High-speed civil transport issues and technology program
NASA Technical Reports Server (NTRS)
Hewett, Marle D.
1992-01-01
A strawman program plan is presented, consisting of technology developments and demonstrations required to support the construction of a high-speed civil transport. The plan includes a compilation of technology issues related to the development of a transport. The issues represent technical areas in which research and development are required to allow airframe manufacturers to pursue an HSCT development. The vast majority of technical issues presented require flight demonstrated and validated solutions before a transport development will be undertaken by the industry. The author believes that NASA is the agency best suited to address flight demonstration issues in a concentrated effort. The new Integrated Test Facility at NASA Dryden Flight Research Facility is considered ideally suited to the task of supporting ground validations of proof-of-concept and prototype system demonstrations before night demonstrations. An elaborate ground hardware-in-the-loop (iron bird) simulation supported in this facility provides a viable alternative to developing an expensive fill-scale prototype transport technology demonstrator. Drygen's SR-71 assets, modified appropriately, are a suitable test-bed for supporting flight demonstrations and validations of certain transport technology solutions. A subscale, manned or unmanned flight demonstrator is suitable for flight validation of transport technology solutions, if appropriate structural similarity relationships can be established. The author contends that developing a full-scale prototype transport technology demonstrator is the best alternative to ensuring that a positive decision to develop a transport is reached by the United States aerospace industry.
NASA Astrophysics Data System (ADS)
Hamamoto, K.; Kaneko, Y.; Sobue, S.; Oyoshi, K.
2016-12-01
Climate change and human activities are directly or indirectly influence the acceleration of environmental problems and natural hazards such as forest fires, drought and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these hazards and related phenomenon. However, there are still gaps between science and application of space technology in practical usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of space technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of space technology. The main activity of SAFE is SAFE prototyping. SAFE prototyping is a demonstration for end users and decision makers to apply space technology applications for solving environmental issues in Asia-Pacific region. By utilizing space technology and getting technical support by experts, prototype executers can develop the application system, which could support decision making activities. SAFE holds a workshop once a year. In the workshop, new prototypes are approved and the progress of on-going prototypes are confirmed. Every prototype is limited for two years period and all activities are operated by volunteer manner. As of 2016, 20 prototypes are completed and 6 prototypes are on-going. Some of the completed prototypes, for example drought monitoring in Indonesia were applied to operational use by a local official organization.
Demonstrating a Realistic IP Mission Prototype
NASA Technical Reports Server (NTRS)
Rash, James; Ferrer, Arturo B.; Goodman, Nancy; Ghazi-Tehrani, Samira; Polk, Joe; Johnson, Lorin; Menke, Greg; Miller, Bill; Criscuolo, Ed; Hogie, Keith
2003-01-01
Flight software and hardware and realistic space communications environments were elements of recent demonstrations of the Internet Protocol (IP) mission concept in the lab. The Operating Missions as Nodes on the Internet (OMNI) Project and the Flight Software Branch at NASA/GSFC collaborated to build the prototype of a representative space mission that employed unmodified off-the-shelf Internet protocols and technologies for end-to-end communications between the spacecraft/instruments and the ground system/users. The realistic elements used in the prototype included an RF communications link simulator and components of the TRIANA mission flight software and ground support system. A web-enabled camera connected to the spacecraft computer via an Ethernet LAN represented an on-board instrument creating image data. In addition to the protocols at the link layer (HDLC), transport layer (UDP, TCP), and network (IP) layer, a reliable file delivery protocol (MDP) at the application layer enabled reliable data delivery both to and from the spacecraft. The standard Network Time Protocol (NTP) performed on-board clock synchronization with a ground time standard. The demonstrations of the prototype mission illustrated some of the advantages of using Internet standards and technologies for space missions, but also helped identify issues that must be addressed. These issues include applicability to embedded real-time systems on flight-qualified hardware, range of applicability of TCP, and liability for and maintenance of commercial off-the-shelf (COTS) products. The NASA Earth Science Technology Office (ESTO) funded the collaboration to build and demonstrate the prototype IP mission.
Future Directions for Space Transportation and Propulsion at NASA
NASA Technical Reports Server (NTRS)
Sackheim, Robert L.
2005-01-01
Contents include the following: Oxygen Compatible Materials. Manufacturing Technology Demonstrations. Turbopump Inducer Waterflow Test. Turbine Damping "Whirligig" Test. Single Element Preburner and Main Injector Test. 40K Multi-Element Preburner and MI. Full-Scale Battleship Preburner. Prototype Preburner Test Article. Full-Scale Prototype TCA. Turbopump Hot-Fire Test Article. Prototype Engine. Validated Analytical Models.
NASA Astrophysics Data System (ADS)
Samukawa, S.; Noda, Shuichi; Higo, Akio; Yasuda, Manabu; Wada, Kazumi
2016-11-01
We have developed an innovated fabrication technology of Si, GaAs, and Ge nano-structures, i.e., we called defect-free neutral beam etching. The technology has been successfully applied to prototype the quantum nano-disks and nano-wires with ferritin based bio-templates. SEM observation verifies that the designed structures are prototyped. Photoluminescence measurements demonstrates high optical quality of nano-structures based on the technology.
A Compact Prototype of an Optical Pattern Recognition System
NASA Technical Reports Server (NTRS)
Jin, Y.; Liu, H. K.; Marzwell, N. I.
1996-01-01
In the Technology 2006 Case Studies/Success Stories presentation, we will describe and demonstrate a prototype of a compact optical pattern recognition system as an example of a successful technology transfer and continuuing development of state-of-the-art know-how by the close collaboration among government, academia, and small business via the NASA SBIR program. The prototype consists of a complete set of optical pattern recognition hardware with multi-channel storage and retrieval capability that is compactly configured inside a portable 1'X 2'X 3' aluminum case.
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Toup, Larry; Gill, Tracy; Tri, Terry; Howe, Scott; Smitherman, David
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies being used by the NASA HDU team for a rapid prototyping project. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team rapid prototyping approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and disciplines to enable a successful tiger team approach. Advocacy was established with key stakeholders and NASA Headquarters (HQ) by defining a strategic vision, mission, goals and objectives for the project and team. As a technology-pull testbed capability the HDU project was able to collaborate and leverage the Exploration Technology Development Program (ETDP) and individual NASA center investments which capitalized on their respective center core competencies and skills. This approach enable the leveraging of over $7.5m of value to create an operational habitat demonstration unit 2010 PEM configuration.
Low cost lab-on-a-chip prototyping with a consumer grade 3D printer.
Comina, Germán; Suska, Anke; Filippini, Daniel
2014-08-21
Versatile prototyping of 3D printed lab-on-a-chip devices, supporting different forms of sample delivery, transport, functionalization and readout, is demonstrated with a consumer grade printer, which centralizes all critical fabrication tasks. Devices cost 0.57US$ and are demonstrated in chemical sensing and micromixing examples, which exploit established principles from reference technologies.
Rapid prototype fabrication processes for high-performance thrust cells
NASA Technical Reports Server (NTRS)
Hunt, K.; Chwiedor, T.; Diab, J.; Williams, R.
1994-01-01
The Thrust Cell Technologies Program (Air Force Phillips Laboratory Contract No. F04611-92-C-0050) is currently being performed by Rocketdyne to demonstrate advanced materials and fabrication technologies which can be utilized to produce low-cost, high-performance thrust cells for launch and space transportation rocket engines. Under Phase 2 of the Thrust Cell Technologies Program (TCTP), rapid prototyping and investment casting techniques are being employed to fabricate a 12,000-lbf thrust class combustion chamber for delivery and hot-fire testing at Phillips Lab. The integrated process of investment casting directly from rapid prototype patterns dramatically reduces design-to-delivery cycle time, and greatly enhances design flexibility over conventionally processed cast or machined parts.
NASA Astrophysics Data System (ADS)
Zhu, Feng; Macdonald, Niall; Skommer, Joanna; Wlodkowic, Donald
2015-06-01
Current microfabrication methods are often restricted to two-dimensional (2D) or two and a half dimensional (2.5D) structures. Those fabrication issues can be potentially addressed by emerging additive manufacturing technologies. Despite rapid growth of additive manufacturing technologies in tissue engineering, microfluidics has seen relatively little developments with regards to adopting 3D printing for rapid fabrication of complex chip-based devices. This has been due to two major factors: lack of sufficient resolution of current rapid-prototyping methods (usually >100 μm ) and optical transparency of polymers to allow in vitro imaging of specimens. We postulate that adopting innovative fabrication processes can provide effective solutions for prototyping and manufacturing of chip-based devices with high-aspect ratios (i.e. above ration of 20:1). This work provides a comprehensive investigation of commercially available additive manufacturing technologies as an alternative for rapid prototyping of complex monolithic Lab-on-a-Chip devices for biological applications. We explored both multi-jet modelling (MJM) and several stereolithography (SLA) processes with five different 3D printing resins. Compared with other rapid prototyping technologies such as PDMS soft lithography and infrared laser micromachining, we demonstrated that selected SLA technologies had superior resolution and feature quality. We also for the first time optimised the post-processing protocols and demonstrated polymer features under scanning electronic microscope (SEM). Finally we demonstrate that selected SLA polymers have optical properties enabling high-resolution biological imaging. A caution should be, however, exercised as more work is needed to develop fully bio-compatible and non-toxic polymer chemistries.
NASA Astrophysics Data System (ADS)
Vdovin, R. A.; Smelov, V. G.
2017-02-01
This work describes the experience in manufacturing the turbine rotor for the micro-engine. It demonstrates the design principles for the complex investment casting process combining the use of the ProCast software and the rapid prototyping techniques. At the virtual modelling stage, in addition to optimized process parameters, the casting structure was improved to obtain the defect-free section. The real production stage allowed demonstrating the performance and fitness of rapid prototyping techniques for the manufacture of geometrically-complex engine-building parts.
NASA Astrophysics Data System (ADS)
Smorodin, A. I.; Red'kin, V. V.; Frolov, Y. D.; Korobkov, A. A.; Kemaev, O. V.; Kulik, M. V.; Shabalin, O. V.
2015-07-01
A set of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment is offered. The following technologies are regarded as core technologies for the complex: cryogenic technology nitrogen for displacement of hydrogen from the cooling circuit of turbine generators, cryo blasting of the power units by dioxide granules, preservation of the shutdown power units by dehydrated air, and dismantling and severing of equipment and structural materials of power units. Four prototype systems for eco-friendly shutdown of the power units may be built on the basis of selected technologies: Multimode nitrogen cryogenic system with four subsystems, cryo blasting system with CO2 granules for thermal-mechanical and electrical equipment of power units, and compressionless air-drainage systems for drying and storage of the shutdown power units and cryo-gas system for general severing of the steam-turbine power units. Results of the research and pilot and demonstration tests of the operational units of the considered technological systems allow applying the proposed technologies and systems in the prototype systems for shutdown of the power-generating, process, capacitive, and transport equipment.
7 CFR 1709.111 - Limitations on use of grant funds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... are unrelated to the grant project. (b) Unproven technology. Only projects that utilize technology with a proven operating history, and for which there is an established industry for the design... utilizing experimental, developmental, or prototype technologies or technology demonstrations are not...
DOE`s annealing prototype demonstration projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, J.; Nakos, J.; Rochau, G.
1997-02-01
One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable throughmore » a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy`s Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana`s Marble Hill nuclear power plant. The MPR team`s annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company`s nuclear power plant at Midland, Michigan. This paper describes the Department`s annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges.« less
7 CFR 1709.111 - Limitations on use of grant funds.
Code of Federal Regulations, 2014 CFR
2014-01-01
... with a proven operating history, and for which there is an established industry for the design... utilizing experimental, developmental, or prototype technologies or technology demonstrations are not...
7 CFR 1709.111 - Limitations on use of grant funds.
Code of Federal Regulations, 2011 CFR
2011-01-01
... with a proven operating history, and for which there is an established industry for the design... utilizing experimental, developmental, or prototype technologies or technology demonstrations are not...
7 CFR 1709.111 - Limitations on use of grant funds.
Code of Federal Regulations, 2013 CFR
2013-01-01
... with a proven operating history, and for which there is an established industry for the design... utilizing experimental, developmental, or prototype technologies or technology demonstrations are not...
7 CFR 1709.111 - Limitations on use of grant funds.
Code of Federal Regulations, 2012 CFR
2012-01-01
... with a proven operating history, and for which there is an established industry for the design... utilizing experimental, developmental, or prototype technologies or technology demonstrations are not...
Prototype Tool and Focus Group Evaluation for an Advanced Trajectory-Based Operations Concept
NASA Technical Reports Server (NTRS)
Guerreiro, Nelson M.; Jones, Denise R.; Barmore, Bryan E.; Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Ahmad, Nash'at N.
2017-01-01
Trajectory-based operations (TBO) is a key concept in the Next Generation Air Transportation System transformation of the National Airspace System (NAS) that will increase the predictability and stability of traffic flows, support a common operational picture through the use of digital data sharing, facilitate more effective collaborative decision making between airspace users and air navigation service providers, and enable increased levels of integrated automation across the NAS. NASA has been developing trajectory-based systems to improve the efficiency of the NAS during specific phases of flight and is now also exploring Advanced 4-Dimensional Trajectory (4DT) operational concepts that will integrate these technologies and incorporate new technology where needed to create both automation and procedures to support gate-to-gate TBO. A TBO Prototype simulation toolkit has been developed that demonstrates initial functionality of an Advanced 4DT TBO concept. Pilot and controller subject matter experts (SMEs) were brought to the Air Traffic Operations Laboratory at NASA Langley Research Center for discussions on an Advanced 4DT operational concept and were provided an interactive demonstration of the TBO Prototype using four example scenarios. The SMEs provided feedback on potential operational, technological, and procedural opportunities and concerns. This paper describes an Advanced 4DT operational concept, the TBO Prototype, the demonstration scenarios and methods used, and the feedback obtained from the pilot and controller SMEs in this focus group activity.
NASA Astrophysics Data System (ADS)
Briguglio, R.; Xompero, M.; Riccardi, A.; Lisi, F.; Duò, F.; Vettore, C.; Gallieni, D.; Tintori, M.; Lazzarini, P.; Patauner, C.; Biasi, R.; D'Amato, F.; Pucci, M.; Pereira do Carmo, João.
2017-11-01
The concept of a low areal density primary mirror, actively controlled by actuators, has been investigated through a demonstration prototype. A spherical mirror (400 mm diameter, 2.7 Kg mass) has been manufactured and tested in laboratory and on the optical bench, to verify performance, controllability and optical quality. In the present paper we will describe the prototype and the test results.
The Need for Technology Maturity of Any Advanced Capability to Achieve Better Life Cycle Cost (LCC)
NASA Technical Reports Server (NTRS)
Robinson, John W.; Levack, Daniel J. H.; Rhodes, Russel E.; Chen, Timothy T.
2009-01-01
Programs such as space transportation systems are developed and deployed only rarely, and they have long development schedules and large development and life cycle costs (LCC). They have not historically had their LCC predicted well and have only had an effort to control the DDT&E phase of the programs. One of the factors driving the predictability, and thus control, of the LCC of a program is the maturity of the technologies incorporated in the program. If the technologies incorporated are less mature (as measured by their Technology Readiness Level - TRL), then the LCC not only increases but the degree of increase is difficult to predict. Consequently, new programs avoid incorporating technologies unless they are quite mature, generally TRL greater than or equal to 7 (system prototype demonstrated in a space environment) to allow better predictability of the DDT&E phase costs unless there is no alternative. On the other hand, technology development programs rarely develop technologies beyond TRL 6 (system/subsystem model or prototype demonstrated in a relevant environment). Currently the lack of development funds beyond TRL 6 and the major funding required for full scale development leave little or no funding available to prototype TRL 6 concepts so that hardware would be in the ready mode for safe, reliable and cost effective incorporation. The net effect is that each new program either incorporates little new technology or has longer development schedules and costs, and higher LCC, than planned. This paper presents methods to ensure that advanced technologies are incorporated into future programs while providing a greater accuracy of predicting their LCC. One method is having a dedicated organization to develop X-series vehicles or separate prototypes carried on other vehicles. The question of whether such an organization should be independent of NASA and/or have an independent funding source is discussed. Other methods are also discussed. How to make the choice of which technologies to pursue to the prototype level is also discussed since, to achieve better LCC, first the selection of the appropriate technologies.
First scientific application of the membrane cryostat technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montanari, David; Adamowski, Mark; Baller, Bruce R.
2014-01-29
We report on the design, fabrication, performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with IHI Corporation (IHI). Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon, and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the purity requirements in a membrane cryostat without evacuation and using only a controlled gaseous argon purge; to demonstrate that we canmore » achieve and maintain the purity requirements of the liquid argon during filling, purification, and maintenance mode using mole sieve and copper filters from the Liquid Argon Purity Demonstrator (LAPD) R and D project. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion oxygen equivalent. This paper gives the requirements, design, construction, and performance of the LBNE membrane cryostat prototype, with experience and results important to the development of the LBNE detector.« less
NASA Technical Reports Server (NTRS)
Lee, L. F.; Cooper, L. P.
1993-01-01
This article describes the approach, results, and lessons learned from an applied research project demonstrating how artificial intelligence (AI) technology can be used to improve Deep Space Network operations. Configuring antenna and associated equipment necessary to support a communications link is a time-consuming process. The time spent configuring the equipment is essentially overhead and results in reduced time for actual mission support operations. The NASA Office of Space Communications (Code O) and the NASA Office of Advanced Concepts and Technology (Code C) jointly funded an applied research project to investigate technologies which can be used to reduce configuration time. This resulted in the development and application of AI-based automated operations technology in a prototype system, the Link Monitor and Control Operator Assistant (LMC OA). The LMC OA was tested over the course of three months in a parallel experimental mode on very long baseline interferometry (VLBI) operations at the Goldstone Deep Space Communications Center. The tests demonstrated a 44 percent reduction in pre-calibration time for a VLBI pass on the 70-m antenna. Currently, this technology is being developed further under Research and Technology Operating Plan (RTOP)-72 to demonstrate the applicability of the technology to operations in the entire Deep Space Network.
Didactic satellite based on Android platform for space operation demonstration and development
NASA Astrophysics Data System (ADS)
Ben Bahri, Omar; Besbes, Kamel
2018-03-01
Space technology plays a pivotal role in society development. It offers new methods for telemetry, monitoring and control. However, this sector requires training, research and skills development but the lack of instruments, materials and budgets affects the ambiguity to understand satellite technology. The objective of this paper is to describe a demonstration prototype of a smart phone device for space operations study. Therefore, the first task was carried out to give a demonstration for spatial imagery and attitude determination missions through a wireless communication. The smart phone's Bluetooth was used to achieve this goal inclusive of a new method to enable real time transmission. In addition, an algorithm around a quaternion based Kalman filter was included in order to detect the reliability of the prototype's orientation. The second task was carried out to provide a demonstration for the attitude control mission using the smart phone's orientation sensor, including a new method for an autonomous guided mode. As a result, the acquisition platform showed real time measurement with good accuracy for orientation detection and image transmission. In addition, the prototype kept the balance during the demonstration based on the attitude control method.
Continuation of research into software for space operations support, volume 1
NASA Technical Reports Server (NTRS)
Collier, Mark D.; Killough, Ronnie; Martin, Nancy L.
1990-01-01
A prototype workstation executive called the Hardware Independent Software Development Environment (HISDE) was developed. Software technologies relevant to workstation executives were researched and evaluated and HISDE was used as a test bed for prototyping efforts. New X Windows software concepts and technology were introduced into workstation executives and related applications. The four research efforts performed included: (1) Research into the usability and efficiency of Motif (an X Windows based graphic user interface) which consisted of converting the existing Athena widget based HISDE user interface to Motif demonstrating the usability of Motif and providing insight into the level of effort required to translate an application from widget to another; (2) Prototype a real time data display widget which consisted of research methods for and prototyping the selected method of displaying textual values in an efficient manner; (3) X Windows performance evaluation which consisted of a series of performance measurements which demonstrated the ability of low level X Windows to display textural information; (4) Convert the Display Manager to X Window/Motif which is the application used by NASA for data display during operational mode.
CSPonD demonstrative project: Start-up process of a 25 kW prototype
NASA Astrophysics Data System (ADS)
Gil, Antoni; Grange, Benjamin; Perez, Victor G.; Tetreault-Friend, Melanie; Codd, Daniel S.; Calvet, Nicolas; Slocum, Alexander S.
2017-06-01
The current concept of commercial concentrated solar power (CSP) plants, based on the concept of a solar field, receiver, storage and power block, experienced significant growth in the past decades. The power block is the most well know part of the plant, while solar field depends on the receiver technology. The dominant receiver technologies are parabolic troughs and central towers. Most thermal energy storage (TES) relies on two tanks of molten salts, one hot and one cold serviced by pumps and piping systems. In spite of the technical development level achieved by these systems, efficiency is limited, mainly caused by thermal losses in piping, parasitic losses due to electric tracing and pumping and receiver limitations. In order to mitigate the these issues, a new concept called Concentrated Solar Power on Demand (CSPonD), was developed, consisting of a direct absorption Solar Salt CSP receiver which simultaneously acts as TES tank. Currently, in the frame of the flagship collaborative project between the Masdar Institute (UAE) and the Massachusetts Institute of Technology (USA) a 25 kW demonstrative prototype is in its final building phase at the Masdar Institute Solar Platform. The present paper, explains the demonstration prototype based on the CSPonD concept, with emphasis on the planned start-up process for the facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mohit; Grape, Ulrik
2014-07-29
The purpose of this project was for Seeo to deliver the first ever large-scale or grid-scale prototype of a new class of advanced lithium-ion rechargeable batteries. The technology combines unprecedented energy density, lifetime, safety, and cost. The goal was to demonstrate Seeo’s entirely new class of lithium-based batteries based on Seeo’s proprietary nanostructured polymer electrolyte. This technology can enable the widespread deployment in Smart Grid applications and was demonstrated through the development and testing of a 10 kilowatt-hour (kWh) prototype battery system. This development effort, supported by the United States Department of Energy (DOE) enabled Seeo to pursue and validatemore » the transformational performance advantages of its technology for use in grid-tied energy storage applications. The focus of this project and Seeo’s goal as demonstrated through the efforts made under this project is to address the utility market needs for energy storage systems applications, especially for residential and commercial customers tied to solar photovoltaic installations. In addition to grid energy storage opportunities Seeo’s technology has been tested with automotive drive cycles and is seen as equally applicable for battery packs for electric vehicles. The goals of the project were outlined and achieved through a series of specific tasks, which encompassed materials development, scaling up of cells, demonstrating the performance of the cells, designing, building and demonstrating a pack prototype, and providing an economic and environmental assessment. Nearly all of the tasks were achieved over the duration of the program, with only the full demonstration of the battery system and a complete economic and environmental analysis not able to be fully completed. A timeline over the duration of the program is shown in figure 1.« less
PRMS Data Warehousing Prototype
NASA Technical Reports Server (NTRS)
Guruvadoo, Eranna K.
2001-01-01
Project and Resource Management System (PRMS) is a web-based, mid-level management tool developed at KSC to provide a unified enterprise framework for Project and Mission management. The addition of a data warehouse as a strategic component to the PRMS is investigated through the analysis design and implementation processes of a data warehouse prototype. As a proof of concept, a demonstration of the prototype with its OLAP's technology for multidimensional data analysis is made. The results of the data analysis and the design constraints are discussed. The prototype can be used to motivate interest and support for an operational data warehouse.
PRMS Data Warehousing Prototype
NASA Technical Reports Server (NTRS)
Guruvadoo, Eranna K.
2002-01-01
Project and Resource Management System (PRMS) is a web-based, mid-level management tool developed at KSC to provide a unified enterprise framework for Project and Mission management. The addition of a data warehouse as a strategic component to the PRMS is investigated through the analysis, design and implementation processes of a data warehouse prototype. As a proof of concept, a demonstration of the prototype with its OLAP's technology for multidimensional data analysis is made. The results of the data analysis and the design constraints are discussed. The prototype can be used to motivate interest and support for an operational data warehouse.
[Advanced Composites Technology Initiatives
NASA Technical Reports Server (NTRS)
Julian, Mark R.
2002-01-01
This final report closes out the W02 NASA Grant #NCC5-646. The FY02 grant for advanced technology initiatives through the Advanced Composites Technology Institute in Bridgeport, WV, at the Robert C. Byrd Institute (RCBI) Bridgeport Manufacturing Technology Center, is complete; all funding has been expended. RCBI continued to expand access to technology; develop and implement a workforce-training curriculum; improve material development; and provide prototyping and demonstrations of new and advanced composites technologies for West Virginia composites firms. The FY 02 efforts supported workforce development, technical training and the HST development effort of a super-lightweight composite carrier prototype and expanded the existing technical capabilities of the growing aerospace industry across West Virginia to provide additional support for NASA missions. Additionally, the Composites Technology and Training Center was awarded IS0 9001 - 2000 certification and Cleanroom Class 1000 certification during this report period.
NASA Astrophysics Data System (ADS)
Wiegert, R. F.
2009-05-01
A man-portable Magnetic Scalar Triangulation and Ranging ("MagSTAR") technology for Detection, Localization and Classification (DLC) of unexploded ordnance (UXO) has been developed by Naval Surface Warfare Center Panama City Division (NSWC PCD) with support from the Strategic Environmental Research and Development Program (SERDP). Proof of principle of the MagSTAR concept and its unique advantages for real-time, high-mobility magnetic sensing applications have been demonstrated by field tests of a prototype man-portable MagSTAR sensor. The prototype comprises: a) An array of fluxgate magnetometers configured as a multi-tensor gradiometer, b) A GPS-synchronized signal processing system. c) Unique STAR algorithms for point-by-point, standoff DLC of magnetic targets. This paper outlines details of: i) MagSTAR theory, ii) Design and construction of the prototype sensor, iii) Signal processing algorithms recently developed to improve the technology's target-discrimination accuracy, iv) Results of field tests of the portable gradiometer system against magnetic dipole targets. The results demonstrate that the MagSTAR technology is capable of very accurate, high-speed localization of magnetic targets at standoff distances of several meters. These advantages could readily be transitioned to a wide range of defense, security and sensing applications to provide faster and more effective DLC of UXO and buried mines.
Recent Progress on the Stretched Lens Array (SLA)
NASA Technical Reports Server (NTRS)
O'Neill, Markl; McDanal, A. J.; Piszczor, Michael; George, Patrick; Eskenazi, Michael; Botke, Matthew; Edwards, David; Hoppe, David; Brandhorst, Henry
2005-01-01
At the last Space Photovoltaic Research and Technology Conference, SPRAT XVII, held during the fateful week of 9/11/01, our team presented a paper on the early developments related to the new Stretched Lens Array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Within the past two years, the SLA team has made significant progress in the SLA technology, including the successful fabrication and testing of a complete four-panel prototype solar array wing (Fig. 1). The prototype wing verified the mechanical and structural design of the rigid-panel SLA approach, including multiple successful demonstrations of automatic wing deployment. One panel in the prototype wing included four fully functional photovoltaic receivers, employing triple-junction solar cells.
A second generation 50 Mbps VLSI level zero processing system prototype
NASA Technical Reports Server (NTRS)
Harris, Jonathan C.; Shi, Jeff; Speciale, Nick; Bennett, Toby
1994-01-01
Level Zero Processing (LZP) generally refers to telemetry data processing functions performed at ground facilities to remove all communication artifacts from instrument data. These functions typically include frame synchronization, error detection and correction, packet reassembly and sorting, playback reversal, merging, time-ordering, overlap deletion, and production of annotated data sets. The Data Systems Technologies Division (DSTD) at Goddard Space Flight Center (GSFC) has been developing high-performance Very Large Scale Integration Level Zero Processing Systems (VLSI LZPS) since 1989. The first VLSI LZPS prototype demonstrated 20 Megabits per second (Mbp's) capability in 1992. With a new generation of high-density Application-specific Integrated Circuits (ASIC) and a Mass Storage System (MSS) based on the High-performance Parallel Peripheral Interface (HiPPI), a second prototype has been built that achieves full 50 Mbp's performance. This paper describes the second generation LZPS prototype based upon VLSI technologies.
Secure Web-based Ground System User Interfaces over the Open Internet
NASA Technical Reports Server (NTRS)
Langston, James H.; Murray, Henry L.; Hunt, Gary R.
1998-01-01
A prototype has been developed which makes use of commercially available products in conjunction with the Java programming language to provide a secure user interface for command and control over the open Internet. This paper reports successful demonstration of: (1) Security over the Internet, including encryption and certification; (2) Integration of Java applets with a COTS command and control product; (3) Remote spacecraft commanding using the Internet. The Java-based Spacecraft Web Interface to Telemetry and Command Handling (Jswitch) ground system prototype provides these capabilities. This activity demonstrates the use and integration of current technologies to enable a spacecraft engineer or flight operator to monitor and control a spacecraft from a user interface communicating over the open Internet using standard World Wide Web (WWW) protocols and commercial off-the-shelf (COTS) products. The core command and control functions are provided by the COTS Epoch 2000 product. The standard WWW tools and browsers are used in conjunction with the Java programming technology. Security is provided with the current encryption and certification technology. This system prototype is a step in the direction of giving scientist and flight operators Web-based access to instrument, payload, and spacecraft data.
Oil in Ice Project Final Report
2018-03-01
describes the various field technology demonstrations and provides an appendix with a description of 11 tactics using the most promising response...This report describes the various field technology demonstrations and provides an appendix with a description of 11 tactics using the most promising...water. RDC developed and evaluated two prototype temporary storage containers that could be mounted on the deck of a WLB. The tie-down method still
Technology demonstration of starshade manufacturing for NASA's Exoplanet mission program
NASA Astrophysics Data System (ADS)
Kasdin, N. J.; Lisman, D.; Shaklan, S.; Thomson, M.; Cady, E.; Martin, S.; Marchen, L.; Vanderbei, R. J.; Macintosh, B.; Rudd, R. E.; Savransky, D.; Mikula, J.; Lynch, D.
2012-09-01
It is likely that the coming decade will see the development of a large visible light telescope with enabling technology for imaging exosolar Earthlike planets in the habitable zone of nearby stars. One such technology utilizes an external occulter, a satellite flying far from the telescope and employing a large screen, or starshade, to suppress the incoming starlight suffciently for detecting and characterizing exoplanets. This trades the added complexity of building the precisely shaped starshade and flying it in formation against simplifications in the telescope since extremely precise wavefront control is no longer necessary. In this paper we present the results of our project to design, manufacture, and measure a prototype occulter petal as part of NASA's first Technology Development for Exoplanet Missions program. We describe the mechanical design of the starshade and petal, the precision manufacturing tolerances, and the metrology approach. We demonstrate that the prototype petal meets the requirements and is consistent with a full-size occulter achieving better than 10-10 contrast.
Larios, Diego F; Barbancho, Julio; Sevillano, José L; Rodríguez, Gustavo; Molina, Francisco J; Gasull, Virginia G; Mora-Merchan, Javier M; León, Carlos
2013-09-10
Wireless Sensor Networks (WSNs) are a technology that is becoming very popular for many applications, and environmental monitoring is one of its most important application areas. This technology solves the lack of flexibility of wired sensor installations and, at the same time, reduces the deployment costs. To demonstrate the advantages of WSN technology, for the last five years we have been deploying some prototypes in the Doñana Biological Reserve, which is an important protected area in Southern Spain. These prototypes not only evaluate the technology, but also solve some of the monitoring problems that have been raised by biologists working in Doñana. This paper presents a review of the work that has been developed during these five years. Here, we demonstrate the enormous potential of using machine learning in wireless sensor networks for environmental and animal monitoring because this approach increases the amount of useful information and reduces the effort that is required by biologists in an environmental monitoring task.
Prototype development of a Geostationary Synthetic Thinned Aperture Radiometer, GeoSTAR
NASA Technical Reports Server (NTRS)
Tanner, A. B.; Wilson, W. J.; Kangaslahti, P. P.; Lambrigsten, B. H.; Dinardo, S. J.; Piepmeier, J. R.; Ruf, C. S.; Rogacki, S.; Gross, S. M.; Musko, S.
2004-01-01
Preliminary details of a 2-D synthetic aperture radiometer prototype operating from 50 to 55 GHz will be presented. The laboratory prototype is being developed to demonstrate the technologies and system design needed to do millimeter-wave atmospheric soundings with high spatial resolution from Geostationary orbit. The concept is to deploy a large thinned aperture Y-array on a geostationary satellite, and to use aperture synthesis to obtain images of the Earth without the need for a large mechanically scanned antenna. The laboratory prototype consists of a Y-array of 24 horn antennas, MMIC receivers, and a digital cross-correlation sub-system.
Habitat Demonstration Unit Project Leadership and Management Strategies
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and disciplines to enable a successful tiger team approach. Advocacy was established with key stakeholders and NASA Headquarters (HQ) by defining a strategic vision, mission, goals and objectives for the project and team. As a technology-pull testbed capability the HDU project was able to collaborate and leverage the Exploration Technology Development Program (ETDP) and individual NASA center investments which capitalized on their respective center core competencies and skills. This approach enable the leveraging of over $7.5m of value to create an operational habitat demonstration unit 2010 PEM configuration.
SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation : Third Results Report
DOT National Transportation Integrated Search
2012-05-01
SunLine Transit Agency provides public transit services to the Coachella Valley area of California. SunLine has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. This report describes operations at SunLine for a prototype f...
Affordable Hybrid Heat Pump Clothes Dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
TeGrotenhuis, Ward E.; Butterfield, Andrew; Caldwell, Dustin D.
This project was successful in demonstrating the feasibility of a step change in residential clothes dryer energy efficiency by demonstrating heat pump technology capable of 50% energy savings over conventional standard-size electric dryers with comparable drying times. A prototype system was designed from off-the-shelf components that can meet the project’s efficiency goals and are affordable. An experimental prototype system was built based on the design that reached 50% energy savings. Improvements have been identified that will reduce drying times of over 60 minutes to reach the goal of 40 minutes. Nevertheless, the prototype represents a step change in efficiency overmore » heat pump dryers recently introduced to the U.S. market, with 30% improvement in energy efficiency at comparable drying times.« less
OTF CCSDS Mission Operations Prototype. Directory and Action Service. Phase I: Exit Presentation
NASA Technical Reports Server (NTRS)
Reynolds, Walter F.; Lucord, Steven A.; Stevens, John E.
2009-01-01
This slide presentation describes the phase I directory and action service prototype for the CCSDS system. The project goals are to: (1) Demonstrate the use of Mission Operations standards to implement Directory and Action Services (2) Investigate Mission Operations language neutrality (3) Investigate C3I XML interoperability concepts (4) Integrate applicable open source technologies in a Service Oriented Architecture
NASA Technical Reports Server (NTRS)
Atkinson, David J.; Doyle, Richard J.; James, Mark L.; Kaufman, Tim; Martin, R. Gaius
1990-01-01
A Spacecraft Health Automated Reasoning Prototype (SHARP) portability study is presented. Some specific progress is described on the portability studies, plans for technology transfer, and potential applications of SHARP and related artificial intelligence technology to telescience operations. The application of SHARP to Voyager telecommunications was a proof-of-capability demonstration of artificial intelligence as applied to the problem of real time monitoring functions in planetary mission operations. An overview of the design and functional description of the SHARP system is also presented as it was applied to Voyager.
NASA Technical Reports Server (NTRS)
Matson, Jack E.
1992-01-01
The Spacelab Mission Independent Training Program provides an overview of payload operations. Most of the training material is currently presented in workbook form with some lecture sessions to supplement selected topics. The goal of this project was to develop a prototype interactive learning system for one of the Mission Independent Training topics to demonstrate how the learning process can be improved by incorporating multi-media technology into an interactive system. This report documents the development process and some of the problems encountered during the analysis, design, and production phases of this system.
Use of prototyping in preoperative planning for patients with head and neck tumors.
de Farias, Terence Pires; Dias, Fernando Luiz; Galvão, Mário Sérgio; Boasquevisque, Edson; Pastl, Ana Carolina; Albuquerque Sousa, Bruno
2014-12-01
Prototyping technologies for reconstructions consist of obtaining a 3-dimensional model of the object of interest. Solid models are constructed by the deposition of materials in successive layers. The purpose of this study was to perform a double-blind, randomized, prospective study to evaluate the efficacy of prototype use in head and neck surgeries. Thirty-seven cases were randomized into prototype and nonprototype groups. The following factors were recorded: the time of plate and locking screw apposition, flap size, time for reconstruction, and an aesthetic evaluation. The prototype group exhibited a reduced surgical time (43.7 minutes vs 127.7 minutes, respectively; p = .001), a tendency to reduce the size of the bone flap taken for reconstruction, and better aesthetic results than the group that was not prototyped. The use of prototyping demonstrated a trend toward a reduced surgical time, smaller bone flaps, and better aesthetic results. © 2014 Wiley Periodicals, Inc.
Enhancing e-Learning Content by Using Semantic Web Technologies
ERIC Educational Resources Information Center
García-González, Herminio; Gayo, José Emilio Labra; del Puerto Paule-Ruiz, María
2017-01-01
We describe a new educational tool that relies on Semantic Web technologies to enhance lessons content. We conducted an experiment with 32 students whose results demonstrate better performance when exposed to our tool in comparison with a plain native tool. Consequently, this prototype opens new possibilities in lessons content enhancement.
Demonstration of an efficient cooling approach for SBIRS-Low
NASA Astrophysics Data System (ADS)
Nieczkoski, S. J.; Myers, E. A.
2002-05-01
The Space Based Infrared System-Low (SBIRS-Low) segment is a near-term Air Force program for developing and deploying a constellation of low-earth orbiting observation satellites with gimbaled optics cooled to cryogenic temperatures. The optical system design and requirements present unique challenges that make conventional cooling approaches both complicated and risky. The Cryocooler Interface System (CIS) provides a remote, efficient, and interference-free means of cooling the SBIRS-Low optics. Technology Applications Inc. (TAI), through a two-phase Small Business Innovative Research (SBIR) program with Air Force Research Laboratory (AFRL), has taken the CIS from initial concept feasibility through the design, build, and test of a prototype system. This paper presents the development and demonstration testing of the prototype CIS. Prototype system testing has demonstrated the high efficiency of this cooling approach, making it an attractive option for SBIRS-Low and other sensitive optical and detector systems that require low-impact cryogenic cooling.
Beerlage-de Jong, Nienke; Wentzel, Jobke; Hendrix, Ron; van Gemert-Pijnen, Lisette
2017-04-01
Current clinical decision support systems (CDSSs) for antimicrobial stewardship programs (ASPs) are guideline- or expert-driven. They are focused on (clinical) content, not on supporting real-time workflow. Thus, CDSSs fail to optimally support prudent antimicrobial prescribing in daily practice. Our aim was to demonstrate why and how participatory development (involving end-users and other stakeholders) can contribute to the success of CDSSs in ASPs. A mixed-methods approach was applied, combining scenario-based prototype evaluations (to support verbalization of work processes and out-of-the-box thinking) among 6 medical resident physicians with an online questionnaire (to cross-reference findings of the prototype evaluations) among 54 Dutch physicians. The prototype evaluations resulted in insight into the end-users and their way of working, as well as their needs and expectations. The online questionnaire that was distributed among a larger group of medical specialists, including lung and infection experts, complemented the findings of the prototype evaluations. It revealed a say/do problem concerning the unrecognized need of support for selecting diagnostic tests. Low-fidelity prototypes of a technology allow researchers to get to know the end-users, their way of working, and their work context. Involving experts allows technology developers to continuously check the fit between technology and clinical practice. The combination enables the participatory development of technology to successfully support ASPs. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Sung-Il; Kim, Jeongtae; Koo, Chiwan; Joung, Yeun-Ho; Choi, Jiyeon
2018-02-01
Microfluidics technology which deals with small liquid samples and reagents within micro-scale channels has been widely applied in various aspects of biological, chemical, and life-scientific research. For fabricating microfluidic devices, a silicon-based polymer, PDMS (Polydimethylsiloxane), is widely used in soft lithography, but it has several drawbacks for microfluidic applications. Glass has many advantages over PDMS due to its excellent optical, chemical, and mechanical properties. However, difficulties in fabrication of glass microfluidic devices that requires multiple skilled steps such as MEMS technology taking several hours to days, impedes broad application of glass based devices. Here, we demonstrate a rapid and optical prototyping of a glass microfluidic device by using femtosecond laser assisted selective etching (LASE) and femtosecond laser welding. A microfluidic droplet generator was fabricated as a demonstration of a microfluidic device using our proposed prototyping. The fabrication time of a single glass chip containing few centimeter long and complex-shaped microfluidic channels was drastically reduced in an hour with the proposed laser based rapid and simple glass micromachining and hermetic packaging technique.
An autonomous rendezvous and docking system using cruise missile technology
NASA Technical Reports Server (NTRS)
Jones, ED; Nicholson, Bruce
1991-01-01
In November 1990 General Dynamics demonstrated an AR&D system for members of the Strategic Avionics Technology Working Group. This simulation utilized prototype hardware derived from the Cruise Missile and Centaur avionics systems. The object of this proof of concept demonstration was to show that all the accuracy, reliability, and operational requirements established for a spacecraft to dock with Space Station Freedom could be met by the proposed AR&D system.
Airspace Technology Demonstration 2 (ATD-2) Technology Description Document (TDD)
NASA Technical Reports Server (NTRS)
Ging, Andrew; Engelland, Shawn; Capps, Al; Eshow, Michelle; Jung, Yoon; Sharma, Shivanjli; Talebi, Ehsan; Downs, Michael; Freedman, Cynthia; Ngo, Tyler;
2018-01-01
This Technology Description Document (TDD) provides an overview of the technology for the Phase 1 Baseline Integrated Arrival, Departure, and Surface (IADS) prototype system of the National Aeronautics and Space Administration's (NASA) Airspace Technology Demonstration 2 (ATD-2) project, to be demonstrated beginning in 2017 at Charlotte Douglas International Airport (CLT). Development, integration, and field demonstration of relevant technologies of the IADS system directly address recommendations made by the Next Generation Air Transportation System (NextGen) Integration Working Group (NIWG) on Surface and Data Sharing and the Surface Collaborative Decision Making (Surface CDM) concept of operations developed jointly by the Federal Aviation Administration (FAA) and aviation industry partners. NASA is developing the IADS traffic management system under the ATD-2 project in coordination with the FAA, flight operators, CLT airport, and the National Air Traffic Controllers Association (NATCA). The primary goal of ATD-2 is to improve the predictability and operational efficiency of the air traffic system in metroplex environments, through the enhancement, development, and integration of the nation's most advanced and sophisticated arrival, departure, and surface prediction, scheduling, and management systems. The ATD-2 project is a 5-year research activity beginning in 2015 and extending through 2020. The Phase 1 Baseline IADS capability resulting from the ATD-2 research will be demonstrated at the CLT airport beginning in 2017. Phase 1 will provide the initial demonstration of the integrated system with strategic and tactical scheduling, tactical departure scheduling to an en route meter point, and an early implementation prototype of a Terminal Flight Data Manager (TFDM) Electronic Flight Data (EFD) system. The strategic surface scheduling element of the capability is consistent with the Surface CDM Concept of Operations published in 2014 by the FAA Surface Operations Directorate.
A case study of data integration for aquatic resources using semantic web technologies
Gordon, Janice M.; Chkhenkeli, Nina; Govoni, David L.; Lightsom, Frances L.; Ostroff, Andrea C.; Schweitzer, Peter N.; Thongsavanh, Phethala; Varanka, Dalia E.; Zednik, Stephan
2015-01-01
Use cases, information modeling, and linked data techniques are Semantic Web technologies used to develop a prototype system that integrates scientific observations from four independent USGS and cooperator data systems. The techniques were tested with a use case goal of creating a data set for use in exploring potential relationships among freshwater fish populations and environmental factors. The resulting prototype extracts data from the BioData Retrieval System, the Multistate Aquatic Resource Information System, the National Geochemical Survey, and the National Hydrography Dataset. A prototype user interface allows a scientist to select observations from these data systems and combine them into a single data set in RDF format that includes explicitly defined relationships and data definitions. The project was funded by the USGS Community for Data Integration and undertaken by the Community for Data Integration Semantic Web Working Group in order to demonstrate use of Semantic Web technologies by scientists. This allows scientists to simultaneously explore data that are available in multiple, disparate systems beyond those they traditionally have used.
A Prototype Cryogenic Oxygen Storage and Delivery Subsystem for Advanced Spacesuits
NASA Technical Reports Server (NTRS)
Overbeeke, Arend; Hodgson, Edward; Paul, Heather; Geier, Harold; Bradt, Howard
2007-01-01
Future spacesuit systems for the exploration of Mars will need to be much lighter than current designs while at the same time reducing the consumption of water for crew cooling. One of the technology paths NASA has identified to achieve these objectives is the replacement of current high pressure oxygen storage technology in EVA systems with cryogenic technology that can simultaneously reduce the mass of tankage required for oxygen storage and enable the use of the stored oxygen as a means of cooling the EVA astronaut. During the past year NASA has funded Hamilton Sundstrand production of a prototype system demonstrating this capability in a design that will allow the cryogenic oxygen to be used in any attitude and gravity environment. This paper will describe the design and manufacture of the prototype system and present the results of preliminary testing to verify its performance characteristics. The potential significance and application of the system will also be discussed.
NASA Technical Reports Server (NTRS)
Biefeld, Eric; Cooper, Lynne
1990-01-01
The findings are documented of the OMP research task, which investigated the applicability of artificial intelligence (AI) technology in support of automated scheduling. The goals of the effort are summarized and the technical accomplishments are highlighted. The OMP task succeeded in identifying how AI technology could be applied and demonstrated an AI-based automated scheduling approach through the OMP prototypes.
Teleoperation, telerobotics, and telepresence in surgery.
Satava, R M; Simon, I B
1993-06-01
The concepts of teleoperation, telerobotics, and telepresence are presented and defined. Current surgical systems, some in clinical practice and others in prototype demonstration, are used to illustrate each of these principles. The importance and impact of these technologies and their relation to other advanced technologies are illustrated to project a framework for the future of surgery.
Larios, Diego F.; Barbancho, Julio; Sevillano, José L.; Rodríguez, Gustavo; Molina, Francisco J.; Gasull, Virginia G.; Mora-Merchan, Javier M.; León, Carlos
2013-01-01
Wireless Sensor Networks (WSNs) are a technology that is becoming very popular for many applications, and environmental monitoring is one of its most important application areas. This technology solves the lack of flexibility of wired sensor installations and, at the same time, reduces the deployment costs. To demonstrate the advantages of WSN technology, for the last five years we have been deploying some prototypes in the Doñana Biological Reserve, which is an important protected area in Southern Spain. These prototypes not only evaluate the technology, but also solve some of the monitoring problems that have been raised by biologists working in Doñana. This paper presents a review of the work that has been developed during these five years. Here, we demonstrate the enormous potential of using machine learning in wireless sensor networks for environmental and animal monitoring because this approach increases the amount of useful information and reduces the effort that is required by biologists in an environmental monitoring task. PMID:24025554
Hall Thruster Technology for NASA Science Missions
NASA Technical Reports Server (NTRS)
Manzella, David; Oh, David; Aadland, Randall
2005-01-01
The performance of a prototype Hall thruster designed for Discovery-class NASA science mission applications was evaluated at input powers ranging from 0.2 to 2.9 kilowatts. These data were used to construct a throttle profile for a projected Hall thruster system based on this prototype thruster. The suitability of such a Hall thruster system to perform robotic exploration missions was evaluated through the analysis of a near Earth asteroid sample return mission. This analysis demonstrated that a propulsion system based on the prototype Hall thruster offers mission benefits compared to a propulsion system based on an existing ion thruster.
High Performance, Dependable Multiprocessor
NASA Technical Reports Server (NTRS)
Ramos, Jeremy; Samson, John R.; Troxel, Ian; Subramaniyan, Rajagopal; Jacobs, Adam; Greco, James; Cieslewski, Grzegorz; Curreri, John; Fischer, Michael; Grobelny, Eric;
2006-01-01
With the ever increasing demand for higher bandwidth and processing capacity of today's space exploration, space science, and defense missions, the ability to efficiently apply commercial-off-the-shelf (COTS) processors for on-board computing is now a critical need. In response to this need, NASA's New Millennium Program office has commissioned the development of Dependable Multiprocessor (DM) technology for use in payload and robotic missions. The Dependable Multiprocessor technology is a COTS-based, power efficient, high performance, highly dependable, fault tolerant cluster computer. To date, Honeywell has successfully demonstrated a TRL4 prototype of the Dependable Multiprocessor [I], and is now working on the development of a TRLS prototype. For the present effort Honeywell has teamed up with the University of Florida's High-performance Computing and Simulation (HCS) Lab, and together the team has demonstrated major elements of the Dependable Multiprocessor TRLS system.
Concentrated solar power on demand demonstration: Construction and operation of a 25 kW prototype
NASA Astrophysics Data System (ADS)
Gil, Antoni; Codd, Daniel S.; Zhou, Lei; Trumper, David; Calvet, Nicolas; Slocum, Alexander H.
2016-05-01
Currently, the majority of concentrated solar power (CSP) plants built worldwide integrate thermal energy storage (TES) systems which enable dispatchable output and higher global plant efficiencies. TES systems are typically based on two tank molten salt technology which involves inherent drawbacks such as parasitic pumping losses and electric tracing of pipes, risk of solidification and high capital costs. The concept presented in this paper is based on a single tank where the concentrated sunlight is directly focused on the molten salt. Hot and cold volumes of salt (at 565 °C and 280 °C, respectively) are axially separated by an insulated divider plate which helps maintain the thermal gradient. The concept, based on existing technologies, seeks to avoid the listed drawbacks as well as reducing the final cost of the TES system. In order to demonstrate its feasibility, Masdar Institute (MI) and Massachusetts Institute of Technology are developing a 25 kW prototype to be tested in the Masdar Solar Platform beam down facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Brennan T.; Welch, Tim; Witt, Adam M.
The Multi-Year Plan for Research, Development, and Prototype Testing of Standard Modular Hydropower Technology (MYRP) presents a strategy for specifying, designing, testing, and demonstrating the efficacy of standard modular hydropower (SMH) as an environmentally compatible and cost-optimized renewable electricity generation technology. The MYRP provides the context, background, and vision for testing the SMH hypothesis: if standardization, modularity, and preservation of stream functionality become essential and fully realized features of hydropower technology, project design, and regulatory processes, they will enable previously unrealized levels of new project development with increased acceptance, reduced costs, increased predictability of outcomes, and increased value to stakeholders.more » To achieve success in this effort, the MYRP outlines a framework of stakeholder-validated criteria, models, design tools, testing facilities, and assessment protocols that will facilitate the development of next-generation hydropower technologies.« less
Research pressure instrumentation for NASA space shuttle main engine
NASA Technical Reports Server (NTRS)
Anderson, P. J.; Nussbaum, P.; Gustafson, G.
1985-01-01
The breadboard feasibility model of a silicon piezoresistive pressure transducer suitable for space shuttle main engine (SSME) applications was demonstrated. The development of pressure instrumentation for the SSME was examined. The objective is to develop prototype pressure transducers which are targeted to meet the SSME performance design goals and to fabricate, test and deliver a total of 10 prototype units. Effective utilization of the many advantages of silicon piezoresistive strain sensing technology to achieve the objectives of advanced state-of-the-art pressure sensors for reliability, accuracy and ease of manufacture is analyzed. Integration of multiple functions on a single chip is the key attribute of the technology.
New-type planar field emission display with superaligned carbon nanotube yarn emitter.
Liu, Peng; Wei, Yang; Liu, Kai; Liu, Liang; Jiang, Kaili; Fan, Shoushan
2012-05-09
With the superaligned carbon nanotube yarn as emitter, we have fabricated a 16 × 16 pixel field emission display prototype by adopting screen printing and laser cutting technologies. A planar diode field emission structure has been adopted. A very sharp carbon nanotube yarn tip emitter can be formed by laser cutting. Low voltage phosphor was coated on the anode electrodes also by screen printing. With a specially designed circuit, we have demonstrated the dynamic character display with the field emission display prototype. The emitter material and fabrication technologies in this paper are both easy to scale up to large areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Shannon
BETTER Capstone supported 29 student project teams consisting of 155 students over two years in developing transformative building energy efficiency technologies through a capstone design experience. Capstone is the culmination of an undergraduate student’s engineering education. Interdisciplinary teams of students spent a semester designing and prototyping a technological solution for a variety building energy efficiency problems. During this experience students utilized the full design process, including the manufacturing and testing of a prototype solution, as well as publically demonstrating the solution at the Capstone Design Expo. As part of this project, students explored modern manufacturing techniques and gained hands-on experiencemore » with these techniques to produce their prototype technologies. This research added to the understanding of the challenges within building technology education and engagement with industry. One goal of the project was to help break the chicken-and-egg problem with getting students to engage more deeply with the building technology industry. It was learned however that this industry is less interested in trying innovative new concept but rather interested in hiring graduates for existing conventional building efforts. While none of the projects yielded commercial success, much individual student growth and learning was accomplished, which is a long-term benefit to the public at large.« less
Construction of Prototype Lightweight Mirrors
NASA Technical Reports Server (NTRS)
Robinson, William G.
1997-01-01
This contract and the work described was in support of a Seven Segment Demonstrator (SSD) and demonstration of a different technology for construction of lightweight mirrors. The objectives of the SSD were to demonstrate functionality and performance of a seven segment prototype array of hexagonal mirrors and supporting electromechanical components which address design issues critical to space optics deployed in large space based telescopes for astronomy and for optics used in spaced based optical communications systems. The SSD was intended to demonstrate technologies which can support the following capabilities; Transportation in dense packaging to existing launcher payload envelopes, then deployable on orbit to form space telescope with large aperture. Provide very large (less than 10 meters) primary reflectors of low mass and cost. Demonstrate the capability to form a segmented primary or quaternary mirror into a quasi-continuous surface with individual subapertures phased so that near diffraction limited imaging in the visible wavelength region is achieved. Continuous compensation of optical wavefront due to perturbations caused by imperfections, natural disturbances, and equipment induced vibrations/deflections to provide near diffraction limited imaging performance in the visible wavelength region. Demonstrate the feasibility of fabricating such systems with reduced mass and cost compared to past approaches. While the SSD could not be expected to satisfy all of the above capabilities, the intent was to start identifying and understanding new technologies that might be applicable to these goals.
Performance and results of the LBNE 35 ton membrane cryostat prototype
Montanari, David; Adamowski, Mark; Hahn, Alan; ...
2015-07-15
We report on the performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). LBNE has designed and fabricated the supporting cryogenic system infrastructure and successfully commissioned and operated the first membrane cryostat. Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the puritymore » requirements in a membrane cryostat without evacuation; to demonstrate that we can achieve and maintain the purity requirements of the liquid argon using mol sieve and copper filters. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion (ppt) oxygen equivalent. LBNE is planning the design and construction of a large liquid argon detector. This presentation will present requirements, design and construction of the LBNE 35 ton membrane cryostat prototype, and detail the commissioning and performance. The experience and results of this prototype are extremely important for the development of the LBNE detector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen
The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-basedmore » drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.« less
A disposable tear glucose biosensor-part 2: system integration and model validation.
La Belle, Jeffrey T; Bishop, Daniel K; Vossler, Stephen R; Patel, Dharmendra R; Cook, Curtiss B
2010-03-01
We presented a concept for a tear glucose sensor system in an article by Bishop and colleagues in this issue of Journal of Diabetes Science and Technology. A unique solution to collect tear fluid and measure glucose was developed. Individual components were selected, tested, and optimized, and system error modeling was performed. Further data on prototype testing are now provided. An integrated fluidics portion of the prototype was designed, cast, and tested. A sensor was created using screen-printed sensors integrated with a silicone rubber fluidics system and absorbent polyurethane foam. A simulated eye surface was prepared using fluid-saturated poly(2-hydroxyethyl methacrylate) sheets, and the disposable prototype was tested for both reproducibility at 0, 200, and 400 microM glucose (n = 7) and dynamic range of glucose detection from 0 to 1000 microM glucose. From the replicated runs, an established relative standard deviation of 15.8% was calculated at 200 microM and a lower limit of detection was calculated at 43.4 microM. A linear dynamic range was demonstrated from 0 to 1000 microM with an R(2) of 99.56%. The previously developed model predicted a 14.9% variation. This compares to the observed variance of 15.8% measured at 200 microM glucose. With the newly designed fluidics component, an integrated tear glucose prototype was assembled and tested. Testing of this integrated prototype demonstrated a satisfactory lower limit of detection for measuring glucose concentration in tears and was reproducible across a physiological sampling range. The next step in the device design process will be initial animal studies to evaluate the current prototype for factors such as eye irritation, ease of use, and correlation with blood glucose. (c) 2010 Diabetes Technology Society.
Improving The Prototyping Process In Department Of Defense Acquisition
2014-06-01
System Flow Chart ................................................. 39 Figure 13. TRL Definitions (from ASD [R&E] 2011... ASD (R&E) Assistant Secretary of Defense for Research and Engineering BCL Business Capability Life cycle CDD Capability Development Document CDR...TRL 6 cannot be attained until the technology has been demonstrated in a relevant operational environment ( ASD [R&E] 2011). A technology that has
JWST Mirror Technology Development Results
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2007-01-01
Mirror technology is a critical enabling capability for the James Webb Space Telescope (JWST). JWST requires a Primary Mirror Segment Assembly (PMSA) that can survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance. At the inception of JWST in 1996, such a capability did not exist. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured and demonstrated mirror technology for JWST. Directly traceable prototypes or flight hardware has been built, tested and operated in a relevant environment. This paper summarizes that technology development effort.
Pellet to Part Manufacturing System for CNCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roschli, Alex C.; Love, Lonnie J.; Post, Brian K.
Oak Ridge National Laboratory’s Manufacturing Demonstration Facility worked with Hybrid Manufacturing Technologies to develop a compact prototype composite additive manufacturing head that can effectively extrude injection molding pellets. The head interfaces with conventional CNC machine tools enabling rapid conversion of conventional machine tools to additive manufacturing tools. The intent was to enable wider adoption of Big Area Additive Manufacturing (BAAM) technology and combine BAAM technology with conventional machining systems.
A Low Temperature, Reverse Brayton Cryocooler
NASA Technical Reports Server (NTRS)
Swift, Walter L.
2001-01-01
This status report covers the fifty-second month of a project to develop a low temperature, reverse-Brayton cryocooler using turbomachines. This program consists of a Basic Phase and four Option Phases. Each of the Phases is directed to a particular load/temperature combination. The technology and fundamental design features of the components used in these systems are related but differ somewhat in size, speed, and some details in physical geometry. Each of the Phases can be carried out independently of the others, except that all of the Phases rely on the technology developed and demonstrated during the Basic Phase. The Basic Phase includes the demonstration of a critical component and the production of a prototype model cryocooler. The critical technology demonstration will be the test of a small turboalternator over a range of conditions at temperatures down to 6 K. These tests will provide design verification data useful for the further design of the other coolers. The prototype model cooler will be designed to provide at least 5 mW of cooling at 6 K. The heat rejection temperature for this requirement is 220 K or greater. The input power to the system at these conditions is to be less than 60 W.
Roadside Tracker Portal-less Portal Monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziock, Klaus-Peter; Cheriyadat, Anil M.; Bradley, Eric Craig
2013-07-01
This report documents the full development cycle of the Roadside Tracker (RST) Portal-less Portal monitor (Fig. 1) funded by DHS DNDO. The project started with development of a proof-of-feasibility proto-type, proceeded through design and construction of a proof-of-concept (POC) prototype, a test-and-evaluation phase, participation in a Limited Use Exercise that included the Standoff Radiation Detections Systems developed under an Advanced Technology Demonstration and concluded with participation in a Characterization Study conducted by DNDO.
Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns
NASA Astrophysics Data System (ADS)
Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi
2017-04-01
In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.
Design and implementation of a CORBA-based genome mapping system prototype.
Hu, J; Mungall, C; Nicholson, D; Archibald, A L
1998-01-01
CORBA (Common Object Request Broker Architecture), as an open standard, is considered to be a good solution for the development and deployment of applications in distributed heterogeneous environments. This technology can be applied in the bioinformatics area to enhance utilization, management and interoperation between biological resources. This paper investigates issues in developing CORBA applications for genome mapping information systems in the Internet environment with emphasis on database connectivity and graphical user interfaces. The design and implementation of a CORBA prototype for an animal genome mapping database are described. The prototype demonstration is available via: http://www.ri.bbsrc.ac.uk/ark_corba/. jian.hu@bbsrc.ac.uk
NASA Astrophysics Data System (ADS)
Wang, T.; Barbero, M.; Berdalovic, I.; Bespin, C.; Bhat, S.; Breugnon, P.; Caicedo, I.; Cardella, R.; Chen, Z.; Degerli, Y.; Egidos, N.; Godiot, S.; Guilloux, F.; Hemperek, T.; Hirono, T.; Krüger, H.; Kugathasan, T.; Hügging, F.; Marin Tobon, C. A.; Moustakas, K.; Pangaud, P.; Schwemling, P.; Pernegger, H.; Pohl, D.-L.; Rozanov, A.; Rymaszewski, P.; Snoeys, W.; Wermes, N.
2018-03-01
Depleted monolithic active pixel sensors (DMAPS), which exploit high voltage and/or high resistivity add-ons of modern CMOS technologies to achieve substantial depletion in the sensing volume, have proven to have high radiation tolerance towards the requirements of ATLAS in the high-luminosity LHC era. DMAPS integrating fast readout architectures are currently being developed as promising candidates for the outer pixel layers of the future ATLAS Inner Tracker, which will be installed during the phase II upgrade of ATLAS around year 2025. In this work, two DMAPS prototype designs, named LF-Monopix and TJ-Monopix, are presented. LF-Monopix was fabricated in the LFoundry 150 nm CMOS technology, and TJ-Monopix has been designed in the TowerJazz 180 nm CMOS technology. Both chips employ the same readout architecture, i.e. the column drain architecture, whereas different sensor implementation concepts are pursued. The paper makes a joint description of the two prototypes, so that their technical differences and challenges can be addressed in direct comparison. First measurement results for LF-Monopix will also be shown, demonstrating for the first time a fully functional fast readout DMAPS prototype implemented in the LFoundry technology.
The Expert System Programme of the European Space Agency
NASA Astrophysics Data System (ADS)
Lafay, J. F.; Allard, F.
1992-08-01
ESA's Expert System Demonstration (ESD) program is discussed in terms of its goals, structure, three-phase approach, and initial results. ESD is intended to demonstrate the benefits of AI and knowledge-based systems for in-orbit infrastructures by developing a strategic technology to contribute to ESA missions. Three phases were defined for: (1) program definition and review of existing work; (2) demonstration of applications prototypes; and (3) the development of operational systems from successful prototypes. Applications of 16 proposed expert-system candidates are grouped into payload-engineering and crew/operations categories. The candidates are to be evaluated in terms of their potential contribution to strategic goals such as improving scientific return and automating operator functions to eliminate human error.
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Sanzi, James
2017-01-01
The Kilopower project aims to develop and demonstrate scalable fission-based power technology for systems capable of delivering 110 kW of electric power with a specific power ranging from 2.5 - 6.5 Wkg. This technology could enable high power science missions or could be used to provide surface power for manned missions to the Moon or Mars. NASA has partnered with the Department of Energys National Nuclear Security Administration, Los Alamos National Labs, and Y-12 National Security Complex to develop and test a prototypic reactor and power system using existing facilities and infrastructure. This technology demonstration, referred to as the Kilowatt Reactor Using Stirling TechnologY (KRUSTY), will undergo nuclear ground testing in the summer of 2017 at the Nevada Test Site. The 1 kWe variation of the Kilopower system was chosen for the KRUSTY demonstration. The concept for the 1 kWe flight system consist of a 4 kWt highly enriched Uranium-Molybdenum reactor operating at 800 degrees Celsius coupled to sodium heat pipes. The heat pipes deliver heat to the hot ends of eight 125 W Stirling convertors producing a net electrical output of 1 kW. Waste heat is rejected using titanium-water heat pipes coupled to carbon composite radiator panels. The KRUSTY test, based on this design, uses a prototypic highly enriched uranium-molybdenum core coupled to prototypic sodium heat pipes. The heat pipes transfer heat to two Advanced Stirling Convertors (ASC-E2s) and six thermal simulators, which simulate the thermal draw of full scale power conversion units. Thermal simulators and Stirling engines are gas cooled. The most recent project milestone was the completion of non-nuclear system level testing using an electrically heated depleted uranium (non-fissioning) reactor core simulator. System level testing at the Glenn Research Center (GRC) has validated performance predictions and has demonstrated system level operation and control in a test configuration that replicates the one to be used at the Device Assembly Facility (DAF) at the Nevada National Security Site. Fabrication, assembly, and testing of the depleted uranium core has allowed for higher fidelity system level testing at GRC, and has validated the fabrication methods to be used on the highly enriched uranium core that will supply heat for the DAF KRUSTY demonstration.
NASA Technical Reports Server (NTRS)
Quinn, Gregory J.; Strange, Jeremy; Jennings, Mallory
2013-01-01
NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system s liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems (UTAS), but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.57 lb. Performance of the heat exchanger met the requirements and the model predictions. The water side and gas side pressure drops were less 0.8 psid and 0.5 inches of water, respectively, and an effectiveness of 94% was measured at the nominal air side pressure of 4.1 psia.
Advanced technology for space shuttle auxiliary propellant valves
NASA Technical Reports Server (NTRS)
Wichmann, H.
1973-01-01
Valves for the gaseous hydrogen/gaseous oxygen shuttle auxiliary propulsion system are required to feature low leakage over a wide temperature range coupled with high cycle life, long term compatibility and minimum maintenance. In addition, those valves used as thruster shutoff valves must feature fast response characteristics to achieve small, repeatable minimum impulse bits. These valve technology problems are solved by developing unique valve components such as sealing closures, guidance devices, and actuation means and by demonstrating two prototype valve concepts. One of the prototype valves is cycled over one million cycles without exceeding a leakage rate of 27 scc's per hour at 450 psia helium inlet pressure throughout the cycling program.
MIT Lincoln Laboratory Annual Report 2014
2014-01-01
NAME(S) AND ADDRESS(ES) Massachusetts Institute of Technology,Lincoln Laboratory,244 Wood Street,Lexington,MA,02420 8. PERFORMING ORGANIZATION...microseconds) transmon qubits. Juan Montoya, Andrew Benedick, and Scot Shaw use prototype technology to demonstrate a new optical phased array beam...really care about. In fact, the Woods Hole Oceanographic Institution, which is designing and building UUVs, is interested in the systems the
NASA Astrophysics Data System (ADS)
Rasco, B. C.
2012-03-01
The Low-Energy Neutrino Spectroscopy (LENS) experiment will precisely measure the energy spectrum of low-energy solar neutrinos via charged-current neutrino reactions on indium. The LENS detector concept applies indium-loaded scintillator in an optically-segmented lattice geometry to achieve precise time and spatial resolution with unprecedented sensitivity for low-energy neutrino events. The LENS collaboration is currently developing prototypes that aim to demonstrate the performance and selectivity of the technology and to benchmark Monte Carlo simulations that will guide scaling to the full LENS instrument. Currently a 120 liter prototype, microLENS, is operating with pure scintillator (no indium loading) in the Kimballton Underground Research Facility (KURF). We will present results from initial measurements with microLENS and plans for a 400 liter prototype, miniLENS, using indium loaded scintillator that will be installed this summer.
Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka P.; Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Lau, Judy M.; Sieth, Matthew M.; VanWinkle, Daniel; Tantawi, Sami
2011-01-01
HEMT-based receiver arrays with excellent noise and scalability are already starting to be manufactured at 100 GHz, but the advances in technology should make it possible to develop receiver modules with even greater operation frequency up to 200 GHz. A prototype heterodyne amplifier module has been developed for operation from 140 to 170 GHz using monolithic millimeter-wave integrated circuit (MMIC) low-noise InP high electron mobility transistor (HEMT) amplifiers. The compact, scalable module is centered on the 150-GHz atmospheric window using components known to operate well at these frequencies. Arrays equipped with hundreds of these modules can be optimized for many different astrophysical measurement techniques, including spectroscopy and interferometry. This module is a heterodyne receiver module that is extremely compact, and makes use of 35-nm InP HEMT technology, and which has been shown to have excellent noise temperatures when cooled cryogenically to 30 K. This reduction in system noise over prior art has been demonstrated in commercial mixers (uncooled) at frequencies of 160-180 GHz. The module is expected to achieve a system noise temperature of 60 K when cooled. An MMIC amplifier module has been designed to demonstrate the feasibility of expanding heterodyne amplifier technology to the 140 to 170-GHz frequency range for astronomical observations. The miniaturization of many standard components and the refinement of RF interconnect technology have cleared the way to mass-production of heterodyne amplifier receivers, making it a feasible technology for many large-population arrays. This work furthers the recent research efforts in compact coherent receiver modules, including the development of the Q/U Imaging ExperimenT (QUIET) modules centered at 40 and 90 GHz, and the production of heterodyne module prototypes at 90 GHz.
Prototype space station automation system delivered and demonstrated at NASA
NASA Technical Reports Server (NTRS)
Block, Roger F.
1987-01-01
The Automated Subsystem Control for Life Support System (ASCLSS) program has successfully developed and demonstrated a generic approach to the automation and control of Space Station subsystems. The hierarchical and distributed real time controls system places the required controls authority at every level of the automation system architecture. As a demonstration of the automation technique, the ASCLSS system automated the Air Revitalization Group (ARG) of the Space Station regenerative Environmental Control and Life Support System (ECLSS) using real-time, high fidelity simulators of the ARG processess. This automation system represents an early flight prototype and an important test bed for evaluating Space Station controls technology including future application of ADA software in real-time control and the development and demonstration of embedded artificial intelligence and expert systems (AI/ES) in distributed automation and controls systems.
UGV History 101: A Brief History of Unmanned Ground Vehicle (UGV) Development Efforts
1995-01-01
robots). These successful demonstrations led to the formulation of the Teleoperated Mobile Anti-Armor Platform ( TMAP ) program, and prototype systems were...Unfortunately, Congressional direction in December 1987 prohibited the emplacement of weapons systems on robots, and the TMAP was retargeted to the...Technology Demonstration project, a demonstration incorporating both the Army’s TMAPs and the GATERS TOV was held at Camp Pendleton in September 1989
Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Spray
2007-09-30
The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial newmore » technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.« less
Rapid Prototyping Technologies for Manufacturing and Maintenance Activities
NASA Astrophysics Data System (ADS)
Pfeifer, Marcel Rolf
2017-12-01
The paper deals with the direct application of Rapid Prototyping technologies for parts and spare parts production in production companies and the economic effect by making use of this technology. Traditional production technologies are technologies such as forging, cutting, machining, etc. These technologies are widely accepted and the teething troubles are solved. Rapid Prototyping technologies such as 3D printing on the other hand came into the focus in the recent years when the technologies and the produced quality gradually advanced. Providing flexibility and time efficiency the technology should also have a practical application in production. This paper has the aim to provide a case-study based on existing cost figures to show that these technologies are not limited to prototype developments.
NASA Astrophysics Data System (ADS)
Briois, Christelle; Thissen, Roland; Thirkell, Laurent; Aradj, Kenzi; Bouabdellah, Abdel; Boukrara, Amirouche; Carrasco, Nathalie; Chalumeau, Gilles; Chapelon, Olivier; Colin, Fabrice; Coll, Patrice; Cottin, Hervé; Engrand, Cécile; Grand, Noel; Lebreton, Jean-Pierre; Orthous-Daunay, François-Régis; Pennanech, Cyril; Szopa, Cyril; Vuitton, Véronique; Zapf, Pascal; Makarov, Alexander
2016-10-01
For decades of space exploration, mass spectrometry has proven to be a reliable instrumentation for the characterisation of the nature and energy of ionic and neutral, atomic and molecular species in the interplanetary medium and upper planetary atmospheres. It has been used as well to analyse the chemical composition of planetary and small bodies environments. The chemical complexity of these environments calls for the need to develop a new generation of mass spectrometers with significantly increased mass resolving power. The recently developed OrbitrapTM mass analyser at ultra-high resolution shows promising adaptability to space instrumentation, offering improved performances for in situ measurements. In this article, we report on our project named ;Cosmorbitrap; aiming at demonstrating the adaptability of the Orbitrap technology for in situ space exploration. We present the prototype that was developed in the laboratory for demonstration of both technical feasibility and analytical capabilities. A set of samples containing elements with masses ranging from 9 to 208 u has been used to evaluate the performance of the analyser, in terms of mass resolving power (reaching 474,000 at m/z 9) and ability to discriminate between isobaric interferences, accuracy of mass measurement (below 15 ppm) and determination of relative isotopic abundances (below 5%) of various samples. We observe a good agreement between the results obtained with the prototype and those of a commercial instrument. As the background pressure is a key parameter for in situ exploration of atmosphere planetary bodies, we study the effect of background gas on the performance of the Cosmorbitrap prototype, showing an upper limit for N2 in our set-up at 10-8 mbar. The results demonstrate the strong potential to adapt this technology to space exploration.
Development and Demonstration of a 25 Watt Thermophotovoltaic Power Source for a Hybrid Power System
NASA Technical Reports Server (NTRS)
Doyle, Edward; Shukla, Kailash; Metcalfe, Christopher
2001-01-01
The development of a propane-fueled, 25 W thermophotovoltaic (TPV) power source for use in a hybrid power system is described. The TPV power source uses a platinum emitting surface with an anti-reflective coating to radiate to gallium antimonide photocells, which converts the radiation to electric power. The development program started with the design and fabrication of an engineering prototype system. This was used as a component development vehicle to develop the technologies for the various components. A 25 W demonstration prototype was then designed and fabricated using the most advanced component approaches. The designs and test results from this development program are discussed.
Initial Field Deployment Results of Green PCB Removal from Sediment Systems (GPRSS)
NASA Technical Reports Server (NTRS)
Devor, Robert; Captain, James; Weis, Kyle; Maloney, Phillip; Booth, Greg; Quinn, Jacqueline
2014-01-01
Purpose of Study: (a) Develop/optimize technology capable of removing PCBs from contaminated sediments; (b) Develop design for functional GPRSS unit; (c) Produce and prove functionality of prototype units in a laboratory settings; (d) Produce fully-functional GPRSS units for testing at a demonstration site in Altavista, VA; and (e) Evaluate efficacy of GPRSS technology for the remediation of PCB-contaminated sediments.
Demonstrations of LSS active vibration control technology on representative ground-based testbeds
NASA Technical Reports Server (NTRS)
Hyland, David C.; Phillips, Douglas J.; Collins, Emmanuel G., Jr.
1991-01-01
This paper describes two experiments which successfully demonstrate control of flexible structures. The first experiment involved control design and implementation for the ACES structure at NASA Marshall Space Flight Center, while the second experiment was conducted using the Multi-Hex Prototype structure. The paper concludes with some remarks on the lessons learned from conducting these experiments.
An Advanced Trajectory-Based Operations Prototype Tool and Focus Group Evaluation
NASA Technical Reports Server (NTRS)
Guerreiro, Nelson M.; Jones, Denise R.; Barmore, Bryan E.; Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Ahmad, Nash'at N.; Rogers, Laura J.; Underwood, Matthew C.; Johnson, Sally C.
2017-01-01
Trajectory-based operations (TBO) is a key concept in the Next Generation Air Transportation System transformation of the National Airspace System (NAS) that will increase the predictability and stability of traffic flows, support a common operational picture through the use of digital data sharing, facilitate more effective collaborative decision making between airspace users and air navigation service providers, and enable increased levels of integrated automation across the NAS. The National Aeronautics and Space Administration (NASA) has been developing trajectory-based systems to improve the efficiency of the NAS during specific phases of flight and is now also exploring Advanced 4-Dimensional Trajectory (4DT) operational concepts that will integrate these technologies and incorporate new technology where needed to create both automation and procedures to support gate-to-gate TBO. A TBO Prototype simulation toolkit has been developed that demonstrates initial functionality that may reside in an Advanced 4DT TBO concept. Pilot and controller subject matter experts (SMEs) were brought to the Air Traffic Operations Laboratory at NASA Langley Research Center for discussions on an Advanced 4DT operational concept and were provided an interactive demonstration of the TBO Prototype using four example scenarios. The SMEs provided feedback on potential operational, technological, and procedural opportunities and concerns. After viewing the interactive demonstration scenarios, the SMEs felt the operational capabilities demonstrated would be useful for performing TBO while maintaining situation awareness and low mental workload. The TBO concept demonstrated produced defined routings around weather which resulted in a more organized, consistent flow of traffic where it was clear to both the controller and pilot what route the aircraft was to follow. In general, the controller SMEs felt that traffic flow management should be responsible for generating and negotiating the operational constraints demonstrated, in cooperation with the Air Traffic Control System Command Center, while air traffic control should be responsible for the implementation of those constraints. The SMEs also indicated that digital data communications would be very beneficial for TBO operations and would result in less workload due to reduced communications, would eliminate issues due to language barriers and frequency problems, and would make receiving, loading, accepting, and executing clearances easier, less ambiguous, and more expeditious. This paper describes an Advanced 4DT operational concept, the TBO Prototype, the demonstration scenarios and methods used, and the feedback obtained from the pilot and controller SMEs in this focus group evaluation.
Design, processing and testing of LSI arrays, hybrid microelectronics task
NASA Technical Reports Server (NTRS)
Himmel, R. P.; Stuhlbarg, S. M.; Ravetti, R. G.; Zulueta, P. J.; Rothrock, C. W.
1979-01-01
Mathematical cost models previously developed for hybrid microelectronic subsystems were refined and expanded. Rework terms related to substrate fabrication, nonrecurring developmental and manufacturing operations, and prototype production are included. Sample computer programs were written to demonstrate hybrid microelectric applications of these cost models. Computer programs were generated to calculate and analyze values for the total microelectronics costs. Large scale integrated (LST) chips utilizing tape chip carrier technology were studied. The feasibility of interconnecting arrays of LSU chips utilizing tape chip carrier and semiautomatic wire bonding technology was demonstrated.
X-33 Injector Ignition Single Cell Test
NASA Technical Reports Server (NTRS)
1997-01-01
The X-33 injector ignition single cell was tested at the Marshall Space Flight Center test stand 116. The X-33 was a sub-scale technology demonstrator prototype of a Reusable Launch Vehicle (RLV) manufactured and named by Lockheed Martin as the Venture Star. The goal of the program was to demonstrate the technologies needed for a full size, single-stage-to-orbit RLV, thus enabling private industry to build and operate the RLV in the first decade of the 21st century. The X-33 program was cancelled in 2001.
Desert Research and Technology Studies (RATS) 2007 Field Campaign Objectives and Results
NASA Technical Reports Server (NTRS)
Kosmo, Joseph; Romig, Barbara
2008-01-01
Desert "RATS" (Research and Technology Studies) is a combined, multi-discipline group of inter-NASA center scientists and engineers, net-working and collaborating with representatives of industry and academia, for the purpose of conducting planetary surface exploration-focused remote field exercises. These integrated testing exercises conducted under representative analog Lunar and Mars surface terrain conditions, provide NASA the capability to validate experimental prototype hardware and software systems as well as to evaluate and develop mission operational techniques in order to identify and establish technical requirements and identify potential technology "gaps" applicable for future planetary human exploration. The 2007 D-RATS field campaign test activities were initiated based on the major themes and objectives of a notional 5-year plan developed for conducting relative analog test activities in support of the engineering evaluation and assessment of various system architectural requirements, conceptual prototype support equipment and selected technologies necessary for the establishment of a lunar outpost. Specifically, the major objectives included measuring task efficiency during robot, human, and human-robot interactive tasks associated with lunar outpost site surveying and reconnaissance activities and deployment of a representative solar panel power and distribution system. In addition, technology demonstrations were conducted with a new Lithium-ion battery and autonomous software to coordinate multiple robot activities. Secondary objectives were evaluating airlock concept mockups and prototype removable space suit over-garment elements for dust mitigation, and upgrades to the prototype extravehicular activities (EVA) communication and information system. Dry run test activities, prior to testing at a designated remote field site location, were initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. Both the local JSC and remote field test sites have terrain conditions that are representative and characteristic of both the Moon and Mars, such as strewn rock and volcanic ash fields, craters, rolling plains, hills, gullies, slopes, and outcrops. The D-RATS 2007 field campaign, representing the completion of its tenth year of analog testing, was conducted at the large Cinder Lake volcanic ash bed area adjacent to Flagstaff, Arizona.
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.; Schifer, Nicholas A.
2010-01-01
In support of the Advanced Stirling Radioisotope Generator (ASRG) project and other potential applications, NASA Glenn Research Center (GRC) has initiated convertor technology development efforts in the areas of acoustic emission, electromagnetic field mitigation, thermoacoustic Stirling conversion, and multiple-cylinder alpha arrangements of Stirling machines. The acoustic emission measurement effort was developed as a health monitoring metric for several Stirling convertors undergoing life testing. While accelerometers have been used in the past to monitor dynamic signature, the acoustic sensors were chosen to monitor cycle events, such gas bearing operation. Several electromagnetic interference (EMI) experiments were performed on a pair of Advanced Stirling Convertors (ASC). These tests demonstrated that a simple bucking coil was capable of reducing the alternating current (ac) magnetic field below the ASRG system specification. The thermoacoustic Stirling concept eliminates the displacer typically found in Stirling machines by making use of the pressure oscillations of a traveling acoustic wave. A 100 W-class thermoacoustic Stirling prototype manufactured by Northrop Grumman Space and Technology was received and tested. Another thermoacoustic prototype designed and fabricated by Sunpower, Inc., will be tested in the near future. A four cylinder free piston alpha prototype convertor was received from Sunpower, Inc. and has been tested at GRC. This hardware was used as a proof of concept to validate thermodynamic models and demonstrate stable operation of multiple-cylinder free-piston Stirling conversion. This paper will discuss each of these activities and the results they produced.
Tests of a Roman Pot prototype for the TOTEM experiment
NASA Astrophysics Data System (ADS)
Deile, M.; Alagoz, E.; Anelli, G.; Antchev, G.; Ayache, M.; Caspers, F.; Dimovasili, E.; Dinapoli, R.; Drouhin, F.; Eggert, K.; Escourrou, J.L; Fochler, O.; Gill, K.; Grabit, R.; Haung, F.; Jarron, P.; Kaplon, J.; Kroyer, T.; Luntama, T.; Macina, D.; Mattelon, E.; Niewiadomski, H.; Mirabito, L.; Noschis, E.P.; Oriunno, M.; Park, a.; Perrot, A.-L.; Pirotte, O.; Quetsch, J.M.; Regnier, F.; Ruggiero, G.; Saramad, S.; Siegrist, P.; Snoeys, W.; sSouissi, T.; Szczygiel, R.; Troska, J.; Vasey, F.; Verdier, A.; Da Vià, C.; Hasi, J.; Kok, A.; Watts, S.; Kašpar, J.; Kundrát, V.; Lokajíček, M.V.; Smotlacha, J.; Avati, V.; Järvinen, M.; Kalliokoski, M.; Kalliopuska, J.; Kurvinen, K.; Lauhakangas, R.; Oljemark, F.; Orava, R.; Österberg, K.; Palmieri, V.; Saarikko, H.; Soininen, A.; Boccone, V.; Bozzo, M.; Buzzo, A.; Cuneo, S.; Ferro, F.; Macrí, M.; Minutoli, S.; Morelli, A.; Musico, P.; Negri, M.; Santroni, A.; Sette, G.; Sobol, A.; sBerardi, V.; Catanesi, M.G.; Radicioni, E.
The TOTEM collaboration has developed and tested the first prototype of its Roman Pots to be operated in the LHC. TOTEM Roman Pots contain stacks of 10 silicon detectors with strips oriented in two orthogonal directions. To measure proton scattering angles of a few microradians, the detectors will approach the beam centre to a distance of 10 sigma + 0.5 mm (= 1.3 mm). Dead space near the detector edge is minimised by using two novel "edgeless" detector technologies. The silicon detectors are used both for precise track reconstruction and for triggering. The first full-sized prototypes of both detector technologies as well as their read-out electronics have been developed, built and operated. The tests took place first in a fixed-target muon beam at CERN's SPS, and then in the proton beam-line of the SPS accelerator ring. We present the test beam results demonstrating the successful functionality of the system despite slight technical shortcomings to be improved in the near future.
Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) Systems Integration Strategy
NASA Technical Reports Server (NTRS)
Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott
2011-01-01
The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a rapid prototyping approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process was based on a rapid prototyping approach. Tailored design review and test and integration processes facilitated that approach. The use of collaboration tools including electronic tools as well as documentation enabled a geographically distributed team take a paper concept to an operational prototype in approximately one year. One of the major tools used in the integration strategy was a coordinated effort to accurately model all the subsystems using computer aided design (CAD), so conflicts were identified before physical components came together. A deliberate effort was made following the deployment of the HDU PEM for field operations to collect lessons learned to facilitate process improvement and inform the design of future flight or analog versions of habitat systems. Significant items within those lessons learned were limitations with the CAD integration approach and the impact of shell design on flexibility of placing systems within the HDU shell.
The Importance of Technology Readiness in NASA Earth Venture Missions
NASA Technical Reports Server (NTRS)
Wells, James E.; Komar, George J.
2009-01-01
The first set of Venture-class investigations share the characteristic that the technology should be mature and all investigations must use mature technology that has been modeled or demonstrated in a relevant environment (Technology Readiness Level (TRL) >5). Technology Readiness Levels are a systematic metric/measurement system that supports assessments of the maturity of a particular technology and the consistent comparison of maturity between different types of technology. The TRL is used in NASA technology planning. A major step in the level of fidelity of the technology demonstration follows the completion of TRL 5. At TRL 6, a system or subsystem model or prototype must be demonstrated in a relevant environment (ground or space) representative model or prototype system or system, which would go well beyond ad hoc, "patch-cord," or discrete component level breadboarding. These TRL levels are chosen as target objectives for the Program. The challenge for offerors is that they must identify key aspects (uncertainty, multi subsystem complexity, etc) of the TRL estimate that should be properly explained in a submitted proposal. Risk minimization is a key component of the Earth Venture missions. Experiences of prior airborne missions will be shared. The discussion will address aspects of uncertainty and issues surrounding three areas of airborne earth science missions: (1) Aircraft or proposed flight platform -- Expressing the capability of the aircraft in terms of the supporting mission requirements. These issues include airplane performance characteristics (duration, range, altitude, among others) and multiship complexities. (2) Instruments -- Establishing that the instruments have been demonstrated in a relevant environment. Instruments with heritage in prior space missions meet this requirement, as do instruments tested on the ground. Evidence that the instruments have demonstrated the ability to collect data as advertised will be described. The complexity of the integration of multiple subsystems will also be addressed. Issues associated with tailoring the instrument to meet the specific Venture mission objectives must be thoroughly explained and justified. (3) Aircraft/Instrument Integration -- Explicitly defining what development may be required to harden the instrument and integrate the instrument. The challenges associated with this key aspect of major airborne earth science investigations will be presented.
Zero Gravity Aircraft Testing of a Prototype Portable Fire Extinguisher for Use in Spacecraft
NASA Astrophysics Data System (ADS)
Butz, J.; Carriere, T.; Abbud-Madrid, A.; Easton, J.
2012-01-01
For the past five years ADA Technologies has been developing a portable fire extinguisher (PFE) for use in microgravity environments. This technology uses fine water mist (FWM) to effectively and efficiently extinguish fires representative of spacecraft hazards. Recently the FWM PFE was flown on a Zero-G (reduced gravity) aircraft to validate the performance of the technology in a microgravity environment. Test results demonstrated that droplet size distributions generated in the reduced gravity environment were in the same size range as data collected during normal gravity (1-g) discharges from the prototype PFE. Data taken in an obscured test configuration showed that the mist behind the obstacle was more dense in the low-g environment when compared to 1-g discharges. The mist behind the obstacle tended to smaller droplet sizes in both the low-g and 1-g test conditions.
Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS)
NASA Technical Reports Server (NTRS)
Guerra, David V.; Schwemmer, Geary K.; Wooten, Albert D., Jr.; Chaudhuri, Sandipan S.; Wilkerson, Thomas D.
1995-01-01
A ground-based atmospheric lidar system that utilizes a Holographic Optical Telescope and Scanner has been developed and successfully operated to obtain atmospheric backscatter profiles. The Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing is built around a volume phase reflection Holographic Optical Element. This single optical element both directs and collimates the outgoing laser beam as well as collects, focuses, and filters the atmospheric laser backscatter, while offering significant weight savings over existing telescope mirror technology. Conical scanning is accomplished as the HOE rotates on a turntable sweeping the 1.2 mrad field of view around a 42deg cone. During this technology demonstration, atmospheric aerosol and cloud return signals have been received in both stationary and scanning modes. The success of this program has led to the further development of this technology for integration into airborne and eventually satellite earth observing scanning lidar telescopes.
V.C.3 Technology Validation : Fuel Cell Bus Evaluations
DOT National Transportation Integrated Search
2005-01-06
Based on the results of this analysis and the response from the project partners, the SunLine demonstration was deemed to be a success. Although it was a prototype (or pre-commercial) vehicle, the ThunderPower bus operated in revenue service at a rel...
Progress on the PT-1 Prototype Plasmoid Thruster
NASA Technical Reports Server (NTRS)
Eskridge, Richard H.; Martin, Adam K.
2007-01-01
The design and construction of a plasmoid thruster prototype is described. This thruster operates by expelling inductively formed plasmoids at high velocities. These plasmoids are field reversed configuration plasmas which are formed by reversing a magnetic flux frozen in an ionized gas inside a theta-pinch coil. The pinch coil is a unique multi-turn, multi-lead design chosen for optimization of inductance and field uniformity. A table-top bread-board demonstrator has been built at MSFC, and will be delivered to Radiance Technologies Inc. for further testing at the Auburn Space Power Institute.
Space-based Science Operations Grid Prototype
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Welch, Clara L.; Redman, Sandra
2004-01-01
Grid technology is the up and coming technology that is enabling widely disparate services to be offered to users that is very economical, easy to use and not available on a wide basis. Under the Grid concept disparate organizations generally defined as "virtual organizations" can share services i.e. sharing discipline specific computer applications, required to accomplish the specific scientific and engineering organizational goals and objectives. Grids are emerging as the new technology of the future. Grid technology has been enabled by the evolution of increasingly high speed networking. Without the evolution of high speed networking Grid technology would not have emerged. NASA/Marshall Space Flight Center's (MSFC) Flight Projects Directorate, Ground Systems Department is developing a Space-based Science Operations Grid prototype to provide to scientists and engineers the tools necessary to operate space-based science payloads/experiments and for scientists to conduct public and educational outreach. In addition Grid technology can provide new services not currently available to users. These services include mission voice and video, application sharing, telemetry management and display, payload and experiment commanding, data mining, high order data processing, discipline specific application sharing and data storage, all from a single grid portal. The Prototype will provide most of these services in a first step demonstration of integrated Grid and space-based science operations technologies. It will initially be based on the International Space Station science operational services located at the Payload Operations Integration Center at MSFC, but can be applied to many NASA projects including free flying satellites and future projects. The Prototype will use the Internet2 Abilene Research and Education Network that is currently a 10 Gb backbone network to reach the University of Alabama at Huntsville and several other, as yet unidentified, Space Station based science experimenters. There is an international aspect to the Grid involving the America's Pathway (AMPath) network, the Chilean REUNA Research and Education Network and the University of Chile in Santiago that will further demonstrate how extensive these services can be used. From the user's perspective, the Prototype will provide a single interface and logon to these varied services without the complexity of knowing the where's and how's of each service. There is a separate and deliberate emphasis on security. Security will be addressed by specifically outlining the different approaches and tools used. Grid technology, unlike the Internet, is being designed with security in mind. In addition we will show the locations, configurations and network paths associated with each service and virtual organization. We will discuss the separate virtual organizations that we define for the varied user communities. These will include certain, as yet undetermined, space-based science functions and/or processes and will include specific virtual organizations required for public and educational outreach and science and engineering collaboration. We will also discuss the Grid Prototype performance and the potential for further Grid applications both space-based and ground based projects and processes. In this paper and presentation we will detail each service and how they are integrated using Grid
Energy Efficient Legged Robotics at Sandia Labs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buerger, Steve
Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the first in a series, describes early development and initial integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.
Energy Efficient Legged Robotics at Sandia Labs
Buerger, Steve
2018-05-07
Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the first in a series, describes early development and initial integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.
Laser Imaging Video Camera Sees Through Fire, Fog, Smoke
NASA Technical Reports Server (NTRS)
2015-01-01
Under a series of SBIR contracts with Langley Research Center, inventor Richard Billmers refined a prototype for a laser imaging camera capable of seeing through fire, fog, smoke, and other obscurants. Now, Canton, Ohio-based Laser Imaging through Obscurants (LITO) Technologies Inc. is demonstrating the technology as a perimeter security system at Glenn Research Center and planning its future use in aviation, shipping, emergency response, and other fields.
Ultraviolet Communication for Medical Applications
2014-05-01
parent company Imaging Systems Technology (IST) demonstrated feasibility of several key concepts are being developed into a working prototype in the...program using multiple high-end GPUs ( NVIDIA Tesla K20). Finally, the Monte Carlo simulation task will be resumed after the Milestone 2 demonstration...is acceptable for automated printing and handling. Next, the option of having our shells electroded by an external company was investigated and DEI
Development of an Acoustic Sensor for On-Line Gas Temperature Measurement in Gasifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Ariessohn; Hans Hornung
2006-01-15
This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2-Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. Since 1989 the U.S. Department of Energy has supported development of advanced coal gasification technology. The Wabash River and TECO IGCC demonstration projects supported by the DOE have demonstrated the ability of these plantsmore » to achieve high levels of energy efficiency and extremely low emissions of hazardous pollutants. However, a continuing challenge for this technology is the tradeoff between high carbon conversion which requires operation with high internal gas temperatures, and limited refractory life which is exacerbated by those high operating temperatures. Attempts to control internal gas temperature so as to operate these gasifiers at the optimum temperature have been hampered by the lack of a reliable technology for measuring internal gas temperatures. Thermocouples have serious survival problems and provide useful temperature information for only a few days or weeks after startup before burning out. For this reason, the Department of Energy has funded several research projects to develop more robust and reliable temperature measurement approaches for use in coal gasifiers. Enertechnix has developed a line of acoustic gas temperature sensors for use in coal-fired electric utility boilers, kraft recovery boilers, cement kilns and petrochemical process heaters. Acoustic pyrometry provides several significant advantages for gas temperature measurement in hostile process environments. First, it is non-intrusive so survival of the measurement components is not a serious problem. Second, it provides a line-of-sight average temperature rather than a point measurement, so the measured temperature is more representative of the process conditions than those provided by thermocouples. Unlike radiation pyrometers, the measured temperature is a linear average over the full path rather than a complicated function of gas temperature and the exponential Beer's law. For this reason, acoustic pyrometry is well suited to tomography allowing detailed temperature maps to be created through the use of multiple path measurements in a plane. Therefore, acoustic pyrometry is an attractive choice for measuring gas temperature inside a coal gasifier. The objective of this project is to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project is organized in three phases, each of approximately one year duration. The first phase consists of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that can be tested on an operating gasifier. The second phase consists of designing and fabricating a series of prototype sensors, testing them in the lab and at a gasifier facility, and developing a conceptual design for an engineering prototype sensor. The third phase consists of designing and fabricating the engineering prototype, testing it in the lab and in a commercial gasifier, and conducting extended field trials to demonstrate sensor performance and investigate the ability to improve gasifier performance through the use of the sensor.« less
Automated reuseable components system study results
NASA Technical Reports Server (NTRS)
Gilroy, Kathy
1989-01-01
The Automated Reusable Components System (ARCS) was developed under a Phase 1 Small Business Innovative Research (SBIR) contract for the U.S. Army CECOM. The objectives of the ARCS program were: (1) to investigate issues associated with automated reuse of software components, identify alternative approaches, and select promising technologies, and (2) to develop tools that support component classification and retrieval. The approach followed was to research emerging techniques and experimental applications associated with reusable software libraries, to investigate the more mature information retrieval technologies for applicability, and to investigate the applicability of specialized technologies to improve the effectiveness of a reusable component library. Various classification schemes and retrieval techniques were identified and evaluated for potential application in an automated library system for reusable components. Strategies for library organization and management, component submittal and storage, and component search and retrieval were developed. A prototype ARCS was built to demonstrate the feasibility of automating the reuse process. The prototype was created using a subset of the classification and retrieval techniques that were investigated. The demonstration system was exercised and evaluated using reusable Ada components selected from the public domain. A requirements specification for a production-quality ARCS was also developed.
Panoramic, large-screen, 3-D flight display system design
NASA Technical Reports Server (NTRS)
Franklin, Henry; Larson, Brent; Johnson, Michael; Droessler, Justin; Reinhart, William F.
1995-01-01
The report documents and summarizes the results of the required evaluations specified in the SOW and the design specifications for the selected display system hardware. Also included are the proposed development plan and schedule as well as the estimated rough order of magnitude (ROM) cost to design, fabricate, and demonstrate a flyable prototype research flight display system. The thrust of the effort was development of a complete understanding of the user/system requirements for a panoramic, collimated, 3-D flyable avionic display system and the translation of the requirements into an acceptable system design for fabrication and demonstration of a prototype display in the early 1997 time frame. Eleven display system design concepts were presented to NASA LaRC during the program, one of which was down-selected to a preferred display system concept. A set of preliminary display requirements was formulated. The state of the art in image source technology, 3-D methods, collimation methods, and interaction methods for a panoramic, 3-D flight display system were reviewed in depth and evaluated. Display technology improvements and risk reductions associated with maturity of the technologies for the preferred display system design concept were identified.
Prototype development of a Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR)
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka; Tanner, Alan; Wilson, William; Dinardo, Steve; Lambrigsten, Bjorn
2005-01-01
Weather prediction and hurricane tracking would greatly benefit of a continuous imaging capability of a hemisphere at millimeter wave frequencies. We are developing a synthetic thinned aperture radiometer (STAR) prototype operating from 50 to 56 GHz as a ground-based testbed to demonstrate the technologies needed to do full earth disk atmospheric temperature soundings from Geostationary orbit with very high spatial resolution. The prototype consists of a Y-array of 24 MMIC receivers that are compact units implemented with low noise InP MMIC LNAs, second harmonic I-Q mixers, low power IF amplifiers and include internal digital bias control with serial line communication to enable low cost testing and system integration. Furthermore, this prototype STAR includes independent LO and noise calibration signal phase switching circuitry for each arm of the Y-array to verify the operation and calibration of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualls, A. L.; Brown, Nicholas R.; Betzler, Benjamin R.
The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would use tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 LiF-BeF 2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologiesmore » include TRISO particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Several preconceptual and conceptual design efforts that have been conducted on FHR concepts bear a significant influence on the FHR DR design. Specific designs include the Oak Ridge National Laboratory (ORNL) advanced high-temperature reactor (AHTR) with 3400/1500 MWt/megawatts of electric output (MWe), as well as a 125 MWt small modular AHTR (SmAHTR) from ORNL. Other important examples are the Mk1 pebble bed FHR (PB-FHR) concept from the University of California, Berkeley (UCB), and an FHR test reactor design developed at the Massachusetts Institute of Technology (MIT). The MIT FHR test reactor is based on a prismatic fuel platform and is directly relevant to the present FHR DR design effort. These FHR concepts are based on reasonable assumptions for credible commercial prototypes. The FHR DR concept also directly benefits from the operating experience of the Molten Salt Reactor Experiment (MSRE), as well as the detailed design efforts for a large molten salt reactor concept and its breeder variant, the Molten Salt Breeder Reactor. The FHR DR technology is most representative of the 3400 MWt AHTR concept, and it will demonstrate key operational features of that design. The FHR DR will be closely scaled to the SmAHTR concept in power and flows, so any technologies demonstrated will be directly applicable to a reactor concept of that size. The FHR DR is not a commercial prototype design, but rather a DR that serves a cost and risk mitigation function for a later commercial prototype. It is expected to have a limited operational lifetime compared to a commercial plant. It is designed to be a low-cost reactor compared to more mature advanced prototype DRs. A primary reason to build the FHR DR is to learn about salt reactor technologies and demonstrate solutions to remaining technical gaps.« less
Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates.
Ke, Kevin; Hasselbrink, Ernest F; Hunt, Alan J
2005-08-15
Microfluidic and nanofluidic technologies have long sought a fast, reliable method to overcome the creative limitations of planar fabrication methods, the resolution limits of lithography, and the materials limitations for fast prototyping. In the present work, we demonstrate direct 3D machining of submicrometer diameter, subsurface fluidic channels in glass, via optical breakdown near critical intensity, using a femtosecond pulsed laser. No postexposure etching or bonding is required; the channel network (or almost any arbitrary-shaped cavity below the surface) is produced directly from "art-to-part". The key to this approach is to use very low energy, highly focused, pulses in the presence of liquid. Microbubbles that result from laser energy deposition gently expand and extrude machining debris from the channels. These bubbles are in a highly damped, low Reynolds number regime, implying that surface spalling due to bubble collapse is unimportant. We demonstrate rapid prototyping of three-dimensional "jumpers", mixers, and other key components of complex 3D microscale analysis systems in glass substrates.
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie
2012-01-01
Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to a normally unstable high-power condition, thus enabling the high-power condition.
Advanced flight computer. Special study
NASA Technical Reports Server (NTRS)
Coo, Dennis
1995-01-01
This report documents a special study to define a 32-bit radiation hardened, SEU tolerant flight computer architecture, and to investigate current or near-term technologies and development efforts that contribute to the Advanced Flight Computer (AFC) design and development. An AFC processing node architecture is defined. Each node may consist of a multi-chip processor as needed. The modular, building block approach uses VLSI technology and packaging methods that demonstrate a feasible AFC module in 1998 that meets that AFC goals. The defined architecture and approach demonstrate a clear low-risk, low-cost path to the 1998 production goal, with intermediate prototypes in 1996.
Development of Mission Adaptive Digital Composite Aerostructure Technologies (MADCAT)
NASA Technical Reports Server (NTRS)
Cheung, Kenneth; Cellucci, Daniel; Copplestone, Grace; Cramer, Nick; Fusco, Jesse; Jenett, Benjamin; Kim, Joseph; Mazhari, Alex; Trinh, Greenfield; Swei, Sean
2017-01-01
This paper reviews the development of the Mission Adaptive Digital Composite Aerostructures Technologies (MADCAT) v0 demonstrator aircraft, utilizing a novel aerostructure concept that combines advanced composite materials manufacturing and fabrication technologies with a discrete construction approach to achieve high stiffness-to-density ratio ultra-light aerostructures that provide versatility and adaptability. This revolutionary aerostructure concept has the potential to change how future air vehicles are designed, built, and flown, with dramatic reductions in weight and manufacturing complexity the number of types of structural components needed to build air vehicles while enabling new mission objectives. We utilize the innovative digital composite materials and discrete construction technologies to demonstrate the feasibility of the proposed aerostructure concept, by building and testing a scaled prototype UAV, MADCAT v0. This paper presents an overview of the design and development of the MADCAT v0 flight demonstrator.
This project involves the real-time measurement of air quality using open-path IR spectroscopy. A prototype open-path tunable laser absorption spectroscopy instrument was designed, built, and successfully operated for several hundred hours between October and December 2000. The...
Energy Efficient Legged Robotics at Sandia Labs, Part 2
Buerger, Steve; Mazumdar, Ani; Spencer, Steve
2018-01-16
Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the second in a series, describes the continued development and integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.
Energy Efficient Legged Robotics at Sandia Labs, Part 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buerger, Steve; Mazumdar, Ani; Spencer, Steve
Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the second in a series, describes the continued development and integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.
Integration of Pneumatic Technology in Powered Mobility Devices
Daveler, Brandon; Wang, Hongwu; Gebrosky, Benjamin; Grindle, Garrett G.; Schneider, Urs
2017-01-01
Advances in electric motors, electronics, and control systems have enhanced the capability and drivability of electric power mobility devices over the last 60 years. Yet, battery technologies used in powered mobility devices (PMDs) have not kept pace. Recent advances in pneumatic technology, primarily the high torque, low speed design of rotary piston air motors, directly align with the needs of PMD. Pneumatic technology has advantages over battery-powered technology, including lighter weight, lower operating costs, decreased environmental impact, better reliability, and increased safety. Two prototypes were created that incorporated rotary piston air motors, high-pressure air tanks, and air-pressure regulators. Prototype 1 was created by modifying an existing electric PMD. Range tests were performed to determine the feasibility of pneumatic technology and the optimal combination of components to allow the longest range possible at acceptable speeds over ideal conditions. Using a 1.44 L air tank for feasibility testing, prototype 1 was capable of traveling 800 m, which confirmed the feasibility of pneumatic technology usage in PMDs. Prototype 2 was designed based on the testing results from prototype 1. After further optimization of prototype 2, the average maximum range was 3,150 m. Prototype 2 is up to 28.3% lighter than an equivalent size electric PMD and can be fully recharged in approximately 2 minutes. It decreases the cost of PMDs by approximately $1,500, because batteries do not need to be replaced over the lifetime of the device. The results provide justification for the use of pneumatic technology in PMDs. PMID:29339888
Integration of Pneumatic Technology in Powered Mobility Devices.
Daveler, Brandon; Wang, Hongwu; Gebrosky, Benjamin; Grindle, Garrett G; Schneider, Urs; Cooper, Rory A
2017-01-01
Advances in electric motors, electronics, and control systems have enhanced the capability and drivability of electric power mobility devices over the last 60 years. Yet, battery technologies used in powered mobility devices (PMDs) have not kept pace. Recent advances in pneumatic technology, primarily the high torque, low speed design of rotary piston air motors, directly align with the needs of PMD. Pneumatic technology has advantages over battery-powered technology, including lighter weight, lower operating costs, decreased environmental impact, better reliability, and increased safety. Two prototypes were created that incorporated rotary piston air motors, high-pressure air tanks, and air-pressure regulators. Prototype 1 was created by modifying an existing electric PMD. Range tests were performed to determine the feasibility of pneumatic technology and the optimal combination of components to allow the longest range possible at acceptable speeds over ideal conditions. Using a 1.44 L air tank for feasibility testing, prototype 1 was capable of traveling 800 m, which confirmed the feasibility of pneumatic technology usage in PMDs. Prototype 2 was designed based on the testing results from prototype 1. After further optimization of prototype 2, the average maximum range was 3,150 m. Prototype 2 is up to 28.3% lighter than an equivalent size electric PMD and can be fully recharged in approximately 2 minutes. It decreases the cost of PMDs by approximately $1,500, because batteries do not need to be replaced over the lifetime of the device. The results provide justification for the use of pneumatic technology in PMDs.
Vibration isolation technology: An executive summary of systems development and demonstration
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.; Logsdon, Kirk A.; Lubomski, Joseph F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
Vibration isolation technology - An executive summary of systems development and demonstration
NASA Astrophysics Data System (ADS)
Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
Advanced automation in space shuttle mission control
NASA Technical Reports Server (NTRS)
Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.
1991-01-01
The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.
DANTi: Detect and Avoid iN The Cockpit
NASA Technical Reports Server (NTRS)
Chamberlain, James; Consiglio, Maria; Munoz, Cesar
2017-01-01
Mid-air collision risk continues to be a concern for manned aircraft operations, especially near busy non-towered airports. The use of Detect and Avoid (DAA) technologies and draft standards developed for unmanned aircraft systems (UAS), either alone or in combination with other collision avoidance technologies, may be useful in mitigating this collision risk for manned aircraft. This paper describes a NASA research effort known as DANTi (DAA iN The Cockpit), including the initial development of the concept of use, a software prototype, and results from initial flight tests conducted with this prototype. The prototype used a single Automatic Dependent Surveillance - Broadcast (ADS-B) traffic sensor and the own aircraft's position, track, heading and air data information, along with NASA-developed DAA software to display traffic alerts and maneuver guidance to manned aircraft pilots on a portable tablet device. Initial flight tests with the prototype showed a successful DANTi proof-of-concept, but also demonstrated that the traffic separation parameter set specified in the RTCA SC-228 Phase I DAA MOPS may generate excessive false alerts during traffic pattern operations. Several parameter sets with smaller separation values were also tested in flight, one of which yielded more timely alerts for the maneuvers tested. Results from this study may further inform future DANTi efforts as well as Phase II DAA MOPS development.
Nollen, Nicole L.; Hutcheson, Tresza; Carlson, Susan; Rapoff, Michael; Goggin, Kathy; Mayfield, Carlene; Ellerbeck, Edward
2013-01-01
Mobile technologies hold promise for improving diet and physical activity, but little attention is given to creating programs that adolescents like and will use. This study developed a personal digital assistant (PDA) program to promote increased intake of fruits and vegetables (FV) in predominately low-income, ethnic minority girls. This study used a three-phase community-engaged process, including (i) engagement of a Student Advisory Board (SAB) to determine comfort with PDAs; (ii) early testing of Prototype I and rapid re-design by the SAB and (iii) feasibility testing of Prototype II in a new sample of girls. Phase 1 results showed that girls were comfortable with the PDA. Testing of Prototype I in Phase 2 showed that acceptability was mixed, with girls responding to 47.3% of the prompts. Girls wanted more reminders, accountability in monitoring FV, help in meeting daily goals and free music downloads based on program use. The PDA was reprogrammed and testing of Prototype II in Phase 3 demonstrated marked improvement in use (78.3%), increases in FV intake (1.8 ± 2.6 daily servings) and good overall satisfaction. Findings suggest that mobile technology designed with the early input of youth is a promising way to improve adolescent health behaviors. PMID:22949499
The role of artificial intelligence and expert systems in increasing STS operations productivity
NASA Technical Reports Server (NTRS)
Culbert, C.
1985-01-01
Artificial Intelligence (AI) is discussed. A number of the computer technologies pioneered in the AI world can make significant contributions to increasing STS operations productivity. Application of expert systems, natural language, speech recognition, and other key technologies can reduce manpower while raising productivity. Many aspects of STS support lend themselves to this type of automation. The artificial intelligence section of the mission planning and analysis division has developed a number of functioning prototype systems which demonstrate the potential gains of applying AI technology.
Efficient Computational Prototyping of Mixed Technology Microfluidic Components and Systems
2002-08-01
AFRL-IF-RS-TR-2002-190 Final Technical Report August 2002 EFFICIENT COMPUTATIONAL PROTOTYPING OF MIXED TECHNOLOGY MICROFLUIDIC...SUBTITLE EFFICIENT COMPUTATIONAL PROTOTYPING OF MIXED TECHNOLOGY MICROFLUIDIC COMPONENTS AND SYSTEMS 6. AUTHOR(S) Narayan R. Aluru, Jacob White...Aided Design (CAD) tools for microfluidic components and systems were developed in this effort. Innovative numerical methods and algorithms for mixed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geisz, J. F.
2012-11-01
The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basicmore » PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.« less
Rapid Prototyping Technique for the Fabrication of Millifluidic Devices for Polymer Formulations
NASA Astrophysics Data System (ADS)
Cabral, Joao; Harrison, Christopher; Eric, Amis; Karim, Alamgir
2003-03-01
We describe a rapid prototyping technique for the fabrication of 600 micron deep fluidic channels in a solvent-resistant polymeric matrix. Using a conventional illumination source, a laser-jet printed mask, and a commercially available thioelene-based adhesive, we demonstrate the fabrication of fluidic channels which are impervious to a wide range of solvents. The fabrication of channels with this depth by conventional lithography would be both challenging and time-consuming. We demonstrate two lithography methods: one which fabricates channels sealed between glass plates (closed face) and one which fabricates structures on a single plate (open-faced). Furthermore, we demonstrate that this technology can be used to fabricate channels with a depth which varies linearly with distance. The latter is completely compatible with silicone replication technniques. Additionally, we demonstrate that siloxane-based elastomer molds of these channels can be readily made for aqueous applications. Applications to on-line phase mapping of polymer solutions (PEO-Water-Salt) and off line phase separation studies will be discussed.
Microsensor Technologies for Plant Growth System Monitoring
NASA Technical Reports Server (NTRS)
Kim, Chang-Soo
2004-01-01
This document covered the following: a) demonstration of feasibility of microsensor for tube and particulate growth systems; b) Dissolved oxygen; c)Wetness; d) Flexible microfluidic substrate with microfluidic channels and microsensor arrays; e)Dynamic root zone control/monitoring in microgravity; f)Rapid prototyping of phytoremediation; and g) A new tool for root physiology and pathology.
The Simbol-X Low Energy Detector
NASA Astrophysics Data System (ADS)
Lechner, Peter
2009-05-01
For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.
1977-10-01
This is an artist's concept of an X-33 Advanced Technology Demonstrator, a subscale protoptye launch vehicle being developed by NASA Lockheed Martin Skunk Works. (Vehicle configuration current as of 10/97) The X-33 is a subscale prototype of a Reusable Launch Vehicle (RLV) Lockheed Martin has labeled "Venture Star TM." The X-33 program was cancelled in 2001.
Rapid Prototyping Technology for Manufacturing GTE Turbine Blades
NASA Astrophysics Data System (ADS)
Balyakin, A. V.; Dobryshkina, E. M.; Vdovin, R. A.; Alekseev, V. P.
2018-03-01
The conventional approach to manufacturing turbine blades by investment casting is expensive and time-consuming, as it takes a lot of time to make geometrically precise and complex wax patterns. Turbine blade manufacturing in pilot production can be sped up by accelerating the casting process while keeping the geometric precision of the final product. This paper compares the rapid prototyping method (casting the wax pattern composition into elastic silicone molds) to the conventional technology. Analysis of the size precision of blade casts shows that silicon-mold casting features sufficient geometric precision. Thus, this method for making wax patterns can be a cost-efficient solution for small-batch or pilot production of turbine blades for gas-turbine units (GTU) and gas-turbine engines (GTE). The paper demonstrates how additive technology and thermographic analysis can speed up the cooling of wax patterns in silicone molds. This is possible at an optimal temperature and solidification time, which make the process more cost-efficient while keeping the geometric quality of the final product.
Developing a Free-Piston Stirling Convertor for advanced radioisotope space power systems
NASA Astrophysics Data System (ADS)
Qiu, Songgang; Augenblick, John E.; White, Maurice A.; Peterson, Allen A.; Redinger, Darin L.; Petersen, Stephen L.
2002-01-01
The Department of Energy (DOE) has selected Free-Piston Stirling Convertors as a technology for future advanced radioisotope space power systems. In August 2000, DOE awarded competitive Phase I, Stirling Radioisotope Generator (SRG) power system integration contracts to three major aerospace contractors, resulting in SRG conceptual designs in February 2001. All three contractors based their designs on the Technology Demonstration Convertor (TDC) developed by Stirling Technology Company (STC) for DOE. The contract award to a single system integration contractor for Phases II and III of the SRG program is anticipated in late 2001. The first potential SRG mission is targeted for a Mars rover. This paper provides a description of the Flight Prototype (FP) Stirling convertor design as compared to the previous TDC design. The initial flight prototype units are already undergoing performance tuning at STC. The new design will be hermetically scaled and will provide a weight reduction from approximately 4.8 kg to approximately 3.9 kg. .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxstrand, Johanna Helene; Ahmad Al Rashdan; Le Blanc, Katya Lee
The goal of the Automated Work Packages (AWP) project is to demonstrate how to enhance work quality, cost management, and nuclear safety through the use of advanced technology. The work described in this report is part of the digital architecture for a highly automated plant project of the technical program plan for advanced instrumentation, information, and control (II&C) systems technologies. This report addresses the DOE Milestone M2LW-15IN0603112: Describe the outcomes of field evaluations/demonstrations of the AWP prototype system and plant surveillance and communication framework requirements at host utilities. A brief background to the need for AWP research is provided, thenmore » two human factors field evaluation studies are described. These studies focus on the user experience of conducting a task (in this case a preventive maintenance and a surveillance test) while using an AWP system. The remaining part of the report describes an II&C effort to provide real time status updates to the technician by wireless transfer of equipment indications and a dynamic user interface.« less
Advances in integrated photonic circuits for packet-switched interconnection
NASA Astrophysics Data System (ADS)
Williams, Kevin A.; Stabile, Ripalta
2014-03-01
Sustained increases in capacity and connectivity are needed to overcome congestion in a range of broadband communication network nodes. Packet routing and switching in the electronic domain are leading to unsustainable energy- and bandwidth-densities, motivating research into hybrid solutions: optical switching engines are introduced for massive-bandwidth data transport while the electronic domain is clocked at more modest GHz rates to manage routing. Commercially-deployed optical switching engines using MEMS technologies are unwieldy and too slow to reconfigure for future packet-based networking. Optoelectronic packet-compliant switch technologies have been demonstrated as laboratory prototypes, but they have so far mostly used discretely pigtailed components, which are impractical for control plane development and product assembly. Integrated photonics has long held the promise of reduced hardware complexity and may be the critical step towards packet-compliant optical switching engines. Recently a number of laboratories world-wide have prototyped optical switching circuits using monolithic integration technology with up to several hundreds of integrated optical components per chip. Our own work has focused on multi-input to multi-output switching matrices. Recently we have demonstrated 8×8×8λ space and wavelength selective switches using gated cyclic routers and 16×16 broadband switching chips using monolithic multi-stage networks. We now operate these advanced circuits with custom control planes implemented with FPGAs to explore real time packet routing in multi-wavelength, multi-port test-beds. We review our contributions in the context of state of the art photonic integrated circuit technology and packet optical switching hardware demonstrations.
Rapid prototyping for biomedical engineering: current capabilities and challenges.
Lantada, Andrés Díaz; Morgado, Pilar Lafont
2012-01-01
A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends.
PISCES: An Integral Field Spectrograph Technology Demonstration for the WFIRST Coronagraph
NASA Technical Reports Server (NTRS)
McElwain, Michael W.; Mandell, Avi M.; Gong, Qian; Llop-Sayson, Jorge; Brandt, Timothy; Chambers, Victor J.; Grammer, Bryan; Greeley, Bradford; Hilton, George; Perrin, Marshall D.;
2016-01-01
We present the design, integration, and test of the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) integral field spectrograph (IFS). The PISCES design meets the science requirements for the Wide-Field Infra Red Survey Telescope (WFIRST) Coronagraph Instrument (CGI). PISCES was integrated and tested in the integral field spectroscopy laboratory at NASA Goddard. In June 2016, PISCES was delivered to the Jet Propulsion Laboratory (JPL) where it was integrated with the Shaped Pupil Coronagraph (SPC) High Contrast Imaging Testbed (HCIT). The SPC/PISCES configuration will demonstrate high contrast integral field spectroscopy as part of the WFIRST CGI technology development program.
PISCES: an integral field spectrograph technology demonstration for the WFIRST coronagraph
NASA Astrophysics Data System (ADS)
McElwain, Michael W.; Mandell, Avi M.; Gong, Qian; Llop-Sayson, Jorge; Brandt, Timothy; Chambers, Victor J.; Grammer, Bryan; Greeley, Bradford; Hilton, George; Perrin, Marshall D.; Stapelfeldt, Karl R.; Demers, Richard; Tang, Hong; Cady, Eric
2016-07-01
We present the design, integration, and test of the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) integral field spectrograph (IFS). The PISCES design meets the science requirements for the Wide-Field InfraRed Survey Telescope (WFIRST) Coronagraph Instrument (CGI). PISCES was integrated and tested in the integral field spectroscopy laboratory at NASA Goddard. In June 2016, PISCES was delivered to the Jet Propulsion Laboratory (JPL) where it was integrated with the Shaped Pupil Coronagraph (SPC) High Contrast Imaging Testbed (HCIT). The SPC/PISCES configuration will demonstrate high contrast integral field spectroscopy as part of the WFIRST CGI technology development program.
CLEAN HYDROGEN TECHNOLOGY FOR 3-WHEEL TRANSPORTATION IN INDIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna Sapru
2005-11-15
Hydrogen is a clean burning, non-polluting transportation fuel. It is also a renewable energy carrier that can be produced from non-fossil fuel resources such as solar, wind and biomass. Utilizing hydrogen as an alternative fuel for vehicles will diversify the resources of energy, and reduce dependence on oil in the transportation sector. Additionally, clean burning hydrogen fuel will also alleviate air pollution that is a very severe problem in many parts of world, especially major metropolitan areas in developing countries, such as India and China. In our efforts to foster international collaborations in the research, development, and demonstration of hydrogenmore » technologies, through a USAID/DOE cost-shared project, Energy Conversion Devices, Inc.,(www.ovonic.com) a leading materials and alternative energy company, in collaboration with Bajaj Auto Limited, India's largest three-wheeler taxi manufacturer, has successfully developed and demonstrated prototype hydrogen ICE three-wheelers in the United States and India. ECD's proprietary Ovonic solid-state hydrogen storage technology is utilized on-board to provide a means of compact, low pressure, and safe hydrogen fuel. These prototype hydrogen three-wheelers have demonstrated comparable performance to the original CNG version of the vehicle, achieving a driving range of 130 km. The hydrogen storage system capable of storing 1 kg hydrogen can be refilled to 80% of its capacity in about 15 minutes at a pressure of 300 psi. The prototype vehicles developed under this project have been showcased and made available for test rides to the public at exhibits such as the 16th NHA annual meeting in April 2005, Washington, DC, and the SIAM (Society of Indian Automotive Manufacturers) annual conference in August 2005, New Delhi, India. Passengers have included members of the automotive industry, founders of both ECD and Bajaj, members of the World Bank, the Indian Union Minister for Finance, the President of the Asia Development Bank, members of USAID, USDOE and many other individuals, all of whom have had praise for the vehicle and the technology. The progress made through this phase I work and the importance of hydrogen three-wheelers has also resulted in extensive press coverage by the news media around the world.« less
Technology infusion of intellectual 3D printers-based prototyping of products into learning process
NASA Astrophysics Data System (ADS)
Boshhenko, T. V.; Chepur, P. V.
2018-03-01
The article considers the prospects for the technologies of intellectual design and prototyping applying 3D printers. It presents basic technologies of 3D printing, currently developed and released for construction. The experience of educational activities in the University to train students for the Academic Competitions on three-dimensional modeling and prototyping is described in the present article. Requirements for the prototyping implementation are given, allowing obtaining a positive effect from the technology infusion released for construction. The results of activities to train students for the Academic Competition are stated. It is established that the proposed approaches to the training of students have led to the highest score in the national contest in Novosibirsk when performing tasks for prototyping a stand for a cell phone and manufacturing the product on a 3D printer at the SLS technology, selective laser sintering. The conclusions about the possibilities and prospects of development of this direction in the industry in the entire country are drawn.
NASA Technical Reports Server (NTRS)
Jennings, Mallory; Quinn, Gregory; Strange, Jeremy
2012-01-01
NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system's liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems, but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.6 lb. The water side and gas side pressure drops were 0.8 psid and 0.5 inches of water, respectively. Performance of the heat exchanger at the nominal pressure of 4.1 psia was measured at 94%, while a gas inlet pressure of 25 psia resulted in an effectiveness of 84%. These results compared well with the model, which was scaled for the small size. Modeling of certain phenomena that affect performance, such as flow distribution in the headers was particularly difficult due to the small size of the heat exchanger. Data from the tests has confirmed the correction factors that were used in these parts of the model.
A resource management tool for public health continuity of operations during disasters.
Turner, Anne M; Reeder, Blaine; Wallace, James C
2013-04-01
We developed and validated a user-centered information system to support the local planning of public health continuity of operations for the Community Health Services Division, Public Health - Seattle & King County, Washington. The Continuity of Operations Data Analysis (CODA) system was designed as a prototype developed using requirements identified through participatory design. CODA uses open-source software that links personnel contact and licensing information with needed skills and clinic locations for 821 employees at 14 public health clinics in Seattle and King County. Using a web-based interface, CODA can visualize locations of personnel in relationship to clinics to assist clinic managers in allocating public health personnel and resources under dynamic conditions. Based on user input, the CODA prototype was designed as a low-cost, user-friendly system to inventory and manage public health resources. In emergency conditions, the system can run on a stand-alone battery-powered laptop computer. A formative evaluation by managers of multiple public health centers confirmed the prototype design's usefulness. Emergency management administrators also provided positive feedback about the system during a separate demonstration. Validation of the CODA information design prototype by public health managers and emergency management administrators demonstrates the potential usefulness of building a resource management system using open-source technologies and participatory design principles.
NASA Technical Reports Server (NTRS)
Baxley, Brian; Swieringa, Kurt; Berckefeldt, Rick; Boyle, Dan
2017-01-01
NASA's first Air Traffic Management Technology Demonstration (ATD-1) subproject successfully completed a 19-day flight test of an Interval Management (IM) avionics prototype. The prototype was built based on IM standards, integrated into two test aircraft, and then flown in real-world conditions to determine if the goals of improving aircraft efficiency and airport throughput during high-density arrival operations could be met. The ATD-1 concept of operation integrates advanced arrival scheduling, controller decision support tools, and the IM avionics to enable multiple time-based arrival streams into a high-density terminal airspace. IM contributes by calculating airspeeds that enable an aircraft to achieve a spacing interval behind the preceding aircraft. The IM avionics uses its data (route of flight, position, etc.) and Automatic Dependent Surveillance-Broadcast (ADS-B) state data from the Target aircraft to calculate this airspeed. The flight test demonstrated that the IM avionics prototype met the spacing accuracy design goal for three of the four IM operation types tested. The primary issue requiring attention for future IM work is the high rate of IM speed commands and speed reversals. In total, during this flight test, the IM avionics prototype showed significant promise in contributing to the goals of improving aircraft efficiency and airport throughput.
A Resource Management Tool for Public Health Continuity of Operations During Disasters
Turner, Anne M.; Reeder, Blaine; Wallace, James C.
2014-01-01
Objective We developed and validated a user-centered information system to support the local planning of public health continuity of operations for the Community Health Services Division, Public Health - Seattle & King County, Washington. Methods The Continuity of Operations Data Analysis (CODA) system was designed as a prototype developed using requirements identified through participatory design. CODA uses open-source software that links personnel contact and licensing information with needed skills and clinic locations for 821 employees at 14 public health clinics in Seattle and King County. Using a web-based interface, CODA can visualize locations of personnel in relationship to clinics to assist clinic managers in allocating public health personnel and resources under dynamic conditions. Results Based on user input, the CODA prototype was designed as a low-cost, user-friendly system to inventory and manage public health resources. In emergency conditions, the system can run on a stand-alone battery-powered laptop computer. A formative evaluation by managers of multiple public health centers confirmed the prototype design’s usefulness. Emergency management administrators also provided positive feedback about the system during a separate demonstration. Conclusions Validation of the CODA information design prototype by public health managers and emergency management administrators demonstrates the potential usefulness of building a resource management system using open-source technologies and participatory design principles. PMID:24618165
Intelligent Network Flow Optimization (INFLO) prototype : Seattle small-scale demonstration plan.
DOT National Transportation Integrated Search
2015-01-01
This report describes the INFLO Prototype Small-Scale Demonstration to be performed in Seattle Washington. This demonstration is intended to demonstrate that the INFLO Prototype, previously demonstrated in a controlled environment, functions well in ...
Nuclear Systems Kilopower Overview
NASA Technical Reports Server (NTRS)
Palac, Don; Gibson, Marc; Mason, Lee; Houts, Michael; McClure, Patrick; Robinson, Ross
2016-01-01
The Nuclear Systems Kilopower Project was initiated by NASAs Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project consists of two elements. The primary element is the Kilopower Prototype Test, also called the Kilopower Reactor Using Stirling Technology(KRUSTY) Test. This element consists of the development and testing of a fission ground technology demonstrator of a 1 kWe fission power system. A 1 kWe system matches requirements for some robotic precursor exploration systems and future potential deep space science missions, and also allows a nuclear ground technology demonstration in existing nuclear test facilities at low cost. The second element, the Mars Kilopower Scalability Study, consists of the analysis and design of a scaled-up version of the 1 kWe reference concept to 10 kWe for Mars surface power projected requirements, and validation of the applicability of the KRUSTY experiment to key technology challenges for a 10 kWe system. If successful, these two elements will lead to initiation of planning for a technology demonstration of a 10 kWe fission power capability for Mars surface outpost power.
Virtual prototyping of drop test using explicit analysis
NASA Astrophysics Data System (ADS)
Todorov, Georgi; Kamberov, Konstantin
2017-12-01
Increased requirements for reliability and safety, included in contemporary standards and norms, has high impact over new product development. New numerical techniques based on virtual prototyping technology, facilitates imrpoving product development cycle, resutling in reduced time/money spent for this stage as well as increased knowledge about certain failure mechanism. So called "drop test" became nearly a "must" step in development of any human operated product. This study aims to demonstrate dynamic behaviour assessment of a structure under impact loads, based on virtual prototyping using a typical nonlinear analysis - explicit dynamics. An example is presneted, based on a plastic container that is used as cartridge for a dispenser machine exposed to various work conditions. Different drop orientations were analyzed and critical load cases and design weaknesses have been found. Several design modifications have been proposed, based on detailed analyses results review.
A portable low-cost long-term live-cell imaging platform for biomedical research and education.
Walzik, Maria P; Vollmar, Verena; Lachnit, Theresa; Dietz, Helmut; Haug, Susanne; Bachmann, Holger; Fath, Moritz; Aschenbrenner, Daniel; Abolpour Mofrad, Sepideh; Friedrich, Oliver; Gilbert, Daniel F
2015-02-15
Time-resolved visualization and analysis of slow dynamic processes in living cells has revolutionized many aspects of in vitro cellular studies. However, existing technology applied to time-resolved live-cell microscopy is often immobile, costly and requires a high level of skill to use and maintain. These factors limit its utility to field research and educational purposes. The recent availability of rapid prototyping technology makes it possible to quickly and easily engineer purpose-built alternatives to conventional research infrastructure which are low-cost and user-friendly. In this paper we describe the prototype of a fully automated low-cost, portable live-cell imaging system for time-resolved label-free visualization of dynamic processes in living cells. The device is light-weight (3.6 kg), small (22 × 22 × 22 cm) and extremely low-cost (<€1250). We demonstrate its potential for biomedical use by long-term imaging of recombinant HEK293 cells at varying culture conditions and validate its ability to generate time-resolved data of high quality allowing for analysis of time-dependent processes in living cells. While this work focuses on long-term imaging of mammalian cells, the presented technology could also be adapted for use with other biological specimen and provides a general example of rapidly prototyped low-cost biosensor technology for application in life sciences and education. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Wireless Sensor Networks for Developmental and Flight Instrumentation
NASA Technical Reports Server (NTRS)
Alena, Richard; Figueroa, Fernando; Becker, Jeffrey; Foster, Mark; Wang, Ray; Gamudevelli, Suman; Studor, George
2011-01-01
Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network and ZigBee Pro 2007 standards are finding increasing use in home automation and smart energy markets providing a framework for interoperable software. The Wireless Connections in Space Project, funded by the NASA Engineering and Safety Center, is developing technology, metrics and requirements for next-generation spacecraft avionics incorporating wireless data transport. The team from Stennis Space Center and Mobitrum Corporation, working under a NASA SBIR grant, has developed techniques for embedding plug-and-play software into ZigBee WSN prototypes implementing the IEEE 1451 Transducer Electronic Datasheet (TEDS) standard. The TEDS provides meta-information regarding sensors such as serial number, calibration curve and operational status. Incorporation of TEDS into wireless sensors leads directly to building application level software that can recognize sensors at run-time, dynamically instantiating sensors as they are added or removed. The Ames Research Center team has been experimenting with this technology building demonstration prototypes for on-board health monitoring. Innovations in technology, software and process can lead to dramatic improvements for managing sensor systems applied to Developmental and Flight Instrumentation (DFI) aboard aerospace vehicles. A brief overview of the plug-and-play ZigBee WSN technology is presented along with specific targets for application within the aerospace DFI market. The software architecture for the sensor nodes incorporating the TEDS information is described along with the functions of the Network Capable Gateway processor which bridges 802.15.4 PAN to the TCP/IP network. Client application software connects to the Gateway and is used to display TEDS information and real-time sensor data values updated every few seconds, incorporating error detection and logging to help measure performance and reliability in relevant target environments. Test results from our prototype WSN running the Mobitrum software system are summarized and the implications to the scalability and reliability for DFI applications are discussed. Our demonstration system, incorporating sensors for life support system and structural health monitoring is described along with test results obtained by running the demonstration prototype in relevant environments such as the Wireless Habitat Testbed at Johnson Space Center in Houston. An operations concept for improved sensor process flow from design to flight test is outlined specific to the areas of Environmental Control and Life Support System performance characterization and structural health monitoring of human-rated spacecraft. This operations concept will be used to highlight the areas where WSN technology, particularly plug-and-play software based on IEEE 1451, can improve the current process, resulting in significant reductions in the technical effort, overall cost and schedule for providing DFI capability for future spacecraft. RELEASED -
Cincinnati Big Area Additive Manufacturing (BAAM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duty, Chad E.; Love, Lonnie J.
Oak Ridge National Laboratory (ORNL) worked with Cincinnati Incorporated (CI) to demonstrate Big Area Additive Manufacturing which increases the speed of the additive manufacturing (AM) process by over 1000X, increases the size of parts by over 10X and shows a cost reduction of over 100X. ORNL worked with CI to transition the Big Area Additive Manufacturing (BAAM) technology from a proof-of-principle (TRL 2-3) demonstration to a prototype product stage (TRL 7-8).
NASA Systems Autonomy Demonstration Project - Development of Space Station automation technology
NASA Technical Reports Server (NTRS)
Bull, John S.; Brown, Richard; Friedland, Peter; Wong, Carla M.; Bates, William
1987-01-01
A 1984 Congressional expansion of the 1958 National Aeronautics and Space Act mandated that NASA conduct programs, as part of the Space Station program, which will yield the U.S. material benefits, particularly in the areas of advanced automation and robotics systems. Demonstration programs are scheduled for automated systems such as the thermal control, expert system coordination of Station subsystems, and automation of multiple subsystems. The programs focus the R&D efforts and provide a gateway for transfer of technology to industry. The NASA Office of Aeronautics and Space Technology is responsible for directing, funding and evaluating the Systems Autonomy Demonstration Project, which will include simulated interactions between novice personnel and astronauts and several automated, expert subsystems to explore the effectiveness of the man-machine interface being developed. Features and progress on the TEXSYS prototype thermal control system expert system are outlined.
NASA Technical Reports Server (NTRS)
Francoeur, J. R.
1992-01-01
The Strategic Technologies in Automation and Robotics (STEAR) program is managing a number of development contracts to improve the protection of spacecraft materials from the Low Earth Orbit (LEO) space environment. The project is structured in two phases over a 3 to 4 year period with a budget of 3 to 4 million dollars. Phase 1 is designed to demonstrate the technical feasibility and commercial potential of a coating/substrate system and its associated application process. The objective is to demonstrate a prototype fabrication capability using a full scale component of a commercially viable process for the protection of materials and surface finishes from the LEO space environment, and to demonstrate compliance with a set of performance requirements. Only phase 1 will be discussed in this paper.
Development Of An Acoustice Sensor For On-Line Gas Temperature Measurement In Gasifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Ariessohn; Hans Hornung
2006-10-01
This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology,more » and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. This report describes all of the activities conducted during the project and reports the findings of each activity in detail. The investigation of potential sound generation and coupling methods led to the selection of a reflected shock method which has been developed into a functioning prototype device. The principles of operation of this device and its performance characteristics are described in the report. Modeling of the attenuation of sound by suspended particles and by interaction of the sound pulses with the high temperature syngas inside the gasifier was conducted and the predictions of those models were used to determine the required sound pulse intensity to allow the sound pulses to be detected after passage through the gasifier environment. These modeling results are presented in this report. A study of the likely spatial and temporal variability of gas composition inside the gasifier was performed and the results of that study was used to predict the impact of that variability on the accuracy of the acoustic temperature method. These results are reported here. A design for a port rodding mechanism was developed to deal with potential slagging issues and was incorporated into the prototype sensor. This port rodding mechanism operated flawlessly during the field testing, but because these tests were performed in a region of the gasifier that experiences little slagging, the effectiveness of the rodding mechanism in dealing with highly slagging conditions was not fully demonstrated. This report describes the design and operation of the automated Gasifier Acoustic Pyrometer (autoGAP) which was tested at the Wabash River facility. The results of the tests are reported and analyzed in detail. All of the objectives of the project have been achieved. A field prototype acoustic pyrometer sensor has been successfully tested at the Wabash River gasifier plant. Acoustic signals were propagated through the gases inside the gasifier and were detected by the receiver unit, the times of flight of these sound pulses were measured and these propagation times were converted into temperatures which agreed very well with thermocouple measurements made in the same location as the acoustic measurements. The acoustic pyrometer system was operated under computer control and was shown to be capable of making measurements every 10 minutes (or more frequently) for an extended period. Some minor mechanical issues remain. During testing on the gasifier, one of the pressure seals failed after two days of operation, but this can easily be corrected by the use of a different seal design. Also, the testing performed so far was conducted in a region of the gasifier where conditions are somewhat less harsh than in other parts of the gasifier where thermocouples will not survive. Therefore, additional testing should be performed in those harsher locations to demonstrate the ability of this new measurement technology to provide temperature measurements that cannot be obtained by any other means.« less
Cyrogenic Life Support Technology Development Project
NASA Technical Reports Server (NTRS)
Bush, David R.
2015-01-01
KSC has used cryogenic life support (liquid air based) technology successfully for many years to support spaceflight operations. This technology has many benefits unique to cryogenics when compared to traditional compressed gas systems: passive cooling, lighter, longer duration, and lower operating pressure. However, there are also several limiting factors that have prevented the technology from being commercialized. The National Institute of Occupational Safety and Health, Office of Mine Safety and Health Research (NIOSH-OMSHR) has partnered with NASA to develop a complete liquid air based life support solution for emergency mine escape and rescue. The project will develop and demonstrate various prototype devices and incorporate new technological innovations that have to date prevented commercialization.
An Analysis of the Speed Commands from an Interval Management Algorithm during the ATD-1 Flight Test
NASA Technical Reports Server (NTRS)
Watters, Christine; Wilson, Sara R.; Swieringa, Kurt A.
2017-01-01
NASA's first Air Traffic Management Technology Demonstration (ATD-1) successfully completed a nineteen-day flight test under a NASA contract with Boeing, with Honeywell and United Airlines as sub-contractors. An Interval Management (IM) avionics prototype was built based on international IM standards, integrated into two test aircraft, and then flown in real-world conditions to determine if the goals of improving aircraft efficiency and airport throughput during high-density arrival operations could be met. This paper describes the speed behavior of the IM avionics prototype, focusing on the speed command rate and the number of speed increases.
Technology readiness levels for the new millennium program
NASA Technical Reports Server (NTRS)
Moynihan, P. I.; Minning, C. P.; Stocky, J. F.
2003-01-01
NASA's New Millennium Program (NMP) seeks to advance space exploration by providing an in-space validating mechanism to verify the maturity of promising advanced technologies that cannot be adequately validated with Earth-based testing alone. In meeting this objective, NMP uses NASA Technology Readiness Levels (TRL) as key indicators of technology advancement and assesses development progress against this generalized metric. By providing an opportunity for in-space validation, NMP can mature a suitable advanced technology from TRL 4 (component and/or breadboard validation in laboratory environment) to a TRL 7 (system prototype demonstrated in an Earth-based space environment). Spaceflight technology comprises a myriad of categories, types, and functions, and as each individual technology emerges, a consistent interpretation of its specific state of technological advancement relative to other technologies is problematic.
ERIC Educational Resources Information Center
Katsioloudis, Petros J.
2010-01-01
Being able to dive and breathe underwater has been a challenge for thousands of years. In 1980, Fuji Systems of Tokyo developed a series of prototype gills for divers as a way of demonstrating just how good its membranes are. Even though gill technology has not yet reached the point where recipients can efficiently use implants to dive underwater,…
Casting the Net: The Development of a Resource Collection for an Internet Database.
ERIC Educational Resources Information Center
McKiernan, Gerry
CyberStacks(sm), a demonstration prototype World Wide Web information service, was established on the home page server at Iowa State University with the intent of facilitating identification and use of significant Internet resources in science and technology. CyberStacks(sm) was created in response to perceived deficiencies in early efforts to…
Flight-Like Optical Reference Cavity for GRACE Follow-On Laser Frequency Stabilization
NASA Technical Reports Server (NTRS)
Folkner, W. M.; deVine, G.; Klipstein, W. M.; McKenzie, K.; Spero, R.; Thompson, R.; Yu, N.; Stephens, M.; Leitch, J.; Pierce, R.;
2011-01-01
We describe a prototype optical cavity and associated optics that has been developed to provide a stable frequency reference for a future space-based laser ranging system. This instrument is being considered for inclusion as a technology demonstration on the recently announced GRACE follow-on mission, which will monitor variations in the Earth's gravity field.
Lightweight IMM PV Flexible Blanket Assembly
NASA Technical Reports Server (NTRS)
Spence, Brian
2015-01-01
Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.
Ciani, Oriana; Piccini, Luca; Parini, Sergio; Rullo, Alessia; Bagnoli, Franco; Marti, Patrizia; Andreoni, Giuseppe
2008-01-01
Pervasive computing research is introducing new perspectives in a wide range of applications, including healthcare domain. In this study we explore the possibility to realize a prototype of a system for unobtrusive recording and monitoring of multiple biological parameters on premature newborns hospitalized in the Neonatal Intensive Care Unit (NICU). It consists of three different units: a sensitized belt for Electrocardiogram (ECG) and chest dilatation monitoring, augmented with extrinsic transducers for temperature and respiratory activity measure, a device for signals pre-processing, sampling and transmission through Bluetooth(R) (BT) technology to a remote PC station and a software for data capture and post-processing. Preliminary results obtained by monitoring babies just discharged from the ward demonstrated the feasibility of the unobtrusive monitoring on this kind of subjects and open a new scenario for premature newborns monitoring and developmental cares practice in NICU.
Sweep-twist adaptive rotor blade : final project report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashwill, Thomas D.
2010-02-01
Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercialmore » development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.« less
Approaches for Evaluating the Usability of Assistive Technology Product Prototypes
ERIC Educational Resources Information Center
Choi, Young Mi; Sprigle, Stephen H.
2011-01-01
User input is an important component to help guide designers in producing a more usable product. Evaluation of prototypes is one method of obtaining this input, but methods for evaluating assistive technology prototypes during design have not been adequately described or evaluated. This project aimed to compare different methods of evaluating…
Low-Cost Gas Heat Pump for Building Space Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrabrant, Michael; Keinath, Christopher
2016-10-11
Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiencymore » encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2:1 modulation, which will allow for improved load matching. In addition, the energy savings analysis showed that a house in Albany, NY, Chicago, IL and Minneapolis, MN would save roughly 32, 28.5 and 36.5 MBtu annually when compared to a 100% efficient boiler, respectively. The gas absorption heat pump achieves this performance by using high grade heat from the combustion of natural gas in combination with low grade heat extracted from the ambient to produce medium grade heat suitable for space and water heating. Expected product features include conventional outdoor installation practices, 4:1 modulation, and reasonable economic payback. These factors position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions for residential space heating.« less
Strategic Computing Computer Vision: Taking Image Understanding To The Next Plateau
NASA Astrophysics Data System (ADS)
Simpson, R. L., Jr.
1987-06-01
The overall objective of the Strategic Computing (SC) Program of the Defense Advanced Research Projects Agency (DARPA) is to develop and demonstrate a new generation of machine intelligence technology which can form the basis for more capable military systems in the future and also maintain a position of world leadership for the US in computer technology. Begun in 1983, SC represents a focused research strategy for accelerating the evolution of new technology and its rapid prototyping in realistic military contexts. Among the very ambitious demonstration prototypes being developed within the SC Program are: 1) the Pilot's Associate which will aid the pilot in route planning, aerial target prioritization, evasion of missile threats, and aircraft emergency safety procedures during flight; 2) two battle management projects one for the for the Army, which is just getting started, called the AirLand Battle Management program (ALBM) which will use knowledge-based systems technology to assist in the generation and evaluation of tactical options and plans at the Corps level; 3) the other more established program for the Navy is the Fleet Command Center Battle Management Program (FCCBIVIP) at Pearl Harbor. The FCCBMP is employing knowledge-based systems and natural language technology in a evolutionary testbed situated in an operational command center to demonstrate and evaluate intelligent decision-aids which can assist in the evaluation of fleet readiness and explore alternatives during contingencies; and 4) the Autonomous Land Vehicle (ALV) which integrates in a major robotic testbed the technologies for dynamic image understanding, knowledge-based route planning with replanning during execution, hosted on new advanced parallel architectures. The goal of the Strategic Computing computer vision technology base (SCVision) is to develop generic technology that will enable the construction of complete, robust, high performance image understanding systems to support a wide range of DoD applications. Possible applications include autonomous vehicle navigation, photointerpretation, smart weapons, and robotic manipulation. This paper provides an overview of the technical and program management plans being used in evolving this critical national technology.
de Carvalho, Lilian Regina; Évora, Yolanda Dora Martinez; Zem-Mascarenhas, Silvia Helena
2016-01-01
ABSTRACT Objective: to assess the usability of a digital learning technology prototype as a new method for minimally invasive monitoring of intracranial pressure. Method: descriptive study using a quantitative approach on assessing the usability of a prototype based on Nielsen's ten heuristics. Four experts in the area of Human-Computer interaction participated in the study. Results: the evaluation delivered eight violated heuristics and 31 usability problems in the 32 screens of the prototype. Conclusion: the suggestions of the evaluators were critical for developing an intuitive, user-friendly interface and will be included in the final version of the digital learning technology. PMID:27579932
NASA Technical Reports Server (NTRS)
Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
Miniaturized protein separation using a liquid chromatography column on a flexible substrate
NASA Astrophysics Data System (ADS)
Yang, Yongmo; Chae, Junseok
2008-12-01
We report a prototype protein separator that successfully miniaturizes existing technology for potential use in biocompatible health monitoring implants. The prototype is a liquid chromatography (LC) column (LC mini-column) fabricated on an inexpensive, flexible, biocompatible polydimethylsiloxane (PDMS) enclosure. The LC mini-column separates a mixture of proteins using size exclusion chromatography (SEC) with polydivinylbenzene beads (5-20 µm in diameter with 10 nm pore size). The LC mini-column is smaller than any commercially available LC column by a factor of ~11 000 and successfully separates denatured and native protein mixtures at ~71 psi of the applied fluidic pressure. Separated proteins are analyzed using NuPAGE-gel electrophoresis, high-performance liquid chromatography (HPLC) and an automated electrophoresis system. Quantitative HPLC results demonstrate successful separation based on intensity change: within 12 min, the intensity between large and small protein peaks changed by a factor of ~20. In further evaluation using the automated electrophoresis system, the plate height of the LC mini-column is between 36 µm and 100 µm. The prototype LC mini-column shows the potential for real-time health monitoring in applications that require inexpensive, flexible implant technology that can function effectively under non-laboratory conditions.
NASA Technical Reports Server (NTRS)
Rutishauser, David K.; Epp, Chirold; Robertson, Ed
2012-01-01
The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project is chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. Since its inception in 2006, the ALHAT Project has executed four field test campaigns to characterize and mature sensors and algorithms that support real-time hazard detection and global/local precision navigation for planetary landings. The driving objective for Government Fiscal Year 2012 (GFY2012) is to successfully demonstrate autonomous, real-time, closed loop operation of the ALHAT system in a realistic free flight scenario on Earth using the Morpheus lander developed at the Johnson Space Center (JSC). This goal represents an aggressive target consistent with a lean engineering culture of rapid prototyping and development. This culture is characterized by prioritizing early implementation to gain practical lessons learned and then building on this knowledge with subsequent prototyping design cycles of increasing complexity culminating in the implementation of the baseline design. This paper provides an overview of the ALHAT/Morpheus flight demonstration activities in GFY2012, including accomplishments, current status, results, and lessons learned. The ALHAT/Morpheus effort is also described in the context of a technology path in support of future crewed and robotic planetary exploration missions based upon the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN).
NASA Technical Reports Server (NTRS)
Cath, Tzahi Y.; Adams, Dean V.; Childress, Amy; Gormly, Sherwin; Flynn, Michael
2005-01-01
Direct osmotic concentration (DOC) has been identified as a high potential technology for recycling of wastewater to drinking water in advanced life support (ALS) systems. As a result the DOC process has been selected for a NASA Rapid Technology Development Team (RTDT) effort. The existing prototype system has been developed to a Technology Readiness Level (TRL) 3. The current project focuses on advancing the development of this technology from TRL 3 to TRL 6 (appropriate for human rated testing). A new prototype of a DOC system is been designed and fabricated that addresses the deficiencies encountered during the testing of the original system and allowing the new prototype to achieve TRL 6. Background information is provided about the technologies investigated and their capabilities, results from preliminary tests, and the milestones plan and activities for the RTDT program intended to develop a second generation prototype of the DOC system.
Design of monocular head-mounted displays for increased indoor firefighting safety and efficiency
NASA Astrophysics Data System (ADS)
Wilson, Joel; Steingart, Dan; Romero, Russell; Reynolds, Jessica; Mellers, Eric; Redfern, Andrew; Lim, Lloyd; Watts, William; Patton, Colin; Baker, Jessica; Wright, Paul
2005-05-01
Four monocular Head-Mounted Display (HMD) prototypes from the Fire Information and Rescue Equipment (FIRE) project at UC Berkeley are presented. The FIRE project aims to give firefighters a system of information technology tools for safer and more efficient firefighting in large buildings. The paper begins by describing the FIRE project and its use of a custom wireless sensor network (WSN) called SmokeNet for personnel tracking. The project aims to address urban/industrial firefighting procedures in need of improvement. Two "user-needs" studies with the Chicago and Berkeley Fire Departments are briefly presented. The FIRE project"s initial HMD prototype designs are then discussed with regard to feedback from the user-needs studies. These prototypes are evaluated in their potential costs and benefits to firefighters and found to need improvement. Next, some currently available commercial HMDs are reviewed and compared in their cost, performance, and potential for use by firefighters. Feedback from the Berkeley Fire Department user-needs study, in which the initial prototypes were demonstrated, is compiled into a concept selection matrix for the next prototypes. This matrix is used to evaluate a variety of HMDs, including some of the commercial units presented, and to select the best design options. Finally, the current prototypes of the two best design options are presented and discussed.
Adaptive smart wing design for military aircraft: requirements, concepts, and payoffs
NASA Astrophysics Data System (ADS)
Kudva, Jayanth N.; Appa, Kari; Van Way, Craig B.; Lockyer, Allen J.
1995-05-01
New developments in smart structures and materials have made it possible to revisit earlier work in adaptive and flexible wing technology, and remove some of the limitations for technology transition to next-generation aircraft. Research performed by Northrop Grumman, under internal funding, has led to a new program sponsored by ARPA to investigate the application of smart structures and materials technologies to twist and adapt and aircraft wing. Conceptual designs are presented based on state-of-the-art materials, including shape memory alloys, piezoelectrics, and fiber optic sensors for incorporation in a proposed smart wing design. Plans are described to demonstrate proof-of-concept on a prototype 1/10 scale -18 model that will be tested in a wind tunnel for final validation. Highlights of the proposed program are summarized with respect to program objectives, requirements, key concept design features, demonstration testing, and smart wing technology payoffs and risks.
JWST Lightweight Mirror TRL-6 Results
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2007-01-01
Mirror technology for a Primary Mirror Segment Assembly (PMSA) is a system of components: reflective coating; polished optical surface; mirror substrate; actuators, mechanisms and flexures; and reaction structure. The functional purpose of a PMSA is to survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance for the anticipated thermal environment. At the inception of JWST in 1996, such a capability was at a Technology Readiness Level (TRL) of 3. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured mirror technology for JWST to TRL-6. A directly traceable prototype (and in some cases the flight hardware itself) has been built, tested and operated in a relevant environment.
Intelligent Network Flow Optimization (INFLO) prototype : Seattle small-scale demonstration report.
DOT National Transportation Integrated Search
2015-05-01
This report describes the performance and results of the INFLO Prototype Small-Scale Demonstration. The purpose of the Small-Scale Demonstration was to deploy the INFLO Prototype System to demonstrate its functionality and performance in an operation...
Phase 1 Development Testing of the Advanced Manufacturing Demonstrator Engine
NASA Technical Reports Server (NTRS)
Case, Nicholas L.; Eddleman, David E.; Calvert, Marty R.; Bullard, David B.; Martin, Michael A.; Wall, Thomas R.
2016-01-01
The Additive Manufacturing Development Breadboard Engine (BBE) is a pressure-fed liquid oxygen/pump-fed liquid hydrogen (LOX/LH2) expander cycle engine that was built and operated by NASA at Marshall Space Flight Center's East Test Area. The breadboard engine was conceived as a technology demonstrator for the additive manufacturing technologies for an advanced upper stage prototype engine. The components tested on the breadboard engine included an ablative chamber, injector, main fuel valve, turbine bypass valve, a main oxidizer valve, a mixer and the fuel turbopump. All parts minus the ablative chamber were additively manufactured. The BBE was successfully hot fire tested seven times. Data collected from the test series will be used for follow on demonstration tests with a liquid oxygen turbopump and a regeneratively cooled chamber and nozzle.
Digital optical interconnects for photonic computing
NASA Astrophysics Data System (ADS)
Guilfoyle, Peter S.; Stone, Richard V.; Zeise, Frederick F.
1994-05-01
A 32-bit digital optical computer (DOC II) has been implemented in hardware utilizing 8,192 free-space optical interconnects. The architecture exploits parallel interconnect technology by implementing microcode at the primitive level. A burst mode of 0.8192 X 1012 binary operations per sec has been reliably demonstrated. The prototype has been successful in demonstrating general purpose computation. In addition to emulating the RISC instruction set within the UNIX operating environment, relational database text search operations have been implemented on DOC II.
Ergonomic design in the operating room: information technologies
NASA Astrophysics Data System (ADS)
Morita, Mark M.; Ratib, Osman
2005-04-01
The ergonomic design in the Surgical OR of information technology systems has been and continues to be a large problem. Numerous disparate information systems with unique hardware and display configurations create an environment similar to the chaotic environments of air traffic control. Patient information systems tend to show all available statistics making it difficult to isolate the key, relevant vitals for the patient. Interactions in this sterile environment are still being done with the traditional keyboard and mouse designed for cubicle office workflows. This presentation will address the shortcomings of the current design paradigm in the Surgical OR that relate to Information Technology systems. It will offer a perspective that addresses the ergonomic deficiencies and predicts how future technological innovations will integrate into this vision. Part of this vision includes a Surgical OR PACS prototype, developed by GE Healthcare Technologies, that addresses ergonomic challenges of PACS in the OR that include lack of portability, sterile field integrity, and UI targeted for diagnostic radiologists. GWindows (gesture control) developed by Microsoft Research and Voice command will allow for the surgeons to navigate and review diagnostic imagery without using the conventional keyboard and mouse that disrupt the integrity of the sterile field. This prototype also demonstrates how a wireless, battery powered, self contained mobile PACS workstation can be optimally positioned for a surgeon to reference images during an intervention as opposed to the current pre-operative review. Lessons learned from the creation of the Surgical OR PACS Prototype have demonstrated that PACS alone is not the end all solution in the OR. Integration of other disparate information systems and presentation of this information in simple, easy to navigate information packets will enable smoother interactions for the surgeons and other healthcare professionals in the OR. More intuitive IT system interaction is required for all the key players in the OR not just the surgeons. To improve interactions, there are a number of emerging technologies that have the potential to revolutionize the way healthcare professionals interact with computer-based applications in the Surgical OR. A number of these technologies will enable surgeons to interact with vital data without interrupting the sterile field or maneuvering their bodies to view relevant information - information will automatically display for healthcare individuals in a just-in-time manner without navigational challenges.
A Disposable Tear Glucose Biosensor—Part 2: System Integration and Model Validation
La Belle, Jeffrey T.; Bishop, Daniel K.; Vossler, Stephen R.; Patel, Dharmendra R.; Cook, Curtiss B.
2010-01-01
Background We presented a concept for a tear glucose sensor system in an article by Bishop and colleagues in this issue of Journal of Diabetes Science and Technology. A unique solution to collect tear fluid and measure glucose was developed. Individual components were selected, tested, and optimized, and system error modeling was performed. Further data on prototype testing are now provided. Methods An integrated fluidics portion of the prototype was designed, cast, and tested. A sensor was created using screen-printed sensors integrated with a silicone rubber fluidics system and absorbent polyurethane foam. A simulated eye surface was prepared using fluid-saturated poly(2-hydroxyethyl methacrylate) sheets, and the disposable prototype was tested for both reproducibility at 0, 200, and 400 μM glucose (n = 7) and dynamic range of glucose detection from 0 to 1000 μM glucose. Results From the replicated runs, an established relative standard deviation of 15.8% was calculated at 200 μM and a lower limit of detection was calculated at 43.4 μM. A linear dynamic range was demonstrated from 0 to 1000 μM with an R2 of 99.56%. The previously developed model predicted a 14.9% variation. This compares to the observed variance of 15.8% measured at 200 μM glucose. Conclusion With the newly designed fluidics component, an integrated tear glucose prototype was assembled and tested. Testing of this integrated prototype demonstrated a satisfactory lower limit of detection for measuring glucose concentration in tears and was reproducible across a physiological sampling range. The next step in the device design process will be initial animal studies to evaluate the current prototype for factors such as eye irritation, ease of use, and correlation with blood glucose. PMID:20307390
NASA Technical Reports Server (NTRS)
Senatore, Patrick; Klesh, Andrew; Zurbuchen, Thomas H.; McKague, Darren; Cutler, James
2010-01-01
CubeSats have proven themselves as a reliable and cost-effective method to perform experiments in space, but they are highly constrained by their specifications and size. One such constraint is the average continuous power, about 5 W, which is available to the typical CubeSat. To improve this constraint, we have developed the eXtendable Solar Array System (XSAS), a deployable solar array prototype in a CubeSat package, which can provide an average 23 W of continuous power. The prototype served as a technology demonstrator for the high risk mechanisms needed to release, deploy, and control the solar array. Aside from this drastic power increase, it is in the integration of each mechanism, their application within the small CubeSat form-factor, and the inherent passive control benefit of the deployed geometry that make XSAS a novel design. In this paper, we discuss the requirements and design process for the XSAS system and mechanical prototype, and provide qualitative and quantitative results from numerical simulations and prototype tests. We also discuss future work, including an upcoming NASA zero-gravity flight campaign, to further improve on XSAS and prepare it for future launch opportunities.
NASA Technical Reports Server (NTRS)
Devolites, Jennifer L.; Olansen, Jon B.
2015-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a Liquid Oxygen (LOX)/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. In 2012, Morpheus began integrating the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors and software onto the vehicle in order to demonstrate safe, autonomous landing and hazard avoidance. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. This paper describes the tailored project life cycle and systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in fiscal year (FY) 2011.
NASA Technical Reports Server (NTRS)
Zapata, R. N.; Humphris, R. R.; Henderson, K. C.
1975-01-01
The unique design and operational characteristics of a prototype magnetic suspension and balance facility which utilizes superconductor technology are described and discussed from the point of view of scalability to large sizes. The successful experimental demonstration of the feasibility of this new magnetic suspension concept of the University of Virginia, together with the success of the cryogenic wind-tunnel concept developed at Langley Research Center, appear to have finally opened the way to clean-tunnel, high-Re aerodynamic testing. Results of calculations corresponding to a two-step design extrapolation from the observed performance of the prototype magnetic suspension system to a system compatible with the projected cryogenic transonic research tunnel are presented to give an order-of-magnitude estimate of expected performance characteristics. Research areas where progress should lead to improved design and performance of large facilities are discussed.
Orlova, Anna O; Dunnagan, Mark; Finitzo, Terese; Higgins, Michael; Watkins, Todd; Tien, Allen; Beales, Steven
2005-01-01
Information exchange, enabled by computable interoperability, is the key to many of the initiatives underway including the development of Regional Health Information Exchanges, Regional Health Information Organizations, and the National Health Information Network. These initiatives must include public health as a full partner in the emerging transformation of our nation's healthcare system through the adoption and use of information technology. An electronic health record - public health (EHR-PH)system prototype was developed to demonstrate the feasibility of electronic data transfer from a health care provider, i.e. hospital or ambulatory care settings, to multiple customized public health systems which include a Newborn Metabolic Screening Registry, a Newborn Hearing Screening Registry, an Immunization Registry and a Communicable Disease Registry, using HL7 messaging standards. Our EHR-PH system prototype can be considered a distributed EHR-based RHIE/RHIO model - a principal element for a potential technical architecture for a NHIN.
Prototype Development of a Geostationary Synthetic Thinned Aperture Radiometer, GeoSTAR
NASA Technical Reports Server (NTRS)
Tanner, Alan B.; Wilson, William J.; Kangaslahti, Pekka P.; Lambrigsten, Bjorn H.; Dinardo, Steven J.; Piepmeier, Jeffrey R.; Ruf, Christopher S.; Rogacki, Steven; Gross, S. M.; Musko, Steve
2004-01-01
Preliminary details of a 2-D synthetic aperture radiometer prototype operating from 50 to 58 GHz will be presented. The instrument is being developed as a laboratory testbed, and the goal of this work is to demonstrate the technologies needed to do atmospheric soundings with high spatial resolution from Geostationary orbit. The concept is to deploy a large sparse aperture Y-array from a geostationary satellite, and to use aperture synthesis to obtain images of the earth without the need for a large mechanically scanned antenna. The laboratory prototype consists of a Y-array of 24 horn antennas, MMIC receivers, and a digital cross-correlation sub-system. System studies are discussed, including an error budget which has been derived from numerical simulations. The error budget defines key requirements, such as null offsets, phase calibration, and antenna pattern knowledge. Details of the instrument design are discussed in the context of these requirements.
A lumber grading system for the future: an update evaluation
D. Earl Kline; Chris Surak; Philip A. Araman
2000-01-01
Virginia Tech and the Southern Research Station of the USDA Forest Service have jointly developed and refined a multiple-sensor lumber-scanning prototype to demonstrate and test applicable scanning technologies (Conners et al. 1997, Kline et al. 1997, Kline et al. 1998). This R&D effort has led to a patented wood color and grain sorting system (Conners and Lu 1998...
Space and energy conservation housing prototype unit development
NASA Technical Reports Server (NTRS)
Sunshine, D. R.
1975-01-01
Construction plans are discussed for a house which will demonstrate the application of advanced technology to minimize energy requirements and to help direct further development in home construction by defining the interaction of integrated energy and water systems with building configuration and construction materials. Housing unit designs are provided and procedures for the analysis of a variety of housing strategies are developed.
Flight Testing ALHAT Precision Landing Technologies Integrated Onboard the Morpheus Rocket Vehicle
NASA Technical Reports Server (NTRS)
Carson, John M. III; Robertson, Edward A.; Trawny, Nikolas; Amzajerdian, Farzin
2015-01-01
A suite of prototype sensors, software, and avionics developed within the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project were terrestrially demonstrated onboard the NASA Morpheus rocket-propelled Vertical Testbed (VTB) in 2014. The sensors included a LIDAR-based Hazard Detection System (HDS), a Navigation Doppler LIDAR (NDL) velocimeter, and a long-range Laser Altimeter (LAlt) that enable autonomous and safe precision landing of robotic or human vehicles on solid solar system bodies under varying terrain lighting conditions. The flight test campaign with the Morpheus vehicle involved a detailed integration and functional verification process, followed by tether testing and six successful free flights, including one night flight. The ALHAT sensor measurements were integrated into a common navigation solution through a specialized ALHAT Navigation filter that was employed in closed-loop flight testing within the Morpheus Guidance, Navigation and Control (GN&C) subsystem. Flight testing on Morpheus utilized ALHAT for safe landing site identification and ranking, followed by precise surface-relative navigation to the selected landing site. The successful autonomous, closed-loop flight demonstrations of the prototype ALHAT system have laid the foundation for the infusion of safe, precision landing capabilities into future planetary exploration missions.
Boatin, Adeline A; Wylie, Blair; Goldfarb, Ilona; Azevedo, Robin; Pittel, Elena; Ng, Courtney; Haberer, Jessica
2015-01-01
We tested functionality and acceptability of a wireless fetal monitoring prototype technology in pregnant women in an inpatient labor unit in the United States. Women with full-term singleton pregnancies and no evidence of active labor were asked to wear the prototype technology for 30 minutes. We assessed functionality by evaluating the ability to successfully monitor the fetal heartbeat for 30 minutes, transmit this data to Cloud storage and view the data on a web portal. Three obstetricians also rated fetal cardiotocographs on ease of readability. We assessed acceptability by administering closed and open-ended questions on perceived utility and likeability to pregnant women and clinicians interacting with the prototype technology. Thirty-two women were enrolled, 28 of whom (87.5%) successfully completed 30 minutes of fetal monitoring including transmission of cardiotocographs to the web portal. Four sessions though completed, were not successfully uploaded to the Cloud storage. Six non-study clinicians interacted with the prototype technology. The primary technical problem observed was a delay in data transmission between the prototype and the web portal, which ranged from 2 to 209 minutes. Delays were ascribed to Wi-Fi connectivity problems. Recorded cardiotocographs received a mean score of 4.2/5 (± 1.0) on ease of readability with an interclass correlation of 0.81(95%CI 0.45, 0.96). Both pregnant women and clinicians found the prototype technology likable (81.3% and 66.7% respectively), useful (96.9% and 66.7% respectively), and would either use it again or recommend its use to another pregnant woman (77.4% and 66.7% respectively). In this pilot study we found that this wireless fetal monitoring prototype technology has potential for use in a United States inpatient setting but would benefit from some technology changes. We found it to be acceptable to both pregnant women and clinicians. Further research is needed to assess feasibility of using this technology in busy inpatient settings.
Energy Harvesting with a Liquid-Metal Microfluidic Influence Machine
NASA Astrophysics Data System (ADS)
Conner, Christopher; de Visser, Tim; Loessberg, Joshua; Sherman, Sam; Smith, Andrew; Ma, Shuo; Napoli, Maria Teresa; Pennathur, Sumita; Weld, David
2018-04-01
We describe and demonstrate an alternative energy-harvesting technology based on a microfluidic realization of a Wimshurst influence machine. The prototype device converts the mechanical energy of a pressure-driven flow into electrical energy, using a multiphase system composed of droplets of liquid mercury surrounded by insulating oil. Electrostatic induction between adjacent metal droplets drives charge through external electrode paths, resulting in continuous charge amplification and collection. We demonstrate a power output of 4 nW from the initial prototype and present calculations suggesting that straightforward device optimization could increase the power output by more than 3 orders of magnitude. At that level, the power efficiency of this energy-harvesting mechanism, limited by viscous dissipation, could exceed 90%. The microfluidic context enables straightforward scaling and parallelization, as well as hydraulic matching to a variety of ambient mechanical energy sources, such as human locomotion.
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - A forklift is used at the Kennedy Space Center in Florida to unload NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is inspected after unloading at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - Wheels are assembled for transporting NASA's Morpheus lander, a vertical test bed vehicle after its arrival at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is uncrated after unloading at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - A crane supports unloading of NASA's Morpheus lander, a vertical test bed vehicle, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
Silva, R; Dow, P; Dubay, R; Lissandrello, C; Holder, J; Densmore, D; Fiering, J
2017-09-01
Acoustic manipulation has emerged as a versatile method for microfluidic separation and concentration of particles and cells. Most recent demonstrations of the technology use piezoelectric actuators to excite resonant modes in silicon or glass microchannels. Here, we focus on acoustic manipulation in disposable, plastic microchannels in order to enable a low-cost processing tool for point-of-care diagnostics. Unfortunately, the performance of resonant acoustofluidic devices in plastic is hampered by a lack of a predictive model. In this paper, we build and test a plastic blood-bacteria separation device informed by a design of experiments approach, parametric rapid prototyping, and screening by image-processing. We demonstrate that the new device geometry can separate bacteria from blood while operating at 275% greater flow rate as well as reduce the power requirement by 82%, while maintaining equivalent separation performance and resolution when compared to the previously published plastic acoustofluidic separation device.
Design of an ammonia two-phase Prototype Thermal Bus for Space Station
NASA Technical Reports Server (NTRS)
Brown, Richard F.; Gustafson, Eric; Parish, Richard
1987-01-01
The feasibility of two-phase heat transport systems for use on Space Station was demonstrated by testing the Thermal Bus Technology Demonstrator (TBTD) as part of the Integrated Two-Phase System Test in NASA-JSC's Thermal Test Bed. Under contract to NASA-JSC, Grumman is currently developing the successor to the TBTD, the Prototype Thermal Bus System (TBS). The TBS design, which uses ammonia as the working fluid, is intended to achieve a higher fidelity level than the TBTD by incorporating both improvements based on TBTD testing and realistic design margins, and by addressing Space Station issues such as redundancy and maintenance. The TBS is currently being fabricated, with testing scheduled for late 1987/early 1988. This paper describes the TBS design which features fully redundant plumbing loops, five evaporators designed to represent different heat acquisition interfaces, 14 condensers which mate with either space radiators or facility heat exchangers, and several modular components.
The feasibility of remote-controlled assistance as a search tool for patient education.
Lin, I K; Bray, B E; Smith, J A; Lange, L L
2001-01-01
Patients often desire more information about their conditions than they receive during a physician office visit. To address the patient's information needs, a touchscreen information kiosk was implemented. Results from the first prototype identified interface, security, and technical issues. Misspelling of search terms was identified as the most observable cause of search failure. An experimental remote control assistance feature was added in the second prototype. The feature allowed a medical librarian to provide real-time remote help during searches by taking control of the patient's computer. Remote assistance improved patient satisfaction, increased ease of use, and raised document retrieval rate (86.7% vs. 56.7%). Both patients and librarians found the application useful. Reasons included its convenience and flexibility, opportunity for direct patient contact, ability to teach through direct demonstration, and complementing the librarian's role as an information gateway. The project demonstrated the feasibility of applying remote control technology to patient education.
Epileptic Seizure Forewarning by Nonlinear Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hively, L.M.
2002-04-19
This report describes work that was performed under a Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (Contractor) and a commercial participant, VIASYS Healthcare Inc. (formerly Nicolet Biomedical, Inc.). The Contractor has patented technology that forewarns of impending epileptic events via scalp electroencephalograph (EEG) data and successfully demonstrated this technology on 20 datasets from the Participant under pre-CRADA effort. This CRADA sought to bridge the gap between the Contractor's existing research-class software and a prototype medical device for subsequent commercialization by the Participant. The objectives of this CRADA were (1) development of a combination of existing computer hardware andmore » Contractor-patented software into a clinical process for warning of impending epileptic events in human patients, and (2) validation of the epilepsy warning methodology. This work modified the ORNL research-class FORTRAN for forewarning to run under a graphical user interface (GUI). The GUI-FORTRAN software subsequently was installed on desktop computers at five epilepsy monitoring units. The forewarning prototypes have run for more than one year without any hardware or software failures. This work also reported extensive analysis of model and EEG datasets to demonstrate the usefulness of the methodology. However, the Participant recently chose to stop work on the CRADA, due to a change in business priorities. Much work remains to convert the technology into a commercial clinical or ambulatory device for patient use, as discussed in App. H.« less
Performance of a full scale prototype detector at the BR2 reactor for the SoLid experiment
NASA Astrophysics Data System (ADS)
Abreu, Y.; Amhis, Y.; Arnold, L.; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Castle, B. C.; Clark, K.; Coupé, B.; Cussans, D.; De Roeck, A.; D'Hondt, J.; Durand, D.; Fallot, M.; Ghys, L.; Giot, L.; Guillon, B.; Ihantola, S.; Janssen, X.; Kalcheva, S.; Kalousis, L. N.; Koonen, E.; Labare, M.; Lehaut, G.; Manzanillas, L.; Mermans, J.; Michiels, I.; Moortgat, C.; Newbold, D.; Park, J.; Pestel, V.; Petridis, K.; Piñera, I.; Pommery, G.; Popescu, L.; Pronost, G.; Rademacker, J.; Ryckbosch, D.; Ryder, N.; Saunders, D.; Schune, M.-H.; Simard, L.; Vacheret, A.; Van Dyck, S.; Van Mulders, P.; van Remortel, N.; Vercaemer, S.; Verstraeten, M.; Weber, A.; Yermia, F.
2018-05-01
The SoLid collaboration has developed a new detector technology to detect electron anti-neutrinos at close proximity to the Belgian BR2 reactor at surface level. A 288 kg prototype detector was deployed in 2015 and collected data during the operational period of the reactor and during reactor shut-down. Dedicated calibration campaigns were also performed with gamma and neutron sources. This paper describes the construction of the prototype detector with a high control on its proton content and the stability of its operation over a period of several months after deployment at the BR2 reactor site. All detector cells provide sufficient light yields to achieve a target energy resolution of better than 20%/√E(MeV). The capability of the detector to track muons is exploited to equalize the light response of a large number of channels to a precision of 3% and to demonstrate the stability of the energy scale over time. Particle identification based on pulse-shape discrimination is demonstrated with calibration sources. Despite a lower neutron detection efficiency due to triggering constraints, the main backgrounds at the reactor site were determined and taken into account in the shielding strategy for the main experiment. The results obtained with this prototype proved essential in the design optimization of the final detector.
Broadcast of four HD videos with LED ceiling lighting: optical-wireless MAC
NASA Astrophysics Data System (ADS)
Bouchet, Olivier; Porcon, Pascal; Gueutier, Eric
2011-09-01
The European project "hOME Gigabit Access Network" (OMEGA) targeted various wireless and wired solutions for 1 Gbit/s connectivity in Home Area Networks (HANs). One objective was to evaluate the suitability of optical wireless technologies in two spectral regions: visible light (visible-light communications - VLC) and near infrared (infrared communications - IRC). Several demonstrators have been built, all of them largely relying on overthe- shelf components. The demonstrators included a "wide-area" VLC broadcast link based on LED ceiling lighting and a laser-based high-data-rate "wide-area" IRC prototype. In this paper we discuss an adapted optical-wireless media-access-control (OWMAC) sublayer, which was developed and implemented during the project. It is suitable for both IRC and VLC. The VLC prototype is based on DMT signal processing and provides broadcasting at { 100 Mbit/s over an area of approximately 5 m2. The IRC prototype provides {300 Mbit/s half-duplex communication over an area of approximately 30 m2. The IRC mesh network, composed of one base station and two terminals, is based on OOK modulation, multi-sector transceivers, and an ultra-fast sector switch. After a brief discussion about the design of the optical-wireless data link layer and the optical-wireless switch (OWS) card, we address the card development and implementation. We also present applications for the VLC and IRC prototypes and measurement results regarding the MAC layer.
Boitor, Radu; Kong, Kenny; Shipp, Dustin; Varma, Sandeep; Koloydenko, Alexey; Kulkarni, Kusum; Elsheikh, Somaia; Schut, Tom Bakker; Caspers, Peter; Puppels, Gerwin; van der Wolf, Martin; Sokolova, Elena; Nijsten, T E C; Salence, Brogan; Williams, Hywel; Notingher, Ioan
2017-12-01
Multimodal spectral histopathology (MSH), an optical technique combining tissue auto-fluorescence (AF) imaging and Raman micro-spectroscopy (RMS), was previously proposed for detection of residual basal cell carcinoma (BCC) at the surface of surgically-resected skin tissue. Here we report the development of a fully-automated prototype instrument based on MSH designed to be used in the clinic and operated by a non-specialist spectroscopy user. The algorithms for the AF image processing and Raman spectroscopy classification had been first optimised on a manually-operated laboratory instrument and then validated on the automated prototype using skin samples from independent patients. We present results on a range of skin samples excised during Mohs micrographic surgery, and demonstrate consistent diagnosis obtained in repeat test measurement, in agreement with the reference histopathology diagnosis. We also show that the prototype instrument can be operated by clinical users (a skin surgeon and a core medical trainee, after only 1-8 hours of training) to obtain consistent results in agreement with histopathology. The development of the new automated prototype and demonstration of inter-instrument transferability of the diagnosis models are important steps on the clinical translation path: it allows the testing of the MSH technology in a relevant clinical environment in order to evaluate its performance on a sufficiently large number of patients.
A Data-Driven Solution for Performance Improvement
NASA Technical Reports Server (NTRS)
2002-01-01
Marketed as the "Software of the Future," Optimal Engineering Systems P.I. EXPERT(TM) technology offers statistical process control and optimization techniques that are critical to businesses looking to restructure or accelerate operations in order to gain a competitive edge. Kennedy Space Center granted Optimal Engineering Systems the funding and aid necessary to develop a prototype of the process monitoring and improvement software. Completion of this prototype demonstrated that it was possible to integrate traditional statistical quality assurance tools with robust optimization techniques in a user- friendly format that is visually compelling. Using an expert system knowledge base, the software allows the user to determine objectives, capture constraints and out-of-control processes, predict results, and compute optimal process settings.
US Naval Research Laboratory's Current Space Photovoltaic Experiemtns
NASA Astrophysics Data System (ADS)
Jenkins, Phillip; Walters, Robert; Messenger, Scott; Krasowski, Michael
2008-09-01
The US Naval Research Laboratory (NRL) has a rich history conducting space photovoltaic (PV) experiments starting with Vanguard I, the first solar powered satellite in 1958. Today, NRL in collaboration with the NASA Glenn Research Center, is engaged in three flight experiments demonstrating a wide range of PV technologies in both LEO and HEO orbits. The Forward Technology Solar Cell Experiment (FTSCE)[1], part of the 5th Materials on the International Space Station Experiment (MISSE-5), flew for 13 months on the International Space Station in 2005-2006. The FTSCE provided in-situ I-V monitoring of advanced III-V multi-junction cells and laboratory prototypes of thin film and other next generation technologies. Two experiments under development will provide more opportunities to demonstrate advanced solar cells and characterization electronics that are easily integrated on a wide variety of spacecraft bus architectures.
ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David
2000-01-01
The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with ACTS. The ACTS experiments program proposed to validate Ka-band satellite and ground-station technology, demonstrate future telecommunication services, demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals and the lessons learned throughout their 6-year operation, including the inclined orbit phase-of-operations. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector-based offset-fed antenna systems with antennas ranging in size from 0.35 to 3.4 in. in diameter. Gateway earth stations included two systems referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET).
Exploration Laboratory Analysis
NASA Technical Reports Server (NTRS)
Krihak, M.; Ronzano, K.; Shaw, T.
2016-01-01
The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the downselection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institute's rHEALTH X and Intelligent Optical System's lateral flow assays combined with Holomic's smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements. The technology demonstrations and metrics for success will be finalized in FY16. Also, the downselected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.
WDM PONs based on colorless technology
NASA Astrophysics Data System (ADS)
Saliou, Fabienne; Simon, Gael; Chanclou, Philippe; Pizzinat, Anna; Lin, Huafeng; Zhou, Enyu; Xu, Zhiguang
2015-12-01
Wavelength Division Multiplexing (WDM) Passive Optical Network (PON) is foreseen to be part of the Next Generation Passive Optical Networks. Business and mobile fronthaul networks already express the need to develop WDM PONs in the access segment. Fixed wavelength transceivers based on Coarse WDM are already available to respond to today's market needs but Dense WDM technologies will be needed and colorless technologies are essential to provide simple and cost-effective WDM PON systems. We propose in this paper to demonstrate the capabilities of a DWDM PON system prototype based on self-seeded RSOAs and designed to transmit CPRI over 60 km of fiber at 2.5 Gbit/s.
Demonstrating artificial intelligence for space systems - Integration and project management issues
NASA Technical Reports Server (NTRS)
Hack, Edmund C.; Difilippo, Denise M.
1990-01-01
As part of its Systems Autonomy Demonstration Project (SADP), NASA has recently demonstrated the Thermal Expert System (TEXSYS). Advanced real-time expert system and human interface technology was successfully developed and integrated with conventional controllers of prototype space hardware to provide intelligent fault detection, isolation, and recovery capability. Many specialized skills were required, and responsibility for the various phases of the project therefore spanned multiple NASA centers, internal departments and contractor organizations. The test environment required communication among many types of hardware and software as well as between many people. The integration, testing, and configuration management tools and methodologies which were applied to the TEXSYS project to assure its safe and successful completion are detailed. The project demonstrated that artificial intelligence technology, including model-based reasoning, is capable of the monitoring and control of a large, complex system in real time.
NASA Technical Reports Server (NTRS)
Vilekar, Saurabh A.; Hawley, Kyle; Junaedi, Christian; Crowder, Bruce; Prada, Julian; Mastanduno, Richard; Perry, Jay L.; Kayatin, Matthew J.
2017-01-01
Precision Combustion, Inc. (PCI) and NASA’s Marshall Space Flight Center (MSFC) have been developing, characterizing, and optimizing high temperature catalytic oxidizers (HTCO) based on PCI’s patented Microlith technology to meet the requirements of future extended human spaceflight explorations. Previous efforts focused on integrating PCI’s HTCO unit with a compact, simple recuperative heat exchanger to reduce the overall system size and weight. Significant improvement was demonstrated over traditional approaches of integrating the HTCO with an external recuperative heat exchanger. While the critical target performance metrics were achieved, the thermal effectiveness of PCI’s recuperator remained a potential area of improvement to further reduce the energy requirements of the integrated system. Using the same material combinations and an improved recuperator design, the redesigned prototype has experimentally demonstrated 20 – 30% reduction (flow dependent) in steady state power consumption compared to the earlier prototype without compromising the destruction efficiency of methane and volatile organic compounds (VOCs). Moreover, design modifications and improvements allow our redesigned prototype to be more easily manufactured compared to traditional brazed plate-fin recuperator designs. The redesigned prototype was delivered to MSFC for validation testing. Here, we report and discuss the performance of the improved prototype HTCO unit with a high efficiency recuperative heat exchanger based on testing at PCI and MSFC. The device is expected to provide a reliable and robust means of disposing of trace levels of methane and VOCs by oxidizing them into carbon dioxide and water in order to maintain clean air in enclosed spaces, such as crewed spacecraft cabins.
Experimental evidence of super-resolution better than λ/105 with positive refraction
NASA Astrophysics Data System (ADS)
Miñano, Juan C.; Sánchez-Dehesa, José; González, Juan C.; Benítez, P.; Grabovičkić, D.; Carbonell, Jorge; Ahmadpanahi, H.
2014-03-01
Super-resolution (SR) systems surpassing the Abbe diffraction limit have been theoretically and experimentally demonstrated using a number of different approaches and technologies: using materials with a negative refractive index, utilizing optical super-oscillation, using a resonant metalens, etc. However, recently it has been proved theoretically that in the Maxwell fish-eye lens (MFE), a device made of positive refractive index materials, the same phenomenon takes place. Moreover, using a simpler device equivalent to the MFE called the spherical geodesic waveguide (SGW), an SR of up to λ/3000 was simulated in COMSOL. Until now, only one piece of experimental evidence of SR with positive refraction has been reported (up to λ/5) for an MFE prototype working at microwave frequencies. Here, experimental results are presented for an SGW prototype showing an SR of up to λ/105. The SGW prototype consists of two concentric metallic spheres with an air space in between and two coaxial ports acting as an emitter and a receiver. The prototype has been analyzed in the range 1 GHz to 1.3 GHz.
NASA Technical Reports Server (NTRS)
Ewell, Robert N.
1994-01-01
The U.S. Space Foundation displayed its prototype Space Technology Hall of Fame exhibit design at the Technology 2003 conference in Anaheim, CA, December 7-9, 1993. In order to sample public opinion on space technology in general and the exhibit in particular, a computer-based survey was set up as a part of the display. The data collected was analyzed.
NASA Astrophysics Data System (ADS)
De Vido, M.; Ertel, K.; Mason, P. D.; Banerjee, S.; Phillips, P. J.; Smith, J. M.; Butcher, T. J.; Chekhlov, O.; Divoky, M.; Pilar, J.; Hooker, C.; Shaikh, W.; Lucianetti, A.; Hernandez-Gomez, C.; Mocek, T.; Edwards, C.; Collier, J. L.
2017-02-01
In this paper, we review the development, at the STFC's Central Laser Facility (CLF), of high energy, high repetition rate diode-pumped solid-state laser (DPSSL) systems based on cryogenically-cooled multi-slab ceramic Yb:YAG. Up to date, two systems have been completed, namely the DiPOLE prototype and the DiPOLE100 system. The DiPOLE prototype has demonstrated amplification of nanosecond pulses in excess of 10 J at 10 Hz repetition rate with an opticalto- optical efficiency of 22%. The larger scale DiPOLE100 system, designed to deliver 100J temporally-shaped nanosecond pulses at 10 Hz repetition rate, has been developed at the CLF for the HiLASE project in the Czech Republic. Recent experiments conducted on the DiPOLE100 system demonstrated the energy scalability of the DiPOLE concept to the 100 J pulse energy level. Furthermore, second harmonic generation experiments carried out on the DiPOLE prototype confirmed the suitability of DiPOLE-based systems for pumping high repetition rate PW-class laser systems based on Ti:sapphire or optical parametric chirped pulse amplification (OPCPA) technology.
NASA Technical Reports Server (NTRS)
Hornstein, Rhoda S.; Wunderlich, Dana A.; Willoughby, John K.
1992-01-01
New and innovative software technology is presented that provides a cost effective bridge for smoothly transitioning prototype software, in the field of planning and scheduling, into an operational environment. Specifically, this technology mixes the flexibility and human design efficiency of dynamic data typing with the rigor and run-time efficiencies of static data typing. This new technology provides a very valuable tool for conducting the extensive, up-front system prototyping that leads to specifying the correct system and producing a reliable, efficient version that will be operationally effective and will be accepted by the intended users.
NASA Technical Reports Server (NTRS)
Cooper, Ken; Gordon, Gail (Technical Monitor)
2001-01-01
This article offers an unfiltered look at a large cross section of the different rapid prototyping technologies available today; from a guy with one of the biggest RP toy boxes in the world as the manager of the Rapid Prototyping Laboratory at NASA's Marshall Space Flight Center (MSFC) in Huntsville, AL, USA. NASA's current operation capacity is nine RP machines, representing eight actual technologies. The article presents a realistic, unbiased look at the technologies and offers advice on what to do and where to go for the best solution to your rapid prototyping needs.
X-ray scan detection for cargo integrity
NASA Astrophysics Data System (ADS)
Valencia, Juan; Miller, Steve
2011-04-01
The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, and easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL's prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels.
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Sargusingh, Miriam J.
2015-01-01
The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. Its rotating cascading distiller operates similarly to the state of the art (SOA) vapor compressor distiller (VCD), but its control scheme and ancillary components are judged to be straightforward and simpler to implement into a successful design. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). The key objectives for the CDS 2.0 design task is to provide a flight forward ground prototype that demonstrates improvements over the SOA system in the areas of increased reliability and robustness, and reduced mass, power and volume. It will also incorporate exploration-class automation. The products of this task are a preliminary flight system design and a high fidelity prototype of an exploration class CDS. These products will inform the design and development of the third generation CDS which is targeted for on-orbit DTO. This paper details the preliminary design of the CDS 2.0.
Development of an Exploration-Class Cascade Distillation System: Flight Like Prototype Design Status
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam C.; Callahan, Michael R.
2016-01-01
The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. The CDS provides a similar function to the state of the art (SOA) vapor compressor distiller (VCD) currently employed on the International Space Station, but its control scheme and ancillary components are judged to be more straightforward and simpler to implement into a more reliable and efficient system. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). A preliminary design fo the CDS 2.0 was presented to the project in September 2014. Following this review, detailed design of the system continued. The existing ground test prototype was used as a platform to demonstrate key 2.0 design and operational concepts to support this effort and mitigate design risk. A volumetric prototype was also developed to evaluate the packaging design for operability and maintainability. The updated system design was reviewed by the AES LSS Project and other key stakeholders in September 2015. This paper details the status of the CDS 2.0 design.
McGillicuddy, John William; Weiland, Ana Katherine; Frenzel, Ronja Maximiliane; Mueller, Martina; Brunner-Jackson, Brenda Marie; Taber, David James; Baliga, Prabhakar Kalyanpur; Treiber, Frank Anton
2013-01-08
Mobile phone based remote monitoring of medication adherence and physiological parameters has the potential of improving long-term graft outcomes in the recipients of kidney transplants. This technology is promising as it is relatively inexpensive, can include intuitive software and may offer the ability to conduct close patient monitoring in a non-intrusive manner. This includes the optimal management of comorbidities such as hypertension and diabetes. There is, however, a lack of data assessing the attitudes of renal transplant recipients toward this technology, especially among ethnic minorities. To assess the attitudes of renal transplant recipients toward mobile phone based remote monitoring and management of their medical regimen; and to identify demographic or clinical characteristics that impact on this attitude. After a 10 minute demonstration of a prototype mobile phone based monitoring system, a 10 item questionnaire regarding attitude toward remote monitoring and the technology was administered to the participants, along with the 10 item Perceived Stress Scale and the 7 item Morisky Medication Adherence Scale. Between February and April 2012, a total of 99 renal transplant recipients were identified and agreed to participate in the survey. The results of the survey indicate that while 90% (87/97) of respondents own a mobile phone, only 7% (7/98) had any prior knowledge of mobile phone based remote monitoring. Despite this, the majority of respondents, 79% (78/99), reported a positive attitude toward the use of a prototype system if it came at no cost to themselves. Blacks were more likely than whites to own smartphones (43.1%, 28/65 vs 20.6%, 7/34; P=.03) and held a more positive attitude toward free use of the prototype system than whites (4.25±0.88 vs 3.76±1.07; P=.02). The data demonstrates that kidney transplant recipients have a positive overall attitude toward mobile phone based health technology (mHealth). Additionally, the data demonstrates that most kidney transplant recipients own and are comfortable using mobile phones and that many of these patients already own and use smart mobile phones. The respondents felt that mHealth offers an opportunity for improved self-efficacy and improved provider driven medical management. Respondents were comfortable with the idea of being monitored using mobile technology and are confident that their privacy can be protected. The small subset of kidney transplant recipients who are less interested in mHealth may be less technologically adept as reflected by their lower mobile phone ownership rates. As a whole, kidney transplant recipients are receptive to the technology and believe in its utility.
Ehlers, Justis P; Srivastava, Sunil K; Feiler, Daniel; Noonan, Amanda I; Rollins, Andrew M; Tao, Yuankai K
2014-01-01
To demonstrate key integrative advances in microscope-integrated intraoperative optical coherence tomography (iOCT) technology that will facilitate adoption and utilization during ophthalmic surgery. We developed a second-generation prototype microscope-integrated iOCT system that interfaces directly with a standard ophthalmic surgical microscope. Novel features for improved design and functionality included improved profile and ergonomics, as well as a tunable lens system for optimized image quality and heads-up display (HUD) system for surgeon feedback. Novel material testing was performed for potential suitability for OCT-compatible instrumentation based on light scattering and transmission characteristics. Prototype surgical instruments were developed based on material testing and tested using the microscope-integrated iOCT system. Several surgical maneuvers were performed and imaged, and surgical motion visualization was evaluated with a unique scanning and image processing protocol. High-resolution images were successfully obtained with the microscope-integrated iOCT system with HUD feedback. Six semi-transparent materials were characterized to determine their attenuation coefficients and scatter density with an 830 nm OCT light source. Based on these optical properties, polycarbonate was selected as a material substrate for prototype instrument construction. A surgical pick, retinal forceps, and corneal needle were constructed with semi-transparent materials. Excellent visualization of both the underlying tissues and surgical instrument were achieved on OCT cross-section. Using model eyes, various surgical maneuvers were visualized, including membrane peeling, vessel manipulation, cannulation of the subretinal space, subretinal intraocular foreign body removal, and corneal penetration. Significant iterative improvements in integrative technology related to iOCT and ophthalmic surgery are demonstrated.
Santa Clara County Planar Solid Oxide Fuel Cell Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fred Mitlitsky; Sara Mulhauser; David Chien
2009-11-14
The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project demonstrated the technical viability of pre-commercial PSOFC technology at the County 911 Communications headquarters, as well as the input fuel flexibility of the PSOFC. PSOFC operation was demonstrated on natural gas and denatured ethanol. The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project goals were to acquire, site, and demonstrate the technical viability of a pre-commercial PSOFC technology at the County 911 Communications headquarters. Additional goals included educating local permit approval authorities, and other governmental entities about PSOFC technology, existing fuel cell standards and specific code requirements.more » The project demonstrated the Bloom Energy (BE) PSOFC technology in grid parallel mode, delivering a minimum 15 kW over 8760 operational hours. The PSOFC system demonstrated greater than 81% electricity availability and 41% electrical efficiency (LHV net AC), providing reliable, stable power to a critical, sensitive 911 communications system that serves geographical boundaries of the entire Santa Clara County. The project also demonstrated input fuel flexibility. BE developed and demonstrated the capability to run its prototype PSOFC system on ethanol. BE designed the hardware necessary to deliver ethanol into its existing PSOFC system. Operational parameters were determined for running the system on ethanol, natural gas (NG), and a combination of both. Required modeling was performed to determine viable operational regimes and regimes where coking could occur.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarun R. Naik; Yoon-moon Chun; Rudolph N. Kraus
2003-09-18
This research was conducted to establish mixture proportioning and production technologies for ready-mixed concrete containing pulp and paper mill residual solids and to study technical, economical, and performance benefits of using the residual solids in the concrete. Fibrous residuals generated from pulp and paper mills were used, and concrete mixture proportions and productions technologies were first optimized under controlled laboratory conditions. Based on the mixture proportions established in the laboratory, prototype field concrete mixtures were manufactured at a ready-mixed concrete plant. Afterward, a field construction demonstration was held to demonstrate the production and placement of structural-grade cold-weather-resistant concrete containing residualmore » solids.« less
An ocean bottom seismic observatory with near real-time telemetry
NASA Astrophysics Data System (ADS)
Berger, J.; Laske, G.; Babcock, J.; Orcutt, J.
2016-02-01
We describe a new technology that can provide near real-time telemetry of sensor data from the ocean bottom without a moored buoy or a cable to shore. The breakthrough technology that makes this system possible is an autonomous surface vehicle called a Wave Glider developed by Liquid Robotics, Inc. of Sunnyvale, CA, which harvests wave and solar energy for motive and electrical power. We present results from several deployments of a prototype system that demonstrate the feasibility of this concept. We also demonstrated that a wave glider could tow a suitably designed ocean bottom package with acceptable loss of speed. With further development such a system could be deployed autonomously and provide real-time telemetry of data from seafloor sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledebuhr, A.G.; Ng, L.C.; Kordas, J.F.
2002-06-30
This paper summarizes Lawrence Livermore National Laboratory's (LLNL) approach to a proposed Technology Demonstration program for the development of a new class of miniature kill vehicles (MKVs), that they have termed Genius Sand (GS). These miniaturized kinetic kill vehicles offer new capabilities for boost phase intercept (BPI) missions, as well as midcourse intercepts and the defeat of advanced countermeasures. The specific GS MKV properties will depend on the choice of mission application and system architecture, as well as the level of coordinated or autonomous operations in these missions. In general the GS MKVs will mass from between 1 to 5more » kilograms and have several hundred meters per second of {Delta}v and be capable of several g's of acceleration. Based on the results of their previous study effort, they believe that it is feasible to develop and integrate the required technologies into a fully functional GS MKV prototype within the scope of a three-year development effort. They will discuss some of the system architecture trades and applicable technologies that can be applied in an operational MKV system, as a guide to focus any technology demonstration program. They will present the results of a preliminary 6DOF analysis to determine the minimum capabilities of an MKV system. They also will discuss a preliminary design configuration of a 2 kg GS MKV that has between 300-500 m/s of {Delta}v and has at least 2-g's of acceleration capability. They believe a successful GS MKV development effort will require not only a comprehensive component miniaturization program, but a rapid hardware prototyping process, and the ability to utilize high fidelity ground testing methodologies.« less
NASA Technical Reports Server (NTRS)
Iannicca, Dennis C.; Ishac, Joseph A.; Shalkhauser, Kurt A.
2015-01-01
NASA Glenn Research Center (GRC), in cooperation with Rockwell Collins, is working to develop a prototype Control and Non-Payload Communications (CNPC) radio platform as part of NASA Integrated Systems Research Program's (ISRP) Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) project. A primary focus of the project is to work with the Federal Aviation Administration (FAA) and industry standards bodies to build and demonstrate a safe, secure, and efficient CNPC architecture that can be used by industry to evaluate the feasibility of deploying a system using these technologies in an operational capacity. GRC has been working in conjunction with these groups to assess threats, identify security requirements, and to develop a system of standards-based security controls that can be applied to the GRC prototype CNPC architecture as a demonstration platform. The proposed security controls were integrated into the GRC flight test system aboard our S-3B Viking surrogate aircraft and several network tests were conducted during a flight on November 15th, 2014 to determine whether the controls were working properly within the flight environment. The flight test was also the first to integrate Robust Header Compression (ROHC) as a means of reducing the additional overhead introduced by the security controls and Mobile IPv6. The effort demonstrated the complete end-to-end secure CNPC link in a relevant flight environment.
Cryogenic Technology Development for Exploration Missions
NASA Technical Reports Server (NTRS)
Chato, David J.
2007-01-01
This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.
Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott
2012-01-01
A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.
Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit
NASA Astrophysics Data System (ADS)
Mason, L.; Palac, D.; Gibson, M.; Houts, M.; Warren, J.; Werner, J.; Poston, D.; Qualls, L.; Radel, R.; Harlow, S.
A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.
Vapor feed direct methanol fuel cells with passive thermal-fluids management system
NASA Astrophysics Data System (ADS)
Guo, Zhen; Faghri, Amir
The present paper describes a novel technology that can be used to manage methanol and water in miniature direct methanol fuel cells (DMFCs) without the need for a complex micro-fluidics subsystem. At the core of this new technology is a unique passive fuel delivery system that allows for fuel delivery at an adjustable rate from a reservoir to the anode. Furthermore, the fuel cell is designed for both passive water management and effective carbon dioxide removal. The innovative thermal management mechanism is the key for effective operation of the fuel cell system. The vapor feed DMFC reached a power density of 16.5 mW cm -2 at current density of 60 mA cm -2. A series of fuel cell prototypes in the 0.5 W range have been successfully developed. The prototypes have demonstrated long-term stable operation, easy fuel delivery control and are scalable to larger power systems. A two-cell stack has successfully operated for 6 months with negligible degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Daniel; Adhikari, Birendra; Orme, Christopher
Switchable Polarity Solvent Forward Osmosis (SPS FO) is a semi-permeable membrane-based water treatment technology. INL is currently advancing SPS FO technology such that a prototype unit can be designed and demonstrated for the purification of produced water from oil and gas production operations. The SPS FO prototype unit will used the thermal energy in the produced water as a source of process heat, thereby reducing the external process energy demands. Treatment of the produced water stream will reduce the volume of saline wastewater requiring disposal via injection, an activity that is correlated with undesirable seismic events, as well as generatemore » a purified product water stream with potential beneficial uses. This paper summarizes experimental data that has been collected in support of the SPS FO scale-up effort, and describes how this data will be used in the sizing of SPS FO process equipment. An estimate of produced water treatment costs using the SPS FO process is also provided.« less
Experimental Results for Titan Aerobot Thermo-Mechanical Subsystem Development
NASA Technical Reports Server (NTRS)
Hall, Jeffrey L.; Jones, J. A.; Kerzhanovich, V. V.; Lachenmeier, T.; Mahr, P.; Pauken, M.; Plett, G. A.; Smith, L.; VanLuvender, M. L.; Yavrouian, A. H.
2006-01-01
This paper describes experimental results from a development program focused in maturing Titan aerobot technology in the areas of mechanical and thermal subsystems. Results from four key activities are described: first, a cryogenic balloon materials development program involving coupon and cylinder tests and culminating in the fabrication and testing of an inflated 4.6 m long prototype blimp at 93 K; second, a combined lab experiment and numerical simulation effort to assess potential problems resulting from radioisotope thermal generator waste heat generation near an inflated blimp; third, an aerial deployment and inflation development program consisting of laboratory and helicopter drop tests on a near full scale (11 m long) prototype blimp; and fourth, a proof of concept experiment demonstrating the viability of using a mechanically steerable high gain antenna on a floating blimp to perform direct to Earth telecommunications from Titan. The paper provides details on all of these successful activities and discusses their impact on the overall effort to produce mature systems technology for future Titan aerobot missions.
Warner, Jeremy L; Rioth, Matthew J; Mandl, Kenneth D; Mandel, Joshua C; Kreda, David A; Kohane, Isaac S; Carbone, Daniel; Oreto, Ross; Wang, Lucy; Zhu, Shilin; Yao, Heming; Alterovitz, Gil
2016-07-01
Precision cancer medicine (PCM) will require ready access to genomic data within the clinical workflow and tools to assist clinical interpretation and enable decisions. Since most electronic health record (EHR) systems do not yet provide such functionality, we developed an EHR-agnostic, clinico-genomic mobile app to demonstrate several features that will be needed for point-of-care conversations. Our prototype, called Substitutable Medical Applications and Reusable Technology (SMART)® PCM, visualizes genomic information in real time, comparing a patient's diagnosis-specific somatic gene mutations detected by PCR-based hotspot testing to a population-level set of comparable data. The initial prototype works for patient specimens with 0 or 1 detected mutation. Genomics extensions were created for the Health Level Seven® Fast Healthcare Interoperability Resources (FHIR)® standard; otherwise, the prototype is a normal SMART on FHIR app. The PCM prototype can rapidly present a visualization that compares a patient's somatic genomic alterations against a distribution built from more than 3000 patients, along with context-specific links to external knowledge bases. Initial evaluation by oncologists provided important feedback about the prototype's strengths and weaknesses. We added several requested enhancements and successfully demonstrated the app at the inaugural American Society of Clinical Oncology Interoperability Demonstration; we have also begun to expand visualization capabilities to include cancer specimens with multiple mutations. PCM is open-source software for clinicians to present the individual patient within the population-level spectrum of cancer somatic mutations. The app can be implemented on any SMART on FHIR-enabled EHRs, and future versions of PCM should be able to evolve in parallel with external knowledge bases. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Distributed intelligent control and status networking
NASA Technical Reports Server (NTRS)
Fortin, Andre; Patel, Manoj
1993-01-01
Over the past two years, the Network Control Systems Branch (Code 532) has been investigating control and status networking technologies. These emerging technologies use distributed processing over a network to accomplish a particular custom task. These networks consist of small intelligent 'nodes' that perform simple tasks. Containing simple, inexpensive hardware and software, these nodes can be easily developed and maintained. Once networked, the nodes can perform a complex operation without a central host. This type of system provides an alternative to more complex control and status systems which require a central computer. This paper will provide some background and discuss some applications of this technology. It will also demonstrate the suitability of one particular technology for the Space Network (SN) and discuss the prototyping activities of Code 532 utilizing this technology.
Tactile-Foot Stimulation Can Assist the Navigation of People with Visual Impairment
Velázquez, Ramiro; Pissaloux, Edwige; Lay-Ekuakille, Aimé
2015-01-01
Background. Tactile interfaces that stimulate the plantar surface with vibrations could represent a step forward toward the development of wearable, inconspicuous, unobtrusive, and inexpensive assistive devices for people with visual impairments. Objective. To study how people understand information through their feet and to maximize the capabilities of tactile-foot perception for assisting human navigation. Methods. Based on the physiology of the plantar surface, three prototypes of electronic tactile interfaces for the foot have been developed. With important technological improvements between them, all three prototypes essentially consist of a set of vibrating actuators embedded in a foam shoe-insole. Perceptual experiments involving direction recognition and real-time navigation in space were conducted with a total of 60 voluntary subjects. Results. The developed prototypes demonstrated that they are capable of transmitting tactile information that is easy and fast to understand. Average direction recognition rates were 76%, 88.3%, and 94.2% for subjects wearing the first, second, and third prototype, respectively. Exhibiting significant advances in tactile-foot stimulation, the third prototype was evaluated in navigation tasks. Results show that subjects were capable of following directional instructions useful for navigating spaces. Conclusion. Footwear providing tactile stimulation can be considered for assisting the navigation of people with visual impairments. PMID:27019593
Tactile-Foot Stimulation Can Assist the Navigation of People with Visual Impairment.
Velázquez, Ramiro; Pissaloux, Edwige; Lay-Ekuakille, Aimé
2015-01-01
Background. Tactile interfaces that stimulate the plantar surface with vibrations could represent a step forward toward the development of wearable, inconspicuous, unobtrusive, and inexpensive assistive devices for people with visual impairments. Objective. To study how people understand information through their feet and to maximize the capabilities of tactile-foot perception for assisting human navigation. Methods. Based on the physiology of the plantar surface, three prototypes of electronic tactile interfaces for the foot have been developed. With important technological improvements between them, all three prototypes essentially consist of a set of vibrating actuators embedded in a foam shoe-insole. Perceptual experiments involving direction recognition and real-time navigation in space were conducted with a total of 60 voluntary subjects. Results. The developed prototypes demonstrated that they are capable of transmitting tactile information that is easy and fast to understand. Average direction recognition rates were 76%, 88.3%, and 94.2% for subjects wearing the first, second, and third prototype, respectively. Exhibiting significant advances in tactile-foot stimulation, the third prototype was evaluated in navigation tasks. Results show that subjects were capable of following directional instructions useful for navigating spaces. Conclusion. Footwear providing tactile stimulation can be considered for assisting the navigation of people with visual impairments.
Advanced Receiver/Converter Experiments for Laser Wireless Power Transmission
NASA Technical Reports Server (NTRS)
Howell, Joe T.; ONeill, Mark; Fork, Richard
2004-01-01
For several years NASA Marshall Space Flight Center, UAH and ENTECH have been working on various aspects of space solar power systems. The current activity was just begun in January 2004 to further develop this new photovoltaic concentrator laser receiver/converter technology. During the next few months, an improved prototype will be designed, fabricated, and thoroughly tested under laser illumination. The final paper will describe the new concept, present its advantages over other laser receiver/converter approaches (including planar photovoltaic arrays), and provide the latest experiment results on prototype hardware (including the effects of laser irradiance level and cell temperature). With NASA's new human exploration plans to first return to the Moon, and then to proceed to Mars, the new photovoltaic concentrator laser receiver/converter technology could prove to be extremely useful in providing power to the landing sites and other phases of the missions. For example, to explore the scientifically interesting and likely resource-rich poles of the Moon (which may contain water) or the poles of Mars (which definitely contain water and carbon dioxide), laser power beaming could represent the simplest means of providing power to these regions, which receive little or no sunlight, making solar arrays useless there. In summary, the authors propose a paper on definition and experimental results of a novel photovoltaic concentrator approach for collecting and converting laser radiation to electrical power. The new advanced photovoltaic concentrator laser receiver/converter offers higher performance, lighter weight, and lower cost than competing concepts, and early experimental results are confirming the expected excellent Performance levels. After the small prototypes are successfully demonstrated, a larger array with even better performance is planned for the next phase experiments and demonstrations. Thereafter, a near-term flight experiment of the new technology should be developed and flown, to lay the groundwork for future space power applications in the Earth-Moon neighborhood, and ultimately encompassing Mars and its environs.
Chan, Harley H L; Siewerdsen, Jeffrey H; Vescan, Allan; Daly, Michael J; Prisman, Eitan; Irish, Jonathan C
2015-01-01
The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques across a variety of otolaryngological sub-specialties suggests an emerging role for rapid prototyping technology in surgical education, procedure simulation, and clinical practice.
Chan, Harley H. L.; Siewerdsen, Jeffrey H.; Vescan, Allan; Daly, Michael J.; Prisman, Eitan; Irish, Jonathan C.
2015-01-01
The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques across a variety of otolaryngological sub-specialties suggests an emerging role for rapid prototyping technology in surgical education, procedure simulation, and clinical practice. PMID:26331717
NASA Technical Reports Server (NTRS)
Edmonds, Jessica
2015-01-01
Aurora Flight Sciences, in partnership with Draper Laboratory, has developed a miniaturized system to count white blood cells in microgravity environments. The system uses MEMS technology to simultaneously count total white blood cells, the five white blood cell differential subgroups, and various lymphocyte subtypes. The OILWBCS-MEMS detection technology works by immobilizing an array of white blood cell-specific antibodies on small, gold-coated membranes. When blood flows across the membranes, specific cells' surface protein antigens bind to their corresponding antibodies. This binding can be measured and correlated to cell counts. In Phase I, the partners demonstrated surface chemistry sensitivity and specificity for total white blood cells and two lymphocyte subtypes. In Phase II, a functional prototype demonstrated end-to-end operation. This rugged, miniaturized device requires minimal blood sample preparation and will be useful for both space flight and terrestrial applications.
Agent Models for Self-Motivated Home-Assistant Bots
NASA Astrophysics Data System (ADS)
Merrick, Kathryn; Shafi, Kamran
2010-01-01
Modern society increasingly relies on technology to support everyday activities. In the past, this technology has focused on automation, using computer technology embedded in physical objects. More recently, there is an expectation that this technology will not just embed reactive automation, but also embed intelligent, proactive automation in the environment. That is, there is an emerging desire for novel technologies that can monitor, assist, inform or entertain when required, and not just when requested. This paper presents three self-motivated, home-assistant bot applications using different self-motivated agent models. Self-motivated agents use a computational model of motivation to generate goals proactively. Technologies based on self-motivated agents can thus respond autonomously and proactively to stimuli from their environment. Three prototypes of different self-motivated agent models, using different computational models of motivation, are described to demonstrate these concepts.
A Case Series of Rapid Prototyping and Intraoperative Imaging in Orbital Reconstruction
Lim, Christopher G.T.; Campbell, Duncan I.; Cook, Nicholas; Erasmus, Jason
2014-01-01
In Christchurch Hospital, rapid prototyping (RP) and intraoperative imaging are the standard of care in orbital trauma and has been used since February 2013. RP allows the fabrication of an anatomical model to visualize complex anatomical structures which is dimensionally accurate and cost effective. This assists diagnosis, planning, and preoperative implant adaptation for orbital reconstruction. Intraoperative imaging involves a computed tomography scan during surgery to evaluate surgical implants and restored anatomy and allows the clinician to correct errors in implant positioning that may occur during the same procedure. This article aims to demonstrate the potential clinical and cost saving benefits when both these technologies are used in orbital reconstruction which minimize the need for revision surgery. PMID:26000080
A case series of rapid prototyping and intraoperative imaging in orbital reconstruction.
Lim, Christopher G T; Campbell, Duncan I; Cook, Nicholas; Erasmus, Jason
2015-06-01
In Christchurch Hospital, rapid prototyping (RP) and intraoperative imaging are the standard of care in orbital trauma and has been used since February 2013. RP allows the fabrication of an anatomical model to visualize complex anatomical structures which is dimensionally accurate and cost effective. This assists diagnosis, planning, and preoperative implant adaptation for orbital reconstruction. Intraoperative imaging involves a computed tomography scan during surgery to evaluate surgical implants and restored anatomy and allows the clinician to correct errors in implant positioning that may occur during the same procedure. This article aims to demonstrate the potential clinical and cost saving benefits when both these technologies are used in orbital reconstruction which minimize the need for revision surgery.
Prototype pushing robot for emplacing vitrified waste canisters into horizontal disposal drifts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Londe, L.; Seidler, W.K.; Bosgiraud, J.M.
2007-07-01
Within the French Underground Disposal concept, as described in ANDRA's (Agence Nationale pour la Gestion des Dechets Radioactifs) Dossier 2005, the Pushing Robot is an application envisaged for the emplacement (and the potential retrieval) of 'Vitrified waste packages', also called 'C type packages'. ANDRA has developed a Prototype Pushing Robot within the framework of the ESDRED Project (Engineering Studies and Demonstration of Repository Design) which is co-funded by the European Commission as part of the sixth EURATOM Research and Training Framework Programme (FP6) on nuclear energy (2002 - 2006). The Rationale of the Pushing Robot technology comes from various considerations,more » including the need for (1) a simple and robust system, capable of moving (and potentially retrieving) on up to 40 metres (m), a 2 tonne C type package (mounted on ceramic sliding runners) inside the carbon steel sleeve constituting the liner (and rock support) of a horizontal disposal cell, (2) small annular clearances between the package and the liner, (3) compactness of the device to be transferred from surface to underground, jointly with the package, inside a shielding cask, and (4) remote controlled operations for the sake of radioprotection. The initial design, based on gripping supports, has been replaced by a 'technical variant' based on inflatable toric jacks. It was then possible, using a test bench, to check that the Pushing Robot worked properly. Steps as high as 7 mm were successfully cleared by a dummy package pushed by the Prototype.. Based on the lessons learned by ANDRA's regarding the Prototype Pushing Robot, a new Scope of Work is being written for the Contract concerning an Industrial Scale Demonstrator. The Industrial Scale Demonstration should be completed by the end of the second Quarter of 2008. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Dean James; Brusseau, Charles A.
2012-01-01
This document is a final report for the polyvinyl toluene (PVT) neutron-gamma (PVT-NG) project, which was sponsored by the Domestic Nuclear Detection Office (DNDO). The PVT-NG sensor uses PVT detectors for both gamma and neutron detection. The sensor exhibits excellent spectral resolution and gain stabilization, which are features that are beneficial for detection of both gamma-ray and neutron sources. In fact, the ability to perform isotope identification based on spectra that were measured by the PVT-NG sensor was demonstrated. As described in a previous report, the neutron sensitivity of the first version of the prototype was about 25% less thanmore » the DNDO requirement of 2.5 cps/ng for bare Cf-252. This document describes design modifications that were expected to improve the neutron sensitivity by about 50% relative to the PVT-NG prototype. However, the project was terminated before execution of the design modifications after portal vendors demonstrated other technologies that enable neutron detection without the use of He-3. Nevertheless, the PVT-NG sensor development demonstrated several performance goals that may be useful in future portal designs.« less
48 CFR 234.005-1 - Competition.
Code of Federal Regulations, 2010 CFR
2010-10-01
... development or prototype of technology developed under the contract or the delivery of initial or additional prototype items if the item or a prototype thereof is created as the result of work performed under the... shall be limited to the minimal amount of initial or additional prototype items that will allow for...
Toward human organ printing: Charleston Bioprinting Symposium.
Mironov, Vladimir
2006-01-01
The First Annual Charleston Bioprinting Symposium was organized by the Bioprinting Research Center of the Medical University of South Carolina (MUSC) and convened July 21, 2006, in Charleston, South Carolina. In broad terms, bioprinting is the application of rapid prototyping technology to the biomedical field. More specifically, it is defined as the layer by layer deposition of biologically relevant material. The 2006 Symposium included four sessions: Computer-aided design and Bioprinting, Bioprinting Technologies; Hydrogel for Bioprinting and, finally, a special session devoted to ongoing research projects at the MUSC Bioprinting Research Center. The Symposium highlight was the presentation of the multidisciplinary Charleston Bioengineered Kidney Project. This symposium demonstrated that bioprinting or robotic biofabrication is one of the most exciting and fast-emerging branches in the tissue engineering field. Robotic biofabrication will eventually lead to industrial production of living human organs suitable for clinical transplantation. The symposium demonstrated that although there are still many technological challenges, organ printing is a rapidly evolving feasible technology.
A holographic waveguide based eye tracker
NASA Astrophysics Data System (ADS)
Liu, Changgeng; Pazzucconi, Beatrice; Liu, Juan; Liu, Lei; Yao, Xincheng
2018-02-01
We demonstrated the feasibility of using holographic waveguide for eye tracking. A custom-built holographic waveguide, a 20 mm x 60 mm x 3 mm flat glass substrate with integrated in- and out-couplers, was used for the prototype development. The in- and out-couplers, photopolymer films with holographic fringes, induced total internal reflection in the glass substrate. Diffractive optical elements were integrated into the in-coupler to serve as an optical collimator. The waveguide captured images of the anterior segment of the eye right in front of it and guided the images to a processing unit distant from the eye. The vector connecting the pupil center (PC) and the corneal reflex (CR) of the eye was used to compute eye position in the socket. An eye model, made of a high quality prosthetic eye, was used prototype validation. The benchtop prototype demonstrated a linear relationship between the angular eye position and the PC/CR vector over a range of 60 horizontal degrees and 30 vertical degrees at a resolution of 0.64-0.69 degrees/pixel by simple pixel count. The uncertainties of the measurements at different angular positions were within 1.2 pixels, which indicated that the prototype exhibited a high level of repeatability. These results confirmed that the holographic waveguide technology could be a feasible platform for developing a wearable eye tracker. Further development can lead to a compact, see-through eye tracker, which allows continuous monitoring of eye movement during real life tasks, and thus benefits diagnosis of oculomotor disorders.
NASA Technical Reports Server (NTRS)
Hall, Laverne; Hung, Chaw-Kwei; Lin, Imin
2000-01-01
The purpose of this paper is to provide a description of NASA JPL Distributed Systems Technology (DST) Section's object-oriented component approach to open inter-operable systems software development and software reuse. It will address what is meant by the terminology object component software, give an overview of the component-based development approach and how it relates to infrastructure support of software architectures and promotes reuse, enumerate on the benefits of this approach, and give examples of application prototypes demonstrating its usage and advantages. Utilization of the object-oriented component technology approach for system development and software reuse will apply to several areas within JPL, and possibly across other NASA Centers.
NASA Astrophysics Data System (ADS)
Wherton, Joseph; Prendergast, David
There are a variety of factors that can lead to social isolation and loneliness in old age, including decline in physical and mental health, as well as change to social environment. The Building Bridges project explores how communication technology can help older adults remain socially connected. This paper will first provide an overview of a prototype communication system designed to support peer-to-peer group interaction. A description of the user-centered design process will be provided to demonstrate the importance of involving older adults at the earliest stages. The implications for designing new technology for older adults are discussed.
Coatings Extend Life of Engines and Infrastructure
NASA Technical Reports Server (NTRS)
2010-01-01
MesoCoat Inc., of Euclid, Ohio, collaborated with Glenn Research Center to provide thermal barrier coating (TBC) technology, developed by Glenn researcher Dongming Zhu, to enhance the lifespan and performance of engines in U.S. Air Force legacy aircraft. The TBC reduces thermal stresses on engine parts, increasing component life by 50 percent. MesoCoat is also producing metal cladding technology that may soon provide similar life-lengthening benefits for the Nation's infrastructure. Through a Space Act Agreement with Glenn, the company employs the Center's high-density infrared arc lamp system to bond its cladding materials for demonstration prototypes; the coating technology can prevent corrosion on metal beams, pipes, and rebar for up to 100 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rielage, Keith R; Elliott, Steven R; Boswell, Melissa
2010-12-13
The MAJORANA Collaboration is assembling an array of HPGe detectors to search for neutrinoless double-beta decay in {sup 76}Ge. Initially, MAJORANA aims to construct a prototype module to demonstrate the potential of a future 1-tonne experiment. The design and potential reach of this prototype DEMONSTRATOR module are presented. Our proposed method uses the well-established technique of searching for neutrinoless double-beta decay in high purity Ge-diode radiation detectors that play both roles of source and detector. The use of P-PC Ge detectors present advances in background rejection and a Significantly lower energy threshold than conventional Ge detector technologies. The lower energymore » threshold opens up a broader and exciting physics program including searches for dark matter and axions concurrent with the double-beta decay search. The DEMONSTRATOR should establish that the backgrounds are low enough to justify scaling to tonne-scale experiment, probe the neutrino effective mass region above 100 meV, and search the low energy region with a sensitivity to dark matter. The DEMONSTRATOR will be sited at the 4850-ft level (4200 m.w.e) of the Sanford Underground Laboratory at Homestake and preparations for construction are currently underway.« less
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; West, W. C.; Brandon, E. J.
2012-01-01
Demonstrated improved performance with wide operating temperature electrolytes containing ester co - solvents (i.e., methyl propionate and ethyl butyrate) in a number of prototype cells: center dot Successfully scaled up low temperature technology to 12 Ah size prismatic Li - ion cells (Quallion, LCC), and demonstrated good performance down to - 60 o C. center dot Demonstrated wide operating temperature range performance ( - 60 o to +60 o C) in A123 Systems LiFePO 4 - based lithium - ion cells containing methyl butyrate - based low temperature electrolytes. These systems were also demonstrated to have excellent cycle life performance at ambient temperatures, as well as the ability to be cycled up to high temperatures.
Electrical actuation technology bridging, volume 1
NASA Astrophysics Data System (ADS)
Hammond, Monica S.; Doane, George B., III
1993-01-01
This document contains the proceedings from the conference. The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.
Smart Building. Volume 2: System Description
2006-05-01
demonstrated.this technology at the 2002 Winter Olympic Games in Salt Lake City, Utah. The system was installed on a building known as Social Hall Plaza...select the detailed engineering contractors. 3.1.3.8 Sealing the Protective Envelope Due to the type of roof construction on the building there was ...in time to support the Olympics . Prototype testing was completed following the Olympics and additional testing may be performed to better
Alternative High-Performance Motors with Non-Rare Earth Materials, Final Publishable Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galioto, Steven; Johnson, Francis
Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the petroleum dependence of the transportation sector. To have significant effect, electric drive technologies must be economical in terms of cost, weight, and size while meeting performance and reliability expectations. The goal of the project is to develop traction motors that reduce or eliminate the use of rare-earth materials and meet the DoE specifications for such a traction motor. This is accomplished by evaluating and developing multiple motor topologies in conjunction with advanced materials. Eight non-permanent magnet motormore » topologies and two reduced or non-rare earth motor topologies are analyzed and compared using a common set of requirements. Five of the motors are built and tested to validate the analysis. This paper provides a detailed quantitative comparison of the different machine topologies that reduce or eliminate rare-earth materials. Conclusions are drawn from the analysis and test data to show the tradeoffs related to selecting each of the motor topologies with the hope of providing practicing engineers and researchers in the field enough guidelines for choosing the “optimum” machine topology that suits their applications and set of performance requirements. Four materials technologies were investigated for their ability to enable a reduced rare earth electric motor. Two of the technologies were soft magnetic materials, one was a non-rare-earth containing permanent magnet technology, and the last was an insulation material. These processing and performance of these materials were first demonstrated in small coupons. The coupon tests justified proceeding to larger scale processing for two of the materials technologies: 1) a dual-phase soft magnetic material for use in rotor laminates and 2) a high temperature insulation material for use as a slot liner in the stator. The dual phase soft magnetic material was produced at a scale sufficient to build and test a sub-scale motor prototype. The high temperature insulation material was first evaluated in a series of “statorettes” before being demonstrated in the stator of one of the full-scale motor prototypes. Testing of the dual phase material revealed issues with process variability in larger production volumes that are being addressed in a subsequent project. The performance of the high-temperature slot liner insulation was demonstrated during the operation of a full-scale prototype. Furthermore, the insulation material was shown to survive aging tests of 2000 hours and 280 °C and 800 hours at 300 °C. This program provides analysis and data to accelerate the introduction of hybrid electric vehicles into the U.S. road vehicle fleet and bring the added benefits of reduced fuel consumption and environmental impacts« less
Chen, Yiqin; Bi, Kaixi; Wang, Qianjin; Zheng, Mengjie; Liu, Qing; Han, Yunxin; Yang, Junbo; Chang, Shengli; Zhang, Guanhua; Duan, Huigao
2016-12-27
Focused ion beam (FIB) milling is a versatile maskless and resistless patterning technique and has been widely used for the fabrication of inverse plasmonic structures such as nanoholes and nanoslits for various applications. However, due to its subtractive milling nature, it is an impractical method to fabricate isolated plasmonic nanoparticles and assemblies which are more commonly adopted in applications. In this work, we propose and demonstrate an approach to reliably and rapidly define plasmonic nanoparticles and their assemblies using FIB milling via a simple "sketch and peel" strategy. Systematic experimental investigations and mechanism studies reveal that the high reliability of this fabrication approach is enabled by a conformally formed sidewall coating due to the ion-milling-induced redeposition. Particularly, we demonstrated that this strategy is also applicable to the state-of-the-art helium ion beam milling technology, with which high-fidelity plasmonic dimers with tiny gaps could be directly and rapidly prototyped. Because the proposed approach enables rapid and reliable patterning of arbitrary plasmonic nanostructures that are not feasible to fabricate via conventional FIB milling process, our work provides the FIB milling technology an additional nanopatterning capability and thus could greatly increase its popularity for utilization in fundamental research and device prototyping.
Rapid prototyping technology and its application in bone tissue engineering*
YUAN, Bo; ZHOU, Sheng-yuan; CHEN, Xiong-sheng
2017-01-01
Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects. PMID:28378568
Rapid prototyping technology and its application in bone tissue engineering.
Yuan, Bo; Zhou, Sheng-Yuan; Chen, Xiong-Sheng
Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects.
Naval Science & Technology: Enabling the Future Force
2013-04-01
corn for disruptive technologies Laser Cooling Spintronics Bz 1st U.S. Intel satellite GRAB Semiconductors GaAs, GaN, SiC GPS...Payoff • Innovative and game-changing • Approved by Corporate Board • Delivers prototype Innovative Naval Prototypes (5-10 Year) Disruptive ... Technologies Free Electron Laser Integrated Topside EM Railgun Sea Base Enablers Tactical Satellite Large Displacement UUV AACUS Directed
National Storage Laboratory: a collaborative research project
NASA Astrophysics Data System (ADS)
Coyne, Robert A.; Hulen, Harry; Watson, Richard W.
1993-01-01
The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.
Moving Towards a Science-Driven Workbench for Earth Science Solutions
NASA Astrophysics Data System (ADS)
Graves, S. J.; Djorgovski, S. G.; Law, E.; Yang, C. P.; Keiser, K.
2017-12-01
The NSF-funded EarthCube Integration and Test Environment (ECITE) prototype was proposed as a 2015 Integrated Activities project and resulted in the prototyping of an EarthCube federated cloud environment and the Integration and Testing Framework. The ECITE team has worked with EarthCube science and technology governance committees to define the types of integration, testing and evaluation necessary to achieve and demonstrate interoperability and functionality that benefit and support the objectives of the EarthCube cyber-infrastructure. The scope of ECITE also includes reaching beyond NSF and EarthCube to work with the broader Earth science community, such as the Earth Science Information Partners (ESIP) to incorporate lessons learned from other testbed activities, and ultimately provide broader community benefits. This presentation will discuss evolving ECITE ideas for a science-driven workbench that will start with documented science use cases, map the use cases to solution scenarios that identify the available technology and data resources that match the use case, the generation of solution workflows and test plans, the testing and evaluation of the solutions in a cloud environment, and finally the documentation of identified technology and data gaps that will assist with driving the development of additional EarthCube resources.
Orlova, Anna O.; Dunnagan, Mark; Finitzo, Terese; Higgins, Michael; Watkins, Todd; Tien, Allen; Beales, Steven
2005-01-01
Information exchange, enabled by computable interoperability, is the key to many of the initiatives underway including the development of Regional Health Information Exchanges, Regional Health Information Organizations, and the National Health Information Network. These initiatives must include public health as a full partner in the emerging transformation of our nation’s healthcare system through the adoption and use of information technology. An electronic health record - public health (EHR-PH) system prototype was developed to demonstrate the feasibility of electronic data transfer from a health care provider, i.e. hospital or ambulatory care settings, to multiple customized public health systems which include a Newborn Metabolic Screening Registry, a Newborn Hearing Screening Registry, an Immunization Registry and a Communicable Disease Registry, using HL7 messaging standards. Our EHR-PH system prototype can be considered a distributed EHR-based RHIE/RHIO model - a principal element for a potential technical architecture for a NHIN. PMID:16779105
Latest Changes to NASA's Laser Communication Relay Demonstration Project
NASA Technical Reports Server (NTRS)
Edwards, Bernard L.; Israel, David J.; Vithlani, Seema K.
2018-01-01
Over the last couple of years, NASA has been making changes to the Laser Communications Relay Demonstration Project (LCRD), a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). The changes made makes LCRD more like a future Earth relay system that has both high speed optical and radio frequency links. This will allow LCRD to demonstrate a more detailed concept of operations for a future operational mission critical Earth relay. LCRD is expected to launch in June 2019 and is expected to be followed a couple of years later with a prototype user terminal on the International Space Station. LCRD's architecture will allow it to serve as a testbed in space and this paper will provide an update of its planned capabilities and experiments.
Gao, Quan-Wen; Song, Hui-Feng; Xu, Ming-Huo; Liu, Chun-Ming; Chai, Jia-Ke
2013-11-01
To explore the clinical application of mandibular-driven simultaneous maxillo-mandihular distraction to correct hemifacial microsomia with rapid prototyping technology. The patient' s skull resin model was manufactured with rapid prototyping technology. The osteotomy was designed on skull resin model. According to the preoperative design, the patients underwent Le Fort I osteotomy and mandibular ramus osteotomy. The internal mandible distractor was embedded onto the osteotomy position. The occlusal titanium pin was implanted. Distraction were carried out by mandibular-driven simultaneous maxillo-mandihular distraction 5 days after operation. The distraction in five patients was complete as designed. No infection and dysosteogenesis happened. The longest distance of distraction was 28 mm, and the shortest distance was 16 mm. The facial asymmetry deformity was significantly improved at the end of distraction. The ocelusal plane of patients obviously improved. Rapid prototyping technology is helpful to design precisely osteotomy before operation. Mandibular-driven simultaneous maxillo-mandibular distraction can correct hemifacial microsomia. It is worth to clinical application.
Phipps, William S; Yin, Zhizhong; Bae, Candice; Sharpe, Julia Z; Bishara, Andrew M; Nelson, Emily S; Weaver, Aaron S; Brown, Daniel; McKay, Terri L; Griffin, DeVon; Chan, Eugene Y
2014-11-13
Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described.
Bae, Candice; Sharpe, Julia Z.; Bishara, Andrew M.; Nelson, Emily S.; Weaver, Aaron S.; Brown, Daniel; McKay, Terri L.; Griffin, DeVon; Chan, Eugene Y.
2014-01-01
Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described. PMID:25490614
Methods and systems for rapid prototyping of high density circuits
Palmer, Jeremy A [Albuquerque, NM; Davis, Donald W [Albuquerque, NM; Chavez, Bart D [Albuquerque, NM; Gallegos, Phillip L [Albuquerque, NM; Wicker, Ryan B [El Paso, TX; Medina, Francisco R [El Paso, TX
2008-09-02
A preferred embodiment provides, for example, a system and method of integrating fluid media dispensing technology such as direct-write (DW) technologies with rapid prototyping (RP) technologies such as stereolithography (SL) to provide increased micro-fabrication and micro-stereolithography. A preferred embodiment of the present invention also provides, for example, a system and method for Rapid Prototyping High Density Circuit (RPHDC) manufacturing of solderless connectors and pilot devices with terminal geometries that are compatible with DW mechanisms and reduce contact resistance where the electrical system is encapsulated within structural members and manual electrical connections are eliminated in favor of automated DW traces. A preferred embodiment further provides, for example, a method of rapid prototyping comprising: fabricating a part layer using stereolithography and depositing thermally curable media onto the part layer using a fluid dispensing apparatus.
Final Technical Report for EE0006091: H2Pump Hydrogen Recycling System Demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staudt, Rhonda
The objective of this project is to demonstrate the product readiness and to quantify the benefits and customer value proposition of H2Pump’s Hydrogen Recycling System (HRS-100™) by installing and analyzing the operation of multiple prototype 100-kg per day systems in real world customer locations. The data gathered will be used to measure reliability, demonstrate the value proposition to customers, and validate our business model. H2Pump will install, track and report multiple field demonstration systems in industrial heat treating and semi-conductor applications. The customer demonstrations will be used to develop case studies and showcase the benefits of the technology to drivemore » market adoption.« less
X-Ray Scan Detection for Cargo Integrity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valencia, Juan D.; Miller, Steven D.
ABSTRACT The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, andmore » easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL’s prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels. Keywords: Radiation, Scan, X-ray, Gamma, Detection, Cargo, Container, Wireless, RF« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. George C. Vradis; Dr. Hagen Schempf
2003-04-01
This program is undertaken in order to construct and field-demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows formore » the live inspection of gas distribution pipes. This module, which incorporates technology developed by NASA, has already been designed, constructed and tested, having exceeded performance expectations. The full prototype system will be comprehensively tested in the laboratory followed by two field demonstrations in real applications in NGA member utilities' pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. The present report summarizes the accomplishments of the project during its third six-month period. The project has in general achieved its goals for this period as outlined in the report. The fabrication of the prototype is complete and is now been tested in the laboratory mainly focusing on the last system integration issues and on software development for the turning and launching routines. Testing of the prototype in the lab is expected to be completed by Summer 2003, to be followed by two field demonstrations in early Fall 2003.« less
Digital prototyping technique applied for redesigning plastic products
NASA Astrophysics Data System (ADS)
Pop, A.; Andrei, A.
2015-11-01
After products are on the market for some time, they often need to be redesigned to meet new market requirements. New products are generally derived from similar but outdated products. Redesigning a product is an important part of the production and development process. The purpose of this paper is to show that using modern technology, like Digital Prototyping in industry is an effective way to produce new products. This paper tries to demonstrate and highlight the effectiveness of the concept of Digital Prototyping, both to reduce the design time of a new product, but also the costs required for implementing this step. The results of this paper show that using Digital Prototyping techniques in designing a new product from an existing one available on the market mould offers a significantly manufacturing time and cost reduction. The ability to simulate and test a new product with modern CAD-CAM programs in all aspects of production (designing of the 3D model, simulation of the structural resistance, analysis of the injection process and beautification) offers a helpful tool for engineers. The whole process can be realised by one skilled engineer very fast and effective.
Schneider, Eric C; Ridgely, M Susan; Quigley, Denise D; Hunter, Lauren E; Leuschner, Kristin J; Weingart, Saul N; Weissman, Joel S; Zimmer, Karen P; Giannini, Robert C
2017-06-01
This article describes the design, development, and testing of the Health Care Safety Hotline, a prototype consumer reporting system for patient safety events. The prototype was designed and developed with ongoing review by a technical expert panel and feedback obtained during a public comment period. Two health care delivery organizations in one metropolitan area collaborated with the researchers to demonstrate and evaluate the system. The prototype was deployed and elicited information from patients, family members, and caregivers through a website or an 800 phone number. The reports were considered useful and had little overlap with information received by the health care organizations through their usual risk management, customer service, and patient safety monitoring systems. However, the frequency of reporting was lower than anticipated, suggesting that further refinements, including efforts to raise awareness by actively soliciting reports from subjects, might be necessary to substantially increase the volume of useful reports. It is possible that a single technology platform could be built to meet a variety of different patient safety objectives, but it may not be possible to achieve several objectives simultaneously through a single consumer reporting system while also establishing trust with patients, caregivers, and providers.
Performance of Wide Operating Temperature Range Electrolytes in Quallion Prototype Li-Ion Cells
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Tomcsi, M. R.; Nagata, M.; Visco, V.; Tsukamoto, H.
2010-01-01
For a number of applications, there is a continued interest in the development of rechargeable lithium-based batteries that can effectively operate over a wide temperature range (i.e., -40 to +70 deg C). These applications include powering future planetary rovers for NASA, enabling the next generation of automotive batteries for DOE, and supporting many DOD applications. Li-ion technology has been demonstrated to have good performance over a reasonably wide temperature range with many systems; however, there is still a desire to improve the low temperature rate capacity as well as the high temperature resilience. In the current study, we would like to present recent results obtained with prototype Li-Ion cells (manufactured by Quallion, LLC) which include various wide operating temperature range electrolytes developed by both JPL and Quallion. To demonstrate the viability of the technology, a number of performance tests were carried out, including: (a) discharge rate characterization over a wide temperature range (down to -60 deg C) using various rates (up to 20C rates), (b) discharge rate characterization at low temperatures with low temperature charging, (c) variable temperature cycling over a wide temperature range (-40 to +70 deg C), and (d) cycling at high temperature (50 deg C). As will be discussed, impressive rate capability was observed at low temperatures with many systems, as well as good resilience to high temperature cycling. To augment the performance testing on the prototype cells, a number of experimental three electrodes cells were fabricated (including Li reference electrodes) to allow the determination of the lithium kinetics of the respective electrodes and interfacial properties as a function of temperatures.
Ehlers, Justis P.; Srivastava, Sunil K.; Feiler, Daniel; Noonan, Amanda I.; Rollins, Andrew M.; Tao, Yuankai K.
2014-01-01
Purpose To demonstrate key integrative advances in microscope-integrated intraoperative optical coherence tomography (iOCT) technology that will facilitate adoption and utilization during ophthalmic surgery. Methods We developed a second-generation prototype microscope-integrated iOCT system that interfaces directly with a standard ophthalmic surgical microscope. Novel features for improved design and functionality included improved profile and ergonomics, as well as a tunable lens system for optimized image quality and heads-up display (HUD) system for surgeon feedback. Novel material testing was performed for potential suitability for OCT-compatible instrumentation based on light scattering and transmission characteristics. Prototype surgical instruments were developed based on material testing and tested using the microscope-integrated iOCT system. Several surgical maneuvers were performed and imaged, and surgical motion visualization was evaluated with a unique scanning and image processing protocol. Results High-resolution images were successfully obtained with the microscope-integrated iOCT system with HUD feedback. Six semi-transparent materials were characterized to determine their attenuation coefficients and scatter density with an 830 nm OCT light source. Based on these optical properties, polycarbonate was selected as a material substrate for prototype instrument construction. A surgical pick, retinal forceps, and corneal needle were constructed with semi-transparent materials. Excellent visualization of both the underlying tissues and surgical instrument were achieved on OCT cross-section. Using model eyes, various surgical maneuvers were visualized, including membrane peeling, vessel manipulation, cannulation of the subretinal space, subretinal intraocular foreign body removal, and corneal penetration. Conclusions Significant iterative improvements in integrative technology related to iOCT and ophthalmic surgery are demonstrated. PMID:25141340
2012-07-19
CAPE CANAVERAL, Fla. - Just north of the Kennedy Space Center’s Shuttle Landing Facility, or SLF, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. - Just north of the Kennedy Space Center’s Shuttle Landing Facility runway, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Adrian, Brian; Zollman, Dean; Stevens, Scott
2006-02-01
To demonstrate how state-of-the-art video databases can address issues related to the lack of preparation of many physics teachers, we have created the prototype Physics Teaching Web Advisory (Pathway). Pathway's Synthetic Interviews and related video materials are beginning to provide pre-service and out-of-field in-service teachers with much-needed professional development and well-prepared teachers with new perspectives on teaching physics. The prototype was limited to a demonstration of the systems. Now, with an additional grant we will extend the system and conduct research and evaluation on its effectiveness. This project will provide virtual expert help on issues of pedagogy and content. In particular, the system will convey, by example and explanation, contemporary ideas about the teaching of physics and applications of physics education research. The research effort will focus on the value of contemporary technology to address the continuing education of teachers who are teaching in a field in which they have not been trained.
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, has been set up at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - A crane is being used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - Technicians secure connections for a crane which will be used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - A crane is being used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being set up at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being set up at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - A crane is being used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, arrives at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being moved out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-27
CAPE CANAVERAL, Fla. - A truck transporting NASA's Morpheus lander, a vertical test bed vehicle, arrives at a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for unloading. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out from its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being moved out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out from its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being checked out in a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-27
CAPE CANAVERAL, Fla. - A truck transporting NASA's Morpheus lander, a vertical test bed vehicle, heads towards the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for unloading. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - Support equipment for NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, has been moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported along the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for a short trip to a launch position along the runway. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, has been moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported along the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for a short trip to a launch position along the runway. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being checked out in a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported along the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for a short trip to a launch position along the runway. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being checked out in a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - Technicians set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
NASA Astrophysics Data System (ADS)
Labare, Mathieu
2017-09-01
SoLid is a reactor anti-neutrino experiment where a novel detector is deployed at a minimum distance of 5.5 m from a nuclear reactor core. The purpose of the experiment is three-fold: to search for neutrino oscillations at a very short baseline; to measure the pure 235U neutrino energy spectrum; and to demonstrate the feasibility of neutrino detectors for reactor monitoring. This report presents the unique features of the SoLid detector technology. The technology has been optimised for a high background environment resulting from low overburden and the vicinity of a nuclear reactor. The versatility of the detector technology is demonstrated with a 288 kg detector prototype which was deployed at the BR2 nuclear reactor in 2015. The data presented includes both reactor on, reactor off and calibration measurements. The measurement results are compared with Monte Carlo simulations. The 1.6t SoLid detector is currently under construction, with an optimised design and upgraded material technology to enhance the detector capabilities. Its deployement on site is planned for the begin of 2017 and offers the prospect to resolve the reactor anomaly within about two years.
Integrating Rapid Prototyping into Graphic Communications
ERIC Educational Resources Information Center
Xu, Renmei; Flowers, Jim
2015-01-01
Integrating different science, technology, engineering, and mathematics (STEM) areas can help students learn and leverage both the equipment and expertise at a single school. In comparing graphic communications classes with classes that involve rapid prototyping (RP) technologies like 3D printing, there are sufficient similarities between goals,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durfee, Justin David; Frazier, Christopher Rawls; Bandlow, Alisa
Sandia National Laboratories (Sandia) is in Phase 3 Sustainment of development of a prototype tool, currently referred to as the Contingency Contractor Optimization Tool - Prototype (CCOTP), under the direction of OSD Program Support. CCOT-P is intended to help provide senior Department of Defense (DoD) leaders with comprehensive insight into the global availability, readiness and capabilities of the Total Force Mix. The CCOT-P will allow senior decision makers to quickly and accurately assess the impacts, risks and mitigating strategies for proposed changes to force/capabilities assignments, apportionments and allocations options, focusing specifically on contingency contractor planning. During Phase 2 of themore » program, conducted during fiscal year 2012, Sandia developed an electronic storyboard prototype of the Contingency Contractor Optimization Tool that can be used for communication with senior decision makers and other Operational Contract Support (OCS) stakeholders. Phase 3 used feedback from demonstrations of the electronic storyboard prototype to develop an engineering prototype for planners to evaluate. Sandia worked with the DoD and Joint Chiefs of Staff strategic planning community to get feedback and input to ensure that the engineering prototype was developed to closely align with future planning needs. The intended deployment environment was also a key consideration as this prototype was developed. Initial release of the engineering prototype was done on servers at Sandia in the middle of Phase 3. In 2013, the tool was installed on a production pilot server managed by the OUSD(AT&L) eBusiness Center. The purpose of this document is to specify the CCOT-P engineering prototype platform requirements as of May 2016. Sandia developed the CCOT-P engineering prototype using common technologies to minimize the likelihood of deployment issues. CCOT-P engineering prototype was architected and designed to be as independent as possible of the major deployment components such as the server hardware, the server operating system, the database, and the web server. This document describes the platform requirements, the architecture, and the implementation details of the CCOT-P engineering prototype.« less
Initial Risk Analysis and Decision Making Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, David W.
2012-02-01
Commercialization of new carbon capture simulation initiative (CCSI) technology will include two key elements of risk management, namely, technical risk (will process and plant performance be effective, safe, and reliable) and enterprise risk (can project losses and costs be controlled within the constraints of market demand to maintain profitability and investor confidence). Both of these elements of risk are incorporated into the risk analysis subtask of Task 7. Thus far, this subtask has developed a prototype demonstration tool that quantifies risk based on the expected profitability of expenditures when retrofitting carbon capture technology on a stylized 650 MW pulverized coalmore » electric power generator. The prototype is based on the selection of specific technical and financial factors believed to be important determinants of the expected profitability of carbon capture, subject to uncertainty. The uncertainty surrounding the technical performance and financial variables selected thus far is propagated in a model that calculates the expected profitability of investments in carbon capture and measures risk in terms of variability in expected net returns from these investments. Given the preliminary nature of the results of this prototype, additional work is required to expand the scope of the model to include additional risk factors, additional information on extant and proposed risk factors, the results of a qualitative risk factor elicitation process, and feedback from utilities and other interested parties involved in the carbon capture project. Additional information on proposed distributions of these risk factors will be integrated into a commercial implementation framework for the purpose of a comparative technology investment analysis.« less
Green FLASH: energy efficient real-time control for AO
NASA Astrophysics Data System (ADS)
Gratadour, D.; Dipper, N.; Biasi, R.; Deneux, H.; Bernard, J.; Brule, J.; Dembet, R.; Doucet, N.; Ferreira, F.; Gendron, E.; Laine, M.; Perret, D.; Rousset, G.; Sevin, A.; Bitenc, U.; Geng, D.; Younger, E.; Andrighettoni, M.; Angerer, G.; Patauner, C.; Pescoller, D.; Porta, F.; Dufourcq, G.; Flaischer, A.; Leclere, J.-B.; Nai, A.; Palazzari, P.; Pretet, D.; Rouaud, C.
2016-07-01
The main goal of Green Flash is to design and build a prototype for a Real-Time Controller (RTC) targeting the European Extremely Large Telescope (E-ELT) Adaptive Optics (AO) instrumentation. The E-ELT is a 39m diameter telescope to see first light in the early 2020s. To build this critical component of the telescope operations, the astronomical community is facing technical challenges, emerging from the combination of high data transfer bandwidth, low latency and high throughput requirements, similar to the identified critical barriers on the road to Exascale. With Green Flash, we will propose technical solutions, assess these enabling technologies through prototyping and assemble a full scale demonstrator to be validated with a simulator and tested on sky. With this R&D program we aim at feeding the E-ELT AO systems preliminary design studies, led by the selected first-light instruments consortia, with technological validations supporting the designs of their RTC modules. Our strategy is based on a strong interaction between academic and industrial partners. Components specifications and system requirements are derived from the AO application. Industrial partners lead the development of enabling technologies aiming at innovative tailored solutions with potential wide application range. The academic partners provide the missing links in the ecosystem, targeting their application with mainstream solutions. This increases both the value and market opportunities of the developed products. A prototype harboring all the features is used to assess the performance. It also provides the proof of concept for a resilient modular solution to equip a large scale European scientific facility, while containing the development cost by providing opportunities for return on investment.
Walter, W. David; Anderson, Charles W.; VerCauteren, Kurt C.
2012-01-01
Methods to individually mark and identify free-ranging wildlife without trapping and handling would be useful for a variety of research and management purposes. The use of Passive Integrated Transponder technology could be an efficient method for collecting data for mark-recapture analysis and other strategies for assessing characteristics about populations of various wildlife species. Passive Integrated Transponder tags (PIT) have unique numbered frequencies and have been used to successfully mark and identify mammals. We tested for successful injection of PIT and subsequent functioning of PIT into gelatin blocks using 4 variations of a prototype dart. We then selected the prototype dart that resulted in the least depth of penetration in the gelatin block to assess the ability of PIT to be successfully implanted into muscle tissue of white-tailed deer (Odocoileus virginianus) post-mortem and long-term in live, captive Rocky Mountain elk (Cervus elaphus). The prototype dart with a 12.7 mm (0.5 inch) needle length and no powder charge resulted in the shallowest mean (± SD) penetration depth into gelatin blocks of 27.0 mm (±5.6 mm) with 2.0 psi setting on the Dan-Inject CO2-pressured rifle. Eighty percent of PIT were successfully injected in the muscle mass of white-tailed deer post-mortem with a mean (± SD) penetration depth of 22.2 mm (±3.8 mm; n = 6). We injected PIT successfully into 13 live, captive elk by remote delivery at about 20 m that remained functional for 7 months. We successfully demonstrated that PIT could be remotely delivered in darts into muscle mass of large mammals and remain functional for >6 months. Although further research is warranted to fully develop the technique, remote delivery of PIT technology to large mammals is possible using prototype implant darts. PMID:22984572
NASA Astrophysics Data System (ADS)
Etzel, P. B.; Martin, R.; Romeo, R.; Fesen, R.; Hale, R.; Taghavi, R.; Anthony-Twarog, B. J.; Shawl, S. J.; Twarog, B. A.
2004-12-01
The focus of ULTRA (see poster by Twarog et al.) is a three-year plan to develop and test ultralightweight technology for research applications in astronomy. The goal is to demonstrate that a viable alternative exists to traditional glass-mirror technology by designing, fabricating, and testing a research telescope prototype comprising fiber reinforced plastic (CFRP) materials. To date, several mirror designs have been tested. The main goal in the first year has been to develop a 0.4m diameter mirror and OTA that serve as prototypes for the 1m telescope design. Mirrors of 0.4m diameter have been successfully fabricated which yield diffraction limited images. This poster will include a display of the complete OTA (including optics), optics test results, and astronomical images taken with prototype mirrors. Finite element analysis has been used to evaluate the OTA and mirror designs. Preliminary design details were incorporated in a knowledge-based system. Adaptive Modeling Language (AML), an object oriented programming language developed by Technosoft, Inc., was used to develop a parameterized geometric model of the preliminary design. The system can generate mirrors with radials/circumferentials, tube core substructures, as well as modeling the support structure. Computational fluid dynamics analyses were performed for sweep, inclination and ambient wind speed. Finite element analyses were performed for core density and arrangement, skin thickness, back-surface curvature, spider configuration and arrangement of the OTA, while the loading conditions considered thus far are thermal, inertial, and aerodynamic pressure loads. Experimental tests, including ultrasonic nondestructive evaluations, infrared imaging, modal testing, and wind tunnel tests, have been performed on the first prototype mirror, with the primary goal of validating analytical models and identifying potential manufacturing induced variations to be expected among "like" mirrors. Support of this work by NSF grants AST-0320784 and AST-0321247, NASA grant NCC5-600, Kansas University, and San Diego State University is gratefully acknowledged
Flexible Ultra Moisture Barrier Film for Thin-Film Photovoltaic Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
David M. Dean
2012-10-30
Flexible Thin-film photovoltaic (TFPV) is a low cost alternative to incumbent c-Si PV products as it requires less volume of costly semiconductor materials and it can potentially reduce installation cost. Among the TFPV options, copper indium gallium diselenide (CIGS) has the highest efficiency and is believed to be one of the most attractive candidates to achieve PV cost reduction. However, CIGS cells are very moisture sensitive and require module water vapor transmission rate (WVTR) of less than 1x10-4 gram of water per square meter per day (g-H2O/m2/day). Successful development and commercialization of flexible transparent ultra moisture barrier film is themore » key to enable flexible CIGS TFPV products, and thus enable ultimate PV cost reduction. At DuPont, we have demonstrated at lab scale that we can successfully make polymer-based flexible transparent ultra moisture barrier film by depositing alumina on polymer films using atomic layer deposition (ALD) technology. The layer by layer ALD approach results in uniform and amorphous structure which effectively reduces pinhole density of the inorganic coating on the polymer, and thus allow the fabrication of flexible barrier film with WVTR of 10-5 g-H2O/m2/day. Currently ALD is a time-consuming process suitable only for high-value, relatively small substrates. To successfully commercialize the ALD-on-plastic technology for the PV industry, there is the need to scale up this technology and improve throughput. The goal of this contract work was to build a prototype demonstrating that the ALD technology could be scaled-up for commercial use. Unfortunately, the prototype failed to produce an ultra-barrier film by the close of the project.« less
NASA Technical Reports Server (NTRS)
Kiser, J. Douglas; Bansal, Narottam P.; Szelagowski, James; Sokhey, Jagdish; Heffernan, Tab; Clegg, Joseph; Pierluissi, Anthony; Riedell, Jim; Wyen, Travis; Atmur, Steven;
2015-01-01
LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). Oxide CMC component at both room and elevated temperatures. A TRL˜5 (Component Validation in a Relevant Environment) was attained and the CMC mixer was cleared for ground testing on a Rolls-Royce AE3007 engine for performance evaluation to achieve TRL 6.
Early commercial demonstration of space solar power using ultra-lightweight arrays
NASA Astrophysics Data System (ADS)
Reed, Kevin; Willenberg, Harvey J.
2009-11-01
Space solar power shows great promise for future energy sources worldwide. Most central power stations operate with power capacity of 1000 MW or greater. Due to launch size limitations and specific power of current, rigid solar arrays, the largest solar arrays that have flown in space are around 50 kW. Thin-film arrays offer the promise of much higher specific power and deployment of array sizes up to several MW with current launch vehicles. An approach to early commercial applications for space solar power to distribute power to charge hand-held, mobile battery systems by wireless power transmission (WPT) from thin-film solar arrays in quasi-stationary orbits will be presented. Four key elements to this prototype will be discussed: (1) Space and near-space testing of prototype wireless power transmission by laser and microwave components including WPT space to space and WPT space to near-space HAA transmission demonstrations; (2) distributed power source for recharging hand-held batteries by wireless power transmission from MW space solar power systems; (3) use of quasi-geostationary satellites to generate electricity and distribute it to targeted areas; and (4) architecture and technology for ultra-lightweight thin-film solar arrays with specific energy exceeding 1 kW/kg. This approach would yield flight demonstration of space solar power and wireless power transmission of 1.2 MW. This prototype system will be described, and a roadmap will be presented that will lead to still higher power levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yewondwossen, M; Robar, J; Parsons, D
Purpose: During radiotherapy treatment, lung tumors can display substantial respiratory motion. This motion usually necessitates enlarged treatment margins to provide full tumour coverage. Unfortunately, these margins limit the dose that can be prescribed for tumour control and cause complications to normal tissue. Options for real-time methods of direct detection of tumour position, and particularly those that obviate the need for inserted fiducial markers, are limited. We propose a method of tumor tracking without implanted fiducial markers using a novel fast switching-target that toggles between a FFF copper/tungsten therapy mode and a FFF low-Z target mode for imaging. In this workmore » we demonstrate proof-of-concept of this new technology. Methods: The prototype includes two targets: i) a FFF copper/tungsten target equivalent to that in the Varian 2100 EX 6 MV, and ii) a low-Z (carbon) target with a thickness of 110% of continuous slowing down approximation range (CSDA) at 7 MeV. The two targets can be exchanged with a custom made linear slide and motor-driven actuator. The usefulness of the switching-target concept is demonstrated through experimental BEV Planar images acquired with continual treatment and imaging at a user-defined period. Results: The prototype switching-target demonstrates that two recent advances in linac technology (FFF target for therapy and low-Z target) can be combined with synergy. The switching-target approach offers the capacity for rapid switching between treatment and high-contrast imaging modes, allowing intrafractional tracking, as demonstrated in this work with dynamic breathing phantom. By using a single beam-line, the design is streamlined and may obviate the need for an auxiliary imaging system (e.g., kV OBI.) Conclusion: This switching-target approach is a feasible combination of two current advances in linac technology (FFF target for therapy and a FFF low-Z target) allowing new options in on-line IGRT.« less
Augmented Reality Tower Technology Assessment
NASA Technical Reports Server (NTRS)
Reisman, Ronald J.; Brown, David M.
2009-01-01
Augmented Reality technology may help improve Air Traffic Control Tower efficiency and safety during low-visibility conditions. This paper presents the assessments of five off-duty controllers who shadow-controlled' with an augmented reality prototype in their own facility. Initial studies indicated unanimous agreement that this technology is potentially beneficial, though the prototype used in the study was not adequate for operational use. Some controllers agreed that augmented reality technology improved situational awareness, had potential to benefit clearance, control, and coordination tasks and duties and could be very useful for acquiring aircraft and weather information, particularly aircraft location, heading, and identification. The strongest objections to the prototype used in this study were directed at aircraft registration errors, unacceptable optical transparency, insufficient display performance in sunlight, inadequate representation of the static environment and insufficient symbology.
Electrically Driven Single Phase Thermal Management: STP-H5 EHD Experiment
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2016-01-01
The Electrically Driven Single Phase Thermal Management: STP-H5 iEHDS Experiment is a technology demonstration of prototype proof of concept hardware to establish the feasilibilty and long term operation of this hardware. This is a structural thermal plate that will operate continuous as part of the STP-H5 ISEM experiment for up to 18 months. This presentation discusses the design, fabrication and environmental operational paramertes of the experiment hardware.
Mission Systems Open Architecture Science and Technology (MOAST) program
NASA Astrophysics Data System (ADS)
Littlejohn, Kenneth; Rajabian-Schwart, Vahid; Kovach, Nicholas; Satterthwaite, Charles P.
2017-04-01
The Mission Systems Open Architecture Science and Technology (MOAST) program is an AFRL effort that is developing and demonstrating Open System Architecture (OSA) component prototypes, along with methods and tools, to strategically evolve current OSA standards and technical approaches, promote affordable capability evolution, reduce integration risk, and address emerging challenges [1]. Within the context of open architectures, the program is conducting advanced research and concept development in the following areas: (1) Evolution of standards; (2) Cyber-Resiliency; (3) Emerging Concepts and Technologies; (4) Risk Reduction Studies and Experimentation; and (5) Advanced Technology Demonstrations. Current research includes the development of methods, tools, and techniques to characterize the performance of OMS data interconnection methods for representative mission system applications. Of particular interest are the OMS Critical Abstraction Layer (CAL), the Avionics Service Bus (ASB), and the Bulk Data Transfer interconnects, as well as to develop and demonstrate cybersecurity countermeasures techniques to detect and mitigate cyberattacks against open architecture based mission systems and ensure continued mission operations. Focus is on cybersecurity techniques that augment traditional cybersecurity controls and those currently defined within the Open Mission System and UCI standards. AFRL is also developing code generation tools and simulation tools to support evaluation and experimentation of OSA-compliant implementations.
Exploration Laboratory Analysis
NASA Technical Reports Server (NTRS)
Krihak, M.; Ronzano, K.; Shaw, T.
2016-01-01
The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the down selection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institutes rHEALTH X and Intelligent Optical Systems later flow assays combined with Holomics smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements that will be finalized in FY16. Also, the down selected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.
Uklejewski, Ryszard; Winiecki, Mariusz; Rogala, Piotr; Patalas, Adam
2017-01-01
The multispiked connecting scaffold (MSC-Scaffold) prototype, inspired by the biological system of anchorage of the articular cartilage in the periarticular trabecular bone by means of subchondral bone interdigitations, is the essential innovation in fixation of the bone in resurfacing arthroplasty (RA) endoprostheses. The biomimetic MSC-Scaffold, due to its complex geometric structure, can be manufactured only using additive technology, for example, selective laser melting (SLM). The major purpose of this work is determination of constructional possibilities for the structural-geometric functionalization of SLM-manufactured MSC-Scaffold prototype, compensating the reduced ability-due to the SLM technological limitations-to accommodate the ingrowing bone filling the interspike space of the prototype, which is important for the prototype bioengineering design. Confocal microscopy scanning of components of the SLM-manufactured prototype of total hip resurfacing arthroplasty (THRA) endoprosthesis with the MSC-Scaffold was performed. It was followed by the geometric measurements of a variety of specimens designed as the fragments of the MSC-Scaffold of both THRA endoprosthesis components. The reduced ability to accommodate the ingrowing bone tissue in the SLM-manufactured prototypes versus that in the corresponding CAD models has been quantitatively determined. Obtained results enabled to establish a way of compensatory structural-geometric functionalization, allowing the MSC-Scaffold adequate redesigning and manufacturing in additive SLM technology.
Rogala, Piotr; Patalas, Adam
2017-01-01
The multispiked connecting scaffold (MSC-Scaffold) prototype, inspired by the biological system of anchorage of the articular cartilage in the periarticular trabecular bone by means of subchondral bone interdigitations, is the essential innovation in fixation of the bone in resurfacing arthroplasty (RA) endoprostheses. The biomimetic MSC‐Scaffold, due to its complex geometric structure, can be manufactured only using additive technology, for example, selective laser melting (SLM). The major purpose of this work is determination of constructional possibilities for the structural-geometric functionalization of SLM‐manufactured MSC‐Scaffold prototype, compensating the reduced ability—due to the SLM technological limitations—to accommodate the ingrowing bone filling the interspike space of the prototype, which is important for the prototype bioengineering design. Confocal microscopy scanning of components of the SLM‐manufactured prototype of total hip resurfacing arthroplasty (THRA) endoprosthesis with the MSC‐Scaffold was performed. It was followed by the geometric measurements of a variety of specimens designed as the fragments of the MSC-Scaffold of both THRA endoprosthesis components. The reduced ability to accommodate the ingrowing bone tissue in the SLM‐manufactured prototypes versus that in the corresponding CAD models has been quantitatively determined. Obtained results enabled to establish a way of compensatory structural‐geometric functionalization, allowing the MSC‐Scaffold adequate redesigning and manufacturing in additive SLM technology. PMID:28785159
Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habegger, L. J.; Fernandez, L. E.; Engle, M.
2008-06-30
Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles.more » The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of coagulation and collection of the mercury aerosols in exhaust ducts, which is dependent on the hood and collector configuration, was also evaluated. Prototype demonstration tests verified the theoretical basis for mercury aerosol capture that can be used to optimize the baffle plate design, flow rates, and hood exhaust ducts and plenum to achieve 80% or higher removal efficiencies. Results indicated that installation configuration significantly influences a system's capture efficiency. Configurations that retained existing inlet ducts resulted in system efficiencies of more than 80%, whereas installation configurations without inlet ducts significantly reduced capture efficiency. As an alternative to increasing the volume of inlet ducts, the number of baffle plates in the system baffle assembly could be doubled to increase efficiency. Recommended installation and operation procedures were developed on the basis of these results. A water-based mercury capture system developed in Indonesia for installation in smaller shops was also tested and shown to be effective for certain applications. The cost of construction and installation of the baffle plate prototype was approximately US$400. These costs were reported as acceptable by local gold shop owners and government regulators, and were significantly lower than the cost of an alternate charcoal/copper mesh mercury filter available in the region, which costs about US$10,000. A sampling procedure that consists of a particle filter combined with a vapor analyzer was demonstrated as an effective procedure for analyzing both the aerosol and vapor components of the mercury concentrations. Two key findings for enhancing higher mercury collection were identified. First, the aerosol/vapor mercury emissions must be given sufficient time for the mercury particles to coagulate to a size that can be readily captured by the baffle plates. An interval of at least 6 seconds of transit time between the point of evaporation and contact with the slotted baffle plates is recommended. Some particles will also deposit in the exhaust ducts between the point of evaporation and the baffle plates. Second, the slots in the baffle plates create jets that force the mercury particles to impinge and adhere on downstream surfaces. The baffle plates should closely follow the designs developed for this system to be most effective.« less
Low-cost CWDM transmitter package
NASA Astrophysics Data System (ADS)
Bhandarkar, Navin; Castillega, Jaime
2005-03-01
A low-cost coarse-wavelength-division multiplexer (CWDM) transmitter that combines four channels (wavelengths) in the infrared spectrum (~1310 nm) in a small form-factor un-cooled package is demonstrated. The package utilizes precision molded optics to multiplex beams from four grating-outcoupled surface-emitting (GSE) lasers into a single beam suitable for coupling into multimode fiber. This paper summarizes the optical and opto-mechanical design, fabrication and assembly of prototypes, and optical, thermal and electrical measurement results of the prototypes. This unique design enables multiplexing of wavelengths without the use of filters, waveguides, couplers and fiber splicing. Commercial fabrication and alignment technology is used to manufacture the package, resulting in a more robust, reliable and low-cost transmitter. The transmitter package is enabled by the unique characteristics of the long-wavelength GSE laser.
Digitally switchable multi-focal lens using freeform optics.
Wang, Xuan; Qin, Yi; Hua, Hong; Lee, Yun-Han; Wu, Shin-Tson
2018-04-16
Optical technologies offering electrically tunable optical power have found a broad range of applications, from head-mounted displays for virtual and augmented reality applications to microscopy. In this paper, we present a novel design and prototype of a digitally switchable multi-focal lens (MFL) that offers the capability of rapidly switching the optical power of the system among multiple foci. It consists of a freeform singlet and a customized programmable optical shutter array (POSA). Time-multiplexed multiple foci can be obtained by electrically controlling the POSA to switch the light path through different segments of the freeform singlet rapidly. While this method can be applied to a broad range of imaging and display systems, we experimentally demonstrate a proof-of-concept prototype for a multi-foci imaging system.
Artificial intelligence for multi-mission planetary operations
NASA Technical Reports Server (NTRS)
Atkinson, David J.; Lawson, Denise L.; James, Mark L.
1990-01-01
A brief introduction is given to an automated system called the Spacecraft Health Automated Reasoning Prototype (SHARP). SHARP is designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for evaluation of the prototype in a real-time operations setting during the Voyager spacecraft encounter with Neptune in August, 1989. The preliminary results of the SHARP project and plans for future application of the technology are discussed.
35t Prototype Detector for Experiment at Long Base Line Neutrino Facility (ELBNF) Far Detector
NASA Astrophysics Data System (ADS)
Santucci, Gabriel; Elbnf Collaboration
2015-04-01
The 35ton prototype detector is a Liquid Argon Time Projection Chamber (LAr TPC) utilizing a membrane cryostat. It serves as a prototype for testing technology proposed for the ELBNF far detector. The construction of the prototype is an essential part of the ELBNF project due to the large amount of new technologies introduced for the far detector. In early 2014, it was shown that the membrane cryostat technology was able to reach and maintain the required LAr purity and an electron lifetime of 2.5 ms was achieved. The goals for the next phase include the installation of a fully functional TPC using the novel designs for the ELBNF far detector as much as possible. This includes the installation of the cold electronics, scintillation photon detectors and multiple Anode Plane Arrays with wrapped wires. In this talk I will review the status of the 35t prototype detector and describe what has been accomplished during 2014 and early 2015, including the commissioning phase and the early stages of data taking from cosmic-rays.
Menezes, Pedro Monteiro; Cook, Timothy Wayne; Cavalini, Luciana Tricai
2016-01-01
To present the technical background and the development of a procedure that enriches the semantics of Health Level Seven version 2 (HL7v2) messages for software-intensive systems in telemedicine trauma care. This study followed a multilevel model-driven approach for the development of semantically interoperable health information systems. The Pre-Hospital Trauma Life Support (PHTLS) ABCDE protocol was adopted as the use case. A prototype application embedded the semantics into an HL7v2 message as an eXtensible Markup Language (XML) file, which was validated against an XML schema that defines constraints on a common reference model. This message was exchanged with a second prototype application, developed on the Mirth middleware, which was also used to parse and validate both the original and the hybrid messages. Both versions of the data instance (one pure XML, one embedded in the HL7v2 message) were equally validated and the RDF-based semantics recovered by the receiving side of the prototype from the shared XML schema. This study demonstrated the semantic enrichment of HL7v2 messages for intensive-software telemedicine systems for trauma care, by validating components of extracts generated in various computing environments. The adoption of the method proposed in this study ensures the compliance of the HL7v2 standard in Semantic Web technologies.
Ultra-Wideband Time-Difference-of-Arrival High Resolution 3D Proximity Tracking System
NASA Technical Reports Server (NTRS)
Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dekome, Kent; Dusl, John
2010-01-01
This paper describes a research and development effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar./Mars rovers and astronauts during early exploration missions when satellite navigation systems are not available. U IATB impulse radio (UWB-IR) technology is exploited in the design and implementation of the prototype location and tracking system. A three-dimensional (3D) proximity tracking prototype design using commercially available UWB products is proposed to implement the Time-Difference- Of-Arrival (TDOA) tracking methodology in this research effort. The TDOA tracking algorithm is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. Simulations show that the TDOA algorithm can achieve the fine tracking resolution with low noise TDOA estimates for close-in tracking. Field tests demonstrated that this prototype UWB TDOA High Resolution 3D Proximity Tracking System is feasible for providing positioning-awareness information in a 3D space to a robotic control system. This 3D tracking system is developed for a robotic control system in a facility called "Moonyard" at Honeywell Defense & System in Arizona under a Space Act Agreement.
The moving-ring field-reversed mirror prototype reactor
NASA Astrophysics Data System (ADS)
Smith, A. C., Jr.; Carlson, G. A.; Fleischmann, H. H.; Grossman, W., Jr.; Kammash, T.; Schultz, K. R.; Woodall, D. M.
1981-03-01
A prototype fusion reactor was designed based on magnetic field reversed plasma confinement. A set of physics, technology, and mechanical design criteria were developed in order to make this concept attractive. Six major criteria guide the commercial prototype design. The prototype must: (1) produce net electricity decisively P sub net 70% of P sub gross; (2) scale to an economical commercial plant and have small physical size; (3) have all features required of a correcial upgrade plant (H-3 breeding, etc.); (4) minimize exotic technology and maintenance complexity; (5) promise significantly lower safety hazards than fission plants (environmentally and socially acceptable); and (6) be modular in design to permit repetitive production of components.
The utility of polarized heliospheric imaging for space weather monitoring.
DeForest, C E; Howard, T A; Webb, D F; Davies, J A
2016-01-01
A polarizing heliospheric imager is a critical next generation tool for space weather monitoring and prediction. Heliospheric imagers can track coronal mass ejections (CMEs) as they cross the solar system, using sunlight scattered by electrons in the CME. This tracking has been demonstrated to improve the forecasting of impact probability and arrival time for Earth-directed CMEs. Polarized imaging allows locating CMEs in three dimensions from a single vantage point. Recent advances in heliospheric imaging have demonstrated that a polarized imager is feasible with current component technology.Developing this technology to a high technology readiness level is critical for space weather relevant imaging from either a near-Earth or deep-space mission. In this primarily technical review, we developpreliminary hardware requirements for a space weather polarizing heliospheric imager system and outline possible ways to flight qualify and ultimately deploy the technology operationally on upcoming specific missions. We consider deployment as an instrument on NOAA's Deep Space Climate Observatory follow-on near the Sun-Earth L1 Lagrange point, as a stand-alone constellation of smallsats in low Earth orbit, or as an instrument located at the Sun-Earth L5 Lagrange point. The critical first step is the demonstration of the technology, in either a science or prototype operational mission context.
Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/M Range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Juwen; /SLAC; Lewandowski, James
A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of < 5 x 10{sup -7}/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control,more » tuning and RF characterization will be discussed.« less
NASA Redox system development project status
NASA Technical Reports Server (NTRS)
Nice, A. W.
1981-01-01
NASA-Redox energy storage systems developed for solar power applications and utility load leveling applications are discussed. The major objective of the project is to establish the technology readiness of Redox energy storage for transfer to industry for product development and commercialization by industry. The approach is to competitively contract to design, build, and test Redox systems progressively from preprototype to prototype multi-kW and megawatt systems and conduct supporting technology advancement tasks. The Redox electrode and membrane are fully adequate for multi-kW solar related applications and the viability of the Redox system technology as demonstrated for multi-kW solar related applications. The status of the NASA Redox Storage System Project is described along with the goals and objectives of the project elements.
Integrated Radio and Optical Communication (iROC)
NASA Technical Reports Server (NTRS)
Raible, Daniel; Romanofsky, Robert; Pease, Gary; Kacpura, Thomas
2016-01-01
This is an overview of the Integrated Radio and Optical Communication (iROC) Project for Space Communication and Navigation Industry Days. The Goal is to develop and demonstrate new, high payoff space technologies that will promote mission utilization of optical communications, thereby expanding the capabilities of NASA's exploration, science, and discovery missions. This is an overview that combines the paramount features of select deep space RF and optical communications elements into an integrated system, scalable from deep space to near earth. It will realize Ka-band RF and 1550 nanometer optical capability. The approach is to prototype and demonstrate performance of key components to increase to TRL-5, leading to integrated hybrid communications system demonstration to increase to TRL-5, leading to integrated hybrid communications system demonstration.
Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range
NASA Technical Reports Server (NTRS)
Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.
2012-01-01
Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.
IMMR Phase 1 Prototyping Plan Inputs
NASA Technical Reports Server (NTRS)
Vowell, C. W.; Johnson-Throop, Kathy; Smith, Bryon; Darcy, Jeannette
2006-01-01
This viewgraph presentation reviews the phase I plan of the prototype of the IMMR by the Multilateral Medical Operations Panel (MMOP) Medical Informatics & Technology (MIT) Working Group. It reviews the Purpose of IMMR Prototype Phase 1 (IPP1); the IPP1 Plan Overview, the IMMR Prototype Phase 1 Plan for PDDs and MIC and MIC-DDs, Plan for MICs, a nd the IPP1 objectives
Development of an Acoustic Sensor On-Line Gas Temperature Measurement in Gasifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Ariessohn
2008-06-30
This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology,more » and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. Following the completion of the initial 3 year project, several continuations were awarded by the Department of Energy to allow Enertechnix to conduct extended testing of the sensor at the Wabash River facility. In February, 2008 the sensor was installed on the gasifier in preparation for a long-term test. During the initial testing of the sensor a stainless steel tube on the sensor failed and allowed syngas to escape. The syngas self-ignited and the ensuing small fire damaged some of the components on the sensor. There was no damage to the gasifier or other equipment and no injuries resulted from this incident. Two meetings were held to identify the root causes of the incident-one at Wabash River and one at Enertechnix. A list of recommended improvements that would have addressed the causes of the incident was created and presented to the Department of Energy on May 2, 2008. However, the DOE decided not to pursue these improvements and terminated the project. This report describes all of the activities conducted during the project and reports the findings of each activity in detail. The investigation of potential sound generation and coupling methods led to the selection of a reflected shock method which has been developed into a functioning prototype device. The principles of operation of this device and its performance characteristics are described in the report. Modeling of the attenuation of sound by suspended particles and by interaction of the sound pulses with the high temperature syngas inside the gasifier was conducted and the predictions of those models were used to determine the required sound pulse intensity to allow the sound pulses to be detected after passage through the gasifier environment. These modeling results are presented in this report. A study of the likely spatial and temporal variability of gas composition inside the gasifier was performed and the results of that study was used to predict the impact of that variability on the accuracy of the acoustic temperature method. These results are reported here. A design for a port rodding mechanism was developed to deal with potential slagging issues and was incorporated into the prototype sensor. This port rodding mechanism operated flawlessly during the field testing, but because these tests were performed in a region of the gasifier that experiences little slagging, the effectiveness of the rodding mechanism in dealing with highly slagging conditions was not fully demonstrated. This report describes the design and operation of the automated Gasifier Acoustic Pyrometer (autoGAP) which was tested at the Wabash River facility. The results of the tests are reported and analyzed in detail. All of the objectives of the initial R&D project were achieved and a field prototype acoustic pyrometer sensor was successfully tested at the Wabash River gasifier plant.« less
3D/Additive Printing Manufacturing: A Brief History and Purchasing Guide
ERIC Educational Resources Information Center
Hughes, Bill; Wilson, Greg
2016-01-01
3D printing is recognized as a collection of technologies known as rapid prototyping, solid freeform fabrication, and most commonly, additive manufacturing (AM). With these emerging technologies it is possible to print (but not limited to): architectural models, discontinued car-part foundry patterns, industry-wide prototypes, human tissues, the…
Using Imperceptible Digital Watermarking Technologies To Transform Educational Media: A Prototype.
ERIC Educational Resources Information Center
McGraw, Tammy M.; Burdette, Krista; Seale, Virginia B.; Ross, John D.
The Institute for the Advancement of Emerging Technologies in Education (IAETE) at AEL recently explored the potential benefits and limitations of traditional print-based textbooks and many e-book alternatives. Having considered these media, IAETE created prototype interactive textbook pages that retain the salient aspects of print media while…
End effector monitoring system: An illustrated case of operational prototyping
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Land, Sherry A.; Thronesbery, Carroll
1994-01-01
Operational prototyping is introduced to help developers apply software innovations to real-world problems, to help users articulate requirements, and to help develop more usable software. Operational prototyping has been applied to an expert system development project. The expert system supports fault detection and management during grappling operations of the Space Shuttle payload bay arm. The dynamic exchanges among operational prototyping team members are illustrated in a specific prototyping session. We discuss the requirements for operational prototyping technology, types of projects for which operational prototyping is best suited and when it should be applied to those projects.
NASA Technical Reports Server (NTRS)
Dominick, Jeffrey; Bull, John; Healey, Kathleen J.
1990-01-01
The NASA Systems Autonomy Demonstration Project (SADP) was initiated in response to Congressional interest in Space station automation technology demonstration. The SADP is a joint cooperative effort between Ames Research Center (ARC) and Johnson Space Center (JSC) to demonstrate advanced automation technology feasibility using the Space Station Freedom Thermal Control System (TCS) test bed. A model-based expert system and its operator interface were developed by knowledge engineers, AI researchers, and human factors researchers at ARC working with the domain experts and system integration engineers at JSC. Its target application is a prototype heat acquisition and transport subsystem of a space station TCS. The demonstration is scheduled to be conducted at JSC in August, 1989. The demonstration will consist of a detailed test of the ability of the Thermal Expert System to conduct real time normal operations (start-up, set point changes, shut-down) and to conduct fault detection, isolation, and recovery (FDIR) on the test article. The FDIR will be conducted by injecting ten component level failures that will manifest themselves as seven different system level faults. Here, the SADP goals, are described as well as the Thermal Control Expert System that has been developed for demonstration.
Multi-Speed Transmission For Commercial Delivery Medium Duty PEDVs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavdar, Bulent
Successful completion of the proposed project will set a course for improving quality of life by overcoming key challenges in the gearbox for commercial-delivery, medium-duty, plug-in electric drive vehicles: It will reduce US dependency on foreign oil through the use of electric driven propulsion instead of fuel driven. It will reduce health risks by replacing tailpipe emissions in densely populated city centers. Finally, it will improve the performance-cost basis to meet or exceed the expectations of the targeted medium duty vehicle fleet owners and the independent customers. The proposed multi-speed transmission will narrow motor operation to the peak efficiency region,more » thereby increasing the electric powertrain efficiency to help close the range gap. Further, it will enhance customer satisfaction by improving vehicle acceleration, top speed and gradeability over the baseline. The project was conducted in three budget periods: In BP1: Technology Development, High-level vehicle powertrain models were used to optimize candidate transmission architectures and ratios along with a variety of traction motor characteristics for concept selection. The detailed driveline designs and component dynamics were investigated to meet medium-duty EV requirements; In BP2: Technology Development and Prototype Demonstration, The modeling and simulations with multi-speed transmissions were extended to other MD and HD EV platforms. Clean sheet design of a compact, lightweight, flexible, and modular, four-speed transmission was completed. Development of novel shifting and controls strategies were started and procurement of the prototype transmission and the controller hardware was begun; In BP3: Technology Integration, Testing, and Demonstration, Prototyping the four-speed automated mechanical transmission was completed. The transmission controls system and software development and preliminary gearbox dyno tests were done at Eaton. ORNL conducted integrated powertrain HIL tests. One of the prototype units was fully integrated into a Proterra BE35 demonstration electric bus. The shift control strategy was fine-tuned on the integrated vehicle at Eaton Marshall Proving Grounds. NREL tested the vehicle and validated the performance gains. Simulations predicted up to 20% increase in system energy efficiency depending on drive cycles, a top speed of greater than70 mph on flat road, 40% faster acceleration and a doubled gradeability with four-speed transmission as compared to the baseline EVs. Chassis Dyno Tests at NREL verified the simulation results of Eaton team and the HIL test results of ORNL team. The new four-speed EV transmission is efficient, reliable, modular, scalable, light weight, small size, and will be affordable. Furthermore, four-speed transmission enables downsizing of motor, battery and final drive, thereby reducing the total system cost.« less
Trajectory correction propulsion for TOPS
NASA Technical Reports Server (NTRS)
Long, H. R.; Bjorklund, R. A.
1972-01-01
A blowdown-pressurized hydrazine propulsion system was selected to provide trajectory correction impulse for outer planet flyby spacecraft as the result of cost/mass/reliability tradeoff analyses. Present hydrazine component and system technology and component designs were evaluated for application to the Thermoelectric Outer Planet Spacecraft (TOPS); while general hydrazine technology was adequate, component design changes were deemed necessary for TOPS-type missions. A prototype hydrazine propulsion system was fabricated and fired nine times for a total of 1600 s to demonstrate the operation and performance of the TOPS propulsion configuration. A flight-weight trajectory correction propulsion subsystem (TCPS) was designed for the TOPS based on actual and estimated advanced components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Althouse, P.; McKannay, R. H.
This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and ISOFLEX USA (ISOFLEX), to 1) develop and test a prototype waste destruction system ("System") using AC plasma torch technology to break down and drastically reduce the volume of Carbon-14 (C-14) contaminated medical laboratory wastes while satisfying all environmental regulations, and 2) develop and demonstrate methods for recovering 99%+ of the carbon including the C-14 allowing for possible re-use as a tagging and labeling tool in the biomedical industry.
A simple, low-cost conductive composite material for 3D printing of electronic sensors.
Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A
2012-01-01
3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.
Display technologies for augmented reality
NASA Astrophysics Data System (ADS)
Lee, Byoungho; Lee, Seungjae; Jang, Changwon; Hong, Jong-Young; Li, Gang
2018-02-01
With the virtue of rapid progress in optics, sensors, and computer science, we are witnessing that commercial products or prototypes for augmented reality (AR) are penetrating into the consumer markets. AR is spotlighted as expected to provide much more immersive and realistic experience than ordinary displays. However, there are several barriers to be overcome for successful commercialization of AR. Here, we explore challenging and important topics for AR such as image combiners, enhancement of display performance, and focus cue reproduction. Image combiners are essential to integrate virtual images with real-world. Display performance (e.g. field of view and resolution) is important for more immersive experience and focus cue reproduction may mitigate visual fatigue caused by vergence-accommodation conflict. We also demonstrate emerging technologies to overcome these issues: index-matched anisotropic crystal lens (IMACL), retinal projection displays, and 3D display with focus cues. For image combiners, a novel optical element called IMACL provides relatively wide field of view. Retinal projection displays may enhance field of view and resolution of AR displays. Focus cues could be reconstructed via multi-layer displays and holographic displays. Experimental results of our prototypes are explained.
Integrated modeling of advanced optical systems
NASA Astrophysics Data System (ADS)
Briggs, Hugh C.; Needels, Laura; Levine, B. Martin
1993-02-01
This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.
Miller, Joshua D; Bagby, R Michael; Pilkonis, Paul A
2005-12-01
Recent studies have demonstrated that personality disorders (PDs) can be assessed via a prototype-matching technique, which enables researchers and clinicians to match an individual's five-factor model (FFM) personality profile to an expert-generated prototype. The current study examined the relations between these prototype scores, using interview and self-report data, and PD symptoms in an outpatient sample (N = 115). Both sets of PD prototype scores demonstrated significant convergent validity with PD symptom counts, suggesting that the FFM PD prototype scores are appropriate for use with both sources of data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heady, R.; Luger, G.F.; Maccabe, A.B.
1991-05-15
This paper presents the implementation of a prototype network level intrusion detection system. The prototype system monitors base level information in network packets (source, destination, packet size, time, and network protocol), learning the normal patterns and announcing anomalies as they occur. The goal of this research is to determine the applicability of current intrusion detection technology to the detection of network level intrusions. In particular, the authors are investigating the possibility of using this technology to detect and react to worm programs.
NASA Astrophysics Data System (ADS)
Mølgaard, Lasse L.; Buus, Ole T.; Larsen, Jan; Babamoradi, Hamid; Thygesen, Ida L.; Laustsen, Milan; Munk, Jens Kristian; Dossi, Eleftheria; O'Keeffe, Caroline; Lässig, Lina; Tatlow, Sol; Sandström, Lars; Jakobsen, Mogens H.
2017-05-01
We present a data-driven machine learning approach to detect drug- and explosives-precursors using colorimetric sensor technology for air-sampling. The sensing technology has been developed in the context of the CRIM-TRACK project. At present a fully- integrated portable prototype for air sampling with disposable sensing chips and automated data acquisition has been developed. The prototype allows for fast, user-friendly sampling, which has made it possible to produce large datasets of colorimetric data for different target analytes in laboratory and simulated real-world application scenarios. To make use of the highly multi-variate data produced from the colorimetric chip a number of machine learning techniques are employed to provide reliable classification of target analytes from confounders found in the air streams. We demonstrate that a data-driven machine learning method using dimensionality reduction in combination with a probabilistic classifier makes it possible to produce informative features and a high detection rate of analytes. Furthermore, the probabilistic machine learning approach provides a means of automatically identifying unreliable measurements that could produce false predictions. The robustness of the colorimetric sensor has been evaluated in a series of experiments focusing on the amphetamine pre-cursor phenylacetone as well as the improvised explosives pre-cursor hydrogen peroxide. The analysis demonstrates that the system is able to detect analytes in clean air and mixed with substances that occur naturally in real-world sampling scenarios. The technology under development in CRIM-TRACK has the potential as an effective tool to control trafficking of illegal drugs, explosive detection, or in other law enforcement applications.
NASA Technical Reports Server (NTRS)
Logan, Cory; Maida, James; Goldsby, Michael; Clark, Jim; Wu, Liew; Prenger, Henk
1993-01-01
The Space Station Freedom (SSF) Data Management System (DMS) consists of distributed hardware and software which monitor and control the many onboard systems. Virtual environment and off-the-shelf computer technologies can be used at critical points in project development to aid in objectives and requirements development. Geometric models (images) coupled with off-the-shelf hardware and software technologies were used in The Space Station Mockup and Trainer Facility (SSMTF) Crew Operational Assessment Project. Rapid prototyping is shown to be a valuable tool for operational procedure and system hardware and software requirements development. The project objectives, hardware and software technologies used, data gained, current activities, future development and training objectives shall be discussed. The importance of defining prototyping objectives and staying focused while maintaining schedules are discussed along with project pitfalls.
High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel A. Mosher; Xia Tang; Ronald J. Brown
2007-07-27
This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchangermore » optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.« less
2006-06-01
Deitel , Harvey M., Paul J. Deitel , and Andrew B. Goldberg. 2004. Internet & World Wide Web: How to Program . Third Edition. Upper Saddle River...mobile devices. The proposed design will result in a proof-of-concept solution that demonstrates a way for users to specify how they wish to ...ORGANIZATION OF THE THESIS The following chapters in this thesis explore various technologies and how they may be implemented to support IMAS
The Evolution of High Temperature Gas Sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzon, F. H.; Brosha, E. L.; Mukundan, R.
2001-01-01
Gas sensor technology based on high temperature solid electrolytes is maturing rapidly. Recent advances in metal oxide catalysis and thin film materials science has enabled the design of new electrochemical sensors. We have demonstrated prototype amperometric oxygen sensors, nernstian potentiometric oxygen sensors that operate in high sulfur environments, and hydrocarbon and carbon monoxide sensing mixed potentials sensors. Many of these devices exhibit part per million sensitivities, response times on the order of seconds and excellent long-term stability.
Advanced techniques for the storage and use of very large, heterogeneous spatial databases
NASA Technical Reports Server (NTRS)
Peuquet, Donna J.
1987-01-01
Progress is reported in the development of a prototype knowledge-based geographic information system. The overall purpose of this project is to investigate and demonstrate the use of advanced methods in order to greatly improve the capabilities of geographic information system technology in the handling of large, multi-source collections of spatial data in an efficient manner, and to make these collections of data more accessible and usable for the Earth scientist.
Helios Prototype on lakebed during ground check of electric motors
NASA Technical Reports Server (NTRS)
1999-01-01
The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. Helios is one of several remotely-piloted aircraft-also known as uninhabited aerial vehicles or UAV's-being developed as technology demonstrators by several small airframe manufacturers under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Developed by AeroVironment, Inc., of Monrovia, Calif., the unique craft is intended to demonstrate two key missions: the ability to reach and sustain horizontal flight at 100,000 feet altitude on a single-day flight, and to maintain flight above 50,000 feet altitude for at least four days, both on electrical power derived from non-polluting solar energy. During later flights, AeroVironment's flight test team will evaluate new motor-control software which may allow the pitch of the aircraft-the nose-up or nose-down attitude in relation to the horizon-to be controlled entirely by the motors. If successful, productions versions of the Helios could eliminate the elevators on the wing's trailing edge now used for pitch control, saving weight and increasing the area of the wing available for installation of solar cells.
Development and demonstration of a telerobotic excavation system
NASA Technical Reports Server (NTRS)
Burks, Barry L.; Thompson, David H.; Killough, Stephen M.; Dinkins, Marion A.
1994-01-01
Oak Ridge National Laboratory is developing remote excavation technologies for the Department of Energy's Office (DOE) of Technology Development, Robotics Technology Development Program, and also for the Department of Defense (DOD) Project Manager for Ammunition Logistics. This work is being done to meet the need for remote excavation and removal of radioactive and contaminated buried waste at several DOE sites and unexploded ordnance at DOD sites. System requirements are based on the need to uncover and remove waste from burial sites in a way that does not cause unnecessary personnel exposure or additional environmental contamination. Goals for the current project are to demonstrate dexterous control of a backhoe with force feedback and to implement robotic operations that will improve productivity. The Telerobotic Small Emplacement Excavator is a prototype system that incorporates the needed robotic and telerobotic capabilities on a commercially available platform. The ability to add remote dexterous teleoperation and robotic operating modes is intended to be adaptable to other commercially available excavator systems.
Evaluation of Candidate Millimeter Wave Sensors for Synthetic Vision
NASA Technical Reports Server (NTRS)
Alexander, Neal T.; Hudson, Brian H.; Echard, Jim D.
1994-01-01
The goal of the Synthetic Vision Technology Demonstration Program was to demonstrate and document the capabilities of current technologies to achieve safe aircraft landing, take off, and ground operation in very low visibility conditions. Two of the major thrusts of the program were (1) sensor evaluation in measured weather conditions on a tower overlooking an unused airfield and (2) flight testing of sensor and pilot performance via a prototype system. The presentation first briefly addresses the overall technology thrusts and goals of the program and provides a summary of MMW sensor tower-test and flight-test data collection efforts. Data analysis and calibration procedures for both the tower tests and flight tests are presented. The remainder of the presentation addresses the MMW sensor flight-test evaluation results, including the processing approach for determination of various performance metrics (e.g., contrast, sharpness, and variability). The variation of the very important contrast metric in adverse weather conditions is described. Design trade-off considerations for Synthetic Vision MMW sensors are presented.
Indoor Navigation by People with Visual Impairment Using a Digital Sign System
Legge, Gordon E.; Beckmann, Paul J.; Tjan, Bosco S.; Havey, Gary; Kramer, Kevin; Rolkosky, David; Gage, Rachel; Chen, Muzi; Puchakayala, Sravan; Rangarajan, Aravindhan
2013-01-01
There is a need for adaptive technology to enhance indoor wayfinding by visually-impaired people. To address this need, we have developed and tested a Digital Sign System. The hardware and software consist of digitally-encoded signs widely distributed throughout a building, a handheld sign-reader based on an infrared camera, image-processing software, and a talking digital map running on a mobile device. Four groups of subjects—blind, low vision, blindfolded sighted, and normally sighted controls—were evaluated on three navigation tasks. The results demonstrate that the technology can be used reliably in retrieving information from the signs during active mobility, in finding nearby points of interest, and following routes in a building from a starting location to a destination. The visually impaired subjects accurately and independently completed the navigation tasks, but took substantially longer than normally sighted controls. This fully functional prototype system demonstrates the feasibility of technology enabling independent indoor navigation by people with visual impairment. PMID:24116156
Jiang, Guoqian; Solbrig, Harold R; Chute, Christopher G
2011-01-01
A source of semantically coded Adverse Drug Event (ADE) data can be useful for identifying common phenotypes related to ADEs. We proposed a comprehensive framework for building a standardized ADE knowledge base (called ADEpedia) through combining ontology-based approach with semantic web technology. The framework comprises four primary modules: 1) an XML2RDF transformation module; 2) a data normalization module based on NCBO Open Biomedical Annotator; 3) a RDF store based persistence module; and 4) a front-end module based on a Semantic Wiki for the review and curation. A prototype is successfully implemented to demonstrate the capability of the system to integrate multiple drug data and ontology resources and open web services for the ADE data standardization. A preliminary evaluation is performed to demonstrate the usefulness of the system, including the performance of the NCBO annotator. In conclusion, the semantic web technology provides a highly scalable framework for ADE data source integration and standard query service.
NASA Astrophysics Data System (ADS)
Belz, Stefan; Bretschneider, Jens; Nathanson, Emil; Buchert, Melanie
Long-duration and far-distant missions in human spaceflight have higher requirements on life support systems (LSS) technologies than for missions into low Earth orbit (LEO). LSS technologies have to ensure that humans can survive, live, and work in space. Enhancements of existing technologies, new technological developments and synergetic components integration help to close the oxygen, water and carbon loops. For these reasons, the approach of a synergetic integration of Polymer Electrolyte Membrane Fuel Cells (PEFC), Polymer Electrolyte Membrane Electrolyzers (PEL) and Photobioreactors (PBR) for microalgae cultivation into the LSS is investigated. It is demonstrated in which mission scenarii the application of PEFC, PEL, and PBR are useful in terms of mass, reliability, and cycle closures. The paper represents the current status of research at the Institute of Space Systems (IRS) of University of Stuttgart on PEFC, PEL, and PBR development. A final configuration of a prototype of a PEFC system includes the gas, water, and thermal management. The PEL is a state-of-the-art technology for space application, but the specific requirements by a synergetic integration are focused. A prototype configuration of a PBR system, which was tested under microgravity conditions in a parabolic experiment, consists of a highly sophisticated cultivation chamber, adapted sensorics, pumps, nutrients supply and harvesting unit. Additionally, the latest results of the cultivation of the microalgae species Chlorella vulgaris and Scenedesmus obliquus in the laboratories of the IRS are represented. Both species are robust, nutrient-rich for human diet. An outlook of the next steps is given for in-orbit verification.
The Advanced Technology Development Center (ATDC)
NASA Technical Reports Server (NTRS)
Clements, G. R.; Willcoxon, R. (Technical Monitor)
2001-01-01
NASA is building the Advanced Technology Development Center (ATDC) to provide a 'national resource' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets; this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area; a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount; 'Iron Rocket' Test Demonstrator; a Processing Facility with a Checkout and Control System; and Future Infrastructure Developments. Initial ATDC development will be completed in 2006.
Recent development on computer aided tissue engineering--a review.
Sun, Wei; Lal, Pallavi
2002-02-01
The utilization of computer-aided technologies in tissue engineering has evolved in the development of a new field of computer-aided tissue engineering (CATE). This article reviews recent development and application of enabling computer technology, imaging technology, computer-aided design and computer-aided manufacturing (CAD and CAM), and rapid prototyping (RP) technology in tissue engineering, particularly, in computer-aided tissue anatomical modeling, three-dimensional (3-D) anatomy visualization and 3-D reconstruction, CAD-based anatomical modeling, computer-aided tissue classification, computer-aided tissue implantation and prototype modeling assisted surgical planning and reconstruction.
Low-Cost Inkjet Printing Technology for the Rapid Prototyping of Transducers
Andò, Bruno; Baglio, Salvatore; Bulsara, Adi R.; Emery, Teresa; Marletta, Vincenzo; Pistorio, Antonio
2017-01-01
Recently, there has been an upsurge in efforts dedicated to developing low-cost flexible electronics by exploiting innovative materials and direct printing technologies. This interest is motivated by the need for low-cost mass-production, shapeable, and disposable devices, and the rapid prototyping of electronics and sensors. This review, following a short overview of main printing processes, reports examples of the development of flexible transducers through low-cost inkjet printing technology. PMID:28368318
Lessons Learned from a Collaborative Sensor Web Prototype
NASA Technical Reports Server (NTRS)
Ames, Troy; Case, Lynne; Krahe, Chris; Hess, Melissa; Hennessy, Joseph F. (Technical Monitor)
2002-01-01
This paper describes the Sensor Web Application Prototype (SWAP) system that was developed for the Earth Science Technology Office (ESTO). The SWAP is aimed at providing an initial engineering proof-of-concept prototype highlighting sensor collaboration, dynamic cause-effect relationship between sensors, dynamic reconfiguration, and remote monitoring of sensor webs.
Characterization of a prototype neutron portal monitor detector
NASA Astrophysics Data System (ADS)
Nakhoul, Nabil
The main objective of this thesis is to provide characterization measurements on a prototype neutron portal monitor (NPM) detector constructed at the University of Massachusetts Lowell. NPM detectors are deployed at all United States border crossings and shipping ports to stop the illicit transfer of weapons-grade plutonium (WGPu) into our country. This large prototype detector with its 0.93 square meter face area is based on thermal neutron capture in 6Li as an alternate technology to the current, very expensive, 3He-based NPM. A neutron detection efficiency of 27.5 % is measured with a 252Cf source which has a spontaneous fission neutron spectrum very similar to that of 240Pu in WGPu. Measurements with an intense 137Cs source establish the extreme insensitivity of the prototype NPM to gamma-ray backgrounds with only one additional count registered for 1.1 million incident gamma rays. This detector also has the ability to locate neutron sources to within an angle of a few degrees. Its sensitivity is further demonstrated by discovering in a few-second measurement the presence of a 2 curie PuBe neutron source even at a distance of 95.5 feet. This thesis also covers in considerable detail the design features that give rise to both a high intrinsic neutron detection efficiency and an extreme gamma-ray insensitivity.
NASA Astrophysics Data System (ADS)
McGuire, N. D.; Ewen, R. J.; de Lacy Costello, B.; Garner, C. E.; Probert, C. S. J.; Vaughan, K.; Ratcliffe, N. M.
2014-06-01
Rapid volatile profiling of stool sample headspace was achieved using a combination of short multi-capillary chromatography column (SMCC), highly sensitive heated metal oxide semiconductor sensor and artificial neural network software. For direct analysis of biological samples this prototype offers alternatives to conventional gas chromatography (GC) detectors and electronic nose technology. The performance was compared to an identical instrument incorporating a long single capillary column (LSCC). The ability of the prototypes to separate complex mixtures was assessed using gas standards and homogenized in house ‘standard’ stool samples, with both capable of detecting more than 24 peaks per sample. The elution time was considerably faster with the SMCC resulting in a run time of 10 min compared to 30 min for the LSCC. The diagnostic potential of the prototypes was assessed using 50 C. difficile positive and 50 negative samples. The prototypes demonstrated similar capability of discriminating between positive and negative samples with sensitivity and specificity of 85% and 80% respectively. C. difficile is an important cause of hospital acquired diarrhoea, with significant morbidity and mortality around the world. A device capable of rapidly diagnosing the disease at the point of care would reduce cases, deaths and financial burden.
McGuire, N D; Ewen, R J; de Lacy Costello, B; Garner, C E; Probert, C S J; Vaughan, K.; Ratcliffe, N M
2016-01-01
Rapid volatile profiling of stool sample headspace was achieved using a combination of short multi-capillary chromatography column (SMCC), highly sensitive heated metal oxide semiconductor (MOS) sensor and artificial neural network (ANN) software. For direct analysis of biological samples this prototype offers alternatives to conventional GC detectors and electronic nose technology. The performance was compared to an identical instrument incorporating a long single capillary column (LSCC). The ability of the prototypes to separate complex mixtures was assessed using gas standards and homogenised in house ‘standard’ stool samples, with both capable of detecting more than 24 peaks per sample. The elution time was considerably faster with the SMCC resulting in a run time of 10 minutes compared to 30 minutes for the LSCC. The diagnostic potential of the prototypes was assessed using 50 C. difficile positive and 50 negative samples. The prototypes demonstrated similar capability of discriminating between positive and negative samples with sensitivity and specificity of 85% and 80% respectively. C. difficile is an important cause of hospital acquired diarrhoea, with significant morbidity and mortality around the world. A device capable of rapidly diagnosing the disease at the point of care would reduce cases, deaths and financial burden. PMID:27212803
HDU Pressurized Excursion Module (PEM) Prototype Systems Integration
NASA Technical Reports Server (NTRS)
Gill, Tracy R.; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott
2010-01-01
The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a skunk-works approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process included establishment of design standards, negotiation of interfaces between subsystems, and scheduling fit checks and installation activities. A major tool used in integration was a coordinated effort to accurately model all the subsystems using CAD, so that conflicts were identified before physical components came together. Some of the major conclusions showed that up-front modularity that emerged as an artifact of construction, such as the eight 45 degree "pie slices" making up the module whose steel rib edges defined structural mounting and loading points, dictated much of the configurational interfaces between the major subsystems and workstations. Therefore, 'one of the lessons learned included the need to use modularity as a tool for organization in advance, and to work harder to prevent non-critical aspects of the platform from dictating the modularity that may eventually inform the fight system.
A PC based fault diagnosis expert system
NASA Technical Reports Server (NTRS)
Marsh, Christopher A.
1990-01-01
The Integrated Status Assessment (ISA) prototype expert system performs system level fault diagnosis using rules and models created by the user. The ISA evolved from concepts to a stand-alone demonstration prototype using OPS5 on a LISP Machine. The LISP based prototype was rewritten in C and the C Language Integrated Production System (CLIPS) to run on a Personal Computer (PC) and a graphics workstation. The ISA prototype has been used to demonstrate fault diagnosis functions of Space Station Freedom's Operation Management System (OMS). This paper describes the development of the ISA prototype from early concepts to the current PC/workstation version used today and describes future areas of development for the prototype.
2013-12-04
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians prepare to load the Project Morpheus Prototype Lander with propellant at the launch platform located at the north end of the Shuttle Landing Facility. Morpheus is being prepared for a dress rehearsal of a tethered flight test. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-03
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a team of engineers and technicians assist as a tether is used to lower the Project Morpheus prototype lander onto a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-04
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians have loaded the Project Morpheus Prototype Lander with propellant at the launch platform located at the north end of the Shuttle Landing Facility. Morpheus is being prepared for a dress rehearsal of a tethered flight test. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-04
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander is attached to a tether at the launch platform located at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Morpheus is being prepared for a dress rehearsal of a tethered flight test. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-03
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a team of engineers and technicians assist as a tether is used to move the Project Morpheus prototype lander to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-03
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, technicians prepare the Project Morpheus prototype lander to be transported from a support building to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-03
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a team of engineers and technicians attaches a tether to the Project Morpheus prototype lander near the north end of the Shuttle Landing Facility. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for Morpheus’ tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-03
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a convoy of vehicles accompanies the Project Morpheus prototype lander as it is transported to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-03
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander is prepared for its move from a support building to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
AeroMACS system characterization and demonstrations
NASA Astrophysics Data System (ADS)
Kerczewski, R. J.; Apaza, R. D.; Dimond, R. P.
This The Aeronautical Mobile Airport Communications System (AeroMACS) is being developed to provide a new broadband wireless communications capability for safety critical communications in the airport surface domain, providing connectivity to aircraft and other ground vehicles as well as connections between other critical airport fixed assets. AeroMACS development has progressed from requirements definition through technology definition, prototype deployment and testing, and now into national and international standards development. The first prototype AeroMACS system has been deployed at the Cleveland Hopkins International Airport (CLE) and the adjacent NASA Glenn Research Center (GRC). During the past three years, extensive technical testing has taken place to characterize the performance of the AeroMACS prototype and provide technical support for the standards development process. The testing has characterized AeroMACS link and network performance over a variety of conditions for both fixed and mobile data transmission and has included basic system performance testing and fixed and mobile applications testing. This paper provides a summary of the AeroMACS performance testing and the status of standardization activities that the testing supports.
AeroMACS System Characterization and Demonstrations
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Apaza, Rafael D.; Dimond, Robert P.
2013-01-01
This The Aeronautical Mobile Airport Communications System (AeroMACS) is being developed to provide a new broadband wireless communications capability for safety critical communications in the airport surface domain, providing connectivity to aircraft and other ground vehicles as well as connections between other critical airport fixed assets. AeroMACS development has progressed from requirements definition through technology definition, prototype deployment and testing, and now into national and international standards development. The first prototype AeroMACS system has been deployed at the Cleveland Hopkins International Airport (CLE) and the adjacent NASA Glenn Research Center (GRC). During the past 3 years, extensive technical testing has taken place to characterize the performance of the AeroMACS prototype and provide technical support for the standards development process. The testing has characterized AeroMACS link and network performance over a variety of conditions for both fixed and mobile data transmission and has included basic system performance testing and fixed and mobile applications testing. This paper provides a summary of the AeroMACS performance testing and the status of standardization activities that the testing supports.
AeroMACS System Characterization and Demonstrations
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Apaza, Rafael D.; Dimond, Robert P.
2013-01-01
The Aeronautical Mobile Airport Communications System (AeroMACS) is being developed to provide a new broadband wireless communications capability for safety critical communications in the airport surface domain, providing connectivity to aircraft and other ground vehicles as well as connections between other critical airport fixed assets. AeroMACS development has progressed from requirements definition through technology definition, prototype deployment and testing, and now into national and international standards development. The first prototype AeroMACS system has been deployed at the Cleveland Hopkins International Airport (CLE) and the adjacent NASA Glenn Research Center (GRC). During the past three years, extensive technical testing has taken place to characterize the performance of the AeroMACS prototype and provide technical support for the standards development process. The testing has characterized AeroMACS link and network performance over a variety of conditions for both fixed and mobile data transmission and has included basic system performance testing and fixed and mobile applications testing. This paper provides a summary of the AeroMACS performance testing and the status of standardization activities that the testing supports.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Nan; Marnay, Chris; Firestone, Ryan
2006-06-16
This research demonstrates economically optimal distributedenergy resource (DER) system choice using the DER choice and operationsoptimization program, the Distributed Energy Resources Customer AdoptionModel (DER-CAM). DER-CAM finds the optimal combination of installedequipment given prevailing utility tariffs and fuel prices, siteelectrical and thermal loads (including absorption cooling), and a menuof available equipment. It provides a global optimization, albeitidealized, that shows how site useful energy loads can be served atminimum cost. Five prototype Japanese commercial buildings are examinedand DER-CAM is applied to select the economically optimal DER system foreach. Based on the optimization results, energy and emission reductionsare evaluated. Significant decreases in fuelmore » consumption, carbonemissions, and energy costs were seen in the DER-CAM results. Savingswere most noticeable in the prototype sports facility, followed by thehospital, hotel, and office building. Results show that DER with combinedheat and power equipment is a promising efficiency and carbon mitigationstrategy, but that precise system design is necessary. Furthermore, aJapan-U.S. comparison study of policy, technology, and utility tariffsrelevant to DER installation is presented.« less
Thelen, Sebastian; Czaplik, Michael; Meisen, Philipp; Schilberg, Daniel; Jeschke, Sabina
2015-01-01
In order to study new methods of telemedicine usage in the context of emergency medical services, researchers need to prototype integrated telemedicine systems. To conduct a one-year trial phase-intended to study a new application of telemedicine in German emergency medical services-we used off-the-shelf medical devices and software to realize real-time patient monitoring within an integrated telemedicine system prototype. We demonstrate its feasibility by presenting the integrated real-time patient monitoring solution, by studying signal delay and transmission robustness regarding changing communication channel characteristics, and by evaluating issues reported by the physicians during the trial phase. Where standards like HL7 and the IEEE 11073 family are intended to enable interoperability of product grade medical devices, we show that research prototypes benefit from the use of web technologies and simple device interfaces, as they simplify product development for a manufacturer and ease integration efforts for research teams. Embracing this approach for the development of new medical devices eases the constraint to use off-the-shelf products for research trials investigating innovative use of telemedicine.
Towards real-time VMAT verification using a prototype, high-speed CMOS active pixel sensor.
Zin, Hafiz M; Harris, Emma J; Osmond, John P F; Allinson, Nigel M; Evans, Philip M
2013-05-21
This work investigates the feasibility of using a prototype complementary metal oxide semiconductor active pixel sensor (CMOS APS) for real-time verification of volumetric modulated arc therapy (VMAT) treatment. The prototype CMOS APS used region of interest read out on the chip to allow fast imaging of up to 403.6 frames per second (f/s). The sensor was made larger (5.4 cm × 5.4 cm) using recent advances in photolithographic technique but retains fast imaging speed with the sensor's regional read out. There is a paradigm shift in radiotherapy treatment verification with the advent of advanced treatment techniques such as VMAT. This work has demonstrated that the APS can track multi leaf collimator (MLC) leaves moving at 18 mm s(-1) with an automatic edge tracking algorithm at accuracy better than 1.0 mm even at the fastest imaging speed. Evaluation of the measured fluence distribution for an example VMAT delivery sampled at 50.4 f/s was shown to agree well with the planned fluence distribution, with an average gamma pass rate of 96% at 3%/3 mm. The MLC leaves motion and linac pulse rate variation delivered throughout the VMAT treatment can also be measured. The results demonstrate the potential of CMOS APS technology as a real-time radiotherapy dosimeter for delivery of complex treatments such as VMAT.
Packaging Technology Designed, Fabricated, and Assembled for High-Temperature SiC Microsystems
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu
2003-01-01
A series of ceramic substrates and thick-film metalization-based prototype microsystem packages designed for silicon carbide (SiC) high-temperature microsystems have been developed for operation in 500 C harsh environments. These prototype packages were designed, fabricated, and assembled at the NASA Glenn Research Center. Both the electrical interconnection system and the die-attach scheme for this packaging system have been tested extensively at high temperatures. Printed circuit boards used to interconnect these chip-level packages and passive components also are being fabricated and tested. NASA space and aeronautical missions need harsh-environment, especially high-temperature, operable microsystems for probing the inner solar planets and for in situ monitoring and control of next-generation aeronautical engines. Various SiC high-temperature-operable microelectromechanical system (MEMS) sensors, actuators, and electronics have been demonstrated at temperatures as high as 600 C, but most of these devices were demonstrated only in the laboratory environment partially because systematic packaging technology for supporting these devices at temperatures of 500 C and beyond was not available. Thus, the development of a systematic high-temperature packaging technology is essential for both in situ testing and the commercialization of high-temperature SiC MEMS. Researchers at Glenn developed new prototype packages for high-temperature microsystems using ceramic substrates (aluminum nitride and 96- and 90-wt% aluminum oxides) and gold (Au) thick-film metalization. Packaging components, which include a thick-film metalization-based wirebond interconnection system and a low-electrical-resistance SiC die-attachment scheme, have been tested at temperatures up to 500 C. The interconnection system composed of Au thick-film printed wire and 1-mil Au wire bond was tested in 500 C oxidizing air with and without 50-mA direct current for over 5000 hr. The Au thick-film metalization-based wirebond electrical interconnection system was also tested in an extremely dynamic thermal environment to assess thermal reliability. The I-V curve1 of a SiC high-temperature diode was measured in oxidizing air at 500 C for 1000 hr to electrically test the Au thick-film material-based die-attach assembly.
Raising Nuclear Thermal Propulsion (NTP) Technology Readiness Above 3
NASA Technical Reports Server (NTRS)
Gerrish, Harold P., Jr.
2014-01-01
NTP development is currently supported by the NASA program office "Advanced Exploration Systems". The concept is a main propulsion option being considered for human missions to Mars in the 2030's. Major NTP development took place in the 1960's and 1970's under the Rover/NERVA program. The technology had matured to TRL 6 and was preparing to go to TRL 7 with a prototype flight engine before the program was cancelled. Over the last 40 years, a variety of continuations started, but only lasted a few years each. The Rover/NERVA infrastructure is almost all gone. The only remains are a few pieces of hardware, final reports and a few who worked the Rover/NERVA. Two types of nuclear fuel are being investigated to meet the current engine design specific impulse of 900 seconds compared to approximately 850 seconds demonstrated during Rover/NERVA. One is a continuation of composite fuel with new coatings to better control mid-band corrosion. The other type is a CERMET fuel made of Tungsten and UO2. Both fuels are being made from Rover/NERVA lessons learned, but with slightly different recipes to increase fuel endurance at higher operating temperatures. The technology readiness level (TRL) of these current modified reactor fuels is approximately TRL 3. To keep the development cost low and help mature the TRL level past 4 quickly, a few special non-nuclear test facilities have been made to test surrogate fuel, with depleted uranium, as coupons and full length elements. Both facilities utilize inductive heating and are licensed to handle depleted uranium. TRL 5 requires exposing the fuel to a nuclear environment and TRL 6 requires a prototype ground or flight engine system test. Currently, three different NTP ground test facility options are being investigated: exhaust scrubber, bore hole, and total exhaust containment. In parallel, a prototype flight demonstration test is also being studied. The first human mission to Mars in the 2030's is currently 2033. For an advanced propulsion concept to be seriously considered for use, the engine development plans need to show it is feasible and affordable to reach TRL 8 by 2027 and can be qualified for human mission use.
Three-dimensional (3D) printing and its applications for aortic diseases.
Hangge, Patrick; Pershad, Yash; Witting, Avery A; Albadawi, Hassan; Oklu, Rahmi
2018-04-01
Three-dimensional (3D) printing is a process which generates prototypes from virtual objects in computer-aided design (CAD) software. Since 3D printing enables the creation of customized objects, it is a rapidly expanding field in an age of personalized medicine. We discuss the use of 3D printing in surgical planning, training, and creation of devices for the treatment of aortic diseases. 3D printing can provide operators with a hands-on model to interact with complex anatomy, enable prototyping of devices for implantation based upon anatomy, or even provide pre-procedural simulation. Potential exists to expand upon current uses of 3D printing to create personalized implantable devices such as grafts. Future studies should aim to demonstrate the impact of 3D printing on outcomes to make this technology more accessible to patients with complex aortic diseases.
Fabrication of a 20.5-inch-diameter segmented silicon annular optic prototype for the ROMA program
NASA Astrophysics Data System (ADS)
Hassell, Frank R.; Groark, Frank M.
1995-10-01
Recent advancements in single crystal silicon material science and fabrication capabilities and very low absorption (VLA) multi-layer dielectric coating technology have led to the development of uncooled, large aperture, high power mirrors for high energy laser (HEL) systems. Based on this success, a segmented single-crystal silicon substrate concept has been selected as the baseline fabrication approach for uncooled 1.2 meter diameter resonator annular optics for the Alpha space based high energy laser. The objective of this Resonator Optics Materials Assessment (ROMA) task was to demonstrate all of the key fabrication processes required to fabricate the full sized annular optics for the Alpha space based high energy laser. This paper documents the fabrication of a half-scale annular optic prototype (AOP) of the Alpha laser rear cone.
Prior schemata transfer as an account for assessing the intuitive use of new technology.
Fischer, Sandrine; Itoh, Makoto; Inagaki, Toshiyuki
2015-01-01
New devices are considered intuitive when they allow users to transfer prior knowledge. Drawing upon fundamental psychology experiments that distinguish prior knowledge transfer from new schema induction, a procedure was specified for assessing intuitive use. This procedure was tested with 31 participants who, prior to using an on-board computer prototype, studied its screenshots in reading vs. schema induction conditions. Distinct patterns of transfer or induction resulted for features of the prototype whose functions were familiar or unfamiliar, respectively. Though moderated by participants' cognitive style, these findings demonstrated a means for quantitatively assessing transfer of prior knowledge as the operation that underlies intuitive use. Implications for interface evaluation and design, as well as potential improvements to the procedure, are discussed. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
EO-1/Hyperion: Nearing Twelve Years of Successful Mission Science Operation and Future Plans
NASA Technical Reports Server (NTRS)
Middleton, Elizabeth M.; Campbell, Petya K.; Huemmrich, K. Fred; Zhang, Qingyuan; Landis, David R.; Ungar, Stephen G.; Ong, Lawrence; Pollack, Nathan H.; Cheng, Yen-Ben
2012-01-01
The Earth Observing One (EO-1) satellite is a technology demonstration mission that was launched in November 2000, and by July 2012 will have successfully completed almost 12 years of high spatial resolution (30 m) imaging operations from a low Earth orbit. EO-1 has two unique instruments, the Hyperion and the Advanced Land Imager (ALI). Both instruments have served as prototypes for NASA's newer satellite missions, including the forthcoming (in early 2013) Landsat-8 and the future Hyperspectral Infrared Imager (HyspIRI). As well, EO-1 is a heritage platform for the upcoming German satellite, EnMAP (2015). Here, we provide an overview of the mission, and highlight the capabilities of the Hyperion for support of science investigations, and present prototype products developed with Hyperion imagery for the HyspIRI and other space-borne spectrometers.
Regional comparisons of on-site solar potential in the residential and industrial sectors
NASA Astrophysics Data System (ADS)
Gatzke, A. E.; Skewes-Cox, A. O.
1980-10-01
Regional and subregional differences in the potential development of decentralized solar technologies are studied. Two sectors of the economy were selected for intensive analysis: the residential and industrial sectors. The sequence of analysis follows the same general steps: (1) selection of appropriate prototypes within each land use sector disaggregated by census region; (2) characterization of the end-use energy demand of each prototype in order to match an appropriate decentralized solar technology to the energy demand; (3) assessment of the energy conservation potential within each prototype limited by land use patterns, technology efficiency, and variation in solar insolation; and (4) evaluation of the regional and subregional differences in the land use implications of decentralized energy supply technologies that result from the combination of energy demand, energy supply potential, and the subsequent addition of increasingly more restrictive policies to increase the percent contribution of on-site solar energy.
Reflector Technology Development and System Design for Concentrating Solar Power Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam Schaut
2011-12-30
Alcoa began this program in March of 2008 with the goal of developing and validating an advanced CSP trough design to lower the levelized cost of energy (LCOE) as compared to existing glass based, space-frame trough technology. In addition to showing a pathway to a significant LCOE reduction, Alcoa also desired to create US jobs to support the emerging CSP industry. Alcoa's objective during Phase I: Concept Feasibility was to provide the DOE with a design approach that demonstrates significant overall system cost savings without sacrificing performance. Phase I consisted of two major tasks; reflector surface development and system conceptmore » development. Two specific reflective surface technologies were investigated, silver metallized lamination, and thin film deposition both applied on an aluminum substrate. Alcoa prepared samples; performed test validation internally; and provided samples to the NREL for full-spectrum reflectivity measurements. The final objective was to report reflectivity at t = 0 and the latest durability results as of the completion of Phase 1. The target criteria for reflectance and durability were as follows: (1) initial (t = 0), hemispherical reflectance >93%, (2) initial spectral reflectance >90% for 25-mrad reading and >87% for 7-mrad reading, and (3) predicted 20 year durability of less than 5% optical performance drop. While the results of the reflective development activities were promising, Alcoa was unable to down-select on a reflective technology that met the target criteria. Given the progress and potential of both silver film and thin film technologies, Alcoa continued reflector surface development activities in Phase II. The Phase I concept development activities began with acquiring baseline CSP system information from both CSP Services and the DOE. This information was used as the basis to develop conceptual designs through ideation sessions. The concepts were evaluated based on estimated cost and high-level structural performance. The target criteria for the concept development was to achieve a solar field cost savings of 25%-50% thereby meeting or exceeding the DOE solar field cost savings target of $350/m2. After evaluating various structural design approaches, Alcoa down-selected to a monocoque, dubbed Wing Box, design that utilizes the reflective surface as a structural, load carrying member. The cost and performance potential of the Wing Box concept was developed via initial finite element analysis (FEA) and cost modeling. The structural members were sized through material utilization modeling when subjected to representative loading conditions including wind loading. Cost modeling was utilized to refine potential manufacturing techniques that could be employed to manufacture the structural members. Alcoa concluded that an aluminum intensive collector design can achieve significant cost savings without sacrificing performance. Based on the cost saving potential of this Concept Feasibility study, Alcoa recommended further validation of this CSP approach through the execution of Phase II: Design and Prototype Development. Alcoa Phase II objective was to provide the DOE with a validated CSP trough design that demonstrates significant overall system cost savings without sacrificing performance. Phase II consisted of three major tasks; Detail System Design, Prototype Build, and System Validation. Additionally, the reflector surface development that began in Phase I was continued in Phase II. After further development work, Alcoa was unable to develop a reflective technology that demonstrated significant performance or cost benefits compared to commercially available CSP reflective products. After considering other commercially available reflective surfaces, Alcoa selected Alano's MIRO-SUN product for use on the full scale prototype. Although MIRO-SUN has a lower specular reflectivity compared to other options, its durability in terms of handling, cleaning, and long-term reflectivity was deemed the most important attribute to successfully validate Alcoa's advanced trough architecture. To validate the performance of the Wing Box trough, a 6 meter aperture by 14 meter long prototype trough was built. For ease of shipping to and assembly at NREL's test facility, the prototype was fabricated in two half modules and joined along the centerline to create the Wing Box trough. The trough components were designed to achieve high precision of the reflective surface while leveraging high volume manufacturing and assembly techniques.« less
Airspace Technology Demonstration 2 (ATD-2) Phase 1 Concept of Use (ConUse)
NASA Technical Reports Server (NTRS)
Jung, Yoon; Engelland, Shawn; Capps, Richard; Coppenbarger, Rich; Hooey, Becky; Sharma, Shivanjli; Stevens, Lindsay; Verma, Savita; Lohr, Gary; Chevalley, Eric;
2018-01-01
This document presents an operational Concept of Use (ConUse) for the Phase 1 Baseline Integrated Arrival, Departure, and Surface (IADS) prototype system of NASA's Airspace Technology Demonstration 2 (ATD-2) sub-project, which began demonstration in 2017 at Charlotte Douglas International Airport (CLT). NASA is developing the IADS system under the ATD-2 sub-project in coordination with the Federal Aviation Administration (FAA) and aviation industry partners. The primary goal of ATD-2 sub-project is to improve the predictability and the operational efficiency of the air traffic system in metroplex environments, through the enhancement, development, and integration of the nation's most advanced and sophisticated arrival, departure, and surface prediction, scheduling, and management systems. The ATD-2 effort is a five-year research activity through 2020. The initial phase of the ATD-2 sub-project, which is the focus of this document, will demonstrate the Phase 1 Baseline IADS capability at CLT in 2017. The Phase 1 Baseline IADS capabilities of the ATD-2 sub-project consists of: (a) Strategic and tactical surface scheduling to improve efficiency and predictability of airport surface operations, (b) Tactical departure scheduling to enhance merging of departures into overhead traffic streams via accurate predictions of takeoff times and automated coordination between the Airport Traffic Control Tower (ATCT, or Tower) and the Air Route Traffic Control Center (ARTCC, or Center), (c) Improvements in departure surface demand predictions in Time Based Flow Management (TBFM), (d) A prototype Electronic Flight Data (EFD) system provided by the FAA via the Terminal Flight Data Manager (TFDM) early implementation effort, and (e) Improved situational awareness and demand predictions through integration with the Traffic Flow Management System (TFMS), TBFM, and TFDM (3Ts) for electronic data integration and exchange, and an on-screen dashboard displaying pertinent analytics in real-time. The surface scheduling and metering element of the capability is consistent with the Surface CDM Concept of Operations published in 2014 by the FAA Surface Operations Directorate.1 Upon successful demonstration of the Phase 1 Baseline IADS capability, follow-on demonstrations of the matured IADS traffic management capabilities will be conducted in the 2018-2020 timeframe. At the end of each phase of the demonstrations, NASA will transfer the ATD-2 sub-project technology to the FAA and industry partners.
Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5
NASA Technical Reports Server (NTRS)
Anderson, P. J.; Nussbaum, P.; Gustafson, G.
1984-01-01
The objective of the research project described is to define and demonstrate methods to advance the state of the art of pressure sensors for the space shuttle main engine (SSME). Silicon piezoresistive technology was utilized in completing tasks: generation and testing of three transducer design concepts for solid state applications; silicon resistor characterization at cryogenic temperatures; experimental chip mounting characterization; frequency response optimization and prototype design and fabrication. Excellent silicon sensor performance was demonstrated at liquid nitrogen temperature. A silicon resistor ion implant dose was customized for SSME temperature requirements. A basic acoustic modeling software program was developed as a design tool to evaluate frequency response characteristics.
Electrical Actuation Technology Bridging
NASA Technical Reports Server (NTRS)
Hammond, Monica (Compiler); Sharkey, John (Compiler)
1993-01-01
This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.
Electrical Actuation Technology Bridging
NASA Astrophysics Data System (ADS)
Hammond, Monica; Sharkey, John
1993-05-01
This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.
Robust telerobotics - an integrated system for waste handling, characterization and sorting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couture, S.A.; Hurd, R.L.; Wilhelmsen, K.C.
The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory was designed to serve as a national testbed to demonstrate integrated technologies for the treatment of low-level organic mixed waste at a pilot-plant scale. Pilot-scale demonstration serves to bridge the gap between mature, bench-scale proven technologies and full-scale treatment facilities by providing the infrastructure needed to evaluate technologies in an integrated, front-end to back-end facility. Consistent with the intent to focus on technologies that are ready for pilot scale deployment, the front-end handling and feed preparation of incoming waste material has been designed to demonstrate the application ofmore » emerging robotic and remotely operated handling systems. The selection of telerobotics for remote handling in MWMF was made based on a number of factors - personnel protection, waste generation, maturity, cost, flexibility and extendibility. Telerobotics, or shared control of a manipulator by an operator and a computer, provides the flexibility needed to vary the amount of automation or operator intervention according to task complexity. As part of the telerobotics design effort, the technical risk of deploying the technology was reduced through focused developments and demonstrations. The work involved integrating key tools (1) to make a robust telerobotic system that operates at speeds and reliability levels acceptable to waste handling operators and, (2) to demonstrate an efficient operator interface that minimizes the amount of special training and skills needed by the operator. This paper describes the design and operation of the prototype telerobotic waste handling and sorting system that was developed for MWMF.« less
Tactical Aviation Mission System Simulation Situational Awareness Project
2004-04-01
prototyping and exercising human-machine systems and for measuring the impact of new technologies in a dynamic simulation environment. Theoretical...31 2.4.1 The Impact of an ERSTA-Like System on the CH-146 Mission Commander...was proven to be an effective platform for prototyping and exercising systems and for measuring the impact of new technologies in a dynamic simulation
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, right, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the 15,000-foot long Shuttle Landing Facility at the Kennedy Space Center, Fla. At the north end of the runway, to the bottom, is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s 15,000-foot long Shuttle Landing Facility. On the far left at the end of the runway, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows a rock and crater-filled planetary scape that has been built at the north end of the Kennedy Space Center’s Shuttle Landing Facility. The site will allow engineers to test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway, in the upper right, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway, to the right, is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the 15,000-foot long Shuttle Landing Facility at the Kennedy Space Center, Fla. At the north end of the runway, to the right, is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. –This aerial view shows a rock and crater-filled planetary scape that has been built at the north end of the Kennedy Space Center’s Shuttle Landing Facility. The site will allow engineers to test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
Ferromagnetic Swimmers - Devices and Applications
NASA Astrophysics Data System (ADS)
Hamilton, Joshua; Petrov, Peter; Winlove, C. Peter; Gilbert, Andrew; Bryan, Matthew; Ogrin, Feodor
2017-11-01
Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. We propose a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. Experimentally, these devices (3.6 mm) are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters and demonstrate stable propulsion over a wide range of Reynolds numbers. Manipulation of the external magnetic field resulted in robust control over the speed and direction of propulsion. We also demonstrate our ferromagnetic swimmer working as a macroscopic prototype of a microfluidic pump. By physically tethering the swimmer, instead of swimming, the swimmer generates a directional flow of liquid around itself.
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, center, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, right-center, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, kneeling on the left, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, left, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
Passive Magnetic Bearing With Ferrofluid Stabilization
NASA Technical Reports Server (NTRS)
Jansen, Ralph; DiRusso, Eliseo
1996-01-01
A new class of magnetic bearings is shown to exist analytically and is demonstrated experimentally. The class of magnetic bearings utilize a ferrofluid/solid magnet interaction to stabilize the axial degree of freedom of a permanent magnet radial bearing. Twenty six permanent magnet bearing designs and twenty two ferrofluid stabilizer designs are evaluated. Two types of radial bearing designs are tested to determine their force and stiffness utilizing two methods. The first method is based on the use of frequency measurements to determine stiffness by utilizing an analytical model. The second method consisted of loading the system and measuring displacement in order to measure stiffness. Two ferrofluid stabilizers are tested and force displacement curves are measured. Two experimental test fixtures are designed and constructed in order to conduct the stiffness testing. Polynomial models of the data are generated and used to design the bearing prototype. The prototype was constructed and tested and shown to be stable. Further testing shows the possibility of using this technology for vibration isolation. The project successfully demonstrated the viability of the passive magnetic bearing with ferrofluid stabilization both experimentally and analytically.
1983-12-01
ql.udge treatment studies, and preparation of preliminary designs . First Lieutenant James Aldrich was the RDV Project Officer. This technical report has...METAL REMOVA STUDY.. . .. .. .. . . .. 51 VI INVESTIGATING SLUDGE TREATMENT TECHNOLOGIES . 76 VII PROTOTYPE DESIGNS . . . . . . . . . . . . . . 98 viii...Task V was directed at developing basic design and cost data for prototype systems that employ the most promising methods developed under Tasks III and
The NASA Redox Storage System Development project, 1980
NASA Technical Reports Server (NTRS)
1982-01-01
The technical accomplishments pertaining to the development of Redox systems and related technology are outlined in terms of the task elements: prototype systems development, application analyses, and supporting technology. Prototype systems development provides for a major procurement to develop an industrial capability to take the current NASA Lewis technology and go on to the design, development, and commercialization of iron-chromium Redox storage systems. Application analyses provides for the definition of application concepts and technology requirements, specific definition studies, and the identification of market sectors and their penetration potential. Supporting technology includes both in house and contractual efforts that encompass implementation of technology improvements in membranes, electrodes, reactant processing, and system design. The status of all elements is discussed.
The NASA Redox Storage System Development project, 1980
NASA Astrophysics Data System (ADS)
1982-12-01
The technical accomplishments pertaining to the development of Redox systems and related technology are outlined in terms of the task elements: prototype systems development, application analyses, and supporting technology. Prototype systems development provides for a major procurement to develop an industrial capability to take the current NASA Lewis technology and go on to the design, development, and commercialization of iron-chromium Redox storage systems. Application analyses provides for the definition of application concepts and technology requirements, specific definition studies, and the identification of market sectors and their penetration potential. Supporting technology includes both in house and contractual efforts that encompass implementation of technology improvements in membranes, electrodes, reactant processing, and system design. The status of all elements is discussed.
NASA Astrophysics Data System (ADS)
Sabol, John M.; Avinash, Gopal B.; Nicolas, Francois; Claus, Bernhard E. H.; Zhao, Jianguo; Dobbins, James T., III
2001-06-01
Dual-energy subtraction imaging increases the sensitivity and specificity of pulmonary nodule detection in chest radiography by reducing the contrast of overlying bone structures. Recent development of a fast, high-efficiency detector enables dual-energy imaging to be integrated into the traditional workflow. We have modified a GE RevolutionTM XQ/i chest imaging system to construct a dual-energy imaging prototype system. Here we describe the operating characteristics of this prototype and evaluate image quality. Empirical results show that the dual-energy CNR is maximized if the dose is approximately equal for both high and low energy exposures. Given the high detector DQE, and allocation of dose between the two views, we can acquire dual-energy PA and conventional lateral images with total dose equivalent to a conventional two-view film chest exam. Calculations have shown that the dual-exposure technique has superior CNR and tissue cancellation than single-exposure CR systems. Clinical images obtained on a prototype dual-energy imaging system show excellent tissue contrast cancellation, low noise, and modest motion artefacts. In summary, a prototype dual-energy system has been constructed which enables rapid, dual-exposure imaging of the chest using a commercially available high-efficiency, flat-panel x-ray detector. The quality of the clinical images generated with this prototype exceeds that of CR techniques and demonstrates the potential for improved detection and characterization of lung disease through dual-energy imaging.
A human-oriented framework for developing assistive service robots.
McGinn, Conor; Cullinan, Michael F; Culleton, Mark; Kelly, Kevin
2018-04-01
Multipurpose robots that can perform a range of useful tasks have the potential to increase the quality of life for many people living with disabilities. Owing to factors such as high system complexity, as-yet unresolved research questions and current technology limitations, there is a need for effective strategies to coordinate the development process. Integrating established methodologies based on human-centred design and universal design, a framework was formulated to coordinate the robot design process over successive iterations of prototype development. An account is given of how the framework was practically applied to the problem of developing a personal service robot. Application of the framework led to the formation of several design goals which addressed a wide range of identified user needs. The resultant prototype solution, which consisted of several component elements, succeeded in demonstrating the performance stipulated by all of the proposed metrics. Application of the framework resulted in the development of a complex prototype that addressed many aspects of the functional and usability requirements of a personal service robot. Following the process led to several important insights which directly benefit the development of subsequent prototypes. Implications for Rehabilitation This research shows how universal design might be used to formulate usability requirements for assistive service robots. A framework is presented that guides the process of designing service robots in a human-centred way. Through practical application of the framework, a prototype robot system that addressed a range of identified user needs was developed.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... Prototype Units (DFARS Case 2009-D034) AGENCY: Defense Acquisition Regulations System, Department of Defense... Component Development or Prototype Units.'' Section 819 is intended to prevent a contract for new technology... development of advanced components or the procurement of prototype units. To do so, section 819 places...
NASA Technical Reports Server (NTRS)
Ryan, Robert E.
2006-01-01
Simple field-portable white light LED calibration source shows promise for visible range (420-750 nm) 1) Prototype demonstrated <0.5% drift over 10-40 C temperature range; 2) Additional complexity (more LEDs) will be necessary for extending spectral range into the NIR and SWIR; 3) LED long lifetimes should produce at least several hundreds of hours or more stability, minimizing need for expensive calibrations and supporting long-duration field campaigns; and 4) Enabling technology for developing autonomous sites.
Combined 2-micron Dial and Doppler Lidar: Application to the Atmosphere of Earth or Mars
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Koch, Grady J.; Ismail, Syed; Kavaya, Michael; Yu, Jirong; Wood, Sidney A.; Emmitt, G. David
2006-01-01
A concept is explored for combining the Doppler and DIAL techniques into a single, multifunctional instrument. Wind, CO2 concentration, and aerosol density can all be measured. Technology to build this instrument is described, including the demonstration of a prototype lidar. Applications are described for use in the Earth science. The atmosphere of Mars can also be studied, and results from a recently-developed simulation model of performance in the Martian atmosphere are presented.
Results from a Grazing Incidence X-Ray Interferometer
NASA Technical Reports Server (NTRS)
Joy, Marshall K.; Shipley, Ann; Cash, Webster; Carter, James
2000-01-01
A prototype grazing incidence interferometer has been built and tested at EUV and X-ray wavelengths using a 120 meter long vacuum test facility at Marshall Space Flight Center. We describe the design and construction of the interferometer, the EUV and x-ray sources, the detector systems, and compare the interferometric fringe measurements with theoretical predictions. We also describe the next-generation grazing incidence system which is designed to provide laboratory demonstration of key technologies that will be needed for a space-based x-ray interferometer.
Additive manufacturing of magnetic shielding and ultra-high vacuum flange for cold atom sensors.
Vovrosh, Jamie; Voulazeris, Georgios; Petrov, Plamen G; Zou, Ji; Gaber, Youssef; Benn, Laura; Woolger, David; Attallah, Moataz M; Boyer, Vincent; Bongs, Kai; Holynski, Michael
2018-01-31
Recent advances in the understanding and control of quantum technologies, such as those based on cold atoms, have resulted in devices with extraordinary metrological performance. To realise this potential outside of a lab environment the size, weight and power consumption need to be reduced. Here we demonstrate the use of laser powder bed fusion, an additive manufacturing technique, as a production technique relevant to the manufacture of quantum sensors. As a demonstration we have constructed two key components using additive manufacturing, namely magnetic shielding and vacuum chambers. The initial prototypes for magnetic shields show shielding factors within a factor of 3 of conventional approaches. The vacuum demonstrator device shows that 3D-printed titanium structures are suitable for use as vacuum chambers, with the test system reaching base pressures of 5 ± 0.5 × 10 -10 mbar. These demonstrations show considerable promise for the use of additive manufacturing for cold atom based quantum technologies, in future enabling improved integrated structures, allowing for the reduction in size, weight and assembly complexity.
Cook, Timothy Wayne; Cavalini, Luciana Tricai
2016-01-01
Objectives To present the technical background and the development of a procedure that enriches the semantics of Health Level Seven version 2 (HL7v2) messages for software-intensive systems in telemedicine trauma care. Methods This study followed a multilevel model-driven approach for the development of semantically interoperable health information systems. The Pre-Hospital Trauma Life Support (PHTLS) ABCDE protocol was adopted as the use case. A prototype application embedded the semantics into an HL7v2 message as an eXtensible Markup Language (XML) file, which was validated against an XML schema that defines constraints on a common reference model. This message was exchanged with a second prototype application, developed on the Mirth middleware, which was also used to parse and validate both the original and the hybrid messages. Results Both versions of the data instance (one pure XML, one embedded in the HL7v2 message) were equally validated and the RDF-based semantics recovered by the receiving side of the prototype from the shared XML schema. Conclusions This study demonstrated the semantic enrichment of HL7v2 messages for intensive-software telemedicine systems for trauma care, by validating components of extracts generated in various computing environments. The adoption of the method proposed in this study ensures the compliance of the HL7v2 standard in Semantic Web technologies. PMID:26893947
NASA Astrophysics Data System (ADS)
Ohgaki, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Misawa, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.; Fujimoto, S.
2017-07-01
A Neutron/Gamma-ray combined inspection system for hidden special nuclear materials (SNMs) in cargo containers has been developed under a program of Japan Science and Technology Agency in Japan. This inspection system consists of an active neutron-detection system for fast screening and a laser Compton backscattering gamma-ray source in coupling with nuclear resonance fluorescence (NRF) method for precise inspection. The inertial electrostatic confinement fusion device has been adopted as a neutron source and two neutron-detection methods, delayed neutron noise analysis method and high-energy neutron-detection method, have been developed to realize the fast screening system. The prototype system has been constructed and tested in the Reactor Research Institute, Kyoto University. For the generation of the laser Compton backscattering gamma-ray beam, a race track microtron accelerator has been used to reduce the size of the system. For the NRF measurement, an array of LaBr3(Ce) scintillation detectors has been adopted to realize a low-cost detection system. The prototype of the gamma-ray system has been demonstrated in the Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology. By using numerical simulations based on the data taken from these prototype systems and the inspection-flow, the system designed by this program can detect 1 kg of highly enriched 235U (HEU) hidden in an empty 20-ft container within several minutes.
NASA Habitat Demonstration Unit (HDU) Deep Space Habitat Analog
NASA Technical Reports Server (NTRS)
Howe, A. Scott; Kennedy, Kriss J.; Gill, Tracy
2013-01-01
The NASA Habitat Demonstration Unit (HDU) vertical cylinder habitat was established as a exploration habitat testbed platform for integration and testing of a variety of technologies and subsystems that will be required in a human-occupied planetary surface outpost or Deep Space Habitat (DSH). The HDU functioned as a medium-fidelity habitat prototype from 2010-2012 and allowed teams from all over NASA to collaborate on field analog missions, mission operations tests, and system integration tests to help shake out equipment and provide feedback for technology development cycles and crew training. This paper documents the final 2012 configuration of the HDU, and discusses some of the testing that took place. Though much of the higher-fidelity functionality has 'graduated' into other NASA programs, as of this writing the HDU, renamed Human Exploration Research Analog (HERA), will continue to be available as a volumetric and operational mockup for NASA Human Research Program (HRP) research from 2013 onward.
Highly Automated Arrival Management and Control System Suitable for Early NextGen
NASA Technical Reports Server (NTRS)
Swenson, Harry N.; Jung, Jaewoo
2013-01-01
This is a presentation of previously published work conducted in the development of the Terminal Area Precision Scheduling and Spacing (TAPSS) system. Included are concept and technical descriptions of the TAPSS system and results from human in the loop simulations conducted at Ames Research Center. The Terminal Area Precision Scheduling and Spacing system has demonstrated through research and extensive high-fidelity simulation studies to have benefits in airport arrival throughput, supporting efficient arrival descents, and enabling mixed aircraft navigation capability operations during periods of high congestion. NASA is currently porting the TAPSS system into the FAA TBFM and STARS system prototypes to ensure its ability to operate in the FAA automation Infrastructure. NASA ATM Demonstration Project is using the the TAPSS technologies to provide the ground-based automation tools to enable airborne Interval Management (IM) capabilities. NASA and the FAA have initiated a Research Transition Team to enable potential TAPSS and IM Technology Transfer.
Quantification of false positive reduction in nucleic acid purification on hemorrhagic fever DNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Conrad D.; Pohl, Kenneth Roy; Derzon, Mark Steven
2006-11-01
Columbia University has developed a sensitive highly multiplexed system for genetic identification of nucleic acid targets. The primary obstacle to implementing this technology is the high rate of false positives due to high levels of unbound reporters that remain within the system after hybridization. The ability to distinguish between free reporters and reporters bound to targets limits the use of this technology. We previously demonstrated a new electrokinetic method for binary separation of kb pair long DNA molecules and oligonucleotides. The purpose of this project 99864 is to take these previous demonstrations and further develop the technique and hardware formore » field use. Specifically, our objective was to implement separation in a heterogeneous sample (containing target DNA and background oligo), to perform the separation in a flow-based device, and to develop all of the components necessary for field testing a breadboard prototype system.« less
Development and testing of the EVS 2000 enhanced vision system
NASA Astrophysics Data System (ADS)
Way, Scott P.; Kerr, Richard; Imamura, Joe J.; Arnoldy, Dan; Zeylmaker, Richard; Zuro, Greg
2003-09-01
An effective enhanced vision system must operate over a broad spectral range in order to offer a pilot an optimized scene that includes runway background as well as airport lighting and aircraft operations. The large dynamic range of intensities of these images is best handled with separate imaging sensors. The EVS 2000 is a patented dual-band Infrared Enhanced Vision System (EVS) utilizing image fusion concepts to provide a single image from uncooled infrared imagers in both the LWIR and SWIR. The system is designed to provide commercial and corporate airline pilots with improved situational awareness at night and in degraded weather conditions. A prototype of this system was recently fabricated and flown on the Boeing Advanced Technology Demonstrator 737-900 aircraft. This paper will discuss the current EVS 2000 concept, show results taken from the Boeing Advanced Technology Demonstrator program, and discuss future plans for EVS systems.
Advanced Caution and Warning System, Final Report - 2011
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Aaseng, Gordon; Iverson, David; McCann, Robert S.; Robinson, Peter; Dittemore, Gary; Liolios, Sotirios; Baskaran, Vijay; Johnson, Jeremy; Lee, Charles;
2013-01-01
The work described in this report is a continuation of the ACAWS work funded in fiscal year (FY) 2010 under the Exploration Technology Development Program (ETDP), Integrated Systems Health Management (ISHM) project. In FY 2010, we developed requirements for an ACAWS system and vetted the requirements with potential users via a concept demonstration system. In FY 2011, we developed a working prototype of aspects of that concept, with placeholders for technologies to be fully developed in future phases of the project. The objective is to develop general capability to assist operators with system health monitoring and failure diagnosis. Moreover, ACAWS was integrated with the Discrete Controls (DC) task of the Autonomous Systems and Avionics (ASA) project. The primary objective of DC is to demonstrate an electronic and interactive procedure display environment and multiple levels of automation (automatic execution by computer, execution by computer if the operator consents, and manual execution by the operator).
Expert system decision support for low-cost launch vehicle operations
NASA Technical Reports Server (NTRS)
Szatkowski, G. P.; Levin, Barry E.
1991-01-01
Progress in assessing the feasibility, benefits, and risks associated with AI expert systems applied to low cost expendable launch vehicle systems is described. Part one identified potential application areas in vehicle operations and on-board functions, assessed measures of cost benefit, and identified key technologies to aid in the implementation of decision support systems in this environment. Part two of the program began the development of prototypes to demonstrate real-time vehicle checkout with controller and diagnostic/analysis intelligent systems and to gather true measures of cost savings vs. conventional software, verification and validation requirements, and maintainability improvement. The main objective of the expert advanced development projects was to provide a robust intelligent system for control/analysis that must be performed within a specified real-time window in order to meet the demands of the given application. The efforts to develop the two prototypes are described. Prime emphasis was on a controller expert system to show real-time performance in a cryogenic propellant loading application and safety validation implementation of this system experimentally, using commercial-off-the-shelf software tools and object oriented programming techniques. This smart ground support equipment prototype is based in C with imbedded expert system rules written in the CLIPS protocol. The relational database, ORACLE, provides non-real-time data support. The second demonstration develops the vehicle/ground intelligent automation concept, from phase one, to show cooperation between multiple expert systems. This automated test conductor (ATC) prototype utilizes a knowledge-bus approach for intelligent information processing by use of virtual sensors and blackboards to solve complex problems. It incorporates distributed processing of real-time data and object-oriented techniques for command, configuration control, and auto-code generation.
Implementation of a Prototype Generalized Network Technology for Hospitals *
Tolchin, S. G.; Stewart, R. L.; Kahn, S. A.; Bergan, E. S.; Gafke, G. P.; Simborg, D. W.; Whiting-O'Keefe, Q. E.; Chadwick, M. G.; McCue, G. E.
1981-01-01
A demonstration implementation of a distributed data processing hospital information system using an intelligent local area communications network (LACN) technology is described. This system is operational at the UCSF Medical Center and integrates four heterogeneous, stand-alone minicomputers. The applications systems are PID/Registration, Outpatient Pharmacy, Clinical Laboratory and Radiology/Medical Records. Functional autonomy of these systems has been maintained, and no operating system changes have been required. The LACN uses a fiber-optic communications medium and provides extensive communications protocol support within the network, based on the ISO/OSI Model. The architecture is reconfigurable and expandable. This paper describes system architectural issues, the applications environment and the local area network.
Flywheel rotor and containment technology development for FY 1982
NASA Astrophysics Data System (ADS)
Kulkarni, S. V.
1982-12-01
The status of technology development for an efficient, economical, and practical composite flywheel having an energy density of 88 Wh/kg (20 to 25 E Wh/lb) and an energy storge capacity of approximately 1 kWh is reported. Progress is also reported in the development of a fail-safe, lightweight, and low cost composite containment for the flywheel. One containment design was selected for prototype fabrication and testing. Flywheel rotor cyclic test capability was also demonstrated and evaluated. High strength Kevlar and graphite fibers are being studied. Tests of the elastomeric bond between the rotor and hub indicate that the bond strength exceeds the minimum torque requirements for automobile applications.
NASA Astrophysics Data System (ADS)
Milgram, David L.; Kahn, Philip; Conner, Gary D.; Lawton, Daryl T.
1988-12-01
The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze features from Synthetic Aperture Radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of and technology issues involved in the development of an automated linear feature extraction system. This final report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.
Regenerable biocide delivery unit, volume 1
NASA Technical Reports Server (NTRS)
Atwater, James E.; Wheeler, Richard R., Jr.
1992-01-01
The Microbial Check Valve (MCV), which is currently used aboard the Shuttle Orbiter for disinfection of the potable water supply, is an expendable flow-through canister containing iodinated ion exchange resin. Means for extension of MCV life are desirable to avoid resupply penalties. The Phase 1 Regenerable Biocide Delivery Unit program demonstrated the feasibility of regenerating an MCV in situ, using a strong aqueous elemental iodine solution resulting from diversion of the MCV influent to a packed bed containing iodine crystals. In small column tests, eight manual regenerations of an MCV resin were accomplished. The term Regenerative Microbial Check Valve (RMCV) was adopted describing this new technology. The Phase 2 program resulted in the development of a full scale and fully autonomous prototype RMCV, capable of maintaining residual I(sub 2) levels between 2.0 - 4.0 mg/L for prolonged periods. During six months of testing at the Space Station baseline flow rate of 120 cm(sup 3)/min, the prototype RMCV underwent nine regenerations. RMCV life cycle tests, using a variety of influent streams, were conducted over an eighteen month period to determine the useful lives of MCV's incorporating this new technology and to determine ultimate failure mechanisms. MCV life extensions of 130 fold were demonstrated, limited only by the Phase 2 performance period. Based upon this work, it is certain that RMCV units can be developed to provide unattended biocide addition for the thirty year life of Space Station Freedom, or for other longer duration applications such as a Lunar Base or Mars mission. RMCV technology was also demonstrated capable of delivering, on demand, a concentrated aqueous I(sub 2) solution for potential use as a disinfectant during transient episodes of microbial surface contamination, for the control of biofilm formation, or as a preventative measure in systems which are particularly susceptible to the growth of microorganisms.
Wei, Lu; Nitta, Naoki; Yushin, Gleb
2013-08-27
Continuous, smooth, visibly defect-free, lithographically patterned activated carbon films (ACFs) are prepared on the surface of silicon wafers. Depending on the synthesis conditions, porous ACFs can either remain attached to the initial substrate or be separated and transferred to another dense or porous substrate of interest. Tuning the activation conditions allows one to change the surface area and porosity of the produced carbon films. Here we utilize the developed thin ACF technology to produce prototypes of functional electrical double-layer capacitor devices. The synthesized thin carbon film electrodes demonstrated very high capacitance in excess of 510 F g(-1) (>390 F cm(-3)) at a slow cyclic voltammetry scan rate of 1 mV s(-1) and in excess of 325 F g(-1) (>250 F cm(-3)) in charge-discharge tests at an ultrahigh current density of 45,000 mA g(-1). Good stability was demonstrated after 10,000 galvanostatic charge-discharge cycles. The high values of the specific and volumetric capacitances of the selected ACF electrodes as well as the capacity retention at high current densities demonstrated great potential of the proposed technology for the fabrication of various on-chip devices, such as micro-electrochemical capacitors.
DOT National Transportation Integrated Search
2014-04-01
This report documents the System Design Document (SDD) for the prototype development and demonstration of the Response, Emergency Staging, Communications, Uniform Management, and Evacuation (R.E.S.C.U.M.E.) application bundle, with a focus on the Inc...
NASA Astrophysics Data System (ADS)
Kraemer, Kurtis Leigh
Micro air vehicles (MAV) are a class of small uninhabited aircraft with dimensions less than 15 cm (6 in) and mass less than 500g (1.1 lbs). The aim of this research was to develop a fast, accurate, low-cost, and repeatable fabrication process for flapping MAV wings. Through the use of the RepRap Mendel open-source fused-deposition modeling (FDM) rapid prototyping machine ("3-D printer"), various wing prototypes were designed and fabricated using a bio-inspired approach. Testing of the aerodynamic performance of both real locust wings and the 3-D printed wing prototypes was performed through axial spin testing. Bending stiffness measurements were also performed on the 3-D printed wings. Through the use of open-source rapid prototyping technology, a fast and low-cost fabrication process for flapping MAV wings has been developed, out of which further understanding of flapping wing design and fabrication has been gained.
Use of the Earth Observing One (EO-1) Satellite for the Namibia SensorWeb Flood Early Warning Pilot
NASA Technical Reports Server (NTRS)
Mandl, Daniel; Frye, Stuart; Cappelaere, Pat; Handy, Matthew; Policelli, Fritz; Katjizeu, McCloud; Van Langenhove, Guido; Aube, Guy; Saulnier, Jean-Francois; Sohlberg, Rob;
2012-01-01
The Earth Observing One (EO-1) satellite was launched in November 2000 as a one year technology demonstration mission for a variety of space technologies. After the first year, it was used as a pathfinder for the creation of SensorWebs. A SensorWeb is the integration of variety of space, airborne and ground sensors into a loosely coupled collaborative sensor system that automatically provides useful data products. Typically, a SensorWeb is comprised of heterogeneous sensors tied together with a messaging architecture and web services. Disasters are the perfect arena to use SensorWebs. One SensorWeb pilot project that has been active since 2009 is the Namibia Early Flood Warning SensorWeb pilot project. The Pilot Project was established under the auspices of the Namibian Ministry of Agriculture Water and Forestry (MAWF)/Department of Water Affairs, the Committee on Earth Observing Satellites (CEOS)/Working Group on Information Systems and Services (WGISS) and moderated by the United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER). The effort began by identifying and prototyping technologies which enabled the rapid gathering and dissemination of both space-based and ground sensor data and data products for the purpose of flood disaster management and water-borne disease management. This was followed by an international collaboration to build small portions of the identified system which was prototyped during that past few years during the flood seasons which occurred in the February through May timeframe of 2010 and 2011 with further prototyping to occur in 2012. The SensorWeb system features EO-1 data along with other data sets from such satellites as Radarsat, Terra and Aqua. Finally, the SensorWeb team also began to examine the socioeconomic component to determine the impact of the SensorWeb technology and how best to assist in the infusion of this technology in lesser affluent areas with low levels of basic infrastructure. This paper provides an overview of these efforts, highlighting the EO-1 usage in this SensorWeb.
NASA Technical Reports Server (NTRS)
Cariapa, Vikram
1993-01-01
The trend in the modern global economy towards free market policies has motivated companies to use rapid prototyping technologies to not only reduce product development cycle time but also to maintain their competitive edge. A rapid prototyping technology is one which combines computer aided design with computer controlled tracking of focussed high energy source (eg. lasers, heat) on modern ceramic powders, metallic powders, plastics or photosensitive liquid resins in order to produce prototypes or models. At present, except for the process of shape melting, most rapid prototyping processes generate products that are only dimensionally similar to those of the desired end product. There is an urgent need, therefore, to enhance the understanding of the characteristics of these processes in order to realize their potential for production. Currently, the commercial market is dominated by four rapid prototyping processes, namely selective laser sintering, stereolithography, fused deposition modelling and laminated object manufacturing. This phase of the research has focussed on the selective laser sintering and stereolithography rapid prototyping processes. A theoretical model for these processes is under development. Different rapid prototyping sites supplied test specimens (based on ASTM 638-84, Type I) that have been measured and tested to provide a data base on surface finish, dimensional variation and ultimate tensile strength. Further plans call for developing and verifying the theoretical models by carefully designed experiments. This will be a joint effort between NASA and other prototyping centers to generate a larger database, thus encouraging more widespread usage by product designers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Ryan M.; Coble, Jamie B.; Hirt, Evelyn H.
2013-05-17
This report identifies a number of requirements for prognostics health management of passive systems in AdvSMRs, documents technical gaps in establishing a prototypical prognostic methodology for this purpose, and describes a preliminary research plan for addressing these technical gaps. AdvSMRs span multiple concepts; therefore a technology- and design-neutral approach is taken, with the focus being on characteristics that are likely to be common to all or several AdvSMR concepts. An evaluation of available literature is used to identify proposed concepts for AdvSMRs along with likely operational characteristics. Available operating experience of advanced reactors is used in identifying passive components thatmore » may be subject to degradation, materials likely to be used for these components, and potential modes of degradation of these components. This information helps in assessing measurement needs for PHM systems, as well as defining functional requirements of PHM systems. An assessment of current state-of-the-art approaches to measurements, sensors and instrumentation, diagnostics and prognostics is also documented. This state-of-the-art evaluation, combined with the requirements, may be used to identify technical gaps and research needs in the development, evaluation, and deployment of PHM systems for AdvSMRs. A preliminary research plan to address high-priority research needs for the deployment of PHM systems to AdvSMRs is described, with the objective being the demonstration of prototypic prognostics technology for passive components in AdvSMRs. Greater efficiency in achieving this objective can be gained through judicious selection of materials and degradation modes that are relevant to proposed AdvSMR concepts, and for which significant knowledge already exists. These selections were made based on multiple constraints including the analysis performed in this document, ready access to laboratory-scale facilities for materials testing and measurement, and potential synergies with other national laboratory and university partners.« less
Rapid prototyping and stereolithography in dentistry
Nayar, Sanjna; Bhuminathan, S.; Bhat, Wasim Manzoor
2015-01-01
The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena. PMID:26015715
Rapid prototyping and stereolithography in dentistry.
Nayar, Sanjna; Bhuminathan, S; Bhat, Wasim Manzoor
2015-04-01
The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena.
Advanced optical disk storage technology
NASA Technical Reports Server (NTRS)
Haritatos, Fred N.
1996-01-01
There is a growing need within the Air Force for more and better data storage solutions. Rome Laboratory, the Air Force's Center of Excellence for C3I technology, has sponsored the development of a number of operational prototypes to deal with this growing problem. This paper will briefly summarize the various prototype developments with examples of full mil-spec and best commercial practice. These prototypes have successfully operated under severe space, airborne and tactical field environments. From a technical perspective these prototypes have included rewritable optical media ranging from a 5.25-inch diameter format up to the 14-inch diameter disk format. Implementations include an airborne sensor recorder, a deployable optical jukebox and a parallel array of optical disk drives. They include stand-alone peripheral devices to centralized, hierarchical storage management systems for distributed data processing applications.
Achieving cost reductions in EOSDIS operations through technology evolution
NASA Technical Reports Server (NTRS)
Newsome, Penny; Moe, Karen; Harberts, Robert
1996-01-01
The earth observing system (EOS) data information system (EOSDIS) mission includes the cost-effective management and distribution of large amounts of data to the earth science community. The effect of the introduction of new information system technologies on the evolution of EOSDIS is considered. One of the steps taken by NASA to enable the introduction of new information system technologies into the EOSDIS is the funding of technology development through prototyping. Recent and ongoing prototyping efforts and their potential impact on the performance and cost-effectiveness of the EOSDIS are discussed. The technology evolution process as it related to the effective operation of EOSDIS is described, and methods are identified for the support of the transfer of relevant technology to EOSDIS components.
Technology study of quantum remote sensing imaging
NASA Astrophysics Data System (ADS)
Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang
2016-02-01
According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.
2012-08-09
CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, the Morpheus prototype lander begins to lift off of the ground during a free-flight test. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon – for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA
TADIR: ElOp's high-resolution second-generation 480 x 4 TDI thermal imager
NASA Astrophysics Data System (ADS)
Sarusi, Gabby; Ziv, Natan; Zioni, O.; Gaber, J.; Shechterman, Mark S.; Wiess, I.; Friedland, Igor V.; Lerner, M.; Friedenberg, Abraham
1998-10-01
'TADIR' is a new high-end thermal imager, developed in El-Op under contract with the Israeli MOD during the last three years. This new second generation thermal imager is based on 480 X 4 TDI MCT detector operated in the 8 - 12 micrometer spectral range. Although the prototype configuration of TADIR was design for the highly demanded light weight low volume and low power air applications, TADIR can be considered as a generic modular technology of which the future El-Op's FLIR applications such as ground fire control system and surveillance systems will be derived from. Besides the detector, what puts the system in the high-end category are the state of the art features implemented in each system's components. This paper describes the system concept and design considerations as well as the anticipated performances. TADIRs fist prototype was demonstrated at the beginning of 1998 and is currently under evaluation.
A Multi-Discipline, Multi-Genre Digital Library for Research and Education
NASA Technical Reports Server (NTRS)
Nelson, Michael L.; Maly, Kurt; Shen, Stewart N. T.
2004-01-01
We describe NCSTRL+, a unified, canonical digital library for educational and scientific and technical information (STI). NCSTRL+ is based on the Networked Computer Science Technical Report Library (NCSTRL), a World Wide Web (WWW) accessible digital library (DL) that provides access to over 100 university departments and laboratories. NCSTRL+ implements two new technologies: cluster functionality and publishing "buckets". We have extended the Dienst protocol, the protocol underlying NCSTRL, to provide the ability to "cluster" independent collections into a logically centralized digital library based upon subject category classification, type of organization, and genres of material. The concept of "buckets" provides a mechanism for publishing and managing logically linked entities with multiple data formats. The NCSTRL+ prototype DL contains the holdings of NCSTRL and the NASA Technical Report Server (NTRS). The prototype demonstrates the feasibility of publishing into a multi-cluster DL, searching across clusters, and storing and presenting buckets of information.
NASA Technical Reports Server (NTRS)
Nelson, Michael L.; Maly, Kurt; Shen, Stewart N. T.; Zubair, Mohammad
1998-01-01
We describe NCSTRL+, a unified, canonical digital library for scientific and technical information (STI). NCSTRL+ is based on the Networked Computer Science Technical Report Library (NCSTRL), a World Wide Web (WWW) accessible digital library (DL) that provides access to over 100 university departments and laboratories. NCSTRL+ implements two new technologies: cluster functionality and publishing buckets. We have extended Dienst, the protocol underlying NCSTRL, to provide the ability to cluster independent collections into a logically centralized digital library based upon subject category classification, type of organization, and genres of material. The bucket construct provides a mechanism for publishing and managing logically linked entities with multiple data forms as a single object. The NCSTRL+ prototype DL contains the holdings of NCSTRL and the NASA Technical Report Server (NTRS). The prototype demonstrates the feasibility of publishing into a multi-cluster DL, searching across clusters, and storing and presenting buckets of information.
Experimental Internet Environment Software Development
NASA Technical Reports Server (NTRS)
Maddux, Gary A.
1998-01-01
Geographically distributed project teams need an Internet based collaborative work environment or "Intranet." The Virtual Research Center (VRC) is an experimental Intranet server that combines several services such as desktop conferencing, file archives, on-line publishing, and security. Using the World Wide Web (WWW) as a shared space paradigm, the Graphical User Interface (GUI) presents users with images of a lunar colony. Each project has a wing of the colony and each wing has a conference room, library, laboratory, and mail station. In FY95, the VRC development team proved the feasibility of this shared space concept by building a prototype using a Netscape commerce server and several public domain programs. Successful demonstrations of the prototype resulted in approval for a second phase. Phase 2, documented by this report, will produce a seamlessly integrated environment by introducing new technologies such as Java and Adobe Web Links to replace less efficient interface software.
Three-dimensional (3D) printing and its applications for aortic diseases
Hangge, Patrick; Pershad, Yash; Witting, Avery A.; Albadawi, Hassan
2018-01-01
Three-dimensional (3D) printing is a process which generates prototypes from virtual objects in computer-aided design (CAD) software. Since 3D printing enables the creation of customized objects, it is a rapidly expanding field in an age of personalized medicine. We discuss the use of 3D printing in surgical planning, training, and creation of devices for the treatment of aortic diseases. 3D printing can provide operators with a hands-on model to interact with complex anatomy, enable prototyping of devices for implantation based upon anatomy, or even provide pre-procedural simulation. Potential exists to expand upon current uses of 3D printing to create personalized implantable devices such as grafts. Future studies should aim to demonstrate the impact of 3D printing on outcomes to make this technology more accessible to patients with complex aortic diseases. PMID:29850416
Almahmoud, Safieh; Vahdati, Nader; Rostron, Paul
2018-01-01
A monitoring solution was developed for detection of material loss in metals such as carbon steel using the force generated by permanent magnets in addition to the optical strain sensing technology. The working principle of the sensing system is related to the change in thickness of a steel plate, which typically occurs due to corrosion. As thickness decreases, the magnetostatic force between the magnet and the steel structure also decreases. This, in turn, affects the strain measured using the optical fiber. The sensor prototype was designed and built after verifying its sensitivity using a numerical model. The prototype was tested on steel plates of different thicknesses to establish the relationship between the metal thickness and measured strain. The results of experiments and numerical models demonstrate a strong relationship between the metal thickness and the measured strain values. PMID:29518006
Prototype of a single probe Compton camera for laparoscopic surgery
NASA Astrophysics Data System (ADS)
Koyama, A.; Nakamura, Y.; Shimazoe, K.; Takahashi, H.; Sakuma, I.
2017-02-01
Image-guided surgery (IGS) is performed using a real-time surgery navigation system with three-dimensional (3D) position tracking of surgical tools. IGS is fast becoming an important technology for high-precision laparoscopic surgeries, in which the field of view is limited. In particular, recent developments in intraoperative imaging using radioactive biomarkers may enable advanced IGS for supporting malignant tumor removal surgery. In this light, we develop a novel intraoperative probe with a Compton camera and a position tracking system for performing real-time radiation-guided surgery. A prototype probe consisting of Ce :Gd3 Al2 Ga3 O12 (GAGG) crystals and silicon photomultipliers was fabricated, and its reconstruction algorithm was optimized to enable real-time position tracking. The results demonstrated the visualization capability of the radiation source with ARM = ∼ 22.1 ° and the effectiveness of the proposed system.
2012-08-01
CAPE CANAVERAL, Fla. - At the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, field at the north end of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, members of the media view the hazard field and speak with Morpheus managers. At left, in the blue shirt is Gregory Gaddis, Kennedy Project Morpheus/ALHAT site manager. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Papageorgas, Panagiotis G.; Agavanakis, Kyriakos; Dogas, Ioannis; Piromalis, Dimitrios D.
2018-05-01
A cloud-based architecture is presented for the internetworking of sensors and actuators through a universal gateway, network server and application user interface design. The proposed approach targets to Energy Efficiency and sustainability in a holistic way, by integrating an open-source test bed prototype based on long-range low-bandwidth wireless networking technology for sensing and actuation as the elementary block of a viable, cost-effective and reliable solution. The prototype presented is capable of supporting both sensors and actuators, processing data locally and transmitting the results of the imposed computations to a higher level node. Additionally, it is combined with a service-oriented architecture and involves publish/subscribe middleware protocols and cloud technology to confront with the system needs in terms of data volume and processing power. In this context, the integration of instant message (chat) services is demonstrated so that they can be part of an emerging global-scope eco-system of Cyber-Physical Systems to support a wide variety of IoT applications, with strong advantages such as usability, scalability and security, while adopting a unified gateway design and a simple - yet powerful - user interface.
Manufacturing data analytics using a virtual factory representation.
Jain, Sanjay; Shao, Guodong; Shin, Seung-Jun
2017-01-01
Large manufacturers have been using simulation to support decision-making for design and production. However, with the advancement of technologies and the emergence of big data, simulation can be utilised to perform and support data analytics for associated performance gains. This requires not only significant model development expertise, but also huge data collection and analysis efforts. This paper presents an approach within the frameworks of Design Science Research Methodology and prototyping to address the challenge of increasing the use of modelling, simulation and data analytics in manufacturing via reduction of the development effort. The use of manufacturing simulation models is presented as data analytics applications themselves and for supporting other data analytics applications by serving as data generators and as a tool for validation. The virtual factory concept is presented as the vehicle for manufacturing modelling and simulation. Virtual factory goes beyond traditional simulation models of factories to include multi-resolution modelling capabilities and thus allowing analysis at varying levels of detail. A path is proposed for implementation of the virtual factory concept that builds on developments in technologies and standards. A virtual machine prototype is provided as a demonstration of the use of a virtual representation for manufacturing data analytics.
Optical Autocovariance Wind Lidar (OAWL): aircraft test-flight history and current plans
NASA Astrophysics Data System (ADS)
Tucker, Sara C.; Weimer, Carl; Adkins, Mike; Delker, Tom; Gleeson, David; Kaptchen, Paul; Good, Bill; Kaplan, Mike; Applegate, Jeff; Taudien, Glenn
2015-09-01
To address mission risk and cost limitations the US has faced in putting a much needed Doppler wind lidar into space, Ball Aerospace and Technologies Corp, with support from NASA's Earth Science Technology Office (ESTO), has developed the Optical Autocovariance Wind Lidar (OAWL), designed to measure winds from aerosol backscatter at the 355 nm or 532 nm wavelengths. Preliminary proof of concept hardware efforts started at Ball back in 2004. From 2008 to 2012, under an ESTO-funded Instrument Incubator Program, Ball incorporated the Optical Autocovariance (OA) interferometer receiver into a prototype breadboard lidar system by adding a laser, telescope, and COTS-based data system for operation at the 355 nm wavelength. In 2011, the prototype system underwent ground-based validation testing, and three months later, after hardware and software modifications to ensure autonomous operation and aircraft safety, it was flown on the NASA WB-57 aircraft. The history of the 2011 test flights are reviewed, including efforts to get the system qualified for aircraft flights, modifications made during the flight test period, and the final flight data results. We also present lessons learned and plans for the new, robust, two-wavelength, aircraft system with flight demonstrations planned for Spring 2016.
KLYNAC: Compact linear accelerator with integrated power supply
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyzhenkov, Alexander
Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scienti c community is working towards improving the quality of the accelerated beam and its parameters while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype, resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RFmore » source, an accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simpli ed theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using particle-in-cell simulation studies for mono- resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.« less
Klynac: Compact Linear Accelerator with Integrated Power Supply
NASA Astrophysics Data System (ADS)
Malyzhenkov, A. V.
Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scientific community is working towards improving the quality of the accelerated beam and its parameters, while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype: resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RF source, accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simplified theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using Particle-In-Cell simulation studies for mono-resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.
Nanocrystal Additives for Advanced Lubricants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Gregory; Lohuis, James; Demas, Nicholaos
The innovations in engine and drivetrain lubricants are mainly driven by ever more stringent regulations, which demand better fuel economy, lower carbon emission, and less pollution. Many technologies are being developed for the next generations of vehicles to achieve these goals. Even if these technologies can be adopted, there still is a significant need for a “drop-in” lubricant solution for the existing ground vehicle fleet to reap immediate fuel savings at the same time reduce the pollution. Dramatic improvements were observed when Pixelligent’s proprietary, mono-dispersed, and highly scalable metal oxide nanocrystals were added to the base oils. The dispersions inmore » base and formulated oils are clear and without any change of appearance and viscosity. However, the benefits provided by the nanocrystals were limited to the base oils due to the interference of exiting additives in the fully formulated oils. Developing a prototype formulation including the nanocrystals that can demonstrate the same improvements observed in the base oils is a critical step toward the commercialization of these advanced nano-additives. A ‘bottom-up’ approach was adopted to develop a prototype lubricant formulation to avoid the complicated interactions with the multitude of additives, only minimal numbers of most essential additives are added, step by step, into the formulation, to ensure that they are compatible with the nanocrystals and do not compromise their tribological performance. Tribological performance are characterized to come up with the best formulations that can demonstrate the commercial potential of the nano-additives.« less
Secure, Mobile, Wireless Network Technology Designed, Developed, and Demonstrated
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Paulsen, Phillip E.
2004-01-01
The inability to seamlessly disseminate data securely over a high-integrity, wireless broadband network has been identified as a primary technical barrier to providing an order-of-magnitude increase in aviation capacity and safety. Secure, autonomous communications to and from aircraft will enable advanced, automated, data-intensive air traffic management concepts, increase National Air Space (NAS) capacity, and potentially reduce the overall cost of air travel operations. For the first time ever, secure, mobile, network technology was designed, developed, and demonstrated with state-ofthe- art protocols and applications by a diverse, cooperative Government-industry team led by the NASA Glenn Research Center. This revolutionary technology solution will make fundamentally new airplane system capabilities possible by enabling secure, seamless network connections from platforms in motion (e.g., cars, ships, aircraft, and satellites) to existing terrestrial systems without the need for manual reconfiguration. Called Mobile Router, the new technology autonomously connects and configures networks as they traverse from one operating theater to another. The Mobile Router demonstration aboard the Neah Bay, a U.S. Coast Guard vessel stationed in Cleveland, Ohio, accomplished secure, seamless interoperability of mobile network systems across multiple domains without manual system reconfiguration. The Neah Bay was chosen because of its low cost and communications mission similarity to low-Earth-orbiting satellite platforms. This technology was successfully advanced from technology readiness level (TRL) 2 (concept and/or application formation) to TRL 6 (system model or prototype demonstration in a relevant environment). The secure, seamless interoperability offered by the Mobile Router and encryption device will enable several new, vehicle-specific and systemwide technologies to perform such things as remote, autonomous aircraft performance monitoring and early detection and mitigation of potential equipment malfunctions. As an additional benefit, team advancements were incorporated into open standards, ensuring technology transfer. Low-cost, commercial products incorporating the new technology are already available. Furthermore, these products are fully interoperable with legacy network technology equipment currently being used throughout the world.
OverView of Space Applications for Environment (SAFE) initiative
NASA Astrophysics Data System (ADS)
Hamamoto, Ko; Fukuda, Toru; Tajima, Yoshimitsu; Takeuchi, Wataru; Sobue, Shinichi; Nukui, Tomoyuki
2014-06-01
Climate change and human activities have a direc or indirect influence on the acceleration of environmental problems and natural hazards such as forest fires, draughts and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these disasters and related phenomenon. However, there are still gaps between science and application of satellite technology in real-world usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of satellite technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of satellite technology. This paper describes the overview of SAFE initiative and outcomes of two selected prototypes; agricultural drought monitoring in Indonesia and coastal management in Sri Lanka, as well as the current status of on-going prototypes.
Sorensen, Mathew D; Teichman, Joel M H; Bailey, Michael R
2009-07-01
Proof-of-principle in vitro experiments evaluated a prototype ultrasound technology to size kidney stone fragments. Nineteen human stones were measured using manual calipers. A 10-MHz, 1/8'' (10F) ultrasound transducer probe pinged each stone on a kidney tissue phantom submerged in water using two methods. In Method 1, the instrument was aligned such that the ultrasound pulse traveled through the stone. In Method 2, the instrument was aligned partially over the stone such that the ultrasound pulse traveled through water. For Method 1, the correlation between caliper- and ultrasound-determined stone size was r(2) = 0.71 (P < 0.0001). All but two stone measurements were accurate and precise to within 1 mm. For Method 2, the correlation was r(2) = 0.99 (P < 0.0001), and measurements were accurate and precise to within 0.25 mm. The prototype technology and either method measured stone size with good accuracy and precision. This technology may be possible to incorporate into ureteroscopy.
Air Conditioning Overflow Sensor
NASA Technical Reports Server (NTRS)
1996-01-01
The Technology Transfer Office at Stennis Space Center helped a local inventor develop a prototype of an attachment for central air conditioners and heat pumps that helps monitor water levels to prevent condensation overflow. The sensor will indicate a need for drain line maintenance and prevent possible damage caused by drain pan water spillover. An engineer in the Stennis Space Center prototype Development Laboratory used SSC sensor technology in the development of the sensor.
The ASCI Network for SC '99: A Step on the Path to a 100 Gigabit Per Second Supercomputing Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
PRATT,THOMAS J.; TARMAN,THOMAS D.; MARTINEZ,LUIS M.
2000-07-24
This document highlights the Discom{sup 2}'s Distance computing and communication team activities at the 1999 Supercomputing conference in Portland, Oregon. This conference is sponsored by the IEEE and ACM. Sandia, Lawrence Livermore and Los Alamos National laboratories have participated in this conference for eleven years. For the last four years the three laboratories have come together at the conference under the DOE's ASCI, Accelerated Strategic Computing Initiatives rubric. Communication support for the ASCI exhibit is provided by the ASCI DISCOM{sup 2} project. The DISCOM{sup 2} communication team uses this forum to demonstrate and focus communication and networking developments within themore » community. At SC 99, DISCOM built a prototype of the next generation ASCI network demonstrated remote clustering techniques, demonstrated the capabilities of the emerging Terabit Routers products, demonstrated the latest technologies for delivering visualization data to the scientific users, and demonstrated the latest in encryption methods including IP VPN technologies and ATM encryption research. The authors also coordinated the other production networking activities within the booth and between their demonstration partners on the exhibit floor. This paper documents those accomplishments, discusses the details of their implementation, and describes how these demonstrations support Sandia's overall strategies in ASCI networking.« less
Field Testing of Environmentally Friendly Drilling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Burnett
2009-05-31
The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of themore » environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.« less
NASA Technical Reports Server (NTRS)
Mandl, Daniel; Unger, Stephen; Ames, Troy; Frye, Stuart; Chien, Steve; Cappelaere, Pat; Tran, Danny; Derezinski, Linda; Paules, Granville
2007-01-01
This paper will describe the progress of a 3 year research award from the NASA Earth Science Technology Office (ESTO) that began October 1, 2006, in response to a NASA Announcement of Research Opportunity on the topic of sensor webs. The key goal of this research is to prototype an interoperable sensor architecture that will enable interoperability between a heterogeneous set of space-based, Unmanned Aerial System (UAS)-based and ground based sensors. Among the key capabilities being pursued is the ability to automatically discover and task the sensors via the Internet and to automatically discover and assemble the necessary science processing algorithms into workflows in order to transform the sensor data into valuable science products. Our first set of sensor web demonstrations will prototype science products useful in managing wildfires and will use such assets as the Earth Observing 1 spacecraft, managed out of NASA/GSFC, a UASbased instrument, managed out of Ames and some automated ground weather stations, managed by the Forest Service. Also, we are collaborating with some of the other ESTO awardees to expand this demonstration and create synergy between our research efforts. Finally, we are making use of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) suite of standards and some Web 2.0 capabilities to Beverage emerging technologies and standards. This research will demonstrate and validate a path for rapid, low cost sensor integration, which is not tied to a particular system, and thus be able to absorb new assets in an easily evolvable, coordinated manner. This in turn will help to facilitate the United States contribution to the Global Earth Observation System of Systems (GEOSS), as agreed by the U.S. and 60 other countries at the third Earth Observation Summit held in February of 2005.
NASA Astrophysics Data System (ADS)
Snarski, Steve; Menozzi, Alberico; Sherrill, Todd; Volpe, Chris; Wille, Mark
2010-04-01
This paper describes experimental results from recent live-fire data collects that demonstrate the capability of a prototype system for projectile detection and tracking. This system, which is being developed at Applied Research Associates, Inc., under the FightSight program, consists of a high-speed thermal camera and sophisticated image processing algorithms to detect and track projectiles. The FightSight operational vision is automated situational intelligence to detect, track, and graphically map large-scale firefights and individual shooting events onto command and control (C2) systems in real time (shot location and direction, weapon ID, movements and trends). Gaining information on enemy-fire trajectories allows educated inferences on the enemy's intent, disposition, and strength. Our prototype projectile detection and tracking system has been tested at the Joint Readiness Training Center (Ft Polk, LA) during live-fire convoy and mortar registration exercises, in the summer of 2009. It was also tested during staged military-operations- on-urban-terrain (MOUT) firefight events at Aberdeen Test Center (Aberdeen, MD) under the Hostile Fire Defeat Army Technology Objective midterm experiment, also in the summer of 2009, where we introduced fusion with acoustic and EO sensors to provide 3D localization and near-real time display of firing events. Results are presented in this paper that demonstrate effective and accurate detection and localization of weapon fire (5.56mm, 7.62mm, .50cal, 81/120mm mortars, 40mm) in diverse and challenging environments (dust, heat, day and night, rain, arid open terrain, urban clutter). FightSight's operational capabilities demonstrated under these live-fire data collects can support closecombat scenarios. As development continues, FightSight will be able to feed C2 systems with a symbolic map of enemy actions.
A PEMFC hybrid electric vehicle real time control system
NASA Astrophysics Data System (ADS)
Sun, Hongqiao
In recent years, environmental friendly technologies and alternative energy solutions have drawn a lot of public attentions due to global energy crisis and pollution issues. Fuel cell (FC), a technology invented almost at the same time as the internal combustion (IC) engine, is now the focus of the automotive industry again. The fuel cell vehicle (FCV) has zero emission and its efficiency is significantly higher than the conventional IC engine power vehicles. Among a variety of FCV technologies, proton exchange membrane (PEM) FC vehicle appears to be far more attractive and mature. The prototype PEMFC vehicle has been developed and demonstrated to the public by nearly all the major automotive manufacturers in recent years. However, to the interest of the public research, publications and documentations on the PEMFC vehicle technology are rarely available due to its proprietary nature, which essentially makes it a secured technology. This dissertation demonstrates a real world application of a PEMFC hybrid electric vehicle. Through presenting the vehicle design concept, developing the real time control system and generating generic operation principles, this dissertation targets at establishing the public knowledge base on this new technology. A complete PEMFC hybrid electric vehicle design, including vehicle components layout, process flow diagram, real time control system architecture, subsystem structures and control algorithms, is presented in order to help understand the whole vehicle system. The design concept is validated through the vehicle demonstration. Generic operating principles are established along with the validation process, which helps populate this emerging technology. Thereafter, further improvements and future research directions are discussed.
Rapid Production of Composite Prototype Hardware
NASA Technical Reports Server (NTRS)
DeLay, T. K.
2000-01-01
The objective of this research was to provide a mechanism to cost-effectively produce composite hardware prototypes. The task was to take a hands-on approach to developing new technologies that could benefit multiple future programs.
Moschou, Despina; Trantidou, Tatiana; Regoutz, Anna; Carta, Daniela; Morgan, Hywel; Prodromakis, Themistoklis
2015-01-01
Lab-on-Chip is a technology that could potentially revolutionize medical Point-of-Care diagnostics. Considerable research effort is focused towards innovating production technologies that will make commercial upscaling financially viable. Printed circuit board manufacturing techniques offer several prospects in this field. Here, we present a novel approach to manufacturing Printed Circuit Board (PCB)-based Ag/AgCl reference electrodes, an essential component of biosensors. Our prototypes were characterized both structurally and electrically. Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS) were employed to evaluate the electrode surface characteristics. Electrical characterization was performed to determine stability and pH dependency. Finally, we demonstrate utilization along with PCB pH sensors, as a step towards a fully integrated PCB platform, comparing performance with discrete commercial reference electrodes. PMID:26213940
The UK National Quantum Technologies Hub in sensors and metrology (Keynote Paper)
NASA Astrophysics Data System (ADS)
Bongs, K.; Boyer, V.; Cruise, M. A.; Freise, A.; Holynski, M.; Hughes, J.; Kaushik, A.; Lien, Y.-H.; Niggebaum, A.; Perea-Ortiz, M.; Petrov, P.; Plant, S.; Singh, Y.; Stabrawa, A.; Paul, D. J.; Sorel, M.; Cumming, D. R. S.; Marsh, J. H.; Bowtell, R. W.; Bason, M. G.; Beardsley, R. P.; Campion, R. P.; Brookes, M. J.; Fernholz, T.; Fromhold, T. M.; Hackermuller, L.; Krüger, P.; Li, X.; Maclean, J. O.; Mellor, C. J.; Novikov, S. V.; Orucevic, F.; Rushforth, A. W.; Welch, N.; Benson, T. M.; Wildman, R. D.; Freegarde, T.; Himsworth, M.; Ruostekoski, J.; Smith, P.; Tropper, A.; Griffin, P. F.; Arnold, A. S.; Riis, E.; Hastie, J. E.; Paboeuf, D.; Parrotta, D. C.; Garraway, B. M.; Pasquazi, A.; Peccianti, M.; Hensinger, W.; Potter, E.; Nizamani, A. H.; Bostock, H.; Rodriguez Blanco, A.; Sinuco-Leon, G.; Hill, I. R.; Williams, R. A.; Gill, P.; Hempler, N.; Malcolm, G. P. A.; Cross, T.; Kock, B. O.; Maddox, S.; John, P.
2016-04-01
The UK National Quantum Technology Hub in Sensors and Metrology is one of four flagship initiatives in the UK National of Quantum Technology Program. As part of a 20-year vision it translates laboratory demonstrations to deployable practical devices, with game-changing miniaturized components and prototypes that transform the state-of-the-art for quantum sensors and metrology. It brings together experts from the Universities of Birmingham, Glasgow, Nottingham, Southampton, Strathclyde and Sussex, NPL and currently links to over 15 leading international academic institutions and over 70 companies to build the supply chains and routes to market needed to bring 10-1000x improvements in sensing applications. It seeks, and is open to, additional partners for new application development and creates a point of easy open access to the facilities and supply chains that it stimulates or nurtures.
Direct Methanol Fuel Cell Power Supply For All-Day True Wireless Mobile Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brian Wells
PolyFuel has developed state-of-the-art portable fuel cell technology for the portable computing market. A novel approach to passive water recycling within the MEA has led to significant system simplification and size reduction. Miniature stack technology with very high area utilization and minimalist seals has been developed. A highly integrated balance of plant with very low parasitic losses has been constructed around the new stack design. Demonstration prototype systems integrated with laptop computers have been shown in recent months to leading OEM computer manufacturers. PolyFuel intends to provide this technology to its customers as a reference design as a means ofmore » accelerating the commercialization of portable fuel cell technology. The primary goal of the project was to match the energy density of a commercial lithium ion battery for laptop computers. PolyFuel made large strides against this goal and has now demonstrated 270 Wh/liter compared with lithium ion energy densities of 300 Wh/liter. Further, more incremental, improvements in energy density are envisioned with an additional 20-30% gains possible in each of the next two years given further research and development.« less
Shepperd, Christopher J; Eldridge, Alison; Camacho, Oscar M; McAdam, Kevin; Proctor, Christopher J; Meyer, Ingo
2013-06-01
Reduced toxicant prototype (RTP) cigarettes with substantially reduced levels of tobacco smoke toxicants have been developed. Evaluation of these prototype cigarettes included measurement of biomarkers of exposure (BoE) to toxicants in smokers switched from conventional cigarettes to the RTPs. A 6-week single-blinded randomised controlled study with occasional clinical confinement was conducted ( ISRCTN7215735). All smoking subjects smoked a conventional cigarette for 2-weeks. Control groups continued to smoke the conventional cigarette while test groups switched to one of three RTP designs. Clinical confinement and additional assessments were performed for all smoking groups after 2 and 4-weeks. A non-smoker group provided background levels of BoE. On average, smokers switched to RTPs with reduced machine yields of toxicants had reduced levels of corresponding BoEs. For vapour phase toxicants such as acrolein and 1,3-butadiene reductions of ⩾70% were observed both in smoke chemistry and BoEs. Reductions in particulate phase toxicants such as tobacco-specific nitrosamines, aromatic amines and polyaromatic hydrocarbons depended upon the technologies used, but were in some cases ⩾80% although some increases in other particulate phase toxicants were observed. However, reductions in BoEs demonstrate that it is possible to produce prototype cigarettes that reduce exposure to toxicants in short-term use. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fuad, Nurul Mohd; Zhu, Feng; Kaslin, Jan; Wlodkowic, Donald
2016-12-01
Despite the growing demand and numerous applications for the biomedical community, the developments in millifluidic devices for small model organisms are limited compared to other fields of biomicrofluidics. The main reasons for this stagnanation are difficulties in prototyping of millimeter scale and high aspect ratio devices needed for large metazoan organisms. Standard photolithography is in this context a time consuming procedure not easily adapted for fabrication of molds with vertical dimensions above 1 mm. Moreover, photolithography is still largely unattainable to a gross majority of biomedical laboratories willing to pursue custom development of their own chip-based platforms due to costs and need for dedicated clean room facilities. In this work, we present application of high-definition additive manufacturing systems for fabrication of 3D printed moulds used in soft lithography. Combination of 3D printing with PDMS replica molding appears to be an alternative for millifluidic systems that yields rapid and cost effective prototyping pipeline. We investigated the important aspects on both 3D printed moulds and PDMS replicas such as geometric accuracies and surface topology. Our results demonstrated that SLA technologies could be applied for rapid and accurate fabrication of millifluidic devices for trapping of millimetre-sized specimens such as living zebrafish larvae. We applied the new manufacturing method in a proof-of-concept prototype device capable of trapping and immobilizing living zebrafish larvae for recording heart rate variation in cardio-toxicity experiments.
Prototype of an in vitro model of the microcirculation.
Shevkoplyas, Sergey S; Gifford, Sean C; Yoshida, Tatsuro; Bitensky, Mark W
2003-03-01
We have used microfabrication technology to construct a network of microchannels, patterned after the dimensions and architecture of the mammalian microcirculation. The network is cast in transparent silicone elastomer and the channels are coated with silanated mPEG to provide lubrication. Flow of red and white blood cells through the network is readily visualized by the use of high-speed digital image acquisition. The acquired sequences of high-quality images are used to calculate hematocrits and rates of red cell movement in the microchannels. Our prototype system has significant advantages over scaled-up room-size experimental systems in that it permits experimentation with actual human blood cells. Experiments can be carried out under well-controlled conditions in a network of microchannels with precisely known dimensions using cell suspensions of defined composition. Moreover, there is no need to counteract or anticipate the host's adaptive responses that may confound live animal experiments. Notwithstanding its limitations, the current prototype demonstrates certain features characteristic of the microcirculation, such as parachute and bullet shapes of red cells deformed in capillary channels, rouleaux formation, plasma skimming, and the utilization of collateral flow pathways due to flow obstruction caused by a white cell blocking a microchannel. We present this device as a prototype scale-to-scale model of the mammalian microcirculation. Limitations of the system as well as a variety of possible applications are described.
NASA Astrophysics Data System (ADS)
Irles, A.
2018-02-01
High precision physics at future colliders as the International Linear Collider (ILC) require unprecedented high precision in the determination of the energy of final state particles. The needed precision will be achieved thanks to the Particle Flow algorithms (PF) which require highly granular and hermetic calorimeters systems. The physical proof of concept of the PF was performed in the previous campaign of beam tests of physic prototypes within the CALICE collaboration. One of these prototypes was the physics prototype of the Silicon-Tungsten Electromagnetic Calorimeter (SiW-ECAL) for the ILC. In this document we present the latest news on R&D of the next generation prototype, the technological prototype with fully embedded very front-end (VFE) electronics, of the SiW-ECAL. Special emphasis is given to the presentation and discussion of the first results from the beam test done at DESY in June 2017. The physics program for such beam test consisted in the calibration and commissioning of the current set of available SiW ECAL modules; the test of performance of individual slabs under 1T magnetic fields; and the study of electromagnetic showers events.
NASA Astrophysics Data System (ADS)
Vucinic, Dean; Deen, Danny; Oanta, Emil; Batarilo, Zvonimir; Lacor, Chris
This paper focuses on visualization and manipulation of graphical content in distributed network environments. The developed graphical middleware and 3D desktop prototypes were specialized for situational awareness. This research was done in the LArge Scale COllaborative decision support Technology (LASCOT) project, which explored and combined software technologies to support human-centred decision support system for crisis management (earthquake, tsunami, flooding, airplane or oil-tanker incidents, chemical, radio-active or other pollutants spreading, etc.). The performed state-of-the-art review did not identify any publicly available large scale distributed application of this kind. Existing proprietary solutions rely on the conventional technologies and 2D representations. Our challenge was to apply the "latest" available technologies, such Java3D, X3D and SOAP, compatible with average computer graphics hardware. The selected technologies are integrated and we demonstrate: the flow of data, which originates from heterogeneous data sources; interoperability across different operating systems and 3D visual representations to enhance the end-users interactions.
Intelligent Unmanned Monitoring of Remediated Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emile Fiesler, Ph.D.
During this Phase I project, IOS demonstrated the feasibility of combining digital signal processing and neural network analysis to analyze spectral signals from pure samples of several typical contaminants. We fabricated and tested a prototype system by automatically analyzing Raman spectral data taken in the Vadose zone at the 321 M site in the M area of DOE's Savannah River Site in South Carolina. This test demonstration proved the ability of IOS's technology to detect the target contaminants, tetrachloroethylene (PCE) and trichloroethylene (TCE), in isolation, and to detect the spectra of these contaminants in real-world noisy samples taken from amore » mixture of materials obtained from this typical remediation target site.« less
2004-04-15
The wedge-shaped X-33 was a sub-scale technology demonstration prototype of a Reusable Launch Vehicle (RLV). Through demonstration flights and ground research, NASA's X-33 program was to provide the information needed for industry representatives such as Lockheed Martin (builder of the X-33 Venture Star) to decide by the year 2000 whether to proceed with the development of a full-scale, commercial RLV program. This program would dramatically increase reliability and lower the costs of putting a payload into space. This would in turn create new opportunities for space access and significantly improve U.S. economic competitiveness in the worldwide launch marketplace. NASA would be a customer, not the operator in the commercial RLV. The X-33 program was cancelled in 2001.
Recent progress on external occulter technology for imaging exosolar planets
NASA Astrophysics Data System (ADS)
Kasdin, N. J.; Vanderbei, R. J.; Sirbu, D.; Samuels, J.; Shaklan, S.; Lisman, D.; Thomson, M.; Cady, E.; Martin, S.
Imaging planets orbiting nearby stars requires a system for suppressing the host starlight by at least ten orders of magnitude. One such approach uses an external occulter, a satellite flying far from the telescope and employing a large screen, or starshade, to suppress the incoming starlight. This trades the added complexity of building the precisely shaped starshade and flying it in formation against simplifications in the telescope since extremely precise wavefront control is no longer necessary. Much progress has been made recently in designing, testing and manufacturing starshade technology. In this paper we describe the design of starshades and report on recent accomplishments in manufacturing and measuring a prototype occulter petal as part of NASA's first Technology Development for Exoplanet Missions (TDEM) program. We demonstrate that the as-built petal is consistent with a full-size occulter achieving better than 10-10 contrast. We also discuss laboratory testing at the Princeton Occulter Testbed. These experiments use sub-scale, long-distance beam propagation to verify the diffraction analysis associated with occulter starlight suppression. We demonstrate roughly 10-10 suppression in the laboratory and discuss the important challenges and limitations.
EDSN Development Lessons Learned
NASA Technical Reports Server (NTRS)
Chartres, James; Sanchez, Hugo S.; Hanson, John
2014-01-01
The Edison Demonstration of Smallsat Networks (EDSN) is a technology demonstration mission that provides a proof of concept for a constellation or swarm of satellites performing coordinated activities. Networked swarms of small spacecraft will open new horizons in astronomy, Earth observations and solar physics. Their range of applications include the formation of synthetic aperture radars for Earth sensing systems, large aperture observatories for next generation telescopes and the collection of spatially distributed measurements of time varying systems, probing the Earths magnetosphere, Earth-Sun interactions and the Earths geopotential. EDSN is a swarm of eight 1.5U Cubesats with crosslink, downlink and science collection capabilities developed by the NASA Ames Research Center under the Small Spacecraft Technology Program (SSTP) within the NASA Space Technology Mission Directorate (STMD). This paper describes the concept of operations of the mission and planned scientific measurements. The development of the 8 satellites for EDSN necessitated the fabrication of prototypes, Flatsats and a total of 16 satellites to support the concurrent engineering and rapid development. This paper has a specific focus on the development, integration and testing of a large number of units including the lessons learned throughout the project development.
An Investigation of Interval Management Displays
NASA Technical Reports Server (NTRS)
Swieringa, Kurt A.; Wilson, Sara R.; Shay, Rick
2015-01-01
NASA's first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to transition the most mature ATM technologies from the laboratory to the National Airspace System. One selected technology is Interval Management (IM), which uses onboard aircraft automation to compute speeds that help the flight crew achieve and maintain precise spacing behind a preceding aircraft. Since ATD-1 focuses on a near-term environment, the ATD-1 flight demonstration prototype requires radio voice communication to issue an IM clearance. Retrofit IM displays will enable pilots to both enter information into the IM avionics and monitor IM operation. These displays could consist of an interface to enter data from an IM clearance and also an auxiliary display that presents critical information in the primary field-of-view. A human-in-the-loop experiment was conducted to examine usability and acceptability of retrofit IM displays, which flight crews found acceptable. Results also indicate the need for salient alerting when new speeds are generated and the desire to have a primary field of view display available that can display text and graphic trend indicators.
DOT National Transportation Integrated Search
2014-01-01
This document provides the high-level system architecture for the Prototype Development and Demonstration of a R.E.S.C.U.M.E. system. The requirements addressed in this document are based upon those that can be found in previous R.E.S.C.U.M.E. report...
Cranioplasty prosthesis manufacturing based on reverse engineering technology
Chrzan, Robert; Urbanik, Andrzej; Karbowski, Krzysztof; Moskała, Marek; Polak, Jarosław; Pyrich, Marek
2012-01-01
Summary Background Most patients with large focal skull bone loss after craniectomy are referred for cranioplasty. Reverse engineering is a technology which creates a computer-aided design (CAD) model of a real structure. Rapid prototyping is a technology which produces physical objects from virtual CAD models. The aim of this study was to assess the clinical usefulness of these technologies in cranioplasty prosthesis manufacturing. Material/Methods CT was performed on 19 patients with focal skull bone loss after craniectomy, using a dedicated protocol. A material model of skull deficit was produced using computer numerical control (CNC) milling, and individually pre-operatively adjusted polypropylene-polyester prosthesis was prepared. In a control group of 20 patients a prosthesis was manually adjusted to each patient by a neurosurgeon during surgery, without using CT-based reverse engineering/rapid prototyping. In each case, the prosthesis was implanted into the patient. The mean operating times in both groups were compared. Results In the group of patients with reverse engineering/rapid prototyping-based cranioplasty, the mean operating time was shorter (120.3 min) compared to that in the control group (136.5 min). The neurosurgeons found the new technology particularly useful in more complicated bone deficits with different curvatures in various planes. Conclusions Reverse engineering and rapid prototyping may reduce the time needed for cranioplasty neurosurgery and improve the prosthesis fitting. Such technologies may utilize data obtained by commonly used spiral CT scanners. The manufacturing of individually adjusted prostheses should be commonly used in patients planned for cranioplasty with synthetic material. PMID:22207125
Impact assessment of the smart roadside initiative (SRI) prototype - final report.
DOT National Transportation Integrated Search
2016-12-01
This report summarizes the independent assessment of the effectiveness and lessons learned from roadside motor carrier compliance systems including assessment of the Smart Roadside Initiative (SRI) Prototype and other SRI-like technologies. The locat...
Single Stage Rocket Technology's real time data system
NASA Technical Reports Server (NTRS)
Voglewede, Steven D.
1994-01-01
The Single Stage Rocket Technology (SSRT) Delta Clipper Experimental (DC-X) Program is a United States Air Force Ballistic Missile Defense Organization (BMDO) rapid prototyping initiative that is currently demonstrating technology readiness for reusable suborbital rockets. The McDonnell Douglas DC-X rocket performed technology demonstrations at the U.S. Army White Sands Missile Range in New Mexico from April-October in 1993. The DC-X Flight Operations Control Center (FOCC) contains the ground control system that is used to monitor and control the DC-X vehicle and its Ground Support Systems (GSS). The FOCC is operated by a flight crew of three operators. Two operators manage the DC-X Flight Systems and one operator is the Ground Systems Manager. A group from McDonnell Douglas Aerospace at KSC developed the DC-X ground control system for the FOCC. This system is known as the Real Time Data System (RTDS). The RTDS is a distributed real time control and monitoring system that utilizes the latest available commercial off-the-shelf computer technology. The RTDS contains front end interfaces for the DC-X RF uplink/downlink and fiber optic interfaces to the GSS equipment. This paper describes the RTDS architecture and FOCC layout. The DC-X applications and ground operations are covered.
2013-12-10
CAPE CANAVERAL, Fla. – Preparations are underway to prepare the Project Morpheus prototype lander for its first free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-17
CAPE CANAVERAL, Fla. -- A technician prepares the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis
2012-08-01
CAPE CANAVERAL, Fla. - At a hangar near the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, Chirold Epp, Johnson Space Center Project Manager for ALHAT, speaks to members of the media. In the background is the Morpheus prototype lander, which arrived at Kennedy on July 27. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2013-12-17
CAPE CANAVERAL, Fla. -- Preparations are underway to prepare the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis
2012-08-01
CAPE CANAVERAL, Fla. - At a hangar near the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, the Johnson Space Center Project Morpheus Manager Jon Olansen speaks to members of the media. In the foreground is the Morpheus prototype lander, which arrived at Kennedy on July 27. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2012-08-01
CAPE CANAVERAL, Fla. - At a hangar near the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, the Johnson Space Center Project Morpheus Manager Jon Olansen speaks to members of the media. In the background is the Morpheus prototype lander, which arrived at Kennedy on July 27. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett