel cell water. Tests show that a 0.05 ppm silver ion dose was bactericidal against 3 plus or minus 1 x 10 to the 9th power (5 plus or minus 1 x 10,000/ml Pseudomonas aeruginosa and/or Type IIIa in 15 minutes or less.

  6. The Prototype of GAMMA-400 Apparatus

    NASA Astrophysics Data System (ADS)

    Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Kheymits, M. D.; Runtso, M. F.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu. T.

    Scientific project GAMMA-400 (Gamma-Astronomy Multifunction Modules Apparatus) relates to the new generation of space observatories for investigation of cosmic γ-emission in the energy band from ∼20 MeV up to several TeV, electron/positron fluxes from ∼1 GeV up to ∼10 TeV and cosmic-ray nuclei fluxes with energies up to ∼1015 eV by means of GAMMA-400 gamma-telescope represents the core of the scientific complex. The investigation of gamma ray bursts in the energy band of 10 keV-15 MeV are possible too by means of KONUS-FG apparatus included in the complex. For γ-rays in the energy region from 10 to 100 GeV expected energy resolution changes from ∼3% to ∼1% and angular resolution from ∼0.1% to ∼ 0.01% respectively, γ/protons rejection factor is ∼5·105. The GAMMA-400 satellite will be launched at the beginning of the next decade on the high apogee orbit with following initial parameters: apogee altitude ∼300000 km, perigee altitude ∼500 km, rotation period ∼7 days, inclination to the equator plane 51.4°. The active functioning interval will be 7-10 years. The scientific complex will have next main technical parameters: total weight ∼4100 kg, power consumption ∼2000 W, information quote 100 GByte/day. During the project development, the prototype of apparatus was created for working-off of the main apparatus construction units in laboratory conditions. The main distinctive features of the prototype are presented.

  7. 18 CFR 740.6 - Financial assistance.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Financial assistance... MANAGEMENT PLANNING PROGRAM § 740.6 Financial assistance. (a) The Council shall provide financial assistance... factor are equated to the mean-plus-two standard deviations. (d) Financial assistance for the...

  8. Solar-Assisted Hemodialysis

    PubMed Central

    Agar, John W. M.; Perkins, Anthony; Tjipto, Alwie

    2012-01-01

    Summary Background and objectives Hemodialysis resource use—especially water and power, smarter processing and reuse of postdialysis waste, and improved ecosensitive building design, insulation, and space use—all need much closer attention. Regarding power, as supply diminishes and costs rise, alternative power augmentation for dialysis services becomes attractive. The first 12 months of a solar-assisted dialysis program in southeastern Australia is reported. Design, setting, participants, & measurements A 24-m2, 3-kWh rated solar array and inverter—total cost of A$16,219—has solar-assisted the dialysis-related power needs of a four-chair home hemodialysis training service. All array-created, grid-donated power and all grid-drawn power to the four hemodialysis machines and minireverse osmosis plant pairings are separately metered. After the grid-drawn and array-generated kilowatt hours have been billed and reimbursed at their respective commercial rates, financial viability, including capital repayment, can be assessed. Results From July of 2010 to July of 2011, the four combined equipment pairings used 4166.5 kWh, 9% more than the array-generated 3811.0 kWh. Power consumption at 26.7 c/kWh cost A$1145.79. Array-generated power reimbursements at 23.5 c/kWh were A$895.59. Power costs were, thus, reduced by 76.5%. As new reimbursement rates (60 c/kWh) take effect, system reimbursements will more than double, allowing both free power and potential capital pay down over 7.7 years. With expected array life of ∼30 years, free power and an income stream should accrue in the second and third operative decades. Conclusions Solar-assisted power is feasible and cost-effective. Dialysis services should assess their local solar conditions and determine whether this ecosensitive power option might suit their circumstance. PMID:22223614

  9. Solar-assisted hemodialysis.

    PubMed

    Agar, John W M; Perkins, Anthony; Tjipto, Alwie

    2012-02-01

    Hemodialysis resource use-especially water and power, smarter processing and reuse of postdialysis waste, and improved ecosensitive building design, insulation, and space use-all need much closer attention. Regarding power, as supply diminishes and costs rise, alternative power augmentation for dialysis services becomes attractive. The first 12 months of a solar-assisted dialysis program in southeastern Australia is reported. A 24-m(2), 3-kWh rated solar array and inverter-total cost of A$16,219-has solar-assisted the dialysis-related power needs of a four-chair home hemodialysis training service. All array-created, grid-donated power and all grid-drawn power to the four hemodialysis machines and minireverse osmosis plant pairings are separately metered. After the grid-drawn and array-generated kilowatt hours have been billed and reimbursed at their respective commercial rates, financial viability, including capital repayment, can be assessed. From July of 2010 to July of 2011, the four combined equipment pairings used 4166.5 kWh, 9% more than the array-generated 3811.0 kWh. Power consumption at 26.7 c/kWh cost A$1145.79. Array-generated power reimbursements at 23.5 c/kWh were A$895.59. Power costs were, thus, reduced by 76.5%. As new reimbursement rates (60 c/kWh) take effect, system reimbursements will more than double, allowing both free power and potential capital pay down over 7.7 years. With expected array life of ∼30 years, free power and an income stream should accrue in the second and third operative decades. Solar-assisted power is feasible and cost-effective. Dialysis services should assess their local solar conditions and determine whether this ecosensitive power option might suit their circumstance.

  10. Agile manufacturing prototyping system (AMPS)

    SciTech Connect

    Garcia, P.

    1998-05-09

    The Agile Manufacturing Prototyping System (AMPS) is being integrated at Sandia National Laboratories. AMPS consists of state of the industry flexible manufacturing hardware and software enhanced with Sandia advancements in sensor and model based control; automated programming, assembly and task planning; flexible fixturing; and automated reconfiguration technology. AMPS is focused on the agile production of complex electromechanical parts. It currently includes 7 robots (4 Adept One, 2 Adept 505, 1 Staubli RX90), conveyance equipment, and a collection of process equipment to form a flexible production line capable of assembling a wide range of electromechanical products. This system became operational in September 1995. Additional smart manufacturing processes will be integrated in the future. An automated spray cleaning workcell capable of handling alcohol and similar solvents was added in 1996 as well as parts cleaning and encapsulation equipment, automated deburring, and automated vision inspection stations. Plans for 1997 and out years include adding manufacturing processes for the rapid prototyping of electronic components such as soldering, paste dispensing and pick-and-place hardware.

  11. CALIFA Barrel prototype detector characterisation

    NASA Astrophysics Data System (ADS)

    Pietras, B.; Gascón, M.; Álvarez-Pol, H.; Bendel, M.; Bloch, T.; Casarejos, E.; Cortina-Gil, D.; Durán, I.; Fiori, E.; Gernhäuser, R.; González, D.; Kröll, T.; Le Bleis, T.; Montes, N.; Nácher, E.; Robles, M.; Perea, A.; Vilán, J. A.; Winkel, M.

    2013-11-01

    Well established in the field of scintillator detection, Caesium Iodide remains at the forefront of scintillators for use in modern calorimeters. Recent developments in photosensor technology have lead to the production of Large Area Avalanche Photo Diodes (LAAPDs), a huge advancement on traditional photosensors in terms of high internal gain, dynamic range, magnetic field insensitivity, high quantum efficiency and fast recovery time. The R3B physics programme has a number of requirements for its calorimeter, one of the most challenging being the dual functionality as both a calorimeter and a spectrometer. This involves the simultaneous detection of ∼300 MeV protons and gamma rays ranging from 0.1 to 20 MeV. This scintillator - photosensor coupling provides an excellent solution in this capacity, in part due to the near perfect match of the LAAPD quantum efficiency peak to the light output wavelength of CsI(Tl). Modern detector development is guided by use of Monte Carlo simulations to predict detector performance, nonetheless it is essential to benchmark these simulations against real data taken with prototype detector arrays. Here follows an account of the performance of two such prototypes representing different polar regions of the Barrel section of the forthcoming CALIFA calorimeter. Measurements were taken for gamma-ray energies up to 15.1 MeV (Maier-Leibnitz Laboratory, Garching, Germany) and for direct irradiation with a 180 MeV proton beam (The Svedberg Laboratoriet, Uppsala, Sweden). Results are discussed in light of complementary GEANT4 simulations.

  12. Building a prototype expert systems

    SciTech Connect

    Kalmus, D.; Hutchinson, M.; Hall, D.

    1988-07-01

    In the past few years expert system technology has been gaining increasing respect within the world of computer science as it offers practical solutions to problems which have previously defied computerization. This paper is the culmination of a years investigation into how LBL can practically make use of this technology to solve some of the problems being faced by its scientists. To establish this and gain a greater understanding of expert system technology we attempted to build a prototype expert system using a commercially available expert system shell. The application we chose was to troubleshoot the hardware of the TPC particle detector (used by high energy physicists at LBL) using Neuron Data's expert system shell, Nexpert. This paper gives some brief overviews of the theoretical and practical work done by other people in fields relevant to this project. It includes: expert systems, their development, diagnostic expert systems, and examples of expert systems built to troubleshoot electronic devices. We describe how we selected our prototype expert system and then how we went about designing and building it. For this we have detailed the knowledge necessary to start troubleshooting the TPC and the methods used to represent that knowledge within the expert system shell. Finally we discuss the understanding of expert system technology which we have gained during this project and why we believe that this technology has a place in the future of problem solving at LBL. 31 refs.

  13. Results from the FDIRC prototype

    NASA Astrophysics Data System (ADS)

    Roberts, D. A.; Arnaud, N.; Dey, B.; Borsato, M.; Leith, D. W. G. S.; Nishimura, K.; Ratcliff, B. N.; Varner, G.; Va'vra, J.

    2014-12-01

    We present results from a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC). This detector was designed as a prototype of the particle identification system for the SuperB experiment, and comprises 1/12 of the SuperB barrel azimuthal coverage with partial electronics implementation. The prototype was tested in the SLAC Cosmic Ray Telescope (CRT) which provides 3-D muon tracking with an angular resolution of 1.5 mrad, track position resolution of 5-6 mm, start time resolution of 70 ps, and a muon low-energy cutoff of 2 GeV provided by an iron range stack. The quartz focusing photon camera couples to a full-size BaBar DIRC bar box and is read out by 12 Hamamatsu H8500 MaPMTs providing 768 pixels. We used IRS2 waveform digitizing electronics to read out the MaPMTs. We present several results from our on-going development activities that demonstrate that the new optics design works very well, including: (a) single photon Cherenkov angle resolutions with and without chromatic corrections, (b) S/N ratio between the Cherenkov peak and background, which consists primarily of ambiguities in possible photon paths to a given pixel, (c) dTOP=TOPmeasured-TOPexpected resolutions, and (d) performance of the detector in the presence of high-rate backgrounds. We also describe data analysis methods and point out limits of the present performance.

  14. Concept development for a space solar power station

    NASA Astrophysics Data System (ADS)

    Sysoev, V. K.; Pichkhadze, K. M.; Feldman, L. I.; Arapov, E. A.; Luzyanin, A. S.

    2012-12-01

    This paper introduces a concept for the development of a space solar power station, starting from the manufacture of a photoemissive panel to the creation of a prototype of an industrial power plant. Balloon systems play a special role both in the testing of the power plant and in the operation of prototypes of solar power stations.

  15. The Role of Human Web Assistants in E-Commerce: An Analysis and a Usability Study.

    ERIC Educational Resources Information Center

    Aberg, Johan; Shahmehri, Nahid

    2000-01-01

    Discusses electronic commerce and presents the concept of Web assistants, human assistants working in an electronic Web shop. Presents results of a usability study of a prototype adaptive Web assistant system that show users were enthusiastic about the concept of Web assistants and its implications. (Author/LRW)

  16. The Role of Human Web Assistants in E-Commerce: An Analysis and a Usability Study.

    ERIC Educational Resources Information Center

    Aberg, Johan; Shahmehri, Nahid

    2000-01-01

    Discusses electronic commerce and presents the concept of Web assistants, human assistants working in an electronic Web shop. Presents results of a usability study of a prototype adaptive Web assistant system that show users were enthusiastic about the concept of Web assistants and its implications. (Author/LRW)

  17. The chip-scale atomic clock : prototype evaluation.

    SciTech Connect

    Mescher, Mark; Varghese, Mathew; Lutwak, Robert; Serkland, Darwin Keith; Tepolt, Gary; Geib, Kent Martin; Leblanc, John; Peake, Gregory Merwin; Rashid, Ahmed

    2007-12-01

    The authors have developed a chip-scale atomic clock (CSAC) for applications requiring atomic timing accuracy in portable battery-powered applications. At PTTI/FCS 2005, they reported on the demonstration of a prototype CSAC, with an overall size of 10 cm{sup 3}, power consumption > 150 mW, and short-term stability sy(t) < 1 x 10-9t-1/2. Since that report, they have completed the development of the CSAC, including provision for autonomous lock acquisition and a calibrated output at 10.0 MHz, in addition to modifications to the physics package and system architecture to improve performance and manufacturability.

  18. The Emergency Smoke Response System (a prototype)

    NASA Astrophysics Data System (ADS)

    Lahm, P.; Larkin, N.; Brown, T. J.; Raffuse, S. M.; Strand, T.; Sullivan, D.

    2009-12-01

    The U.S. Forest Service Emergency Smoke Response System (ESRS) prototype was first launched during the Santa Ana wildfire event of southern California (fall 2007) and after further refinement it was again launched during the lightening wildfire event of northing California (summer 2008). During both wildfire events smoke plumes from the fires caused significant impacts on the air quality in both urban and rural communities, transportation corridors, and aviation landing strips. The ESRS, called up by U.S.F.S. headquarters, is used to provide enhanced information and data on air quality impacts and smoke transport to fire management and the public. The prototype U.S.F.S. ESRS is a combination of efforts that supplement the ongoing smoke and fire modeling information with a high resolution meteorological and smoke modeling domain placed over the wildfire event location. This domain is used to look at fine-scale fire meteorology and smoke transport and air quality impacts. At the same time, additional smoke monitors (EBAMS) are deployed in the area with real-time reporting capabilities. The monitors supplement the existing network to provide air quality information in communities without monitors or in remote (i.e. locations along transportation corridors). The data from the modeling efforts and air quality monitoring are presented to fire managers and air quality regulators through websites, which show the latest available information. To ensure maximum utility of the modeling and monitoring information, an experienced air quality forecast produces daily forecast summaries by region, providing text forecast guidance and model output discussion. The forecaster is available for the daily fire calls that fire managers use to coordinate efforts across the region. Fire managers can request modifications or new graphics which they find useful for dissemination of the information. Fire is a natural ecological process. Policy, climate, and ecological shifts can change the

  19. Air injection test on a Kaplan turbine: prototype - model comparison

    NASA Astrophysics Data System (ADS)

    Angulo, M.; Rivetti, A.; Díaz, L.; Liscia, S.

    2016-11-01

    Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.

  20. A Prototype for a Computer-Based Listening Comprehension Proficiency Test. Final Report.

    ERIC Educational Resources Information Center

    Ariew, Robert A.; Dunkel, Patricia A.

    The development of a prototype computer-assisted second language listening comprehension test is reported. The project investigated the feasibility of computer-adaptive second language listening tests using microcomputer equipment and developing model testing software. Tests for French and for English as a Second Language (ESL) were developed. The…