NASA Technical Reports Server (NTRS)
Chen, I. Y.; Ungar, E. K.; Lee, D. Y.; Beckstrom, P. S.
1993-01-01
To verify the on-orbit operation of the Space Station Freedom (SSF) two-phase external Active Thermal Control System (ATCS), a test and verification program will be performed prior to flight. The first system level test of the ATCS is the Prototype Test Article (PTA) test that will be performed in early 1994. All ATCS loops will be represented by prototypical components and the line sizes and lengths will be representative of the flight system. In this paper, the SSF ATCS and a portion of its verification process are described. The PTA design and the analytical methods that were used to quantify the gravity effects on PTA operation are detailed. Finally, the gravity effects are listed, and the applicability of the 1-g PTA test results to the validation of on-orbit ATCS operation is discussed.
NASA Astrophysics Data System (ADS)
McKellip, Rodney; Yuan, Ding; Graham, William; Holland, Donald E.; Stone, David; Walser, William E.; Mao, Chengye
1997-06-01
The number of available spaceborne and airborne systems will dramatically increase over the next few years. A common systematic approach toward verification of these systems will become important for comparing the systems' operational performance. The Commercial Remote Sensing Program at the John C. Stennis Space Center (SSC) in Mississippi has developed design requirements for a remote sensing verification target range to provide a means to evaluate spatial, spectral, and radiometric performance of optical digital remote sensing systems. The verification target range consists of spatial, spectral, and radiometric targets painted on a 150- by 150-meter concrete pad located at SSC. The design criteria for this target range are based upon work over a smaller, prototypical target range at SSC during 1996. This paper outlines the purpose and design of the verification target range based upon an understanding of the systems to be evaluated as well as data analysis results from the prototypical target range.
Control and Non-Payload Communications (CNPC) Prototype Radio Verification Test Report
NASA Technical Reports Server (NTRS)
Bishop, William D.; Frantz, Brian D.; Thadhani, Suresh K.; Young, Daniel P.
2017-01-01
This report provides an overview and results from the verification of the specifications that defines the operational capabilities of the airborne and ground, L Band and C Band, Command and Non-Payload Communications radio link system. An overview of system verification is provided along with an overview of the operation of the radio. Measurement results are presented for verification of the radios operation.
CD volume design and verification
NASA Technical Reports Server (NTRS)
Li, Y. P.; Hughes, J. S.
1993-01-01
In this paper, we describe a prototype for CD-ROM volume design and verification. This prototype allows users to create their own model of CD volumes by modifying a prototypical model. Rule-based verification of the test volumes can then be performed later on against the volume definition. This working prototype has proven the concept of model-driven rule-based design and verification for large quantity of data. The model defined for the CD-ROM volumes becomes a data model as well as an executable specification.
From Verified Models to Verifiable Code
NASA Technical Reports Server (NTRS)
Lensink, Leonard; Munoz, Cesar A.; Goodloe, Alwyn E.
2009-01-01
Declarative specifications of digital systems often contain parts that can be automatically translated into executable code. Automated code generation may reduce or eliminate the kinds of errors typically introduced through manual code writing. For this approach to be effective, the generated code should be reasonably efficient and, more importantly, verifiable. This paper presents a prototype code generator for the Prototype Verification System (PVS) that translates a subset of PVS functional specifications into an intermediate language and subsequently to multiple target programming languages. Several case studies are presented to illustrate the tool's functionality. The generated code can be analyzed by software verification tools such as verification condition generators, static analyzers, and software model-checkers to increase the confidence that the generated code is correct.
Hardware acceleration and verification of systems designed with hardware description languages (HDL)
NASA Astrophysics Data System (ADS)
Wisniewski, Remigiusz; Wegrzyn, Marek
2005-02-01
Hardware description languages (HDLs) allow creating bigger and bigger designs nowadays. The size of prototyped systems very often exceeds million gates. Therefore verification process of the designs takes several hours or even days. The solution for this problem can be solved by hardware acceleration of simulation.
Metamorphoses of ONAV console operations: From prototype to real time application
NASA Technical Reports Server (NTRS)
Millis, Malise; Wang, Lui
1991-01-01
The ONAV (Onboard Navigation) Expert System is being developed as a real time console assistant to the ONAV flight controller for use in the Mission Control Center at the Johnson Space Center. Currently the entry and rendezvous systems are in verification, and the ascent is being prototyped. To arrive at this stage, from a prototype to real world application, the ONAV project has had to deal with not only AI issues but operating environment issues. The AI issues included the maturity of AI languages and the debugging tools, what is verification, and availability, stability, and the size of the expert pool. The environmental issues included real time data acquisition, hardware stability, and how to achieve acceptance by users and management.
Space station prototype Sabatier reactor design verification testing
NASA Technical Reports Server (NTRS)
Cusick, R. J.
1974-01-01
A six-man, flight prototype carbon dioxide reduction subsystem for the SSP ETC/LSS (Space Station Prototype Environmental/Thermal Control and Life Support System) was developed and fabricated for the NASA-Johnson Space Center between February 1971 and October 1973. Component design verification testing was conducted on the Sabatier reactor covering design and off-design conditions as part of this development program. The reactor was designed to convert a minimum of 98 per cent hydrogen to water and methane for both six-man and two-man reactant flow conditions. Important design features of the reactor and test conditions are described. Reactor test results are presented that show design goals were achieved and off-design performance was stable.
VerifEYE: a real-time meat inspection system for the beef processing industry
NASA Astrophysics Data System (ADS)
Kocak, Donna M.; Caimi, Frank M.; Flick, Rick L.; Elharti, Abdelmoula
2003-02-01
Described is a real-time meat inspection system developed for the beef processing industry by eMerge Interactive. Designed to detect and localize trace amounts of contamination on cattle carcasses in the packing process, the system affords the beef industry an accurate, high speed, passive optical method of inspection. Using a method patented by United States Department of Agriculture and Iowa State University, the system takes advantage of fluorescing chlorophyll found in the animal's diet and therefore the digestive track to allow detection and imaging of contaminated areas that may harbor potentially dangerous microbial pathogens. Featuring real-time image processing and documentation of performance, the system can be easily integrated into a processing facility's Hazard Analysis and Critical Control Point quality assurance program. This paper describes the VerifEYE carcass inspection and removal verification system. Results indicating the feasibility of the method, as well as field data collected using a prototype system during four university trials conducted in 2001 are presented. Two successful demonstrations using the prototype system were held at a major U.S. meat processing facility in early 2002.
Hydrologic data-verification management program plan
Alexander, C.W.
1982-01-01
Data verification refers to the performance of quality control on hydrologic data that have been retrieved from the field and are being prepared for dissemination to water-data users. Water-data users now have access to computerized data files containing unpublished, unverified hydrologic data. Therefore, it is necessary to develop techniques and systems whereby the computer can perform some data-verification functions before the data are stored in user-accessible files. Computerized data-verification routines can be developed for this purpose. A single, unified concept describing master data-verification program using multiple special-purpose subroutines, and a screen file containing verification criteria, can probably be adapted to any type and size of computer-processing system. Some traditional manual-verification procedures can be adapted for computerized verification, but new procedures can also be developed that would take advantage of the powerful statistical tools and data-handling procedures available to the computer. Prototype data-verification systems should be developed for all three data-processing environments as soon as possible. The WATSTORE system probably affords the greatest opportunity for long-range research and testing of new verification subroutines. (USGS)
Verification of Faulty Message Passing Systems with Continuous State Space in PVS
NASA Technical Reports Server (NTRS)
Pilotto, Concetta; White, Jerome
2010-01-01
We present a library of Prototype Verification System (PVS) meta-theories that verifies a class of distributed systems in which agent commu nication is through message-passing. The theoretic work, outlined in, consists of iterative schemes for solving systems of linear equations , such as message-passing extensions of the Gauss and Gauss-Seidel me thods. We briefly review that work and discuss the challenges in formally verifying it.
System Design Package for SIMS Prototype System 3, Solar Heating and Domestic Hot Water
NASA Technical Reports Server (NTRS)
1978-01-01
A collation of documents and drawings are presented that describe a prototype solar heating and hot water system using liquid flat plate collectors and a gas or electric furnace energy subsystem. The system was designed for installation into a single-family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with information sufficient to assemble a similar system.
Validation and verification of a virtual environment for training naval submarine officers
NASA Astrophysics Data System (ADS)
Zeltzer, David L.; Pioch, Nicholas J.
1996-04-01
A prototype virtual environment (VE) has been developed for training a submarine officer of the desk (OOD) to perform in-harbor navigation on a surfaced submarine. The OOD, stationed on the conning tower of the vessel, is responsible for monitoring the progress of the boat as it negotiates a marked channel, as well as verifying the navigational suggestions of the below- deck piloting team. The VE system allows an OOD trainee to view a particular harbor and associated waterway through a head-mounted display, receive spoken reports from a simulated piloting team, give spoken commands to the helmsman, and receive verbal confirmation of command execution from the helm. The task analysis of in-harbor navigation, and the derivation of application requirements are briefly described. This is followed by a discussion of the implementation of the prototype. This implementation underwent a series of validation and verification assessment activities, including operational validation, data validation, and software verification of individual software modules as well as the integrated system. Validation and verification procedures are discussed with respect to the OOD application in particular, and with respect to VE applications in general.
Safety Verification of the Small Aircraft Transportation System Concept of Operations
NASA Technical Reports Server (NTRS)
Carreno, Victor; Munoz, Cesar
2005-01-01
A critical factor in the adoption of any new aeronautical technology or concept of operation is safety. Traditionally, safety is accomplished through a rigorous process that involves human factors, low and high fidelity simulations, and flight experiments. As this process is usually performed on final products or functional prototypes, concept modifications resulting from this process are very expensive to implement. This paper describe an approach to system safety that can take place at early stages of a concept design. It is based on a set of mathematical techniques and tools known as formal methods. In contrast to testing and simulation, formal methods provide the capability of exhaustive state exploration analysis. We present the safety analysis and verification performed for the Small Aircraft Transportation System (SATS) Concept of Operations (ConOps). The concept of operations is modeled using discrete and hybrid mathematical models. These models are then analyzed using formal methods. The objective of the analysis is to show, in a mathematical framework, that the concept of operation complies with a set of safety requirements. It is also shown that the ConOps has some desirable characteristic such as liveness and absence of dead-lock. The analysis and verification is performed in the Prototype Verification System (PVS), which is a computer based specification language and a theorem proving assistant.
Translating expert system rules into Ada code with validation and verification
NASA Technical Reports Server (NTRS)
Becker, Lee; Duckworth, R. James; Green, Peter; Michalson, Bill; Gosselin, Dave; Nainani, Krishan; Pease, Adam
1991-01-01
The purpose of this ongoing research and development program is to develop software tools which enable the rapid development, upgrading, and maintenance of embedded real-time artificial intelligence systems. The goals of this phase of the research were to investigate the feasibility of developing software tools which automatically translate expert system rules into Ada code and develop methods for performing validation and verification testing of the resultant expert system. A prototype system was demonstrated which automatically translated rules from an Air Force expert system was demonstrated which detected errors in the execution of the resultant system. The method and prototype tools for converting AI representations into Ada code by converting the rules into Ada code modules and then linking them with an Activation Framework based run-time environment to form an executable load module are discussed. This method is based upon the use of Evidence Flow Graphs which are a data flow representation for intelligent systems. The development of prototype test generation and evaluation software which was used to test the resultant code is discussed. This testing was performed automatically using Monte-Carlo techniques based upon a constraint based description of the required performance for the system.
Abstract Model of the SATS Concept of Operations: Initial Results and Recommendations
NASA Technical Reports Server (NTRS)
Dowek, Gilles; Munoz, Cesar; Carreno, Victor A.
2004-01-01
An abstract mathematical model of the concept of operations for the Small Aircraft Transportation System (SATS) is presented. The Concept of Operations consist of several procedures that describe nominal operations for SATS, Several safety properties of the system are proven using formal techniques. The final goal of the verification effort is to show that under nominal operations, aircraft are safely separated. The abstract model was written and formally verified in the Prototype Verification System (PVS).
Projected Impact of Compositional Verification on Current and Future Aviation Safety Risk
NASA Technical Reports Server (NTRS)
Reveley, Mary S.; Withrow, Colleen A.; Leone, Karen M.; Jones, Sharon M.
2014-01-01
The projected impact of compositional verification research conducted by the National Aeronautic and Space Administration System-Wide Safety and Assurance Technologies on aviation safety risk was assessed. Software and compositional verification was described. Traditional verification techniques have two major problems: testing at the prototype stage where error discovery can be quite costly and the inability to test for all potential interactions leaving some errors undetected until used by the end user. Increasingly complex and nondeterministic aviation systems are becoming too large for these tools to check and verify. Compositional verification is a "divide and conquer" solution to addressing increasingly larger and more complex systems. A review of compositional verification research being conducted by academia, industry, and Government agencies is provided. Forty-four aviation safety risks in the Biennial NextGen Safety Issues Survey were identified that could be impacted by compositional verification and grouped into five categories: automation design; system complexity; software, flight control, or equipment failure or malfunction; new technology or operations; and verification and validation. One capability, 1 research action, 5 operational improvements, and 13 enablers within the Federal Aviation Administration Joint Planning and Development Office Integrated Work Plan that could be addressed by compositional verification were identified.
The opto-mechanical design process: from vision to reality
NASA Astrophysics Data System (ADS)
Kvamme, E. Todd; Stubbs, David M.; Jacoby, Michael S.
2017-08-01
The design process for an opto-mechanical sub-system is discussed from requirements development through test. The process begins with a proper mission understanding and the development of requirements for the system. Preliminary design activities are then discussed with iterative analysis and design work being shared between the design, thermal, and structural engineering personnel. Readiness for preliminary review and the path to a final design review are considered. The value of prototyping and risk mitigation testing is examined with a focus on when it makes sense to execute a prototype test program. System level margin is discussed in general terms, and the practice of trading margin in one area of performance to meet another area is reviewed. Requirements verification and validation is briefly considered. Testing and its relationship to requirements verification concludes the design process.
An elementary tutorial on formal specification and verification using PVS
NASA Technical Reports Server (NTRS)
Butler, Ricky W.
1993-01-01
A tutorial on the development of a formal specification and its verification using the Prototype Verification System (PVS) is presented. The tutorial presents the formal specification and verification techniques by way of specific example - an airline reservation system. The airline reservation system is modeled as a simple state machine with two basic operations. These operations are shown to preserve a state invariant using the theorem proving capabilities of PVS. The technique of validating a specification via 'putative theorem proving' is also discussed and illustrated in detail. This paper is intended for the novice and assumes only some of the basic concepts of logic. A complete description of user inputs and the PVS output is provided and thus it can be effectively used while one is sitting at a computer terminal.
Simulation-Based Verification of Autonomous Controllers via Livingstone PathFinder
NASA Technical Reports Server (NTRS)
Lindsey, A. E.; Pecheur, Charles
2004-01-01
AI software is often used as a means for providing greater autonomy to automated systems, capable of coping with harsh and unpredictable environments. Due in part to the enormous space of possible situations that they aim to addrs, autonomous systems pose a serious challenge to traditional test-based verification approaches. Efficient verification approaches need to be perfected before these systems can reliably control critical applications. This publication describes Livingstone PathFinder (LPF), a verification tool for autonomous control software. LPF applies state space exploration algorithms to an instrumented testbed, consisting of the controller embedded in a simulated operating environment. Although LPF has focused on NASA s Livingstone model-based diagnosis system applications, the architecture is modular and adaptable to other systems. This article presents different facets of LPF and experimental results from applying the software to a Livingstone model of the main propulsion feed subsystem for a prototype space vehicle.
Integrated vehicle-based safety systems heavy-truck on-road test report
DOT National Transportation Integrated Search
2008-08-01
This report presents results from a series of on-road verification tests performed to determine the readiness of a prototype : integrated warning system to advance to field testing, as well as to identify areas of system performance that should be im...
Integrated vehicle-based safety systems light-vehicle on-road test report
DOT National Transportation Integrated Search
2008-08-01
This report presents results from a series of on-road verification tests performed to determine the readiness of a prototype : integrated warning system to advance to field testing, as well as to identify areas of system performance that should be im...
Validation and verification of expert systems
NASA Technical Reports Server (NTRS)
Gilstrap, Lewey
1991-01-01
Validation and verification (V&V) are procedures used to evaluate system structure or behavior with respect to a set of requirements. Although expert systems are often developed as a series of prototypes without requirements, it is not possible to perform V&V on any system for which requirements have not been prepared. In addition, there are special problems associated with the evaluation of expert systems that do not arise in the evaluation of conventional systems, such as verification of the completeness and accuracy of the knowledge base. The criticality of most NASA missions make it important to be able to certify the performance of the expert systems used to support these mission. Recommendations for the most appropriate method for integrating V&V into the Expert System Development Methodology (ESDM) and suggestions for the most suitable approaches for each stage of ESDM development are presented.
Application of computer vision to automatic prescription verification in pharmaceutical mail order
NASA Astrophysics Data System (ADS)
Alouani, Ali T.
2005-05-01
In large volume pharmaceutical mail order, before shipping out prescriptions, licensed pharmacists ensure that the drug in the bottle matches the information provided in the patient prescription. Typically, the pharmacist has about 2 sec to complete the prescription verification process of one prescription. Performing about 1800 prescription verification per hour is tedious and can generate human errors as a result of visual and brain fatigue. Available automatic drug verification systems are limited to a single pill at a time. This is not suitable for large volume pharmaceutical mail order, where a prescription can have as many as 60 pills and where thousands of prescriptions are filled every day. In an attempt to reduce human fatigue, cost, and limit human error, the automatic prescription verification system (APVS) was invented to meet the need of large scale pharmaceutical mail order. This paper deals with the design and implementation of the first prototype online automatic prescription verification machine to perform the same task currently done by a pharmacist. The emphasis here is on the visual aspects of the machine. The system has been successfully tested on 43,000 prescriptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draeger, E; Chen, H; Polf, J
2016-06-15
Purpose: To report on the initial developments of a clinical 3-dimensional (3D) prompt gamma (PG) imaging system for proton radiotherapy range verification. Methods: The new imaging system under development consists of a prototype Compton camera to measure PG emission during proton beam irradiation and software to reconstruct, display, and analyze 3D images of the PG emission. For initial test of the system, PGs were measured with a prototype CC during a 200 cGy dose delivery with clinical proton pencil beams (ranging from 100 MeV – 200 MeV) to a water phantom. Measurements were also carried out with the CC placedmore » 15 cm from the phantom for a full range 150 MeV pencil beam and with its range shifted by 2 mm. Reconstructed images of the PG emission were displayed by the clinical PG imaging software and compared to the dose distributions of the proton beams calculated by a commercial treatment planning system. Results: Measurements made with the new PG imaging system showed that a 3D image could be reconstructed from PGs measured during the delivery of 200 cGy of dose, and that shifts in the Bragg peak range of as little as 2 mm could be detected. Conclusion: Initial tests of a new PG imaging system show its potential to provide 3D imaging and range verification for proton radiotherapy. Based on these results, we have begun work to improve the system with the goal that images can be produced from delivery of as little as 20 cGy so that the system could be used for in-vivo proton beam range verification on a daily basis.« less
Defining the IEEE-854 floating-point standard in PVS
NASA Technical Reports Server (NTRS)
Miner, Paul S.
1995-01-01
A significant portion of the ANSI/IEEE-854 Standard for Radix-Independent Floating-Point Arithmetic is defined in PVS (Prototype Verification System). Since IEEE-854 is a generalization of the ANSI/IEEE-754 Standard for Binary Floating-Point Arithmetic, the definition of IEEE-854 in PVS also formally defines much of IEEE-754. This collection of PVS theories provides a basis for machine checked verification of floating-point systems. This formal definition illustrates that formal specification techniques are sufficiently advanced that is is reasonable to consider their use in the development of future standards.
NASA Astrophysics Data System (ADS)
Liu, Brent; Lee, Jasper; Documet, Jorge; Guo, Bing; King, Nelson; Huang, H. K.
2006-03-01
By implementing a tracking and verification system, clinical facilities can effectively monitor workflow and heighten information security in today's growing demand towards digital imaging informatics. This paper presents the technical design and implementation experiences encountered during the development of a Location Tracking and Verification System (LTVS) for a clinical environment. LTVS integrates facial biometrics with wireless tracking so that administrators can manage and monitor patient and staff through a web-based application. Implementation challenges fall into three main areas: 1) Development and Integration, 2) Calibration and Optimization of Wi-Fi Tracking System, and 3) Clinical Implementation. An initial prototype LTVS has been implemented within USC's Healthcare Consultation Center II Outpatient Facility, which currently has a fully digital imaging department environment with integrated HIS/RIS/PACS/VR (Voice Recognition).
NASA Technical Reports Server (NTRS)
1977-01-01
The plans, specifications, cost trade studies, and verification status of a prototype solar heating and hot water system for the Minnesota Department of Natural Resources's single-family dwelling located at O'Brien State Park, 30 miles east of Minneapolis, Minnesota are presented.
Palmprint Based Verification System Using SURF Features
NASA Astrophysics Data System (ADS)
Srinivas, Badrinath G.; Gupta, Phalguni
This paper describes the design and development of a prototype of robust biometric system for verification. The system uses features extracted using Speeded Up Robust Features (SURF) operator of human hand. The hand image for features is acquired using a low cost scanner. The palmprint region extracted is robust to hand translation and rotation on the scanner. The system is tested on IITK database of 200 images and PolyU database of 7751 images. The system is found to be robust with respect to translation and rotation. It has FAR 0.02%, FRR 0.01% and accuracy of 99.98% and can be a suitable system for civilian applications and high-security environments.
Compositional Verification of a Communication Protocol for a Remotely Operated Vehicle
NASA Technical Reports Server (NTRS)
Goodloe, Alwyn E.; Munoz, Cesar A.
2009-01-01
This paper presents the specification and verification in the Prototype Verification System (PVS) of a protocol intended to facilitate communication in an experimental remotely operated vehicle used by NASA researchers. The protocol is defined as a stack-layered com- position of simpler protocols. It can be seen as the vertical composition of protocol layers, where each layer performs input and output message processing, and the horizontal composition of different processes concurrently inhabiting the same layer, where each process satisfies a distinct requirement. It is formally proven that the protocol components satisfy certain delivery guarantees. Compositional techniques are used to prove these guarantees also hold in the composed system. Although the protocol itself is not novel, the methodology employed in its verification extends existing techniques by automating the tedious and usually cumbersome part of the proof, thereby making the iterative design process of protocols feasible.
Real-time application of knowledge-based systems
NASA Technical Reports Server (NTRS)
Brumbaugh, Randal W.; Duke, Eugene L.
1989-01-01
The Rapid Prototyping Facility (RPF) was developed to meet a need for a facility which allows flight systems concepts to be prototyped in a manner which allows for real-time flight test experience with a prototype system. This need was focused during the development and demonstration of the expert system flight status monitor (ESFSM). The ESFSM was a prototype system developed on a LISP machine, but lack of a method for progressive testing and problem identification led to an impractical system. The RPF concept was developed, and the ATMS designed to exercise its capabilities. The ATMS Phase 1 demonstration provided a practical vehicle for testing the RPF, as well as a useful tool. ATMS Phase 2 development continues. A dedicated F-18 is expected to be assigned for facility use in late 1988, with RAV modifications. A knowledge-based autopilot is being developed using the RPF. This is a system which provides elementary autopilot functions and is intended as a vehicle for testing expert system verification and validation methods. An expert system propulsion monitor is being prototyped. This system provides real-time assistance to an engineer monitoring a propulsion system during a flight.
Deductive Evaluation: Formal Code Analysis With Low User Burden
NASA Technical Reports Server (NTRS)
Di Vito, Ben. L
2016-01-01
We describe a framework for symbolically evaluating iterative C code using a deductive approach that automatically discovers and proves program properties. Although verification is not performed, the method can infer detailed program behavior. Software engineering work flows could be enhanced by this type of analysis. Floyd-Hoare verification principles are applied to synthesize loop invariants, using a library of iteration-specific deductive knowledge. When needed, theorem proving is interleaved with evaluation and performed on the fly. Evaluation results take the form of inferred expressions and type constraints for values of program variables. An implementation using PVS (Prototype Verification System) is presented along with results for sample C functions.
Semi-Immersive Virtual Turbine Engine Simulation System
NASA Astrophysics Data System (ADS)
Abidi, Mustufa H.; Al-Ahmari, Abdulrahman M.; Ahmad, Ali; Darmoul, Saber; Ameen, Wadea
2018-05-01
The design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.
Development of infrared goggles and prototype
NASA Astrophysics Data System (ADS)
Tsuchimoto, Kouzou; Komatsubara, Shigeyuki; Fujikawa, Masaru; Otsuka, Toshiaki; Kan, Moriyasu; Matsumura, Norihide
2006-05-01
We aimed at developing a hands free type practical wearable thermography which will not hinder walking or working of the person wearing the equipment. We installed a small format camera core module, which was recently developed, into the fire fighter's helmet and incorporated image transmission function over radio to the equipment. We combined this thermography with a see-through type head mount display, and called it "Infrared Goggles". A prototype was developed for verification test of lifesaving support system in fire fighting activities.
A Test Generation Framework for Distributed Fault-Tolerant Algorithms
NASA Technical Reports Server (NTRS)
Goodloe, Alwyn; Bushnell, David; Miner, Paul; Pasareanu, Corina S.
2009-01-01
Heavyweight formal methods such as theorem proving have been successfully applied to the analysis of safety critical fault-tolerant systems. Typically, the models and proofs performed during such analysis do not inform the testing process of actual implementations. We propose a framework for generating test vectors from specifications written in the Prototype Verification System (PVS). The methodology uses a translator to produce a Java prototype from a PVS specification. Symbolic (Java) PathFinder is then employed to generate a collection of test cases. A small example is employed to illustrate how the framework can be used in practice.
System design package for SIMS prototype system 4, solar heating and domestic hot water
NASA Technical Reports Server (NTRS)
1978-01-01
The system consisted of a modular designed prepackaged solar unit, containing solar collectors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping, and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system were packaged for evaluation.
An unattended verification station for UF6 cylinders: Field trial findings
NASA Astrophysics Data System (ADS)
Smith, L. E.; Miller, K. A.; McDonald, B. S.; Webster, J. B.; Zalavadia, M. A.; Garner, J. R.; Stewart, S. L.; Branney, S. J.; Todd, L. C.; Deshmukh, N. S.; Nordquist, H. A.; Kulisek, J. A.; Swinhoe, M. T.
2017-12-01
In recent years, the International Atomic Energy Agency (IAEA) has pursued innovative techniques and an integrated suite of safeguards measures to address the verification challenges posed by the front end of the nuclear fuel cycle. Among the unattended instruments currently being explored by the IAEA is an Unattended Cylinder Verification Station (UCVS), which could provide automated, independent verification of the declared relative enrichment, 235U mass, total uranium mass, and identification for all declared uranium hexafluoride cylinders in a facility (e.g., uranium enrichment plants and fuel fabrication plants). Under the auspices of the United States and European Commission Support Programs to the IAEA, a project was undertaken to assess the technical and practical viability of the UCVS concept. The first phase of the UCVS viability study was centered on a long-term field trial of a prototype UCVS system at a fuel fabrication facility. A key outcome of the study was a quantitative performance evaluation of two nondestructive assay (NDA) methods being considered for inclusion in a UCVS: Hybrid Enrichment Verification Array (HEVA), and Passive Neutron Enrichment Meter (PNEM). This paper provides a description of the UCVS prototype design and an overview of the long-term field trial. Analysis results and interpretation are presented with a focus on the performance of PNEM and HEVA for the assay of over 200 "typical" Type 30B cylinders, and the viability of an "NDA Fingerprint" concept as a high-fidelity means to periodically verify that material diversion has not occurred.
Formal Verification of Air Traffic Conflict Prevention Bands Algorithms
NASA Technical Reports Server (NTRS)
Narkawicz, Anthony J.; Munoz, Cesar A.; Dowek, Gilles
2010-01-01
In air traffic management, a pairwise conflict is a predicted loss of separation between two aircraft, referred to as the ownship and the intruder. A conflict prevention bands system computes ranges of maneuvers for the ownship that characterize regions in the airspace that are either conflict-free or 'don't go' zones that the ownship has to avoid. Conflict prevention bands are surprisingly difficult to define and analyze. Errors in the calculation of prevention bands may result in incorrect separation assurance information being displayed to pilots or air traffic controllers. This paper presents provably correct 3-dimensional prevention bands algorithms for ranges of track angle; ground speed, and vertical speed maneuvers. The algorithms have been mechanically verified in the Prototype Verification System (PVS). The verification presented in this paper extends in a non-trivial way that of previously published 2-dimensional algorithms.
Spring-Based Helmet System Support Prototype to Address Aircrew Neck Strain
2014-06-01
Helicopter Squadron stationed at CFB Borden ALSE Personnel Flight Engineers Pilots 4.6 Discussion of Verification Results 4.6.1 Reduce the mass on the...the participant in the pilot’s posture. Figure 8. A simulation of Flight Engineers’ postures during landing and low flying maneuvres. Figure 9
System design package for IBM system one: solar heating and domestic hot water
NASA Technical Reports Server (NTRS)
1977-01-01
This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage. The system was designed for installation into a single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system was packaged for evaluation of the system with information sufficient to assemble a similar system.
NASA Technical Reports Server (NTRS)
Jagow, R. B.
1972-01-01
Laboratory investigations to define optimum process conditions for oxidation of fecal/urine slurries were conducted in a one-liter batch reactor. The results of these tests formed the basis for the design, fabrication, and testing of an initial prototype system, including a 100-hour design verification test. Areas of further development were identified during this test. Development of a high pressure slurry pump, materials corrosion studies, oxygen supply trade studies, comparison of salt removal water recovery devices, ammonia removal investigation, development of a solids grinder, reactor design studies and bearing life tests, and development of shutoff valves and a back pressure regulator were undertaken. The development work has progressed to the point where a prototype system suitable for manned chamber testing can be fabricated and tested with a high degree of confidence of success.
Enrichment Assay Methods Development for the Integrated Cylinder Verification System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leon E.; Misner, Alex C.; Hatchell, Brian K.
2009-10-22
International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility's entire product-cylinder inventory. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100 percent product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify eachmore » cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The three main objectives of this FY09 project are summarized here and described in more detail in the report: (1) Develop a preliminary design for a prototype NDA system, (2) Refine PNNL's MCNP models of the NDA system, and (3) Procure and test key pulse-processing components. Progress against these tasks to date, and next steps, are discussed.« less
An unattended verification station for UF 6 cylinders: Field trial findings
Smith, L. E.; Miller, K. A.; McDonald, B. S.; ...
2017-08-26
In recent years, the International Atomic Energy Agency (IAEA) has pursued innovative techniques and an integrated suite of safeguards measures to address the verification challenges posed by the front end of the nuclear fuel cycle. Among the unattended instruments currently being explored by the IAEA is an Unattended Cylinder Verification Station (UCVS), which could provide automated, independent verification of the declared relative enrichment, 235U mass, total uranium mass, and identification for all declared uranium hexafluoride cylinders in a facility (e.g., uranium enrichment plants and fuel fabrication plants). Under the auspices of the United States and European Commission Support Programs tomore » the IAEA, a project was undertaken to assess the technical and practical viability of the UCVS concept. The first phase of the UCVS viability study was centered on a long-term field trial of a prototype UCVS system at a fuel fabrication facility. A key outcome of the study was a quantitative performance evaluation of two nondestructive assay (NDA) methods being considered for inclusion in a UCVS: Hybrid Enrichment Verification Array (HEVA), and Passive Neutron Enrichment Meter (PNEM). This paper provides a description of the UCVS prototype design and an overview of the long-term field trial. In conclusion, analysis results and interpretation are presented with a focus on the performance of PNEM and HEVA for the assay of over 200 “typical” Type 30B cylinders, and the viability of an “NDA Fingerprint” concept as a high-fidelity means to periodically verify that material diversion has not occurred.« less
An unattended verification station for UF 6 cylinders: Field trial findings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L. E.; Miller, K. A.; McDonald, B. S.
In recent years, the International Atomic Energy Agency (IAEA) has pursued innovative techniques and an integrated suite of safeguards measures to address the verification challenges posed by the front end of the nuclear fuel cycle. Among the unattended instruments currently being explored by the IAEA is an Unattended Cylinder Verification Station (UCVS), which could provide automated, independent verification of the declared relative enrichment, 235U mass, total uranium mass, and identification for all declared uranium hexafluoride cylinders in a facility (e.g., uranium enrichment plants and fuel fabrication plants). Under the auspices of the United States and European Commission Support Programs tomore » the IAEA, a project was undertaken to assess the technical and practical viability of the UCVS concept. The first phase of the UCVS viability study was centered on a long-term field trial of a prototype UCVS system at a fuel fabrication facility. A key outcome of the study was a quantitative performance evaluation of two nondestructive assay (NDA) methods being considered for inclusion in a UCVS: Hybrid Enrichment Verification Array (HEVA), and Passive Neutron Enrichment Meter (PNEM). This paper provides a description of the UCVS prototype design and an overview of the long-term field trial. In conclusion, analysis results and interpretation are presented with a focus on the performance of PNEM and HEVA for the assay of over 200 “typical” Type 30B cylinders, and the viability of an “NDA Fingerprint” concept as a high-fidelity means to periodically verify that material diversion has not occurred.« less
Tsuneda, Masato; Nishio, Teiji; Saito, Akito; Tanaka, Sodai; Suzuki, Tatsuhiko; Kawahara, Daisuke; Matsushita, Keiichiro; Nishio, Aya; Ozawa, Shuichi; Karasawa, Kumiko; Nagata, Yasushi
2018-06-01
High accuracy of the beam-irradiated position is required for high-precision radiation therapy such as stereotactic body radiation therapy (SBRT), volumetric modulated arc therapy (VMAT), and intensity modulated radiation therapy (IMRT). Users generally perform the verification of the mechanical and radiation isocenters using the star shot test and the Winston Lutz test that allow evaluation of the displacement at the isocenter. However, these methods are unable to evaluate directly and quantitatively the sagging angle that is caused by the weight of the gantry itself along the gantry rotation axis. In addition, the verification of the central axis of the irradiated beam that is not dependent at the isocenter is needed for the mechanical quality assurance of a nonisocentric irradiation technique. In this study, we have developed a prototype system for the verification of three-dimensional (3D) beam alignment and we have verified the system concept for 3D isocentricity. Our system allows detection of the central axis in 3D coordinates and evaluation of the irradiated oblique angle to the gantry rotation axis, i.e., the sagging angle. In order to measure the central axis of the irradiated beam in 3D coordinates, we constructed the prototype verification system consisting of a column-shaped plastic scintillator (CoPS), a truncated cone-shaped mirror (TCsM), and a cooled charged-coupled device (CCD) camera. This verification system was irradiated with 6-MV photon beams and the scintillation light was measured using the CCD camera. The central axis on the axial plane (two-dimensional (2D) central axis) was acquired from the integration of the scintillation light along the major axis of the CoPS, and the central axis in 3D coordinates (3D central axis) was acquired from two curve-shaped profiles which were reflected by the TCsM. We verified the calculation accuracy of the gantry rotation axis, θ z . Additionally, we calculated the 3D central axis and the sagging angle at each gantry angle. We acquired the measurement images composed of the 2D central axis and the two curve-shaped profiles. The relationship between the irradiated and measured angles with respect to the gantry rotation axis had good linearity. The mean and standard deviation of the difference between the irradiated and measured angles were 0.012 and 0.078 degrees, respectively. The size of the 2D and 3D radiation isocenters were 0.470 and 0.652 mm on the axial plane and in 3D coordinates, respectively. The sagging angles were -0.31, 0.39, and 0.38 degrees at the gantry angles of 0, 180, and 180E degrees, respectively. We developed a novel verification system, designated as the "kompeito shot test system," to verify the 3D beam alignment. This system concept works for both verification of the 3D isocentricity and the direct evaluation of the sagging angle. Next, we want to improve the aspects of this system, such as the shape and the type of scintillator, to increase the system accuracy and nonisocentric beam alignment performance. © 2018 American Association of Physicists in Medicine.
Design and Development of the Space Shuttle Tail Service Masts
NASA Technical Reports Server (NTRS)
Dandage, S. R.; Herman, N. A.; Godfrey, S. E.; Uda, R. T.
1977-01-01
The results of the tail service masts (TSM) concept verification test are presented along with the resulting impact on prototype design. The design criteria are outlined, and the proposed prototype TSM tests are described.
Performance verification of the FlashCam prototype camera for the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Werner, F.; Bauer, C.; Bernhard, S.; Capasso, M.; Diebold, S.; Eisenkolb, F.; Eschbach, S.; Florin, D.; Föhr, C.; Funk, S.; Gadola, A.; Garrecht, F.; Hermann, G.; Jung, I.; Kalekin, O.; Kalkuhl, C.; Kasperek, J.; Kihm, T.; Lahmann, R.; Marszalek, A.; Pfeifer, M.; Principe, G.; Pühlhofer, G.; Pürckhauer, S.; Rajda, P. J.; Reimer, O.; Santangelo, A.; Schanz, T.; Schwab, T.; Steiner, S.; Straumann, U.; Tenzer, C.; Vollhardt, A.; Wolf, D.; Zietara, K.; CTA Consortium
2017-12-01
The Cherenkov Telescope Array (CTA) is a future gamma-ray observatory that is planned to significantly improve upon the sensitivity and precision of the current generation of Cherenkov telescopes. The observatory will consist of several dozens of telescopes with different sizes and equipped with different types of cameras. Of these, the FlashCam camera system is the first to implement a fully digital signal processing chain which allows for a traceable, configurable trigger scheme and flexible signal reconstruction. As of autumn 2016, a prototype FlashCam camera for the medium-sized telescopes of CTA nears completion. First results of the ongoing system tests demonstrate that the signal chain and the readout system surpass CTA requirements. The stability of the system is shown using long-term temperature cycling.
Solar power satellite system definition study, phase 2.
NASA Technical Reports Server (NTRS)
1979-01-01
A program plan for the Solar Power Satellite Program is presented. The plan includes research, development, and evaluation phase, engineering and development and cost verification phase, prototype construction, and commercialization. Cost estimates and task requirements are given for the following technology areas: (1) solar arrays; (2) thermal engines and thermal systems; (3) power transmission (to earth); (4) large space structures; (5) materials technology; (6) system control; (7) space construction; (8) space transportation; (9) power distribution, and space environment effects.
Lay out, test verification and in orbit performance of HELIOS a temperature control system
NASA Technical Reports Server (NTRS)
Brungs, W.
1975-01-01
HELIOS temperature control system is described. The main design features and the impact of interactions between experiment, spacecraft system, and temperature control system requirements on the design are discussed. The major limitations of the thermal design regarding a closer sun approach are given and related to test experience and performance data obtained in orbit. Finally the validity of the test results achieved with prototype and flight spacecraft is evaluated by comparison between test data, orbit temperature predictions and flight data.
A prototype heat pipe heat exchanger for the capillary pumped loop flight experiment
NASA Technical Reports Server (NTRS)
Ku, Jentung; Yun, Seokgeun; Kroliczek, Edward J.
1992-01-01
A Capillary Pumped Two-Phase Heat Transport Loop (CAPL) Flight Experiment, currently planned for 1993, will provide microgravity verification of the prototype capillary pumped loop (CPL) thermal control system for EOS. CAPL employs a heat pipe heat exchanger (HPHX) to couple the condenser section of the CPL to the radiator assembly. A prototype HPHX consisting of a heat exchanger (HX), a header heat pipe (HHP), a spreader heat pipe (SHP), and a flow regulator has been designed and tested. The HX transmits heat from the CPL condenser to the HHP, while the HHP and SHP transport heat to the radiator assembly. The flow regulator controls flow distribution among multiple parallel HPHX's. Test results indicated that the prototype HPHX could transport up to 800 watts with an overall heat transfer coefficient of more than 6000 watts/sq m-deg C. Flow regulation among parallel HPHX's was also demonstrated.
ONAV - An Expert System for the Space Shuttle Mission Control Center
NASA Technical Reports Server (NTRS)
Mills, Malise; Wang, Lui
1992-01-01
The ONAV (Onboard Navigation) Expert System is being developed as a real-time console assistant to the ONAV flight controller for use in the Mission Control Center at the Johnson Space Center. Currently, Oct. 1991, the entry and ascent systems have been certified for use on console as support tools, and were used for STS-48. The rendezvous system is in verification with the goal to have the system certified for STS-49, Intelsat retrieval. To arrive at this stage, from a prototype to real-world application, the ONAV project has had to deal with not only Al issues but operating environment issues. The Al issues included the maturity of Al languages and the debugging tools, verification, and availability, stability and size of the expert pool. The environmental issues included real time data acquisition, hardware suitability, and how to achieve acceptance by users and management.
DOT National Transportation Integrated Search
2008-06-30
The following Independent Verification and Validation (IV&V) report documents and presents the results of a study of the Washington State Ferries Prototype Wireless High Speed Data Network. The purpose of the study was to evaluate and determine if re...
NASA Technical Reports Server (NTRS)
Kostell, G. D.; Schubert, F. H.; Shumar, J. W.; Hallick, T. M.; Jensen, F. C.
1974-01-01
A six man, self contained, electrochemical carbon dioxide concentrating subsystem for space station prototype use was successfully designed, fabricated, and tested. A test program was successfully completed which covered shakedown testing, design verification testing, and acceptance testing.
Atmospheric transport modelling in support of CTBT verification—overview and basic concepts
NASA Astrophysics Data System (ADS)
Wotawa, Gerhard; De Geer, Lars-Erik; Denier, Philippe; Kalinowski, Martin; Toivonen, Harri; D'Amours, Real; Desiato, Franco; Issartel, Jean-Pierre; Langer, Matthias; Seibert, Petra; Frank, Andreas; Sloan, Craig; Yamazawa, Hiromi
Under the provisions of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), a global monitoring system comprising different verification technologies is currently being set up. The network will include 80 radionuclide (RN) stations distributed all over the globe that measure treaty-relevant radioactive species. While the seismic subsystem cannot distinguish between chemical and nuclear explosions, RN monitoring would provide the "smoking gun" of a possible treaty violation. Atmospheric transport modelling (ATM) will be an integral part of CTBT verification, since it provides a geo-temporal location capability for the RN technology. In this paper, the basic concept for the future ATM software system to be installed at the International Data Centre is laid out. The system is based on the operational computation of multi-dimensional source-receptor sensitivity fields for all RN samples by means of adjoint tracer transport modelling. While the source-receptor matrix methodology has already been applied in the past, the system that we suggest will be unique and unprecedented, since it is global, real-time and aims at uncovering source scenarios that are compatible with measurements. Furthermore, it has to deal with source dilution ratios that are by orders of magnitude larger than in typical transport model applications. This new verification software will need continuous scientific attention, and may well provide a prototype system for future applications in areas of environmental monitoring, emergency response and verification of other international agreements and treaties.
Proceedings of the Second NASA Formal Methods Symposium
NASA Technical Reports Server (NTRS)
Munoz, Cesar (Editor)
2010-01-01
This publication contains the proceedings of the Second NASA Formal Methods Symposium sponsored by the National Aeronautics and Space Administration and held in Washington D.C. April 13-15, 2010. Topics covered include: Decision Engines for Software Analysis using Satisfiability Modulo Theories Solvers; Verification and Validation of Flight-Critical Systems; Formal Methods at Intel -- An Overview; Automatic Review of Abstract State Machines by Meta Property Verification; Hardware-independent Proofs of Numerical Programs; Slice-based Formal Specification Measures -- Mapping Coupling and Cohesion Measures to Formal Z; How Formal Methods Impels Discovery: A Short History of an Air Traffic Management Project; A Machine-Checked Proof of A State-Space Construction Algorithm; Automated Assume-Guarantee Reasoning for Omega-Regular Systems and Specifications; Modeling Regular Replacement for String Constraint Solving; Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol; Can Regulatory Bodies Expect Efficient Help from Formal Methods?; Synthesis of Greedy Algorithms Using Dominance Relations; A New Method for Incremental Testing of Finite State Machines; Verification of Faulty Message Passing Systems with Continuous State Space in PVS; Phase Two Feasibility Study for Software Safety Requirements Analysis Using Model Checking; A Prototype Embedding of Bluespec System Verilog in the PVS Theorem Prover; SimCheck: An Expressive Type System for Simulink; Coverage Metrics for Requirements-Based Testing: Evaluation of Effectiveness; Software Model Checking of ARINC-653 Flight Code with MCP; Evaluation of a Guideline by Formal Modelling of Cruise Control System in Event-B; Formal Verification of Large Software Systems; Symbolic Computation of Strongly Connected Components Using Saturation; Towards the Formal Verification of a Distributed Real-Time Automotive System; Slicing AADL Specifications for Model Checking; Model Checking with Edge-valued Decision Diagrams; and Data-flow based Model Analysis.
A rule-based approach to model checking of UML state machines
NASA Astrophysics Data System (ADS)
Grobelna, Iwona; Grobelny, Michał; Stefanowicz, Łukasz
2016-12-01
In the paper a new approach to formal verification of control process specification expressed by means of UML state machines in version 2.x is proposed. In contrast to other approaches from the literature, we use the abstract and universal rule-based logical model suitable both for model checking (using the nuXmv model checker), but also for logical synthesis in form of rapid prototyping. Hence, a prototype implementation in hardware description language VHDL can be obtained that fully reflects the primary, already formally verified specification in form of UML state machines. Presented approach allows to increase the assurance that implemented system meets the user-defined requirements.
NASA Technical Reports Server (NTRS)
Rushby, John; Crow, Judith
1990-01-01
The authors explore issues in the specification, verification, and validation of artificial intelligence (AI) based software, using a prototype fault detection, isolation and recovery (FDIR) system for the Manned Maneuvering Unit (MMU). They use this system as a vehicle for exploring issues in the semantics of C-Language Integrated Production System (CLIPS)-style rule-based languages, the verification of properties relating to safety and reliability, and the static and dynamic analysis of knowledge based systems. This analysis reveals errors and shortcomings in the MMU FDIR system and raises a number of issues concerning software engineering in CLIPs. The authors came to realize that the MMU FDIR system does not conform to conventional definitions of AI software, despite the fact that it was intended and indeed presented as an AI system. The authors discuss this apparent disparity and related questions such as the role of AI techniques in space and aircraft operations and the suitability of CLIPS for critical applications.
Air-liquid solar collector for solar heating, combined heating and cooling, and hot water subsystems
NASA Technical Reports Server (NTRS)
1978-01-01
A collection of quarterly reports consisting of the installation and layout design of the air collector system for commercial applications, completion of the preliminary design review, detailed design efforts, and preparation of the verification test plan are given. Performance specifications and performance testing of a prototype model of a two manifold, 144 tube air collector array is presented.
NASA Astrophysics Data System (ADS)
Stock, Michael; Barat, Pauline; Davis, Richard S.; Picard, Alain; Milton, Martin J. T.
2015-04-01
This report presents the results of the first phase of the campaign of calibration carried out with respect to the international prototype of the kilogram (IPK) in anticipation of the redefinition of the kilogram (Extraordinary Calibrations). The definition of the kilogram was realized according to the procedure outlined in the 8th Edition of the SI Brochure. Thus the IPK and its six official copies have been cleaned and washed following the BIPM procedure. The mass comparisons carried out during this campaign showed a very good repeatability. The pooled standard deviation of repeated weighings of the prototypes was 0.4 µg. The effect of cleaning and washing of the IPK was to remove a mass of 16.8 µg. The effect of cleaning and washing of the six official copies was found to be very similar, giving an average mass removed from the seven prototypes of 15 µg with a standard deviation of 2 µg. The differences in mass between the IPK and the official copies have changed by an average of 1 µg since the 3rd Periodic Verification of National Prototypes of the Kilogram (1988-1992). These results do not confirm the trend for the masses of the six official copies to diverge from the mass of the IPK that was observed during the 2nd and 3rd Periodic Verifications. All BIPM working standards and the prototypes reserved for special use have been calibrated with respect to the IPK as part of this campaign. All of them were found to have lower masses than when they were calibrated during the 3rd Periodic Verification. As a consequence, the BIPM ‘as-maintained’ mass unit in 2014 has been found to be offset by 35 µg with respect to the IPK. This result will be analyzed in a further publication.
The Automated Logistics Element Planning System (ALEPS)
NASA Technical Reports Server (NTRS)
Schwaab, Douglas G.
1992-01-01
ALEPS, which is being developed to provide the SSF program with a computer system to automate logistics resupply/return cargo load planning and verification, is presented. ALEPS will make it possible to simultaneously optimize both the resupply flight load plan and the return flight reload plan for any of the logistics carriers. In the verification mode ALEPS will support the carrier's flight readiness reviews and control proper execution of the approved plans. It will also support the SSF inventory management system by providing electronic block updates to the inventory database on the cargo arriving at or departing the station aboard a logistics carrier. A prototype drawer packing algorithm is described which is capable of generating solutions for 3D packing of cargo items into a logistics carrier storage accommodation. It is concluded that ALEPS will provide the capability to generate and modify optimized loading plans for the logistics elements fleet.
Deductive Evaluation: Implicit Code Verification With Low User Burden
NASA Technical Reports Server (NTRS)
Di Vito, Ben L.
2016-01-01
We describe a framework for symbolically evaluating C code using a deductive approach that discovers and proves program properties. The framework applies Floyd-Hoare verification principles in its treatment of loops, with a library of iteration schemes serving to derive loop invariants. During evaluation, theorem proving is performed on-the-fly, obviating the generation of verification conditions normally needed to establish loop properties. A PVS-based prototype is presented along with results for sample C functions.
Online 3D EPID-based dose verification: Proof of concept.
Spreeuw, Hanno; Rozendaal, Roel; Olaciregui-Ruiz, Igor; González, Patrick; Mans, Anton; Mijnheer, Ben; van Herk, Marcel
2016-07-01
Delivery errors during radiotherapy may lead to medical harm and reduced life expectancy for patients. Such serious incidents can be avoided by performing dose verification online, i.e., while the patient is being irradiated, creating the possibility of halting the linac in case of a large overdosage or underdosage. The offline EPID-based 3D in vivo dosimetry system clinically employed at our institute is in principle suited for online treatment verification, provided the system is able to complete 3D dose reconstruction and verification within 420 ms, the present acquisition time of a single EPID frame. It is the aim of this study to show that our EPID-based dosimetry system can be made fast enough to achieve online 3D in vivo dose verification. The current dose verification system was sped up in two ways. First, a new software package was developed to perform all computations that are not dependent on portal image acquisition separately, thus removing the need for doing these calculations in real time. Second, the 3D dose reconstruction algorithm was sped up via a new, multithreaded implementation. Dose verification was implemented by comparing planned with reconstructed 3D dose distributions delivered to two regions in a patient: the target volume and the nontarget volume receiving at least 10 cGy. In both volumes, the mean dose is compared, while in the nontarget volume, the near-maximum dose (D2) is compared as well. The real-time dosimetry system was tested by irradiating an anthropomorphic phantom with three VMAT plans: a 6 MV head-and-neck treatment plan, a 10 MV rectum treatment plan, and a 10 MV prostate treatment plan. In all plans, two types of serious delivery errors were introduced. The functionality of automatically halting the linac was also implemented and tested. The precomputation time per treatment was ∼180 s/treatment arc, depending on gantry angle resolution. The complete processing of a single portal frame, including dose verification, took 266 ± 11 ms on a dual octocore Intel Xeon E5-2630 CPU running at 2.40 GHz. The introduced delivery errors were detected after 5-10 s irradiation time. A prototype online 3D dose verification tool using portal imaging has been developed and successfully tested for two different kinds of gross delivery errors. Thus, online 3D dose verification has been technologically achieved.
Install active/passive neutron examination and assay (APNEA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1996-04-01
This document describes activities pertinent to the installation of the prototype Active/Passive Neutron Examination and Assay (APNEA) system built in Area 336 into its specially designed trailer. It also documents the basic theory of operation, design and protective features, basic personnel training, and the proposed characterization site location at Lockheed Martin Specialty Components, Inc., (Specialty Components) with the estimated 10 mrem/year boundary. Additionally, the document includes the Preventive Change Analysis (PCA) form, and a checklist of items for verification prior to unrestricted system use.
A Perspective on Computational Human Performance Models as Design Tools
NASA Technical Reports Server (NTRS)
Jones, Patricia M.
2010-01-01
The design of interactive systems, including levels of automation, displays, and controls, is usually based on design guidelines and iterative empirical prototyping. A complementary approach is to use computational human performance models to evaluate designs. An integrated strategy of model-based and empirical test and evaluation activities is particularly attractive as a methodology for verification and validation of human-rated systems for commercial space. This talk will review several computational human performance modeling approaches and their applicability to design of display and control requirements.
Preliminary design review package on air flat plate collector for solar heating and cooling system
NASA Technical Reports Server (NTRS)
1977-01-01
Guidelines to be used in the development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet (10-4 ft x 8 ft panels) of collector area are presented. Topics discussed include: (1) verification plan; (2) thermal analysis; (3) safety hazard analysis; (4) drawing list; (5) special handling, installation and maintenance tools; (6) structural analysis; and (7) selected drawings.
NASA Astrophysics Data System (ADS)
Li, Yung-Hui; Hu, Chia-Ming; Tsai, Ming-Lun
2017-10-01
Laser Doppler Flowmetry (LDF), a non-invasive microcirculation measurement equipment, is designed to be used in measuring microcirculation and perfusion in the skin. LDF is very applicable to healthcare. However, the cost of commercial LDF prevents its prevalence and popularity. In this paper, continuing previous researches, a LDF prototype was built from the combination of the off-the-shelf electronic components. The raw signals acquired from the proposed LDF prototype is validated to be relevant to the microcirculation flux. Furthermore, we would like to verify the consistency between the signals measured from both model, and find an implicit transformation rule to transform the LDF prototype signals. For the purpose of verification and calibration of the LDF prototype signal feature, we first collected a parallel database consisting of flux signals measured by commercial and prototype LDF at the same time. Second, we extract signals with specific frequency of normalized signals as features and use these features to establish a model to allow us to map signals measured by LDF prototype to the commercial model. The result of the experiment showed that after we used the linear regression models to calibrate physiological feature, the correlation coefficient reached nearly 0.9999, which is close to a perfect positive correlation. The overall evaluation results showed that the proposed method can verify and ensure the validity of the LDF prototype. Through the proposed transformation, the flux signals measured by the proposed LDF prototype can successfully be transformed to its parallel form as if it is measured by commercial LDF.
Development of a prototype two-phase thermal bus system for Space Station
NASA Technical Reports Server (NTRS)
Myron, D. L.; Parish, R. C.
1987-01-01
This paper describes the basic elements of a pumped two-phase ammonia thermal control system designed for microgravity environments, the development of the concept into a Space Station flight design, and design details of the prototype to be ground-tested in the Johnson Space Center (JSC) Thermal Test Bed. The basic system concept is one of forced-flow heat transport through interface heat exchangers with anhydrous ammonia being pumped by a device expressly designed for two-phase fluid management in reduced gravity. Control of saturation conditions, and thus system interface temperatures, is accomplished with a single central pressure regulating valve. Flow control and liquid inventory are controlled by passive, nonelectromechanical devices. Use of these simple control elements results in minimal computer controls and high system reliability. Building on the basic system concept, a brief overview of a potential Space Station flight design is given. Primary verification of the system concept will involve testing at JSC of a 25-kW ground test article currently in fabrication.
A Tool for Requirements-Based Programming
NASA Technical Reports Server (NTRS)
Rash, James L.; Hinchey, Michael G.; Rouff, Christopher A.; Gracanin, Denis; Erickson, John
2005-01-01
Absent a general method for mathematically sound, automated transformation of customer requirements into a formal model of the desired system, developers must resort to either manual application of formal methods or to system testing (either manual or automated). While formal methods have afforded numerous successes, they present serious issues, e.g., costs to gear up to apply them (time, expensive staff), and scalability and reproducibility when standards in the field are not settled. The testing path cannot be walked to the ultimate goal, because exhaustive testing is infeasible for all but trivial systems. So system verification remains problematic. System or requirements validation is similarly problematic. The alternatives available today depend on either having a formal model or pursuing enough testing to enable the customer to be certain that system behavior meets requirements. The testing alternative for non-trivial systems always have some system behaviors unconfirmed and therefore is not the answer. To ensure that a formal model is equivalent to the customer s requirements necessitates that the customer somehow fully understands the formal model, which is not realistic. The predominant view that provably correct system development depends on having a formal model of the system leads to a desire for a mathematically sound method to automate the transformation of customer requirements into a formal model. Such a method, an augmentation of requirements-based programming, will be briefly described in this paper, and a prototype tool to support it will be described. The method and tool enable both requirements validation and system verification for the class of systems whose behavior can be described as scenarios. An application of the tool to a prototype automated ground control system for NASA mission is presented.
Prototype automated post-MECO ascent I-load Verification Data Table
NASA Technical Reports Server (NTRS)
Lardas, George D.
1990-01-01
A prototype automated processor for quality assurance of Space Shuttle post-Main Engine Cut Off (MECO) ascent initialization parameters (I-loads) is described. The processor incorporates Clips rules adapted from the quality assurance criteria for the post-MECO ascent I-loads. Specifically, the criteria are implemented for nominal and abort targets, as given in the 'I-load Verification Data Table, Part 3, Post-MECO Ascent, Version 2.1, December 1989.' This processor, ivdt, compares a given l-load set with the stated mission design and quality assurance criteria. It determines which I-loads violate the stated criteria, and presents a summary of I-loads that pass or fail the tests.
Independent Verification and Validation of Complex User Interfaces: A Human Factors Approach
NASA Technical Reports Server (NTRS)
Whitmore, Mihriban; Berman, Andrea; Chmielewski, Cynthia
1996-01-01
The Usability Testing and Analysis Facility (UTAF) at the NASA Johnson Space Center has identified and evaluated a potential automated software interface inspection tool capable of assessing the degree to which space-related critical and high-risk software system user interfaces meet objective human factors standards across each NASA program and project. Testing consisted of two distinct phases. Phase 1 compared analysis times and similarity of results for the automated tool and for human-computer interface (HCI) experts. In Phase 2, HCI experts critiqued the prototype tool's user interface. Based on this evaluation, it appears that a more fully developed version of the tool will be a promising complement to a human factors-oriented independent verification and validation (IV&V) process.
NASA Astrophysics Data System (ADS)
Illing, Sebastian; Schuster, Mareike; Kadow, Christopher; Kröner, Igor; Richling, Andy; Grieger, Jens; Kruschke, Tim; Lang, Benjamin; Redl, Robert; Schartner, Thomas; Cubasch, Ulrich
2016-04-01
MiKlip is project for medium-term climate prediction funded by the Federal Ministry of Education and Research in Germany (BMBF) and aims to create a model system that is able provide reliable decadal climate forecasts. During the first project phase of MiKlip the sub-project INTEGRATION located at Freie Universität Berlin developed a framework for scientific infrastructures (FREVA). More information about FREVA can be found in EGU2016-13060. An instance of this framework is used as Central Evaluation System (CES) during the MiKlip project. Throughout the first project phase various sub-projects developed over 25 analysis tools - so called plugins - for the CES. The main focus of these plugins is on the evaluation and verification of decadal climate prediction data, but most plugins are not limited to this scope. They target a wide range of scientific questions. Starting from preprocessing tools like the "LeadtimeSelector", which creates lead-time dependent time-series from decadal hindcast sets, over tracking tools like the "Zykpak" plugin, which can objectively locate and track mid-latitude cyclones, to plugins like "MurCSS" or "SPECS", which calculate deterministic and probabilistic skill metrics. We also integrated some analyses from Model Evaluation Tools (MET), which was developed at NCAR. We will show the theoretical background, technical implementation strategies, and some interesting results of the evaluation of the MiKlip Prototype decadal prediction system for a selected set of these tools.
WE-G-213CD-03: A Dual Complementary Verification Method for Dynamic Tumor Tracking on Vero SBRT.
Poels, K; Depuydt, T; Verellen, D; De Ridder, M
2012-06-01
to use complementary cine EPID and gimbals log file analysis for in-vivo tracking accuracy monitoring. A clinical prototype of dynamic tracking (DT) was installed on the Vero SBRT system. This prototype version allowed tumor tracking by gimballed linac rotations using an internal-external correspondence model. The DT prototype software allowed the detailed logging of all applied gimbals rotations during tracking. The integration of an EPID on the vero system allowed the acquisition of cine EPID images during DT. We quantified the tracking error on cine EPID (E-EPID) by subtracting the target center (fiducial marker detection) and the field centroid. Dynamic gimbals log file information was combined with orthogonal x-ray verification images to calculate the in-vivo tracking error (E-kVLog). The correlation between E-kVLog and E-EPID was calculated for validation of the gimbals log file. Further, we investigated the sensitivity of the log file tracking error by introducing predefined systematic tracking errors. As an application we calculate gimbals log file tracking error for dynamic hidden target tests to investigate gravity effects and decoupled gimbals rotation from gantry rotation. Finally, calculating complementary cine EPID and log file tracking errors evaluated the clinical accuracy of dynamic tracking. A strong correlation was found between log file and cine EPID tracking error distribution during concurrent measurements (R=0.98). We found sensitivity in the gimbals log files to detect a systematic tracking error up to 0.5 mm. Dynamic hidden target tests showed no gravity influence on tracking performance and high degree of decoupled gimbals and gantry rotation during dynamic arc dynamic tracking. A submillimetric agreement between clinical complementary tracking error measurements was found. Redundancy of the internal gimbals log file with x-ray verification images with complementary independent cine EPID images was implemented to monitor the accuracy of gimballed tumor tracking on Vero SBRT. Research was financially supported by the Flemish government (FWO), Hercules Foundation and BrainLAB AG. © 2012 American Association of Physicists in Medicine.
The NASA Carbon Monitoring System
NASA Astrophysics Data System (ADS)
Hurtt, G. C.
2015-12-01
Greenhouse gas emission inventories, forest carbon sequestration programs (e.g., Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+), cap-and-trade systems, self-reporting programs, and their associated monitoring, reporting and verification (MRV) frameworks depend upon data that are accurate, systematic, practical, and transparent. A sustained, observationally-driven carbon monitoring system using remote sensing data has the potential to significantly improve the relevant carbon cycle information base for the U.S. and world. Initiated in 2010, NASA's Carbon Monitoring System (CMS) project is prototyping and conducting pilot studies to evaluate technological approaches and methodologies to meet carbon monitoring and reporting requirements for multiple users and over multiple scales of interest. NASA's approach emphasizes exploitation of the satellite remote sensing resources, computational capabilities, scientific knowledge, airborne science capabilities, and end-to-end system expertise that are major strengths of the NASA Earth Science program. Through user engagement activities, the NASA CMS project is taking specific actions to be responsive to the needs of stakeholders working to improve carbon MRV frameworks. The first phase of NASA CMS projects focused on developing products for U.S. biomass/carbon stocks and global carbon fluxes, and on scoping studies to identify stakeholders and explore other potential carbon products. The second phase built upon these initial efforts, with a large expansion in prototyping activities across a diversity of systems, scales, and regions, including research focused on prototype MRV systems and utilization of COTS technologies. Priorities for the future include: 1) utilizing future satellite sensors, 2) prototyping with commercial off-the-shelf technology, 3) expanding the range of prototyping activities, 4) rigorous evaluation, uncertainty quantification, and error characterization, 5) stakeholder engagement, 6) partnerships with other U.S. agencies and international partners, and 7) modeling and data assimilation.
Online 3D EPID-based dose verification: Proof of concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spreeuw, Hanno; Rozendaal, Roel, E-mail: r.rozenda
Purpose: Delivery errors during radiotherapy may lead to medical harm and reduced life expectancy for patients. Such serious incidents can be avoided by performing dose verification online, i.e., while the patient is being irradiated, creating the possibility of halting the linac in case of a large overdosage or underdosage. The offline EPID-based 3D in vivo dosimetry system clinically employed at our institute is in principle suited for online treatment verification, provided the system is able to complete 3D dose reconstruction and verification within 420 ms, the present acquisition time of a single EPID frame. It is the aim of thismore » study to show that our EPID-based dosimetry system can be made fast enough to achieve online 3D in vivo dose verification. Methods: The current dose verification system was sped up in two ways. First, a new software package was developed to perform all computations that are not dependent on portal image acquisition separately, thus removing the need for doing these calculations in real time. Second, the 3D dose reconstruction algorithm was sped up via a new, multithreaded implementation. Dose verification was implemented by comparing planned with reconstructed 3D dose distributions delivered to two regions in a patient: the target volume and the nontarget volume receiving at least 10 cGy. In both volumes, the mean dose is compared, while in the nontarget volume, the near-maximum dose (D2) is compared as well. The real-time dosimetry system was tested by irradiating an anthropomorphic phantom with three VMAT plans: a 6 MV head-and-neck treatment plan, a 10 MV rectum treatment plan, and a 10 MV prostate treatment plan. In all plans, two types of serious delivery errors were introduced. The functionality of automatically halting the linac was also implemented and tested. Results: The precomputation time per treatment was ∼180 s/treatment arc, depending on gantry angle resolution. The complete processing of a single portal frame, including dose verification, took 266 ± 11 ms on a dual octocore Intel Xeon E5-2630 CPU running at 2.40 GHz. The introduced delivery errors were detected after 5–10 s irradiation time. Conclusions: A prototype online 3D dose verification tool using portal imaging has been developed and successfully tested for two different kinds of gross delivery errors. Thus, online 3D dose verification has been technologically achieved.« less
Meteorological and Environmental Inputs to Aviation Systems
NASA Technical Reports Server (NTRS)
Camp, Dennis W. (Editor); Frost, Walter (Editor)
1988-01-01
Reports on aviation meteorology, most of them informal, are presented by representatives of the National Weather Service, the Bracknell (England) Meteorological Office, the NOAA Wave Propagation Lab., the Fleet Numerical Oceanography Center, and the Aircraft Owners and Pilots Association. Additional presentations are included on aircraft/lidar turbulence comparison, lightning detection and locating systems, objective detection and forecasting of clear air turbulence, comparative verification between the Generalized Exponential Markov (GEM) Model and official aviation terminal forecasts, the evaluation of the Prototype Regional Observation and Forecast System (PROFS) mesoscale weather products, and the FAA/MIT Lincoln Lab. Doppler Weather Radar Program.
Formal development of a clock synchronization circuit
NASA Technical Reports Server (NTRS)
Miner, Paul S.
1995-01-01
This talk presents the latest stage in formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system. An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International. Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques. DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation. DDD was used to isolate the sub-system involved in Torres-Pomales' optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.
NASA Astrophysics Data System (ADS)
Andrina, G.; Basso, V.; Saitta, L.
2004-08-01
The effort in optimising the AIV process has been mainly focused in the recent years on the standardisation of approaches and on the application of new methodologies. But the earlier the intervention, the greater the benefits in terms of cost and schedule. Early phases of AIV process relied up to now on standards that need to be tailored through company and personal expertise. A study has then been conducted in order to exploit the possibility to develop an expert system helping in making choices in the early, conceptual phase of Assembly, Integration and Verification, namely the Model Philosophy and the test definition. The work focused on a hybrid approach, allowing interaction between historical data and human expertise. The expert system that has been prototyped exploits both information elicited from domain experts and results of a Data Mining activity on the existent data bases of completed projects verification data. The Data Mining algorithms allow the extraction of past experience resident on ESA/ MATD data base, which contains information in the form of statistical summaries, costs, frequencies of on-ground and in flight failures. Finding non-trivial associations could then be utilised by the experts to manage new decisions in a controlled way (Standards driven) at the beginning or during the AIV Process Moreover, the Expert AIV could allow compilation of a set of feasible AIV schedules to support further programmatic-driven choices.
Apparatus and Method for Low-Temperature Training of Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Swanger, A. M.; Fesmire, J. E.; Trigwell, S.; Gibson, T. L.; Williams, M. K.; Benafan, O.
2015-01-01
An apparatus and method for the low-temperature thermo-mechanical training of shape memory alloys (SMA) has been developed. The experimental SMA materials are being evaluated as prototypes for applicability in novel thermal management systems for future cryogenic applications. Alloys providing two-way actuation at cryogenic temperatures are the chief target. The mechanical training regimen was focused on the controlled movement of rectangular strips, with S-bend configurations, at temperatures as low as 30 K. The custom holding fixture included temperature sensors and a low heat-leak linear actuator with a magnetic coupling. The fixture was mounted to a Gifford-McMahon cryocooler providing up to 25 W of cooling power at 20 K and housed within a custom vacuum chamber. Operations included both training cycles and verification of shape memory movement. The system design and operation are discussed. Results of the training for select prototype alloys are presented.
Knowledge-based assistance in costing the space station DMS
NASA Technical Reports Server (NTRS)
Henson, Troy; Rone, Kyle
1988-01-01
The Software Cost Engineering (SCE) methodology developed over the last two decades at IBM Systems Integration Division (SID) in Houston is utilized to cost the NASA Space Station Data Management System (DMS). An ongoing project to capture this methodology, which is built on a foundation of experiences and lessons learned, has resulted in the development of an internal-use-only, PC-based prototype that integrates algorithmic tools with knowledge-based decision support assistants. This prototype Software Cost Engineering Automation Tool (SCEAT) is being employed to assist in the DMS costing exercises. At the same time, DMS costing serves as a forcing function and provides a platform for the continuing, iterative development, calibration, and validation and verification of SCEAT. The data that forms the cost engineering database is derived from more than 15 years of development of NASA Space Shuttle software, ranging from low criticality, low complexity support tools to highly complex and highly critical onboard software.
Apparatus and method for low-temperature training of shape memory alloys
NASA Astrophysics Data System (ADS)
Swanger, A. M.; Fesmire, J. E.; Trigwell, S.; Gibson, T. L.; Williams, M. K.; Benafan, O.
2015-12-01
An apparatus and method for the low-temperature thermo-mechanical training of shape memory alloys (SMA) has been developed. The experimental SMA materials are being evaluated as prototypes for applicability in novel thermal management systems for future cryogenic applications. Alloys providing two-way actuation at cryogenic temperatures are the chief target. The mechanical training regimen was focused on the controlled movement of rectangular strips, with S-bend configurations, at temperatures as low as 30 K. The custom holding fixture included temperature sensors and a low heat-leak linear actuator with a magnetic coupling. The fixture was mounted to a Gifford-McMahon cryocooler providing up to 25 W of cooling power at 20 K and housed within a custom vacuum chamber. Operations included both training cycles and verification of shape memory movement. The system design and operation are discussed. Results of the training for select prototype alloys are presented.
Towards real-time VMAT verification using a prototype, high-speed CMOS active pixel sensor.
Zin, Hafiz M; Harris, Emma J; Osmond, John P F; Allinson, Nigel M; Evans, Philip M
2013-05-21
This work investigates the feasibility of using a prototype complementary metal oxide semiconductor active pixel sensor (CMOS APS) for real-time verification of volumetric modulated arc therapy (VMAT) treatment. The prototype CMOS APS used region of interest read out on the chip to allow fast imaging of up to 403.6 frames per second (f/s). The sensor was made larger (5.4 cm × 5.4 cm) using recent advances in photolithographic technique but retains fast imaging speed with the sensor's regional read out. There is a paradigm shift in radiotherapy treatment verification with the advent of advanced treatment techniques such as VMAT. This work has demonstrated that the APS can track multi leaf collimator (MLC) leaves moving at 18 mm s(-1) with an automatic edge tracking algorithm at accuracy better than 1.0 mm even at the fastest imaging speed. Evaluation of the measured fluence distribution for an example VMAT delivery sampled at 50.4 f/s was shown to agree well with the planned fluence distribution, with an average gamma pass rate of 96% at 3%/3 mm. The MLC leaves motion and linac pulse rate variation delivered throughout the VMAT treatment can also be measured. The results demonstrate the potential of CMOS APS technology as a real-time radiotherapy dosimeter for delivery of complex treatments such as VMAT.
Long life reliability thermal control systems study
NASA Technical Reports Server (NTRS)
Scollon, T. R., Jr.; Killen, R. E.
1972-01-01
The results of a program undertaken to conceptually design and evaluate a passive, high reliability, long life thermal control system for space station application are presented. The program consisted of four steps: (1) investigate and select potential thermal system elements; (2) conceive, evaluate and select a thermal control system using these elements; (3) conduct a verification test of a prototype segment of the selected system; and (4) evaluate the utilization of waste heat from the power supply. The result of this project is a conceptual thermal control system design which employs heat pipes as primary components, both for heat transport and temperature control. The system, its evaluation, and the test results are described.
A web-based system for supporting global land cover data production
NASA Astrophysics Data System (ADS)
Han, Gang; Chen, Jun; He, Chaoying; Li, Songnian; Wu, Hao; Liao, Anping; Peng, Shu
2015-05-01
Global land cover (GLC) data production and verification process is very complicated, time consuming and labor intensive, requiring huge amount of imagery data and ancillary data and involving many people, often from different geographic locations. The efficient integration of various kinds of ancillary data and effective collaborative classification in large area land cover mapping requires advanced supporting tools. This paper presents the design and development of a web-based system for supporting 30-m resolution GLC data production by combining geo-spatial web-service and Computer Support Collaborative Work (CSCW) technology. Based on the analysis of the functional and non-functional requirements from GLC mapping, a three tiers system model is proposed with four major parts, i.e., multisource data resources, data and function services, interactive mapping and production management. The prototyping and implementation of the system have been realised by a combination of Open Source Software (OSS) and commercially available off-the-shelf system. This web-based system not only facilitates the integration of heterogeneous data and services required by GLC data production, but also provides online access, visualization and analysis of the images, ancillary data and interim 30 m global land-cover maps. The system further supports online collaborative quality check and verification workflows. It has been successfully applied to China's 30-m resolution GLC mapping project, and has improved significantly the efficiency of GLC data production and verification. The concepts developed through this study should also benefit other GLC or regional land-cover data production efforts.
NASA Astrophysics Data System (ADS)
Kuseler, Torben; Lami, Ihsan; Jassim, Sabah; Sellahewa, Harin
2010-04-01
The use of mobile communication devices with advance sensors is growing rapidly. These sensors are enabling functions such as Image capture, Location applications, and Biometric authentication such as Fingerprint verification and Face & Handwritten signature recognition. Such ubiquitous devices are essential tools in today's global economic activities enabling anywhere-anytime financial and business transactions. Cryptographic functions and biometric-based authentication can enhance the security and confidentiality of mobile transactions. Using Biometric template security techniques in real-time biometric-based authentication are key factors for successful identity verification solutions, but are venerable to determined attacks by both fraudulent software and hardware. The EU-funded SecurePhone project has designed and implemented a multimodal biometric user authentication system on a prototype mobile communication device. However, various implementations of this project have resulted in long verification times or reduced accuracy and/or security. This paper proposes to use built-in-self-test techniques to ensure no tampering has taken place on the verification process prior to performing the actual biometric authentication. These techniques utilises the user personal identification number as a seed to generate a unique signature. This signature is then used to test the integrity of the verification process. Also, this study proposes the use of a combination of biometric modalities to provide application specific authentication in a secure environment, thus achieving optimum security level with effective processing time. I.e. to ensure that the necessary authentication steps and algorithms running on the mobile device application processor can not be undermined or modified by an imposter to get unauthorized access to the secure system.
NASA Astrophysics Data System (ADS)
Maroto, Oscar; Diez-Merino, Laura; Carbonell, Jordi; Tomàs, Albert; Reyes, Marcos; Joven-Alvarez, Enrique; Martín, Yolanda; Morales de los Ríos, J. A.; del Peral, Luis; Rodríguez-Frías, M. D.
2014-07-01
The Japanese Experiment Module (JEM) Extreme Universe Space Observatory (EUSO) will be launched and attached to the Japanese module of the International Space Station (ISS). Its aim is to observe UV photon tracks produced by ultra-high energy cosmic rays developing in the atmosphere and producing extensive air showers. The key element of the instrument is a very wide-field, very fast, large-lense telescope that can detect extreme energy particles with energy above 1019 eV. The Atmospheric Monitoring System (AMS), comprising, among others, the Infrared Camera (IRCAM), which is the Spanish contribution, plays a fundamental role in the understanding of the atmospheric conditions in the Field of View (FoV) of the telescope. It is used to detect the temperature of clouds and to obtain the cloud coverage and cloud top altitude during the observation period of the JEM-EUSO main instrument. SENER is responsible for the preliminary design of the Front End Electronics (FEE) of the Infrared Camera, based on an uncooled microbolometer, and the manufacturing and verification of the prototype model. This paper describes the flight design drivers and key factors to achieve the target features, namely, detector biasing with electrical noise better than 100μV from 1Hz to 10MHz, temperature control of the microbolometer, from 10°C to 40°C with stability better than 10mK over 4.8hours, low noise high bandwidth amplifier adaptation of the microbolometer output to differential input before analog to digital conversion, housekeeping generation, microbolometer control, and image accumulation for noise reduction. It also shows the modifications implemented in the FEE prototype design to perform a trade-off of different technologies, such as the convenience of using linear or switched regulation for the temperature control, the possibility to check the camera performances when both microbolometer and analog electronics are moved further away from the power and digital electronics, and the addition of switching regulators to demonstrate the design is immune to the electrical noise the switching converters introduce. Finally, the results obtained during the verification phase are presented: FEE limitations, verification results, including FEE noise for each channel and its equivalent NETD and microbolometer temperature stability achieved, technologies trade-off, lessons learnt, and design improvement to implement in future project phases.
Design and Development of the Space Shuttle Tail Service Masts
NASA Technical Reports Server (NTRS)
Dandage, S. R.; Herman, N. A.; Godfrey, S. E.; Uda, R. T.
1977-01-01
The successful launch of a space shuttle vehicle depends on the proper operation of two tail service masts (TSMs). Reliable TSM operation is assured through a comprehensive design, development, and testing program. The results of the concept verification test (CVT) and the resulting impact on prototype TSM design are presented. The design criteria are outlined, and the proposed prototype TSM tests are described.
Expert system decision support for low-cost launch vehicle operations
NASA Technical Reports Server (NTRS)
Szatkowski, G. P.; Levin, Barry E.
1991-01-01
Progress in assessing the feasibility, benefits, and risks associated with AI expert systems applied to low cost expendable launch vehicle systems is described. Part one identified potential application areas in vehicle operations and on-board functions, assessed measures of cost benefit, and identified key technologies to aid in the implementation of decision support systems in this environment. Part two of the program began the development of prototypes to demonstrate real-time vehicle checkout with controller and diagnostic/analysis intelligent systems and to gather true measures of cost savings vs. conventional software, verification and validation requirements, and maintainability improvement. The main objective of the expert advanced development projects was to provide a robust intelligent system for control/analysis that must be performed within a specified real-time window in order to meet the demands of the given application. The efforts to develop the two prototypes are described. Prime emphasis was on a controller expert system to show real-time performance in a cryogenic propellant loading application and safety validation implementation of this system experimentally, using commercial-off-the-shelf software tools and object oriented programming techniques. This smart ground support equipment prototype is based in C with imbedded expert system rules written in the CLIPS protocol. The relational database, ORACLE, provides non-real-time data support. The second demonstration develops the vehicle/ground intelligent automation concept, from phase one, to show cooperation between multiple expert systems. This automated test conductor (ATC) prototype utilizes a knowledge-bus approach for intelligent information processing by use of virtual sensors and blackboards to solve complex problems. It incorporates distributed processing of real-time data and object-oriented techniques for command, configuration control, and auto-code generation.
NASA Technical Reports Server (NTRS)
Thurmond, Beverly A.; Gillan, Douglas J.; Perchonok, Michele G.; Marcus, Beth A.; Bourland, Charles T.
1986-01-01
A team of engineers and food scientists from NASA, the aerospace industry, food companies, and academia are defining the Space Station Food System. The team identified the system requirements based on an analysis of past and current space food systems, food systems from isolated environment communities that resemble Space Station, and the projected Space Station parameters. The team is resolving conflicts among requirements through the use of trade-off analyses. The requirements will give rise to a set of specifications which, in turn, will be used to produce concepts. Concept verification will include testing of prototypes, both in 1-g and microgravity. The end-item specification provides an overall guide for assembling a functional food system for Space Station.
Multi-Mission System Architecture Platform: Design and Verification of the Remote Engineering Unit
NASA Technical Reports Server (NTRS)
Sartori, John
2005-01-01
The Multi-Mission System Architecture Platform (MSAP) represents an effort to bolster efficiency in the spacecraft design process. By incorporating essential spacecraft functionality into a modular, expandable system, the MSAP provides a foundation on which future spacecraft missions can be developed. Once completed, the MSAP will provide support for missions with varying objectives, while maintaining a level of standardization that will minimize redesign of general system components. One subsystem of the MSAP, the Remote Engineering Unit (REU), functions by gathering engineering telemetry from strategic points on the spacecraft and providing these measurements to the spacecraft's Command and Data Handling (C&DH) subsystem. Before the MSAP Project reaches completion, all hardware, including the REU, must be verified. However, the speed and complexity of the REU circuitry rules out the possibility of physical prototyping. Instead, the MSAP hardware is designed and verified using the Verilog Hardware Definition Language (HDL). An increasingly popular means of digital design, HDL programming provides a level of abstraction, which allows the designer to focus on functionality while logic synthesis tools take care of gate-level design and optimization. As verification of the REU proceeds, errors are quickly remedied, preventing costly changes during hardware validation. After undergoing the careful, iterative processes of verification and validation, the REU and MSAP will prove their readiness for use in a multitude of spacecraft missions.
Viability Study for an Unattended UF 6 Cylinder Verification Station: Phase I Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leon E.; Miller, Karen A.; Garner, James R.
In recent years, the International Atomic Energy Agency (IAEA) has pursued innovative techniques and an integrated suite of safeguards measures to address the verification challenges posed by the front end of the nuclear fuel cycle. Among the unattended instruments currently being explored by the IAEA is an Unattended Cylinder Verification Station (UCVS) that could provide automated, independent verification of the declared relative enrichment, 235U mass, total uranium mass and identification for all declared UF 6 cylinders in a facility (e.g., uranium enrichment plants and fuel fabrication plants). Under the auspices of the United States and European Commission Support Programs tomore » the IAEA, a project was undertaken to assess the technical and practical viability of the UCVS concept. The US Support Program team consisted of Pacific Northwest National Laboratory (PNNL, lead), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL) and Savanah River National Laboratory (SRNL). At the core of the viability study is a long-term field trial of a prototype UCVS system at a Westinghouse fuel fabrication facility. A key outcome of the study is a quantitative performance evaluation of two nondestructive assay (NDA) methods being considered for inclusion in a UCVS: Hybrid Enrichment Verification Array (HEVA), and Passive Neutron Enrichment Meter (PNEM). This report provides context for the UCVS concept and the field trial: potential UCVS implementation concepts at an enrichment facility; an overview of UCVS prototype design; field trial objectives and activities. Field trial results and interpretation are presented, with a focus on the performance of PNEM and HEVA for the assay of over 200 “typical” Type 30B cylinders, and the viability of an “NDA Fingerprint” concept as a high-fidelity means to periodically verify that the contents of a given cylinder are consistent with previous scans. A modeling study, combined with field-measured instrument uncertainties, provides an assessment of the partial-defect sensitivity of HEVA and PNEM for both one-time assay and (repeated) NDA Fingerprint verification scenarios. The findings presented in this report represent a significant step forward in the community’s understanding of the strengths and limitations of the PNEM and HEVA NDA methods, and the viability of the UCVS concept in front-end fuel cycle facilities. This experience will inform Phase II of the UCVS viability study, should the IAEA pursue it.« less
Supersonic Gas-Liquid Cleaning System
NASA Technical Reports Server (NTRS)
Kinney, Frank
1996-01-01
The Supersonic Gas-Liquid Cleaning System Research Project consisted mainly of a feasibility study, including theoretical and engineering analysis, of a proof-of-concept prototype of this particular cleaning system developed by NASA-KSC. The cleaning system utilizes gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the device to be cleaned. The cleaning fluid being accelerated to these high velocities may consist of any solvent or liquid, including water. Compressed air or any inert gas is used to provide the conveying medium for the liquid, as well as substantially reduce the total amount of liquid needed to perform adequate surface cleaning and cleanliness verification. This type of aqueous cleaning system is considered to be an excellent way of conducting cleaning and cleanliness verification operations as replacements for the use of CFC 113 which must be discontinued by 1995. To utilize this particular cleaning system in various cleaning applications for both the Space Program and the commercial market, it is essential that the cleaning system, especially the supersonic nozzle, be characterized for such applications. This characterization consisted of performing theoretical and engineering analysis, identifying desirable modifications/extensions to the basic concept, evaluating effects of variations in operating parameters, and optimizing hardware design for specific applications.
Utilization survey of prototype structural test article
NASA Technical Reports Server (NTRS)
Baber, S.; Mcdaniel, H. M.; Berry, M. J.
1974-01-01
A survey was conducted of six aerospace companies and two NASA agencies to determine how prototype structural test articles are used in flight operations. The prototype structures are airframes and similar devices which are used for testing and generally are not flown. The survey indicated the following: (1) prototype test articles are not being discarded after development testing is complete, but are used for other purposes, (2) only two cases of prototypes being refurbished and flown were identified, (3) protective devices and inspection techniques are available to prevent or minimize test article damage, (4) substitute programs from design verification are availabel in lieu of using prototype structural articles, and (5) there is a trend away from dedicated test articles. Four options based on these study results were identified to reduce test and hardware costs without compromising reliability of the flight program.
Design and Verification of a Distributed Communication Protocol
NASA Technical Reports Server (NTRS)
Munoz, Cesar A.; Goodloe, Alwyn E.
2009-01-01
The safety of remotely operated vehicles depends on the correctness of the distributed protocol that facilitates the communication between the vehicle and the operator. A failure in this communication can result in catastrophic loss of the vehicle. To complicate matters, the communication system may be required to satisfy several, possibly conflicting, requirements. The design of protocols is typically an informal process based on successive iterations of a prototype implementation. Yet distributed protocols are notoriously difficult to get correct using such informal techniques. We present a formal specification of the design of a distributed protocol intended for use in a remotely operated vehicle, which is built from the composition of several simpler protocols. We demonstrate proof strategies that allow us to prove properties of each component protocol individually while ensuring that the property is preserved in the composition forming the entire system. Given that designs are likely to evolve as additional requirements emerge, we show how we have automated most of the repetitive proof steps to enable verification of rapidly changing designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malcolm, J; Mein, S; McNiven, A
2015-06-15
Purpose: To design, construct and commission a prototype in-house three dimensional (3D) dose verification system for stereotatic body radiotherapy (SBRT) verification at an off-site partner institution. To investigate the potential of this system to achieve sufficient performance (1mm resolution, 3% noise, within 3% of true dose reading) for SBRT verification. Methods: The system was designed utilizing a parallel ray geometry instigated by precision telecentric lenses and an LED 630nm light source. Using a radiochromic dosimeter, a 3D dosimetric comparison with our gold-standard system and treatment planning software (Eclipse) was done for a four-field box treatment, under gamma passing criteria ofmore » 3%/3mm/10% dose threshold. Post off-site installation, deviations in the system’s dose readout performance was assessed by rescanning the four-field box irradiated dosimeter and using line-profiles to compare on-site and off-site mean and noise levels in four distinct dose regions. As a final step, an end-to-end test of the system was completed at the off-site location, including CT-simulation, irradiation of the dosimeter and a 3D dosimetric comparison of the planned (Pinnacle{sup 3}) to delivered dose for a spinal SBRT treatment(12 Gy per fraction). Results: The noise level in the high and medium dose regions of the four field box treatment was relatively 5% pre and post installation. This reflects the reduction in positional uncertainty through the new design. This At 1mm dose voxels, the gamma pass rates(3%,3mm) for our in-house gold standard system and the off-site system were comparable at 95.8% and 93.2% respectively. Conclusion: This work will describe the end-to-end process and results of designing, installing, and commissioning a state-of-the-art 3D dosimetry system created for verification of advanced radiation treatments including spinal radiosurgery.« less
Software Model Checking Without Source Code
NASA Technical Reports Server (NTRS)
Chaki, Sagar; Ivers, James
2009-01-01
We present a framework, called AIR, for verifying safety properties of assembly language programs via software model checking. AIR extends the applicability of predicate abstraction and counterexample guided abstraction refinement to the automated verification of low-level software. By working at the assembly level, AIR allows verification of programs for which source code is unavailable-such as legacy and COTS software-and programs that use features-such as pointers, structures, and object-orientation-that are problematic for source-level software verification tools. In addition, AIR makes no assumptions about the underlying compiler technology. We have implemented a prototype of AIR and present encouraging results on several non-trivial examples.
TDRSS system configuration study for space shuttle program
NASA Technical Reports Server (NTRS)
1978-01-01
This study was set up to assure that operation of the shuttle orbiter communications systems met the program requirements when subjected to electrical conditions similar to those which will be encountered during the operational mission. The test program intended to implement an integrated test bed, consisting of applicable orbiter, EVA, payload simulator, STDN, and AF/SCF, as well as the TDRSS equipment. The stated intention of Task 501 Program was to configure the test bed with prototype hardware for a system development test and production hardware for a system verification test. In case of TDRSS when the hardware was not available, simulators whose functional performance was certified to meet appropriate end item specification were used.
Low-cost and high-speed optical mark reader based on an intelligent line camera
NASA Astrophysics Data System (ADS)
Hussmann, Stephan; Chan, Leona; Fung, Celine; Albrecht, Martin
2003-08-01
Optical Mark Recognition (OMR) is thoroughly reliable and highly efficient provided that high standards are maintained at both the planning and implementation stages. It is necessary to ensure that OMR forms are designed with due attention to data integrity checks, the best use is made of features built into the OMR, used data integrity is checked before the data is processed and data is validated before it is processed. This paper describes the design and implementation of an OMR prototype system for marking multiple-choice tests automatically. Parameter testing is carried out before the platform and the multiple-choice answer sheet has been designed. Position recognition and position verification methods have been developed and implemented in an intelligent line scan camera. The position recognition process is implemented into a Field Programmable Gate Array (FPGA), whereas the verification process is implemented into a micro-controller. The verified results are then sent to the Graphical User Interface (GUI) for answers checking and statistical analysis. At the end of the paper the proposed OMR system will be compared with commercially available system on the market.
Application of additive laser technologies in the gas turbine blades design process
NASA Astrophysics Data System (ADS)
Shevchenko, I. V.; Rogalev, A. N.; Osipov, S. K.; Bychkov, N. M.; Komarov, I. I.
2017-11-01
An emergence of modern innovative technologies requires delivering new and modernization existing design and production processes. It is especially relevant for designing the high-temperature turbines of gas turbine engines, development of which is characterized by a transition to higher parameters of working medium in order to improve their efficient performance. A design technique for gas turbine blades based on predictive verification of thermal and hydraulic models of their cooling systems by testing of a blade prototype fabricated using the selective laser melting technology was presented in this article. Technique was proven at the time of development of the first stage blade cooling system for the high-pressure turbine. An experimental procedure for verification of a thermal model of the blades with convective cooling systems based on the comparison of heat-flux density obtained from the numerical simulation data and results of tests in a liquid-metal thermostat was developed. The techniques makes it possible to obtain an experimentally tested blade version and to exclude its experimental adjustment after the start of mass production.
A chronic generalized bi-directional brain-machine interface.
Rouse, A G; Stanslaski, S R; Cong, P; Jensen, R M; Afshar, P; Ullestad, D; Gupta, R; Molnar, G F; Moran, D W; Denison, T J
2011-06-01
A bi-directional neural interface (NI) system was designed and prototyped by incorporating a novel neural recording and processing subsystem into a commercial neural stimulator architecture. The NI system prototype leverages the system infrastructure from an existing neurostimulator to ensure reliable operation in a chronic implantation environment. In addition to providing predicate therapy capabilities, the device adds key elements to facilitate chronic research, such as four channels of electrocortigram/local field potential amplification and spectral analysis, a three-axis accelerometer, algorithm processing, event-based data logging, and wireless telemetry for data uploads and algorithm/configuration updates. The custom-integrated micropower sensor and interface circuits facilitate extended operation in a power-limited device. The prototype underwent significant verification testing to ensure reliability, and meets the requirements for a class CF instrument per IEC-60601 protocols. The ability of the device system to process and aid in classifying brain states was preclinically validated using an in vivo non-human primate model for brain control of a computer cursor (i.e. brain-machine interface or BMI). The primate BMI model was chosen for its ability to quantitatively measure signal decoding performance from brain activity that is similar in both amplitude and spectral content to other biomarkers used to detect disease states (e.g. Parkinson's disease). A key goal of this research prototype is to help broaden the clinical scope and acceptance of NI techniques, particularly real-time brain state detection. These techniques have the potential to be generalized beyond motor prosthesis, and are being explored for unmet needs in other neurological conditions such as movement disorders, stroke and epilepsy.
A Formal Framework for the Analysis of Algorithms That Recover From Loss of Separation
NASA Technical Reports Server (NTRS)
Butler, RIcky W.; Munoz, Cesar A.
2008-01-01
We present a mathematical framework for the specification and verification of state-based conflict resolution algorithms that recover from loss of separation. In particular, we propose rigorous definitions of horizontal and vertical maneuver correctness that yield horizontal and vertical separation, respectively, in a bounded amount of time. We also provide sufficient conditions for independent correctness, i.e., separation under the assumption that only one aircraft maneuvers, and for implicitly coordinated correctness, i.e., separation under the assumption that both aircraft maneuver. An important benefit of this approach is that different aircraft can execute different algorithms and implicit coordination will still be achieved, as long as they all meet the explicit criteria of the framework. Towards this end we have sought to make the criteria as general as possible. The framework presented in this paper has been formalized and mechanically verified in the Prototype Verification System (PVS).
Results from a Prototype Proton-CT Head Scanner
NASA Astrophysics Data System (ADS)
Johnson, R. P.; Bashkirov, V. A.; Coutrakon, G.; Giacometti, V.; Karbasi, P.; Karonis, N. T.; Ordoñez, C. E.; Pankuch, M.; Sadrozinski, H. F.-W.; Schubert, K. E.; Schulte, R. W.
We are exploring low-dose proton radiography and computed tomography (pCT) as techniques to improve the accuracy of proton treatment planning and to provide artifact-free images for verification and adaptive therapy at the time of treatment. Here we report on comprehensive beam test results with our prototype pCT head scanner. The detector system and data acquisition attain a sustained rate of more than a million protons individually measured per second, allowing a full CT scan to be completed in six minutes or less of beam time. In order to assess the performance of the scanner for proton radiography as well as computed tomography, we have performed numerous scans of phantoms at the Northwestern Medicine Chicago Proton Center including a custom phantom designed to assess the spatial resolution, a phantom to assess the measurement of relative stopping power, and a dosimetry phantom. Some images, performance, and dosimetry results from those phantom scans are presented together with a description of the instrument, the data acquisition system, and the calibration methods.
Development and marketing of a prosthetic urinary control valve system
NASA Technical Reports Server (NTRS)
Tenney, J. B., Jr.; Rabinowitz, R.; Rogers, D. W.; Harrison, H. N.
1983-01-01
An implantable prosthetic for the control of urinary incontinence was developed and marketed. Three phases are presented: bench development studies, animal trials, and human clinical trials. This work was performed under the direction of a Research Team at Rochester General Hospital (RGH). Bench trials were completed on prototype hardware and provided early verification of the device's ability to withstand repeated cyclic testing. Configurational variants were evaluated and a preferred design concept was established. Silicone rubber (medical grade) was selected as the preferred material for the prosthesis.
Software technology testbed softpanel prototype
NASA Technical Reports Server (NTRS)
1991-01-01
The following subject areas are covered: analysis of using Ada for the development of real-time control systems for the Space Station; analysis of the functionality of the Application Generator; analysis of the User Support Environment criteria; analysis of the SSE tools and procedures which are to be used for the development of ground/flight software for the Space Station; analysis if the CBATS tutorial (an Ada tutorial package); analysis of Interleaf; analysis of the Integration, Test and Verification process of the Space Station; analysis of the DMS on-orbit flight architecture; analysis of the simulation architecture.
The development of a non-cryogenic nitrogen/oxygen supply system
NASA Technical Reports Server (NTRS)
Greenough, B. M.
1972-01-01
Development of the hydrazine/water electrolysis process in a manned spacecraft to provide metabolic oxygen and both oxygen and nitrogen for cabin leakage makeup was studied. Electrode development efforts were directed to stability, achieved with catalyst additives and improved processing techniques, and a higher hydrazine conversion efficiency, achieved by reducing catalyst loading on the cathodes. Extensive testing of the one-man breadboard N2/02 system provided complete characterization of cabin atmosphere control aspects. A detailed design of a prototype modular N2/02 unit was conducted. The contact heat exchanger which is an integral component of this design was fabricated and sucessfully design-verification tested.
Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing
NASA Technical Reports Server (NTRS)
Watts, Carly; Vogel, Matthew
2016-01-01
For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and operational concepts verification, as well as demonstration of vehicular interfaces, consumables sizing and recharge, and water quality control.
Software Validation via Model Animation
NASA Technical Reports Server (NTRS)
Dutle, Aaron M.; Munoz, Cesar A.; Narkawicz, Anthony J.; Butler, Ricky W.
2015-01-01
This paper explores a new approach to validating software implementations that have been produced from formally-verified algorithms. Although visual inspection gives some confidence that the implementations faithfully reflect the formal models, it does not provide complete assurance that the software is correct. The proposed approach, which is based on animation of formal specifications, compares the outputs computed by the software implementations on a given suite of input values to the outputs computed by the formal models on the same inputs, and determines if they are equal up to a given tolerance. The approach is illustrated on a prototype air traffic management system that computes simple kinematic trajectories for aircraft. Proofs for the mathematical models of the system's algorithms are carried out in the Prototype Verification System (PVS). The animation tool PVSio is used to evaluate the formal models on a set of randomly generated test cases. Output values computed by PVSio are compared against output values computed by the actual software. This comparison improves the assurance that the translation from formal models to code is faithful and that, for example, floating point errors do not greatly affect correctness and safety properties.
In-beam PET data characterization with the large area DoPET prototype
NASA Astrophysics Data System (ADS)
Sportelli, G.; Belcari, N.; Camarlinghi, N.; Ciocca, M.; Collini, F.; Molinelli, S.; Pullia, M.; Zaccaro, E.; Del Guerra, A.; Rosso, V.
2016-02-01
Range verification with in-beam PET techniques is a powerful tool for monitoring the correctness of dose delivery in particle therapy. Among the major limitations of in-beam PET systems are the limited detectors size due to the constrained space in which they can be placed to allow the irradiation, and the necessity of a high read-out modularization, due to high activity rates during the irradiation. In this work we present the data acquired at the CNAO (Centro Nazionale di Adroterapia Oncologica) treatment center in Pavia, Italy, with the new DoPET system, specifically designed to operate in in-beam conditions. The new prototype consists of two planar 15cm × 15cm LYSO-based detectors, read out by 9 PMT detector modules each. In particular, we test the capability of our system to determine particle range in various irradiation conditions. Several plastic phantoms were irradiated at the CNAO treatment centre with protons and carbon ions of various energies. The used dose in treatment plans is 2 Gy and the monitoring feedback is produced in a few minutes after the end of the treatment.
Formal Verification of a Conflict Resolution and Recovery Algorithm
NASA Technical Reports Server (NTRS)
Maddalon, Jeffrey; Butler, Ricky; Geser, Alfons; Munoz, Cesar
2004-01-01
New air traffic management concepts distribute the duty of traffic separation among system participants. As a consequence, these concepts have a greater dependency and rely heavily on on-board software and hardware systems. One example of a new on-board capability in a distributed air traffic management system is air traffic conflict detection and resolution (CD&R). Traditional methods for safety assessment such as human-in-the-loop simulations, testing, and flight experiments may not be sufficient for this highly distributed system as the set of possible scenarios is too large to have a reasonable coverage. This paper proposes a new method for the safety assessment of avionics systems that makes use of formal methods to drive the development of critical systems. As a case study of this approach, the mechanical veri.cation of an algorithm for air traffic conflict resolution and recovery called RR3D is presented. The RR3D algorithm uses a geometric optimization technique to provide a choice of resolution and recovery maneuvers. If the aircraft adheres to these maneuvers, they will bring the aircraft out of conflict and the aircraft will follow a conflict-free path to its original destination. Veri.cation of RR3D is carried out using the Prototype Verification System (PVS).
Space shuttle electrical power generation and reactant supply system
NASA Technical Reports Server (NTRS)
Simon, W. E.
1985-01-01
The design philosophy and development experience of fuel cell power generation and cryogenic reactant supply systems are reviewed, beginning with the state of technology at the conclusion of the Apollo Program. Technology advancements span a period of 10 years from initial definition phase to the most recent space transportation system (STS) flights. The development program encompassed prototype, verification, and qualification hardware, as well as post-STS-1 design improvements. Focus is on the problems encountered, the scientific and engineering approaches employed to meet the technological challenges, and the results obtained. Major technology barriers are discussed, and the evolving technology development paths are traced from their conceptual beginnings to the fully man-rated systems which are now an integral part of the shuttle vehicle.
ROVER : prototype roving verification van : transportation project summary
DOT National Transportation Integrated Search
1997-06-01
The purpose of this project is to verify the safety and legality of commercial vehicles at both fixed and mobile roadside sites. improving the efficiency, safety. and effectiveness of commercial vehicle operations through the use of timely, accurate ...
Long, Ruiqi; McShane, Mike
2012-09-01
Implantable luminescent sensors are being developed for on-demand monitoring of blood glucose levels. For these sensors to be deployed in vivo, a matched external hardware system is needed. In this paper, we designed a compact, low-cost optical system with highly efficient photon delivery and collection using advanced optical modeling software. Compared to interrogation with a fiber bundle, the new system was predicted to improve interrogation efficiency by a factor of 200 for native sensors; an improvement of 37 times was predicted for sensors implanted at a depth of 1 mm in a skin-simulating phantom. A physical prototype was tested using silicone-based skin phantoms developed specifically to mimic the scattering and absorbing properties of human skin. The experimental evaluations revealed that the prototype device performed in agreement with expectations from simulation results, resulting in an overall improvement of over 2000 times. This efficient system enables use of a low-cost commercial spectrometer for recording sensor emission, which was not possible using only fiber optic delivery and collection, and will be used as a tool for in vivo studies with animal models or human subjects.
Model of critical diagnostic reasoning: achieving expert clinician performance.
Harjai, Prashant Kumar; Tiwari, Ruby
2009-01-01
Diagnostic reasoning refers to the analytical processes used to determine patient health problems. While the education curriculum and health care system focus on training nurse clinicians to accurately recognize and rescue clinical situations, assessments of non-expert nurses have yielded less than satisfactory data on diagnostic competency. The contrast between the expert and non-expert nurse clinician raises the important question of how differences in thinking may contribute to a large divergence in accurate diagnostic reasoning. This article recognizes superior organization of one's knowledge base, using prototypes, and quick retrieval of pertinent information, using similarity recognition as two reasons for the expert's superior diagnostic performance. A model of critical diagnostic reasoning, using prototypes and similarity recognition, is proposed and elucidated using case studies. This model serves as a starting point toward bridging the gap between clinical data and accurate problem identification, verification, and management while providing a structure for a knowledge exchange between expert and non-expert clinicians.
Proton radiography and tomography with application to proton therapy
Allinson, N M; Evans, P M
2015-01-01
Proton radiography and tomography have long promised benefit for proton therapy. Their first suggestion was in the early 1960s and the first published proton radiographs and CT images appeared in the late 1960s and 1970s, respectively. More than just providing anatomical images, proton transmission imaging provides the potential for the more accurate estimation of stopping-power ratio inside a patient and hence improved treatment planning and verification. With the recent explosion in growth of clinical proton therapy facilities, the time is perhaps ripe for the imaging modality to come to the fore. Yet many technical challenges remain to be solved before proton CT scanners become commonplace in the clinic. Research and development in this field is currently more active than at any time with several prototype designs emerging. This review introduces the principles of proton radiography and tomography, their historical developments, the raft of modern prototype systems and the primary design issues. PMID:26043157
Advanced Extra-Vehicular Activity Pressure Garment Requirements Development
NASA Technical Reports Server (NTRS)
Ross, Amy; Aitchison, Lindsay; Rhodes, Richard
2015-01-01
The NASA Johnson Space Center advanced pressure garment technology development team is addressing requirements development for exploration missions. Lessons learned from the Z-2 high fidelity prototype development have reiterated that clear low-level requirements and verification methods reduce risk to the government, improve efficiency in pressure garment design efforts, and enable the government to be a smart buyer. The expectation is to provide requirements at the specification level that are validated so that their impact on pressure garment design is understood. Additionally, the team will provide defined verification protocols for the requirements. However, in reviewing exploration space suit high level requirements there are several gaps in the team's ability to define and verify related lower level requirements. This paper addresses the efforts in requirement areas such as mobility/fit/comfort and environmental protection (dust, radiation, plasma, secondary impacts) to determine the method by which the requirements can be defined and use of those methods for verification. Gaps exist at various stages. In some cases component level work is underway, but no system level effort has begun; in other cases no effort has been initiated to close the gap. Status of on-going efforts and potential approaches to open gaps are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
St James, S; Argento, D; DeWitt, D
Purpose: Fast neutron therapy is offered at the University of Washington Medical Center for treatment of selected cancers. The hardware and control systems of the UW Clinical Neutron Therapy System are undergoing upgrades to enable delivery of IMNT. To clinically implement IMNT, dose verification tools need to be developed. We propose a portal imaging system that relies on the creation of positron emitting isotopes ({sup 11}C and {sup 15}O) through (n, 2n) reactions with a PMMA plate placed below the patient. After field delivery, the plate is retrieved from the vault and imaged using a reader that detects the annihilationmore » photons. The pattern of activity produced in the plate provides information to reconstruct the neutron fluence map that can be compared to fluence maps from Monte Carlo (MCNP) simulations to verify treatment delivery. We have previously performed Monte Carlo simulations of the portal imaging system (GATE simulations) and the beam line (MCNP simulations). In this work, initial measurements using a prototype system are presented. Methods: Custom electronics were developed for BGO detectors read out with photomultiplier tubes (previous generation PET detectors from a CTI ECAT 953 scanner). Two detectors were placed in coincidence, with a detector separation of 2 cm. Custom software was developed to create the crystal look up tables and perform a limited angle planar reconstruction with a stochastic normalization. To test the initial capabilities of the system, PMMA squares were irradiated with neutrons at a depth of 1.5 cm and read out using the prototype system. Doses ranging from 10–200 cGy were delivered. Results: Using the prototype system, dose differences in the therapeutic range could be determined. Conclusion: The prototype portal imaging system is capable of detecting neutron doses as low as 10–50 cGy and shows great promise as a patient QA tool for IMNT.« less
A Radiation-Triggered Surveillance System for UF6 Cylinder Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, Michael M.; Myjak, Mitchell J.
This report provides background information and representative scenarios for testing a prototype radiation-triggered surveillance system at an operating facility that handles uranium hexafluoride (UF 6) cylinders. The safeguards objective is to trigger cameras using radiation, or radiation and motion, rather than motion alone, to reduce significantly the number of image files generated by a motion-triggered system. The authors recommend the use of radiation-triggered surveillance at all facilities where cylinder paths are heavily traversed by personnel. The International Atomic Energy Agency (IAEA) has begun using surveillance cameras in the feed and withdrawal areas of gas centrifuge enrichment plants (GCEPs). The camerasmore » generate imagery using elapsed time or motion, but this creates problems in areas occupied 24/7 by personnel. Either motion-or-interval-based triggering generates thousands of review files over the course of a month. Since inspectors must review the files to verify operator material-flow-declarations, a plethora of files significantly extends the review process. The primary advantage of radiation-triggered surveillance is the opportunity to obtain full-time cylinder throughput verification versus what presently amounts to part-time verification. Cost savings should be substantial, as the IAEA presently uses frequent unannounced inspections to verify cylinder-throughput declarations. The use of radiation-triggered surveillance allows the IAEA to implement less frequent unannounced inspections for the purpose of flow verification, but its principal advantage is significantly shorter and more effective inspector video reviews.« less
Verification of a research prototype for hemodynamic analysis of cerebral aneurysms.
Suzuki, Takashi; Ioan Nita, Cosmin; Rapaka, Saikiran; Takao, Hiroyuki; Mihalef, Viorel; Fujimura, Soichiro; Dahmani, Chihebeddine; Sharma, Puneet; Mamori, Hiroya; Ishibashi, Toshihiro; Redel, Thomas; Yamamoto, Makoto; Murayama, Yuichi
2016-08-01
Owing to its clinical importance, there has been a growing body of research on understanding the hemodynamics of cerebral aneurysms. Traditionally, this work has been performed using general-purpose, state-of-the-art commercial solvers. This has meant requiring engineering expertise for making appropriate choices on the geometric discretization, time-step selection, choice of boundary conditions etc. Recently, a CFD research prototype has been developed (Siemens Healthcare GmbH, Prototype - not for diagnostic use) for end-to-end analysis of aneurysm hemodynamics. This prototype enables anatomical model preparation, hemodynamic computations, advanced visualizations and quantitative analysis capabilities. In this study, we investigate the accuracy of the hemodynamic solver in the prototype against a commercially available CFD solver ANSYS CFX 16.0 (ANSYS Inc., Canonsburg, PA, www.ansys.com) retrospectively on a sample of twenty patient-derived aneurysm models, and show good agreement of hemodynamic parameters of interest.
An ORCID based synchronization framework for a national CRIS ecosystem.
Mendes Moreira, João; Cunha, Alcino; Macedo, Nuno
2015-01-01
PTCRIS (Portuguese Current Research Information System) is a program aiming at the creation and sustained development of a national integrated information ecosystem, to support research management according to the best international standards and practices. This paper reports on the experience of designing and prototyping a synchronization framework for PTCRIS based on ORCID (Open Researcher and Contributor ID). This framework embraces the "input once, re-use often" principle, and will enable a substantial reduction of the research output management burden by allowing automatic information exchange between the various national systems. The design of the framework followed best practices in rigorous software engineering, namely well-established principles in the research field of consistency management, and relied on formal analysis techniques and tools for its validation and verification. The notion of consistency between the services was formally specified and discussed with the stakeholders before the technical aspects on how to preserve said consistency were explored. Formal specification languages and automated verification tools were used to analyze the specifications and generate usage scenarios, useful for validation with the stakeholder and essential to certificate compliant services.
Software Verification of Orion Cockpit Displays
NASA Technical Reports Server (NTRS)
Biswas, M. A. Rafe; Garcia, Samuel; Prado, Matthew; Hossain, Sadad; Souris, Matthew; Morin, Lee
2017-01-01
NASA's latest spacecraft Orion is in the development process of taking humans deeper into space. Orion is equipped with three main displays to monitor and control the spacecraft. To ensure the software behind the glass displays operates without faults, rigorous testing is needed. To conduct such testing, the Rapid Prototyping Lab at NASA's Johnson Space Center along with the University of Texas at Tyler employed a software verification tool, EggPlant Functional by TestPlant. It is an image based test automation tool that allows users to create scripts to verify the functionality within a program. A set of edge key framework and Common EggPlant Functions were developed to enable creation of scripts in an efficient fashion. This framework standardized the way to code and to simulate user inputs in the verification process. Moreover, the Common EggPlant Functions can be used repeatedly in verification of different displays.
NASA Astrophysics Data System (ADS)
Nomaguch, Yutaka; Fujita, Kikuo
This paper proposes a design support framework, named DRIFT (Design Rationale Integration Framework of Three layers), which dynamically captures and manages hypothesis and verification in the design process. A core of DRIFT is a three-layered design process model of action, model operation and argumentation. This model integrates various design support tools and captures design operations performed on them. Action level captures the sequence of design operations. Model operation level captures the transition of design states, which records a design snapshot over design tools. Argumentation level captures the process of setting problems and alternatives. The linkage of three levels enables to automatically and efficiently capture and manage iterative hypothesis and verification processes through design operations over design tools. In DRIFT, such a linkage is extracted through the templates of design operations, which are extracted from the patterns embeded in design tools such as Design-For-X (DFX) approaches, and design tools are integrated through ontology-based representation of design concepts. An argumentation model, gIBIS (graphical Issue-Based Information System), is used for representing dependencies among problems and alternatives. A mechanism of TMS (Truth Maintenance System) is used for managing multiple hypothetical design stages. This paper also demonstrates a prototype implementation of DRIFT and its application to a simple design problem. Further, it is concluded with discussion of some future issues.
Technology verification phase. Dynamic isotope power system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halsey, D.G.
1982-03-10
The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight systemmore » design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)« less
NASA Technical Reports Server (NTRS)
Williams, Daniel M.
2006-01-01
Described is the research process that NASA researchers used to validate the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) concept. The four phase building-block validation and verification process included multiple elements ranging from formal analysis of HVO procedures to flight test, to full-system architecture prototype that was successfully shown to the public at the June 2005 SATS Technical Demonstration in Danville, VA. Presented are significant results of each of the four research phases that extend early results presented at ICAS 2004. HVO study results have been incorporated into the development of the Next Generation Air Transportation System (NGATS) vision and offer a validated concept to provide a significant portion of the 3X capacity improvement sought after in the United States National Airspace System (NAS).
Review of hardware-in-the-loop simulation and its prospects in the automotive area
NASA Astrophysics Data System (ADS)
Fathy, Hosam K.; Filipi, Zoran S.; Hagena, Jonathan; Stein, Jeffrey L.
2006-05-01
Hardware-in-the-loop (HIL) simulation is rapidly evolving from a control prototyping tool to a system modeling, simulation, and synthesis paradigm synergistically combining many advantages of both physical and virtual prototyping. This paper provides a brief overview of the key enablers and numerous applications of HIL simulation, focusing on its metamorphosis from a control validation tool into a system development paradigm. It then describes a state-of-the art engine-in-the-loop (EIL) simulation facility that highlights the use of HIL simulation for the system-level experimental evaluation of powertrain interactions and development of strategies for clean and efficient propulsion. The facility comprises a real diesel engine coupled to accurate real-time driver, driveline, and vehicle models through a highly responsive dynamometer. This enables the verification of both performance and fuel economy predictions of different conventional and hybrid powertrains. Furthermore, the facility can both replicate the highly dynamic interactions occurring within a real powertrain and measure their influence on transient emissions and visual signature through state-of-the-art instruments. The viability of this facility for integrated powertrain system development is demonstrated through a case study exploring the development of advanced High Mobility Multipurpose Wheeled Vehicle (HMMWV) powertrains.
Model-based engineering for medical-device software.
Ray, Arnab; Jetley, Raoul; Jones, Paul L; Zhang, Yi
2010-01-01
This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software. 1.
Interfacing and Verifying ALHAT Safe Precision Landing Systems with the Morpheus Vehicle
NASA Technical Reports Server (NTRS)
Carson, John M., III; Hirsh, Robert L.; Roback, Vincent E.; Villalpando, Carlos; Busa, Joseph L.; Pierrottet, Diego F.; Trawny, Nikolas; Martin, Keith E.; Hines, Glenn D.
2015-01-01
The NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project developed a suite of prototype sensors to enable autonomous and safe precision landing of robotic or crewed vehicles under any terrain lighting conditions. Development of the ALHAT sensor suite was a cross-NASA effort, culminating in integration and testing on-board a variety of terrestrial vehicles toward infusion into future spaceflight applications. Terrestrial tests were conducted on specialized test gantries, moving trucks, helicopter flights, and a flight test onboard the NASA Morpheus free-flying, rocket-propulsive flight-test vehicle. To accomplish these tests, a tedious integration process was developed and followed, which included both command and telemetry interfacing, as well as sensor alignment and calibration verification to ensure valid test data to analyze ALHAT and Guidance, Navigation and Control (GNC) performance. This was especially true for the flight test campaign of ALHAT onboard Morpheus. For interfacing of ALHAT sensors to the Morpheus flight system, an adaptable command and telemetry architecture was developed to allow for the evolution of per-sensor Interface Control Design/Documents (ICDs). Additionally, individual-sensor and on-vehicle verification testing was developed to ensure functional operation of the ALHAT sensors onboard the vehicle, as well as precision-measurement validity for each ALHAT sensor when integrated within the Morpheus GNC system. This paper provides some insight into the interface development and the integrated-systems verification that were a part of the build-up toward success of the ALHAT and Morpheus flight test campaigns in 2014. These campaigns provided valuable performance data that is refining the path toward spaceflight infusion of the ALHAT sensor suite.
Runtime verification of embedded real-time systems.
Reinbacher, Thomas; Függer, Matthias; Brauer, Jörg
We present a runtime verification framework that allows on-line monitoring of past-time Metric Temporal Logic (ptMTL) specifications in a discrete time setting. We design observer algorithms for the time-bounded modalities of ptMTL, which take advantage of the highly parallel nature of hardware designs. The algorithms can be translated into efficient hardware blocks, which are designed for reconfigurability, thus, facilitate applications of the framework in both a prototyping and a post-deployment phase of embedded real-time systems. We provide formal correctness proofs for all presented observer algorithms and analyze their time and space complexity. For example, for the most general operator considered, the time-bounded Since operator, we obtain a time complexity that is doubly logarithmic both in the point in time the operator is executed and the operator's time bounds. This result is promising with respect to a self-contained, non-interfering monitoring approach that evaluates real-time specifications in parallel to the system-under-test. We implement our framework on a Field Programmable Gate Array platform and use extensive simulation and logic synthesis runs to assess the benefits of the approach in terms of resource usage and operating frequency.
Combination of an electrolytic pretreatment unit with secondary water reclamation processes
NASA Technical Reports Server (NTRS)
Wells, G. W.; Bonura, M. S.
1973-01-01
The design and fabrication of a flight concept prototype electrolytic pretreatment unit (EPU) and of a contractor-furnished air evaporation unit (AEU) are described. The integrated EPU and AEU potable water recovery system is referred to as the Electrovap and is capable of processing the urine and flush water of a six-man crew. Results of a five-day performance verification test of the Electrovap system are presented and plans are included for the extended testing of the Electrovap to produce data applicable to the combination of electrolytic pretreatment with most final potable water recovery systems. Plans are also presented for a program to define the design requirements for combining the electrolytic pretreatment unit with a reverse osmosis final processing unit.
Visualization design and verification of Ada tasking using timing diagrams
NASA Technical Reports Server (NTRS)
Vidale, R. F.; Szulewski, P. A.; Weiss, J. B.
1986-01-01
The use of timing diagrams is recommended in the design and testing of multi-task Ada programs. By displaying the task states vs. time, timing diagrams can portray the simultaneous threads of data flow and control which characterize tasking programs. This description of the system's dynamic behavior from conception to testing is a necessary adjunct to other graphical techniques, such as structure charts, which essentially give a static view of the system. A series of steps is recommended which incorporates timing diagrams into the design process. Finally, a description is provided of a prototype Ada Execution Analyzer (AEA) which automates the production of timing diagrams from VAX/Ada debugger output.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, R.; Grace, W.
1996-07-01
This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We won a 1994 R&D 100 Award for inventing the Bartas Iris Verification System. The system has been delivered to a sponsor and is no longer available to us. This technology can verify the identity of a person for purposes of access control, national security, law enforcement, forensics, counter-terrorism, and medical, financial, or scholastic records. The technique is non-invasive, psychologically acceptable, works in real-time, and obtains more biometric data than any other biometric except DNA analysis. This project soughtmore » to develop a new, second-generation prototype instrument.« less
Formalizing New Navigation Requirements for NASA's Space Shuttle
NASA Technical Reports Server (NTRS)
DiVito, Ben L.
1996-01-01
We describe a recent NASA-sponsored pilot project intended to gauge the effectiveness of using formal methods in Space Shuttle software requirements analysis. Several Change Requests (CRs) were selected as promising targets to demonstrate the utility of formal methods in this demanding application domain. A CR to add new navigation capabilities to the Shuttle, based on Global Positioning System (GPS) technology, is the focus of this industrial usage report. Portions of the GPS CR were modeled using the language of SRI's Prototype Verification System (PVS). During a limited analysis conducted on the formal specifications, numerous requirements issues were discovered. We present a summary of these encouraging results and conclusions we have drawn from the pilot project.
NASA Technical Reports Server (NTRS)
Chyu, MING-C.
1992-01-01
Plate-fin heat exchangers will be employed in the Active Thermal Control System of Space Station Freedom. During ground testing of prototypic heat exchangers, certain anomalous behaviors have been observed. Diagnosis has been conducted to determine the cause of the observed behaviors, including a scrutiny of temperature, pressure, and flow rate test data, and verification calculations based on such data and more data collected during the ambient and thermal/vacuum tests participated by the author. The test data of a plate-fin cold plate have been also analyzed. Recommendation was made with regard to further tests providing more useful information of the cold plate performance.
A portable infrasound generator.
Park, Joseph; Robertson, James
2009-04-01
The rotary subwoofer is a novel low frequency transducer capable of efficiently generating infrasound from a compact source. A field-deployable version of this device may find application as a calibration source for infrasound arrays of the International Monitoring System (IMS) [(2001). The Global Verification Regime and the International Monitoring System (CTBTO Preparatory Commission Vienna International Centre, Vienna, Austria)]. A prototype tested at the IMS infrasound array I59US demonstrated the ability to insonify all elements of the array from a standoff distance of 3.8 km. Signal-to-noise ratios of continuous wave signals ranged from 5 to 15 dB, indicating the utility of this source to transmit controllable infrasound signals over distances of 5 km.
Building biological foundries for next-generation synthetic biology.
Chao, Ran; Yuan, YongBo; Zhao, HuiMin
2015-07-01
Synthetic biology is an interdisciplinary field that takes top-down approaches to understand and engineer biological systems through design-build-test cycles. A number of advances in this relatively young field have greatly accelerated such engineering cycles. Specifically, various innovative tools were developed for in silico biosystems design, DNA de novo synthesis and assembly, construct verification, as well as metabolite analysis, which have laid a solid foundation for building biological foundries for rapid prototyping of improved or novel biosystems. This review summarizes the state-of-the-art technologies for synthetic biology and discusses the challenges to establish such biological foundries.
A network identity authentication system based on Fingerprint identification technology
NASA Astrophysics Data System (ADS)
Xia, Hong-Bin; Xu, Wen-Bo; Liu, Yuan
2005-10-01
Fingerprint verification is one of the most reliable personal identification methods. However, most of the automatic fingerprint identification system (AFIS) is not run via Internet/Intranet environment to meet today's increasing Electric commerce requirements. This paper describes the design and implementation of the archetype system of identity authentication based on fingerprint biometrics technology, and the system can run via Internet environment. And in our system the COM and ASP technology are used to integrate Fingerprint technology with Web database technology, The Fingerprint image preprocessing algorithms are programmed into COM, which deployed on the internet information server. The system's design and structure are proposed, and the key points are discussed. The prototype system of identity authentication based on Fingerprint have been successfully tested and evaluated on our university's distant education applications in an internet environment.
Modeling, Production, and Testing of an Echogenic Needle for Ultrasound-Guided Nerve Blocks.
Bigeleisen, Paul E; Hess, Aaron; Zhu, Richard; Krediet, Annelot
2016-06-01
We have designed, produced, and tested an echogenic needle based on a sawtooth pattern where the height of the tooth was 1.25 times the wavelength of the ultrasound transducer. A numeric solution to the time-independent wave equation (Helmholtz equation) was used to create a model of backscattering from a needle. A 21-gauge stainless steel prototype was manufactured and tested in a water bath. Backscattering from the needle was compared to theoretical predications from our model. Based on these results, an 18-gauge prototype needle was fabricated from stainless steel and tested in a pig cadaver. This needle was compared to a commercial 18-gauge echogenic needle (Pajunk Medical Systems, Tucker, GA) by measuring the brightness of the needle relative to the background of sonograms of a needle in a pig cadaver. The backscattering from the 21-gauge prototype needle reproduced the qualitative predictions of our model. At 30° and 45° of insonation, our prototype performed equivalently to the Pajunk needle. At 60°, our prototype was significantly brighter than the Pajunk needle (P = .017). In conclusion, we chose a model for the design of an echogenic needle and modeled it on the basis of a solution to the Helmholtz equation. A prototype needle was tested in a water bath and compared to the model prediction. After verification of our model, we designed an 18-gauge needle, which performed better than an existing echogenic needle (Pajunk) at 60° of insonation. Our needle will require further testing in human trials. © 2016 by the American Institute of Ultrasound in Medicine.
Design and Testing of a Prototype Lunar or Planetary Surface Landing Research Vehicle (LPSLRV)
NASA Technical Reports Server (NTRS)
Murphy, Gloria A.
2010-01-01
This handbook describes a two-semester senior design course sponsored by the NASA Office of Education, the Exploration Systems Mission Directorate (ESMD), and the NASA Space Grant Consortium. The course was developed and implemented by the Mechanical and Aerospace Engineering Department (MAE) at Utah State University. The course final outcome is a packaged senior design course that can be readily incorporated into the instructional curriculum at universities across the country. The course materials adhere to the standards of the Accreditation Board for Engineering and Technology (ABET), and is constructed to be relevant to key research areas identified by ESMD. The design project challenged students to apply systems engineering concepts to define research and training requirements for a terrestrial-based lunar landing simulator. This project developed a flying prototype for a Lunar or Planetary Surface Landing Research Vehicle (LPSRV). Per NASA specifications the concept accounts for reduced lunar gravity, and allows the terminal stage of lunar descent to be flown either by remote pilot or autonomously. This free-flying platform was designed to be sufficiently-flexible to allow both sensor evaluation and pilot training. This handbook outlines the course materials, describes the systems engineering processes developed to facilitate design fabrication, integration, and testing. This handbook presents sufficient details of the final design configuration to allow an independent group to reproduce the design. The design evolution and details regarding the verification testing used to characterize the system are presented in a separate project final design report. Details of the experimental apparatus used for system characterization may be found in Appendix F, G, and I of that report. A brief summary of the ground testing and systems verification is also included in Appendix A of this report. Details of the flight tests will be documented in a separate flight test report. This flight test report serves as a complement to the course handbook presented here. This project was extremely ambitious, and achieving all of the design and test objectives was a daunting task. The schedule ran slightly longer than a single academic year with the complete design closure not occurring until early April. Integration and verification testing spilled over into late May and the first flight did not occur until mid to late June. The academic year at Utah State University ended on May 8, 2010. Following the end of the academic year, testing and integration was performed by the faculty advisor, paid research assistants, and volunteer student help
Development and Testing of the AMEGO Silicon Tracker System
NASA Astrophysics Data System (ADS)
Griffin, Sean; Amego Team
2018-01-01
The All-sky Medium Energy Gamma-ray Observatory (AMEGO) is a probe-class mission in consideration for the 2020 decadal review designed to operate at energies from ˜ 200 keV to > 10 GeV. Operating a detector in this energy regime is challenging due to the crossover in the interaction cross-section for Compton scattering and pair production. AMEGO is made of four major subsystems: a plastic anticoincidence detector for rejecting cosmic-ray events, a silicon tracker for measuring the energies of Compton scattered electrons and pair-production products, a CZT calorimeter for measuring the energy and location of Compton scattered photons, and a CsI calorimeter for measuring the energy of the pair-production products at high energies. The tracker comprises layers of dual-sided silicon strip detectors which provide energy and localization information for Compton scattering and pair-production events. A prototype tracker system is under development at GSFC; in this contribution we provide details on the verification, packaging, and testing of the prototype tracker, as well as present plans for the development of the front-end electronics, beam tests, and a balloon flight.
NASA Astrophysics Data System (ADS)
Sakamoto, Yasuaki; Kashiwagi, Takayuki; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo
This paper describes the design considerations and experimental verification of an LIM rail brake armature. In order to generate power and maximize the braking force density despite the limited area between the armature and the rail and the limited space available for installation, we studied a design method that is suitable for designing an LIM rail brake armature; we considered adoption of a ring winding structure. To examine the validity of the proposed design method, we developed a prototype ring winding armature for the rail brakes and examined its electromagnetic characteristics in a dynamic test system with roller rigs. By repeating various tests, we confirmed that unnecessary magnetic field components, which were expected to be present under high speed running condition or when a ring winding armature was used, were not present. Further, the necessary magnetic field component and braking force attained the desired values. These studies have helped us to develop a basic design method that is suitable for designing the LIM rail brake armatures.
Formally Verified Practical Algorithms for Recovery from Loss of Separation
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Munoz, Caesar A.
2009-01-01
In this paper, we develop and formally verify practical algorithms for recovery from loss of separation. The formal verification is performed in the context of a criteria-based framework. This framework provides rigorous definitions of horizontal and vertical maneuver correctness that guarantee divergence and achieve horizontal and vertical separation. The algorithms are shown to be independently correct, that is, separation is achieved when only one aircraft maneuvers, and implicitly coordinated, that is, separation is also achieved when both aircraft maneuver. In this paper we improve the horizontal criteria over our previous work. An important benefit of the criteria approach is that different aircraft can execute different algorithms and implicit coordination will still be achieved, as long as they all meet the explicit criteria of the framework. Towards this end we have sought to make the criteria as general as possible. The framework presented in this paper has been formalized and mechanically verified in the Prototype Verification System (PVS).
Opto-mechanical design of an image slicer for the GRIS spectrograph at GREGOR
NASA Astrophysics Data System (ADS)
Vega Reyes, N.; Esteves, M. A.; Sánchez-Capuchino, J.; Salaun, Y.; López, R. L.; Gracia, F.; Estrada Herrera, P.; Grivel, C.; Vaz Cedillo, J. J.; Collados, M.
2016-07-01
An image slicer has been proposed for the Integral Field Spectrograph [1] of the 4-m European Solar Telescope (EST) [2] The image slicer for EST is called MuSICa (Multi-Slit Image slicer based on collimator-Camera) [3] and it is a telecentric system with diffraction limited optical quality offering the possibility to obtain high resolution Integral Field Solar Spectroscopy or Spectro-polarimetry by coupling a polarimeter after the generated slit (or slits). Considering the technical complexity of the proposed Integral Field Unit (IFU), a prototype has been designed for the GRIS spectrograph at GREGOR telescope at Teide Observatory (Tenerife), composed by the optical elements of the image slicer itself, a scanning system (to cover a larger field of view with sequential adjacent measurements) and an appropriate re-imaging system. All these subsystems are placed in a bench, specially designed to facilitate their alignment, integration and verification, and their easy installation in front of the spectrograph. This communication describes the opto-mechanical solution adopted to upgrade GRIS while ensuring repeatability between the observational modes, IFU and long-slit. Results from several tests which have been performed to validate the opto-mechanical prototypes are also presented.
Flight Testing ALHAT Precision Landing Technologies Integrated Onboard the Morpheus Rocket Vehicle
NASA Technical Reports Server (NTRS)
Carson, John M. III; Robertson, Edward A.; Trawny, Nikolas; Amzajerdian, Farzin
2015-01-01
A suite of prototype sensors, software, and avionics developed within the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project were terrestrially demonstrated onboard the NASA Morpheus rocket-propelled Vertical Testbed (VTB) in 2014. The sensors included a LIDAR-based Hazard Detection System (HDS), a Navigation Doppler LIDAR (NDL) velocimeter, and a long-range Laser Altimeter (LAlt) that enable autonomous and safe precision landing of robotic or human vehicles on solid solar system bodies under varying terrain lighting conditions. The flight test campaign with the Morpheus vehicle involved a detailed integration and functional verification process, followed by tether testing and six successful free flights, including one night flight. The ALHAT sensor measurements were integrated into a common navigation solution through a specialized ALHAT Navigation filter that was employed in closed-loop flight testing within the Morpheus Guidance, Navigation and Control (GN&C) subsystem. Flight testing on Morpheus utilized ALHAT for safe landing site identification and ranking, followed by precise surface-relative navigation to the selected landing site. The successful autonomous, closed-loop flight demonstrations of the prototype ALHAT system have laid the foundation for the infusion of safe, precision landing capabilities into future planetary exploration missions.
Prompt Gamma Imaging for In Vivo Range Verification of Pencil Beam Scanning Proton Therapy.
Xie, Yunhe; Bentefour, El Hassane; Janssens, Guillaume; Smeets, Julien; Vander Stappen, François; Hotoiu, Lucian; Yin, Lingshu; Dolney, Derek; Avery, Stephen; O'Grady, Fionnbarr; Prieels, Damien; McDonough, James; Solberg, Timothy D; Lustig, Robert A; Lin, Alexander; Teo, Boon-Keng K
2017-09-01
To report the first clinical results and value assessment of prompt gamma imaging for in vivo proton range verification in pencil beam scanning mode. A stand-alone, trolley-mounted, prototype prompt gamma camera utilizing a knife-edge slit collimator design was used to record the prompt gamma signal emitted along the proton tracks during delivery of proton therapy for a brain cancer patient. The recorded prompt gamma depth detection profiles of individual pencil beam spots were compared with the expected profiles simulated from the treatment plan. In 6 treatment fractions recorded over 3 weeks, the mean (± standard deviation) range shifts aggregated over all spots in 9 energy layers were -0.8 ± 1.3 mm for the lateral field, 1.7 ± 0.7 mm for the right-superior-oblique field, and -0.4 ± 0.9 mm for the vertex field. This study demonstrates the feasibility and illustrates the distinctive benefits of prompt gamma imaging in pencil beam scanning treatment mode. Accuracy in range verification was found in this first clinical case to be better than the range uncertainty margin applied in the treatment plan. These first results lay the foundation for additional work toward tighter integration of the system for in vivo proton range verification and quantification of range uncertainties. Copyright © 2017 Elsevier Inc. All rights reserved.
The DPACS project at the University of Trieste.
Fioravanti, F; Inchingolo, P; Valenzin, G; Dalla Palma, L
1997-01-01
The DPACS project (Data and Picture Archiving and Communication System) was undertaken at the University of Trieste by the Institute of Radiology and the DEEI (Dipartimento di Elettrotecnica, Elettronica ed Informatica), in collaboration with the CRSTBS (Centro Ricerche e Studi Tecnologie Biomediche Sanitarie) of the Area Science Park and the Azienda Ospedaliera of Trieste. The main objective of this project is to create an open system for the management of clinical data and images and for the integration of health care services. The first phase is oriented toward finding an implementation strategy for the creation of a prototype DPACS system, to serve as a starting point for the realization of a distributed structure for the extension of the service, firstly to the entire structure of the Cattinara Hospital and subsequently to all the Public Health units in Trieste. After local testing, the service will finally be expanded to a wider geographical level. The intensive computerization of the Institute of Radiology furnished the most favourable environment for the verification of the prototype, as the service provided by the existing RIS (Radiology Information System) and PACS (Picture and Archiving Communication System) has long been consolidated. One of the main goals of the project, in particular, is to replace the old, by now obsolete, PACS with the DPACS services.
Fiber Lasers and Amplifiers for Space-based Science and Exploration
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Coyle, Barry; Numata, Kenji; Camp, Jordan; Abshire, James B.; Allan, Graham R.; Li, Steven X.;
2012-01-01
We present current and near-term uses of high-power fiber lasers and amplifiers for NASA science and spacecraft applications. Fiber lasers and amplifiers offer numerous advantages for the deployment of instruments on exploration and science remote sensing satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. NASA fiber-laser-based instruments include laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pulsed or pseudo-noise (PN) code laser ranging system in the near infrared (NIR) wavelength band. The associated fiber transmitters include high-power erbium, ytterbium, and neodymium systems and a fiber laser pumped optical parametric oscillator. We discuss recent experimental progress on these systems and instrument prototypes for ongoing development efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Jae-ik; Yoo, SeungHoon; Cho, Sungho
Purpose: The significant issue of particle therapy such as proton and carbon ion was a accurate dose delivery from beam line to patient. For designing the complex delivery system, Monte Carlo simulation can be used for the simulation of various physical interaction in scatters and filters. In this report, we present the development of Monte Carlo simulation platform to help design the prototype of particle therapy nozzle and performed the Monte Carlo simulation using Geant4. Also we show the prototype design of particle therapy beam nozzle for Korea Heavy Ion Medical Accelerator (KHIMA) project in Korea Institute of Radiological andmore » Medical Science(KIRAMS) at Republic of Korea. Methods: We developed a simulation platform for particle therapy beam nozzle using Geant4. In this platform, the prototype nozzle design of Scanning system for carbon was simply designed. For comparison with theoretic beam optics, the beam profile on lateral distribution at isocenter is compared with Mont Carlo simulation result. From the result of this analysis, we can expected the beam spot property of KHIMA system and implement the spot size optimization for our spot scanning system. Results: For characteristics study of scanning system, various combination of the spot size from accerlator with ridge filter and beam monitor was tested as simple design for KHIMA dose delivery system. Conclusion: In this report, we presented the part of simulation platform and the characteristics study. This study is now on-going in order to develop the simulation platform including the beam nozzle and the dose verification tool with treatment planning system. This will be presented as soon as it is become available.« less
Spacecraft Data Simulator for the test of level zero processing systems
NASA Technical Reports Server (NTRS)
Shi, Jeff; Gordon, Julie; Mirchandani, Chandru; Nguyen, Diem
1994-01-01
The Microelectronic Systems Branch (MSB) at Goddard Space Flight Center (GSFC) has developed a Spacecraft Data Simulator (SDS) to support the development, test, and verification of prototype and production Level Zero Processing (LZP) systems. Based on a disk array system, the SDS is capable of generating large test data sets up to 5 Gigabytes and outputting serial test data at rates up to 80 Mbps. The SDS supports data formats including NASA Communication (Nascom) blocks, Consultative Committee for Space Data System (CCSDS) Version 1 & 2 frames and packets, and all the Advanced Orbiting Systems (AOS) services. The capability to simulate both sequential and non-sequential time-ordered downlink data streams with errors and gaps is crucial to test LZP systems. This paper describes the system architecture, hardware and software designs, and test data designs. Examples of test data designs are included to illustrate the application of the SDS.
NASA Technical Reports Server (NTRS)
Oesch, Christopher; Dick, Brandon; Rupp, Timothy
2015-01-01
The development of highly complex and advanced actuation systems to meet customer demands has accelerated as the use of real-time testing technology expands into multiple markets at Moog. Systems developed for the autonomous docking of human rated spacecraft to the International Space Station (ISS), envelope multi-operational characteristics which place unique constraints on an actuation system. Real-time testing hardware has been used as a platform for incremental testing and development for the linear actuation system which controls initial capture and docking for vehicles visiting the ISS. This presentation will outline the role of dSPACE hardware as a platform for rapid control-algorithm prototyping as well as an Electromechanical Actuator (EMA) system dynamic loading simulator, both conducted at Moog to develop the safety critical Linear Actuator System (LAS) of the NASA Docking System (NDS).
An Educational Laboratory for Digital Control and Rapid Prototyping of Power Electronic Circuits
ERIC Educational Resources Information Center
Choi, Sanghun; Saeedifard, M.
2012-01-01
This paper describes a new educational power electronics laboratory that was developed primarily to reinforce experimentally the fundamental concepts presented in a power electronics course. The developed laboratory combines theoretical design, simulation studies, digital control, fabrication, and verification of power-electronic circuits based on…
LANL OPERATING EXPERIENCE WITH THE WAND AND HERCULES PROTOTYPE SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. M. GRUETZMACHER; C. L. FOXX; S. C. MYERS
2000-09-01
The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) prototype systems have been operating at Los Alamos National Laboratory's (LANL's) Solid Waste Operation's (SWO'S) non-destructive assay (NDA) building since 1997 and 1998, respectively. These systems are the cornerstone of the verification program for low-density Green is Clean (GIC) waste at the Laboratory. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAS) that has been actively segregated as clean (i.e., nonradioactive) through the use of waste generator acceptable knowledge (AK). The use of this methodology alters LANL's pastmore » practice of disposing of all room trash generated in nuclear facilities in radioactive waste landfills. Waste that is verified clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from radioactive material handling areas at Los Alamos might be free of contamination. This approach avoids the high cost of disposal of clean waste at a radioactive waste landfill. It also reduces consumption of precious space in the radioactive waste landfill where disposal of this waste provides no benefit to the public or the environment. Preserving low level waste (LLW) disposal capacity for truly radioactive waste is critical in this era when expanding existing radioactive waste landfills or permitting new ones is resisted by regulators and stakeholders. This paper describes the operating experience with the WAND and HERCULES since they began operation at SWO. Waste for verification by the WAND system has been limited so far to waste from the Plutonium Facility and the Solid Waste Operations Facility. A total of461 ft3 (13.1 m3) of low-density shredded waste and paper have been verified clean by the WAND system. The HERCULES system has been used to verify waste from four Laboratory facilities. These are the Solid Waste Operations Facility, the TA-48 Chemistry Facility, the Shops Facility, and the Environmental Facility. A total of 3150 ft3 (89.3 m3) of low-density waste has been verified clean by the HERCULES system.« less
Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira
2015-12-01
The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Miller, Richard B.
1992-01-01
The development and operations costs of the Space IR Telescope Facility (SIRTF) are discussed in the light of minimizing total outlays and optimizing efficiency. The development phase cannot extend into the post-launch segment which is planned to only support system verification and calibration followed by operations with a 70-percent efficiency goal. The importance of reducing the ground-support staff is demonstrated, and the value of the highly sensitive observations to the general astronomical community is described. The Failure Protection Algorithm for the SIRTF is designed for the 5-yr lifetime and the continuous venting of cryogen, and a science driven ground/operations system is described. Attention is given to balancing cost and performance, prototyping during the development phase, incremental development, the utilization of standards, and the integration of ground system/operations with flight system integration and test.
Experimental demonstration of three-dimensional broadband underwater acoustic carpet cloak
NASA Astrophysics Data System (ADS)
Bi, Yafeng; Jia, Han; Sun, Zhaoyong; Yang, Yuzhen; Zhao, Han; Yang, Jun
2018-05-01
We present the design, architecture, and detailed performance of a three-dimensional (3D) underwater acoustic carpet cloak (UACC). The proposed system of the 3D UACC is an octahedral pyramid, which is composed of periodical steel strips. This underwater acoustic device, placed over the target to hide, is able to manipulate the scattered wavefront to mimic a reflecting plane. The effectiveness of the prototype is experimentally demonstrated in an anechoic tank. The measured acoustic pressure distributions show that the 3D UACC can work in all directions in a wide frequency range. This experimental verification of 3D device paves the way for guidelines on future practical applications.
3D medical volume reconstruction using web services.
Kooper, Rob; Shirk, Andrew; Lee, Sang-Chul; Lin, Amy; Folberg, Robert; Bajcsy, Peter
2008-04-01
We address the problem of 3D medical volume reconstruction using web services. The use of proposed web services is motivated by the fact that the problem of 3D medical volume reconstruction requires significant computer resources and human expertise in medical and computer science areas. Web services are implemented as an additional layer to a dataflow framework called data to knowledge. In the collaboration between UIC and NCSA, pre-processed input images at NCSA are made accessible to medical collaborators for registration. Every time UIC medical collaborators inspected images and selected corresponding features for registration, the web service at NCSA is contacted and the registration processing query is executed using the image to knowledge library of registration methods. Co-registered frames are returned for verification by medical collaborators in a new window. In this paper, we present 3D volume reconstruction problem requirements and the architecture of the developed prototype system at http://isda.ncsa.uiuc.edu/MedVolume. We also explain the tradeoffs of our system design and provide experimental data to support our system implementation. The prototype system has been used for multiple 3D volume reconstructions of blood vessels and vasculogenic mimicry patterns in histological sections of uveal melanoma studied by fluorescent confocal laser scanning microscope.
A real-time navigation monitoring expert system for the Space Shuttle Mission Control Center
NASA Technical Reports Server (NTRS)
Wang, Lui; Fletcher, Malise
1993-01-01
The ONAV (Onboard Navigation) Expert System has been developed as a real time console assistant for use by ONAV flight controllers in the Mission Control Center at the Johnson Space Center. This expert knowledge based system is used to monitor the Space Shuttle onboard navigation system, detect faults, and advise flight operations personnel. This application is the first knowledge-based system to use both telemetry and trajectory data from the Mission Operations Computer (MOC). To arrive at this stage, from a prototype to real world application, the ONAV project has had to deal with not only AI issues but operating environment issues. The AI issues included the maturity of AI languages and the debugging tools, verification, and availability, stability and size of the expert pool. The environmental issues included real time data acquisition, hardware suitability, and how to achieve acceptance by users and management.
NASA Astrophysics Data System (ADS)
Magazzù, G.; Borgese, G.; Costantino, N.; Fanucci, L.; Incandela, J.; Saponara, S.
2013-02-01
In many research fields as high energy physics (HEP), astrophysics, nuclear medicine or space engineering with harsh operating conditions, the use of fast and flexible digital communication protocols is becoming more and more important. The possibility to have a smart and tested top-down design flow for the design of a new protocol for control/readout of front-end electronics is very useful. To this aim, and to reduce development time, costs and risks, this paper describes an innovative design/verification flow applied as example case study to a new communication protocol called FF-LYNX. After the description of the main FF-LYNX features, the paper presents: the definition of a parametric SystemC-based Integrated Simulation Environment (ISE) for high-level protocol definition and validation; the set up of figure of merits to drive the design space exploration; the use of ISE for early analysis of the achievable performances when adopting the new communication protocol and its interfaces for a new (or upgraded) physics experiment; the design of VHDL IP cores for the TX and RX protocol interfaces; their implementation on a FPGA-based emulator for functional verification and finally the modification of the FPGA-based emulator for testing the ASIC chipset which implements the rad-tolerant protocol interfaces. For every step, significant results will be shown to underline the usefulness of this design and verification approach that can be applied to any new digital protocol development for smart detectors in physics experiments.
NASA Astrophysics Data System (ADS)
Culp, Robert D.; McQuerry, James P.
1991-07-01
The present conference on guidance and control encompasses advances in guidance, navigation, and control, storyboard displays, approaches to space-borne pointing control, international space programs, recent experiences with systems, and issues regarding navigation in the low-earth-orbit space environment. Specific issues addressed include a scalable architecture for an operational spaceborne autonavigation system, the mitigation of multipath error in GPS-based attitude determination, microgravity flight testing of a laboratory robot, and the application of neural networks. Other issues addressed include image navigation with second-generation Meteosat, Magellan star-scanner experiences, high-precision control systems for telescopes and interferometers, gravitational effects on low-earth orbiters, experimental verification of nanometer-level optical pathlengths, and a flight telerobotic servicer prototype simulator. (For individual items see A93-15577 to A93-15613)
Heat Pipes and Heat Rejection Component Testing at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Sanzi, James L.; Jaworske, Donald A.
2012-01-01
Titanium-water heat pipes are being evaluated for use in the heat rejection system for space fission power systems. The heat rejection syst em currently comprises heat pipes with a graphite saddle and a composite fin. The heat input is a pumped water loop from the cooling of the power conversion system. The National Aeronautics and Space Administration has been life testing titanium-water heat pipes as well as eval uating several heat pipe radiator designs. The testing includes thermal modeling and verification of model, material compatibility, frozen startup of heat pipe radiators, and simulating low-gravity environments. Future thermal testing of titanium-water heat pipes includes low-g ravity testing of thermosyphons, radiation testing of heat pipes and fin materials, water pump performance testing, as well as Small Busine ss Innovation Research funded deliverable prototype radiator panels.
The WEBD project: a research of new methodologies for a distant-learning 3D system prototype.
Cemenasco, A F; Bianchi, C C; Tornincasa, S; Bianchi, S D
2004-11-01
To create and to spread a new interactive multimedia instrument, based upon virtual reality technologies, that allows both the running simulation of machines and equipment and the reproduction via Web of complex three-dimensional (3D) anatomical models such as the skull. There were two main aspects of the project, one of design engineering and the other biomedical engineering, for the creation of "artificial" and anatomical objects. The former were made with 3D Studio Max R4 by Autodesk, San Rafael, CA, while the latter were created starting from real bones scanned with a CT system or a surface scanner and elaborated with different programs (3D Studio Max R4, Scenebuilder by Viewpoint, New York, NY and Spinfire by Actify, San Francisco, CA). The 3D models were to be integrated into web modules and had to respect file limits while preserving a sufficient definition. Two systems of evaluation were used, a questionnaire on a selected sample and an external evaluation by a different university. The Viewpoint format offers the best interactivity and size reduction (up to 96% from the original 3D model). The created modules included production of radiological images, rapid prototyping, and anatomy. The complete "3D Distant Learning Prototype" is available at www.webd.etsii.upm.es. The software currently available permits the construction of interactive modules. The verification on the selected sample and the evaluation by the University of Naples show that the structure is well organized and that the integration of the 3D models meets the requirements.
A Low Temperature, Reverse Brayton Cryocooler
NASA Technical Reports Server (NTRS)
Swift, Walter L.
2001-01-01
This status report covers the fifty-second month of a project to develop a low temperature, reverse-Brayton cryocooler using turbomachines. This program consists of a Basic Phase and four Option Phases. Each of the Phases is directed to a particular load/temperature combination. The technology and fundamental design features of the components used in these systems are related but differ somewhat in size, speed, and some details in physical geometry. Each of the Phases can be carried out independently of the others, except that all of the Phases rely on the technology developed and demonstrated during the Basic Phase. The Basic Phase includes the demonstration of a critical component and the production of a prototype model cryocooler. The critical technology demonstration will be the test of a small turboalternator over a range of conditions at temperatures down to 6 K. These tests will provide design verification data useful for the further design of the other coolers. The prototype model cooler will be designed to provide at least 5 mW of cooling at 6 K. The heat rejection temperature for this requirement is 220 K or greater. The input power to the system at these conditions is to be less than 60 W.
Analysis of dynamics and fit of diving suits
NASA Astrophysics Data System (ADS)
Mahnic Naglic, M.; Petrak, S.; Gersak, J.; Rolich, T.
2017-10-01
Paper presents research on dynamical behaviour and fit analysis of customised diving suits. Diving suits models are developed using the 3D flattening method, which enables the construction of a garment model directly on the 3D computer body model and separation of discrete 3D surfaces as well as transformation into 2D cutting parts. 3D body scanning of male and female test subjects was performed with the purpose of body measurements analysis in static and dynamic postures and processed body models were used for construction and simulation of diving suits prototypes. All necessary parameters, for 3D simulation were applied on obtained cutting parts, as well as parameters values for mechanical properties of neoprene material. Developed computer diving suits prototypes were used for stretch analysis on areas relevant for body dimensional changes according to dynamic anthropometrics. Garment pressures against the body in static and dynamic conditions was also analysed. Garments patterns for which the computer prototype verification was conducted were used for real prototype production. Real prototypes were also used for stretch and pressure analysis in static and dynamic conditions. Based on the obtained results, correlation analysis between body changes in dynamic positions and dynamic stress, determined on computer and real prototypes, was performed.
NEXT Thruster Component Verification Testing
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Sovey, James S.
2007-01-01
Component testing is a critical part of thruster life validation activities under NASA s Evolutionary Xenon Thruster (NEXT) project testing. The high voltage propellant isolators were selected for design verification testing. Even though they are based on a heritage design, design changes were made because the isolators will be operated under different environmental conditions including temperature, voltage, and pressure. The life test of two NEXT isolators was therefore initiated and has accumulated more than 10,000 hr of operation. Measurements to date indicate only a negligibly small increase in leakage current. The cathode heaters were also selected for verification testing. The technology to fabricate these heaters, developed for the International Space Station plasma contactor hollow cathode assembly, was transferred to Aerojet for the fabrication of the NEXT prototype model ion thrusters. Testing the contractor-fabricated heaters is necessary to validate fabrication processes for high reliability heaters. This paper documents the status of the propellant isolator and cathode heater tests.
NASA Technical Reports Server (NTRS)
Owre, Sam; Shankar, Natarajan
1999-01-01
A specification language is a medium for expressing what is computed rather than how it is computed. Specification languages share some features with programming languages but are also different in several important ways. For our purpose, a specification language is a logic within which the behavior of computational systems can be formalized. Although a specification can be used to simulate the behavior of such systems, we mainly use specifications to state and prove system properties with mechanical assistance. We present the formal semantics of the specification language of SRI's Prototype Verification System (PVS). This specification language is based on the simply typed lambda calculus. The novelty in PVS is that it contains very expressive language features whose static analysis (e.g., typechecking) requires the assistance of a theorem prover. The formal semantics illuminates several of the design considerations underlying PVS, the interaction between theorem proving and typechecking.
Practice of Regulatory Science (Development of Medical Devices).
Niimi, Shingo
2017-01-01
Prototypes of medical devices are made in accordance with the needs of clinical practice, and for systems required during the initial process of medical device development for new surgical practices. Verification of whether these prototypes produce the intended performance specifications is conducted using basic tests such as mechanical and animal tests. The prototypes are then improved and modified until satisfactory results are obtained. After a prototype passes through a clinical trial process similar to that for new drugs, application for approval is made. In the approval application process, medical devices are divided into new, improved, and generic types. Reviewers judge the validity of intended use, indications, operation procedures, and precautions, and in addition evaluate the balance between risk and benefit in terms of efficacy and safety. Other characteristics of medical devices are the need for the user to attain proficiency in usage techniques to ensure efficacy and safety, and the existence of a variety of medical devices for which assessment strategies differ, including differences in impact on the body in cases in which a physical burden to the body or failure of a medical device develops. Regulatory science of medical devices involves prediction, judgment, and evaluation of efficacy, safety, and quality, from which data result which can become indices in the development stages from design to application for approval. A reduction in the number of animals used for testing, improvement in efficiency, reduction of the necessity for clinical trials, etc. are expected through rational setting of evaluation items.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smartt, Heidi A.; Romero, Juan A.; Custer, Joyce Olsen
Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administrationmore » (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.« less
NASA Technical Reports Server (NTRS)
Bordano, Aldo; Uhde-Lacovara, JO; Devall, Ray; Partin, Charles; Sugano, Jeff; Doane, Kent; Compton, Jim
1993-01-01
The Navigation, Control and Aeronautics Division (NCAD) at NASA-JSC is exploring ways of producing Guidance, Navigation and Control (GN&C) flight software faster, better, and cheaper. To achieve these goals NCAD established two hardware/software facilities that take an avionics design project from initial inception through high fidelity real-time hardware-in-the-loop testing. Commercially available software products are used to develop the GN&C algorithms in block diagram form and then automatically generate source code from these diagrams. A high fidelity real-time hardware-in-the-loop laboratory provides users with the capability to analyze mass memory usage within the targeted flight computer, verify hardware interfaces, conduct system level verification, performance, acceptance testing, as well as mission verification using reconfigurable and mission unique data. To evaluate these concepts and tools, NCAD embarked on a project to build a real-time 6 DOF simulation of the Soyuz Assured Crew Return Vehicle flight software. To date, a productivity increase of 185 percent has been seen over traditional NASA methods for developing flight software.
Structural Similitude and Scaling Laws
NASA Technical Reports Server (NTRS)
Simitses, George J.
1998-01-01
Aircraft and spacecraft comprise the class of aerospace structures that require efficiency and wisdom in design, sophistication and accuracy in analysis and numerous and careful experimental evaluations of components and prototype, in order to achieve the necessary system reliability, performance and safety. Preliminary and/or concept design entails the assemblage of system mission requirements, system expected performance and identification of components and their connections as well as of manufacturing and system assembly techniques. This is accomplished through experience based on previous similar designs, and through the possible use of models to simulate the entire system characteristics. Detail design is heavily dependent on information and concepts derived from the previous steps. This information identifies critical design areas which need sophisticated analyses, and design and redesign procedures to achieve the expected component performance. This step may require several independent analysis models, which, in many instances, require component testing. The last step in the design process, before going to production, is the verification of the design. This step necessitates the production of large components and prototypes in order to test component and system analytical predictions and verify strength and performance requirements under the worst loading conditions that the system is expected to encounter in service. Clearly then, full-scale testing is in many cases necessary and always very expensive. In the aircraft industry, in addition to full-scale tests, certification and safety necessitate large component static and dynamic testing. Such tests are extremely difficult, time consuming and definitely absolutely necessary. Clearly, one should not expect that prototype testing will be totally eliminated in the aircraft industry. It is hoped, though, that we can reduce full-scale testing to a minimum. Full-scale large component testing is necessary in other industries as well, Ship building, automobile and railway car construction all rely heavily on testing. Regardless of the application, a scaled-down (by a large factor) model (scale model) which closely represents the structural behavior of the full-scale system (prototype) can prove to be an extremely beneficial tool. This possible development must be based on the existence of certain structural parameters that control the behavior of a structural system when acted upon by static and/or dynamic loads. If such structural parameters exist, a scaled-down replica can be built, which will duplicate the response of the full-scale system. The two systems are then said to be structurally similar. The term, then, that best describes this similarity is structural similitude. Similarity of systems requires that the relevant system parameters be identical and these systems be governed by a unique set of characteristic equations. Thus, if a relation or equation of variables is written for a system, it is valid for all systems which are similar to it. Each variable in a model is proportional to the corresponding variable of the prototype. This ratio, which plays an essential role in predicting the relationship between the model and its prototype, is called the scale factor.
Verification of Commercial Motor Performance for WEAVE at the William Herschel Telescope
NASA Astrophysics Data System (ADS)
Gilbert, J.; Dalton, G.; Lewis, I.
2016-10-01
WEAVE is a 1000-fiber multi-object spectroscopic facility for the 4.2 m William Herschel Telescope. It will feature a double-headed pick-and-place fiber positioning robot comprising commercially available robotic axes. This paper presents results on the performance of these axes, obtained by testing a prototype system in the laboratory. Positioning accuracy is found to be better than the manufacturer's published values for the tested cases, indicating that the requirement for a maximum positioning error of 8.0 microns is achievable. Field reconfiguration times well within the planned 60 minute observation window are shown to be likely when individual axis movements are combined in an efficient way.
The environment workbench: A design tool for Space Station Freedom
NASA Technical Reports Server (NTRS)
Jongeward, Gary A.; Kuharski, Robert A.; Rankin, Thomas V.; Wilcox, Katherine G.; Roche, James C.
1991-01-01
The environment workbench (EWB) is being developed for NASA by S-CUBED to provide a standard tool that can be used by the Space Station Freedom (SSF) design and user community for requirements verification. The desktop tool will predict and analyze the interactions of SSF with its natural and self-generated environments. A brief review of the EWB design and capabilities is presented. Calculations using a prototype EWB of the on-orbit floating potentials and contaminant environment of SSF are also presented. Both the positive and negative grounding configurations for the solar arrays are examined to demonstrate the capability of the EWB to provide quick estimates of environments, interactions, and system effects.
VEG-01: Veggie Hardware Verification Testing
NASA Technical Reports Server (NTRS)
Massa, Gioia; Newsham, Gary; Hummerick, Mary; Morrow, Robert; Wheeler, Raymond
2013-01-01
The Veggie plant/vegetable production system is scheduled to fly on ISS at the end of2013. Since much of the technology associated with Veggie has not been previously tested in microgravity, a hardware validation flight was initiated. This test will allow data to be collected about Veggie hardware functionality on ISS, allow crew interactions to be vetted for future improvements, validate the ability of the hardware to grow and sustain plants, and collect data that will be helpful to future Veggie investigators as they develop their payloads. Additionally, food safety data on the lettuce plants grown will be collected to help support the development of a pathway for the crew to safely consume produce grown on orbit. Significant background research has been performed on the Veggie plant growth system, with early tests focusing on the development of the rooting pillow concept, and the selection of fertilizer, rooting medium and plant species. More recent testing has been conducted to integrate the pillow concept into the Veggie hardware and to ensure that adequate water is provided throughout the growth cycle. Seed sanitation protocols have been established for flight, and hardware sanitation between experiments has been studied. Methods for shipping and storage of rooting pillows and the development of crew procedures and crew training videos for plant activities on-orbit have been established. Science verification testing was conducted and lettuce plants were successfully grown in prototype Veggie hardware, microbial samples were taken, plant were harvested, frozen, stored and later analyzed for microbial growth, nutrients, and A TP levels. An additional verification test, prior to the final payload verification testing, is desired to demonstrate similar growth in the flight hardware and also to test a second set of pillows containing zinnia seeds. Issues with root mat water supply are being resolved, with final testing and flight scheduled for later in 2013.
Ham, Y.; Kerr, P.; Sitaraman, S.; ...
2016-05-05
Here, the need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called "difficult-to-access" areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into "difficult-to-access" areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reportedmore » the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17×17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly bunrup levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ham, Y.S.; Kerr, P.; Sitaraman, S.
The need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called 'difficult-to-access' areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into 'difficult-to-access' areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reported themore » successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17x17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly burnup levels. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ham, Y.; Kerr, P.; Sitaraman, S.
Here, the need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called "difficult-to-access" areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into "difficult-to-access" areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reportedmore » the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17×17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly bunrup levels.« less
NASA Astrophysics Data System (ADS)
Clift, Corey; Thomas, Andrew; Adamovics, John; Chang, Zheng; Das, Indra; Oldham, Mark
2010-03-01
Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE® read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (Sc, p), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT® film was used for independent verification. Measurements of Sc, p made with PRESAGE® and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2-3.6% for PRESAGE®, and 1.6-3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE®/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE®. The advantages of the PRESAGE® system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence.
Clift, Corey; Thomas, Andrew; Adamovics, John; Chang, Zheng; Das, Indra; Oldham, Mark
2010-01-01
Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE® read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (Sc, p), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT® film was used for independent verification. Measurements of Sc, p made with PRESAGE® and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2–3.6% for PRESAGE®, and 1.6–3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE®/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE®. The advantages of the PRESAGE® system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence. PMID:20134082
Hyper-X Engine Design and Ground Test Program
NASA Technical Reports Server (NTRS)
Voland, R. T.; Rock, K. E.; Huebner, L. D.; Witte, D. W.; Fischer, K. E.; McClinton, C. R.
1998-01-01
The Hyper-X Program, NASA's focused hypersonic technology program jointly run by NASA Langley and Dryden, is designed to move hypersonic, air-breathing vehicle technology from the laboratory environment to the flight environment, the last stage preceding prototype development. The Hyper-X research vehicle will provide the first ever opportunity to obtain data on an airframe integrated supersonic combustion ramjet propulsion system in flight, providing the first flight validation of wind tunnel, numerical and analytical methods used for design of these vehicles. A substantial portion of the integrated vehicle/engine flowpath development, engine systems verification and validation and flight test risk reduction efforts are experimentally based, including vehicle aeropropulsive force and moment database generation for flight control law development, and integrated vehicle/engine performance validation. The Mach 7 engine flowpath development tests have been completed, and effort is now shifting to engine controls, systems and performance verification and validation tests, as well as, additional flight test risk reduction tests. The engine wind tunnel tests required for these efforts range from tests of partial width engines in both small and large scramjet test facilities, to tests of the full flight engine on a vehicle simulator and tests of a complete flight vehicle in the Langley 8-Ft. High Temperature Tunnel. These tests will begin in the summer of 1998 and continue through 1999. The first flight test is planned for early 2000.
AMFESYS: Modelling and diagnosis functions for operations support
NASA Technical Reports Server (NTRS)
Wheadon, J.
1993-01-01
Packetized telemetry, combined with low station coverage for close-earth satellites, may introduce new problems in presenting to the operator a clear picture of what the spacecraft is doing. A recent ESOC study has gone some way to show, by means of a practical demonstration, how the use of subsystem models combined with artificial intelligence techniques, within a real-time spacecraft control system (SCS), can help to overcome these problems. A spin-off from using these techniques can be an improvement in the reliability of the telemetry (TM) limit-checking function, as well as the telecommand verification function, of the Spacecraft Control systems (SCS). The problem and how it was addressed, including an overview of the 'AMF Expert System' prototype are described, and proposes further work which needs to be done to prove the concept. The Automatic Mirror Furnace is part of the payload of the European Retrievable Carrier (EURECA) spacecraft, which was launched in July 1992.
Fusing Quantitative Requirements Analysis with Model-based Systems Engineering
NASA Technical Reports Server (NTRS)
Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven
2006-01-01
A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.
Fiber lasers and amplifiers for science and exploration at NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Abshire, James; Allan, Graham R.; Stephen Mark
2005-01-01
We discuss present and near-term uses for high-power fiber lasers and amplifiers for NASA- specific applications including planetary topography and atmospheric spectroscopy. Fiber lasers and amplifiers offer numerous advantages for both near-term and future deployment of instruments on exploration and science remote sensing orbiting satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. We present experimental progress on both the fiber transmitters and instrument prototypes for ongoing development efforts. These near-infrared instruments are laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pseudo-noise (PN) code laser ranging system. The associated fiber transmitters include high-power erbium, ytterbium, neodymium and Raman fiber amplifiers. In addition, we will discuss near-term fiber laser and amplifier requirements and programs for NASA free space optical communications, planetary topography and atmospheric spectroscopy.
Heave-pitch-roll analysis and testing of air cushion landing systems
NASA Technical Reports Server (NTRS)
Boghani, A. B.; Captain, K. M.; Wormley, D. N.
1978-01-01
The analytical tools (analysis and computer simulation) needed to explain and predict the dynamic operation of air cushion landing systems (ACLS) is described. The following tasks were performed: the development of improved analytical models for the fan and the trunk; formulation of a heave pitch roll analysis for the complete ACLS; development of a general purpose computer simulation to evaluate landing and taxi performance of an ACLS equipped aircraft; and the verification and refinement of the analysis by comparison with test data obtained through lab testing of a prototype cushion. Demonstration of simulation capabilities through typical landing and taxi simulation of an ACLS aircraft are given. Initial results show that fan dynamics have a major effect on system performance. Comparison with lab test data (zero forward speed) indicates that the analysis can predict most of the key static and dynamic parameters (pressure, deflection, acceleration, etc.) within a margin of a 10 to 25 percent.
Bulk silica transmission grating made by reactive ion etching for NIR space instruments
NASA Astrophysics Data System (ADS)
Caillat, Amandine; Pascal, Sandrine; Tisserand, Stéphane; Dohlen, Kjetil; Grange, Robert; Sauget, Vincent; Gautier, Sophie
2014-07-01
A GRISM, made of a grating on a prism, allow combining image and spectroscopy of the same field of view with the same optical system and detector, thus simplify instrument concept. New GRISM designs impose technical specifications difficult to reach with classical grating manufacturing processes: large useful aperture (>100mm), low groove frequency (<30g/mm), small blaze angle (<3°) and, last but not least, line curvature allowing wavefront corrections. In addition, gratings are commonly made of resin which may not be suitable to withstand the extreme space environment. Therefore, in the frame of a R&D project financed by the CNES, SILIOS Technologies developed a new resin-free grating manufacturing process and realized a first 80mm diameter prototype optically tested at LAM. We present detailed specifications of this resin-free grating, the manufacturing process, optical setups and models for optical performance verification and very encouraging results obtained on the first 80mm diameter grating prototype: >80% transmitted efficiency, <30nm RMS wavefront error, groove shape and roughness very close to theory and uniform over the useful aperture.
New Assignment of Mass Values and Uncertainties to NIST Working Standards
Davis, Richard S.
1990-01-01
For some time it had been suspected that values assigned to NIST working standards of mass were some 0.17 mg/kg larger than mass values based on artifacts representing mass in the International System of Units (SI). This relatively small offset, now confirmed, has had minimal scientific or technological significance. The discrepancy was removed on January 1, 1990. We document the history of the discrepancy, the studies which allow its removal, and the methods in place to limit its effect and prevent its recurrence. For routine calibrations, we believe that our working standards now have a long-term stability of 0.033 mg/kg (3σ) with respect to the national prototype kilograms of the United States. We provisionally admit an additional uncertainty of 0.09 mg/kg (3σ), systematic to all NIST mass measurements, which represents the possible offset of our primary standards from standards maintained by the Bureau International des Poids et Mesures (BIPM). This systematic uncertainty may be significantly reduced after analysis of results from the 3rd verification of national prototype kilograms, which is now underway. PMID:28179759
Experimental study of the novel tuned mass damper with inerter which enables changes of inertance
NASA Astrophysics Data System (ADS)
Brzeski, P.; Lazarek, M.; Perlikowski, P.
2017-09-01
In this paper we present the experimental verification of the novel tuned mass damper which enables changes of inertance. Characteristic feature of the proposed device is the presence of special type of inerter. This inerter incorporates a continuously variable transmission that enables stepless changes of inertance. Thus, it enables to adjust the parameters of the damping device to the current forcing characteristic. In the paper we present and describe the experimental rig that consists of the massive main oscillator forced kinematically and the prototype of the investigated damper. We perform a series of dedicated experiments to characterize the device and asses its damping efficiency. Moreover, we perform numerical simulations using the simple mathematical model of investigated system. Comparing the numerical results and the experimental data we legitimize the model and demonstrate the capabilities of the investigated tuned mass damper. Presented results prove that the concept of the novel type of tuned mass damper can be realized and enable to confirm its main advantages. Investigated prototype device offers excellent damping efficiency in a wide range of forcing frequencies.
Long-term monitoring of marine gas leakage
NASA Astrophysics Data System (ADS)
Spickenbom, Kai; Faber, Eckhard; Poggenburg, Jürgen; Seeger, Christian; Furche, Markus
2010-05-01
The sequestration of CO2 in sub-seabed geological formations is one of the Carbon Capture and Storage (CCS) strategies currently under study. Although offshore operations are significantly more expensive than comparable onshore operations, the growing public resistance against onshore CCS projects makes sub-seabed storage a promising option. Even after a thorough review of the geological setting, there is always the possibility of leakage from the reservoir. As part of the EU-financed project CO2ReMoVe (Research, Monitoring, Verification), which aims to develop innovative research and technologies for monitoring and verification of carbon dioxide geological storage, we are working on the development of submarine long-term gas flow monitoring systems. The basic design of the monitoring system builds on our experience in volcano monitoring. Early prototypes were composed of a raft floating on the surface of a mud volcano, carrying sensors for CO2 flux and concentration, data storage and transmission, and power supply by battery-buffered solar panels. The system was modified for installation in open sea by using a buoy instead of a raft and a funnel on the seafloor to collect the gas, connected by a flexible tube. This setup provides a cost-effective solution for shallow waters. However, a buoy interferes with ship traffic, and it is also difficult to adapt this design to greater water depths. These requirements can best be complied by a completely submersed system. A system for unattended long-term monitoring in a marine environment has to be extremely durable. Therefore, we focussed on developing a mechanically and electrically as simple setup as possible, which has the additional advantage of low cost. The system consists of a funnel-shaped gas collector, a sensor head and pressure housings for electronics and power supply. Since this setup is inexpensive, it can be deployed in numbers to cover larger areas. By addition of multi-channel data loggers, data transmission by acoustic modem or cable, relay stations on the seafloor or buoys etc. the infrastructure can be adapted to the environmental setting and financial budget. Prototype tests under laboratory conditions as well as field tests on natural submarine gas vents as an analogue to leaking storage sites have demonstrated the capabilities and robustness of the systems.
Andersen, Claus E; Nielsen, Søren Kynde; Greilich, Steffen; Helt-Hansen, Jakob; Lindegaard, Jacob Christian; Tanderup, Kari
2009-03-01
A prototype of a new dose-verification system has been developed to facilitate prevention and identification of dose delivery errors in remotely afterloaded brachytherapy. The system allows for automatic online in vivo dosimetry directly in the tumor region using small passive detector probes that fit into applicators such as standard needles or catheters. The system measures the absorbed dose rate (0.1 s time resolution) and total absorbed dose on the basis of radioluminescence (RL) and optically stimulated luminescence (OSL) from aluminum oxide crystals attached to optical fiber cables (1 mm outer diameter). The system was tested in the range from 0 to 4 Gy using a solid-water phantom, a Varian GammaMed Plus 192Ir PDR afterloader, and dosimetry probes inserted into stainless-steel brachytherapy needles. The calibrated system was found to be linear in the tested dose range. The reproducibility (one standard deviation) for RL and OSL measurements was 1.3%. The measured depth-dose profiles agreed well with the theoretical expectations computed with the EGSNRC Monte Carlo code, suggesting that the energy dependence for the dosimeter probes (relative to water) is less than 6% for source-to-probe distances in the range of 2-50 mm. Under certain conditions, the RL signal could be greatly disturbed by the so-called stem signal (i.e., unwanted light generated in the fiber cable upon irradiation). The OSL signal is not subject to this source of error. The tested system appears to be adequate for in vivo brachytherapy dosimetry.
Advances in Additive Manufacturing
2016-07-14
of 3D - printed structures. Analysis examples will include quantification of tolerance differences between the designed and manufactured parts, void...15. SUBJECT TERMS 3-D printing , validation and verification, nondestructive inspection, print -on-the-move, prototyping 16. SECURITY CLASSIFICATION...researching the formation of AM-grade metal powder from battlefield scrap and operating base waste, 2) potential of 3-D printing with sand to make
Space Qualification Testing of a Shape Memory Alloy Deployable CubeSat Antenna
2016-09-15
the SMA deployment in the space environment. The HCT QHA successfully passed all required NASA General Environmental Verification Standards space... NASA /JPL parabolic deployable antenna design [28] .................. 19 Figure 11. SERC and NASA /JPL parabolic antenna prototype [28...19 Figure 12. SERC and NASA /JPL parabolic antenna stowed configuration [28] ............. 20 Figure 13. JPL KaPDA antenna [29
Automated constraint checking of spacecraft command sequences
NASA Astrophysics Data System (ADS)
Horvath, Joan C.; Alkalaj, Leon J.; Schneider, Karl M.; Spitale, Joseph M.; Le, Dang
1995-01-01
Robotic spacecraft are controlled by onboard sets of commands called "sequences." Determining that sequences will have the desired effect on the spacecraft can be expensive in terms of both labor and computer coding time, with different particular costs for different types of spacecraft. Specification languages and appropriate user interface to the languages can be used to make the most effective use of engineering validation time. This paper describes one specification and verification environment ("SAVE") designed for validating that command sequences have not violated any flight rules. This SAVE system was subsequently adapted for flight use on the TOPEX/Poseidon spacecraft. The relationship of this work to rule-based artificial intelligence and to other specification techniques is discussed, as well as the issues that arise in the transfer of technology from a research prototype to a full flight system.
Design and dosimetry of a few leaf electron collimator for energy modulated electron therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Yahya, Khalid; Verhaegen, Frank; Seuntjens, Jan
2007-12-15
Despite the capability of energy modulated electron therapy (EMET) to achieve highly conformal dose distributions in superficial targets it has not been widely implemented due to problems inherent in electron beam radiotherapy such as planning dosimetry accuracy, and verification as well as a lack of systems for automated delivery. In previous work we proposed a novel technique to deliver EMET using an automated 'few leaf electron collimator' (FLEC) that consists of four motor-driven leaves fit in a standard clinical electron beam applicator. Integrated with a Monte Carlo based optimization algorithm that utilizes patient-specific dose kernels, a treatment delivery was incorporatedmore » within the linear accelerator operation. The FLEC was envisioned to work as an accessory tool added to the clinical accelerator. In this article the design and construction of the FLEC prototype that match our compact design goals are presented. It is controlled using an in-house developed EMET controller. The structure of the software and the hardware characteristics of the EMET controller are demonstrated. Using a parallel plate ionization chamber, output measurements were obtained to validate the Monte Carlo calculations for a range of fields with different energies and sizes. Further verifications were also performed for comparing 1-D and 2-D dose distributions using energy independent radiochromic films. Comparisons between Monte Carlo calculations and measurements of complex intensity map deliveries show an overall agreement to within {+-}3%. This work confirms our design objectives of the FLEC that allow for automated delivery of EMET. Furthermore, the Monte Carlo dose calculation engine required for EMET planning was validated. The result supports the potential of the prototype FLEC for the planning and delivery of EMET.« less
Software use cases to elicit the software requirements analysis within the ASTRI project
NASA Astrophysics Data System (ADS)
Conforti, Vito; Antolini, Elisa; Bonnoli, Giacomo; Bruno, Pietro; Bulgarelli, Andrea; Capalbi, Milvia; Fioretti, Valentina; Fugazza, Dino; Gardiol, Daniele; Grillo, Alessandro; Leto, Giuseppe; Lombardi, Saverio; Lucarelli, Fabrizio; Maccarone, Maria Concetta; Malaguti, Giuseppe; Pareschi, Giovanni; Russo, Federico; Sangiorgi, Pierluca; Schwarz, Joseph; Scuderi, Salvatore; Tanci, Claudio; Tosti, Gino; Trifoglio, Massimo; Vercellone, Stefano; Zanmar Sanchez, Ricardo
2016-07-01
The Italian National Institute for Astrophysics (INAF) is leading the Astrofisica con Specchi a Tecnologia Replicante Italiana (ASTRI) project whose main purpose is the realization of small size telescopes (SST) for the Cherenkov Telescope Array (CTA). The first goal of the ASTRI project has been the development and operation of an innovative end-to-end telescope prototype using a dual-mirror optical configuration (SST-2M) equipped with a camera based on silicon photo-multipliers and very fast read-out electronics. The ASTRI SST-2M prototype has been installed in Italy at the INAF "M.G. Fracastoro" Astronomical Station located at Serra La Nave, on Mount Etna, Sicily. This prototype will be used to test several mechanical, optical, control hardware and software solutions which will be used in the ASTRI mini-array, comprising nine telescopes proposed to be placed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort led by INAF and carried out by Italy, Brazil and South-Africa. We present here the use cases, through UML (Unified Modeling Language) diagrams and text details, that describe the functional requirements of the software that will manage the ASTRI SST-2M prototype, and the lessons learned thanks to these activities. We intend to adopt the same approach for the Mini Array Software System that will manage the ASTRI miniarray operations. Use cases are of importance for the whole software life cycle; in particular they provide valuable support to the validation and verification activities. Following the iterative development approach, which breaks down the software development into smaller chunks, we have analysed the requirements, developed, and then tested the code in repeated cycles. The use case technique allowed us to formalize the problem through user stories that describe how the user procedurally interacts with the software system. Through the use cases we improved the communication among team members, fostered common agreement about system requirements, defined the normal and alternative course of events, understood better the business process, and defined the system test to ensure that the delivered software works properly. We present a summary of the ASTRI SST-2M prototype use cases, and how the lessons learned can be exploited for the ASTRI mini-array proposed for the CTA Observatory.
Development of a current collection loss management system for SDI homopolar power supplies
NASA Astrophysics Data System (ADS)
Brown, D. W.
1991-04-01
High speed, high power density current collection systems have been identified as an enabling technology required to construct homopolar power supplies to meet SDI missions. This work is part of a three-year effort directed towards the analysis, experimental verification, and prototype construction of a current collection system designed to operate continuously at 2 kA/sq cm, at a rubbing speed of 200 m/s, and with acceptable losses in a space environment. To date, no system has achieved these conditions simultaneously. This is the final report covering the three year period of performance on DOE contract AC03-86SF-16518. Major areas covered include design, construction and operation of a cryogenically cooled brush test rig, design and construction of a high speed brush test rig, optimization study for homopolar machines, loss analysis of the current collection system, and an application study which defines the air-core homopolar construction necessary to achieve the goal of 80 kW/kg generator power density.
Urine monitoring system failure analysis and operational verification test report
NASA Technical Reports Server (NTRS)
Glanfield, E. J.
1978-01-01
Failure analysis and testing of a prototype urine monitoring system (UMS) are reported. System performance was characterized by a regression formula developed from volume measurement test data. When the volume measurement test data. When the volume measurement data was imputted to the formula, the standard error of the estimate calculated using the regression formula was found to be within 1.524% of the mean of the mass of the input. System repeatability was found to be somewhat dependent upon the residual volume of the system and the evaporation of fluid from the separator. The evaporation rate was determined to be approximately 1cc/minute. The residual volume in the UMS was determined by measuring the concentration of LiCl in the flush water. Observed results indicated residual levels in the range of 9-10ml, however, results obtained during the flushing efficiency test indicated a residual level of approximately 20ml. It is recommended that the phase separator pumpout time be extended or the design modified to minimize the residual level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naitoh, Masanori; Ujita, Hiroshi; Nagumo, Hiroichi
1997-07-01
The Nuclear Power Engineering Corporation (NUPEC) has initiated a long-term program to develop the simulation system {open_quotes}IMPACT{close_quotes} for analysis of hypothetical severe accidents in nuclear power plants. IMPACT employs advanced methods of physical modeling and numerical computation, and can simulate a wide spectrum of senarios ranging from normal operation to hypothetical, beyond-design-basis-accident events. Designed as a large-scale system of interconnected, hierarchical modules, IMPACT`s distinguishing features include mechanistic models based on first principles and high speed simulation on parallel processing computers. The present plan is a ten-year program starting from 1993, consisting of the initial one-year of preparatory work followed bymore » three technical phases: Phase-1 for development of a prototype system; Phase-2 for completion of the simulation system, incorporating new achievements from basic studies; and Phase-3 for refinement through extensive verification and validation against test results and available real plant data.« less
Simulation of Attitude and Trajectory Dynamics and Control of Multiple Spacecraft
NASA Technical Reports Server (NTRS)
Stoneking, Eric T.
2009-01-01
Agora software is a simulation of spacecraft attitude and orbit dynamics. It supports spacecraft models composed of multiple rigid bodies or flexible structural models. Agora simulates multiple spacecraft simultaneously, supporting rendezvous, proximity operations, and precision formation flying studies. The Agora environment includes ephemerides for all planets and major moons in the solar system, supporting design studies for deep space as well as geocentric missions. The environment also contains standard models for gravity, atmospheric density, and magnetic fields. Disturbance force and torque models include aerodynamic, gravity-gradient, solar radiation pressure, and third-body gravitation. In addition to the dynamic and environmental models, Agora supports geometrical visualization through an OpenGL interface. Prototype models are provided for common sensors, actuators, and control laws. A clean interface accommodates linking in actual flight code in place of the prototype control laws. The same simulation may be used for rapid feasibility studies, and then used for flight software validation as the design matures. Agora is open-source and portable across computing platforms, making it customizable and extensible. It is written to support the entire GNC (guidance, navigation, and control) design cycle, from rapid prototyping and design analysis, to high-fidelity flight code verification. As a top-down design, Agora is intended to accommodate a large range of missions, anywhere in the solar system. Both two-body and three-body flight regimes are supported, as well as seamless transition between them. Multiple spacecraft may be simultaneously simulated, enabling simulation of rendezvous scenarios, as well as formation flying. Built-in reference frames and orbit perturbation dynamics provide accurate modeling of precision formation control.
Chang, Ming-Wen; Young, Ming-Shing; Lin, Mao-Tsun
2008-02-15
This study describes a high-accuracy inclined plane test system for quantitative measurement of the limb motor function of laboratory rats. The system is built around a microcontroller and uses a stepping motor to drive a ball screw, which changes the angle of the inclined plane. Any of the seven inclination speeds can be selected by the user. Two infrared (IR) LED/detector pairs function as interrupt sensors for objective determination of the moment that the rat loses its grip on the textured flooring of the starting area and slips down the plane. Inclination angle at the moment of IR interrupt (i.e. rat slip) is recorded. A liquid crystal display module shows the inclination speed and the inclination angle. The system can function as a stand alone device but a RS232 port allows connection to a personal computer (PC), so data can be sent directly to hard disk for storage and analysis. Experiments can be controlled by a local keypad or by the connected PC. Advantages of the presented system include easy operation, high accuracy, non-dependence on human observation for determination of slip angle, stand-alone capability, low cost and easy modification of the controlling software for different types of experiments. A fully functional prototype of the system is described. The prototype was used experimentally by a hospital group testing traumatic brain injury experiments, and some of their results are presented for system verification. It is found that the system is stable, accurate and easily used by investigators.
Ghamari, M; Soltanpur, C; Cabrera, S; Romero, R; Martinek, R; Nazeran, H
2016-08-01
Heart Rate Variability (HRV) signal analysis provides a quantitative marker of the Autonomic Nervous System (ANS) function. A wristband-type wireless photoplethysmographic (PPG) device was custom-designed to collect and analyze the arterial pulse in the wrist. The proposed device is comprised of an optical sensor to monitor arterial pulse, a signal conditioning unit to filter and amplify the analog PPG signal, a microcontroller to digitize the analog PPG signal, and a Bluetooth module to transfer the data to a smart device. This paper proposes a novel model to represent the PPG signal as the summation of two Gaussian functions. The paper concludes with a verification procedure for HRV signal analysis during sedentary activities.
Development of a multipurpose hand controller for JEMRMS
NASA Technical Reports Server (NTRS)
Matsuhira, Nobuto; Iikura, Shoichi; Asakura, Makoto; Shinomiya, Yasuo
1990-01-01
A prototype multipurpose hand controller for the JEMRMS (Japanese Experiment Module Remote Manipulator System) was developed. The hand controller (H/C) is an orthogonal type, with 6 degrees of freedom (DOF) and small size. The orthogonal type H/C is very simple for coordinate transformations and can easily control any type of manipulators. In fact, the JEMRMS is planned to have two manipulators controlled by a common H/C at this stage. The H/C was able to be used as a rate control joystick and a force reflection master arm, using an experimental 6 DOF manipulator. Good maneuverability was confirmed in the verification test. The orthogonal type H/C is suitable for use as a common H/C for the two manipulators of the JEMRMS.
Laser Direct Routing for High Density Interconnects
NASA Astrophysics Data System (ADS)
Moreno, Wilfrido Alejandro
The laser restructuring of electronic circuits fabricated using standard Very Large Scale Integration (VLSI) process techniques, is an excellent alternative that allows low-cost quick turnaround production with full circuit similarity between the Laser Restructured prototype and the customized product for mass production. Laser Restructurable VLSI (LRVLSI) would allow design engineers the capability to interconnect cells that implement generic logic functions and signal processing schemes to achieve a higher level of design complexity. LRVLSI of a particular circuit at the wafer or packaged chip level is accomplished using an integrated computer controlled laser system to create low electrical resistance links between conductors and to cut conductor lines. An infrastructure for rapid prototyping and quick turnaround using Laser Restructuring of VLSI circuits was developed to meet three main parallel objectives: to pursue research on novel interconnect technologies using LRVLSI, to develop the capability of operating in a quick turnaround mode, and to maintain standardization and compatibility with commercially available equipment for feasible technology transfer. The system is to possess a high degree of flexibility, high data quality, total controllability, full documentation, short downtime, a user-friendly operator interface, automation, historical record keeping, and error indication and logging. A specially designed chip "SLINKY" was used as the test vehicle for the complete characterization of the Laser Restructuring system. With the use of Design of Experiment techniques the Lateral Diffused Link (LDL), developed originally at MIT Lincoln Laboratories, was completely characterized and for the first time a set of optimum process parameters was obtained. With the designed infrastructure fully operational, the priority objective was the search for a substitute for the high resistance, high current leakage to substrate, and relatively low density Lateral Diffused Link. A high density Laser Vertical Link with resistance values below 10 ohms was developed, studied and tested using design of experiment methodologies. The vertical link offers excellent advantages in the area of quick prototyping of electronic circuits, but even more important, due to having similar characteristics to a foundry produced via, it gives quick transfer from the prototype system verification stage to the mass production stage.
Manipulation strategies for massive space payloads
NASA Technical Reports Server (NTRS)
Book, Wayne J.
1989-01-01
Control for the bracing strategy is being examined. It was concluded earlier that trajectory planning must be improved to best achieve the bracing motion. Very interesting results were achieved which enable the inverse dynamics of flexible arms to be calculated for linearized motion in a more efficient manner than previously published. The desired motion of the end point beginning at t=0 and ending at t=t sub f is used to calculate the required torque at the joint. The solution is separated into a causal function that is zero for t is less than 0 and an accusal function which is zero for t is greater than t sub f. A number of alternative end point trajectories were explored in terms of the peak torque required, the amount of anticipatory action, and other issues. The single link case is the immediate subject and an experimental verification of that case is being performed. Modeling with experimental verification of closed chain dynamics continues. Modeling effort has pointed out inaccuracies that result from the choice of numerical techniques used to incorporate the closed chain constraints when modeling our experimental prototype RALF (Robotic Arm Large and Flexible). Results were compared to TREETOPS, a multi body code. The experimental verification work is suggesting new ways to make comparisons with systems having structural linearity and joint and geometric nonlinearity. The generation of inertial forces was studied with a small arm that will damp the large arm's vibration.
Root-sum-square structural strength verification approach
NASA Technical Reports Server (NTRS)
Lee, Henry M.
1994-01-01
Utilizing a proposed fixture design or some variation thereof, this report presents a verification approach to strength test space flight payload components, electronics boxes, mechanisms, lines, fittings, etc., which traditionally do not lend themselves to classical static loading. The fixture, through use of ordered Euler rotation angles derived herein, can be mounted on existing vibration shakers and can provide an innovative method of applying single axis flight load vectors. The versatile fixture effectively loads protoflight or prototype components in all three axes simultaneously by use of a sinusoidal burst of desired magnitude at less than one-third the first resonant frequency. Cost savings along with improved hardware confidence are shown. The end product is an efficient way to verify experiment hardware for both random vibration and strength.
NASA Astrophysics Data System (ADS)
Fiorini, Mauro; La Palombara, Nicola; Stringhetti, Luca; Canestrari, Rodolfo; Catalano, Osvaldo; Giro, Enrico; Leto, Giuseppe; Maccarone, Maria Concetta; Pareschi, Giovanni; Tosti, Gino; Vercellone, Stefano
2014-08-01
ASTRI is a flagship project of the Italian Ministry of Education, University and Research, which aims to develop an endto- end prototype of one of the three types of telescopes to be part of the Cherenkov Telescope Array (CTA), an observatory which will be the main representative of the next generation of Imaging Atmospheric Cherenkov Telescopes. The ASTRI project, led by the Italian National Institute of Astrophysics (INAF), has proposed an original design for the Small Size Telescope, which is aimed to explore the uppermost end of the Very High Energy domain up to about few hundreds of TeV with unprecedented sensitivity, angular resolution and imaging quality. It is characterized by challenging and innovative technological solutions which will be adopted for the first time in a Cherenkov telescope: a dual-mirror Schwarzschild-Couder configuration, a modular, light and compact camera based on silicon photomultipliers, and a front-end electronic based on a specifically designed ASIC. The end-to-end project is also including all the data-analysis software and the data archive. In this paper we describe the process followed to derive the ASTRI specifications from the CTA general requirements, a process which had to take into proper account the impact on the telescope design of the different types of the CTA requirements (performance, environment, reliability-availability-maintenance, etc.). We also describe the strategy adopted to perform the specification verification, which will be based on different methods (inspection, analysis, certification, and test) in order to demonstrate the telescope compliance with the CTA requirements. Finally we describe the integration planning of the prototype assemblies (structure, mirrors, camera, control software, auxiliary items) and the test planning of the end-to-end telescope. The approach followed by the ASTRI project is to have all the information needed to report the verification process along all project stages in a single layer. From this unique layer it is possible to, in a semi-automatic way, generate updated project documentation and progress report.
Test systems of the STS-XYTER2 ASIC: from wafer-level to in-system verification
NASA Astrophysics Data System (ADS)
Kasinski, Krzysztof; Zubrzycka, Weronika
2016-09-01
The STS/MUCH-XYTER2 ASIC is a full-size prototype chip for the Silicon Tracking System (STS) and Muon Chamber (MUCH) detectors in the new fixed-target experiment Compressed Baryonic Matter (CBM) at FAIR-center, Darmstadt, Germany. The STS assembly includes more than 14000 ASICs. The complicated, time-consuming, multi-step assembly process of the detector building blocks and tight quality assurance requirements impose several intermediate testing to be performed for verifying crucial assembly steps (e.g. custom microcable tab-bonding before wire-bonding to the PCB) and - if necessary - identifying channels or modules for rework. The chip supports the multi-level testing with different probing / contact methods (wafer probe-card, pogo-probes, in-system tests). A huge number of ASICs to be tested restricts the number and kind of tests possible to be performed within a reasonable time. The proposed architectures of test stand equipment and a brief summary of methodologies are presented in this paper.
The Electronic View Box: a software tool for radiation therapy treatment verification.
Bosch, W R; Low, D A; Gerber, R L; Michalski, J M; Graham, M V; Perez, C A; Harms, W B; Purdy, J A
1995-01-01
We have developed a software tool for interactively verifying treatment plan implementation. The Electronic View Box (EVB) tool copies the paradigm of current practice but does so electronically. A portal image (online portal image or digitized port film) is displayed side by side with a prescription image (digitized simulator film or digitally reconstructed radiograph). The user can measure distances between features in prescription and portal images and "write" on the display, either to approve the image or to indicate required corrective actions. The EVB tool also provides several features not available in conventional verification practice using a light box. The EVB tool has been written in ANSI C using the X window system. The tool makes use of the Virtual Machine Platform and Foundation Library specifications of the NCI-sponsored Radiation Therapy Planning Tools Collaborative Working Group for portability into an arbitrary treatment planning system that conforms to these specifications. The present EVB tool is based on an earlier Verification Image Review tool, but with a substantial redesign of the user interface. A graphical user interface prototyping system was used in iteratively refining the tool layout to allow rapid modifications of the interface in response to user comments. Features of the EVB tool include 1) hierarchical selection of digital portal images based on physician name, patient name, and field identifier; 2) side-by-side presentation of prescription and portal images at equal magnification and orientation, and with independent grayscale controls; 3) "trace" facility for outlining anatomical structures; 4) "ruler" facility for measuring distances; 5) zoomed display of corresponding regions in both images; 6) image contrast enhancement; and 7) communication of portal image evaluation results (approval, block modification, repeat image acquisition, etc.). The EVB tool facilitates the rapid comparison of prescription and portal images and permits electronic communication of corrections in port shape and positioning.
Verification and Validation of Digitally Upgraded Control Rooms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boring, Ronald; Lau, Nathan
2015-09-01
As nuclear power plants undertake main control room modernization, a challenge is the lack of a clearly defined human factors process to follow. Verification and validation (V&V) as applied in the nuclear power community has tended to involve efforts such as integrated system validation, which comes at the tail end of the design stage. To fill in guidance gaps and create a step-by-step process for control room modernization, we have developed the Guideline for Operational Nuclear Usability and Knowledge Elicitation (GONUKE). This approach builds on best practices in the software industry, which prescribe an iterative user-centered approach featuring multiple cyclesmore » of design and evaluation. Nuclear regulatory guidance for control room design emphasizes summative evaluation—which occurs after the design is complete. In the GONUKE approach, evaluation is also performed at the formative stage of design—early in the design cycle using mockups and prototypes for evaluation. The evaluation may involve expert review (e.g., software heuristic evaluation at the formative stage and design verification against human factors standards like NUREG-0700 at the summative stage). The evaluation may also involve user testing (e.g., usability testing at the formative stage and integrated system validation at the summative stage). An additional, often overlooked component of evaluation is knowledge elicitation, which captures operator insights into the system. In this report we outline these evaluation types across design phases that support the overall modernization process. The objective is to provide industry-suitable guidance for steps to be taken in support of the design and evaluation of a new human-machine interface (HMI) in the control room. We suggest the value of early-stage V&V and highlight how this early-stage V&V can help improve the design process for control room modernization. We argue that there is a need to overcome two shortcomings of V&V in current practice—the propensity for late-stage V&V and the use of increasingly complex psychological assessment measures for V&V.« less
VAMOS: A pathfinder for the HAWC gamma-ray observatory
NASA Astrophysics Data System (ADS)
Abeysekara, A. U.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Ángeles, F.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila-Aroche, A.; Ayala Solares, H. A.; Badillo, C.; Barber, A. S.; Baughman, B. M.; Bautista-Elivar, N.; Becerra Gonzalez, J.; Belmont, E.; Benítez, E.; BenZvi, S. Y.; Berley, D.; Bernal, A.; Bonilla Rosales, M.; Braun, J.; Caballero-Lopez, R. A.; Caballero-Mora, K. S.; Cabrera, I.; Carramiñana, A.; Castañeda-Martínez, L.; Castillo, M.; Cotti, U.; Cotzomi, J.; de la Fuente, E.; De León, C.; DeYoung, T.; Diaz-Azuara, A.; Diaz-Cruz, L.; Diaz Hernandez, R.; Díaz-Vélez, J. C.; Dingus, B. L.; Dultzin, D.; DuVernois, M. A.; Ellsworth, R. W.; Fernandez, A.; Fiorino, D. W.; Fraija, N.; Galindo, A.; García-Torales, G.; Garfias, F.; González, A.; González, L. X.; González, M. M.; Goodman, J. A.; Grabski, V.; Gussert, M.; Guzmán-Cerón, C.; Hampel-Arias, Z.; Harding, J. P.; Hernández-Cervantes, L.; Hui, C. M.; Hüntemeyer, P.; Imran, A.; Iriarte, A.; Karn, P.; Kieda, D.; Kunde, G. J.; Langarica, R.; Lara, A.; Lara, G.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linares, E. C.; Linnemann, J. T.; Longo, M.; Luna-Garcia, R.; Marinelli, A.; Martínez, L. A.; Martínez, H.; Martínez, O.; Martínez-Castro, J.; Martos, M.; Matthews, J. A. J.; McEnery, J.; Mendoza Torres, E.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nava, J.; Nellen, L.; Newbold, M.; Noriega-Papaqui, R.; Oceguera-Becerra, T.; Page, D. P.; Patricelli, B.; Pelayo, R.; Pérez-Pérez, E. G.; Pretz, J.; Ramírez, I.; Rentería, A.; Rivière, C.; Rosa-González, D.; Ruiz-Sala, F.; Ruiz-Velasco, E. L.; Ryan, J.; Sacahui, J. R.; Salazar, H.; Salesa, F.; Sandoval, A.; Santos, E.; Schneider, M.; Silich, S.; Sinnis, G.; Smith, A. J.; Sparks Woodle, K.; Springer, R. W.; Suarez, F.; Taboada, I.; Tepe, A.; Toale, P. A.; Tollefson, K.; Torres, I.; Tinoco, S.; Ukwatta, T. N.; Valdés Galicia, J. F.; Vanegas, P.; Vázquez, A.; Villaseñor, L.; Wall, W.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.; Wood, J.; Yodh, G. B.; Younk, P. W.; Zaborov, D.; Zepeda, A.; Zhou, H.
2015-03-01
VAMOS was a prototype detector built in 2011 at an altitude of 4100 m a.s.l. in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design, construction techniques and data acquisition system of the HAWC observatory. HAWC is an air-shower array currently under construction at the same site of VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water Cherenkov detectors and two different data acquisition systems. It was in operation between October 2011 and May 2012 with an average live time of 30%. Besides the scientific verification purposes, the eight months of data were used to obtain the results presented in this paper: the detector response to the Forbush decrease of March 2012, and the analysis of possible emission, at energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B.
NASA Astrophysics Data System (ADS)
Stelter, Michael; Reinert, Andreas; Mai, Björn Erik; Kuznecov, Mihail
A solid oxide fuel cell (SOFC) stack module is presented that is designed for operation on diesel reformate in an auxiliary power unit (APU). The stack was designed using a top-down approach, based on a specification of an APU system that is installed on board of vehicles. The stack design is planar, modular and scalable with stamped sheet metal interconnectors. It features thin membrane electrode assemblies (MEAs), such as electrolyte supported cells (ESC) and operates at elevated temperatures around 800 °C. The stack has a low pressure drop in both the anode and the cathode to facilitate a simple system layout. An overview of the technical targets met so far is given. A stack power density of 0.2 kW l -1 has been demonstrated in a fully integrated, thermally self-sustaining APU prototype running with diesel and without an external water supply.
Applications of Materials Selection For Joining Composite/Alloy Piping Systems
NASA Technical Reports Server (NTRS)
Crosby, Karen E.; Smith, Brett H.; Mensah, Patrick F.; Stubblefield, Michael A.
2001-01-01
A study in collaboration between investigators at Southern University and Louisiana State University in Baton Rouge, Louisiana and NASA/MSFC is examining materials for modeling and analysis of heat-activated thermal coupling for joining composite to composite/alloy structures. The short-term objectives of this research are to develop a method for joining composite or alloy structures, as well as to study the effects of thermal stress on composite-to-alloy joints. This investigation will result in the selection of a suitable metallic alloy. Al-Li alloys have potential for this purpose in aerospace applications due to their excellent strength-to-weight ratio. The study of Al-Li and other alloys is of significant importance to this and other aerospace as well as offshore related interests. Further research will incorporate the use of computer aided design and rapid prototype hardware for conceptual design and verification of a potential composite piping delivery system.
A Machine-Checked Proof of A State-Space Construction Algorithm
NASA Technical Reports Server (NTRS)
Catano, Nestor; Siminiceanu, Radu I.
2010-01-01
This paper presents the correctness proof of Saturation, an algorithm for generating state spaces of concurrent systems, implemented in the SMART tool. Unlike the Breadth First Search exploration algorithm, which is easy to understand and formalise, Saturation is a complex algorithm, employing a mutually-recursive pair of procedures that compute a series of non-trivial, nested local fixed points, corresponding to a chaotic fixed point strategy. A pencil-and-paper proof of Saturation exists, but a machine checked proof had never been attempted. The key element of the proof is the characterisation theorem of saturated nodes in decision diagrams, stating that a saturated node represents a set of states encoding a local fixed-point with respect to firing all events affecting only the node s level and levels below. For our purpose, we have employed the Prototype Verification System (PVS) for formalising the Saturation algorithm, its data structures, and for conducting the proofs.
7 CFR 272.8 - State income and eligibility verification system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 4 2010-01-01 2010-01-01 false State income and eligibility verification system. 272... PARTICIPATING STATE AGENCIES § 272.8 State income and eligibility verification system. (a) General. (1) State agencies may maintain and use an income and eligibility verification system (IEVS), as specified in this...
NASA Technical Reports Server (NTRS)
Sharp, William E.; Knoll, Glenn
1989-01-01
A feasibility study of conducting a joint NASA/GSFC and Soviet Space Agency long duration balloon flight at the Antarctic in Jan. 1993 is reported. The objective of the mission is the verification and calibration of gamma ray and neutron remote sensing instruments which can be used to obtain geochemical maps of the surface of planetary bodies. The gamma ray instruments in question are the GRAD and the Soviet Phobos prototype. The neutron detectors are supplied by Los Alamos National Laboratory and the Soviet Phobos prototype. These are to be carried aboard a gondola that supplies the data and supplies the power for the period of up to two weeks.
The SONG prototype: Efficiency of a robotic telescope
NASA Astrophysics Data System (ADS)
Andersen, M. F.; Grundahl, F.; Beck, A. H.; Pallé, P.
2016-12-01
The Stellar Observations Network Group prototype telescope at the Teide Observatory has been operating in scientific mode since March 2014. The first year of observations has entirely been carried out using the high resolution echelle spectrograph. Several asteroseismic targets were selected for scientific and technical verification. A few bright subgiants and one red giant were chosen since the oscillations in these stars have large amplitudes and the periods long enough to easily be detected. These targets would also be used for evaluation of the instruments since long term observations of single targets would reveal potential problems. In this paper the performance of the first robotic SONG node is described to illustrate the efficiency and possibilities in having a robotic telescope.
Human Action Recognition Using Wireless Wearable In-Ear Microphone
NASA Astrophysics Data System (ADS)
Nishimura, Jun; Kuroda, Tadahiro
To realize the ubiquitous eating habits monitoring, we proposed the use of sounds sensed by an in-ear placed wireless wearable microphone. A prototype of wireless wearable in-ear microphone was developed by utilizing a common Bluetooth headset. We proposed a robust chewing action recognition algorithm which consists of two recognition stages: “chew-like” signal detection and chewing sound verification stages. We also provide empirical results on other action recognition using in-ear sound including swallowing, cough, belch, and etc. The average chewing number counting error rate of 1.93% is achieved. Lastly, chewing sound mapping is proposed as a new prototypical approach to provide an additional intuitive feedback on food groups to be able to infer the eating habits in their daily life context.
NASA Astrophysics Data System (ADS)
de Ridder, Luc; Filies, Olaf; Rodriguez, Ben; Kuijken, Aart
2001-04-01
Through application of modern supply chain concepts in combination with state-of-the-art information technology, mask manufacturing performance and customer satisfaction can be improved radically. The AutoMOPS solution emphasizes on the elimination of the order verification through paperless, electronically linked information sharing/exchange between chip design, mask production and prototype production stages.
Risk assessment of technologies for detecting illicit drugs in containers
NASA Astrophysics Data System (ADS)
Brandenstein, Albert E.
1995-03-01
This paper provides the highlights of the role risk assessment plays in the United States technology program for nonintrusive inspection of cargo containers for illicit drugs. The Counterdrug Technology Assessment Center is coordinating the national effort to develop prototype technologies for an advanced generation, nonintrusive cargo inspection system. In the future, the U.S. Customs Service could configure advanced technologies for finding not only drugs and other contraband hidden in cargo, but for a wide variety of commodities for customs duty verification purposes. The overall nonintrusive inspection system is envisioned to consist primarily of two classes of subsystems: (1) shipment document examination subsystems to prescreen exporter and importer documents; and (2) chemical and physics-based subsystems to detect and characterize illicit substances. The document examination subsystems would use software algorithms, artificial intelligence, and neural net technology to perform an initial prescreening of the information on the shipping manifest for suspicious patterns. This would be accomplished by creating a `profile' from the shipping information and matching it to trends known to be used by traffickers. The chemical and physics-based subsystems would apply nuclear physics, x-ray, gas chromatography and spectrometry technologies to locate and identify contraband in containers and other conveyances without the need for manual searches. The approach taken includes using technology testbeds to assist in evaluating technology prototypes and testing system concepts in a fully instrumented but realistic operational environment. This approach coupled with a substance signature phenomenology program to characterize those detectable elements of benign, as well as target substances lends itself particularly well to the topics of risk assessment and elemental characterization of substances. A technology testbed established in Tacoma, Washington provides a national facility for testing and evaluating existing and emerging prototype systems in an operational environment. The results of initial tests using the advanced x-ray subsystem installed at the testbed are given in this paper. A description of typical cargo contents and those characteristics applicable to nuclear interrogation techniques are provided in the appendix.
Requirement Assurance: A Verification Process
NASA Technical Reports Server (NTRS)
Alexander, Michael G.
2011-01-01
Requirement Assurance is an act of requirement verification which assures the stakeholder or customer that a product requirement has produced its "as realized product" and has been verified with conclusive evidence. Product requirement verification answers the question, "did the product meet the stated specification, performance, or design documentation?". In order to ensure the system was built correctly, the practicing system engineer must verify each product requirement using verification methods of inspection, analysis, demonstration, or test. The products of these methods are the "verification artifacts" or "closure artifacts" which are the objective evidence needed to prove the product requirements meet the verification success criteria. Institutional direction is given to the System Engineer in NPR 7123.1A NASA Systems Engineering Processes and Requirements with regards to the requirement verification process. In response, the verification methodology offered in this report meets both the institutional process and requirement verification best practices.
Fabrication and Testing of Carbon Fiber, Graphite-Epoxy Panels for Submillimeter Telescope Use
NASA Astrophysics Data System (ADS)
Rieger, H.; Helwig, G.; Parks, R. E.; Ulich, B. L.
1983-12-01
An experimental carbon-fiber, graphite-epoxy, aluminum Flexcore sandwich panel roughly 1-m square was made by Dornier System, Friedrichshafen, West Germany. The panel was a pre-prototype of the panels to be used in the dish of the 10-m diameter Sub-Millimeter Telescope, a joint project of the Max-Planck-Institute fur Radioastronomie, Bonn, West Germany, and Steward Observatory, the University of Arizona in Tucson. This paper outlines the fabrication process for the panel and indicates the surface accuracy of the panel replication process. To predict the behavior of the panel under various environmental loads, the panel was modeled structurally using anisotropic elements for the core material. Results of this analysis along with experimental verification of these predictions are also given.
A Parallel Saturation Algorithm on Shared Memory Architectures
NASA Technical Reports Server (NTRS)
Ezekiel, Jonathan; Siminiceanu
2007-01-01
Symbolic state-space generators are notoriously hard to parallelize. However, the Saturation algorithm implemented in the SMART verification tool differs from other sequential symbolic state-space generators in that it exploits the locality of ring events in asynchronous system models. This paper explores whether event locality can be utilized to efficiently parallelize Saturation on shared-memory architectures. Conceptually, we propose to parallelize the ring of events within a decision diagram node, which is technically realized via a thread pool. We discuss the challenges involved in our parallel design and conduct experimental studies on its prototypical implementation. On a dual-processor dual core PC, our studies show speed-ups for several example models, e.g., of up to 50% for a Kanban model, when compared to running our algorithm only on a single core.
NASA Astrophysics Data System (ADS)
Tanci, Claudio; Tosti, Gino; Antolini, Elisa; Gambini, Giorgio F.; Bruno, Pietro; Canestrari, Rodolfo; Conforti, Vito; Lombardi, Saverio; Russo, Federico; Sangiorgi, Pierluca; Scuderi, Salvatore
2016-08-01
ASTRI is an on-going project developed in the framework of the Cherenkov Telescope Array (CTA). An end- to-end prototype of a dual-mirror small-size telescope (SST-2M) has been installed at the INAF observing station on Mt. Etna, Italy. The next step is the development of the ASTRI mini-array composed of nine ASTRI SST-2M telescopes proposed to be installed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort carried on by Italy, Brazil and South-Africa and led by the Italian National Institute of Astrophysics, INAF. To control the ASTRI telescopes, a specific ASTRI Mini-Array Software System (MASS) was designed using a scalable and distributed architecture to monitor all the hardware devices for the telescopes. Using code generation we built automatically from the ASTRI Interface Control Documents a set of communication libraries and extensive Graphical User Interfaces that provide full access to the capabilities offered by the telescope hardware subsystems for testing and maintenance. Leveraging these generated libraries and components we then implemented a human designed, integrated, Engineering GUI for MASS to perform the verification of the whole prototype and test shared services such as the alarms, configurations, control systems, and scientific on-line outcomes. In our experience the use of code generation dramatically reduced the amount of effort in development, integration and testing of the more basic software components and resulted in a fast software release life cycle. This approach could be valuable for the whole CTA project, characterized by a large diversity of hardware components.
Intelligent Facial Recognition Systems: Technology advancements for security applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, C.L.
1993-07-01
Insider problems such as theft and sabotage can occur within the security and surveillance realm of operations when unauthorized people obtain access to sensitive areas. A possible solution to these problems is a means to identify individuals (not just credentials or badges) in a given sensitive area and provide full time personnel accountability. One approach desirable at Department of Energy facilities for access control and/or personnel identification is an Intelligent Facial Recognition System (IFRS) that is non-invasive to personnel. Automatic facial recognition does not require the active participation of the enrolled subjects, unlike most other biological measurement (biometric) systems (e.g.,more » fingerprint, hand geometry, or eye retinal scan systems). It is this feature that makes an IFRS attractive for applications other than access control such as emergency evacuation verification, screening, and personnel tracking. This paper discusses current technology that shows promising results for DOE and other security applications. A survey of research and development in facial recognition identified several companies and universities that were interested and/or involved in the area. A few advanced prototype systems were also identified. Sandia National Laboratories is currently evaluating facial recognition systems that are in the advanced prototype stage. The initial application for the evaluation is access control in a controlled environment with a constant background and with cooperative subjects. Further evaluations will be conducted in a less controlled environment, which may include a cluttered background and subjects that are not looking towards the camera. The outcome of the evaluations will help identify areas of facial recognition systems that need further development and will help to determine the effectiveness of the current systems for security applications.« less
Recent Progress on High-Current SRF Cavities at Jlab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Rimmer, William Clemens, James Henry, Peter Kneisel, Kurt Macha, Frank Marhauser, Larry Turlington, Haipeng Wang, Daniel Forehand
2010-05-01
JLab has designed and fabricated several prototype SRF cavities with cell shapes optimized for high current beams and with strong damping of unwanted higher order modes. We report on the latest test results of these cavities and on developments of concepts for new variants optimized for particular applications such as light sources and high-power proton accelerators, including betas less than one. We also report on progress towards a first beam test of this design in the recirculation loop of the JLab ERL based FEL. With growing interest worldwide in applications of SRF for high-average power electron and hadron machines, amore » practical test of these concepts is highly desirable. We plan to package two prototype cavities in a de-mountable cryomodule for temporary installation into the JLab FEL for testing with RF and beam. This will allow verification of all critical design and operational parameters paving the way to a full-scale prototype cryomodule.« less
A Prototype of Mathematical Treatment of Pen Pressure Data for Signature Verification.
Li, Chi-Keung; Wong, Siu-Kay; Chim, Lai-Chu Joyce
2018-01-01
A prototype using simple mathematical treatment of the pen pressure data recorded by a digital pen movement recording device was derived. In this study, a total of 48 sets of signature and initial specimens were collected. Pearson's correlation coefficient was used to compare the data of the pen pressure patterns. From the 820 pair comparisons of the 48 sets of genuine signatures, a high degree of matching was found in which 95.4% (782 pairs) and 80% (656 pairs) had rPA > 0.7 and rPA > 0.8, respectively. In the comparison of the 23 forged signatures with their corresponding control signatures, 20 of them (89.2% of pairs) had rPA values < 0.6, showing a lower degree of matching when compared with the results of the genuine signatures. The prototype could be used as a complementary technique to improve the objectivity of signature examination and also has a good potential to be developed as a tool for automated signature identification. © 2017 American Academy of Forensic Sciences.
Verification and Validation in a Rapid Software Development Process
NASA Technical Reports Server (NTRS)
Callahan, John R.; Easterbrook, Steve M.
1997-01-01
The high cost of software production is driving development organizations to adopt more automated design and analysis methods such as rapid prototyping, computer-aided software engineering (CASE) tools, and high-level code generators. Even developers of safety-critical software system have adopted many of these new methods while striving to achieve high levels Of quality and reliability. While these new methods may enhance productivity and quality in many cases, we examine some of the risks involved in the use of new methods in safety-critical contexts. We examine a case study involving the use of a CASE tool that automatically generates code from high-level system designs. We show that while high-level testing on the system structure is highly desirable, significant risks exist in the automatically generated code and in re-validating releases of the generated code after subsequent design changes. We identify these risks and suggest process improvements that retain the advantages of rapid, automated development methods within the quality and reliability contexts of safety-critical projects.
Comparison of ISRU Excavation System Model Blade Force Methodology and Experimental Results
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.; Wilkinson, R. Allen; Mueller, Robert P.; Schuler, Jason M.; Nick, Andrew J.
2010-01-01
An Excavation System Model has been written to simulate the collection and transportation of regolith on the Moon. The calculations in this model include an estimation of the forces on the digging tool as a result of excavation into the regolith. Verification testing has been performed and the forces recorded from this testing were compared to the calculated theoretical data. A prototype lunar vehicle built at the NASA Johnson Space Center (JSC) was tested with a bulldozer type blade developed at the NASA Kennedy Space Center (KSC) attached to the front. This is the initial correlation of actual field test data to the blade forces calculated by the Excavation System Model and the test data followed similar trends with the predicted values. This testing occurred in soils developed at the NASA Glenn Research Center (GRC) which are a mixture of different types of sands and whose soil properties have been well characterized. Three separate analytical models are compared to the test data.
USign--a security enhanced electronic consent model.
Li, Yanyan; Xie, Mengjun; Bian, Jiang
2014-01-01
Electronic consent becomes increasingly popular in the healthcare sector given the many benefits it provides. However, security concerns, e.g., how to verify the identity of a person who is remotely accessing the electronic consent system in a secure and user-friendly manner, also arise along with the popularity of electronic consent. Unfortunately, existing electronic consent systems do not pay sufficient attention to those issues. They mainly rely on conventional password based authentication to verify the identity of an electronic consent user, which is far from being sufficient given that identity theft threat is real and significant in reality. In this paper, we present a security enhanced electronic consent model called USign. USign enhances the identity protection and authentication for electronic consent systems by leveraging handwritten signatures everyone is familiar with and mobile computing technologies that are becoming ubiquitous. We developed a prototype of USign and conducted preliminary evaluation on accuracy and usability of signature verification. Our experimental results show the feasibility of the proposed model.
Study of techniques for redundancy verification without disrupting systems, phases 1-3
NASA Technical Reports Server (NTRS)
1970-01-01
The problem of verifying the operational integrity of redundant equipment and the impact of a requirement for verification on such equipment are considered. Redundant circuits are examined and the characteristics which determine adaptability to verification are identified. Mutually exclusive and exhaustive categories for verification approaches are established. The range of applicability of these techniques is defined in terms of signal characteristics and redundancy features. Verification approaches are discussed and a methodology for the design of redundancy verification is developed. A case study is presented which involves the design of a verification system for a hypothetical communications system. Design criteria for redundant equipment are presented. Recommendations for the development of technological areas pertinent to the goal of increased verification capabilities are given.
Characterization of an In-Beam PET Prototype for Proton Therapy With Different Target Compositions
NASA Astrophysics Data System (ADS)
Attanasi, Francesca; Belcari, Nicola; Moehrs, Sascha; Rosso, Valeria; Vecchio, Sara; Cirrone, G. A. Pablo; Cuttone, Giacomo; Lojacono, Piero; Romano, Francesco; Lanconelli, Nico; Del Guerra, Alberto
2010-06-01
At the University of Pisa, the DoPET (Dosimetry with a Positron Emission Tomograph) project has focused on the development and characterization of an ad hoc, scalable, dual-head PET prototype for in-beam treatment planning verification of the proton therapy. In this paper we report the first results obtained with our current prototype, consisting of two opposing lutetium yttrium orthosilicate (LYSO) detectors, each one covering an area of 4.5 × 4.5 cm2. We measured the β+-activation induced by 62 MeV proton beams at Catana facility (LNS, Catania, Italy) in several plastic phantoms. Experiments were performed to evaluate the possibility to extract accurate phantom geometrical information from the reconstructed PET images. The PET prototype proved its capability of locating small air cavities in homogeneous PMMA phantoms with a submillimetric accuracy and of distinguishing materials with different 16O and 12C content by back mapping phantom geometry through the separation of the isotope contributions. This could be very useful in the clinical practice as a tool to highlight anatomical or physiological organ variations among different treatment sessions and to discriminate different tissue types, thus providing feedbacks for the accuracy of dose deposition.
Performance verification testing of the UltraStrip Systems, Inc., Mobile Emergency Filtration System (MEFS) was conducted under EPA's Environmental Technology Verification (ETV) Program at the EPA Test and Evaluation (T&E) Facility in Cincinnati, Ohio, during November, 2003, thr...
Investigation, Development, and Evaluation of Performance Proving for Fault-tolerant Computers
NASA Technical Reports Server (NTRS)
Levitt, K. N.; Schwartz, R.; Hare, D.; Moore, J. S.; Melliar-Smith, P. M.; Shostak, R. E.; Boyer, R. S.; Green, M. W.; Elliott, W. D.
1983-01-01
A number of methodologies for verifying systems and computer based tools that assist users in verifying their systems were developed. These tools were applied to verify in part the SIFT ultrareliable aircraft computer. Topics covered included: STP theorem prover; design verification of SIFT; high level language code verification; assembly language level verification; numerical algorithm verification; verification of flight control programs; and verification of hardware logic.
NASA Astrophysics Data System (ADS)
Karam, Walid; Mokbel, Chafic; Greige, Hanna; Chollet, Gerard
2006-05-01
A GMM based audio visual speaker verification system is described and an Active Appearance Model with a linear speaker transformation system is used to evaluate the robustness of the verification. An Active Appearance Model (AAM) is used to automatically locate and track a speaker's face in a video recording. A Gaussian Mixture Model (GMM) based classifier (BECARS) is used for face verification. GMM training and testing is accomplished on DCT based extracted features of the detected faces. On the audio side, speech features are extracted and used for speaker verification with the GMM based classifier. Fusion of both audio and video modalities for audio visual speaker verification is compared with face verification and speaker verification systems. To improve the robustness of the multimodal biometric identity verification system, an audio visual imposture system is envisioned. It consists of an automatic voice transformation technique that an impostor may use to assume the identity of an authorized client. Features of the transformed voice are then combined with the corresponding appearance features and fed into the GMM based system BECARS for training. An attempt is made to increase the acceptance rate of the impostor and to analyzing the robustness of the verification system. Experiments are being conducted on the BANCA database, with a prospect of experimenting on the newly developed PDAtabase developed within the scope of the SecurePhone project.
Research on key technology of the verification system of steel rule based on vision measurement
NASA Astrophysics Data System (ADS)
Jia, Siyuan; Wang, Zhong; Liu, Changjie; Fu, Luhua; Li, Yiming; Lu, Ruijun
2018-01-01
The steel rule plays an important role in quantity transmission. However, the traditional verification method of steel rule based on manual operation and reading brings about low precision and low efficiency. A machine vison based verification system of steel rule is designed referring to JJG1-1999-Verificaiton Regulation of Steel Rule [1]. What differentiates this system is that it uses a new calibration method of pixel equivalent and decontaminates the surface of steel rule. Experiments show that these two methods fully meet the requirements of the verification system. Measuring results strongly prove that these methods not only meet the precision of verification regulation, but also improve the reliability and efficiency of the verification system.
Development of a current collection loss management system for SDI homopolar power supplies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D.W.
1989-01-01
High speed, high power density current collection systems have been identified as an enabling technology required to construct homopolar power supplies to meet SDI missions. This work is part of a three-year effort directed towards the analysis, experimental verification, and prototype construction of a current collection system designed to operate continuously at 2 kA/cm{sup 2}, at a rubbing speed of 200 m/s, and with acceptable losses in a space environment. To data, no system has achieved these conditions simultaneously. This is the annual report covering the second year period of performance on DOE contract DE-AC03-86SF16518. Major areas covered include design,more » construction and operation of a cryogenically cooled brush test rig, design and construction of a high speed brush test rig, optimization study for homopolar machines, loss analysis of the current collection system, and an application study which defines the air-core homopolar construction necessary to achieve the goal of 80--90 kW/kg generator power density. 17 figs., 2 tabs.« less
A wireless PDA-based physiological monitoring system for patient transport.
Lin, Yuan-Hsiang; Jan, I-Chien; Ko, Patrick Chow-In; Chen, Yen-Yu; Wong, Jau-Min; Jan, Gwo-Jen
2004-12-01
This paper proposes a mobile patient monitoring system, which integrates current personal digital assistant (PDA) technology and wireless local area network (WLAN) technology. At the patient's location, a wireless PDA-based monitor is used to acquire continuously the patient's vital signs, including heart rate, three-lead electrocardiography, and SpO2. Through the WLAN, the patient's biosignals can be transmitted in real-time to a remote central management unit, and authorized medical staffs can access the data and the case history of the patient, either by the central management unit or the wireless devices. A prototype of this system has been developed and implemented. The system has been evaluated by technical verification, clinical test, and user survey. The evaluation of performance yields a high degree of satisfaction (mean = 4.64, standard deviation--SD = 0.53 in a five-point Likert scale) of users who used the PDA-based system for intrahospital transport. The results also show that the wireless PDA model is superior to the currently used monitors both in mobility and in usability, and is, therefore, better suited to patient transport.
Systematic Model-in-the-Loop Test of Embedded Control Systems
NASA Astrophysics Data System (ADS)
Krupp, Alexander; Müller, Wolfgang
Current model-based development processes offer new opportunities for verification automation, e.g., in automotive development. The duty of functional verification is the detection of design flaws. Current functional verification approaches exhibit a major gap between requirement definition and formal property definition, especially when analog signals are involved. Besides lack of methodical support for natural language formalization, there does not exist a standardized and accepted means for formal property definition as a target for verification planning. This article addresses several shortcomings of embedded system verification. An Enhanced Classification Tree Method is developed based on the established Classification Tree Method for Embeded Systems CTM/ES which applies a hardware verification language to define a verification environment.
NASA Astrophysics Data System (ADS)
Belz, Stefan; Bretschneider, Jens; Nathanson, Emil; Buchert, Melanie
Long-duration and far-distant missions in human spaceflight have higher requirements on life support systems (LSS) technologies than for missions into low Earth orbit (LEO). LSS technologies have to ensure that humans can survive, live, and work in space. Enhancements of existing technologies, new technological developments and synergetic components integration help to close the oxygen, water and carbon loops. For these reasons, the approach of a synergetic integration of Polymer Electrolyte Membrane Fuel Cells (PEFC), Polymer Electrolyte Membrane Electrolyzers (PEL) and Photobioreactors (PBR) for microalgae cultivation into the LSS is investigated. It is demonstrated in which mission scenarii the application of PEFC, PEL, and PBR are useful in terms of mass, reliability, and cycle closures. The paper represents the current status of research at the Institute of Space Systems (IRS) of University of Stuttgart on PEFC, PEL, and PBR development. A final configuration of a prototype of a PEFC system includes the gas, water, and thermal management. The PEL is a state-of-the-art technology for space application, but the specific requirements by a synergetic integration are focused. A prototype configuration of a PBR system, which was tested under microgravity conditions in a parabolic experiment, consists of a highly sophisticated cultivation chamber, adapted sensorics, pumps, nutrients supply and harvesting unit. Additionally, the latest results of the cultivation of the microalgae species Chlorella vulgaris and Scenedesmus obliquus in the laboratories of the IRS are represented. Both species are robust, nutrient-rich for human diet. An outlook of the next steps is given for in-orbit verification.
OPERATING THE WAND AND HERCULES PROTOTYPE SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. GRUETZMACHER; ET AL
2001-01-01
Two prototype systems for low-density Green is Clean (GIC) waste at Los Alamos National Laboratory (LANL) have been in operation for three years at the Solid Waste Operation's (SWOs) non-destructive assay (NDA) building. The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) are used to verify the waste generator's acceptable knowledge (AK) that low-density waste is nonradioactive. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAs) that has been actively segregated as ''clean'' (i.e., nonradioactive) through the use of waste generator AK. GIC waste that is verifiedmore » clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from RCAs at LANL might be free of contamination. To date, with pilot programs at five facilities at LANL, 3000 cubic feet of GIC waste has been verified clean by these two prototype systems. Both the WAND and HERCULES systems are highly sensitive measurement systems optimized to detect very small quantities of common LANL radionuclides. Both of the systems use a set of phoswich scintillation detectors in close proximity to the waste, which have the capability of detecting plutonium-239 concentrations below 3 pCi per gram of low density waste. Both systems detect low-energy x-rays and a broad range of gamma rays (10-2000 keV), while the WAND system also detects high energy beta particles (>100 keV). The WAND system consists of a bank of six shielded detectors which screen low density shredded waste or stacked sheets of paper moving under the detectors in a twelve inch swath on a conveyor belt. The WAND system was developed and tested at the Los Alamos Plutonium Facility in conjunction with instrument system designers from the Los Alamos Safeguards Science and Technology group. The HERCULES system consists of a bank of three shielded detectors which screen low-density waste in two cubic foot cardboard boxes or in bags sitting on a turntable. Waste that does not pass the verification process can be examined within the facility to determine the type and quantity of the contamination and its origin within a waste container. The paper discusses lessons learned that have helped generators improve their AK segregation.« less
Study on verifying the angle measurement performance of the rotary-laser system
NASA Astrophysics Data System (ADS)
Zhao, Jin; Ren, Yongjie; Lin, Jiarui; Yin, Shibin; Zhu, Jigui
2018-04-01
An angle verification method to verify the angle measurement performance of the rotary-laser system was developed. Angle measurement performance has a great impact on measuring accuracy. Although there is some previous research on the verification of angle measuring uncertainty for the rotary-laser system, there are still some limitations. High-precision reference angles are used in the study of the method, and an integrated verification platform is set up to evaluate the performance of the system. This paper also probes the error that has biggest influence on the verification system. Some errors of the verification system are avoided via the experimental method, and some are compensated through the computational formula and curve fitting. Experimental results show that the angle measurement performance meets the requirement for coordinate measurement. The verification platform can evaluate the uncertainty of angle measurement for the rotary-laser system efficiently.
Design and Realization of Controllable Ultrasonic Fault Detector Automatic Verification System
NASA Astrophysics Data System (ADS)
Sun, Jing-Feng; Liu, Hui-Ying; Guo, Hui-Juan; Shu, Rong; Wei, Kai-Li
The ultrasonic flaw detection equipment with remote control interface is researched and the automatic verification system is developed. According to use extensible markup language, the building of agreement instruction set and data analysis method database in the system software realizes the controllable designing and solves the diversification of unreleased device interfaces and agreements. By using the signal generator and a fixed attenuator cascading together, a dynamic error compensation method is proposed, completes what the fixed attenuator does in traditional verification and improves the accuracy of verification results. The automatic verification system operating results confirms that the feasibility of the system hardware and software architecture design and the correctness of the analysis method, while changes the status of traditional verification process cumbersome operations, and reduces labor intensity test personnel.
A Quantitative Approach to the Formal Verification of Real-Time Systems.
1996-09-01
Computer Science A Quantitative Approach to the Formal Verification of Real - Time Systems Sergio Vale Aguiar Campos September 1996 CMU-CS-96-199...ptisiic raieaiSI v Diambimos Lboiamtad _^ A Quantitative Approach to the Formal Verification of Real - Time Systems Sergio Vale Aguiar Campos...implied, of NSF, the Semiconduc- tor Research Corporation, ARPA or the U.S. government. Keywords: real - time systems , formal verification, symbolic
NASA Astrophysics Data System (ADS)
Sakamoto, Yasuaki; Kashiwagi, Takayuki; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo
The eddy current rail brake is a type of braking system used in railway vehicles. Because of problems such as rail heating and problems associated with ensuring that power is supplied when the feeder malfunctions, this braking system has not been used for practical applications in Japan. Therefore, we proposed the use of linear induction motor (LIM) technology in eddy current rail brake systems. The LIM rail brake driven by dynamic braking can reduce rail heating and generate the energy required for self-excitation. In this paper, we present an excitation system and control method for the LIM rail brake driven by “dynamic braking with zero electrical output”. The proposed system is based on the concept that the LIM rail brake can be energized without using excitation power sources such as a feeder circuit and that high reliability can be realized by providing an independent excitation system. We have studied this system and conducted verification tests using a prototype LIM rail brake on a roller rig. The results show that the system performance is adequate for commercializing the proposed system, in which the LIM rail brake is driven without using any excitation power source.
NASA Astrophysics Data System (ADS)
Minakuchi, Shu; Tsukamoto, Haruka; Takeda, Nobuo
2009-03-01
This study proposes novel hierarchical sensing concept for detecting damages in composite structures. In the hierarchical system, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with the optical fiber network through transducing mechanisms. The distributed "sensory nerve cell" devices detect the damage, and the fiber optic "spinal cord" network gathers damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of the hierarchical sensing system thorough comparison with existing fiber optic based systems and nerve systems in the animal kingdom. Then, in order to validate the proposed sensing concept, impact damage detection system for the composite structure was proposed. The sensor devices were developed based on Comparative Vacuum Monitoring (CVM) system and the Brillouin based distributed strain sensing was utilized to gather the damage signals from the distributed devices. Finally a verification test was conducted using prototype devices. Occurrence of barely visible impact damage was successfully detected and it was clearly indicated that the hierarchical system has better repairability, higher robustness, and wider monitorable area compared to existing systems utilizing embedded optical fiber sensors.
Using SysML for verification and validation planning on the Large Synoptic Survey Telescope (LSST)
NASA Astrophysics Data System (ADS)
Selvy, Brian M.; Claver, Charles; Angeli, George
2014-08-01
This paper provides an overview of the tool, language, and methodology used for Verification and Validation Planning on the Large Synoptic Survey Telescope (LSST) Project. LSST has implemented a Model Based Systems Engineering (MBSE) approach as a means of defining all systems engineering planning and definition activities that have historically been captured in paper documents. Specifically, LSST has adopted the Systems Modeling Language (SysML) standard and is utilizing a software tool called Enterprise Architect, developed by Sparx Systems. Much of the historical use of SysML has focused on the early phases of the project life cycle. Our approach is to extend the advantages of MBSE into later stages of the construction project. This paper details the methodology employed to use the tool to document the verification planning phases, including the extension of the language to accommodate the project's needs. The process includes defining the Verification Plan for each requirement, which in turn consists of a Verification Requirement, Success Criteria, Verification Method(s), Verification Level, and Verification Owner. Each Verification Method for each Requirement is defined as a Verification Activity and mapped into Verification Events, which are collections of activities that can be executed concurrently in an efficient and complementary way. Verification Event dependency and sequences are modeled using Activity Diagrams. The methodology employed also ties in to the Project Management Control System (PMCS), which utilizes Primavera P6 software, mapping each Verification Activity as a step in a planned activity. This approach leads to full traceability from initial Requirement to scheduled, costed, and resource loaded PMCS task-based activities, ensuring all requirements will be verified.
NASA Technical Reports Server (NTRS)
1978-01-01
The verification process and requirements for the ascent guidance interfaces and the ascent integrated guidance, navigation and control system for the space shuttle orbiter are defined as well as portions of supporting systems which directly interface with the system. The ascent phase of verification covers the normal and ATO ascent through the final OMS-2 circularization burn (all of OPS-1), the AOA ascent through the OMS-1 burn, and the RTLS ascent through ET separation (all of MM 601). In addition, OPS translation verification is defined. Verification trees and roadmaps are given.
New lumbar disc endoprosthesis applied to the patient's anatomic features.
Mróz, Adrian; Skalski, Konstanty; Walczyk, Wojciech
2015-01-01
The paper describes the process of designing, manufacturing and design verification of the intervertebral of a new structure of lumbar disc endoprosthesis - INOP/LSP.1101. Modern and noninvasive medical imagining techniques, make it possible to record results of tests in a digital form, which creates opportunities for further processing. Mimics Innovation Suite software generates three-dimensional virtual models reflecting the real shape and measurements of components of L4-L5 spinal motion segment. With the use of 3D Print technique, physical models of bone structures of the mobile segment of the spine as well as the INOP/LSP.1101 endoprosthesis model were generated. A simplified FEA analysis of stresses in the endoprosthesis was performed to evaluate the designed geometries and materials of the new structure. The endoprosthesis prototype was made of Co28Cr6Mo alloy with the use of selective laser technology. The prototypes were subject to tribological verification with the use of the SBT-03.1 spine simulator. The structure of the endoprosthesis ensures a full reflection of its kinematics, full range of mobility of the motion segment in all anatomical planes as well as restoration of a normal height of the intervertebral space and curvature of the lordosis. The results of the tribological tests confirmed that SLM technology has the potential for production of the human bone and jointendoprostheses.
Manned spacecraft electrical power systems
NASA Technical Reports Server (NTRS)
Simon, William E.; Nored, Donald L.
1987-01-01
A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.
CCSDS SOIS Subnetwork Services: A First Reference Implementation
NASA Astrophysics Data System (ADS)
Gunes-Lasnet, S.; Notebaert, O.; Farges, P.-Y.; Fowell, S.
2008-08-01
The CCSDS SOIS working groups are developing a range of standards for spacecraft onboard interfaces with the intention of promoting reuse of hardware and software designs across a range of missions while enabling interoperability of onboard systems from diverse sources. The CCSDS SOIS working groups released in June 2007 their red books for both Subnetwork and application support layers. In order to allow the verification of these recommended standards and to pave the way for future implementation onboard spacecrafts, it is essential for these standards to be prototyped on a representative spacecraft platform, to provide valuable feed back to the SOIS working group. A first reference implementation of both Subnetwork and Application Support SOIS services over SpaceWire and Mil-Std-1553 bus is thus being realised by SciSys Ltd and Astrium under an ESA contract.
Space shuttle OMS helium regulator design and development
NASA Technical Reports Server (NTRS)
Wichmann, H.; Kelly, T. L.; Lynch, R.
1974-01-01
Analysis, design, fabrication and design verification testing was conducted on the technological feasiblity of the helium pressurization regulator for the space shuttle orbital maneuvering system application. A prototype regulator was fabricated which was a single-stage design featuring the most reliable and lowest cost concept. A tradeoff study on regulator concepts indicated that a single-stage regulator with a lever arm between the valve and the actuator section would offer significant weight savings. Damping concepts were tested to determine the amount of damping required to restrict actuator travel during vibration. Component design parameters such as spring rates, effective area, contamination cutting, and damping were determined by test prior to regulator final assembly. The unit was subjected to performance testing at widely ranging flow rates, temperatures, inlet pressures, and random vibration levels. A test plan for propellant compatibility and extended life tests is included.
An Efficient Universal Trajectory Language
NASA Technical Reports Server (NTRS)
Hagen, George E.; Guerreiro, Nelson M.; Maddalon, Jeffrey M.; Butler, Ricky W.
2017-01-01
The Efficient Universal Trajectory Language (EUTL) is a language for specifying and representing trajectories for Air Traffic Management (ATM) concepts such as Trajectory-Based Operations (TBO). In these concepts, the communication of a trajectory between an aircraft and ground automation is fundamental. Historically, this trajectory exchange has not been done, leading to trajectory definitions that have been centered around particular application domains and, therefore, are not well suited for TBO applications. The EUTL trajectory language has been defined in the Prototype Verification System (PVS) formal specification language, which provides an operational semantics for the EUTL language. The hope is that EUTL will provide a foundation for mathematically verified algorithms that manipulate trajectories. Additionally, the EUTL language provides well-defined methods to unambiguously determine position and velocity information between the reported trajectory points. In this paper, we present the EUTL trajectory language in mathematical detail.
ESAS Deliverable PS 1.1.2.3: Customer Survey on Code Generations in Safety-Critical Applications
NASA Technical Reports Server (NTRS)
Schumann, Johann; Denney, Ewen
2006-01-01
Automated code generators (ACG) are tools that convert a (higher-level) model of a software (sub-)system into executable code without the necessity for a developer to actually implement the code. Although both commercially supported and in-house tools have been used in many industrial applications, little data exists on how these tools are used in safety-critical domains (e.g., spacecraft, aircraft, automotive, nuclear). The aims of the survey, therefore, were threefold: 1) to determine if code generation is primarily used as a tool for prototyping, including design exploration and simulation, or for fiight/production code; 2) to determine the verification issues with code generators relating, in particular, to qualification and certification in safety-critical domains; and 3) to determine perceived gaps in functionality of existing tools.
NASA Technical Reports Server (NTRS)
Alexander, R. H. (Principal Investigator); Deforth, P. W.; Fitzpatrick, K. A.; Lins, H. F., Jr.; Mcginty, H. K., III
1975-01-01
The author has identified the following significant results. Level 2 land use mapping from high altitude aircraft photography at a scale of 1:100,000 required production of a photomosaic mapping base for each of the 48, 50 x 50 km sheets, and the interpretation and coding of land use polygons on drafting film overlays. To enhance the value of the land use sheets, a series of overlays was compiled, showing cultural features, county boundaries and census tracts, surface geology, and drainage basins. In producing level 1 land use maps from LANDSAT imagery, at a scale of 1:250,000 drafting film was directly overlaid on LANDSAT color composite transparencies. Numerous areas of change were identified, but extensive areas of false changes were also noted.
Antoniotti, M; Park, F; Policriti, A; Ugel, N; Mishra, B
2003-01-01
The analysis of large amounts of data, produced as (numerical) traces of in vivo, in vitro and in silico experiments, has become a central activity for many biologists and biochemists. Recent advances in the mathematical modeling and computation of biochemical systems have moreover increased the prominence of in silico experiments; such experiments typically involve the simulation of sets of Differential Algebraic Equations (DAE), e.g., Generalized Mass Action systems (GMA) and S-systems. In this paper we reason about the necessary theoretical and pragmatic foundations for a query and simulation system capable of analyzing large amounts of such trace data. To this end, we propose to combine in a novel way several well-known tools from numerical analysis (approximation theory), temporal logic and verification, and visualization. The result is a preliminary prototype system: simpathica/xssys. When dealing with simulation data simpathica/xssys exploits the special structure of the underlying DAE, and reduces the search space in an efficient way so as to facilitate any queries about the traces. The proposed system is designed to give the user possibility to systematically analyze and simultaneously query different possible timed evolutions of the modeled system.
Verifying Stability of Dynamic Soft-Computing Systems
NASA Technical Reports Server (NTRS)
Wen, Wu; Napolitano, Marcello; Callahan, John
1997-01-01
Soft computing is a general term for algorithms that learn from human knowledge and mimic human skills. Example of such algorithms are fuzzy inference systems and neural networks. Many applications, especially in control engineering, have demonstrated their appropriateness in building intelligent systems that are flexible and robust. Although recent research have shown that certain class of neuro-fuzzy controllers can be proven bounded and stable, they are implementation dependent and difficult to apply to the design and validation process. Many practitioners adopt the trial and error approach for system validation or resort to exhaustive testing using prototypes. In this paper, we describe our on-going research towards establishing necessary theoretic foundation as well as building practical tools for the verification and validation of soft-computing systems. A unified model for general neuro-fuzzy system is adopted. Classic non-linear system control theory and recent results of its applications to neuro-fuzzy systems are incorporated and applied to the unified model. It is hoped that general tools can be developed to help the designer to visualize and manipulate the regions of stability and boundedness, much the same way Bode plots and Root locus plots have helped conventional control design and validation.
NASA Astrophysics Data System (ADS)
Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.
2017-11-01
The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.
Verification test report on a solar heating and hot water system
NASA Technical Reports Server (NTRS)
1978-01-01
Information is provided on the development, qualification and acceptance verification of commercial solar heating and hot water systems and components. The verification includes the performances, the efficiences and the various methods used, such as similarity, analysis, inspection, test, etc., that are applicable to satisfying the verification requirements.
46 CFR 61.40-3 - Design verification testing.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Design verification testing. 61.40-3 Section 61.40-3... INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-3 Design verification testing. (a) Tests must verify that automated vital systems are designed, constructed, and operate in...
Towards composition of verified hardware devices
NASA Technical Reports Server (NTRS)
Schubert, E. Thomas; Levitt, K.; Cohen, G. C.
1991-01-01
Computers are being used where no affordable level of testing is adequate. Safety and life critical systems must find a replacement for exhaustive testing to guarantee their correctness. Through a mathematical proof, hardware verification research has focused on device verification and has largely ignored system composition verification. To address these deficiencies, we examine how the current hardware verification methodology can be extended to verify complete systems.
SAFEGUARD: An Assured Safety Net Technology for UAS
NASA Technical Reports Server (NTRS)
Dill, Evan T.; Young, Steven D.; Hayhurst, Kelly J.
2016-01-01
As demands increase to use unmanned aircraft systems (UAS) for a broad spectrum of commercial applications, regulatory authorities are examining how to safely integrate them without loss of safety or major disruption to existing airspace operations. This work addresses the development of the Safeguard system as an assured safety net technology for UAS. The Safeguard system monitors and enforces conformance to a set of rules defined prior to flight (e.g., geospatial stay-out or stay-in regions, speed limits, altitude limits). Safeguard operates independently of the UAS autopilot and is strategically designed in a way that can be realized by a small set of verifiable functions to simplify compliance with regulatory standards for commercial aircraft. A framework is described that decouples the system from any other devices on the UAS as well as introduces complementary positioning source(s) for applications that require integrity and availability beyond what the Global Positioning System (GPS) can provide. Additionally, the high level logic embedded within the software is presented, as well as the steps being taken toward verification and validation (V&V) of proper functionality. Next, an initial prototype implementation of the described system is disclosed. Lastly, future work including development, testing, and system V&V is summarized.
Temporal Specification and Verification of Real-Time Systems.
1991-08-30
of concrete real - time systems can be modeled adequately. Specification: We present two conservative extensions of temporal logic that allow for the...logic. We present both model-checking algorithms for the automatic verification of finite-state real - time systems and proof methods for the deductive verification of real - time systems .
78 FR 22522 - Privacy Act of 1974: New System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-16
... Privacy Act of 1974 (5 U.S.C. 552a), as amended, titled ``Biometric Verification System (CSOSA-20).'' This... Biometric Verification System allows individuals under supervision to electronically check-in for office... determination. ADDRESSES: You may submit written comments, identified by ``Biometric Verification System, CSOSA...
Comparison of Fiber Optic Strain Demodulation Implementations
NASA Technical Reports Server (NTRS)
Quach, Cuong C.; Vazquez, Sixto L.
2005-01-01
NASA Langley Research Center is developing instrumentation based upon principles of Optical Frequency-Domain Reflectometry (OFDR) for the provision of large-scale, dense distribution of strain sensors using fiber optics embedded with Bragg gratings. Fiber Optic Bragg Grating technology enables the distribution of thousands of sensors immune to moisture and electromagnetic interference with negligible weight penalty. At Langley, this technology provides a key component for research and development relevant to comprehensive aerospace vehicle structural health monitoring. A prototype system is under development that includes hardware and software necessary for the acquisition of data from an optical network and conversion of the data into strain measurements. This report documents the steps taken to verify the software that implements the algorithm for calculating the fiber strain. Brief descriptions of the strain measurement system and the test article are given. The scope of this report is the verification of software implementations as compared to a reference model. The algorithm will be detailed along with comparison results.
Using Formal Methods to Assist in the Requirements Analysis of the Space Shuttle GPS Change Request
NASA Technical Reports Server (NTRS)
DiVito, Ben L.; Roberts, Larry W.
1996-01-01
We describe a recent NASA-sponsored pilot project intended to gauge the effectiveness of using formal methods in Space Shuttle software requirements analysis. Several Change Requests (CR's) were selected as promising targets to demonstrate the utility of formal methods in this application domain. A CR to add new navigation capabilities to the Shuttle, based on Global Positioning System (GPS) technology, is the focus of this report. Carried out in parallel with the Shuttle program's conventional requirements analysis process was a limited form of analysis based on formalized requirements. Portions of the GPS CR were modeled using the language of SRI's Prototype Verification System (PVS). During the formal methods-based analysis, numerous requirements issues were discovered and submitted as official issues through the normal requirements inspection process. Shuttle analysts felt that many of these issues were uncovered earlier than would have occurred with conventional methods. We present a summary of these encouraging results and conclusions we have drawn from the pilot project.
A Formal Model of Partitioning for Integrated Modular Avionics
NASA Technical Reports Server (NTRS)
DiVito, Ben L.
1998-01-01
The aviation industry is gradually moving toward the use of integrated modular avionics (IMA) for civilian transport aircraft. An important concern for IMA is ensuring that applications are safely partitioned so they cannot interfere with one another. We have investigated the problem of ensuring safe partitioning and logical non-interference among separate applications running on a shared Avionics Computer Resource (ACR). This research was performed in the context of ongoing standardization efforts, in particular, the work of RTCA committee SC-182, and the recently completed ARINC 653 application executive (APEX) interface standard. We have developed a formal model of partitioning suitable for evaluating the design of an ACR. The model draws from the mathematical modeling techniques developed by the computer security community. This report presents a formulation of partitioning requirements expressed first using conventional mathematical notation, then formalized using the language of SRI'S Prototype Verification System (PVS). The approach is demonstrated on three candidate designs, each an abstraction of features found in real systems.
Applying Content Management to Automated Provenance Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuchardt, Karen L.; Gibson, Tara D.; Stephan, Eric G.
2008-04-10
Workflows and data pipelines are becoming increasingly valuable in both computational and experimen-tal sciences. These automated systems are capable of generating significantly more data within the same amount of time than their manual counterparts. Automatically capturing and recording data prove-nance and annotation as part of these workflows is critical for data management, verification, and dis-semination. Our goal in addressing the provenance challenge was to develop and end-to-end system that demonstrates real-time capture, persistent content management, and ad-hoc searches of both provenance and metadata using open source software and standard protocols. We describe our prototype, which extends the Kepler workflow toolsmore » for the execution environment, the Scientific Annotation Middleware (SAM) content management software for data services, and an existing HTTP-based query protocol. Our implementation offers several unique capabilities, and through the use of standards, is able to pro-vide access to the provenance record to a variety of commonly available client tools.« less
NASA Astrophysics Data System (ADS)
Lai, A.
2018-01-01
PASTA is the 64 channel front-end chip, designed in a 110 nm CMOS technology to read out the strip sensors of the Micro Vertex Detector (MVD) of the PANDA experiment. This chip provides high resolution timestamp and deposited charge information by means of the time-over-threshold technique. Its working principle is based on a predecessor, the TOFPET ASIC, that was designed for medical applications. A general restructuring of the architecture was needed, in order to meet the specific requirements imposed by the physics programme of PANDA, especially in terms of radiation tolerance, spatial constraints, and readout in absence of a first level hardware trigger. The first revision of PASTA is currently under evaluation at the Forschungszentrum Jülich, where a data acquisition system dedicated to the MVD prototypes has been developed. This paper describes the main aspect of the chip design, gives an overview of the data acquisition system used for the verification, and shows the first results regarding the performance of PASTA.
Free-free and fixed base modal survey tests of the Space Station Common Module Prototype
NASA Technical Reports Server (NTRS)
Driskill, T. C.; Anderson, J. B.; Coleman, A. D.
1992-01-01
This paper describes the testing aspects and the problems encountered during the free-free and fixed base modal surveys completed on the original Space Station Common Module Prototype (CMP). The CMP is a 40-ft long by 14.5-ft diameter 'waffle-grid' cylinder built by the Boeing Company and housed at the Marshall Space Flight Center (MSFC) near Huntsville, AL. The CMP modal survey tests were conducted at MSFC by the Dynamics Test Branch. The free-free modal survey tests (June '90 to Sept. '90) included interface verification tests (IFVT), often referred to as impedance measurements, mass-additive testing and linearity studies. The fixed base modal survey tests (Feb. '91 to April '91), including linearity studies, were conducted in a fixture designed to constrain the CMP in 7 total degrees-of-freedom at five trunnion interfaces (two primary, two secondary, and the keel). The fixture also incorporated an airbag off-load system designed to alleviate the non-linear effects of friction in the primary and secondary trunnion interfaces. Numerous test configurations were performed with the objective of providing a modal data base for evaluating the various testing methodologies to verify dynamic finite element models used for input to coupled load analysis.
Rapid Prototyping of a Smart Device-based Wireless Reflectance Photoplethysmograph
Ghamari, M.; Aguilar, C.; Soltanpur, C.; Nazeran, H.
2017-01-01
This paper presents the design, fabrication, and testing of a wireless heart rate (HR) monitoring device based on photoplethysmography (PPG) and smart devices. PPG sensors use infrared (IR) light to obtain vital information to assess cardiac health and other physiologic conditions. The PPG data that are transferred to a computer undergo further processing to derive the Heart Rate Variability (HRV) signal, which is analyzed to generate quantitative markers of the Autonomic Nervous System (ANS). The HRV signal has numerous monitoring and diagnostic applications. To this end, wireless connectivity plays an important role in such biomedical instruments. The photoplethysmograph consists of an optical sensor to detect the changes in the light intensity reflected from the illuminated tissue, a signal conditioning unit to prepare the reflected light for further signal conditioning through amplification and filtering, a low-power microcontroller to control and digitize the analog PPG signal, and a Bluetooth module to transmit the digital data to a Bluetooth-based smart device such as a tablet. An Android app is then used to enable the smart device to acquire and digitally display the received analog PPG signal in real-time on the smart device. This article is concluded with the prototyping of the wireless PPG followed by the verification procedures of the PPG and HRV signals acquired in a laboratory environment. PMID:28959119
Rapid Prototyping of a Smart Device-based Wireless Reflectance Photoplethysmograph.
Ghamari, M; Aguilar, C; Soltanpur, C; Nazeran, H
2016-03-01
This paper presents the design, fabrication, and testing of a wireless heart rate (HR) monitoring device based on photoplethysmography (PPG) and smart devices. PPG sensors use infrared (IR) light to obtain vital information to assess cardiac health and other physiologic conditions. The PPG data that are transferred to a computer undergo further processing to derive the Heart Rate Variability (HRV) signal, which is analyzed to generate quantitative markers of the Autonomic Nervous System (ANS). The HRV signal has numerous monitoring and diagnostic applications. To this end, wireless connectivity plays an important role in such biomedical instruments. The photoplethysmograph consists of an optical sensor to detect the changes in the light intensity reflected from the illuminated tissue, a signal conditioning unit to prepare the reflected light for further signal conditioning through amplification and filtering, a low-power microcontroller to control and digitize the analog PPG signal, and a Bluetooth module to transmit the digital data to a Bluetooth-based smart device such as a tablet. An Android app is then used to enable the smart device to acquire and digitally display the received analog PPG signal in real-time on the smart device. This article is concluded with the prototyping of the wireless PPG followed by the verification procedures of the PPG and HRV signals acquired in a laboratory environment.
Long-term flow monitoring of submarine gas emanations
NASA Astrophysics Data System (ADS)
Spickenbom, K.; Faber, E.; Poggenburg, J.; Seeger, C.
2009-04-01
One of the Carbon Capture and Storage (CCS) strategies currently under study is the sequestration of CO2 in sub-seabed geological formations. Even after a thorough review of the geological setting, there is the possibility of leaks from the reservoirs. As part of the EU-financed project CO2ReMoVe (Research, Monitoring, Verification), which aims to develop innovative research and technologies for monitoring and verification of carbon dioxide geological storage, we are working on the development of submarine long-term gas flow monitoring systems. Technically, however, these systems are not limited to CO2 but can be used for monitoring of any free gas emission (bubbles) on the seafloor. The basic design of the gas flow sensor system was derived from former prototypes developed for monitoring CO2 and CH4 on mud volcanoes in Azerbaijan. This design was composed of a raft floating on the surface above the gas vent to collect the bubbles. Sensors for CO2 flux and concentration and electronics for data storage and transmission were mounted on the raft, together with battery-buffered solar panels for power supply. The system was modified for installation in open sea by using a buoy instead of a raft and a funnel on the seafloor to collect the gas, which is then guided above water level through a flexible tube. Besides some technical problems (condensed water in the tube, movement of the buoys due to waves leading to biased measurement of flow rates), this setup provides a cost-effective solution for shallow waters. However, a buoy interferes with ship traffic, and it is also difficult to adapt this design to greater water depths. These requirements can best be complied by a completely submersed system. To allow unattended long-term monitoring in a submarine environment, such a system has to be extremely durable. Therefore, we focussed on developing a mechanically and electrically as simple setup as possible, which has the additional advantage of low cost. The system consists of gas collector, sensor head and pressure housing for electronics and power supply. The collector is a plastic funnel, enclosed in a stainless-steel frame to add weight and stability. The whole unit is fixed to the sediment by nails or sediment screws. The sensor head is equipped with an "inverted tipping-bucket" sensor, which basically works like a turned upside-down rain gauge. It fills with the collected gas until full, then empties completely and starts again, which allows the calculation of the flow rate by container volume and frequency of the cycle. This sensor type is very robust due to a design nearly without moving parts and suitable for very low to medium flow rates. For higher flow rates different sensor heads using turbine wheels or pressure differences can be used. The pressure housing for this prototype is made of aluminium and contains a Hobo Pendant data logger with integrated battery supply. Since this setup is inexpensive, it can be deployed in numbers to cover larger areas. By addition of multi-channel data loggers, data transmission by acoustic modem or cable, relay stations on the seafloor or buoys etc. the infrastructure can be adapted to the environmental setting and financial budget. Prototype tests under laboratory conditions as well as field tests on natural submarine gas vents as an analogue to leaking storage sites have demonstrated the capabilities and robustness of the systems.
Verification of Functional Fault Models and the Use of Resource Efficient Verification Tools
NASA Technical Reports Server (NTRS)
Bis, Rachael; Maul, William A.
2015-01-01
Functional fault models (FFMs) are a directed graph representation of the failure effect propagation paths within a system's physical architecture and are used to support development and real-time diagnostics of complex systems. Verification of these models is required to confirm that the FFMs are correctly built and accurately represent the underlying physical system. However, a manual, comprehensive verification process applied to the FFMs was found to be error prone due to the intensive and customized process necessary to verify each individual component model and to require a burdensome level of resources. To address this problem, automated verification tools have been developed and utilized to mitigate these key pitfalls. This paper discusses the verification of the FFMs and presents the tools that were developed to make the verification process more efficient and effective.
Circulation of spoof surface plasmon polaritons: Implementation and verification
NASA Astrophysics Data System (ADS)
Pan, Junwei; Wang, Jiafu; Qiu, Tianshuo; Pang, Yongqiang; Li, Yongfeng; Zhang, Jieqiu; Qu, Shaobo
2018-05-01
In this letter, we are dedicated to implementation and experimental verification of broadband circulator for spoof surface plasmon polaritons (SSPPs). For the ease of fabrication, a circulator operating in X band was firstly designed. The comb-like transmission lines (CL-TLs), a typical SSPP structure, are adopted as the three branches of the Y-junction. To enable broadband coupling of SSPP, a transition section is added on each end of the CL-TLs. Through such a design, the circulator can operate under the sub-wavelength SSPP mode in a broad band. The simulation results show that the insertion loss is less than 0.5dB while the isolation and return loss are higher than 20dB in 9.4-12.0GHz. A prototype was fabricated and measured. The experimental results are consistent with the simulation results and verify the broadband circulation performance in X band.
An Integrated Environment for Efficient Formal Design and Verification
NASA Technical Reports Server (NTRS)
1998-01-01
The general goal of this project was to improve the practicality of formal methods by combining techniques from model checking and theorem proving. At the time the project was proposed, the model checking and theorem proving communities were applying different tools to similar problems, but there was not much cross-fertilization. This project involved a group from SRI that had substantial experience in the development and application of theorem-proving technology, and a group at Stanford that specialized in model checking techniques. Now, over five years after the proposal was submitted, there are many research groups working on combining theorem-proving and model checking techniques, and much more communication between the model checking and theorem proving research communities. This project contributed significantly to this research trend. The research work under this project covered a variety of topics: new theory and algorithms; prototype tools; verification methodology; and applications to problems in particular domains.
HDM/PASCAL Verification System User's Manual
NASA Technical Reports Server (NTRS)
Hare, D.
1983-01-01
The HDM/Pascal verification system is a tool for proving the correctness of programs written in PASCAL and specified in the Hierarchical Development Methodology (HDM). This document assumes an understanding of PASCAL, HDM, program verification, and the STP system. The steps toward verification which this tool provides are parsing programs and specifications, checking the static semantics, and generating verification conditions. Some support functions are provided such as maintaining a data base, status management, and editing. The system runs under the TOPS-20 and TENEX operating systems and is written in INTERLISP. However, no knowledge is assumed of these operating systems or of INTERLISP. The system requires three executable files, HDMVCG, PARSE, and STP. Optionally, the editor EMACS should be on the system in order for the editor to work. The file HDMVCG is invoked to run the system. The files PARSE and STP are used as lower forks to perform the functions of parsing and proving.
High Pressure Regenerative Turbine Engine: 21st Century Propulsion
NASA Technical Reports Server (NTRS)
Lear, W. E.; Laganelli, A. L.; Senick, Paul (Technical Monitor)
2001-01-01
A novel semi-closed cycle gas turbine engine was demonstrated and was found to meet the program goals. The proof-of-principle test of the High Pressure Regenerative Turbine Engine produced data that agreed well with models, enabling more confidence in designing future prototypes based on this concept. Emission levels were significantly reduced as predicted as a natural attribute of this power cycle. Engine testing over a portion of the operating range allowed verification of predicted power increases compared to the baseline.
Z-2 Architecture Description and Requirements Verification Results
NASA Technical Reports Server (NTRS)
Graziosi, Dave; Jones, Bobby; Ferl, Jinny; Scarborough, Steve; Hewes, Linda; Ross, Amy; Rhodes, Richard
2016-01-01
The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z series of spacesuits. The Z-2 is another step in NASA's technology development roadmap leading to human exploration of the Martian surface. The suit was designed for maximum mobility at 8.3 psid, reduced mass, and to have high fidelity life support interfaces. As Z-2 will be man-tested at full vacuum in NASA JSC's Chamber B, it was manufactured as Class II, making it the most flight-like planetary walking suit produced to date. The Z-2 suit architecture is an evolution of previous EVA suits, namely the ISS EMU, Mark III, Rear Entry I-Suit and Z-1 spacesuits. The suit is a hybrid hard and soft multi-bearing, rear entry spacesuit. The hard upper torso (HUT) is an all-composite structure and includes a 2-bearing rolling convolute shoulder with Vernier sizing mechanism, removable suit port interface plate (SIP), elliptical hemispherical helmet and self-don/doff shoulder harness. The hatch is a hybrid aluminum and composite construction with Apollo style gas connectors, custom water pass-thru, removable hatch cage and interfaces to primary and auxiliary life support feed water bags. The suit includes Z-1 style lower arms with cam brackets for Vernier sizing and government furnished equipment (GFE) Phase VI gloves. The lower torso includes a telescopic waist sizing system, waist bearing, rolling convolute waist joint, hard brief, 2 bearing soft hip thigh, Z-1 style legs with ISS EMU style cam brackets for sizing, and conformal walking boots with ankle bearings. The Z-2 Requirements Verification Plan includes the verification of more than 200 individual requirements. The verification methods include test, analysis, inspection, demonstration or a combination of methods. Examples of unmanned requirements include suit leakage, proof pressure testing, operational life, mass, isometric man-loads, sizing adjustment ranges, internal and external interfaces such as in-suit drink bag, partial pressure relief valve, purge valve, donning stand and ISS Body Restraint Tether (BRT). Examples of manned requirements include verification of anthropometric range, suit self-don/doff, secondary suit exit method, donning stand self-ingress/egress and manned mobility covering eight functional tasks. The eight functional tasks include kneeling with object pick-up, standing toe touch, cross-body reach, walking, reach to the SIP and helmet visor. This paper will provide an overview of the Z-2 design. Z-2 requirements verification testing was performed with NASA at the ILC Houston test facility. This paper will also discuss pre-delivery manned and unmanned test results as well as analysis performed in support of requirements verification.
NASA Technical Reports Server (NTRS)
Martinez, Pedro A.; Dunn, Kevin W.
1987-01-01
This paper examines the fundamental problems and goals associated with test, verification, and flight-certification of man-rated distributed data systems. First, a summary of the characteristics of modern computer systems that affect the testing process is provided. Then, verification requirements are expressed in terms of an overall test philosophy for distributed computer systems. This test philosophy stems from previous experience that was gained with centralized systems (Apollo and the Space Shuttle), and deals directly with the new problems that verification of distributed systems may present. Finally, a description of potential hardware and software tools to help solve these problems is provided.
Performance verification testing of the Arkal Pressurized Stormwater Filtration System was conducted under EPA's Environmental Technology Verification Program on a 5.5-acre parking lot and grounds of St. Mary's Hospital in Milwaukee, Wisconsin. The system consists of a water sto...
Interpreter composition issues in the formal verification of a processor-memory module
NASA Technical Reports Server (NTRS)
Fura, David A.; Cohen, Gerald C.
1994-01-01
This report describes interpreter composition techniques suitable for the formal specification and verification of a processor-memory module using the HOL theorem proving system. The processor-memory module is a multichip subsystem within a fault-tolerant embedded system under development within the Boeing Defense and Space Group. Modeling and verification methods were developed that permit provably secure composition at the transaction-level of specification, significantly reducing the complexity of the hierarchical verification of the system.
SNDR Limits of Oscillator-Based Sensor Readout Circuits.
Cardes, Fernando; Quintero, Andres; Gutierrez, Eric; Buffa, Cesare; Wiesbauer, Andreas; Hernandez, Luis
2018-02-03
This paper analyzes the influence of phase noise and distortion on the performance of oscillator-based sensor data acquisition systems. Circuit noise inherent to the oscillator circuit manifests as phase noise and limits the SNR. Moreover, oscillator nonlinearity generates distortion for large input signals. Phase noise analysis of oscillators is well known in the literature, but the relationship between phase noise and the SNR of an oscillator-based sensor is not straightforward. This paper proposes a model to estimate the influence of phase noise in the performance of an oscillator-based system by reflecting the phase noise to the oscillator input. The proposed model is based on periodic steady-state analysis tools to predict the SNR of the oscillator. The accuracy of this model has been validated by both simulation and experiment in a 130 nm CMOS prototype. We also propose a method to estimate the SNDR and the dynamic range of an oscillator-based readout circuit that improves by more than one order of magnitude the simulation time compared to standard time domain simulations. This speed up enables the optimization and verification of this kind of systems with iterative algorithms.
Design and testing of the reactor-internal hydraulic control rod drive for the nuclear heating plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batheja, P.; Meier, W.J.; Rau, P.J.
A hydraulically driven control rod is being developed at Kraftwerk Union for integration in the primary system of a small nuclear district heating reactor. An elaborate test program, under way for --3 yr, was initiated with a plexiglass rig to understand the basic principles. A design specification list was prepared, taking reactor boundary conditions and relevant German rules and regulations into account. Subsequently, an atmospheric loop for testing of components at 20 to 90/sup 0/C was erected. The objectives involved optimization of individual components such as a piston/cylinder drive unit, electromagnetic valves, and an ultrasonic position indication system as wellmore » as verification of computer codes. Based on the results obtained, full-scale components were designed and fabricated for a prototype test rig, which is currently in operation. Thus far, all atmospheric tests in this rig have been completed. Investigations under reactor temperature and pressure, followed by endurance tests, are under way. All tests to date have shown a reliable functioning of the hydraulic drive, including a novel ultrasonic position indication system.« less
Formal verification of medical monitoring software using Z language: a representative sample.
Babamir, Seyed Morteza; Borhani, Mehdi
2012-08-01
Medical monitoring systems are useful aids assisting physicians in keeping patients under constant surveillance; however, taking sound decision by the systems is a physician concern. As a result, verification of the systems behavior in monitoring patients is a matter of significant. The patient monitoring is undertaken by software in modern medical systems; so, software verification of modern medial systems have been noticed. Such verification can be achieved by the Formal Languages having mathematical foundations. Among others, the Z language is a suitable formal language has been used to formal verification of systems. This study aims to present a constructive method to verify a representative sample of a medical system by which the system is visually specified and formally verified against patient constraints stated in Z Language. Exploiting our past experience in formal modeling Continuous Infusion Insulin Pump (CIIP), we think of the CIIP system as a representative sample of medical systems in proposing our present study. The system is responsible for monitoring diabetic's blood sugar.
Software Tools for Formal Specification and Verification of Distributed Real-Time Systems.
1997-09-30
set of software tools for specification and verification of distributed real time systems using formal methods. The task of this SBIR Phase II effort...to be used by designers of real - time systems for early detection of errors. The mathematical complexity of formal specification and verification has
47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... verified either by field strength measurement or by computer modeling and sampling system verification. (a... specifically identified by the Commission. (c) Computer modeling and sample system verification of modeled... performance verified by computer modeling and sample system verification. (1) A matrix of impedance...
This report is a product of the U.S. EPA's Environmental Technoloy Verification (ETV) Program and is focused on the Smart Sonics Ultrasonic Aqueous Cleaning Systems. The verification is based on three main objectives. (1) The Smart Sonic Aqueous Cleaning Systems, Model 2000 and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-03-01
The certification and verification of the Northrup Model NSC-01-0732 Fresnel lens tracking solar collector are presented. A certification statement is included with signatures and a separate report on the structural analysis of the collector system. System verification against the Interim Performance Criteria are indicated by matrices with verification discussion, analysis, and enclosed test results.
The capability of lithography simulation based on MVM-SEM® system
NASA Astrophysics Data System (ADS)
Yoshikawa, Shingo; Fujii, Nobuaki; Kanno, Koichi; Imai, Hidemichi; Hayano, Katsuya; Miyashita, Hiroyuki; Shida, Soichi; Murakawa, Tsutomu; Kuribara, Masayuki; Matsumoto, Jun; Nakamura, Takayuki; Matsushita, Shohei; Hara, Daisuke; Pang, Linyong
2015-10-01
The 1Xnm technology node lithography is using SMO-ILT, NTD or more complex pattern. Therefore in mask defect inspection, defect verification becomes more difficult because many nuisance defects are detected in aggressive mask feature. One key Technology of mask manufacture is defect verification to use aerial image simulator or other printability simulation. AIMS™ Technology is excellent correlation for the wafer and standards tool for defect verification however it is difficult for verification over hundred numbers or more. We reported capability of defect verification based on lithography simulation with a SEM system that architecture and software is excellent correlation for simple line and space.[1] In this paper, we use a SEM system for the next generation combined with a lithography simulation tool for SMO-ILT, NTD and other complex pattern lithography. Furthermore we will use three dimension (3D) lithography simulation based on Multi Vision Metrology SEM system. Finally, we will confirm the performance of the 2D and 3D lithography simulation based on SEM system for a photomask verification.
Verification of Triple Modular Redundancy (TMR) Insertion for Reliable and Trusted Systems
NASA Technical Reports Server (NTRS)
Berg, Melanie; LaBel, Kenneth A.
2016-01-01
We propose a method for TMR insertion verification that satisfies the process for reliable and trusted systems. If a system is expected to be protected using TMR, improper insertion can jeopardize the reliability and security of the system. Due to the complexity of the verification process, there are currently no available techniques that can provide complete and reliable confirmation of TMR insertion. This manuscript addresses the challenge of confirming that TMR has been inserted without corruption of functionality and with correct application of the expected TMR topology. The proposed verification method combines the usage of existing formal analysis tools with a novel search-detect-and-verify tool. Field programmable gate array (FPGA),Triple Modular Redundancy (TMR),Verification, Trust, Reliability,
NASA Technical Reports Server (NTRS)
1979-01-01
Structural analysis and certification of the collector system is presented. System verification against the interim performance criteria is presented and indicated by matrices. The verification discussion, analysis, and test results are also given.
The Environmental Control and Life Support System (ECLSS) advanced automation project
NASA Technical Reports Server (NTRS)
Dewberry, Brandon S.; Carnes, Ray
1990-01-01
The objective of the environmental control and life support system (ECLSS) Advanced Automation Project is to influence the design of the initial and evolutionary Space Station Freedom Program (SSFP) ECLSS toward a man-made closed environment in which minimal flight and ground manpower is needed. Another objective includes capturing ECLSS design and development knowledge future missions. Our approach has been to (1) analyze the SSFP ECLSS, (2) envision as our goal a fully automated evolutionary environmental control system - an augmentation of the baseline, and (3) document the advanced software systems, hooks, and scars which will be necessary to achieve this goal. From this analysis, prototype software is being developed, and will be tested using air and water recovery simulations and hardware subsystems. In addition, the advanced software is being designed, developed, and tested using automation software management plan and lifecycle tools. Automated knowledge acquisition, engineering, verification and testing tools are being used to develop the software. In this way, we can capture ECLSS development knowledge for future use develop more robust and complex software, provide feedback to the knowledge based system tool community, and ensure proper visibility of our efforts.
JPL space robotics: Present accomplishments and future thrusts
NASA Astrophysics Data System (ADS)
Weisbin, C. R.; Hayati, S. A.; Rodriguez, G.
1994-10-01
Complex missions require routine and unscheduled inspection for safe operation. The purpose of research in this task is to facilitate structural inspection of the planned Space Station while mitigating the need for extravehicular activity (EVA), and giving the operator supervisory control over detailed and somewhat mundane, but important tasks. The telerobotic system enables inspection relative to a given reference (e.g., the status of the facility at the time of the last inspection) and alerts the operator to potential anomalies for verification and action. There are two primary objectives of this project: (1) To develop technologies that enable well-integrated NASA ground-to-orbit telerobotics operations, and (2) to develop a prototype common architecture workstation which implements these capabilities for other NASA technology projects and planned NASA flight applications. This task develops and supports three telerobot control modes which are applicable to time delay operation: Preview teleoperation, teleprogramming, and supervised autonomy.
NASA Technical Reports Server (NTRS)
Owre, Sam; Shankar, Natarajan
1997-01-01
PVS (Prototype Verification System) is a general-purpose environment for developing specifications and proofs. This document deals primarily with the abstract datatype mechanism in PVS which generates theories containing axioms and definitions for a class of recursive datatypes. The concepts underlying the abstract datatype mechanism are illustrated using ordered binary trees as an example. Binary trees are described by a PVS abstract datatype that is parametric in its value type. The type of ordered binary trees is then presented as a subtype of binary trees where the ordering relation is also taken as a parameter. We define the operations of inserting an element into, and searching for an element in an ordered binary tree; the bulk of the report is devoted to PVS proofs of some useful properties of these operations. These proofs illustrate various approaches to proving properties of abstract datatype operations. They also describe the built-in capabilities of the PVS proof checker for simplifying abstract datatype expressions.
SAMI Automated Plug Plate Configuration
NASA Astrophysics Data System (ADS)
Lorente, N. P. F.; Farrell, T.; Goodwin, M.
2013-10-01
The Sydney-AAO Multi-object Integral field spectrograph (SAMI) is a prototype wide-field system at the Anglo-Australian Telescope (AAT) which uses a plug-plate to mount its 13×61-core imaging fibre bundles (hexabundles) in the optical path at the telescope's prime focus. In this paper we describe the process of determining the positions of the plug-plate holes, where plates contain three or more stacked observation configurations. The process, which up until now has involved several separate processes and has required significant manual configuration and checking, is now being automated to increase efficiency and reduce error. This is carried out by means of a thin Java controller layer which drives the configuration cycle. This layer controls the user interface and the C++ algorithm layer where the plate configuration and optimisation is carried out. Additionally, through the Aladin display package, it provides visualisation and facilitates user verification of the resulting plates.
Charged particle concepts for fog dispersion
NASA Technical Reports Server (NTRS)
Frost, W.; Collins, F. G.; Koepf, D.
1981-01-01
Charged particle techniques hold promise for dispersing warm fog in the terminal area of commercial airports. This report focuses on features of the charged particle technique which require further study. The basic physical principles of the technique and the major verification experiments carried out in the past are described. The fundamentals of the nozzle operation are given. The nozzle characteristics and the theory of particle charging in the nozzle are discussed, including information from extensive literature on electrostatic precipitation relative to environmental pollution control and a description of some preliminary reported analyses on the jet characteristics and interaction with neighboring jets. The equation governing the transfer of water substances and of electrical charge is given together with a brief description of several semi-empirical, mathematical expressions necessary for the governing equations. The necessary ingredients of a field experiment to verify the system once a prototype is built are described.
Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B.
2017-01-01
This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench. PMID:29258270
JPL space robotics: Present accomplishments and future thrusts
NASA Technical Reports Server (NTRS)
Weisbin, C. R.; Hayati, S. A.; Rodriguez, G.
1994-01-01
Complex missions require routine and unscheduled inspection for safe operation. The purpose of research in this task is to facilitate structural inspection of the planned Space Station while mitigating the need for extravehicular activity (EVA), and giving the operator supervisory control over detailed and somewhat mundane, but important tasks. The telerobotic system enables inspection relative to a given reference (e.g., the status of the facility at the time of the last inspection) and alerts the operator to potential anomalies for verification and action. There are two primary objectives of this project: (1) To develop technologies that enable well-integrated NASA ground-to-orbit telerobotics operations, and (2) to develop a prototype common architecture workstation which implements these capabilities for other NASA technology projects and planned NASA flight applications. This task develops and supports three telerobot control modes which are applicable to time delay operation: Preview teleoperation, teleprogramming, and supervised autonomy.
Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B
2017-12-18
This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench.
Multi-Mounted X-Ray Computed Tomography.
Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng
2016-01-01
Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT.
NASA Technical Reports Server (NTRS)
Landano, M. R.; Easter, R. W.
1984-01-01
Aspects of Space Station automated systems testing and verification are discussed, taking into account several program requirements. It is found that these requirements lead to a number of issues of uncertainties which require study and resolution during the Space Station definition phase. Most, if not all, of the considered uncertainties have implications for the overall testing and verification strategy adopted by the Space Station Program. A description is given of the Galileo Orbiter fault protection design/verification approach. Attention is given to a mission description, an Orbiter description, the design approach and process, the fault protection design verification approach/process, and problems of 'stress' testing.
NASA Technical Reports Server (NTRS)
Davis, Robert E.
2002-01-01
The presentation provides an overview of requirement and interpretation letters, mechanical systems safety interpretation letter, design and verification provisions, and mechanical systems verification plan.
Making intelligent systems team players. A guide to developing intelligent monitoring systems
NASA Technical Reports Server (NTRS)
Land, Sherry A.; Malin, Jane T.; Thronesberry, Carroll; Schreckenghost, Debra L.
1995-01-01
This reference guide for developers of intelligent monitoring systems is based on lessons learned by developers of the DEcision Support SYstem (DESSY), an expert system that monitors Space Shuttle telemetry data in real time. DESSY makes inferences about commands, state transitions, and simple failures. It performs failure detection rather than in-depth failure diagnostics. A listing of rules from DESSY and cue cards from DESSY subsystems are included to give the development community a better understanding of the selected model system. The G-2 programming tool used in developing DESSY provides an object-oriented, rule-based environment, but many of the principles in use here can be applied to any type of monitoring intelligent system. The step-by-step instructions and examples given for each stage of development are in G-2, but can be used with other development tools. This guide first defines the authors' concept of real-time monitoring systems, then tells prospective developers how to determine system requirements, how to build the system through a combined design/development process, and how to solve problems involved in working with real-time data. It explains the relationships among operational prototyping, software evolution, and the user interface. It also explains methods of testing, verification, and validation. It includes suggestions for preparing reference documentation and training users.
Cleared for Launch - Lessons Learned from the OSIRIS-REx System Requirements Verification Program
NASA Technical Reports Server (NTRS)
Stevens, Craig; Adams, Angela; Williams, Bradley; Goodloe, Colby
2017-01-01
Requirements verification of a large flight system is a challenge. It is especially challenging for engineers taking on their first role in space systems engineering. This paper describes our approach to verification of the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) system requirements. It also captures lessons learned along the way from developing systems engineers embroiled in this process. We begin with an overview of the mission and science objectives as well as the project requirements verification program strategy. A description of the requirements flow down is presented including our implementation for managing the thousands of program and element level requirements and associated verification data. We discuss both successes and methods to improve the managing of this data across multiple organizational interfaces. Our approach to verifying system requirements at multiple levels of assembly is presented using examples from our work at instrument, spacecraft, and ground segment levels. We include a discussion of system end-to-end testing limitations and their impacts to the verification program. Finally, we describe lessons learned that are applicable to all emerging space systems engineers using our unique perspectives across multiple organizations of a large NASA program.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-26
... Verification (EIV) System User Access Authorization Form and Rules of Behavior and User Agreement AGENCY... lists the following information: Title of Proposal: Enterprise Income Verification (EIV) System User Access, Authorization Form and Rules Of Behavior and User Agreement. OMB Approval Number: 2577-New. Form...
Sound production on a "coaxial saxophone".
Doc, J-B; Vergez, C; Guillemain, P; Kergomard, J
2016-11-01
Sound production on a "coaxial saxophone" is investigated experimentally. The coaxial saxophone is a variant of the cylindrical saxophone made up of two tubes mounted in parallel, which can be seen as a low-frequency analogy of a truncated conical resonator with a mouthpiece. Initially developed for the purposes of theoretical analysis, an experimental verification of the analogy between conical and cylindrical saxophones has never been reported. The present paper explains why the volume of the cylindrical saxophone mouthpiece limits the achievement of a good playability. To limit the mouthpiece volume, a coaxial alignment of pipes is proposed and a prototype of coaxial saxophone is built. An impedance model of coaxial resonator is proposed and validated by comparison with experimental data. Sound production is also studied through experiments with a blowing machine. The playability of the prototype is then assessed and proven for several values of the blowing pressure, of the embouchure parameter, and of the instrument's geometrical parameters.
Note: Ultrasonic gas flowmeter based on optimized time-of-flight algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X. F.; Tang, Z. A.
2011-04-15
A new digital signal processor based single path ultrasonic gas flowmeter is designed, constructed, and experimentally tested. To achieve high accuracy measurements, an optimized ultrasound driven method of incorporation of the amplitude modulation and the phase modulation of the transmit-receive technique is used to stimulate the transmitter. Based on the regularities among the received envelope zero-crossings, different received signal's signal-to-noise ratio situations are discriminated and optional time-of-flight algorithms are applied to take flow rate calculations. Experimental results from the dry calibration indicate that the designed flowmeter prototype can meet the zero-flow verification test requirements of the American Gas Association Reportmore » No. 9. Furthermore, the results derived from the flow calibration prove that the proposed flowmeter prototype can measure flow rate accurately in the practical experiments, and the nominal accuracies after FWME adjustment are lower than 0.8% throughout the calibration range.« less
Design for Verification: Enabling Verification of High Dependability Software-Intensive Systems
NASA Technical Reports Server (NTRS)
Mehlitz, Peter C.; Penix, John; Markosian, Lawrence Z.; Koga, Dennis (Technical Monitor)
2003-01-01
Strategies to achieve confidence that high-dependability applications are correctly implemented include testing and automated verification. Testing deals mainly with a limited number of expected execution paths. Verification usually attempts to deal with a larger number of possible execution paths. While the impact of architecture design on testing is well known, its impact on most verification methods is not as well understood. The Design for Verification approach considers verification from the application development perspective, in which system architecture is designed explicitly according to the application's key properties. The D4V-hypothesis is that the same general architecture and design principles that lead to good modularity, extensibility and complexity/functionality ratio can be adapted to overcome some of the constraints on verification tools, such as the production of hand-crafted models and the limits on dynamic and static analysis caused by state space explosion.
Collins, Jennifer; Pecher, Diane; Zeelenberg, René; Coulson, Seana
2011-01-01
The perceptual modalities associated with property words, such as flicker or click, have previously been demonstrated to affect subsequent property verification judgments (Pecher et al., 2003). Known as the conceptual modality switch effect, this finding supports the claim that brain systems for perception and action help subserve the representation of concepts. The present study addressed the cognitive and neural substrate of this effect by recording event-related potentials (ERPs) as participants performed a property verification task with visual or auditory properties in key trials. We found that for visual property verifications, modality switching was associated with an increased amplitude N400. For auditory verifications, switching led to a larger late positive complex. Observed ERP effects of modality switching suggest property words access perceptual brain systems. Moreover, the timing and pattern of the effects suggest perceptual systems impact the decision-making stage in the verification of auditory properties, and the semantic stage in the verification of visual properties. PMID:21713128
Collins, Jennifer; Pecher, Diane; Zeelenberg, René; Coulson, Seana
2011-01-01
The perceptual modalities associated with property words, such as flicker or click, have previously been demonstrated to affect subsequent property verification judgments (Pecher et al., 2003). Known as the conceptual modality switch effect, this finding supports the claim that brain systems for perception and action help subserve the representation of concepts. The present study addressed the cognitive and neural substrate of this effect by recording event-related potentials (ERPs) as participants performed a property verification task with visual or auditory properties in key trials. We found that for visual property verifications, modality switching was associated with an increased amplitude N400. For auditory verifications, switching led to a larger late positive complex. Observed ERP effects of modality switching suggest property words access perceptual brain systems. Moreover, the timing and pattern of the effects suggest perceptual systems impact the decision-making stage in the verification of auditory properties, and the semantic stage in the verification of visual properties.
Requirements, Verification, and Compliance (RVC) Database Tool
NASA Technical Reports Server (NTRS)
Rainwater, Neil E., II; McDuffee, Patrick B.; Thomas, L. Dale
2001-01-01
This paper describes the development, design, and implementation of the Requirements, Verification, and Compliance (RVC) database used on the International Space Welding Experiment (ISWE) project managed at Marshall Space Flight Center. The RVC is a systems engineer's tool for automating and managing the following information: requirements; requirements traceability; verification requirements; verification planning; verification success criteria; and compliance status. This information normally contained within documents (e.g. specifications, plans) is contained in an electronic database that allows the project team members to access, query, and status the requirements, verification, and compliance information from their individual desktop computers. Using commercial-off-the-shelf (COTS) database software that contains networking capabilities, the RVC was developed not only with cost savings in mind but primarily for the purpose of providing a more efficient and effective automated method of maintaining and distributing the systems engineering information. In addition, the RVC approach provides the systems engineer the capability to develop and tailor various reports containing the requirements, verification, and compliance information that meets the needs of the project team members. The automated approach of the RVC for capturing and distributing the information improves the productivity of the systems engineer by allowing that person to concentrate more on the job of developing good requirements and verification programs and not on the effort of being a "document developer".
Verification testing of the Hydro-Kleen(TM) Filtration System, a catch-basin filter designed to reduce hydrocarbon, sediment, and metals contamination from surface water flows, was conducted at NSF International in Ann Arbor, Michigan. A Hydro-Kleen(TM) system was fitted into a ...
Verification of an on line in vivo semiconductor dosimetry system for TBI with two TLD procedures.
Sánchez-Doblado, F; Terrón, J A; Sánchez-Nieto, B; Arráns, R; Errazquin, L; Biggs, D; Lee, C; Núñez, L; Delgado, A; Muñiz, J L
1995-01-01
This work presents the verification of an on line in vivo dosimetry system based on semiconductors. Software and hardware has been designed to convert the diode signal into absorbed dose. Final verification was made in the form of an intercomparison with two independent thermoluminiscent (TLD) dosimetry systems, under TBI conditions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Third-Party Assessment of PTC System Safety Verification and Validation F Appendix F to Part 236... Safety Verification and Validation (a) This appendix provides minimum requirements for mandatory independent third-party assessment of PTC system safety verification and validation pursuant to subpart H or I...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Third-Party Assessment of PTC System Safety Verification and Validation F Appendix F to Part 236... Safety Verification and Validation (a) This appendix provides minimum requirements for mandatory independent third-party assessment of PTC system safety verification and validation pursuant to subpart H or I...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Third-Party Assessment of PTC System Safety Verification and Validation F Appendix F to Part 236... Safety Verification and Validation (a) This appendix provides minimum requirements for mandatory independent third-party assessment of PTC system safety verification and validation pursuant to subpart H or I...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Third-Party Assessment of PTC System Safety Verification and Validation F Appendix F to Part 236... Safety Verification and Validation (a) This appendix provides minimum requirements for mandatory independent third-party assessment of PTC system safety verification and validation pursuant to subpart H or I...
The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification Program (ETV) to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the ...
46 CFR 61.40-3 - Design verification testing.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-3 Design verification testing. (a) Tests must verify that automated vital systems are designed, constructed, and operate in...
Options and Risk for Qualification of Electric Propulsion System
NASA Technical Reports Server (NTRS)
Bailey, Michelle; Daniel, Charles; Cook, Steve (Technical Monitor)
2002-01-01
Electric propulsion vehicle systems envelop a wide range of propulsion alternatives including solar and nuclear, which present unique circumstances for qualification. This paper will address the alternatives for qualification of electric propulsion spacecraft systems. The approach taken will be to address the considerations for qualification at the various levels of systems definition. Additionally, for each level of qualification the system level risk implications will be developed. Also, the paper will explore the implications of analysis verses test for various levels of systems definition, while retaining the objectives of a verification program. The limitations of terrestrial testing will be explored along with the risk and implications of orbital demonstration testing. The paper will seek to develop a template for structuring of a verification program based on cost, risk and value return. A successful verification program should establish controls and define objectives of the verification compliance program. Finally the paper will seek to address the political and programmatic factors, which may impact options for system verification.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-06
...] Domestic Origin Verification System Questionnaire and Regulations Governing Inspection and Certification of... inspection at the above office during regular business hours. Please be advised that all comments submitted... submitting the comments will be made public. SUPPLEMENTARY INFORMATION: Title: ``Domestic Origin Verification...
Verification testing of the ReCip® RTS-500 System was conducted over a 12-month period at the Massachusetts Alternative Septic System Test Center (MASSTC) located on Otis Air National Guard Base in Bourne, Massachusetts. A nine-week startup period preceded the verification test t...
Overview of the TOPEX/Poseidon Platform Harvest Verification Experiment
NASA Technical Reports Server (NTRS)
Morris, Charles S.; DiNardo, Steven J.; Christensen, Edward J.
1995-01-01
An overview is given of the in situ measurement system installed on Texaco's Platform Harvest for verification of the sea level measurement from the TOPEX/Poseidon satellite. The prelaunch error budget suggested that the total root mean square (RMS) error due to measurements made at this verification site would be less than 4 cm. The actual error budget for the verification site is within these original specifications. However, evaluation of the sea level data from three measurement systems at the platform has resulted in unexpectedly large differences between the systems. Comparison of the sea level measurements from the different tide gauge systems has led to a better understanding of the problems of measuring sea level in relatively deep ocean. As of May 1994, the Platform Harvest verification site has successfully supported 60 TOPEX/Poseidon overflights.
NASA Technical Reports Server (NTRS)
Srivas, Mandayam; Bickford, Mark
1991-01-01
The design and formal verification of a hardware system for a task that is an important component of a fault tolerant computer architecture for flight control systems is presented. The hardware system implements an algorithm for obtaining interactive consistancy (byzantine agreement) among four microprocessors as a special instruction on the processors. The property verified insures that an execution of the special instruction by the processors correctly accomplishes interactive consistency, provided certain preconditions hold. An assumption is made that the processors execute synchronously. For verification, the authors used a computer aided design hardware design verification tool, Spectool, and the theorem prover, Clio. A major contribution of the work is the demonstration of a significant fault tolerant hardware design that is mechanically verified by a theorem prover.
Towards the formal verification of the requirements and design of a processor interface unit
NASA Technical Reports Server (NTRS)
Fura, David A.; Windley, Phillip J.; Cohen, Gerald C.
1993-01-01
The formal verification of the design and partial requirements for a Processor Interface Unit (PIU) using the Higher Order Logic (HOL) theorem-proving system is described. The processor interface unit is a single-chip subsystem within a fault-tolerant embedded system under development within the Boeing Defense and Space Group. It provides the opportunity to investigate the specification and verification of a real-world subsystem within a commercially-developed fault-tolerant computer. An overview of the PIU verification effort is given. The actual HOL listing from the verification effort are documented in a companion NASA contractor report entitled 'Towards the Formal Verification of the Requirements and Design of a Processor Interface Unit - HOL Listings' including the general-purpose HOL theories and definitions that support the PIU verification as well as tactics used in the proofs.
A Mode-Shape-Based Fault Detection Methodology for Cantilever Beams
NASA Technical Reports Server (NTRS)
Tejada, Arturo
2009-01-01
An important goal of NASA's Internal Vehicle Health Management program (IVHM) is to develop and verify methods and technologies for fault detection in critical airframe structures. A particularly promising new technology under development at NASA Langley Research Center is distributed Bragg fiber optic strain sensors. These sensors can be embedded in, for instance, aircraft wings to continuously monitor surface strain during flight. Strain information can then be used in conjunction with well-known vibrational techniques to detect faults due to changes in the wing's physical parameters or to the presence of incipient cracks. To verify the benefits of this technology, the Formal Methods Group at NASA LaRC has proposed the use of formal verification tools such as PVS. The verification process, however, requires knowledge of the physics and mathematics of the vibrational techniques and a clear understanding of the particular fault detection methodology. This report presents a succinct review of the physical principles behind the modeling of vibrating structures such as cantilever beams (the natural model of a wing). It also reviews two different classes of fault detection techniques and proposes a particular detection method for cracks in wings, which is amenable to formal verification. A prototype implementation of these methods using Matlab scripts is also described and is related to the fundamental theoretical concepts.
NASA Astrophysics Data System (ADS)
Zint, M.; Stock, K.; Graser, R.; Ertl, T.; Brauer, E.; Heyninck, J.; Vanbiervliet, J.; Dhondt, S.; De Ceuninck, P.; Hibst, R.
2015-03-01
The presented work describes the development and verification of a novel optical, powder-free intra-oral scanner based on chromatic confocal technology combined with a multifocal approach. The proof of concept for a chromatic confocal area scanner for intra-oral scanning is given. Several prototype scanners passed a verification process showing an average accuracy (distance deviation on flat surfaces) of less than 31μm +/- 21μm and a reproducibility of less than 4μm +/- 3μm. Compared to a tactile measurement on a full jaw model fitted with 4mm ceramic spheres the measured average distance deviation between the spheres was 49μm +/- 12μm for scans of up to 8 teeth (3- unit bridge, single Quadrant) and 104μm +/- 82μm for larger scans and full jaws. The average deviation of the measured sphere diameter compared to the tactile measurement was 27μm +/- 14μm. Compared to μCT scans of plaster models equipped with human teeth the average standard deviation on up to 3 units was less than 55μm +/- 49μm whereas the reproducibility of the scans was better than 22μm +/- 10μm.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... Digital Computer Software Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear Regulatory..., ``Verification, Validation, Reviews, and Audits for Digital Computer Software used in Safety Systems of Nuclear... NRC regulations promoting the development of, and compliance with, software verification and...
40 CFR 1066.240 - Torque transducer verification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.240 Torque transducer verification. Verify torque-measurement systems by performing the verifications described in §§ 1066.270 and... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Torque transducer verification. 1066...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutaf, Yildirim D.; Yi, Byong Yong; Prado, Karl
Purpose: A dedicated stereotactic gamma irradiation device, the GammaPod Trade-Mark-Sign from Xcision Medical Systems, was developed specifically to treat small breast cancers. This study presents the first evaluation of dosimetric and geometric characteristics from the initial prototype installed at University of Maryland Radiation Oncology Department. Methods: The GammaPod Trade-Mark-Sign stereotactic radiotherapy device is an assembly of a hemi-spherical source carrier containing 36 {sup 60}Co sources, a tungsten collimator, a dynamically controlled patient support table, and the breast immobilization system which also functions as a stereotactic frame. The source carrier contains the sources in six columns spaced longitudinally at 60 Degree-Signmore » intervals and it rotates together with the variable-size collimator to form 36 noncoplanar, concentric arcs focused at the isocenter. The patient support table enables motion in three dimensions to position the patient tumor at the focal point of the irradiation. The table moves continuously in three cardinal dimensions during treatment to provide dynamic shaping of the dose distribution. The breast is immobilized using a breast cup applying a small negative pressure, where the immobilization cup is embedded with fiducials also functioning as the stereotactic frame for the breast. Geometric and dosimetric evaluations of the system as well as a protocol for absorbed dose calibration are provided. Dosimetric verifications of dynamically delivered patient plans are performed for seven patients using radiochromic films in hypothetical preop, postop, and target-in-target treatment scenarios. Results: Loaded with 36 {sup 60}Co sources with cumulative activity of 4320 Ci, the prototype GammaPod Trade-Mark-Sign unit delivers 5.31 Gy/min at the isocenter using the largest 2.5 cm diameter collimator. Due to the noncoplanar beam arrangement and dynamic dose shaping features, the GammaPod Trade-Mark-Sign device is found to deliver uniform doses to targets with good conformity. The spatial accuracy of the device to locate the radiation isocenter is determined to be less than 1 mm. Single shot profiles with 2.5 cm collimator are measured with radiochromic film and found to be in good agreement with respect to the Monte Carlo based calculations (congruence of FWHM less than 1 mm). Dosimetric verifications corresponding to all hypothetical treatment plans corresponding to three target scenarios for each of the seven patients demonstrated good agreement with gamma index pass rates of better than 97% (99.0%{+-} 0.7%). Conclusions: Dosimetric evaluation of the first GammaPod Trade-Mark-Sign stereotactic breast radiotherapy unit was performed and the dosimetric and spatial accuracy of this novel technology is found to be feasible with respect to clinical radiotherapy standards. The observed level of agreement between the treatment planning system calculations and dosimetric measurements has confirmed that the system can deliver highly complex treatment plans with remarkable geometric and dosimetric accuracy.« less
NASA Astrophysics Data System (ADS)
Boyarnikov, A. V.; Boyarnikova, L. V.; Kozhushko, A. A.; Sekachev, A. F.
2017-08-01
In the article the process of verification (calibration) of oil metering units secondary equipment is considered. The purpose of the work is to increase the reliability and reduce the complexity of this process by developing a software and hardware system that provides automated verification and calibration. The hardware part of this complex carries out the commutation of the measuring channels of the verified controller and the reference channels of the calibrator in accordance with the introduced algorithm. The developed software allows controlling the commutation of channels, setting values on the calibrator, reading the measured data from the controller, calculating errors and compiling protocols. This system can be used for checking the controllers of the secondary equipment of the oil metering units in the automatic verification mode (with the open communication protocol) or in the semi-automatic verification mode (without it). The peculiar feature of the approach used is the development of a universal signal switch operating under software control, which can be configured for various verification methods (calibration), which allows to cover the entire range of controllers of metering units secondary equipment. The use of automatic verification with the help of a hardware and software system allows to shorten the verification time by 5-10 times and to increase the reliability of measurements, excluding the influence of the human factor.
Verification of Triple Modular Redundancy Insertion for Reliable and Trusted Systems
NASA Technical Reports Server (NTRS)
Berg, Melanie; LaBel, Kenneth
2016-01-01
If a system is required to be protected using triple modular redundancy (TMR), improper insertion can jeopardize the reliability and security of the system. Due to the complexity of the verification process and the complexity of digital designs, there are currently no available techniques that can provide complete and reliable confirmation of TMR insertion. We propose a method for TMR insertion verification that satisfies the process for reliable and trusted systems.
48 CFR 4.1302 - Acquisition of approved products and services for personal identity verification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... products and services for personal identity verification. 4.1302 Section 4.1302 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Personal Identity Verification 4.1302 Acquisition of approved products and services for personal identity verification. (a) In...
48 CFR 4.1302 - Acquisition of approved products and services for personal identity verification.
Code of Federal Regulations, 2012 CFR
2012-10-01
... products and services for personal identity verification. 4.1302 Section 4.1302 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Personal Identity Verification 4.1302 Acquisition of approved products and services for personal identity verification. (a) In...
48 CFR 4.1302 - Acquisition of approved products and services for personal identity verification.
Code of Federal Regulations, 2011 CFR
2011-10-01
... products and services for personal identity verification. 4.1302 Section 4.1302 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Personal Identity Verification 4.1302 Acquisition of approved products and services for personal identity verification. (a) In...
48 CFR 4.1302 - Acquisition of approved products and services for personal identity verification.
Code of Federal Regulations, 2013 CFR
2013-10-01
... products and services for personal identity verification. 4.1302 Section 4.1302 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Personal Identity Verification 4.1302 Acquisition of approved products and services for personal identity verification. (a) In...
48 CFR 4.1302 - Acquisition of approved products and services for personal identity verification.
Code of Federal Regulations, 2014 CFR
2014-10-01
... products and services for personal identity verification. 4.1302 Section 4.1302 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Personal Identity Verification 4.1302 Acquisition of approved products and services for personal identity verification. (a) In...
Verification testing of the Waterloo Biofilter Systems (WBS), Inc. Waterloo Biofilter® Model 4-Bedroom system was conducted over a thirteen month period at the Massachusetts Alternative Septic System Test Center (MASSTC) located at Otis Air National Guard Base in Bourne, Mas...
Verification testing of the SeptiTech Model 400 System was conducted over a twelve month period at the Massachusetts Alternative Septic System Test Center (MASSTC) located at the Otis Air National Guard Base in Borne, MA. Sanitary Sewerage from the base residential housing was u...
Current status of verification practices in clinical biochemistry in Spain.
Gómez-Rioja, Rubén; Alvarez, Virtudes; Ventura, Montserrat; Alsina, M Jesús; Barba, Núria; Cortés, Mariano; Llopis, María Antonia; Martínez, Cecilia; Ibarz, Mercè
2013-09-01
Verification uses logical algorithms to detect potential errors before laboratory results are released to the clinician. Even though verification is one of the main processes in all laboratories, there is a lack of standardization mainly in the algorithms used and the criteria and verification limits applied. A survey in clinical laboratories in Spain was conducted in order to assess the verification process, particularly the use of autoverification. Questionnaires were sent to the laboratories involved in the External Quality Assurance Program organized by the Spanish Society of Clinical Biochemistry and Molecular Pathology. Seven common biochemical parameters were included (glucose, cholesterol, triglycerides, creatinine, potassium, calcium, and alanine aminotransferase). Completed questionnaires were received from 85 laboratories. Nearly all the laboratories reported using the following seven verification criteria: internal quality control, instrument warnings, sample deterioration, reference limits, clinical data, concordance between parameters, and verification of results. The use of all verification criteria varied according to the type of verification (automatic, technical, or medical). Verification limits for these parameters are similar to biological reference ranges. Delta Check was used in 24% of laboratories. Most laboratories (64%) reported using autoverification systems. Autoverification use was related to laboratory size, ownership, and type of laboratory information system, but amount of use (percentage of test autoverified) was not related to laboratory size. A total of 36% of Spanish laboratories do not use autoverification, despite the general implementation of laboratory information systems, most of them, with autoverification ability. Criteria and rules for seven routine biochemical tests were obtained.
Use of metaknowledge in the verification of knowledge-based systems
NASA Technical Reports Server (NTRS)
Morell, Larry J.
1989-01-01
Knowledge-based systems are modeled as deductive systems. The model indicates that the two primary areas of concern in verification are demonstrating consistency and completeness. A system is inconsistent if it asserts something that is not true of the modeled domain. A system is incomplete if it lacks deductive capability. Two forms of consistency are discussed along with appropriate verification methods. Three forms of incompleteness are discussed. The use of metaknowledge, knowledge about knowledge, is explored in connection to each form of incompleteness.
Ogle, Stephen; Davis, Kenneth J.; Lauvaux, Thomas; ...
2015-03-10
Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Verification could include a variety of evidence, but arguably the most convincing verification would be confirmation of a change in GHG concentrations in the atmosphere that is consistent with reported emissions to the UNFCCC. We report here on a case study evaluating this option based on a prototype atmospheric CO2 measurement network deployed in the Mid-Continent Region of themore » conterminous United States. We found that the atmospheric CO2 measurement data did verify the accuracy of the emissions inventory within the confidence limits of the emissions estimates, suggesting that this technology could be further developed and deployed more widely in the future for verifying reported emissions.« less
Investigation of Advanced Dose Verification Techniques for External Beam Radiation Treatment
NASA Astrophysics Data System (ADS)
Asuni, Ganiyu Adeniyi
Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have been introduced in radiation therapy to achieve highly conformal dose distributions around the tumour while minimizing dose to surrounding normal tissues. These techniques have increased the need for comprehensive quality assurance tests, to verify that customized patient treatment plans are accurately delivered during treatment. in vivo dose verification, performed during treatment delivery, confirms that the actual dose delivered is the same as the prescribed dose, helping to reduce treatment delivery errors. in vivo measurements may be accomplished using entrance or exit detectors. The objective of this project is to investigate a novel entrance detector designed for in vivo dose verification. This thesis is separated into three main investigations, focusing on a prototype entrance transmission detector (TRD) developed by IBA Dosimetry, Germany. First contaminant electrons generated by the TRD in a 6 MV photon beam were investigated using Monte Carlo (MC) simulation. This study demonstrates that modification of the contaminant electron model in the treatment planning system is required for accurate patient dose calculation in buildup regions when using the device. Second, the ability of the TRD to accurately measure dose from IMRT and VMAT was investigated by characterising the spatial resolution of the device. This was accomplished by measuring the point spread function with further validation provided by MC simulation. Comparisons of measured and calculated doses show that the spatial resolution of the TRD allows for measurement of clinical IMRT fields within acceptable tolerance. Finally, a new general research tool was developed to perform MC simulations for VMAT and IMRT treatments, simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system, generalized to handle either entrance or exit orientations. It was demonstrated that the tool accurately simulates dose to the patient CT and planar detector geometries. The tool has been made freely available to the medical physics research community to help advance the development of in vivo planar detectors. In conclusion, this thesis presents several investigations that improve the understanding of a novel entrance detector designed for patient in vivo dosimetry.
The Air Pollution Control Technology Verification Center (APCT Center) is operated by RTI International (RTI), in cooperation with EPA's National Risk Management Research Laboratory. The APCT Center conducts verifications of technologies that clean air in ventilation systems, inc...
45 CFR 95.626 - Independent Verification and Validation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 1 2013-10-01 2013-10-01 false Independent Verification and Validation. 95.626... (FFP) Specific Conditions for Ffp § 95.626 Independent Verification and Validation. (a) An assessment for independent verification and validation (IV&V) analysis of a State's system development effort may...
45 CFR 95.626 - Independent Verification and Validation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 1 2014-10-01 2014-10-01 false Independent Verification and Validation. 95.626... (FFP) Specific Conditions for Ffp § 95.626 Independent Verification and Validation. (a) An assessment for independent verification and validation (IV&V) analysis of a State's system development effort may...
45 CFR 95.626 - Independent Verification and Validation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 1 2011-10-01 2011-10-01 false Independent Verification and Validation. 95.626... (FFP) Specific Conditions for Ffp § 95.626 Independent Verification and Validation. (a) An assessment for independent verification and validation (IV&V) analysis of a State's system development effort may...
45 CFR 95.626 - Independent Verification and Validation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 1 2012-10-01 2012-10-01 false Independent Verification and Validation. 95.626... (FFP) Specific Conditions for Ffp § 95.626 Independent Verification and Validation. (a) An assessment for independent verification and validation (IV&V) analysis of a State's system development effort may...
24 CFR 5.512 - Verification of eligible immigration status.
Code of Federal Regulations, 2010 CFR
2010-04-01
... immigration status. 5.512 Section 5.512 Housing and Urban Development Office of the Secretary, Department of... Noncitizens § 5.512 Verification of eligible immigration status. (a) General. Except as described in paragraph...) Primary verification—(1) Automated verification system. Primary verification of the immigration status of...
NASA Technical Reports Server (NTRS)
Nickle, F. R.; Freeman, Arthur B.
1939-01-01
The safety of remotely operated vehicles depends on the correctness of the distributed protocol that facilitates the communication between the vehicle and the operator. A failure in this communication can result in catastrophic loss of the vehicle. To complicate matters, the communication system may be required to satisfy several, possibly conflicting, requirements. The design of protocols is typically an informal process based on successive iterations of a prototype implementation. Yet distributed protocols are notoriously difficult to get correct using such informal techniques. We present a formal specification of the design of a distributed protocol intended for use in a remotely operated vehicle, which is built from the composition of several simpler protocols. We demonstrate proof strategies that allow us to prove properties of each component protocol individually while ensuring that the property is preserved in the composition forming the entire system. Given that designs are likely to evolve as additional requirements emerge, we show how we have automated most of the repetitive proof steps to enable verification of rapidly changing designs.
High-speed autoverifying technology for printed wiring boards
NASA Astrophysics Data System (ADS)
Ando, Moritoshi; Oka, Hiroshi; Okada, Hideo; Sakashita, Yorihiro; Shibutani, Nobumi
1996-10-01
We have developed an automated pattern verification technique. The output of an automated optical inspection system contains many false alarms. Verification is needed to distinguish between minor irregularities and serious defects. In the past, this verification was usually done manually, which led to unsatisfactory product quality. The goal of our new automated verification system is to detect pattern features on surface mount technology boards. In our system, we employ a new illumination method, which uses multiple colors and multiple direction illumination. Images are captured with a CCD camera. We have developed a new algorithm that uses CAD data for both pattern matching and pattern structure determination. This helps to search for patterns around a defect and to examine defect definition rules. These are processed with a high speed workstation and a hard-wired circuits. The system can verify a defect within 1.5 seconds. The verification system was tested in a factory. It verified 1,500 defective samples and detected all significant defects with only a 0.1 percent of error rate (false alarm).
Verification of Autonomous Systems for Space Applications
NASA Technical Reports Server (NTRS)
Brat, G.; Denney, E.; Giannakopoulou, D.; Frank, J.; Jonsson, A.
2006-01-01
Autonomous software, especially if it is based on model, can play an important role in future space applications. For example, it can help streamline ground operations, or, assist in autonomous rendezvous and docking operations, or even, help recover from problems (e.g., planners can be used to explore the space of recovery actions for a power subsystem and implement a solution without (or with minimal) human intervention). In general, the exploration capabilities of model-based systems give them great flexibility. Unfortunately, it also makes them unpredictable to our human eyes, both in terms of their execution and their verification. The traditional verification techniques are inadequate for these systems since they are mostly based on testing, which implies a very limited exploration of their behavioral space. In our work, we explore how advanced V&V techniques, such as static analysis, model checking, and compositional verification, can be used to gain trust in model-based systems. We also describe how synthesis can be used in the context of system reconfiguration and in the context of verification.
Verification testing of the F.R. Mahoney Amphidrome System was conducted over a twelve month period at the Massachusetts Alternative Septic System Test Center (MASSTC) located at the Otis Air National Guard Base in Borne, MA. Sanitary Sewerage from the base residential housing w...
Investigation of advanced phase-shifting projected fringe profilometry techniques
NASA Astrophysics Data System (ADS)
Liu, Hongyu
1999-11-01
The phase-shifting projected fringe profilometry (PSPFP) technique is a powerful tool in the profile measurements of rough engineering surfaces. Compared with other competing techniques, this technique is notable for its full-field measurement capacity, system simplicity, high measurement speed, and low environmental vulnerability. The main purpose of this dissertation is to tackle three important problems, which severely limit the capability and the accuracy of the PSPFP technique, with some new approaches. Chapter 1 provides some background information of the PSPFP technique including the measurement principles, basic features, and related techniques is briefly introduced. The objectives and organization of the thesis are also outlined. Chapter 2 gives a theoretical treatment to the absolute PSPFP measurement. The mathematical formulations and basic requirements of the absolute PSPFP measurement and its supporting techniques are discussed in detail. Chapter 3 introduces the experimental verification of the proposed absolute PSPFP technique. Some design details of a prototype system are discussed as supplements to the previous theoretical analysis. Various fundamental experiments performed for concept verification and accuracy evaluation are introduced together with some brief comments. Chapter 4 presents the theoretical study of speckle- induced phase measurement errors. In this analysis, the expression for speckle-induced phase errors is first derived based on the multiplicative noise model of image- plane speckles. The statistics and the system dependence of speckle-induced phase errors are then thoroughly studied through numerical simulations and analytical derivations. Based on the analysis, some suggestions on the system design are given to improve measurement accuracy. Chapter 5 discusses a new technique combating surface reflectivity variations. The formula used for error compensation is first derived based on a simplified model of the detection process. The techniques coping with two major effects of surface reflectivity variations are then introduced. Some fundamental problems in the proposed technique are studied through simulations. Chapter 6 briefly summarizes the major contributions of the current work and provides some suggestions for the future research.
Positron emission imaging device and method of using the same
Bingham, Philip R.; Mullens, James Allen
2013-01-15
An imaging system and method of imaging are disclosed. The imaging system can include an external radiation source producing pairs of substantially simultaneous radiation emissions of a picturization emission and a verification emissions at an emission angle. The imaging system can also include a plurality of picturization sensors and at least one verification sensor for detecting the picturization and verification emissions, respectively. The imaging system also includes an object stage is arranged such that a picturization emission can pass through an object supported on said object stage before being detected by one of said plurality of picturization sensors. A coincidence system and a reconstruction system can also be included. The coincidence can receive information from the picturization and verification sensors and determine whether a detected picturization emission is direct radiation or scattered radiation. The reconstruction system can produce a multi-dimensional representation of an object imaged with the imaging system.
Verification testing of the Aquionics, Inc. bersonInLine® 4250 UV System to develop the UV delivered dose flow relationship was conducted at the Parsippany-Troy Hills Wastewater Treatment Plant test site in Parsippany, New Jersey. Two full-scale reactors were mounted in series. T...
Verification testing of the Ondeo Degremont, Inc. Aquaray® 40 HO VLS Disinfection System to develop the UV delivered dose flow relationship was conducted at the Parsippany-Troy Hills wastewater treatment plant test site in Parsippany, New Jersey. Three reactor modules were m...
Technology Foresight and nuclear test verification: a structured and participatory approach
NASA Astrophysics Data System (ADS)
Noack, Patrick; Gaya-Piqué, Luis; Haralabus, Georgios; Auer, Matthias; Jain, Amit; Grenard, Patrick
2013-04-01
As part of its mandate, the CTBTO's nuclear explosion monitoring programme aims to maintain its sustainability, effectiveness and its long-term relevance to the verification regime. As such, the PTS is conducting a Technology Foresight programme of activities to identify technologies, processes, concepts and ideas that may serve said purpose and become applicable within the next 20 years. Through the Technology Foresight activities (online conferences, interviews, surveys, workshops and other) we have involved the wider science community in the fields of seismology, infrasound, hydroacoustics, radionuclide technology, remote sensing and geophysical techniques. We have assembled a catalogue of over 200 items, which incorporate technologies, processes, concepts and ideas which will have direct future relevance to the IMS (International Monitoring System), IDC (International Data Centre) and OSI (On-Site Inspection) activities within the PTS. In order to render this catalogue as applicable and useful as possible for strategy and planning, we have devised a "taxonomy" based on seven categories, against which each technology is assessed through a peer-review mechanism. These categories are: 1. Focus area of the technology in question: identify whether the technology relates to (one or more of the following) improving our understanding of source and source physics; propagation modelling; data acquisition; data transport; data processing; broad modelling concepts; quality assurance and data storage. 2. Current Development Stage of the technology in question. Based on a scale from one to six, this measure is specific to PTS needs and broadly reflects Technology Readiness Levels (TRLs). 3. Impact of the technology on each of the following capabilities: detection, location, characterization, sustainment and confidence building. 4. Development cost: the anticipated monetary cost of validating a prototype (i.e. Development Stage 3) of the technology in question. 5. Time to maturity: the number of years until the technology in question reaches Development Stage 3 (i.e. prototype validated). 6. Integration effort: the anticipated level of effort required by the PTS to fully integrate the technology, process, concept or idea into is verification environment. 7. Time to impact: the number of years until the technology is fully developed and integrated into the PTS verification environment and delivers on its full potential. The resulting database is coupled to Pivot, a novel information management software tool which offers powerful visualisation of the taxonomy's parameters for each technology. Pivot offers many advantages over conventional spreadhseet-interfaced database tools: based on shared categories in the taxonomy, users can quickly and intuitively discover linkages, communalities and various interpretations about prospective CTBT pertinent technologies. It is easily possible to visualise a resulting sub-set of technologies that conform to the specific user-selected attributes from the full range of taxonomy categories. In this presentation we will illustrate the range of future technologies, processes, concepts and ideas; we will demonstrate how the Pivot tool can be fruitfully applied to assist in strategic planning and development, and to identify gaps apparent on the technology development horizon. Finally, we will show how the Pivot tool together with the taxonomy offer real and emerging insights to make sense of large amounts of disparate technologies.
NASA Astrophysics Data System (ADS)
Eguchi, S.; Kawasaki, W.; Shirasaki, Y.; Komiya, Y.; Kosugi, G.; Ohishi, M.; Mizumoto, Y.
2013-10-01
ALMA is estimated to generate TB scale data during only one observation; astronomers need to identify which part of the data they are really interested in. We have been developing new GUI software for this purpose utilizing the VO interface: ALMA Web Quick Look System (ALMAWebQL) and ALMA Desktop Application (Vissage). The former is written in JavaScript and HTML5 generated from Java code by the Google Web Toolkit, and the latter is in pure Java. An essential point of our approach is how to reduce network traffic: we prepare, in advance, “compressed” FITS files of 2x2x1 (horizontal, vertical, and spectral directions, respectively) binning, 2 x 2 x 2 binning, 4 x 4 x 2 binning data, and so on. These files are hidden from users, and Web QL automatically chooses the proper one for each user operation. Through this work, we find that network traffic in our system is still a bottleneck towards TB scale data distribution. Hence we have to develop alternative data containers for much faster data processing. In this paper, we introduce our data analysis systems, and describe what we learned through the development.
SNDR Limits of Oscillator-Based Sensor Readout Circuits
Buffa, Cesare; Wiesbauer, Andreas; Hernandez, Luis
2018-01-01
This paper analyzes the influence of phase noise and distortion on the performance of oscillator-based sensor data acquisition systems. Circuit noise inherent to the oscillator circuit manifests as phase noise and limits the SNR. Moreover, oscillator nonlinearity generates distortion for large input signals. Phase noise analysis of oscillators is well known in the literature, but the relationship between phase noise and the SNR of an oscillator-based sensor is not straightforward. This paper proposes a model to estimate the influence of phase noise in the performance of an oscillator-based system by reflecting the phase noise to the oscillator input. The proposed model is based on periodic steady-state analysis tools to predict the SNR of the oscillator. The accuracy of this model has been validated by both simulation and experiment in a 130 nm CMOS prototype. We also propose a method to estimate the SNDR and the dynamic range of an oscillator-based readout circuit that improves by more than one order of magnitude the simulation time compared to standard time domain simulations. This speed up enables the optimization and verification of this kind of systems with iterative algorithms. PMID:29401646
NASA Astrophysics Data System (ADS)
Hueso-González, Fernando; Enghardt, Wolfgang; Fiedler, Fine; Golnik, Christian; Janssens, Guillaume; Petzoldt, Johannes; Prieels, Damien; Priegnitz, Marlen; Römer, Katja E.; Smeets, Julien; Vander Stappen, François; Wagner, Andreas; Pausch, Guntram
2015-08-01
Ion beam therapy promises enhanced tumour coverage compared to conventional radiotherapy, but particle range uncertainties significantly blunt the achievable precision. Experimental tools for range verification in real-time are not yet available in clinical routine. The prompt gamma ray timing method has been recently proposed as an alternative to collimated imaging systems. The detection times of prompt gamma rays encode essential information about the depth-dose profile thanks to the measurable transit time of ions through matter. In a collaboration between OncoRay, Helmholtz-Zentrum Dresden-Rossendorf and IBA, the first test at a clinical proton accelerator (Westdeutsches Protonentherapiezentrum Essen, Germany) with several detectors and phantoms is performed. The robustness of the method against background and stability of the beam bunch time profile is explored, and the bunch time spread is characterized for different proton energies. For a beam spot with a hundred million protons and a single detector, range differences of 5 mm in defined heterogeneous targets are identified by numerical comparison of the spectrum shape. For higher statistics, range shifts down to 2 mm are detectable. A proton bunch monitor, higher detector throughput and quantitative range retrieval are the upcoming steps towards a clinically applicable prototype. In conclusion, the experimental results highlight the prospects of this straightforward verification method at a clinical pencil beam and settle this novel approach as a promising alternative in the field of in vivo dosimetry.
Ada(R) Test and Verification System (ATVS)
NASA Technical Reports Server (NTRS)
Strelich, Tom
1986-01-01
The Ada Test and Verification System (ATVS) functional description and high level design are completed and summarized. The ATVS will provide a comprehensive set of test and verification capabilities specifically addressing the features of the Ada language, support for embedded system development, distributed environments, and advanced user interface capabilities. Its design emphasis was on effective software development environment integration and flexibility to ensure its long-term use in the Ada software development community.
Experimental evaluation of fingerprint verification system based on double random phase encoding
NASA Astrophysics Data System (ADS)
Suzuki, Hiroyuki; Yamaguchi, Masahiro; Yachida, Masuyoshi; Ohyama, Nagaaki; Tashima, Hideaki; Obi, Takashi
2006-03-01
We proposed a smart card holder authentication system that combines fingerprint verification with PIN verification by applying a double random phase encoding scheme. In this system, the probability of accurate verification of an authorized individual reduces when the fingerprint is shifted significantly. In this paper, a review of the proposed system is presented and preprocessing for improving the false rejection rate is proposed. In the proposed method, the position difference between two fingerprint images is estimated by using an optimized template for core detection. When the estimated difference exceeds the permissible level, the user inputs the fingerprint again. The effectiveness of the proposed method is confirmed by a computational experiment; its results show that the false rejection rate is improved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emmanuel Ohene Opare, Jr.; Charles V. Park
The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is authored by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype fourth generation nuclear reactor to meet the needs of the 21st Century. A section in this document proposes that the NGNP will provide heat for process heat applications. As with all large projects developing and deploying new technologies, the NGNP is expected to meet high performance and availability targets relative to current state of the art systems and technology. One requirement for the NGNP is to provide heatmore » for the generation of hydrogen for large scale productions and this process heat application is required to be at least 90% or more available relative to other technologies currently on the market. To reach this goal, a RAM Roadmap was developed highlighting the actions to be taken to ensure that various milestones in system development and maturation concurrently meet required availability requirements. Integral to the RAM Roadmap was the use of a RAM analytical/simulation tool which was used to estimate the availability of the system when deployed based on current design configuration and the maturation level of the system.« less
Global Turbulence Decision Support for Aviation
NASA Astrophysics Data System (ADS)
Williams, J.; Sharman, R.; Kessinger, C.; Feltz, W.; Wimmers, A.
2009-09-01
Turbulence is widely recognized as the leading cause of injuries to flight attendants and passengers on commercial air carriers, yet legacy decision support products such as SIGMETs and SIGWX charts provide relatively low spatial- and temporal-resolution assessments and forecasts of turbulence, with limited usefulness for strategic planning and tactical turbulence avoidance. A new effort is underway to develop an automated, rapid-update, gridded global turbulence diagnosis and forecast system that addresses upper-level clear-air turbulence, mountain-wave turbulence, and convectively-induced turbulence. This NASA-funded effort, modeled on the U.S. Federal Aviation Administration's Graphical Turbulence Guidance (GTG) and GTG Nowcast systems, employs NCEP Global Forecast System (GFS) model output and data from NASA and operational satellites to produce quantitative turbulence nowcasts and forecasts. A convective nowcast element based on GFS forecasts and satellite data provides a basis for diagnosing convective turbulence. An operational prototype "Global GTG” system has been running in real-time at the U.S. National Center for Atmospheric Research since the spring of 2009. Initial verification based on data from TRMM, Cloudsat and MODIS (for the convection nowcasting) and AIREPs and AMDAR data (for turbulence) are presented. This product aims to provide the "single authoritative source” for global turbulence information for the U.S. Next Generation Air Transportation System.
Cost-Effective CNC Part Program Verification Development for Laboratory Instruction.
ERIC Educational Resources Information Center
Chen, Joseph C.; Chang, Ted C.
2000-01-01
Describes a computer numerical control program verification system that checks a part program before its execution. The system includes character recognition, word recognition, a fuzzy-nets system, and a tool path viewer. (SK)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuel, D; Testa, M; Park, Y
Purpose: In-vivo dose and beam range verification in proton therapy could play significant roles in proton treatment validation and improvements. Invivo beam range verification, in particular, could enable new treatment techniques one of which, for example, could be the use of anterior fields for prostate treatment instead of opposed lateral fields as in current practice. We have developed and commissioned an integrated system with hardware, software and workflow protocols, to provide a complete solution, simultaneously for both in-vivo dosimetry and range verification for proton therapy. Methods: The system uses a matrix of diodes, up to 12 in total, but separablemore » into three groups for flexibility in application. A special amplifier was developed to capture extremely small signals from very low proton beam current. The software was developed within iMagX, a general platform for image processing in radiation therapy applications. The range determination exploits the inherent relationship between the internal range modulation clock of the proton therapy system and the radiological depth at the point of measurement. The commissioning of the system, for in-vivo dosimetry and for range verification was separately conducted using anthropomorphic phantom. EBT films and TLDs were used for dose comparisons and range scan of the beam distal fall-off was used as ground truth for range verification. Results: For in-vivo dose measurement, the results were in agreement with TLD and EBT films and were within 3% from treatment planning calculations. For range verification, a precision of 0.5mm is achieved in homogeneous phantoms, and a precision of 2mm for anthropomorphic pelvic phantom, except at points with significant range mixing. Conclusion: We completed the commissioning of our system for in-vivo dosimetry and range verification in proton therapy. The results suggest that the system is ready for clinical trials on patient.« less
Gene Fusion Markup Language: a prototype for exchanging gene fusion data.
Kalyana-Sundaram, Shanker; Shanmugam, Achiraman; Chinnaiyan, Arul M
2012-10-16
An avalanche of next generation sequencing (NGS) studies has generated an unprecedented amount of genomic structural variation data. These studies have also identified many novel gene fusion candidates with more detailed resolution than previously achieved. However, in the excitement and necessity of publishing the observations from this recently developed cutting-edge technology, no community standardization approach has arisen to organize and represent the data with the essential attributes in an interchangeable manner. As transcriptome studies have been widely used for gene fusion discoveries, the current non-standard mode of data representation could potentially impede data accessibility, critical analyses, and further discoveries in the near future. Here we propose a prototype, Gene Fusion Markup Language (GFML) as an initiative to provide a standard format for organizing and representing the significant features of gene fusion data. GFML will offer the advantage of representing the data in a machine-readable format to enable data exchange, automated analysis interpretation, and independent verification. As this database-independent exchange initiative evolves it will further facilitate the formation of related databases, repositories, and analysis tools. The GFML prototype is made available at http://code.google.com/p/gfml-prototype/. The Gene Fusion Markup Language (GFML) presented here could facilitate the development of a standard format for organizing, integrating and representing the significant features of gene fusion data in an inter-operable and query-able fashion that will enable biologically intuitive access to gene fusion findings and expedite functional characterization. A similar model is envisaged for other NGS data analyses.
ETV REPORT AND VERIFICATION STATEMENT - KASELCO POSI-FLO ELECTROCOAGULATION TREATMENT SYSTEM
The Kaselco Electrocoagulation Treatment System (Kaselco system) in combination with an ion exchange polishing system was tested, under actual production conditions, processing metal finishing wastewater at Gull Industries in Houston, Texas. The verification test evaluated the a...
The Environmental Technology Verification report discusses the technology and performance of the Xonon Cool Combustion System manufactured by Catalytica Energy Systems, Inc., formerly Catalytica Combustion Systems, Inc., to control NOx emissions from gas turbines that operate wit...
A failure management prototype: DR/Rx
NASA Technical Reports Server (NTRS)
Hammen, David G.; Baker, Carolyn G.; Kelly, Christine M.; Marsh, Christopher A.
1991-01-01
This failure management prototype performs failure diagnosis and recovery management of hierarchical, distributed systems. The prototype, which evolved from a series of previous prototypes following a spiral model for development, focuses on two functions: (1) the diagnostic reasoner (DR) performs integrated failure diagnosis in distributed systems; and (2) the recovery expert (Rx) develops plans to recover from the failure. Issues related to expert system prototype design and the previous history of this prototype are discussed. The architecture of the current prototype is described in terms of the knowledge representation and functionality of its components.
Verification testing of the Triton Systems, LLC Solid Bowl Centrifuge Model TS-5000 (TS-5000) was conducted at the Lake Wheeler Road Field Laboratory Swine Educational Unit in Raleigh, North Carolina. The TS-5000 was 48" in diameter and 30" deep, with a bowl capacity of 16 ft3. ...
Time trend of injection drug errors before and after implementation of bar-code verification system.
Sakushima, Ken; Umeki, Reona; Endoh, Akira; Ito, Yoichi M; Nasuhara, Yasuyuki
2015-01-01
Bar-code technology, used for verification of patients and their medication, could prevent medication errors in clinical practice. Retrospective analysis of electronically stored medical error reports was conducted in a university hospital. The number of reported medication errors of injected drugs, including wrong drug administration and administration to the wrong patient, was compared before and after implementation of the bar-code verification system for inpatient care. A total of 2867 error reports associated with injection drugs were extracted. Wrong patient errors decreased significantly after implementation of the bar-code verification system (17.4/year vs. 4.5/year, p< 0.05), although wrong drug errors did not decrease sufficiently (24.2/year vs. 20.3/year). The source of medication errors due to wrong drugs was drug preparation in hospital wards. Bar-code medication administration is effective for prevention of wrong patient errors. However, ordinary bar-code verification systems are limited in their ability to prevent incorrect drug preparation in hospital wards.
NASA Astrophysics Data System (ADS)
Kim, Cheol-kyun; Kim, Jungchan; Choi, Jaeseung; Yang, Hyunjo; Yim, Donggyu; Kim, Jinwoong
2007-03-01
As the minimum transistor length is getting smaller, the variation and uniformity of transistor length seriously effect device performance. So, the importance of optical proximity effects correction (OPC) and resolution enhancement technology (RET) cannot be overemphasized. However, OPC process is regarded by some as a necessary evil in device performance. In fact, every group which includes process and design, are interested in whole chip CD variation trend and CD uniformity, which represent real wafer. Recently, design based metrology systems are capable of detecting difference between data base to wafer SEM image. Design based metrology systems are able to extract information of whole chip CD variation. According to the results, OPC abnormality was identified and design feedback items are also disclosed. The other approaches are accomplished on EDA companies, like model based OPC verifications. Model based verification will be done for full chip area by using well-calibrated model. The object of model based verification is the prediction of potential weak point on wafer and fast feed back to OPC and design before reticle fabrication. In order to achieve robust design and sufficient device margin, appropriate combination between design based metrology system and model based verification tools is very important. Therefore, we evaluated design based metrology system and matched model based verification system for optimum combination between two systems. In our study, huge amount of data from wafer results are classified and analyzed by statistical method and classified by OPC feedback and design feedback items. Additionally, novel DFM flow would be proposed by using combination of design based metrology and model based verification tools.
Pella, A; Riboldi, M; Tagaste, B; Bianculli, D; Desplanques, M; Fontana, G; Cerveri, P; Seregni, M; Fattori, G; Orecchia, R; Baroni, G
2014-08-01
In an increasing number of clinical indications, radiotherapy with accelerated particles shows relevant advantages when compared with high energy X-ray irradiation. However, due to the finite range of ions, particle therapy can be severely compromised by setup errors and geometric uncertainties. The purpose of this work is to describe the commissioning and the design of the quality assurance procedures for patient positioning and setup verification systems at the Italian National Center for Oncological Hadrontherapy (CNAO). The accuracy of systems installed in CNAO and devoted to patient positioning and setup verification have been assessed using a laser tracking device. The accuracy in calibration and image based setup verification relying on in room X-ray imaging system was also quantified. Quality assurance tests to check the integration among all patient setup systems were designed, and records of daily QA tests since the start of clinical operation (2011) are presented. The overall accuracy of the patient positioning system and the patient verification system motion was proved to be below 0.5 mm under all the examined conditions, with median values below the 0.3 mm threshold. Image based registration in phantom studies exhibited sub-millimetric accuracy in setup verification at both cranial and extra-cranial sites. The calibration residuals of the OTS were found consistent with the expectations, with peak values below 0.3 mm. Quality assurance tests, daily performed before clinical operation, confirm adequate integration and sub-millimetric setup accuracy. Robotic patient positioning was successfully integrated with optical tracking and stereoscopic X-ray verification for patient setup in particle therapy. Sub-millimetric setup accuracy was achieved and consistently verified in daily clinical operation.
1982-01-29
N - Nw .VA COMPUTER PROGRAM USER’S MANUAL FOR . 0FIREFINDER DIGITAL TOPOGRAPHIC DATA VERIFICATION LIBRARY DUBBING SYSTEM VOLUME II DUBBING 29 JANUARY...Digital Topographic Data Verification Library Dubbing System, Volume II, Dubbing 6. PERFORMING ORG. REPORT NUMER 7. AUTHOR(q) S. CONTRACT OR GRANT...Software Library FIREFINDER Dubbing 20. ABSTRACT (Continue an revWee *Ide II necessary end identify by leek mauber) PThis manual describes the computer
2003-03-01
Different?," Jour. of Experimental & Theoretical Artificial Intelligence, Special Issue on Al for Systems Validation and Verification, 12(4), 2000, pp...Hamilton, D., " Experiences in Improving the State of Practice in Verification and Validation of Knowledge-Based Systems," Workshop Notes of the AAAI...Unsuspected Power of the Standard Turing Test," Jour. of Experimental & Theoretical Artificial Intelligence., 12, 2000, pp3 3 1-3 4 0 . [30] Gaschnig
Update on ONC's Substellar IMF: A Second Peak in the Brown Dwarf Regime
NASA Astrophysics Data System (ADS)
Drass, Holger; Bayo, A.; Chini, R.; Haas, M.
2017-06-01
The Orion Nebular Cluster (ONC) has become the prototype cluster for studying the Initial Mass Function (IMF). In a deep JHK survey of the ONC with HAWK-I we detected a large population of 900 Brown Dwarfs and Planetary Mass Object candidates presenting a pronounced second peak in the substellar IMF. One of the most obvious issues of this result is the verification of cluster membership. The analysis so far was mainly based on statistical consideration. In this presentation I will show the results from using different high-resolution extinction map to determine the ONC membership.
Space Warfighting Construct: Prototyping
NASA Astrophysics Data System (ADS)
Teehan, R. F.; Anttonen, J. S.; Stein, J. M.; Stearns, J. A.
Space is undergoing a period of great change, as the barriers to entry are lowering in every arena. Launch to any orbit is becoming more routine and feasible thanks to industry innovation, the rise of small- and cubesats, and the use of ESPA rings enabling “freight trains to GEO.” With more regular rides to space, there is a concomitant rise in the capability for space qualification, technology validation and verification, and all types of experimentation in both the space and ground segments. The types of architectures that commercial and government agencies develop is being influenced because space is becoming more accessible. Whereas current architectures are designed to have four to six satellites perform a mission, in the future that same mission may be distributed among dozens, hundreds, or even thousands of satellites. This changing landscape is something of a double-edged sword for Space Situational Awareness (SSA): safety of flight becomes a heightened concern, but the opportunities for the entire community to innovate, prototype, and ultimately provide novel, robust solutions have never been greater.
Analysis of using PDMS polymer as the sensors of the pressure or weight
NASA Astrophysics Data System (ADS)
Jargus, Jan; Nedoma, Jan; Fajkus, Marcel; Novak, Martin; Mec, Pavel; Cvejn, Daniel; Bujdos, David; Vasinek, Vladimir
2017-10-01
Polydimethylsiloxane (PDMS) can be used for its optical properties, and its composition offers the possibility of use in the diverse environments (industry, photonics, medicine applications, security devices and etc.). Therefore authors of this article focused on more detailed working with this material. This material could be use for the sensory applications such as the sensor of pressure or weight, which may find use also in the field of security and defense. The article describes the process of making the prototype of the sensor and its verification based on laboratory results. Measurement methodology is based on the determination of the change of optical power at the output of the sensor prototype depending on the change in pressure or weight. We estimate the maximum load of the sensor on the basis of the laboratory results in the units of tons. Using a calibration measurement can determine the amount of pressure and weight with an accuracy of +/- 2 %.
Umbilical Connect Techniques Improvement-Technology Study
NASA Technical Reports Server (NTRS)
Valkema, Donald C.
1972-01-01
The objective of this study was to develop concepts, specifications, designs, techniques, and procedures capable of significantly reducing the time required to connect and verify umbilicals for ground services to the space shuttle. The desired goal was to reduce the current time requirement of several shifts for the Saturn 5/Apollo to an elapsed time of less than one hour to connect and verify all of the space shuttle ground service umbilicals. The study was conducted in four phases: (1) literature and hardware examination, (2) concept development, (3) concept evaluation and tradeoff analysis, and (4) selected concept design. The final product of this study was a detail design of a rise-off disconnect panel prototype test specimen for a LO2/LH2 booster (or an external oxygen/hydrogen tank for an orbiter), a detail design of a swing-arm mounted preflight umbilical carrier prototype test specimen, and a part 1 specification for the umbilical connect and verification design for the vehicles as defined in the space shuttle program.
Design, fabrication, and verification of a three-dimensional autocollimator.
Yin, Yanhe; Cai, Sheng; Qiao, Yanfeng
2016-12-10
The autocollimator is an optical instrument for noncontact angle measurement with high resolution and a long detection range. It measures two-dimensional angles, i.e., pitch and yaw, but not roll. In this paper, we present a novelly structured autocollimator capable of measuring three-dimensional (3D) angles simultaneously. In this setup, two collimated beams of different wavelengths are projected onto a right-angle prism. One beam is reflected by the hypotenuse of the prism and received by an autocollimation unit for detecting pitch and yaw. The other is reflected by the two legs of the right-angle prism and received by a moiré fringe imaging unit for detecting roll. Furthermore, a prototype is designed and fabricated. Experiments are carried out to evaluate its basic performance. Calibration results show that this prototype has angular RMS errors of less than 5 arcsec in all 3Ds over a range of 1000 arcsec at a working distance of 2 m.
NASA Astrophysics Data System (ADS)
Hsieh, Long-Chang; Chen, Tzu-Hsia
2017-12-01
Traditionally, the mechanism of wheelchair with lifting and standing functions has 2 degrees of freedom, and used 2 power sources to perform these 2 motion function. The purpose of this paper is to invent new wheelchair with 1 degree of freedom to perform these 2 motion functions. Hence, we can use only 1 power source to drive the mechanism to achieve lifting and standing motion functions. The new design has the advantages of simple operation, more stability, and more safety. For traditional standing wheelchair, its’ centre of gravity moves forward when standing up and it needs 2 auxiliary wheels to prevent dumping. In this paper, by using the checklist method of Osborn, the wheelchair with 1 DOF is invented to perform lifting and standing functions. The centre of gravity of this new wheelchair after standing up still located between the front and rear wheels, no auxiliary wheels needed. Finally, the prototype is manufactured to verify the theoretical results.
200 MeV Proton Radiography Studies with a Hand Phantom Using a Prototype Proton CT Scanner
Plautz, Tia; Bashkirov, V.; Feng, V.; Hurley, F.; Johnson, R.P.; Leary, C.; Macafee, S.; Plumb, A.; Rykalin, V.; Sadrozinski, H.F.-W.; Schubert, K.; Schulte, R.; Schultze, B.; Steinberg, D.; Witt, M.; Zatserklyaniy, A.
2014-01-01
Proton radiography has applications in patient alignment and verification procedures for proton beam radiation therapy. In this paper, we report an experiment which used 200 MeV protons to generate proton energy-loss and scattering radiographs of a hand phantom. The experiment used the first-generation proton CT scanner prototype, which was installed on the research beam line of the clinical proton synchrotron at Loma Linda University Medical Center (LLUMC). It was found that while both radiographs displayed anatomical details of the hand phantom, the energy-loss radiograph had a noticeably higher resolution. Nonetheless, scattering radiography may yield more contrast between soft and bone tissue than energy-loss radiography, however, this requires further study. This study contributes to the optimization of the performance of the next-generation of clinical proton CT scanners. Furthermore, it demonstrates the potential of proton imaging (proton radiography and CT), which is now within reach of becoming available as a new, potentially low-dose medical imaging modality. PMID:24710156
Distilling the Verification Process for Prognostics Algorithms
NASA Technical Reports Server (NTRS)
Roychoudhury, Indranil; Saxena, Abhinav; Celaya, Jose R.; Goebel, Kai
2013-01-01
The goal of prognostics and health management (PHM) systems is to ensure system safety, and reduce downtime and maintenance costs. It is important that a PHM system is verified and validated before it can be successfully deployed. Prognostics algorithms are integral parts of PHM systems. This paper investigates a systematic process of verification of such prognostics algorithms. To this end, first, this paper distinguishes between technology maturation and product development. Then, the paper describes the verification process for a prognostics algorithm as it moves up to higher maturity levels. This process is shown to be an iterative process where verification activities are interleaved with validation activities at each maturation level. In this work, we adopt the concept of technology readiness levels (TRLs) to represent the different maturity levels of a prognostics algorithm. It is shown that at each TRL, the verification of a prognostics algorithm depends on verifying the different components of the algorithm according to the requirements laid out by the PHM system that adopts this prognostics algorithm. Finally, using simplified examples, the systematic process for verifying a prognostics algorithm is demonstrated as the prognostics algorithm moves up TRLs.
Development and Verification of the Charring Ablating Thermal Protection Implicit System Solver
NASA Technical Reports Server (NTRS)
Amar, Adam J.; Calvert, Nathan D.; Kirk, Benjamin S.
2010-01-01
The development and verification of the Charring Ablating Thermal Protection Implicit System Solver is presented. This work concentrates on the derivation and verification of the stationary grid terms in the equations that govern three-dimensional heat and mass transfer for charring thermal protection systems including pyrolysis gas flow through the porous char layer. The governing equations are discretized according to the Galerkin finite element method with first and second order implicit time integrators. The governing equations are fully coupled and are solved in parallel via Newton's method, while the fully implicit linear system is solved with the Generalized Minimal Residual method. Verification results from exact solutions and the Method of Manufactured Solutions are presented to show spatial and temporal orders of accuracy as well as nonlinear convergence rates.
Development and Verification of the Charring, Ablating Thermal Protection Implicit System Simulator
NASA Technical Reports Server (NTRS)
Amar, Adam J.; Calvert, Nathan; Kirk, Benjamin S.
2011-01-01
The development and verification of the Charring Ablating Thermal Protection Implicit System Solver (CATPISS) is presented. This work concentrates on the derivation and verification of the stationary grid terms in the equations that govern three-dimensional heat and mass transfer for charring thermal protection systems including pyrolysis gas flow through the porous char layer. The governing equations are discretized according to the Galerkin finite element method (FEM) with first and second order fully implicit time integrators. The governing equations are fully coupled and are solved in parallel via Newton s method, while the linear system is solved via the Generalized Minimum Residual method (GMRES). Verification results from exact solutions and Method of Manufactured Solutions (MMS) are presented to show spatial and temporal orders of accuracy as well as nonlinear convergence rates.
A system for automatic evaluation of simulation software
NASA Technical Reports Server (NTRS)
Ryan, J. P.; Hodges, B. C.
1976-01-01
Within the field of computer software, simulation and verification are complementary processes. Simulation methods can be used to verify software by performing variable range analysis. More general verification procedures, such as those described in this paper, can be implicitly, viewed as attempts at modeling the end-product software. From software requirement methodology, each component of the verification system has some element of simulation to it. Conversely, general verification procedures can be used to analyze simulation software. A dynamic analyzer is described which can be used to obtain properly scaled variables for an analog simulation, which is first digitally simulated. In a similar way, it is thought that the other system components and indeed the whole system itself have the potential of being effectively used in a simulation environment.
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Divito, Ben L.
1992-01-01
The design and formal verification of the Reliable Computing Platform (RCP), a fault tolerant computing system for digital flight control applications is presented. The RCP uses N-Multiply Redundant (NMR) style redundancy to mask faults and internal majority voting to flush the effects of transient faults. The system is formally specified and verified using the Ehdm verification system. A major goal of this work is to provide the system with significant capability to withstand the effects of High Intensity Radiated Fields (HIRF).
Earth Science Enterprise Scientific Data Purchase Project: Verification and Validation
NASA Technical Reports Server (NTRS)
Jenner, Jeff; Policelli, Fritz; Fletcher, Rosea; Holecamp, Kara; Owen, Carolyn; Nicholson, Lamar; Dartez, Deanna
2000-01-01
This paper presents viewgraphs on the Earth Science Enterprise Scientific Data Purchase Project's verification,and validation process. The topics include: 1) What is Verification and Validation? 2) Why Verification and Validation? 3) Background; 4) ESE Data Purchas Validation Process; 5) Data Validation System and Ingest Queue; 6) Shipment Verification; 7) Tracking and Metrics; 8) Validation of Contract Specifications; 9) Earth Watch Data Validation; 10) Validation of Vertical Accuracy; and 11) Results of Vertical Accuracy Assessment.
A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera
Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo
2016-01-01
In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots. PMID:27023556
Analysis of the thermal balance characteristics for multiple-connected piezoelectric transformers.
Park, Joung-Hu; Cho, Bo-Hyung; Choi, Sung-Jin; Lee, Sang-Min
2009-08-01
Because the amount of power that a piezoelectric transformer (PT) can handle is limited, multiple connections of PTs are necessary for the power-capacity improvement of PT-applications. In the connection, thermal imbalance between the PTs should be prevented to avoid the thermal runaway of each PT. The thermal balance of the multiple-connected PTs is dominantly affected by the electrothermal characteristics of individual PTs. In this paper, the thermal balance of both parallel-parallel and parallel-series connections are analyzed by electrical model parameters. For quantitative analysis, the thermal-balance effects are estimated by the simulation of the mechanical loss ratio between the PTs. The analysis results show that with PTs of similar characteristics, the parallel-series connection has better thermal balance characteristics due to the reduced mechanical loss of the higher temperature PT. For experimental verification of the analysis, a hardware-prototype test of a Cs-Lp type 40 W adapter system with radial-vibration mode PTs has been performed.
[Experimental monkey encephalitis caused by Powassan virus].
Frolova, M P; Isachkova, L M; Shestopalova, N M; Pogodina, V V
1981-01-01
A comparative study of the experimental infection of monkeys caused by brain P-40 of Powassan virus isolated in the Primorye Territory of the USSR and by the prototype Canadian strain LB was carried out. Powassan virus was found to be pathogenic for Macaca rhesus. Clinical and pathomorphological picture of the experimental encephalitis was studied. Full identity of the infection caused in the monkeys by the strain P-40 and the Canadian strain LB of Powassan virus has been proved. On electronmicroscopic examination of the central nervous system the virus was detected in the neurons, glial cells and intercellular spaces. The virions of the strains studied have identical morphological parameters, being 37 to 45 nm in diameter and having spherical shape. The data obtained point to a marked neurotropism of the virus. They will contribute to elucidation of the virus role in the infectious pathology of man, and namely, in verification of encephalitis cases not associated etiologically with the virus of the spring-summer tick-borne encephalitis.
A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera.
Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo
2016-03-25
In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots.
Multi-Mounted X-Ray Computed Tomography
Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng
2016-01-01
Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT. PMID:27073911
“In vitro” Implantation Technique Based on 3D Printed Prosthetic Prototypes
NASA Astrophysics Data System (ADS)
Tarnita, D.; Boborelu, C.; Geonea, I.; Malciu, R.; Grigorie, L.; Tarnita, D. N.
2018-06-01
In this paper, Rapid Prototyping ZCorp 310 system, based on high-performance composite powder and on resin-high strength infiltration system and three-dimensional printing as a manufacturing method are used to obtain physical prototypes of orthopaedic implants and prototypes of complex functional prosthetic systems directly from the 3D CAD data. These prototypes are useful for in vitro experimental tests and measurements to optimize and obtain final physical prototypes. Using a new elbow prosthesis model prototype obtained by 3D printing, the surgical technique of implantation is established. Surgical implantation was performed on male corpse elbow joint.
End effector monitoring system: An illustrated case of operational prototyping
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Land, Sherry A.; Thronesbery, Carroll
1994-01-01
Operational prototyping is introduced to help developers apply software innovations to real-world problems, to help users articulate requirements, and to help develop more usable software. Operational prototyping has been applied to an expert system development project. The expert system supports fault detection and management during grappling operations of the Space Shuttle payload bay arm. The dynamic exchanges among operational prototyping team members are illustrated in a specific prototyping session. We discuss the requirements for operational prototyping technology, types of projects for which operational prototyping is best suited and when it should be applied to those projects.
Verification testing of the SUNTEC LPX200 UV Disinfection System to develop the UV delivered dose flow relationship was conducted at the Parsippany-Troy Hills wastewater treatment plant test site in Parsippany, New Jersey. Two lamp modules were mounted parallel in a 6.5-meter lon...
NASA Technical Reports Server (NTRS)
1975-01-01
The findings are presented of investigations on concepts and techniques in automated performance verification. The investigations were conducted to provide additional insight into the design methodology and to develop a consolidated technology base from which to analyze performance verification design approaches. Other topics discussed include data smoothing, function selection, flow diagrams, data storage, and shuttle hydraulic systems.
ETV REPORT AND VERIFICATION STATEMENT; EVALUATION OF LOBO LIQUIDS RINSE WATER RECOVERY SYSTEM
The Lobo Liquids Rinse Water Recovery System (Lobo Liquids system) was tested, under actual production conditions, processing metal finishing wastewater, at Gull Industries in Houston, Texas. The verification test evaluated the ability of the ion exchange (IX) treatment system t...
DOT National Transportation Integrated Search
2005-09-01
This document describes a procedure for verifying a dynamic testing system (closed-loop servohydraulic). The procedure is divided into three general phases: (1) electronic system performance verification, (2) calibration check and overall system perf...
Cluster man/system design requirements and verification. [for Skylab program
NASA Technical Reports Server (NTRS)
Watters, H. H.
1974-01-01
Discussion of the procedures employed for determining the man/system requirements that guided Skylab design, and review of the techniques used for implementing the man/system design verification. The foremost lesson learned from the design need anticipation and design verification experience is the necessity to allow for human capabilities of in-flight maintenance and repair. It is now known that the entire program was salvaged by a series of unplanned maintenance and repair events which were implemented in spite of poor design provisions for maintenance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, James E.; Sabharwall, Piyush; Yoon, Su -Jong
2014-09-01
This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs)more » at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.« less
Structural health monitoring technology for bolted carbon-carbon thermal protection panels
NASA Astrophysics Data System (ADS)
Yang, Jinkyu
2005-12-01
The research in this dissertation is motivated by the need for reliable inspection technologies for the detection of bolt loosening in Carbon-Carbon (C-C) Thermal Protection System (TPS) panels on Space Operation Vehicles (SOV) using minimal human intervention. A concept demonstrator of the Structural Health Monitoring (SHM) system was developed to autonomously detect the degradation of the mechanical integrity of the standoff C-C TPS panels. This system assesses the torque levels of the loosened bolts in the C-C TPS panel, as well as identifies the location of those bolts accordingly. During the course of building the proposed SHM prototype, efforts have been focused primarily on developing a trustworthy diagnostic scheme and a responsive sensor suite. Based on the microcontact conditions and damping phenomena of ultrasonic waves across the bolted joints, an Attenuation-based Diagnostic Method was proposed to assess the fastener integrity by observing the attenuation patterns of the resultant sensor signals. Parametric model studies and prototype testing validated the theoretical explanation of the attenuation-based method. Once the diagnostic scheme was determined, the implementation of a sensor suite was the next step. A new PZT-embedded sensor washer was developed to enhance remote sensing capability and achieve sufficient sensitivity by guiding diagnostic waves primarily through the inspection areas. The sensor-embedded washers replace the existing washers to constitute the sensor network, as well as to avoid jeopardizing the integrity of the original fastener components. After sensor design evolution and appropriate algorithm development, verification tests were conducted using a shaker and a full-scale oven, which simulated the acoustic and thermal environments during the re-entry process, respectively. The test results revealed that the proposed system successfully identifies the loss of the preload for the bolted joints that were loosened. The sensors were also found to be durable under the cyclic mechanical and thermal loads without major failures.
Space Suit Portable Life Support System (PLSS) 2.0 Pre-Installation Acceptance (PIA) Testing
NASA Technical Reports Server (NTRS)
Watts, Carly; Vogel, Matthew
2016-01-01
Following successful completion of the space suit Portable Life Support System (PLSS) 1.0 development and testing in 2011, the second system-level prototype, PLSS 2.0, was developed in 2012 to continue the maturation of the advanced PLSS design which is intended to reduce consumables, improve reliability and robustness, and incorporate additional sensing and functional capabilities over the current Space Shuttle/International Space Station Extravehicular Mobility Unit (EMU) PLSS. PLSS 2.0 represents the first attempt at a packaged design comprising first generation or later component prototypes and medium fidelity interfaces within a flight-like representative volume. Pre-Installation Acceptance (PIA) is carryover terminology from the Space Shuttle Program referring to the series of test sequences used to verify functionality of the EMU PLSS prior to installation into the Space Shuttle airlock for launch. As applied to the PLSS 2.0 development and testing effort, PIA testing designated the series of 27 independent test sequences devised to verify component and subsystem functionality, perform in situ instrument calibrations, generate mapping data to define set-points for control algorithms, evaluate hardware performance against advanced PLSS design requirements, and provide quantitative and qualitative feedback on evolving design requirements and performance specifications. PLSS 2.0 PIA testing was carried out from 3/20/13 - 3/15/14 using a variety of test configurations to perform test sequences that ranged from stand-alone component testing to system-level testing, with evaluations becoming increasingly integrated as the test series progressed. Each of the 27 test sequences was vetted independently, with verification of basic functionality required before completion. Because PLSS 2.0 design requirements were evolving concurrently with PLSS 2.0 PIA testing, the requirements were used as guidelines to assess performance during the tests; after the completion of PIA testing, test data served to improve the fidelity and maturity of design requirements as well as plans for future advanced PLSS functional testing.
Space Suit Portable Life Support System (PLSS) 2.0 Pre-Installation Acceptance (PIA) Testing
NASA Technical Reports Server (NTRS)
Anchondo, Ian; Cox, Marlon; Meginnis, Carly; Westheimer, David; Vogel, Matt R.
2016-01-01
Following successful completion of the space suit Portable Life Support System (PLSS) 1.0 development and testing in 2011, the second system-level prototype, PLSS 2.0, was developed in 2012 to continue the maturation of the advanced PLSS design. This advanced PLSS is intended to reduce consumables, improve reliability and robustness, and incorporate additional sensing and functional capabilities over the current Space Shuttle/International Space Station Extravehicular Mobility Unit (EMU) PLSS. PLSS 2.0 represents the first attempt at a packaged design comprising first generation or later component prototypes and medium fidelity interfaces within a flight-like representative volume. Pre-Installation Acceptance (PIA) is carryover terminology from the Space Shuttle Program referring to the series of test sequences used to verify functionality of the EMU PLSS prior to installation into the Space Shuttle airlock for launch. As applied to the PLSS 2.0 development and testing effort, PIA testing designated the series of 27 independent test sequences devised to verify component and subsystem functionality, perform in situ instrument calibrations, generate mapping data, define set-points, evaluate control algorithms, evaluate hardware performance against advanced PLSS design requirements, and provide quantitative and qualitative feedback on evolving design requirements and performance specifications. PLSS 2.0 PIA testing was carried out in 2013 and 2014 using a variety of test configurations to perform test sequences that ranged from stand-alone component testing to system-level testing, with evaluations becoming increasingly integrated as the test series progressed. Each of the 27 test sequences was vetted independently, with verification of basic functionality required before completion. Because PLSS 2.0 design requirements were evolving concurrently with PLSS 2.0 PIA testing, the requirements were used as guidelines to assess performance during the tests; after the completion of PIA testing, test data served to improve the fidelity and maturity of design requirements as well as plans for future advanced PLSS functional testing.
NASA Technical Reports Server (NTRS)
Probst, D.; Jensen, L.
1991-01-01
Delay-insensitive VLSI systems have a certain appeal on the ground due to difficulties with clocks; they are even more attractive in space. We answer the question, is it possible to control state explosion arising from various sources during automatic verification (model checking) of delay-insensitive systems? State explosion due to concurrency is handled by introducing a partial-order representation for systems, and defining system correctness as a simple relation between two partial orders on the same set of system events (a graph problem). State explosion due to nondeterminism (chiefly arbitration) is handled when the system to be verified has a clean, finite recurrence structure. Backwards branching is a further optimization. The heart of this approach is the ability, during model checking, to discover a compact finite presentation of the verified system without prior composition of system components. The fully-implemented POM verification system has polynomial space and time performance on traditional asynchronous-circuit benchmarks that are exponential in space and time for other verification systems. We also sketch the generalization of this approach to handle delay-constrained VLSI systems.
Formal methods for dependable real-time systems
NASA Technical Reports Server (NTRS)
Rushby, John
1993-01-01
The motivation for using formal methods to specify and reason about real time properties is outlined and approaches that were proposed and used are sketched. The formal verifications of clock synchronization algorithms are concluded as showing that mechanically supported reasoning about complex real time behavior is feasible. However, there was significant increase in the effectiveness of verification systems since those verifications were performed, at it is to be expected that verifications of comparable difficulty will become fairly routine. The current challenge lies in developing perspicuous and economical approaches to the formalization and specification of real time properties.
Cell-Phone Tower Power System Prototype Testing for Verizon Wireless |
Verizon Wireless Cell-Phone Tower Power System Prototype Testing for Verizon Wireless For Verizon Wireless Advanced Manufacturing Research | NREL Cell-Phone Tower Power System Prototype Testing for , NREL tested a new cell-phone tower power system prototype based on DC interconnection and photovoltaics
A synergistic method for vibration suppression of an elevator mechatronic system
NASA Astrophysics Data System (ADS)
Knezevic, Bojan Z.; Blanusa, Branko; Marcetic, Darko P.
2017-10-01
Modern elevators are complex mechatronic systems which have to satisfy high performance in precision, safety and ride comfort. Each elevator mechatronic system (EMS) contains a mechanical subsystem which is characterized by its resonant frequency. In order to achieve high performance of the whole system, the control part of the EMS inevitably excites resonant circuits causing the occurrence of vibration. This paper proposes a synergistic solution based on the jerk control and the upgrade of the speed controller with a band-stop filter to restore lost ride comfort and speed control caused by vibration. The band-stop filter eliminates the resonant component from the speed controller spectra and jerk control provides operating of the speed controller in a linear mode as well as increased ride comfort. The original method for band-stop filter tuning based on Goertzel algorithm and Kiefer search algorithm is proposed in this paper. In order to generate the speed reference trajectory which can be defined by different shapes and amplitudes of jerk, a unique generalized model is proposed. The proposed algorithm is integrated in the power drive control algorithm and implemented on the digital signal processor. Through experimental verifications on a scale down prototype of the EMS it has been verified that only synergistic effect of controlling jerk and filtrating the reference torque can completely eliminate vibrations.
Spalax™ new generation: A sensitive and selective noble gas system for nuclear explosion monitoring.
Le Petit, G; Cagniant, A; Gross, P; Douysset, G; Topin, S; Fontaine, J P; Taffary, T; Moulin, C
2015-09-01
In the context of the verification regime of the Comprehensive nuclear Test ban Treaty (CTBT), CEA is developing a new generation (NG) of SPALAX™ system for atmospheric radioxenon monitoring. These systems are able to extract more than 6cm(3) of pure xenon from air samples each 12h and to measure the four relevant xenon radioactive isotopes using a high resolution detection system operating in electron-photon coincidence mode. This paper presents the performances of the SPALAX™ NG prototype in operation at Bruyères-le-Châtel CEA centre, integrating the most recent CEA developments. It especially focuses on an innovative detection system made up of a gas cell equipped with two face-to-face silicon detectors associated to one or two germanium detectors. Minimum Detectable activity Concentrations (MDCs) of environmental samples were calculated to be approximately 0.1 mBq/m(3) for the isotopes (131m)Xe, (133m)Xe, (133)Xe and 0.4 mBq/m(3) for (135)Xe (single germanium configuration). The detection system might be used to simultaneously measure particulate and noble gas samples from the CTBT International Monitoring System (IMS). That possibility could lead to new capacities for particulate measurements by allowing electron-photon coincidence detection of certain fission products. Copyright © 2015 Elsevier Ltd. All rights reserved.
Prototyping with AIDA for a hospital pharmacy system.
Molenaar, G C; Boon, W M
1987-01-01
The CENTRASYS system for the Hospital Pharmacy, developed as part of a research project of the Department of Medical Informatics is described. The role of AIDA, a fourth-generation software package, as a prototyping tool is discussed. It is concluded that AIDA facilitates prototyping and is also very suitable as a vehicle for systems in operation. It is further concluded that prototyping is of great help in the developmental phase of a project, but that great care has to be taken during evaluation of the prototypes: minimize the number of test sites and try to avoid that users become dependent on the system, because every prototype needs further tuning before it really becomes an operational system.
A PC based fault diagnosis expert system
NASA Technical Reports Server (NTRS)
Marsh, Christopher A.
1990-01-01
The Integrated Status Assessment (ISA) prototype expert system performs system level fault diagnosis using rules and models created by the user. The ISA evolved from concepts to a stand-alone demonstration prototype using OPS5 on a LISP Machine. The LISP based prototype was rewritten in C and the C Language Integrated Production System (CLIPS) to run on a Personal Computer (PC) and a graphics workstation. The ISA prototype has been used to demonstrate fault diagnosis functions of Space Station Freedom's Operation Management System (OMS). This paper describes the development of the ISA prototype from early concepts to the current PC/workstation version used today and describes future areas of development for the prototype.
The Environmental Technology Verification report discusses the technology and performance of a gaseous-emissions monitoring system for large, natural-gas-fired internal combustion engines. The device tested is the Parametric Emissions Monitoring System (PEMS) manufactured by ANR ...
Distributed Engine Control Empirical/Analytical Verification Tools
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan; Hettler, Eric; Yedavalli, Rama; Mitra, Sayan
2013-01-01
NASA's vision for an intelligent engine will be realized with the development of a truly distributed control system featuring highly reliable, modular, and dependable components capable of both surviving the harsh engine operating environment and decentralized functionality. A set of control system verification tools was developed and applied to a C-MAPSS40K engine model, and metrics were established to assess the stability and performance of these control systems on the same platform. A software tool was developed that allows designers to assemble easily a distributed control system in software and immediately assess the overall impacts of the system on the target (simulated) platform, allowing control system designers to converge rapidly on acceptable architectures with consideration to all required hardware elements. The software developed in this program will be installed on a distributed hardware-in-the-loop (DHIL) simulation tool to assist NASA and the Distributed Engine Control Working Group (DECWG) in integrating DCS (distributed engine control systems) components onto existing and next-generation engines.The distributed engine control simulator blockset for MATLAB/Simulink and hardware simulator provides the capability to simulate virtual subcomponents, as well as swap actual subcomponents for hardware-in-the-loop (HIL) analysis. Subcomponents can be the communication network, smart sensor or actuator nodes, or a centralized control system. The distributed engine control blockset for MATLAB/Simulink is a software development tool. The software includes an engine simulation, a communication network simulation, control algorithms, and analysis algorithms set up in a modular environment for rapid simulation of different network architectures; the hardware consists of an embedded device running parts of the CMAPSS engine simulator and controlled through Simulink. The distributed engine control simulation, evaluation, and analysis technology provides unique capabilities to study the effects of a given change to the control system in the context of the distributed paradigm. The simulation tool can support treatment of all components within the control system, both virtual and real; these include communication data network, smart sensor and actuator nodes, centralized control system (FADEC full authority digital engine control), and the aircraft engine itself. The DECsim tool can allow simulation-based prototyping of control laws, control architectures, and decentralization strategies before hardware is integrated into the system. With the configuration specified, the simulator allows a variety of key factors to be systematically assessed. Such factors include control system performance, reliability, weight, and bandwidth utilization.
Meyer, Pablo; Hoeng, Julia; Rice, J. Jeremy; Norel, Raquel; Sprengel, Jörg; Stolle, Katrin; Bonk, Thomas; Corthesy, Stephanie; Royyuru, Ajay; Peitsch, Manuel C.; Stolovitzky, Gustavo
2012-01-01
Motivation: Analyses and algorithmic predictions based on high-throughput data are essential for the success of systems biology in academic and industrial settings. Organizations, such as companies and academic consortia, conduct large multi-year scientific studies that entail the collection and analysis of thousands of individual experiments, often over many physical sites and with internal and outsourced components. To extract maximum value, the interested parties need to verify the accuracy and reproducibility of data and methods before the initiation of such large multi-year studies. However, systematic and well-established verification procedures do not exist for automated collection and analysis workflows in systems biology which could lead to inaccurate conclusions. Results: We present here, a review of the current state of systems biology verification and a detailed methodology to address its shortcomings. This methodology named ‘Industrial Methodology for Process Verification in Research’ or IMPROVER, consists on evaluating a research program by dividing a workflow into smaller building blocks that are individually verified. The verification of each building block can be done internally by members of the research program or externally by ‘crowd-sourcing’ to an interested community. www.sbvimprover.com Implementation: This methodology could become the preferred choice to verify systems biology research workflows that are becoming increasingly complex and sophisticated in industrial and academic settings. Contact: gustavo@us.ibm.com PMID:22423044
Apollo experience report: Guidance and control systems. Engineering simulation program
NASA Technical Reports Server (NTRS)
Gilbert, D. W.
1973-01-01
The Apollo Program experience from early 1962 to July 1969 with respect to the engineering-simulation support and the problems encountered is summarized in this report. Engineering simulation in support of the Apollo guidance and control system is discussed in terms of design analysis and verification, certification of hardware in closed-loop operation, verification of hardware/software compatibility, and verification of both software and procedures for each mission. The magnitude, time, and cost of the engineering simulations are described with respect to hardware availability, NASA and contractor facilities (for verification of the command module, the lunar module, and the primary guidance, navigation, and control system), and scheduling and planning considerations. Recommendations are made regarding implementation of similar, large-scale simulations for future programs.
An experimental method to verify soil conservation by check dams on the Loess Plateau, China.
Xu, X Z; Zhang, H W; Wang, G Q; Chen, S C; Dang, W Q
2009-12-01
A successful experiment with a physical model requires necessary conditions of similarity. This study presents an experimental method with a semi-scale physical model. The model is used to monitor and verify soil conservation by check dams in a small watershed on the Loess Plateau of China. During experiments, the model-prototype ratio of geomorphic variables was kept constant under each rainfall event. Consequently, experimental data are available for verification of soil erosion processes in the field and for predicting soil loss in a model watershed with check dams. Thus, it can predict the amount of soil loss in a catchment. This study also mentions four criteria: similarities of watershed geometry, grain size and bare land, Froude number (Fr) for rainfall event, and soil erosion in downscaled models. The efficacy of the proposed method was confirmed using these criteria in two different downscaled model experiments. The B-Model, a large scale model, simulates watershed prototype. The two small scale models, D(a) and D(b), have different erosion rates, but are the same size. These two models simulate hydraulic processes in the B-Model. Experiment results show that while soil loss in the small scale models was converted by multiplying the soil loss scale number, it was very close to that of the B-Model. Obviously, with a semi-scale physical model, experiments are available to verify and predict soil loss in a small watershed area with check dam system on the Loess Plateau, China.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... AGRICULTURAL COMMODITIES (QUALITY SYSTEMS VERIFICATION PROGRAMS) Quality Systems Verification Programs Definitions Service § 62.209 Reassessment. Approved programs are subject to periodic reassessments to ensure...
Compressive sensing using optimized sensing matrix for face verification
NASA Astrophysics Data System (ADS)
Oey, Endra; Jeffry; Wongso, Kelvin; Tommy
2017-12-01
Biometric appears as one of the solutions which is capable in solving problems that occurred in the usage of password in terms of data access, for example there is possibility in forgetting password and hard to recall various different passwords. With biometrics, physical characteristics of a person can be captured and used in the identification process. In this research, facial biometric is used in the verification process to determine whether the user has the authority to access the data or not. Facial biometric is chosen as its low cost implementation and generate quite accurate result for user identification. Face verification system which is adopted in this research is Compressive Sensing (CS) technique, in which aims to reduce dimension size as well as encrypt data in form of facial test image where the image is represented in sparse signals. Encrypted data can be reconstructed using Sparse Coding algorithm. Two types of Sparse Coding namely Orthogonal Matching Pursuit (OMP) and Iteratively Reweighted Least Squares -ℓp (IRLS-ℓp) will be used for comparison face verification system research. Reconstruction results of sparse signals are then used to find Euclidean norm with the sparse signal of user that has been previously saved in system to determine the validity of the facial test image. Results of system accuracy obtained in this research are 99% in IRLS with time response of face verification for 4.917 seconds and 96.33% in OMP with time response of face verification for 0.4046 seconds with non-optimized sensing matrix, while 99% in IRLS with time response of face verification for 13.4791 seconds and 98.33% for OMP with time response of face verification for 3.1571 seconds with optimized sensing matrix.
Space shuttle engineering and operations support. Avionics system engineering
NASA Technical Reports Server (NTRS)
Broome, P. A.; Neubaur, R. J.; Welsh, R. T.
1976-01-01
The shuttle avionics integration laboratory (SAIL) requirements for supporting the Spacelab/orbiter avionics verification process are defined. The principal topics are a Spacelab avionics hardware assessment, test operations center/electronic systems test laboratory (TOC/ESL) data processing requirements definition, SAIL (Building 16) payload accommodations study, and projected funding and test scheduling. Because of the complex nature of the Spacelab/orbiter computer systems, the PCM data link, and the high rate digital data system hardware/software relationships, early avionics interface verification is required. The SAIL is a prime candidate test location to accomplish this early avionics verification.
A Verification System for Distributed Objects with Asynchronous Method Calls
NASA Astrophysics Data System (ADS)
Ahrendt, Wolfgang; Dylla, Maximilian
We present a verification system for Creol, an object-oriented modeling language for concurrent distributed applications. The system is an instance of KeY, a framework for object-oriented software verification, which has so far been applied foremost to sequential Java. Building on KeY characteristic concepts, like dynamic logic, sequent calculus, explicit substitutions, and the taclet rule language, the system presented in this paper addresses functional correctness of Creol models featuring local cooperative thread parallelism and global communication via asynchronous method calls. The calculus heavily operates on communication histories which describe the interfaces of Creol units. Two example scenarios demonstrate the usage of the system.
C formal verification with unix communication and concurrency
NASA Technical Reports Server (NTRS)
Hoover, Doug N.
1990-01-01
The results of a NASA SBIR project are presented in which CSP-Ariel, a verification system for C programs which use Unix system calls for concurrent programming, interprocess communication, and file input and output, was developed. This project builds on ORA's Ariel C verification system by using the system of Hoare's book, Communicating Sequential Processes, to model concurrency and communication. The system runs in ORA's Clio theorem proving environment. The use of CSP to model Unix concurrency and sketch the CSP semantics of a simple concurrent program is outlined. Plans for further development of CSP-Ariel are discussed. This paper is presented in viewgraph form.
40 CFR 1065.920 - PEMS calibrations and verifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065... that your new configuration meets this verification. The verification consists of operating an engine... with data simultaneously generated and recorded by laboratory equipment as follows: (1) Mount an engine...
40 CFR 1065.920 - PEMS calibrations and verifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065... that your new configuration meets this verification. The verification consists of operating an engine... with data simultaneously generated and recorded by laboratory equipment as follows: (1) Mount an engine...
40 CFR 1065.920 - PEMS calibrations and verifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065... that your new configuration meets this verification. The verification consists of operating an engine... with data simultaneously generated and recorded by laboratory equipment as follows: (1) Mount an engine...
A new verification film system for routine quality control of radiation fields: Kodak EC-L.
Hermann, A; Bratengeier, K; Priske, A; Flentje, M
2000-06-01
The use of modern irradiation techniques requires better verification films for determining set-up deviations and patient movements during the course of radiation treatment. This is an investigation of the image quality and time requirement of a new verification film system compared to a conventional portal film system. For conventional verifications we used Agfa Curix HT 1000 films which were compared to the new Kodak EC-L film system. 344 Agfa Curix HT 1000 and 381 Kodak EC-L portal films of different tumor sites (prostate, rectum, head and neck) were visually judged on a light box by 2 experienced physicians. Subjective judgement of image quality, masking of films and time requirement were checked. In this investigation 68% of 175 Kodak EC-L ap/pa-films were judged "good", only 18% were classified "moderate" or "poor" 14%, but only 22% of 173 conventional ap/pa verification films (Agfa Curix HT 1000) were judged to be "good". The image quality, detail perception and time required for film inspection of the new Kodak EC-L film system was significantly improved when compared with standard portal films. They could be read more accurately and the detection of set-up deviation was facilitated.
Dental equipment test during zero-gravity flight
NASA Technical Reports Server (NTRS)
Young, John; Gosbee, John; Billica, Roger
1991-01-01
The overall objectives of this program were to establish performance criteria and develop prototype equipment for use in the Health Maintenance Facility (HMF) in meeting the needs of dental emergencies during space missions. The primary efforts during this flight test were to test patient-operator relationships, patent (manikin) restraint and positioning, task lighting systems, use and operation of dental rotary instruments, suction and particle containment system, dental hand instrument delivery and control procedures, and the use of dental treatment materials. The initial efforts during the flight focused on verification of the efficiency of the particle containment system. An absorptive barrier was also tested in lieu of the suction collector. To test the instrument delivery system, teeth in the manikin were prepared with the dental drill to receive restorations, some with temporary filling materials and another with definitive filling material (composite resin). The best particle containment came from the combination use of the laminar-air/suction collector in concert with immediate area suction from a surgical high-volume suction tip. Lighting in the treatment area was provided by a flexible fiberoptic probe. This system is quite effective for small areas, but for general tasks ambient illumination is required. The instrument containment system (elastic cord network) was extremely effective and easy to use. The most serious problem with instrument delivey and actual treatment was lack of time during the microgravity sequences. The restorative materials handled and finished well.
A Time of Flight Fast Neutron Imaging System Design Study
NASA Astrophysics Data System (ADS)
Canion, Bonnie; Glenn, Andrew; Sheets, Steven; Wurtz, Ron; Nakae, Les; Hausladen, Paul; McConchie, Seth; Blackston, Matthew; Fabris, Lorenzo; Newby, Jason
2017-09-01
LLNL and ORNL are designing an active/passive fast neutron imaging system that is flexible to non-ideal detector positioning. It is often not possible to move an inspection object in fieldable imager applications such as safeguards, arms control treaty verification, and emergency response. Particularly, we are interested in scenarios which inspectors do not have access to all sides of an inspection object, due to interfering objects or walls. This paper will present the results of a simulation-based design parameter study, that will determine the optimum system design parameters for a fieldable system to perform time-of-flight based imaging analysis. The imaging analysis is based on the use of an associated particle imaging deuterium-tritium (API DT) neutron generator to get the time-of-flight of radiation induced within an inspection object. This design study will investigate the optimum design parameters for such a system (e.g. detector size, ideal placement, etc.), as well as the upper and lower feasible design parameters that the system can expect to provide results within a reasonable amount of time (e.g. minimum/maximum detector efficiency, detector standoff, etc.). Ideally the final prototype from this project will be capable of using full-access techniques, such as transmission imaging, when the measurement circumstances allow, but with the additional capability of producing results at reduced accessibility.
7 CFR 62.213 - Official identification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... AGRICULTURAL COMMODITIES (QUALITY SYSTEMS VERIFICATION PROGRAMS) Quality Systems Verification Programs Definitions Service § 62.213 Official identification. The following, as shown in figure 1, constitutes...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Services. 62.200 Section 62.200 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... AGRICULTURAL COMMODITIES (QUALITY SYSTEMS VERIFICATION PROGRAMS) Quality Systems Verification Programs...
7 CFR 62.207 - Official assessment.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... AGRICULTURAL COMMODITIES (QUALITY SYSTEMS VERIFICATION PROGRAMS) Quality Systems Verification Programs Definitions Service § 62.207 Official assessment. Official assessment of an applicant's program shall include...
Fast regional readout CMOS Image Sensor for dynamic MLC tracking
NASA Astrophysics Data System (ADS)
Zin, H.; Harris, E.; Osmond, J.; Evans, P.
2014-03-01
Advanced radiotherapy techniques such as volumetric modulated arc therapy (VMAT) require verification of the complex beam delivery including tracking of multileaf collimators (MLC) and monitoring the dose rate. This work explores the feasibility of a prototype Complementary metal-oxide semiconductor Image Sensor (CIS) for tracking these complex treatments by utilising fast, region of interest (ROI) read out functionality. An automatic edge tracking algorithm was used to locate the MLC leaves edges moving at various speeds (from a moving triangle field shape) and imaged with various sensor frame rates. The CIS demonstrates successful edge detection of the dynamic MLC motion within accuracy of 1.0 mm. This demonstrates the feasibility of the sensor to verify treatment delivery involving dynamic MLC up to ~400 frames per second (equivalent to the linac pulse rate), which is superior to any current techniques such as using electronic portal imaging devices (EPID). CIS provides the basis to an essential real-time verification tool, useful in accessing accurate delivery of complex high energy radiation to the tumour and ultimately to achieve better cure rates for cancer patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amadio, G.; et al.
An intensive R&D and programming effort is required to accomplish new challenges posed by future experimental high-energy particle physics (HEP) programs. The GeantV project aims to narrow the gap between the performance of the existing HEP detector simulation software and the ideal performance achievable, exploiting latest advances in computing technology. The project has developed a particle detector simulation prototype capable of transporting in parallel particles in complex geometries exploiting instruction level microparallelism (SIMD and SIMT), task-level parallelism (multithreading) and high-level parallelism (MPI), leveraging both the multi-core and the many-core opportunities. We present preliminary verification results concerning the electromagnetic (EM) physicsmore » models developed for parallel computing architectures within the GeantV project. In order to exploit the potential of vectorization and accelerators and to make the physics model effectively parallelizable, advanced sampling techniques have been implemented and tested. In this paper we introduce a set of automated statistical tests in order to verify the vectorized models by checking their consistency with the corresponding Geant4 models and to validate them against experimental data.« less
Verification of S&D Solutions for Network Communications and Devices
NASA Astrophysics Data System (ADS)
Rudolph, Carsten; Compagna, Luca; Carbone, Roberto; Muñoz, Antonio; Repp, Jürgen
This chapter describes the tool-supported verification of S&D Solutions on the level of network communications and devices. First, the general goals and challenges of verification in the context of AmI systems are highlighted and the role of verification and validation within the SERENITY processes is explained.Then, SERENITY extensions to the SH VErification tool are explained using small examples. Finally, the applicability of existing verification tools is discussed in the context of the AVISPA toolset. The two different tools show that for the security analysis of network and devices S&D Patterns relevant complementary approachesexist and can be used.
Definition of ground test for Large Space Structure (LSS) control verification
NASA Technical Reports Server (NTRS)
Waites, H. B.; Doane, G. B., III; Tollison, D. K.
1984-01-01
An overview for the definition of a ground test for the verification of Large Space Structure (LSS) control is given. The definition contains information on the description of the LSS ground verification experiment, the project management scheme, the design, development, fabrication and checkout of the subsystems, the systems engineering and integration, the hardware subsystems, the software, and a summary which includes future LSS ground test plans. Upon completion of these items, NASA/Marshall Space Flight Center will have an LSS ground test facility which will provide sufficient data on dynamics and control verification of LSS so that LSS flight system operations can be reasonably ensured.
Formal verification of automated teller machine systems using SPIN
NASA Astrophysics Data System (ADS)
Iqbal, Ikhwan Mohammad; Adzkiya, Dieky; Mukhlash, Imam
2017-08-01
Formal verification is a technique for ensuring the correctness of systems. This work focuses on verifying a model of the Automated Teller Machine (ATM) system against some specifications. We construct the model as a state transition diagram that is suitable for verification. The specifications are expressed as Linear Temporal Logic (LTL) formulas. We use Simple Promela Interpreter (SPIN) model checker to check whether the model satisfies the formula. This model checker accepts models written in Process Meta Language (PROMELA), and its specifications are specified in LTL formulas.
Integrated testing and verification system for research flight software
NASA Technical Reports Server (NTRS)
Taylor, R. N.
1979-01-01
The MUST (Multipurpose User-oriented Software Technology) program is being developed to cut the cost of producing research flight software through a system of software support tools. An integrated verification and testing capability was designed as part of MUST. Documentation, verification and test options are provided with special attention on real-time, multiprocessing issues. The needs of the entire software production cycle were considered, with effective management and reduced lifecycle costs as foremost goals.
van Hoof, Joris J; Gosselt, Jordy F; de Jong, Menno D T
2010-02-01
To compare traditional in-store age verification with a newly developed remote age verification system, 100 cigarette purchase attempts were made by 15-year-old "mystery shoppers." The remote system led to a strong increase in compliance (96% vs. 12%), reflecting more identification requests and more sale refusals when adolescents showed their identification cards. Copyright 2010 Society for Adolescent Medicine. Published by Elsevier Inc. All rights reserved.
The U.S. EPA operates the Environmental Technology Verification program to facilitate the deployment of innovative technologies through performance verification and information dissemination. A technology area of interest is distributed electrical power generation, particularly w...
The Greenhouse Gas Technology Center (GHG Center), one of six verification organizations under the Environmental Technology Verification (ETV) program, evaluated the performance of the Parallon 75 kW Turbogenerator (Turbogenerator) with carbon monoxide (CO) emissions control syst...
40 CFR 1065.920 - PEMS Calibrations and verifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065... verification. The verification consists of operating an engine over a duty cycle in the laboratory and... by laboratory equipment as follows: (1) Mount an engine on a dynamometer for laboratory testing...
48 CFR 552.204-9 - Personal Identity Verification requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Personal Identity....204-9 Personal Identity Verification requirements. As prescribed in 504.1303, insert the following clause: Personal Identity Verification Requirements (OCT 2012) (a) The contractor shall comply with GSA...
48 CFR 552.204-9 - Personal Identity Verification requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Personal Identity....204-9 Personal Identity Verification requirements. As prescribed in 504.1303, insert the following clause: Personal Identity Verification Requirements (OCT 2012) (a) The contractor shall comply with GSA...
48 CFR 552.204-9 - Personal Identity Verification requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Personal Identity....204-9 Personal Identity Verification requirements. As prescribed in 504.1303, insert the following clause: Personal Identity Verification Requirements (OCT 2012) (a) The contractor shall comply with GSA...
40 CFR 1066.240 - Torque transducer verification and calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.240 Torque transducer verification and calibration. Calibrate torque-measurement systems as described in 40 CFR 1065.310. ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Torque transducer verification and...
40 CFR 1066.240 - Torque transducer verification and calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.240 Torque transducer verification and calibration. Calibrate torque-measurement systems as described in 40 CFR 1065.310. ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Torque transducer verification and...
Cognitive Bias in the Verification and Validation of Space Flight Systems
NASA Technical Reports Server (NTRS)
Larson, Steve
2012-01-01
Cognitive bias is generally recognized as playing a significant role in virtually all domains of human decision making. Insight into this role is informally built into many of the system engineering practices employed in the aerospace industry. The review process, for example, typically has features that help to counteract the effect of bias. This paper presents a discussion of how commonly recognized biases may affect the verification and validation process. Verifying and validating a system is arguably more challenging than development, both technically and cognitively. Whereas there may be a relatively limited number of options available for the design of a particular aspect of a system, there is a virtually unlimited number of potential verification scenarios that may be explored. The probability of any particular scenario occurring in operations is typically very difficult to estimate, which increases reliance on judgment that may be affected by bias. Implementing a verification activity often presents technical challenges that, if they can be overcome at all, often result in a departure from actual flight conditions (e.g., 1-g testing, simulation, time compression, artificial fault injection) that may raise additional questions about the meaningfulness of the results, and create opportunities for the introduction of additional biases. In addition to mitigating the biases it can introduce directly, the verification and validation process must also overcome the cumulative effect of biases introduced during all previous stages of development. A variety of cognitive biases will be described, with research results for illustration. A handful of case studies will be presented that show how cognitive bias may have affected the verification and validation process on recent JPL flight projects, identify areas of strength and weakness, and identify potential changes or additions to commonly used techniques that could provide a more robust verification and validation of future systems.
NASA Technical Reports Server (NTRS)
Fura, David A.; Windley, Phillip J.; Cohen, Gerald C.
1993-01-01
This technical report contains the Higher-Order Logic (HOL) listings of the partial verification of the requirements and design for a commercially developed processor interface unit (PIU). The PIU is an interface chip performing memory interface, bus interface, and additional support services for a commercial microprocessor within a fault tolerant computer system. This system, the Fault Tolerant Embedded Processor (FTEP), is targeted towards applications in avionics and space requiring extremely high levels of mission reliability, extended maintenance-free operation, or both. This report contains the actual HOL listings of the PIU verification as it currently exists. Section two of this report contains general-purpose HOL theories and definitions that support the PIU verification. These include arithmetic theories dealing with inequalities and associativity, and a collection of tactics used in the PIU proofs. Section three contains the HOL listings for the completed PIU design verification. Section 4 contains the HOL listings for the partial requirements verification of the P-Port.
NASA Astrophysics Data System (ADS)
Kunii, Masaru; Saito, Kazuo; Seko, Hiromu; Hara, Masahiro; Hara, Tabito; Yamaguchi, Munehiko; Gong, Jiandong; Charron, Martin; Du, Jun; Wang, Yong; Chen, Dehui
2011-05-01
During the period around the Beijing 2008 Olympic Games, the Beijing 2008 Olympics Research and Development Project (B08RDP) was conducted as part of the World Weather Research Program short-range weather forecasting research project. Mesoscale ensemble prediction (MEP) experiments were carried out by six organizations in near-real time, in order to share their experiences in the development of MEP systems. The purpose of this study is to objectively verify these experiments and to clarify the problems associated with the current MEP systems through the same experiences. Verification was performed using the MEP outputs interpolated into a common verification domain with a horizontal resolution of 15 km. For all systems, the ensemble spreads grew as the forecast time increased, and the ensemble mean improved the forecast errors compared with individual control forecasts in the verification against the analysis fields. However, each system exhibited individual characteristics according to the MEP method. Some participants used physical perturbation methods. The significance of these methods was confirmed by the verification. However, the mean error (ME) of the ensemble forecast in some systems was worse than that of the individual control forecast. This result suggests that it is necessary to pay careful attention to physical perturbations.
A field study of the accuracy and reliability of a biometric iris recognition system.
Latman, Neal S; Herb, Emily
2013-06-01
The iris of the eye appears to satisfy the criteria for a good anatomical characteristic for use in a biometric system. The purpose of this study was to evaluate a biometric iris recognition system: Mobile-Eyes™. The enrollment, verification, and identification applications were evaluated in a field study for accuracy and reliability using both irises of 277 subjects. Independent variables included a wide range of subject demographics, ambient light, and ambient temperature. A sub-set of 35 subjects had alcohol-induced nystagmus. There were 2710 identification and verification attempts, which resulted in 1,501,340 and 5540 iris comparisons respectively. In this study, the system successfully enrolled all subjects on the first attempt. All 277 subjects were successfully verified and identified on the first day of enrollment. None of the current or prior eye conditions prevented enrollment, verification, or identification. All 35 subjects with alcohol-induced nystagmus were successfully verified and identified. There were no false verifications or false identifications. Two conditions were identified that potentially could circumvent the use of iris recognitions systems in general. The Mobile-Eyes™ iris recognition system exhibited accurate and reliable enrollment, verification, and identification applications in this study. It may have special applications in subjects with nystagmus. Copyright © 2012 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Barr, D.; Gilpatrick, J. D.; Martinez, D.; Shurter, R. B.
2004-11-01
The Los Alamos Neutron Science Center (LANSCE) facility at Los Alamos National Laboratory has constructed both an Isotope Production Facility (IPF) and a Switchyard Kicker (XDK) as additions to the H+ and H- accelerator. These additions contain eleven Beam Position Monitors (BPMs) that measure the beam's position throughout the transport. The analog electronics within each processing module determines the beam position using the log-ratio technique. For system reliability, calibrations compensate for various temperature drifts and other imperfections in the processing electronics components. Additionally, verifications are periodically implemented by a PC running a National Instruments LabVIEW virtual instrument (VI) to verify continued system and cable integrity. The VI communicates with the processor cards via a PCI/MXI-3 VXI-crate communication module. Previously, accelerator operators performed BPM system calibrations typically once per day while beam was explicitly turned off. One of this new measurement system's unique achievements is its automated calibration and verification capability. Taking advantage of the pulsed nature of the LANSCE-facility beams, the integrated electronics hardware and VI perform calibration and verification operations between beam pulses without interrupting production beam delivery. The design, construction, and performance results of the automated calibration and verification portion of this position measurement system will be the topic of this paper.
Cooperative Networked Control of Dynamical Peer-to-Peer Vehicle Systems
2007-12-28
dynamic deployment and task allocation;verification and hybrid systems; and information management for cooperative control. The activity of the...32 5.3 Decidability Results on Discrete and Hybrid Systems ...... .................. 33 5.4 Switched Systems...solved. Verification and hybrid systems. The program has produced significant advances in the theory of hybrid input-output automata, (HIOA) and the
The Environmental Technology Verification report discusses the technology and performance of the IR PowerWorks 70kW Microturbine System manufactured by Ingersoll-Rand Energy Systems. This system is a 70 kW electrical generator that puts out 480 v AC at 60 Hz and that is driven by...
Active alignment/contact verification system
Greenbaum, William M.
2000-01-01
A system involving an active (i.e. electrical) technique for the verification of: 1) close tolerance mechanical alignment between two component, and 2) electrical contact between mating through an elastomeric interface. For example, the two components may be an alumina carrier and a printed circuit board, two mating parts that are extremely small, high density parts and require alignment within a fraction of a mil, as well as a specified interface point of engagement between the parts. The system comprises pairs of conductive structures defined in the surfaces layers of the alumina carrier and the printed circuit board, for example. The first pair of conductive structures relate to item (1) above and permit alignment verification between mating parts. The second pair of conductive structures relate to item (2) above and permit verification of electrical contact between mating parts.
Text-Based On-Line Conferencing: A Conceptual and Empirical Analysis Using a Minimal Prototype.
ERIC Educational Resources Information Center
McCarthy, John C.; And Others
1993-01-01
Analyzes requirements for text-based online conferencing through the use of a minimal prototype. Topics discussed include prototyping with a minimal system; text-based communication; the system as a message passer versus the system as a shared data structure; and three exercises that showed how users worked with the prototype. (Contains 61…
Gene Fusion Markup Language: a prototype for exchanging gene fusion data
2012-01-01
Background An avalanche of next generation sequencing (NGS) studies has generated an unprecedented amount of genomic structural variation data. These studies have also identified many novel gene fusion candidates with more detailed resolution than previously achieved. However, in the excitement and necessity of publishing the observations from this recently developed cutting-edge technology, no community standardization approach has arisen to organize and represent the data with the essential attributes in an interchangeable manner. As transcriptome studies have been widely used for gene fusion discoveries, the current non-standard mode of data representation could potentially impede data accessibility, critical analyses, and further discoveries in the near future. Results Here we propose a prototype, Gene Fusion Markup Language (GFML) as an initiative to provide a standard format for organizing and representing the significant features of gene fusion data. GFML will offer the advantage of representing the data in a machine-readable format to enable data exchange, automated analysis interpretation, and independent verification. As this database-independent exchange initiative evolves it will further facilitate the formation of related databases, repositories, and analysis tools. The GFML prototype is made available at http://code.google.com/p/gfml-prototype/. Conclusion The Gene Fusion Markup Language (GFML) presented here could facilitate the development of a standard format for organizing, integrating and representing the significant features of gene fusion data in an inter-operable and query-able fashion that will enable biologically intuitive access to gene fusion findings and expedite functional characterization. A similar model is envisaged for other NGS data analyses. PMID:23072312
Software Development Technologies for Reactive, Real-Time, and Hybrid Systems: Summary of Research
NASA Technical Reports Server (NTRS)
Manna, Zohar
1998-01-01
This research is directed towards the implementation of a comprehensive deductive-algorithmic environment (toolkit) for the development and verification of high assurance reactive systems, especially concurrent, real-time, and hybrid systems. For this, we have designed and implemented the STCP (Stanford Temporal Prover) verification system. Reactive systems have an ongoing interaction with their environment, and their computations are infinite sequences of states. A large number of systems can be seen as reactive systems, including hardware, concurrent programs, network protocols, and embedded systems. Temporal logic provides a convenient language for expressing properties of reactive systems. A temporal verification methodology provides procedures for proving that a given system satisfies a given temporal property. The research covered necessary theoretical foundations as well as implementation and application issues.
Identity Verification Systems as a Critical Infrastructure
2012-03-01
COVERED Master’s Thesis 4 . TITLE AND SUBTITLE Identity Verification Systems as a Critical Infrastructure 5. FUNDING NUMBERS 6. AUTHOR(S...43 3. Cybercrime .........................................................................................45 4 ...24 Figure 3. Uses of Fictitious or Stolen Identity ................................................................30 Figure 4
Space telescope observatory management system preliminary test and verification plan
NASA Technical Reports Server (NTRS)
Fritz, J. S.; Kaldenbach, C. F.; Williams, W. B.
1982-01-01
The preliminary plan for the Space Telescope Observatory Management System Test and Verification (TAV) is provided. Methodology, test scenarios, test plans and procedure formats, schedules, and the TAV organization are included. Supporting information is provided.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections... AGRICULTURAL COMMODITIES (QUALITY SYSTEMS VERIFICATION PROGRAMS) Quality Systems Verification Programs Definitions Service § 62.211 Appeals. Appeals of adverse decisions under this part, may be made in writing to...
7 CFR 62.206 - Access to program documents and activities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (CONTINUED) LIVESTOCK, MEAT, AND OTHER AGRICULTURAL COMMODITIES (QUALITY SYSTEMS VERIFICATION PROGRAMS) Quality Systems Verification Programs Definitions Service § 62.206 Access to program documents and... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS...
7 CFR 62.212 - Official assessment reports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... AGRICULTURAL COMMODITIES (QUALITY SYSTEMS VERIFICATION PROGRAMS) Quality Systems Verification Programs Definitions Service § 62.212 Official assessment reports. Official QSVP assessment reports shall be generated...
NASA Technical Reports Server (NTRS)
Defeo, P.; Doane, D.; Saito, J.
1982-01-01
A Digital Flight Control Systems Verification Laboratory (DFCSVL) has been established at NASA Ames Research Center. This report describes the major elements of the laboratory, the research activities that can be supported in the area of verification and validation of digital flight control systems (DFCS), and the operating scenarios within which these activities can be carried out. The DFCSVL consists of a palletized dual-dual flight-control system linked to a dedicated PDP-11/60 processor. Major software support programs are hosted in a remotely located UNIVAC 1100 accessible from the PDP-11/60 through a modem link. Important features of the DFCSVL include extensive hardware and software fault insertion capabilities, a real-time closed loop environment to exercise the DFCS, an integrated set of software verification tools, and a user-oriented interface to all the resources and capabilities.
Exploring system interconnection architectures with VIPACES: from direct connections to NOCs
NASA Astrophysics Data System (ADS)
Sánchez-Peña, Armando; Carballo, Pedro P.; Núñez, Antonio
2007-05-01
This paper presents a simple environment for the verification of AMBA 3 AXI systems in Verification IP (VIP) production called VIPACES (Verification Interface Primitives for the development of AXI Compliant Elements and Systems). These primitives are presented as a not compiled library written in SystemC where interfaces are the core of the library. The definition of interfaces instead of generic modules let the user construct custom modules improving the resources spent during the verification phase as well as easily adapting his modules to the AMBA 3 AXI protocol. This topic is the main discussion in the VIPACES library. The paper focuses on comparing and contrasting the main interconnection schemes for AMBA 3 AXI as modeled by VIPACES. For assessing these results we propose a validation scenario with a particular architecture belonging to the domain of MPEG4 video decoding, which is compound by an AXI bus connecting an IDCT and other processing resources.
The Environmental Technology Verification report discusses the technology and performance of the Parallon 75kW Turbogenerator manufactured by Honeywell Power Systems, Inc., formerly AlliedSignal Power Systems, Inc. The unit uses a natural-gas-fired turbine to power an electric ge...
Run-Time Support for Rapid Prototyping
1988-12-01
prototyping. One such system is the Computer-Aided Proto- typing System (CAPS). It combines rapid prototypng with automatic program generation. Some of the...a design database, and a design management system [Ref. 3:p. 66. By using both rapid prototyping and automatic program genera- tion. CAPS will be...Most proto- typing systems perform these functions. CAPS is different in that it combines rapid prototyping with a variant of automatic program
ERIC Educational Resources Information Center
Lowry, Christina; Little, Robert
1985-01-01
The benefits of prototyping as a basis for system design include better specifications, earlier discovery of omissions and extensions, and the likelihood of salvaging much of the effort expended on the prototype. Risks and methods of prototyping during rapid systems development are also noted. (Author/MLW)
Test/QA Plan (TQAP) for Verification of Semi-Continuous Ambient Air Monitoring Systems
The purpose of the semi-continuous ambient air monitoring technology (or MARGA) test and quality assurance plan is to specify procedures for a verification test applicable to commercial semi-continuous ambient air monitoring technologies. The purpose of the verification test is ...
The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification (ETV) Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the...
Prototype learning and dissociable categorization systems in Alzheimer's disease.
Heindel, William C; Festa, Elena K; Ott, Brian R; Landy, Kelly M; Salmon, David P
2013-08-01
Recent neuroimaging studies suggest that prototype learning may be mediated by at least two dissociable memory systems depending on the mode of acquisition, with A/Not-A prototype learning dependent upon a perceptual representation system located within posterior visual cortex and A/B prototype learning dependent upon a declarative memory system associated with medial temporal and frontal regions. The degree to which patients with Alzheimer's disease (AD) can acquire new categorical information may therefore critically depend upon the mode of acquisition. The present study examined A/Not-A and A/B prototype learning in AD patients using procedures that allowed direct comparison of learning across tasks. Despite impaired explicit recall of category features in all tasks, patients showed differential patterns of category acquisition across tasks. First, AD patients demonstrated impaired prototype induction along with intact exemplar classification under incidental A/Not-A conditions, suggesting that the loss of functional connectivity within visual cortical areas disrupted the integration processes supporting prototype induction within the perceptual representation system. Second, AD patients demonstrated intact prototype induction but impaired exemplar classification during A/B learning under observational conditions, suggesting that this form of prototype learning is dependent on a declarative memory system that is disrupted in AD. Third, the surprisingly intact classification of both prototypes and exemplars during A/B learning under trial-and-error feedback conditions suggests that AD patients shifted control from their deficient declarative memory system to a feedback-dependent procedural memory system when training conditions allowed. Taken together, these findings serve to not only increase our understanding of category learning in AD, but to also provide new insights into the ways in which different memory systems interact to support the acquisition of categorical knowledge. Copyright © 2013 Elsevier Ltd. All rights reserved.
Prototype Learning and Dissociable Categorization Systems in Alzheimer’s Disease
Heindel, William C.; Festa, Elena K.; Ott, Brian R.; Landy, Kelly M.; Salmon, David P.
2015-01-01
Recent neuroimaging studies suggest that prototype learning may be mediated by at least two dissociable memory systems depending on the mode of acquisition, with A/Not-A prototype learning dependent upon a perceptual representation system located within posterior visual cortex and A/B prototype learning dependent upon a declarative memory system associated with medial temporal and frontal regions. The degree to which patients with Alzheimer’s disease (AD) can acquire new categorical information may therefore critically depend upon the mode of acquisition. The present study examined A/Not-A and A/B prototype learning in AD patients using procedures that allowed direct comparison of learning across tasks. Despite impaired explicit recall of category features in all tasks, patients showed differential patterns of category acquisition across tasks. First, AD patients demonstrated impaired prototype induction along with intact exemplar classification under incidental A/Not-A conditions, suggesting that the loss of functional connectivity within visual cortical areas disrupted the integration processes supporting prototype induction within the perceptual representation system. Second, AD patients demonstrated intact prototype induction but impaired exemplar classification during A/B learning under observational conditions, suggesting that this form of prototype learning is dependent on a declarative memory system that is disrupted in AD. Third, the surprisingly intact classification of both prototypes and exemplars during A/B learning under trial-and-error feedback conditions suggests that AD patients shifted control from their deficient declarative memory system to a feedback-dependent procedural memory system when training conditions allowed. Taken together, these findings serve to not only increase our understanding of category learning in AD, but to also provide new insights into the ways in which different memory systems interact to support the acquisition of categorical knowledge. PMID:23751172
Rapid and cheap prototyping of a microfluidic cell sorter.
Islam, M Z; McMullin, J N; Tsui, Y Y
2011-05-01
Development of a microfluidic device is generally based on fabrication-design-fabrication loop, as, unlike the microelectronics design, there is no rigorous simulation-based verification of the chip before fabrication. This usually results in extremely long, and hence expensive, product development cycle if micro/nano fabrication facilities are used from the beginning of the cycle. Here, we illustrate a novel approach of device prototyping that is fast, cheap, reliable, and most importantly, this technique can be adopted even if no state-of-the-art microfabrication facility is available. A water-jet machine is used to cut the desired microfluidic channels into a thin steel plate which is then used as a template to cut the channels into a thin sheet of a transparent and cheap polymer material named Surlyn® by using a Hot Knife™. The feature-inscribed Surlyn sheet is bonded in between two microscope glass slides by utilizing the techniques which has been being used in curing polymer film between dual layer automotive glasses for years. Optical fibers are inserted from the sides of chip and are bonded by UV epoxy. To study the applicability of this prototyping approach, we made a basic microfluidic sorter and tested its functionalities. Sample containing microparticles is injected into the chip. Light from a 532-nm diode laser is coupled into the optical fiber that delivers light to the interrogation region in the channel. The emitted light from the particle is collected by a photodiode (PD) placed over the detection window. The device sorts the particles into the sorted or waste outlets depending on the level of the PD signal. We used fluorescent latex beads to test the detection and sorting functionalities of the device. We found that the system could detect all the beads that passed through its geometric observation region and could sort almost all the beads it detected. Copyright © 2011 International Society for Advancement of Cytometry.
PERTS: A Prototyping Environment for Real-Time Systems
NASA Technical Reports Server (NTRS)
Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.
1991-01-01
We discuss an ongoing project to build a Prototyping Environment for Real-Time Systems, called PERTS. PERTS is a unique prototyping environment in that it has (1) tools and performance models for the analysis and evaluation of real-time prototype systems, (2) building blocks for flexible real-time programs and the support system software, (3) basic building blocks of distributed and intelligent real time applications, and (4) an execution environment. PERTS will make the recent and future theoretical advances in real-time system design and engineering readily usable to practitioners. In particular, it will provide an environment for the use and evaluation of new design approaches, for experimentation with alternative system building blocks and for the analysis and performance profiling of prototype real-time systems.
NASA Technical Reports Server (NTRS)
Rushby, John
1991-01-01
The formal specification and mechanically checked verification for a model of fault-masking and transient-recovery among the replicated computers of digital flight-control systems are presented. The verification establishes, subject to certain carefully stated assumptions, that faults among the component computers are masked so that commands sent to the actuators are the same as those that would be sent by a single computer that suffers no failures.
Formal System Verification for Trustworthy Embedded Systems
2011-04-19
microkernel basis. We had previously achieved code- level formal verification of the seL4 microkernel [3]. In the present project, over 12 months with 0.6 FTE...project, we designed and implemented a secure network access device (SAC) on top of the verified seL4 microkernel. The device allows a trusted front...Engelhardt, Rafal Kolan- ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4 : Formal verification of an OS kernel. CACM, 53(6):107
NASA Astrophysics Data System (ADS)
Quigley, S.
The Air Force Research Laboratory (AFRL/VSB) and Detachment 11, Space &Missile Systems Center (SMC, Det 11/CIT) have combined efforts to design, develop, test, and implement graphical products for the Air Force's space weather operations center. These products are generated to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense systems and communications. Jointly-developed products that have been, or will soon be added to real-time operations include: 1) the Operational Space Environment Network Display (OpSEND) suit - a set of four products that address HF communication, UHF satellite communication scintillation, radar auroral clutter, and GP S single- frequency errors; 2) a solar radio background and burst effects (SoRBE) product suite; and C) a meteor effects (ME) product suite. The RPC is also involved in a rather substantial "V&V" effort to produce multiple operational product verifications and validations, with an added end goal of a generalized validation software package. The presentation will provide a general overview of the RPC and each of the products mentioned above, to include background science, operational history, inputs, outputs, dissemination, and customer uses for each.
IoT for Real-Time Measurement of High-Throughput Liquid Dispensing in Laboratory Environments.
Shumate, Justin; Baillargeon, Pierre; Spicer, Timothy P; Scampavia, Louis
2018-04-01
Critical to maintaining quality control in high-throughput screening is the need for constant monitoring of liquid-dispensing fidelity. Traditional methods involve operator intervention with gravimetric analysis to monitor the gross accuracy of full plate dispenses, visual verification of contents, or dedicated weigh stations on screening platforms that introduce potential bottlenecks and increase the plate-processing cycle time. We present a unique solution using open-source hardware, software, and 3D printing to automate dispenser accuracy determination by providing real-time dispense weight measurements via a network-connected precision balance. This system uses an Arduino microcontroller to connect a precision balance to a local network. By integrating the precision balance as an Internet of Things (IoT) device, it gains the ability to provide real-time gravimetric summaries of dispensing, generate timely alerts when problems are detected, and capture historical dispensing data for future analysis. All collected data can then be accessed via a web interface for reviewing alerts and dispensing information in real time or remotely for timely intervention of dispense errors. The development of this system also leveraged 3D printing to rapidly prototype sensor brackets, mounting solutions, and component enclosures.
Color management in textile application
NASA Astrophysics Data System (ADS)
De Lucia, Maurizio; Vannucci, Massimiliano; Buonopane, Massimo; Fabroni, Cosimo; Fabrini, Francesco
2002-03-01
The aim of this research was to study a system of acquisition and processing of images capable of confronting colored wool with a reference specimen, in order to define the conformity using objective parameters. The first step of the research was to comprise and to analyze in depth the problem: there has been numerous implications of technical, physical, cultural, biological and also psychological character, that come down from the attempt of giving a quantitative appraisal to the color. In the scene of the national and international scientific and technological research, little has been made as regards measurement of color through digital processing of the images through linear CCD. The reason is fundamentally of technological nature: only during the last years we found the presence on the market of low cost equipment capable of acquiring and processing images with adequate performances and qualities. The job described has permitted to create a first prototype of system for the color measuring with use of CCD linear devices. -Hardware identification to carry out a series of tests and experiments in laboratory. -Verification of such device in a textile facility. -Statistics analysis of the collected data and of the employed models.
Multi-mounted X-ray cone-beam computed tomography
NASA Astrophysics Data System (ADS)
Fu, Jian; Wang, Jingzheng; Guo, Wei; Peng, Peng
2018-04-01
As a powerful nondestructive inspection technique, X-ray computed tomography (X-CT) has been widely applied to clinical diagnosis, industrial production and cutting-edge research. Imaging efficiency is currently one of the major obstacles for the applications of X-CT. In this paper, a multi-mounted three dimensional cone-beam X-CT (MM-CBCT) method is reported. It consists of a novel multi-mounted cone-beam scanning geometry and the corresponding three dimensional statistical iterative reconstruction algorithm. The scanning geometry is the most iconic design and significantly different from the current CBCT systems. Permitting the cone-beam scanning of multiple objects simultaneously, the proposed approach has the potential to achieve an imaging efficiency orders of magnitude greater than the conventional methods. Although multiple objects can be also bundled together and scanned simultaneously by the conventional CBCT methods, it will lead to the increased penetration thickness and signal crosstalk. In contrast, MM-CBCT avoids substantially these problems. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed MM-CBCT prototype system. This technique will provide a possible solution for the CT inspection in a large scale.
Direct observation of how the heavy-fermion state develops in CeCoIn5
NASA Astrophysics Data System (ADS)
Chen, Q. Y.; Xu, D. F.; Niu, X. H.; Jiang, J.; Peng, R.; Xu, H. C.; Wen, C. H. P.; Ding, Z. F.; Huang, K.; Shu, L.; Zhang, Y. J.; Lee, H.; Strocov, V. N.; Shi, M.; Bisti, F.; Schmitt, T.; Huang, Y. B.; Dudin, P.; Lai, X. C.; Kirchner, S.; Yuan, H. Q.; Feng, D. L.
2017-07-01
Heavy-fermion systems share some of the strange metal phenomenology seen in other unconventional superconductors, providing a unique opportunity to set strange metals in a broader context. Central to understanding heavy-fermion systems is the interplay of localization and itinerancy. These materials acquire high electronic masses and a concomitant Fermi volume increase as the f electrons delocalize at low temperatures. However, despite the wide-spread acceptance of this view, a direct microscopic verification has been lacking. Here we report high-resolution angle-resolved photoemission measurements on CeCoIn5, a prototypical heavy-fermion compound, which spectroscopically resolve the development of band hybridization and the Fermi surface expansion over a wide temperature region. Unexpectedly, the localized-to-itinerant transition occurs at surprisingly high temperatures, yet f electrons are still largely localized even at the lowest temperature. These findings point to an unanticipated role played by crystal-field excitations in the strange metal behavior of CeCoIn5. Our results offer a comprehensive experimental picture of the heavy-fermion formation, setting the stage for understanding the emergent properties, including unconventional superconductivity, in this and related materials.
Developing a Carbon Monitoring System For Pinyon-juniper Forests and Woodlands
NASA Astrophysics Data System (ADS)
Falkowski, M. J.; Hudak, A. T.; Fekety, P.; Filippelli, S.
2017-12-01
Pinyon-juniper (PJ) forests and woodlands are the third largest vegetation type in the United States. They cover over 40 million hectares across the western US, representing 40% of the total forest and woodland area in the Intermountain West. Although the density of carbon stored in these ecosystems is relatively low compared to other forest types, the vast area of short stature forests and woodlands (both nationally and globally) make them critical components of regional, national, and global carbon budgets. The overarching goal of this research is to prototype a carbon monitoring, reporting, and verification (MRV) system for characterizing total aboveground biomass stocks and flux across the PJ vegetation gradient in the western United States. We achieve this by combining in situ forest measurements and novel allometric equations with tree measurements derived from high resolution airborne imagery to map aboveground biomass across 500,000 km2 in the Western US. These high-resolution maps of aboveground biomass are then leveraged as training data to predict biomass flux through time from Landsat time-series data. The results from this research highlight the potential in mapping biomass stocks and flux in open forests and woodlands, and could be easily adopted into an MRV framework.
The Environmental Technology Verification report discusses the technology and performance of the Static Pac System, Phase II, natural gas reciprocating compressor rod packing manufactured by the C. Lee Cook Division, Dover Corporation. The Static Pac System is designed to seal th...
Optimization of Magnet Arrangement in Double-Layer Interior Permanent-Magnet Motors
NASA Astrophysics Data System (ADS)
Yamazaki, Katsumi; Kitayuguchi, Kazuya
The arrangement of permanent magnets in double-layer interior permanent-magnet motors is optimized for variable-speed applications. First, the arrangement of magnets is decided by automatic optimization. Next, the superiority of the optimized motor is discussed by the d- and q-axis equivalent circuits that consider the magnetic saturation of the rotor core. Finally, experimental verification is carried out by using a prototype motor. It is confirmed that the maximum torque of the optimized motor under both low speed and high speed conditions are higher than those of conventional motors because of relatively large q-axis inductance and small d-axis inductance.
The Design and its Verification of the Double Rotor Double Cage Induction Motor
NASA Astrophysics Data System (ADS)
Sinha, Sumita; Deb, Nirmal K.; Biswas, Sujit K.
2017-02-01
The concept of a double rotor motor presented earlier and its equivalent circuit has been developed, showing a non-linear parameter content. The two rotors (which are recommended to be double cage type for development of high starting torque) can run with equal or unequal speed independently, depending on their individual loading. This paper presents the elaborate design procedure, step-by-step, for the double rotor double cage motor and verifies the designed data with that obtained from three separate tests (compared to two for conventional motor) on a prototype, such that optimum performance can be obtained from the motor.
Design & implementation of distributed spatial computing node based on WPS
NASA Astrophysics Data System (ADS)
Liu, Liping; Li, Guoqing; Xie, Jibo
2014-03-01
Currently, the research work of SIG (Spatial Information Grid) technology mostly emphasizes on the spatial data sharing in grid environment, while the importance of spatial computing resources is ignored. In order to implement the sharing and cooperation of spatial computing resources in grid environment, this paper does a systematical research of the key technologies to construct Spatial Computing Node based on the WPS (Web Processing Service) specification by OGC (Open Geospatial Consortium). And a framework of Spatial Computing Node is designed according to the features of spatial computing resources. Finally, a prototype of Spatial Computing Node is implemented and the relevant verification work under the environment is completed.
Automatic Estimation of Verified Floating-Point Round-Off Errors via Static Analysis
NASA Technical Reports Server (NTRS)
Moscato, Mariano; Titolo, Laura; Dutle, Aaron; Munoz, Cesar A.
2017-01-01
This paper introduces a static analysis technique for computing formally verified round-off error bounds of floating-point functional expressions. The technique is based on a denotational semantics that computes a symbolic estimation of floating-point round-o errors along with a proof certificate that ensures its correctness. The symbolic estimation can be evaluated on concrete inputs using rigorous enclosure methods to produce formally verified numerical error bounds. The proposed technique is implemented in the prototype research tool PRECiSA (Program Round-o Error Certifier via Static Analysis) and used in the verification of floating-point programs of interest to NASA.
Software engineering activities at SEI (Software Engineering Institute)
NASA Technical Reports Server (NTRS)
Chittister, Clyde
1990-01-01
Prototyping was shown to ease system specification and implementation, especially in the area of user interfaces. Other prototyping approaches do not allow for the evolution of the prototype into a production system or support maintenance after the system is fielded. A set of goals is presented for a modern user interface environment and Serpent, a prototype implementation that achieves these goals, is described.
7 CFR 62.201 - Availability of service.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Availability of service. 62.201 Section 62.201 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... AGRICULTURAL COMMODITIES (QUALITY SYSTEMS VERIFICATION PROGRAMS) Quality Systems Verification Programs...
7 CFR 62.301 - Payment of fees and other charges.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (CONTINUED) LIVESTOCK, MEAT, AND OTHER AGRICULTURAL COMMODITIES (QUALITY SYSTEMS VERIFICATION PROGRAMS) Quality Systems Verification Programs Definitions Charges for Service § 62.301 Payment of fees and other... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS...
NASA Astrophysics Data System (ADS)
Zhafirah Muhammad, Nurul; Harun, A.; Hambali, N. A. M. A.; Murad, S. A. Z.; Mohyar, S. N.; Isa, M. N.; Jambek, AB
2017-11-01
Increased demand in internet of thing (IOT) application based has inadvertently forced the move towards higher complexity of integrated circuit supporting SoC. Such spontaneous increased in complexity poses unequivocal complicated validation strategies. Hence, the complexity allows researchers to come out with various exceptional methodologies in order to overcome this problem. This in essence brings about the discovery of dynamic verification, formal verification and hybrid techniques. In reserve, it is very important to discover bugs at infancy of verification process in (SoC) in order to reduce time consuming and fast time to market for the system. Ergo, in this paper we are focusing on the methodology of verification that can be done at Register Transfer Level of SoC based on the AMBA bus design. On top of that, the discovery of others verification method called Open Verification Methodology (OVM) brings out an easier way in RTL validation methodology neither as the replacement for the traditional method yet as an effort for fast time to market for the system. Thus, the method called OVM is proposed in this paper as the verification method for larger design to avert the disclosure of the bottleneck in validation platform.
Concept verification of three dimensional free motion simulator for space robot
NASA Technical Reports Server (NTRS)
Okamoto, Osamu; Nakaya, Teruomi; Pokines, Brett
1994-01-01
In the development of automatic assembling technologies for space structures, it is an indispensable matter to investigate and simulate the movements of robot satellites concerned with mission operation. The movement investigation and simulation on the ground will be effectively realized by a free motion simulator. Various types of ground systems for simulating free motion have been proposed and utilized. Some of these methods are a neutral buoyancy system, an air or magnetic suspension system, a passive suspension balance system, and a free flying aircraft or drop tower system. In addition, systems can be simulated by computers using an analytical model. Each free motion simulation method has limitations and well known problems, specifically, disturbance by water viscosity, limited number of degrees-of-freedom, complex dynamics induced by the attachment of the simulation system, short experiment time, and the lack of high speed super-computer simulation systems, respectively. The basic idea presented here is to realize 3-dimensional free motion. This is achieved by combining a spherical air bearing, a cylindrical air bearing, and a flat air bearing. A conventional air bearing system has difficulty realizing free vertical motion suspension. The idea of free vertical suspension is that a cylindrical air bearing and counter balance weight realize vertical free motion. This paper presents a design concept, configuration, and basic performance characteristics of an innovative free motion simulator. A prototype simulator verifies the feasibility of 3-dimensional free motion simulation.
The Learner Verification of Series r: The New Macmillan Reading Program; Highlights.
ERIC Educational Resources Information Center
National Evaluation Systems, Inc., Amherst, MA.
National Evaluation Systems, Inc., has developed curriculum evaluation techniques, in terms of learner verification, which may be used to help the curriculum-development efforts of publishing companies, state education departments, and universities. This document includes a summary of the learner-verification approach, with data collected about a…
The verification test will be conducted under the auspices of the U.S. Environmental Protection Agency (EPA) through the Environmental Technology Verification (ETV) Program. It will be performed by Battelle, which is managing the ETV Advanced Monitoring Systems (AMS) Center throu...
48 CFR 52.204-9 - Personal Identity Verification of Contractor Personnel.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Personal Identity... Provisions and Clauses 52.204-9 Personal Identity Verification of Contractor Personnel. As prescribed in 4.1303, insert the following clause: Personal Identity Verification of Contractor Personnel (SEP 2007) (a...
48 CFR 52.204-9 - Personal Identity Verification of Contractor Personnel.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Personal Identity... Provisions and Clauses 52.204-9 Personal Identity Verification of Contractor Personnel. As prescribed in 4.1303, insert the following clause: Personal Identity Verification of Contractor Personnel (JAN 2011) (a...
48 CFR 52.204-9 - Personal Identity Verification of Contractor Personnel.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Personal Identity... Provisions and Clauses 52.204-9 Personal Identity Verification of Contractor Personnel. As prescribed in 4.1303, insert the following clause: Personal Identity Verification of Contractor Personnel (JAN 2011) (a...
48 CFR 52.204-9 - Personal Identity Verification of Contractor Personnel.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Personal Identity... Provisions and Clauses 52.204-9 Personal Identity Verification of Contractor Personnel. As prescribed in 4.1303, insert the following clause: Personal Identity Verification of Contractor Personnel (JAN 2011) (a...
48 CFR 52.204-9 - Personal Identity Verification of Contractor Personnel.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Personal Identity... Provisions and Clauses 52.204-9 Personal Identity Verification of Contractor Personnel. As prescribed in 4.1303, insert the following clause: Personal Identity Verification of Contractor Personnel (JAN 2011) (a...
Joint ETV/NOWATECH test plan for the Sorbisense GSW40 passive sampler
The joint test plan is the implementation of a test design developed for verification of the performance of an environmental technology following the NOWATECH ETV method. The verification is a joint verification with the US EPA ETV scheme and the Advanced Monitoring Systems Cent...
The purpose of the cavity ringdown spectroscopy (CRDS) technology test and quality assurance plan is to specify procedures for a verification test applicable to commercial cavity ringdown spectroscopy technologies. The purpose of the verification test is to evaluate the performa...
Low-cost flexible thin-film detector for medical dosimetry applications.
Zygmanski, P; Abkai, C; Han, Z; Shulevich, Y; Menichelli, D; Hesser, J
2014-03-06
The purpose of this study is to characterize dosimetric properties of thin film photovoltaic sensors as a platform for development of prototype dose verification equipment in radiotherapy. Towards this goal, flexible thin-film sensors of dose with embedded data acquisition electronics and wireless data transmission are prototyped and tested in kV and MV photon beams. Fundamental dosimetric properties are determined in view of a specific application to dose verification in multiple planes or curved surfaces inside a phantom. Uniqueness of the new thin-film sensors consists in their mechanical properties, low-power operation, and low-cost. They are thinner and more flexible than dosimetric films. In principle, each thin-film sensor can be fabricated in any size (mm² - cm² areas) and shape. Individual sensors can be put together in an array of sensors spreading over large areas and yet being light. Photovoltaic mode of charge collection (of electrons and holes) does not require external electric field applied to the sensor, and this implies simplicity of data acquisition electronics and low power operation. The prototype device used for testing consists of several thin film dose sensors, each of about 1.5 cm × 5 cm area, connected to simple readout electronics. Sensitivity of the sensors is determined per unit area and compared to EPID sensitivity, as well as other standard photodiodes. Each sensor independently measures dose and is based on commercially available flexible thin-film aSi photodiodes. Readout electronics consists of an ultra low-power microcontroller, radio frequency transmitter, and a low-noise amplification circuit implemented on a flexible printed circuit board. Detector output is digitized and transmitted wirelessly to an external host computer where it is integrated and processed. A megavoltage medical linear accelerator (Varian Tx) equipped with kilovoltage online imaging system and a Cobalt source are used to irradiate different thin-film detector sensors in a Solid Water phantom under various irradiation conditions. Different factors are considered in characterization of the device attributes: energies (80 kVp, 130 kVp, 6 MV, 15 MV), dose rates (different ms × mA, 100-600 MU/min), total doses (0.1 cGy-500 cGy), depths (0.5 cm-20 cm), irradiation angles with respect to the detector surface (0°-180°), and IMRT tests (closed MLC, sweeping gap). The detector response to MV radiation is both linear with total dose (~1-400 cGy) and independent of dose rate (100-600 Mu/min). The sensitivity per unit area of thin-film sensors is lower than for aSi flat-panel detectors, but sufficient to acquire stable and accurate signals during irradiations. The proposed thin-film photodiode system has properties which make it promising for clinical dosimetry. Due to the mechanical flexibility of each sensor and readout electronics, low-cost, and wireless data acquisition, it could be considered for quality assurance (e.g., IMRT, mechanical linac QA), as well as real-time dose monitoring in challenging setup configurations, including large area and 3D detection (multiple planes or curved surfaces).
Low‐cost flexible thin‐film detector for medical dosimetry applications
Abkai, C.; Han, Z.; Shulevich, Y.; Menichelli, D.; Hesser, J.
2014-01-01
The purpose of this study is to characterize dosimetric properties of thin film photovoltaic sensors as a platform for development of prototype dose verification equipment in radiotherapy. Towards this goal, flexible thin‐film sensors of dose with embedded data acquisition electronics and wireless data transmission are prototyped and tested in kV and MV photon beams. Fundamental dosimetric properties are determined in view of a specific application to dose verification in multiple planes or curved surfaces inside a phantom. Uniqueness of the new thin‐film sensors consists in their mechanical properties, low‐power operation, and low‐cost. They are thinner and more flexible than dosimetric films. In principle, each thin‐film sensor can be fabricated in any size (mm2 – cm2 areas) and shape. Individual sensors can be put together in an array of sensors spreading over large areas and yet being light. Photovoltaic mode of charge collection (of electrons and holes) does not require external electric field applied to the sensor, and this implies simplicity of data acquisition electronics and low power operation. The prototype device use for testing consists of several thin film dose sensors, each of about 1.5 cm×5 cm area, connected to simple readout electronics. Sensitivity of the sensors is determined per unit area and compared to EPID sensitivity, as well as other standard photodiodes. Each sensor independently measures dose and is based on commercially available flexible thin‐film aSi photodiodes. Readout electronics consists of an ultra low‐power microcontroller, radio frequency transmitter, and a low‐noise amplification circuit implemented on a flexible printed circuit board. Detector output is digitized and transmitted wirelessly to an external host computer where it is integrated and processed. A megavoltage medical linear accelerator (Varian Tx) equipped with kilovoltage online imaging system and a Cobalt source are use to irradiate different thin‐film detector sensors in a Solid Water phantom under various irradiation conditions. Different factors are considered in characterization of the device attributes: energies (80 kVp, 130 kVp, 6 MV, 15 MV), dose rates (different ms × mA, 100–600 MU/min), total doses (0.1 cGy‐500 cGy), depths (0.5 cm–20 cm), irradiation angles with respect to the detector surface (0°‐180°), and IMRT tests (closed MLC, sweeping gap). The detector response to MV radiation is both linear with total dose (~1‐400 cGy) and independent of dose rate (100‐600 Mu/min). The sensitivity per unit area of thin‐film sensors is lower than for aSi flat‐panel detectors, but sufficient to acquire stable and accurate signals during irradiations. The proposed thin‐film photodiode system has properties which make it promising for clinical dosimetry. Due to the mechanical flexibility of each sensor and readout electronics, low‐cost, and wireless data acquisition, it could be considered for quality assurance (e.g., IMRT, mechanical linac QA), as well as real‐time dose monitoring in challenging setup configurations, including large area and 3D detection (multiple planes or curved surfaces). PACS number: 87.56.Fc PMID:24710432
The Performance Analysis of AN Indoor Mobile Mapping System with Rgb-D Sensor
NASA Astrophysics Data System (ADS)
Tsai, G. J.; Chiang, K. W.; Chu, C. H.; Chen, Y. L.; El-Sheimy, N.; Habib, A.
2015-08-01
Over the years, Mobile Mapping Systems (MMSs) have been widely applied to urban mapping, path management and monitoring and cyber city, etc. The key concept of mobile mapping is based on positioning technology and photogrammetry. In order to achieve the integration, multi-sensor integrated mapping technology has clearly established. In recent years, the robotic technology has been rapidly developed. The other mapping technology that is on the basis of low-cost sensor has generally used in robotic system, it is known as the Simultaneous Localization and Mapping (SLAM). The objective of this study is developed a prototype of indoor MMS for mobile mapping applications, especially to reduce the costs and enhance the efficiency of data collection and validation of direct georeferenced (DG) performance. The proposed indoor MMS is composed of a tactical grade Inertial Measurement Unit (IMU), the Kinect RGB-D sensor and light detection, ranging (LIDAR) and robot. In summary, this paper designs the payload for indoor MMS to generate the floor plan. In first session, it concentrates on comparing the different positioning algorithms in the indoor environment. Next, the indoor plans are generated by two sensors, Kinect RGB-D sensor LIDAR on robot. Moreover, the generated floor plan will compare with the known plan for both validation and verification.
A digital flight control system verification laboratory
NASA Technical Reports Server (NTRS)
De Feo, P.; Saib, S.
1982-01-01
A NASA/FAA program has been established for the verification and validation of digital flight control systems (DFCS), with the primary objective being the development and analysis of automated verification tools. In order to enhance the capabilities, effectiveness, and ease of using the test environment, software verification tools can be applied. Tool design includes a static analyzer, an assertion generator, a symbolic executor, a dynamic analysis instrument, and an automated documentation generator. Static and dynamic tools are integrated with error detection capabilities, resulting in a facility which analyzes a representative testbed of DFCS software. Future investigations will ensue particularly in the areas of increase in the number of software test tools, and a cost effectiveness assessment.
TeleOperator/telePresence System (TOPS) Concept Verification Model (CVM) development
NASA Technical Reports Server (NTRS)
Shimamoto, Mike S.
1993-01-01
The development of an anthropomorphic, undersea manipulator system, the TeleOperator/telePresence System (TOPS) Concept Verification Model (CVM) is described. The TOPS system's design philosophy, which results from NRaD's experience in undersea vehicles and manipulator systems development and operations, is presented. The TOPS design approach, task teams, manipulator, and vision system development and results, conclusions, and recommendations are presented.