NASA Astrophysics Data System (ADS)
Novriansyah, A.; Mursyidah, U.; Novrianti; Putri, S. S.; Riswati, S. S.
2018-04-01
This study provides an analysis of composite additive effect to concrete’s strength in the oil-well cementing job. The composite additive is originated from the nano-sized form of silica and charcoal from palm shell waste. The quality of the concrete will be determined from its porosity, compressive strength, and shear bond strength parameters. Those parameters must be reliable base on the most respectable standards in oil and gas industry, in this study we use the standard from American Petroleum Institute (API). Six concrete samples with different concentration will be tested to obtain these parameters. The result from the test shown a decrement trend of the porosity while the concentration is increased. In contrast, the highest values of compressive strength and shear bond strength are obtained from the sample with higher additive concentration. The optimum strength was obtained in sample with 0.02% The results become clearly proven through verification by scanning electron image where the additive has successfully fill the voids in the concrete’s sample, resulting in strength enhancement of the sample.
NASA Astrophysics Data System (ADS)
Tilak B., Vidya; Dutta, Rakesh Kumar; Mohanty, Bijayananda
2015-06-01
This paper presents the effect of coir fibres on the compaction and unconfined compressive strength of a bentonite-lime-gypsum mixture. The coir fiber content varied from 0.5 to 2 %. The results indicated that the dry unit weight and the optimum moisture content of a bentonite - lime mix increased with the addition of gypsum. The unconfined compressive strength of the bentonite increased with the increase in the lime content up to 8 %. Beyond 8 %, the unconfined compressive strength decreased. The dry unit weight of the reference mix decreased, and the optimum moisture content increased with the addition of coir fibre. The unconfined compressive strength of the bentonite + 8 % lime mix increased up to 4 % with the gypsum. Beyond 4 %, the unconfined compressive strength decreased. The unconfined compressive strength of the reference mix increased with the addition of coir fibre up to a fibre content of 1.5 %. The unconfined compressive strength of the reference mix-coir fibre composite was less in comparison to the reference mix. The unconfined compressive strength of the bentonite increased with the addition of lime and gypsum and with the increase in the curing period. The improvement in the post-peak region was better for the reference mix with reinforced coir fibres as compared to the unreinforced reference mix. The improved post-peak behaviour of the bentonite-lime-gypsum-coir fibre mixture could boost the construction of temporary roads on such problematic soils. Further, its use will also provide an environmental motivation for providing a means of consuming large quantities of coir fibres.
Effects of cationic xylan from annual plants on the mechanical properties of paper.
Deutschle, Alexander L; Römhild, Katrin; Meister, Frank; Janzon, Ron; Riegert, Christiane; Saake, Bodo
2014-02-15
Xylan from oat spelt and wheat was used as an additive to enhance the dry strength of paper. The absorption of xylan by the cellulose fibers was increased by cationization to different degrees of substitution. Paper hand sheets with different doses of xylan and industrial cationic starch were produced, and the mechanical properties were determined. Absorption measurements of cationic oat spelt xylan on pulp fibers explained the differing influences of low and high cationized xylan addition on paper strength. The addition of cationic oat spelt xylan with a degree of substitution of 0.1 at a 4% dose provided the largest improvement in the tensile-index (67%), burst-index (105%) and tear-index (77%). Compared to cationic starch, cationic oat spelt xylan additives led to similar paper strength values, excepting the tear strength. The structural differences and protein impurities made the wheat xylan unsuitable as a strength additive for paper pulp. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dielectric breakdown of additively manufactured polymeric materials
Monzel, W. Jacob; Hoff, Brad W.; Maestas, Sabrina S.; ...
2016-01-11
Dielectric strength testing of selected Polyjet-printed polymer plastics was performed in accordance with ASTM D149. This dielectric strength data is compared to manufacturer-provided dielectric strength data for selected plastics printed using the stereolithography (SLA), fused deposition modeling (FDM), and selective laser sintering (SLS) methods. Tested Polyjet samples demonstrated dielectric strengths as high as 47.5 kV/mm for a 0.5 mm thick sample and 32.1 kV/mm for a 1.0 mm sample. As a result, the dielectric strength of the additively manufactured plastics evaluated as part of this study was lower than the majority of non-printed plastics by at least 15% (with themore » exception of polycarbonate).« less
Dielectric breakdown of additively manufactured polymeric materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monzel, W. Jacob; Hoff, Brad W.; Maestas, Sabrina S.
Dielectric strength testing of selected Polyjet-printed polymer plastics was performed in accordance with ASTM D149. This dielectric strength data is compared to manufacturer-provided dielectric strength data for selected plastics printed using the stereolithography (SLA), fused deposition modeling (FDM), and selective laser sintering (SLS) methods. Tested Polyjet samples demonstrated dielectric strengths as high as 47.5 kV/mm for a 0.5 mm thick sample and 32.1 kV/mm for a 1.0 mm sample. As a result, the dielectric strength of the additively manufactured plastics evaluated as part of this study was lower than the majority of non-printed plastics by at least 15% (with themore » exception of polycarbonate).« less
The importance of root strength and deterioration rates upon edaphic stability in steepland forests
C. O' Loughlin; R. R. Ziemer
1982-01-01
Abstract - The additional strength provided by roots to the soil is generally considered to be in the form of a cohesive strength C which may range in magnitude from 1 kPa to 20 kPa. Studies of the tensile strength of tree roots show that small roots sampled from living trees range in mean tensile strength from about 10 MPa to about 60 MPa. After tree...
NASA Technical Reports Server (NTRS)
Hodge, Andrew J.; Nettles, Alan T.; Jackson, Justin R.
2011-01-01
Notched (open hole) composite laminates were tested in compression. The effect on strength of various sizes of through holes was examined. Results were compared to the average stress criterion model. Additionally, laminated sandwich structures were damaged from low-velocity impact with various impact energy levels and different impactor geometries. The compression strength relative to damage size was compared to the notched compression result strength. Open-hole compression strength was found to provide a reasonable bound on compression after impact.
Tatem, Kathleen S; Quinn, James L; Phadke, Aditi; Yu, Qing; Gordish-Dressman, Heather; Nagaraju, Kanneboyina
2014-09-29
The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body systems as well when used with additional outcome measures. In addition, measures such as total distance traveled mirror the 6 min walk test, a clinical trial outcome measure. However, open field activity monitoring is also associated with significant challenges: Open field activity measurements vary according to animal strain, age, sex, and circadian rhythm. In addition, room temperature, humidity, lighting, noise, and even odor can affect assessment outcomes. Overall, this manuscript provides a well-tested and standardized open field activity SOP for preclinical trials in animal models of neuromuscular diseases. We provide a discussion of important considerations, typical results, data analysis, and detail the strengths and weaknesses of open field testing. In addition, we provide recommendations for optimal study design when using open field activity in a preclinical trial.
46 CFR 56.30-10 - Flanged joints (modifies 104.5.1(a)).
Code of Federal Regulations, 2013 CFR
2013-10-01
... addition of a strength fillet weld of the size as shown, may be used in Class I systems not exceeding 750... buttwelding flanges must be provided. For Class II piping systems, the size of the strength fillet may be... void spaces is desirable. For systems of Class II, the size of the strength fillet may be limited to a...
46 CFR 56.30-10 - Flanged joints (modifies 104.5.1(a)).
Code of Federal Regulations, 2014 CFR
2014-10-01
... addition of a strength fillet weld of the size as shown, may be used in Class I systems not exceeding 750... buttwelding flanges must be provided. For Class II piping systems, the size of the strength fillet may be... void spaces is desirable. For systems of Class II, the size of the strength fillet may be limited to a...
46 CFR 56.30-10 - Flanged joints (modifies 104.5.1(a)).
Code of Federal Regulations, 2012 CFR
2012-10-01
... addition of a strength fillet weld of the size as shown, may be used in Class I systems not exceeding 750... buttwelding flanges must be provided. For Class II piping systems, the size of the strength fillet may be... void spaces is desirable. For systems of Class II, the size of the strength fillet may be limited to a...
Content Analysis of Standardized-Patients' Descriptive Feedback on Student Performance on the CPX.
Lee, Young Hee; Lee, Young-Mee; Kim, Byung Soo
2010-12-01
The goal of this study was to explore what kind of additional information is provided by the descriptive comments other than the rating scales, on the physician-patient interaction (PPI) in the clinical performance examination (CPX) and its feedback role in identifying students' strengths and weaknesses in communication skills. The data were collected from 18 medical schools in Seoul and Gyeonggi region, which participated in the CPX for fourth-year medical students in 2006 and 2007. In total 12,650 examination cases in 2006 and 12,814 cases in 2007 were analyzed. Descriptive comments from the standardized patients (SPs) were analyzed by content analysis, which includes a 4-step process: coding, conceptualizing, categorizing and explanation. Ten categories (41 concepts) for 'strength' and 11 for 'weakness' (40 concepts) in the PPI were extracted. Among them, 10 categories were the same in both strength and weakness: providing adequate interview atmosphere, attentive listening, providing emotional support, non-verbal behaviors, professional attitude, questioning, explanation, reaching agreement, counseling & education and conducting adequate physical examination. For the 'structured and organized interview', only weakness was described. In 'providing emotional support' and 'adequate interview atmosphere', comments on strengths were more frequently mentioned than weaknesses. However, communication skills that were related to non-verbal behaviors were more frequently considered weaknesses rather than strengths. The numbers and content of the SP's comments on students' strengths and weaknesses in the PPI varied depending on the case specificities. The results suggest that the SPs' descriptive comments on student' performance on the CPX can provide additional information versus structured quantitative assessment tools such as performance checklists and rating scales. In particular, this information can be used as valuable feedback to identify the advantages and dicadvantages of the PPI and to enhance students' communication skills.
Non-additive effects of intra- and interspecific competition between two larval salamanders.
Anderson, Thomas L; Whiteman, Howard H
2015-05-01
Assessment of the relative strengths of intra- and interspecific competition has increased in recent years and is critical to understanding the importance of competition. Yet, whether intra- and interspecific competition can have non-additive effects has rarely been tested. The resulting fitness consequences of such non-additive interactions are important to provide the context necessary to advance our understanding of competition theory. We compared the strength of additive and non-additive intra- and interspecific competition by manipulating densities of a pair of larval salamanders (Ambystoma talpoideum and A. maculatum) in experimental mesocosms within a response surface design. Intraspecific density had the strongest effect on the strength of competition for both species, and few observed comparisons indicated interspecific competition was an important factor in predicting body size, growth or larval period length of either species. Non-additive effects of intra- and interspecific competition influenced some response variables, including size and mass at metamorphosis in A. maculatum, but at a reduced strength compared to intraspecific effects alone. Intraspecific competition was thus the dominant biotic interaction, but non-additive effects also impact the outcome of competition in these species, validating the importance of testing for and incorporating non-additive density effects into competition models. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Silicon carbide whisker-zirconia reinforced mullite and alumina ceramics
Becher, Paul F.; Tiegs, Terry N.
1987-01-01
The flexural strength and/or fracture toughness of SiC whisker-reinforced composites utilizing mullite or alumina as the matrix material for the composite are increased by the addition of zirconia in a monoclinic or tetragonal phase to the matrix. The zirconia addition also provides for a lower hot-pressing temperature and increases the flexural strength and/or fracture toughness of the SiC whisker-reinforced composites over SiC whisker-reinforced composites of the similar matrix materials reinforced with similar concentrations of SiC whiskers.
Adazabra, A N; Viruthagiri, G; Shanmugam, N
2017-06-01
This work studies the reuse of spent shea waste as an economic construction material in improving fired clay bricks manufacture aside providing a novel approach to ecofriendly managing its excessive generated from the shea agroindustry. For this purpose, the influence of spent shea waste addition on the chemical, mineralogical, molecular bonding and technological properties (i.e. compressive strength and water absorption) of the fired clay bricks were extensively investigated. The results indicated that the chemical, mineralogical, phase transformations, molecular bonding and thermal behavior of the produced bricks were practically unaffected by the addition of spent shea waste. However, spent shea waste addition increased the compressive strengths and water absorptions of the brick products. Potential performance benefits of reusing spent shea waste was improved fluxing agents, energy-contribution reaction, excellent porosifying effect, reduced thermal conductivity and enhanced compressive strengths of the brick products. This research has therefore provided compelling evidence that could create newfound route for the synergistic ecofriendly reuse of spent shea waste to enhance clay brick construction aside being a potential mainstream disposal option. Copyright © 2017 Elsevier Ltd. All rights reserved.
Low-Temperature Curing Strength Enhancement in Cement-Based Materials Containing Limestone Powder.
Bentz, Dale P; Stutzman, Paul E; Zunino, Franco
2017-06-01
With the ongoing sustainability movement, the incorporation of limestone powder in cementitious binders for concrete in the U.S. has become a subject of renewed interest. In addition to accelerating the early age hydration reactions of cementitious systems by providing additional surfaces for nucleation and growth of products, limestone powder is also intriguing based on its influence on low-temperature curing. For example, previous results have indicated that the utilization of limestone powder to replace one quarter of the fly ash in a high volume fly ash mixture (40 % to 60 % cement replacement) produces a reduction in the apparent activation energy for setting for temperatures below 25 °C. In the present study, the relationship between heat release and compressive strength of mortars at batching/curing temperatures of 10 °C and 23 °C is investigated. For Portland-limestone cements (PLC) with limestone additions on the order of 10 %, a higher strength per unit heat release is obtained after only 7 d of curing in lime water. Surprisingly, in some cases, the absolute strength of these mortar cubes measured at 7 d is higher when cured at 10 °C than at 23 °C. Solubilities vs. temperature, reaction stoichiometries and enthalpies, and projected phase distributions based on thermodynamic modeling for the cementitious phases are examined to provide some theoretical insight into this strength enhancement. For a subset of the investigated cements, thermogravimetric analysis (TGA), quantitative X-ray diffraction (XRD), and scanning electron microscopy (SEM) are conducted on 7-d paste specimens produced at the two temperatures to examine differences in their reaction rates and the phases produced. The strength enhancement observed in the PLC cements is related to the cement hydration products formed in the presence of carbonates as a function of temperature.
Cross-Cultural Investigation of Male Gait Perception in Relation to Physical Strength and Speed
Fink, Bernhard; Wübker, Marieke; Ostner, Julia; Butovskaya, Marina L.; Mezentseva, Anna; Muñoz-Reyes, José Antonio; Sela, Yael; Shackelford, Todd K.
2017-01-01
Previous research documents that men and women can accurately judge male physical strength from gait, but also that the sexes differ in attractiveness judgments of strong and weak male walkers. Women’s (but not men’s) attractiveness assessments of strong male walkers are higher than for weak male walkers. Here, we extend this research to assessments of strong and weak male walkers in Chile, Germany, and Russia. Men and women judged videos of virtual characters, animated with the walk movements of motion-captured men, on strength and attractiveness. In two countries (Germany and Russia), these videos were additionally presented at 70% (slower) and 130% (faster) of their original speed. Stronger walkers were judged to be stronger and more attractive than weak walkers, and this effect was independent of country (but not sex). Women tended to provide higher attractiveness judgments to strong walkers, and men tended to provide higher attractiveness judgments to weak walkers. In addition, German and Russian participants rated strong walkers most attractive at slow and fast speed. Thus, across countries men and women can assess male strength from gait, although they tended to differ in attractiveness assessments of strong and weak male walkers. Attractiveness assessments of male gait may be influenced by society-specific emphasis on male physical strength. PMID:28878720
Effect of insulating concrete forms in concrete compresive strength
NASA Astrophysics Data System (ADS)
Martinez Jerez, Silvio R.
The subject presented in this thesis is the effect of Insulating Concrete Forms (ICF's) on concrete compressive strength. This work seeks to identify if concrete cured in ICF's has an effect in compressive strength due to the thermal insulation provided by the forms. Modern construction is moving to energy efficient buildings and ICF's is becoming more popular in new developments. The thesis used a concrete mixture and a mortar mixture to investigate the effects of ICF's on concrete compressive strength. After the experimentations were performed, it was concluded that the ICF's do affect concrete strength. It was found that the forms increase concrete strength without the need for additional curing water. An increase of 50% in strength at 56 days was obtained. It was concluded that the longer concrete cures inside ICF's, the higher strength it reaches, and that ICF's effect on concrete strength is proportional to volume of concrete.
Multilayer Pressure Vessel Materials Testing and Analysis Phase 2
NASA Technical Reports Server (NTRS)
Popelar, Carl F.; Cardinal, Joseph W.
2014-01-01
To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report
NASA Astrophysics Data System (ADS)
Asria, Merry; Elizarni, Samah, dan Selfa Dewati
2015-12-01
Plastics have been generally used for food packaging, but plastics using causing environmental problem for as non biodegradable. Resolving the problem need another alternative packaging that environmental friendly such as the edible film as biodegradable packing material. This research intend to determination the effects of sorbitol and glycerol (concentration of 1%, 2%, 3%, and 4%) as addition to the edible film characteristics from the belitung taro starch (Xanthosoma sagitifolium). Lime leaves (Citrus aurantifolia) extract used as an antimicrobial film (2%, 4%, 6%, 8%, and 10% respectively). From the research obtained that using sorbitol has given more rigid and hard film texture, while glycerol provides more elastic and flexible texture. Sorbitol give best performance at 2% where thickness 0.17 mm; tensile strength 41.60 MPa; yield strength 34.28 MPa; modulus of elasticity 7983.71 MPa; and maximum strain 29,8%. While, glycerol (2%) provides thickness 0.18 mm; tensile strength 35.72 MPa; yield strength 30.78 MPa; modulus of elasticity 9065.90 MPa; and maximum strain 14.4% for best performance. SEM and FTIR analysis applied to determine film surface morphology's characterization and determine the functional groups of the film materials. The addition of lime leaves extract as antimicrobial gives the growth inhibition activity against the Staphylococcus aureus bacteria.
2017-01-01
Question Is acute in-hospital physiotherapy with additional progressive knee-extension strength training (ST) of the fractured limb more effective in reducing knee-extension strength deficit at follow-up compared to physiotherapy without strength training in patients with a hip fracture? Design Assessor blinded, randomised controlled trial with intention-to-treat analysis. Participants 90 patients with a hip fracture admitted to an acute orthopaedic Hip Fracture Unit at a university hospital between October 2013 and May 2015. Intervention Daily physiotherapy with or without progressive knee-extension strength training (10RM), 3 x 10 repetitions, of the fractured limb using ankle weight cuffs conducted by ward physical therapists during hospital stay. Outcome measures Primary outcome was the change in maximal isometric knee-extension strength in the fractured limb in percentage of the non-fractured limb from inclusion to postoperative day 10 or discharge (follow-up). Secondary outcome was Timed Up and Go test measured early after surgery and at follow-up. Results In the intention-to-treat analysis of between-group differences, the primary outcome improved 8.1% (95% CI -2.3; 18.4) by additional strength training from baseline to follow-up. In the per-protocol analysis of non-missing data, significant between-group improvements by 10.5% (95% CI 0.3; 20.7) were found in favour of additional ST. No significant between-group differences were found in any secondary outcome. Conclusion Physiotherapy with addition of 5 sessions of ST yielded no additional improvements compared to physiotherapy without strength training in reducing the knee-extension strength deficit at follow-up in patients with a hip fracture. It is debatable whether larger improvements than the observed 8–10% can be expected given that only five exercise sessions, on average, were completed. In fragile patients with a hip fracture in the acute phase, where the ability to participate in functional exercise is compromised, we still consider early strength training a possibility to improve outcomes of clinical importance, given the results of the per-protocol analysis. The present data provides an important basis and call for future investigations including longer term interventions. Trial registration Clinicaltrials.gov NCT00848913 PMID:28662153
Wade, Susan M; Pope, Zachary C; Simonson, Shawn R
2014-10-01
Training programs for high school athletes have changed over the last 20 years. High school physical education classes have transformed into sport-specific conditioning classes with intensities matching college or professional athlete programming. In addition, involvement in private, sport-specific, training increased; but despite these advanced training methods, are high school athletes prepared for collegiate sport competition? An anonymous survey was sent to 195 Division I strength and conditioning coaches (SCC) to discern incoming college freshman athletes' physical and psychological preparedness for the rigors of collegiate training and sport competition. Fifty-seven (29%) responses were received. Strength and conditioning coaches stated that incoming college freshman athletes lack lower extremity strength, overall flexibility, and core strength as well as proper Olympic lifting technique. Strength and conditioning coaches also stated that athletes lacked the mental toughness to endure collegiate sport training in addition to claiming incoming athletes lacked knowledge of correct nutrition and recovery principles. These results suggest a lack of collegiate training/sport preparedness of high school athletes. High school strength and conditioning specialist's goal is to produce better athletes and doing so requires the strength and conditioning coach/trainer to have knowledge of how to train high school athletes. One way to assure adequate knowledge of strength and conditioning training principles is for high school coaches/trainers to be certified in the field. Strength and conditioning certifications among high school strength and conditioning coaches/trainers would encourage developmentally appropriate training and would provide universities with athletes who are prepared for the rigors of collegiate sport training/competition.
Hydrothermal solidification of municipal solid waste incineration bottom ash with slag addition.
Jing, Zhenzi; Ran, Xianqiang; Jin, Fangming; Ishida, Emile H
2010-01-01
Hydrothermal solidification of municipal solid waste incineration (MSWI) bottom ash has been carried out under saturated steam pressure (1.56 MPa) at 200 degrees C for up to 24 h by mixing quartz, slaked lime and water-cooled blast furnace slag (WBFS). The strength enhancement for the WBFS addition was best. The strength development was shown to be due mainly to tobermorite formation, and the tobermorite formation densified matrix, thus promoting the strength development. WBFS seemed to have a higher reactivity than the quartz during the initial hydrothermal process, which provided more silica available to harden the solidified specimens. However, a longer curing time (24 h) was favorable to the quartz dissolution for tobermorite formation, which in turn, enhanced the strength for quartz addition. Curing time affected the crystal morphology evolution, and the stubby plate of tobermorite seemed to result in a high strength enhancement in this study. Laboratory leaching tests were conducted to determine the amount of heavy metals dissolved from the final solidified specimens, and the leaching results showed that after hydrothermal processing the heavy metals dissolved from the solidified specimens were reduced effectively. As such, the hydrothermal processing may have a high potential for recycling/reusing MSWI ash on a large scale. 2010 Elsevier Ltd. All rights reserved.
Real-Time GPS-Alternative Navigation Using Commodity Hardware
2007-06-01
4.1 Test Plan and Setup ..............................................................................................84 4.1.1 Component and...improvements planned , the most influential for navigation are additional signals, frequencies, and improved signal strength. These improvements will... planned and implemented to provide maximum extensibility for additional sensors and functionality without disturbing the core GPU-accelerated
Nutritional Supplements for Strength Power Athletes
NASA Astrophysics Data System (ADS)
Wilborn, Colin
Over the last decade research involving nutritional supplementation and sport performance has increased substantially. Strength and power athletes have specific needs to optimize their performance. Nutritional supplementation cannot be viewed as a replacement for a balanced diet but as an important addition to it. However, diet and supplementation are not mutually exclusive, nor does one depend on the other. Strength and power athletes have four general areas of supplementation needs. First, strength athletes need supplements that have a direct effect on performance. The second group of supplements includes those that promote recovery. The third group comprises the supplements that enhance immune function. The last group of supplements includes those that provide energy or have a direct effect on the workout. This chapter reviews the key supplements needed to optimize the performance and training of the strength athlete.
Synthesis of improved phenolic resins
NASA Technical Reports Server (NTRS)
Delano, C. B.; Mcleod, A. H.
1979-01-01
Twenty seven addition cured phenolic resin compositions were prepared and tested for their ability to give char residues comparable to state-of-the-art phenolic resins. Cyanate, epoxy, allyl, acrylate, methacrylate and ethynyl derivatized phenolic oligomers were investigated. The novolac-cyanate and propargyl-novolac resins provided anaerobic char yields at 800 C of 58 percent. A 59 percent char yield was obtained from modified epoxy novolacs. A phosphonitrilic derivative was found to be effective as an additive for increasing char yields. The novolac-cyanate, epoxy-novolac and methacrylate-epoxy-novolac systems were investigated as composite matrices with Thornel 300 graphite fiber. All three resins showed good potential as composite matrices. The free radical cured methacrylate-epoxy-novolac graphite composite provided short beam shear strengths at room temperature of 93.3 MPa (13.5 ksi). The novolac-cyanate graphite composite produced a short beam shear strength of 74 MPa (10.7 ksi) and flexural strength of 1302 MPa (189 ksi) at 177 C. Air heat aging of the novolac-cyanate and epoxy novolac based composites for 12 weeks at 204 C showed good property retention.
Effect of mineral additives on structure and properties of concrete for pavements
NASA Astrophysics Data System (ADS)
Sobol, Khrystyna; Markiv, Taras; Hunyak, Oleksii
2017-12-01
Concrete pavements is an attractive alternative to asphalt pavements because of its lower cost and higher durability. Major contribution to sustainable development can be made by partial replacement of cement in concrete pavement with supplementary cementitious materials of different nature and origin. In this paper, the effect of natural zeolite and perlite additives in complex with chemical admixtures on the structure and properties of concrete for pavement was studied. Compressive and flexural strength test was used to study the mechanical behavior of designed concrete under load. Generally, the compressive strength of both control concrete and concrete containing mineral additives levels at the later ages of hardening. The microstructure analysis of concrete with mineral additives of different nature activity showed the formation of additional amount of hydration products such as tobermorite type calcium hydrosilicate which provide self-reinforcement of hardening concrete system.
NASA Astrophysics Data System (ADS)
Ullmann, J. L.; Kawano, T.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Baramsai, B.; Mitchell, G. E.; Krtička, M.
2014-03-01
Background: Accurate knowledge of the U238(n,γ) cross section is important for developing theoretical nuclear reaction models and for applications. However, capture cross sections are difficult to calculate accurately and often must be measured. Purpose: We seek to confirm previous measurements and test cross-section calculations with an emphasis on the unresolved resonance region from 1 to 500 keV. Method: Cross sections were measured from 10 eV to 500 keV using the DANCE detector array at the LANSCE spallation neutron source. The measurements used a thin target, 48 mg/cm2 of depleted uranium. Gamma cascade spectra were also measured to provide an additional constraint on calculations. The data are compared to cross-section calculations using the code CoH3 and cascade spectra calculations made using the code dicebox. Results: This new cross-section measurement confirms the previous data. The measured gamma-ray spectra suggest the need for additional low-lying dipole strength in the radiative strength function. New Hauser-Feshbach calculations including this strength accurately predict the capture cross section without renormalization. Conclusions: The present cross-section data confirm previous measurements. Including additional low-lying dipole strength in the radiative strength function may lead to more accurate cross-section calculations in nuclei where <Γγ> has not been measured.
Duan, Wenjie; Ho, Samuel Mun Yin
2017-02-01
Strengths are positive qualities that significantly contributed to well-being of individuals and community. Therefore, a reliable and valid measure of strengths for research and practice is needed. The Brief Strengths Scale (BSS) is a newly developed tool for measuring the three-dimensional strengths model (i.e., temperance, intellectual, and interpersonal strength). However, empirical support for the measurement invariance of the BSS has not been obtained. This study examined the three-factor structure of BSS across gender, age, education, and marriage groups in a community sample (n = 375) using multi-group confirmatory factor analysis. After removing one item of each subscale from the original version, the revised model provided a good fit to the data at different subgroups. The revised nine-item BSS indicated that measurement invariance across gender and age groups was achieved. In addition, the measurement was more influenced by social-cultural factors than biological factors.
Relationship between compatibilizer and yield strength of PLA/PP Blend
NASA Astrophysics Data System (ADS)
Jariyakulsith, Pattanun; Puajindanetr, Somchai
2018-01-01
The aim of this research is to study the relationship between compatibilizer and yield strength of polylactic acid (PLA) and polypropylene (PP) blend. The PLA is blended with PP (PLA/PP) at the ratios of 70/30, 50/50 and 30/70. In addition, (1) polypropylene grafted maleic anhydride (PP-g-MAH) as a compatibilizer at 0.3 and 0.7 part per hundred of PLA/PP resin (phr) and (2) dicumyl peroxide (DCP) being an initiator at 0.03 and 0.07 phr are added in each composition. Yield strength is characterized to study the interaction between compatibilizer, initiator and yield strength by using experimental design of multilevel full factorial. The results show that (1) the yield strength of PLA/PP blend are increased after addition of compatibilizer. Because the adding of PP-g-MAH and DCP resulted in improving compatibility between PLA and PP. (2) there are interaction between PP-g-MAH and DCP that have affected the final properties of PLA/PP blend. The highest yield strength of 27.68 MPa is provided at the ratio of 70/30 blend by using the 0.3 phr of PP-g-MAH and 0.03 phr of DCP. Linear regression model is fitted and follow the assumptions of normal distribution.
A Qualitative Study to Understand High School Teachers' Experiences Teaching Online
ERIC Educational Resources Information Center
Sims, Tacor Natalie
2017-01-01
This study addresses a gap in research literature regarding educator's experiences teaching online high school, focusing on strengths, challenges, and professionalism, from an online high school teacher's perspective. In addition, teachers provided their perceived level of professionalism as online high school teachers and provided their…
V-378A: A modified bismaleimide for advanced composites
NASA Technical Reports Server (NTRS)
Street, S. W.
1985-01-01
Addition polyimides cure with no evolution of gaseous by-products at relatively low temperatures and may be cured at low pressures to yield composites with excellent hot-wet strength retention. These properaties have made them excellent candidates as matrix resins for advanced composites. However, commercially available bismaleimides are solids and difficult to handle in preimpregnated form. V-378A is an addition polyimide composed of a mixture of bismaleimides and other reactive ingredients formulated to provide good prepreg properties and handling, facile cure and excellent composite mechanical properties. Several curing mechanisms are utilized to provide the characteristics exhibited by V-378A. Part of the mechanism is free radial and takes place at ambient temperature and above. Other mechanisms are principally Diels-Alder in nature. V-378A prepregs are tacky at ambient temperature, but do not have long tacky outlife similar to some epoxies. V-378A yields composites which exhibit hot-wet strength retention which is superior to that provided by epoxy resin systems.
[Health-related strength and power training in seniors: Purpose and recommendations].
Donath, Lars; Faude, Oliver; Bopp, Micha; Zahner, Lukas
2015-05-01
The proportion of older people in western societies rapidly increases. Aging-induced disease conditions accompanied with declines in cardiocirculatory and neuromuscular performance constitute a major individual and economic health burden. Besides decreasing vascular and cardiac function during the process of aging, a loss of skeletal muscle mass, muscle structure and function seem to mainly account for decreasing maximal strength, strength development and strength endurance. These findings adversely interfer with static and dynamic postural control and may lead to an increased risk of falling with impairments of autonomy and quality of life. Traditional strength training recommendations basing on health-related exercise prescriptions for elderly people have been proven to counteract or at least attenuate aging-induced declines of neuromuscular muscular function. Multimodal and combined strength and balance training deliver additional improvements of neuromuscular capacity. Recent evidence additionally underpin the need of trunk muscle training and claimed for regimes considering explosive and high-velocity strength training in seniors. High quality RCTs revealed notable strength training effects on mobility, autonomy, quality of life and the reduction of the risk of falling (up to 50%). Available evidence also indicates that various strength training regimes elicit preventive and therapeutic effects on osteoporosis, diabetes type 2 and other chronic diseases, with effect sizes comparable to medication intake. Thus, health care providers, health insurances, Employers' Liability Insurance Associations and politicians should promote infrastructural developments that enable feasible and cost-effective access to health-related fitness centers or other sport facilities (e. g. sport clubs). These environmental requirements should be embedded in multi-centric education programs and campaigns that might enable regularly conducted strength and endurance training perceived as beneficial and valuable from an individual health care perspective.
Focusing on psychiatric patients' strengths: A new vision on mental health care in Iran.
Zargham-Boroujeni, Ali; Maghsoudi, Jahangir; Oreyzi, Hamid Reza
2015-01-01
Identifying and using the strengths of patients, in practice, is a new territory. Today, the need to educate nurses and psychiatric patients about positive psychology in practice and the importance of understanding and focusing on strengths is clear. However, little is known about the strengths the psychiatric patients use and experience. Thus, this study has been designed and conducted in order to understand how people with psychiatric disorders demonstrate their strengths. In the present study, 13 semi-structured, qualitative interviews with patients and 2 focus groups with nurses were carried out. In addition, a qualitative content analysis was used to identify significant strengths. Based on the results, the four main strengths consisted of: Finding a meaning in daily living, work as enduring strength, entertaining activities, and positive relationship. Patients also reported that health care providers rarely focused on patients' strengths, and experts confirmed these findings. Our findings indicate that patients' own strengths are a pivotal factor in getting through their illness from their perspective. Despite the enduring legacy of pessimism regarding psychiatric patients, these people have a repertoire of strengths. Nurses should, therefore, have a greater focus on eliciting and nourishing psychiatric patients' strengths in their care. It is suggested that the theoretical and practical aspects of patients' strengths be incorporated in nursing school curricula.
Fatigue during high-intensity intermittent exercise: application to bodybuilding.
Lambert, Charles P; Flynn, Michael G
2002-01-01
Resistance exercise is an activity performed by individuals interested in competition, those who wish to improve muscle mass and strength for other sports, and for individuals interested in improving their strength and physical appearance. In this review we present information suggesting that phosphocreatine depletion, intramuscular acidosis and carbohydrate depletion are all potential causes of the fatigue during resistance exercise. In addition, recommendations are provided for nutritional interventions, which might delay muscle fatigue during this type of activity.
2007-04-01
generation, to reduce the amount of cement required, and to provide additional tensile strength to the concrete. Although there was limited success with...generally less workable and requires more cement due to the increased water requirements. He further states that with the equipment currently...52- Table 9. Results of the Type III Grout Scoping Study Mixture Water Cement Ratio Sand Replicate Compressive Strength MPa (psi) Flow Cone
NASA Astrophysics Data System (ADS)
Ramani Sujatha, Evangelin; SaiSree, S.; Prabalini, C.; Aysha Farsana, Z.
2017-07-01
The choice of natural fibres for soil stabilization provides an economic, safe and eco-friendly alternative to improve the properties of soil. They are an important step forward toward sustainable development. An attempt was made to study the influence of the random addition of untreated coconut fibres on the short term strength of soil, its stress-strain behavior, compaction characteristics and index properties. The soil selected for the study is a highly compressible clay sample with a liquid limit of 52.5 % and plasticity index of 38 %. The soil has no organic content. The study reveals that the compaction curves tend to shift to the right side, indicating more plastic behavior with the addition of fibres. The addition of fibres also reorient the soil structure to a more dispersed fashion. A significant increase in the unconfined compressive strength is also observed. An increase of nearly 51 % in the unconfined compressive strength is observed at 0.75 % coir inclusion. The stress-strain behavior of the soil shows a shift toward more plastic behavior. The mode of failure of the soil specimen is by cracking and with fibre inclusion, length of the failure cracks is restrained as the fibre tends to hold the cracks together, resulting in shorter cracks, with significant bulging of the specimen at failure.
ERIC Educational Resources Information Center
Lakin, Joni M.
2012-01-01
Ability tests are used by teachers to provide additional context for interpreting student achievement and as a tool for differentiating instruction to the cognitive strengths and weaknesses of students. Tests that provide the most useful information for these purposes measure school-related content domains including verbal and quantitative…
Kwon, Yang-Hee; Kang, Sung-Hoon; Hong, Sung-Gul; Moon, Juhyuk
2017-02-24
Without using strong alkaline solution or ordinary Portland cement, a new structural binder consisting of fly ash and hydrated lime was hardened through an intensified pozzolanic reaction. The main experimental variables are the addition of silica fume and initial thermal treatment (60 °C for 3 days). A series of experiments consisting of mechanical testing (compressive and flexural strength, modulus of elasticity), X-ray diffraction, and measurements of the heat of hydration, pore structure, and shrinkage were conducted. These tests show that this new fly ash-based mortar has a compressive strength of 15 MPa at 91 days without any silica fume addition or initial thermal treatment. The strength increased to over 50 MPa based on the acceleration of the intensified pozzolanic reaction from the silica fume addition and initial thermal treatment. This is explained by a significant synergistic effect induced by the silica fume. It intensifies the pozzolanic reaction under thermal treatment and provides a space filling effect. This improved material performance can open a new pathway to utilize the industrial by-product of fly ash in cementless construction materials.
NASA-427: A New Aluminum Alloy
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.
Wireless Concrete Strength Monitoring of Wind Turbine Foundations.
Perry, Marcus; Fusiek, Grzegorz; Niewczas, Pawel; Rubert, Tim; McAlorum, Jack
2017-12-16
Wind turbine foundations are typically cast in place, leaving the concrete to mature under environmental conditions that vary in time and space. As a result, there is uncertainty around the concrete's initial performance, and this can encourage both costly over-design and inaccurate prognoses of structural health. Here, we demonstrate the field application of a dense, wireless thermocouple network to monitor the strength development of an onshore, reinforced-concrete wind turbine foundation. Up-to-date methods in fly ash concrete strength and maturity modelling are used to estimate the distribution and evolution of foundation strength over 29 days of curing. Strength estimates are verified by core samples, extracted from the foundation base. In addition, an artificial neural network, trained using temperature data, is exploited to demonstrate that distributed concrete strengths can be estimated for foundations using only sparse thermocouple data. Our techniques provide a practical alternative to computational models, and could assist site operators in making more informed decisions about foundation design, construction, operation and maintenance.
Wireless Concrete Strength Monitoring of Wind Turbine Foundations
Niewczas, Pawel; Rubert, Tim
2017-01-01
Wind turbine foundations are typically cast in place, leaving the concrete to mature under environmental conditions that vary in time and space. As a result, there is uncertainty around the concrete’s initial performance, and this can encourage both costly over-design and inaccurate prognoses of structural health. Here, we demonstrate the field application of a dense, wireless thermocouple network to monitor the strength development of an onshore, reinforced-concrete wind turbine foundation. Up-to-date methods in fly ash concrete strength and maturity modelling are used to estimate the distribution and evolution of foundation strength over 29 days of curing. Strength estimates are verified by core samples, extracted from the foundation base. In addition, an artificial neural network, trained using temperature data, is exploited to demonstrate that distributed concrete strengths can be estimated for foundations using only sparse thermocouple data. Our techniques provide a practical alternative to computational models, and could assist site operators in making more informed decisions about foundation design, construction, operation and maintenance. PMID:29258176
Observational evidence and strength of evidence domains: case examples
2014-01-01
Background Systematic reviews of healthcare interventions most often focus on randomized controlled trials (RCTs). However, certain circumstances warrant consideration of observational evidence, and such studies are increasingly being included as evidence in systematic reviews. Methods To illustrate the use of observational evidence, we present case examples of systematic reviews in which observational evidence was considered as well as case examples of individual observational studies, and how they demonstrate various strength of evidence domains in accordance with current Agency for Healthcare Research and Quality (AHRQ) Evidence-based Practice Center (EPC) methods guidance. Results In the presented examples, observational evidence is used when RCTs are infeasible or raise ethical concerns, lack generalizability, or provide insufficient data. Individual study case examples highlight how observational evidence may fulfill required strength of evidence domains, such as study limitations (reduced risk of selection, detection, performance, and attrition); directness; consistency; precision; and reporting bias (publication, selective outcome reporting, and selective analysis reporting), as well as additional domains of dose-response association, plausible confounding that would decrease the observed effect, and strength of association (magnitude of effect). Conclusions The cases highlighted in this paper demonstrate how observational studies may provide moderate to (rarely) high strength evidence in systematic reviews. PMID:24758494
Meng, Yukun; Nakai, Akira; Ogura, Hideo
2004-06-01
Different reducing agents (B, Al, Si and Ti) were individually added to two gypsum-bonded investments to prepare investments preventing surface blackening of some noble cast alloys. The effect of different additive contents on green-body and burnout compressive strength, setting and thermal expansion of the investments were evaluated. The strength and expansion of the investments were changed by the additives. The compressive strength of Al-, Si- and Ti-added investments decreased with the increase of additive contents. The burnout strength of B-added investments significantly increased while green-body strength remained unchanged. The setting expansion of the B-added investments increased while those of the Al-, Si- and Ti-added investments decreased with the increase of additive contents. The thermal expansion of the Si- and Ti-added investments decreased, and that of the Al- and B-added investments remained unchanged. Further study is necessary to evaluate the effects of these additives on the accuracy of dental castings.
The effect of switchable water additives on clay settling.
Chen, Chien-Shun; Lau, Ying Yin; Mercer, Sean M; Robert, Tobias; Horton, J Hugh; Jessop, Philip G
2013-01-01
The recycling of process water from strip mining extractions is a very relevant task both industrially and environmentally. The sedimentation of fine tailings during such processes, however, can often require long periods of time and/or the addition of flocculants which make later water recycling difficult. We propose the use of switchable water additives as reversible flocculants for clay/water suspensions. Switchable water additives are compounds such as diamines that make it possible to reversibly control the ionic strength of an aqueous solution. Addition of CO(2) to such an aqueous solution causes the ionic strength to rise dramatically, and the change is reversed upon removal of the CO(2). These additives, while in the presence of CO(2), promote the aggregation of clay tailings, reduce settling times, and greatly increase the clarity of the liberated water. The removal of CO(2) from the liberated water regenerates a low ionic strength solution that does not promote clay aggregation and settling until CO(2) is added again. Such reversible behavior would be useful in applications such as oil sands separations in which the recycled water must not promote aggregation. When added to kaolinite and montmorillonite clay suspensions, switchable water provided process waters of lower turbidity than those additives from inorganic salts or by CO(2)-treatment alone. When recollected, the switchable water supernatant was shown to be recyclable over three cycles for enhanced settling of kaolinite. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Strategic Potential of the Late Ottoman Empire
2001-01-01
pluristic society and separation of powers . Additionally, the U.S. should provide training and assistance to the military and police regarding the...convince Turkey’s leaders that strength in diversity and through separation of powers will promote greater internal security and prosperity
Lightweight electrically-powered flexible thermal laminate. [made of metal and nonconductive yarns
NASA Technical Reports Server (NTRS)
Dawn, F. S.; Sauers, D. G. (Inventor)
1978-01-01
Cross-layered woven or unwoven yarns are used to provide an active thermal control mechanism for spacecraft use. One set of yarns is composed of flexible electrically conductive metal fibers which are capable of being resistance heated by the application of voltage. Another set of yarns, nonconductive and flexible, provides mechanical strength and precludes the passage of electrical current between the metal yarns by virtue of the spacing between them. A lightweight, electrically nonconductive film is bonded to the cross-layered yarns to protect the metal yarns from the elements (minimize electrical shorts from moisture such as rain), to provide additional strength to the fabric, and to prevent conductive loss of heat in nonvacuum applications. The nonconductive film is metalized on its obverse side to provide a more uniform heat load distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabain, R.T.
1994-05-16
A rock strength analysis program, through intensive log analysis, can quantify rock hardness in terms of confined compressive strength to identify intervals suited for drilling with polycrystalline diamond compact (PDC) bits. Additionally, knowing the confined compressive strength helps determine the optimum PDC bit for the intervals. Computing rock strength as confined compressive strength can more accurately characterize a rock's actual hardness downhole than other methods. the information can be used to improve bit selections and to help adjust drilling parameters to reduce drilling costs. Empirical data compiled from numerous field strength analyses have provided a guide to selecting PDC drillmore » bits. A computer analysis program has been developed to aid in PDC bit selection. The program more accurately defines rock hardness in terms of confined strength, which approximates the in situ rock hardness downhole. Unconfined compressive strength is rock hardness at atmospheric pressure. The program uses sonic and gamma ray logs as well as numerous input data from mud logs. Within the range of lithologies for which the program is valid, rock hardness can be determine with improved accuracy. The program's output is typically graphed in a log format displaying raw data traces from well logs, computer-interpreted lithology, the calculated values of confined compressive strength, and various optional rock mechanic outputs.« less
Davies, Mark; Moore, Isabel S; Moran, Patrick; Mathema, Prabhat; Ranson, Craig A
2016-05-01
To provide normative values for cervical range of motion (CROM), isometric cervical and shoulder strength for; International Senior professional, and International Age-grade Rugby Union front-row forwards. Cross-sectional population study. All international level front-row players within a Rugby Union Tier 1 Nation. Nineteen Senior and 21 Age-grade front-row forwards underwent CROM, cervical and shoulder strength testing. CROM was measured using the CROM device and the Gatherer System was used to measure multi-directional isometric cervical and shoulder strength. The Age-grade players had significantly lower; cervical strength (26-57% deficits), cervical flexion to extension strength ratios (0.5 vs. 0.6), and shoulder strength (2-36% deficits) than the Senior players. However, there were no differences between front-row positions within each age group. Additionally, there were no differences between age groups or front-row positions in the CROM measurements. Senior Rugby Union front-row forwards have greater cervical and shoulder strength than Age-grade players, with the biggest differences being in cervical strength, highlighting the need for age specific normative values. Importantly, Age-grade players should be evaluated to ensure they have developed sufficient cervical strength prior to entering professional level Rugby Union. Copyright © 2015 Elsevier Ltd. All rights reserved.
Consolidation of Si3N4 without additives (by hot isostatic pressing)
NASA Technical Reports Server (NTRS)
Yeh, H. C.
1983-01-01
The potential of using hot isostatic pressing (HIP'ing) technique to produce dense silicon nitride materials without or with a reduced amount of additives (much less than 5 w/o) was investigated. Hot isostatic pressing technique can provide higher pressure and temperature than hot pressing can, thus has the potential of requiring less densification aids to consolidate Si3N4 materials. It was anticipated that if such dense materials could be fabricated, the high temperature strength of the material should be improved significantly. Observations on the phase transformation, densification behavior, and microstructures of the samples are also documented. Density, microhardness, four point bend strength (room temperature and 1370 C) were measured on selected densified materials.
In vitro evaluation of an alternative method to bond molar tubes
PINZAN-VERCELINO, Célia Regina Maio; PINZAN, Arnaldo; GURGEL, Júlio de Araújo; BRAMANTE, Fausto Silva; PINZAN, Luciana Maio
2011-01-01
Despite the advances in bonding materials, many clinicians today still prefer to place bands on molar teeth. Molar bonding procedures need improvement to be widely accepted clinically. Objective The purpose of this study was to evaluate the shear bond strength when an additional adhesive layer was applied on the occlusal tooth/tube interface to provide reinforcement to molar tubes. Material and methods Sixty third molars were selected and allocated to the 3 groups: group 1 received a conventional direct bond followed by the application of an additional layer of adhesive on the occlusal tooth/tube interface, group 2 received a conventional direct bond, and group 3 received a conventional direct bond and an additional cure time of 10 s. The specimens were debonded in a universal testing machine. The results were analyzed statistically by ANOVA and Tukey’s test (α=0.05). Results Group 1 had a significantly higher (p<0.05) shear bond strength compared to groups 2 and 3. No difference was detected between groups 2 and 3 (p>0.05). Conclusions The present in vitro findings indicate that the application of an additional layer of adhesive on the tooth/tube interface increased the shear bond strength of the bonded molar tubes. PMID:21437468
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, M.S.; Henk, P.O.
1996-12-31
The use of additives to insulating materials is one of the methods to improve certain properties of these materials. Additives can also be used to provide more insight into some processes like conduction, space charge formation and breakdown under certain conditions of field application. In the present paper, the effect of the addition of fine particles 1 wt% BaTiO{sub 3} to plain low density polyethylene (LDPE) on the short-term dc breakdown strength of LDPE at room temperature was investigated. The characteristics of the used polyethylene are as follows: density 0.925 g/cm{sup 3}, melt index 0.25 g/10 min. The BaTiO{sub 3}more » used was laboratory grade with particle size less than 7 {micro}m. Special cylindrical test samples of both undoped and doped materials were used in this investigation. Stainless steel hemispherically tipped electrodes were embedded in the material by molding. The mean value of the gap length between the electrodes was 0.25 mm. The design of the test sample allows for determining the intrinsic breakdown strength of the material. The Weibull plots were used to analyze the breakdown test results. Analysis of the results indicate that the addition of BaTiO{sub 3} to LDPE has reduced the short term dc breakdown strength of the doped material by about 16% if compared with the corresponding value for the plain LDPE. An attempt is made to correlate between the present results, and earlier published results about the effect of BaTiO{sub 3} on dc conductivity and space charge formation in LDPE.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei-Lin, E-mail: wangwl77@gmail.com; Tsai, Yi-Chia, E-mail: tij@itri.org.tw
2012-06-15
Active solders Sn-3.5Ag-xTi varied from x = 0 to 6 wt.% Ti addition were prepared by vacuum arc re-melting and the resultant phase formation and variation of microstructure with titanium concentration were analyzed using X-ray diffraction, optical microscopy and scanning electron microscopy. The Sn-3.5Ag-xTi active solders are used as metallic filler to join with anodized 6061 Al alloy for potential applications of providing a higher heat conduction path. Their joints and mechanical properties were characterized and evaluated in terms of titanium content. The mechanical property of joints was measured by shear testing. The joint strength was very dependent on themore » titanium content. Solder with a 0.5 wt.% Ti addition can successfully wet and bond to the anodized aluminum oxide layers of Al alloy and posses a shear strength of 16.28 {+-} 0.64 MPa. The maximum bonding strength reached 22.24 {+-} 0.70 MPa at a 3 wt.% Ti addition. Interfacial reaction phase and chemical composition were identified by a transmission electron microscope with energy dispersive spectrometer. Results showed that the Ti element reacts with anodized aluminum oxide to form Al{sub 3}Ti-rich and Al{sub 3}Ti phases at the joint interfaces. - Highlights: Black-Right-Pointing-Pointer Active solder joining of anodized Al alloy needs 0.5 wt.% Ti addition for Sn-3.5Ag. Black-Right-Pointing-Pointer The maximum bonding strength occurs at 3 wt.% Ti addition. Black-Right-Pointing-Pointer The Ti reacts with anodized Al oxide to form Al{sub 3}Ti-rich and Al{sub 3}Ti at joint interface.« less
Gschwind, Yves J; Kressig, Reto W; Lacroix, Andre; Muehlbauer, Thomas; Pfenninger, Barbara; Granacher, Urs
2013-10-09
With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested. Healthy old people (n = 54) between the age of 65 to 80 years will participate in this trial. The testing protocol comprises tests for the assessment of static / dynamic steady-state balance (i.e., Sharpened Romberg Test, instrumented gait analysis), proactive balance (i.e., Functional Reach Test; Timed Up and Go Test), reactive balance (i.e., perturbation test during bipedal stance; Push and Release Test), strength (i.e., hand grip strength test; Chair Stand Test), and power (i.e., Stair Climb Power Test; countermovement jump). Further, body composition will be analysed using a bioelectrical impedance analysis system. In addition, questionnaires for the assessment of psychosocial (i.e., World Health Organisation Quality of Life Assessment-Bref), cognitive (i.e., Mini Mental State Examination), and fall risk determinants (i.e., Fall Efficacy Scale - International) will be included in the study protocol. Participants will be randomized into two intervention groups or the control / waiting group. After baseline measures, participants in the intervention groups will conduct a 12-week balance and strength / power exercise intervention 3 times per week, with each training session lasting 30 min. (actual training time). One intervention group will complete an extensive supervised training program, while the other intervention group will complete a short version ('3 times 3') that is home-based and controlled by weekly phone calls. Post-tests will be conducted right after the intervention period. Additionally, detraining effects will be measured 12 weeks after program cessation. The control group / waiting group will not participate in any specific intervention during the experimental period, but will receive the extensive supervised program after the experimental period. It is expected that particularly the supervised combination of balance and strength / power training will improve performance in variables of balance, strength / power, body composition, cognitive function, psychosocial well-being, and falls self-efficacy of older adults. In addition, information regarding fall risk assessment, dose-response-relations, detraining effects, and supervision of training will be provided. Further, training-induced health-relevant changes, such as improved performance in activities of daily living, cognitive function, and quality of life, as well as a reduced risk for falls may help to lower costs in the health care system. Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention.
Reynolds, Monica L; Ransdell, Lynda B; Lucas, Shelley M; Petlichkoff, Linda M; Gao, Yong
2012-01-01
Currently, little is known about strength and conditioning programs at the high school level. Therefore, the purpose of this research was to explore current practices in strength and conditioning for varsity high school athletes in selected sports. The following were specifically examined: who administers programs for these athletes, what kinds of training activities are done, and whether the responsible party or emphasis changes depending on the gender of the athletes. Coaches of varsity soccer, basketball, softball, and baseball in 3 large Idaho school districts were asked to complete an online survey. Sixty-seven percent (32/48) of the questionnaires were completed and used for the study. The majority of coaches (84%) provided strength and conditioning opportunities for their athletes, although only 37% required participation. Strength training programs were designed and implemented primarily by either physical education teachers or head coaches. Compared with coaches of male athletes, coaches of female athletes were less likely to know the credentials of their strength coaches, and they were less likely to use certified coaches to plan and implement their strength and conditioning programs. Most programs included dynamic warm-ups and cool-downs, plyometrics, agility training, speed training, and conditioning, and most programs were conducted 3 d·wk(-1) (76%) for sessions lasting between 30 and 59 minutes (63%). Compared with their female counterparts, male athletes were more likely to have required training, participate in strength training year round, and train using more sessions per week. This study provides additional information related to the practice of strength and conditioning in a sample of high school athletic teams.
Ergas, R P; Hondrum, S O; Mathieu, G P; Koonce, J D
1995-01-01
The adhesive monomer, Clearfil New Bond, was used to enhance the bond strength between orthodontic brackets and primary molars, premolars, and NiCr crowns. Twenty specimens of each had this dental adhesive applied according to the manufacturer's instructions in addition to a chemically cured composite material. The remaining specimens (20 each) were bonded without the adhesive monomer. Shear bond strengths were determined using a universal testing machine. Fracture sites were examined to determine the type of bond failure. All bond strengths were significantly increased with the addition of Clearfil New Bond (P < or = 0.0001). The shear bond strength to NiCr crowns with the addition of the adhesive monomer was 7.76 kg. This is comparable to the shear bond strength observed for primary molars (8.66 kg) and premolars (8.65 kg) without adhesive monomer. The observed decrease in adhesive bond failures with the addition of Clearfil New Bond indicated a stronger shear bond strength between the tooth surface and the bracket base. Clearfil New Bond can significantly increase the shear bond strength of orthodontic brackets to both primary molars and premolars. Additionally, it was shown that orthodontic brackets can be successfully bonded to Ni-Cr crowns at strengths comparable to primary or permanent enamel.
NASA Technical Reports Server (NTRS)
Lutz, B. L.; Owen, T.; Cess, R. D.
1982-01-01
Lutz et al. (1976) have reported the first quantitative analyses of the strengths of the blue-green bands of methane which dominate the visible spectra of the outer planets. The present investigation represents an extension of the first study to include a number of bands between 6000 and 7500 A. The objective of this extension is to establish the validity of the scaled numerical curve of growth of the first study further into the saturated region and to test the apparent pressure independence of the high-overtone bands over a large pressure range. In addition, it is desired to provide a set of homogeneously determined band strengths and curves of growth over a large spectral region and over a large range of band strengths. This will make it possible to investigate feasible apparent dependences of planetary methane abundances on wavelength and band strength as a probe of the scattering processes in the planetary atmospheres.
NASA Technical Reports Server (NTRS)
Bast, Callie C.; Boyce, Lola
1995-01-01
The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.
NASA Technical Reports Server (NTRS)
Choi, S. R.; Salem, J. A.
1992-01-01
The flexural strength and fracture toughness of 30 vol pct SiC whisker-reinforced Si3N4 material were determined as a function of temperature from 25 to 1400 C in an air environment. It was found that both strength and toughness of the composite material were almost the same as those of the monolithic counterpart. The room-temperature strength was retained up to 1100 C; however, appreciable strength degradation started at 1200 C and reached a maximum at 1400 C due to stable crack growth. In contrast, the fracture toughness of the two materials was independent of temperature with an average value of 5.66 MPa sq rt m. It was also observed that the composite material exhibited no rising R-curve behavior at room temperature, as was the case for the monolithic material. These results indicate that SiC whisker addition to the Si3N4 matrix did not provide any favorable effects on strength, toughness and R-curve behavior.
Microstructure and rheology of thermoreversible nanoparticle gels.
Ramakrishnan, S; Zukoski, C F
2006-08-29
Naïve mode coupling theory is applied to particles interacting with short-range Yukawa attractions. Model results for the location of the gel line and the modulus of the resulting gels are reduced to algebraic equations capturing the effects of the range and strength of attraction. This model is then applied to thermo reversible gels composed of octadecyl silica particles suspended in decalin. The application of the model to the experimental system requires linking the experimental variable controlling strength of attraction, temperature, to the model strength of attraction. With this link, the model predicts temperature and volume fraction dependencies of gelation and modulus with five parameters: particle size, particle volume fraction, overlap volume of surface hairs, and theta temperature. In comparing model predictions with experimental results, we first observe that in these thermal gels there is no evidence of clustering as has been reported in depletion gels. One consequence of this observation is that there are no additional adjustable parameters required to make quantitative comparisons between experimental results and model predictions. Our results indicate that the naïve mode coupling approach taken here in conjunction with a model linking temperature to strength of attraction provides a robust approach for making quantitative predictions of gel mechanical properties. Extension of model predictions to additional experimental systems requires linking experimental variables to the Yukawa strength and range of attraction.
The Perceived Psychological Responsibilities Of A Strength And Conditioning Coach.
Radcliffe, Jon N; Comfort, Paul; Fawcett, Tom
2016-09-22
Research is limited in exploring the specific psychology oriented responsibilities of the strength and conditioning professional. The present research explored the psychological responsibilities adopted by accredited strength and conditioning coaches. Participants comprised 10 participants working within the UK, 3 within the USA and 5 within Australia offering a cross section of experience from raging sport disciplines and educational backgrounds. Participants were interviewed either in person or via Skype. Thematic clustering was employed utilizing interpretative phonological analysis to identify common themes. Over half (61%) of the respondents reported that their position as a strength and conditioning coach required additional psychology orientated responsibilities. These comprised a counselling role in the absence of psychologist the use of 'softer skills' in a mentoring role of the athlete during a challenging situation. The coach could play an influential role in shaping the mentality of the team. The coach identifies how the role results in working to relay information for the athlete to other support staff and similarly from the support staff through the athlete. The coach identifies how the role results in working to relay information for the athlete to other support staff and similarly from the support staff to the athlete. In addition to identifying the resonant psychological orientated responsibilities discussion is made with specific focus on the ethical boundary to which strength and conditioning coaches must reside regarding the competencies to provide psychological support.
NASA Astrophysics Data System (ADS)
Dassekpo, Jean-Baptiste Mawulé; Zha, Xiaoxiong; Zhan, Jiapeng; Ning, Jiaqian
Geopolymer is an energy efficient and sustainable material that is currently used in construction industry as an alternative for Portland cement. As a new material, specific mix design method is essential and efforts have been made to develop a mix design procedure with the main focus on achieving better compressive strength and economy. In this paper, a sequential addition of synthesis parameters such as fly ash-sand, alkaline liquids, plasticizer and additional water at well-defined time intervals was investigated. A total of 4 mix procedures were used to study the compressive performance on fly ash-based geopolymer mortar and the results of each method were analyzed and discussed. Experimental results show that the sequential addition of sodium hydroxide (NaOH), sodium silicate (Na2SiO3), plasticizer (PL), followed by adding water (WA) increases considerably the compressive strengths of the geopolymer-based mortar. These results clearly demonstrate the high significant influence of sequential addition of synthesis parameters on geopolymer materials compressive properties, and also provide a new mixing method for the preparation of geopolymer paste, mortar and concrete.
Strength and viscosity effects on perturbed shock front stability in metals
Opie, Saul; Loomis, Eric Nicholas; Peralta, Pedro; ...
2017-05-09
Here, computational modeling and experimental measurements on metal samples subject to a laser-driven, ablative Richtmyer-Meshkov instability showed differences between viscosity and strength effects. In particular, numerical and analytical solutions, coupled with measurements of fed-through perturbations, generated by perturbed shock fronts onto initially flat surfaces, show promise as a validation method for models of deviatoric response in the post shocked material. Analysis shows that measurements of shock perturbation amplitudes at low sample thickness-to-wavelength ratios are not enough to differentiate between strength and viscosity effects, but that surface displacement data of the fed-through fed-thru perturbations appears to resolve the ambiguity. Additionally, analyticalmore » and numerical results show shock front perturbation evolution dependence on initial perturbation amplitude and wavelength is significantly different in viscous and materials with strength, suggesting simple experimental geometry changes should provide data supporting one model or the other.« less
Tofthagen, Cindy; Visovsky, Constance; Berry, Donna L
2012-09-01
To evaluate the evidence for strength- and balance-training programs in patients at high risk for falls, discuss how results of existing studies might guide clinical practice, and discuss directions for additional research. A search of PubMed and CINAHL® databases was conducted in June 2011 using the terms strength, balance training, falls, elderly, and neuropathy. Only clinical trials conducted using specific strength- or balance-training exercises that included community-dwelling adults and examined falls, fall risk, balance, and/or strength as outcome measures were included in this review. One matched case-control study and two randomized, controlled studies evaluating strength and balance training in patients with diabetes-related peripheral neuropathy were identified. Eleven studies evaluating strength and balance programs in community-dwelling adults at high risk for falls were identified. The findings from the reviewed studies provide substantial evidence to support the use of strength and balance training for older adults at risk for falls, and detail early evidence to support strength and balance training for individuals with peripheral neuropathy. The evidence demonstrates that strength and balance training is safe and effective at reducing falls and improving lower extremity strength and balance in adults aged 50 years and older at high risk for falls, including patients with diabetic peripheral neuropathy. Future studies should evaluate the effects of strength and balance training in patients with cancer, particularly individuals with chemotherapy-induced peripheral neuropathy.
Vegetation Use for Resolving Electromagnetic Compatibility and Ecology Issues
NASA Astrophysics Data System (ADS)
Zvezdina, M. Yu; Shokova, Yu A.; Cherckesova, L. V.; Golovko, T. M.; Cherskaya, A. A.
2017-05-01
The wide spread of Information and Communication Technologies and the development of Internet-enabled mobile applications have aggravated electromagnetic compatibility and ecology problems. Inability to excite electromagnetic field of a desired structure and strength with traditional approaches actualizes additional actions, including providing diffraction on propagation path, to resolve these issues. Diffraction on a stand-alone obstacle along the propagation path and the one on set of obstacles near receive antenna location can be considered as the additional actions in ultrashort band. The accomplished studies have shown that one the most effective means to lower electromagnetic field strength is to shield the receive antenna with vegetation from jamming radio equipment. Moreover, vegetation resolves electromagnetic ecology issues, for the energy flux density can be lowered by about two orders of magnitude.
Experimental research on the mechanical properties of graphene geopolymer
NASA Astrophysics Data System (ADS)
Zhang, Guoxue; Lu, Juan
2018-06-01
This research study used metakaolin as a raw material, a mixed solution of sodium hydroxide and sodium silicate as an alkali excitant, and a graphene dispersant as an additive to manufacture a graphene geopolymer sample. The compressive strength and bending strength of the sample were tested. The results showed that the geopolymer hydration products were observed to be more compact, and the internal porosity was reduced after the addition of the graphene. The geopolymer strengths had been obviously increased, and the compressive strength and bending strength reached 46.9MPa and 6.7MPa, respectively. However, the graphene's role in improving the strength of the original geopolymer became gradually weakened when the addition amounts of the graphene were increased to a certain extent. Furthermore, the role of the graphene in improving the compressive strength of the geopolymer was determined to gradually decrease with the increase in the content of sodium hydroxide in the alkali excitant.
Strength training for children and adolescents.
Faigenbaum, A D
2000-10-01
The potential benefits of youth strength training extend beyond an increase in muscular strength and may include favorable changes in selected health- and fitness-related measures. If appropriate training guidelines are followed, regular participation in a youth strength-training program has the potential to increase bone mineral density, improve motor performance skills, enhance sports performance, and better prepare our young athletes for the demands of practice and competition. Despite earlier concerns regarding the safety and efficacy of youth strength training, current public health objectives now aim to increase the number of boys and girls age 6 and older who regularly participate in physical activities that enhance and maintain muscular fitness. Parents, teachers, coaches, and healthcare providers should realize that youth strength training is a specialized method of conditioning that can offer enormous benefit but at the same time can result in serious injury if established guidelines are not followed. With qualified instruction, competent supervision, and an appropriate progression of the volume and intensity of training, children and adolescents cannot only learn advanced strength training exercises but can feel good about their performances, and have fun. Additional clinical trails involving children and adolescents are needed to further explore the acute and chronic effects of strength training on a variety of anatomical, physiological, and psychological parameters.
NASA Astrophysics Data System (ADS)
To-Anh Phan, Vu; Ngoc-Anh Pham, Kha
2018-04-01
This paper presents the experimental results of using two additives to improve natural soft soil properties in southern Vietnam (i.g., cement and cement-lime mixture). The specimens were prepared by compacting method. Firstly, the natural soil was mixed with cement or cement-lime to determine the optimum water contents of various additive contents. Then, optimum water content was used to produce samples to test some engineering properties such as unconfined compressive strength, splitting tensile strength, and Young’s modulus. The specimens were tested by various curing duration of 7, 14, and 28 days. Results indicated that using cement additive is suitable for improvement of soft soil in the local area and cement-soil stabilization can be replaced as the subbase layer of the flexible pavement according to current Vietnamese standard. In addition, a higher cement content has a greater compressive strength as well as tensile strength. Besides, the Young’ modulus has significantly increased with a long-term curing age and more cement content. No evidences of increasing in strength and modulus are found with the cement-lime-soil stabilization. Finally, the best-fit power function is established by the relationships between unconfined compressive strength and splitting tensile strength as well unconfined compressive strength and Young’s Modulus, with the coefficient of determination, R2>0.999.
Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height.
Fischer, Felix; Blank, Cornelia; Dünnwald, Tobias; Gföller, Peter; Herbst, Elmar; Hoser, Christian; Fink, Christian
2017-11-01
Isokinetic strength testing is an important tool in the evaluation of the physical capacities of athletes as well as for decision making regarding return to sports after anterior cruciate ligament (ACL) reconstruction in both athletes and the lay population. However, isokinetic testing is time consuming and requires special testing equipment. A single-jump test, regardless of leg dominance, may provide information regarding knee extension strength through the use of correlation analysis of jump height and peak torque of isokinetic muscle strength. Cross-sectional study; Level of evidence, 3. A total of 169 patients who underwent ACL reconstruction were included in this study. Isokinetic testing was performed on the injured and noninjured legs. Additionally, a single-leg countermovement jump was performed to assess jump height using a jump accelerometer sensor. Extension strength values were used to assess the association between isokinetic muscle strength and jump height. The sample consisted of 60 female (mean age, 20.8 ± 8.3 years; mean weight, 61.7 ± 6.5 kg; mean height, 167.7 ± 5.3 cm) and 109 male (mean age, 23.2 ± 7.7 years; mean weight, 74.6 ± 10.2 kg; mean height, 179.9 ± 6.9 cm) patients. Bivariate correlation analysis showed an association ( r = 0.56, P < .001) between jump height and isokinetic extension strength on the noninvolved side as well as an association ( r = 0.52, P < .001) for the involved side. Regression analysis showed that in addition to jump height (beta = 0.49, P < .001), sex (beta = -0.17, P = .008) and body mass index (beta = 0.37, P < .001) affected isokinetic strength. The final model explained 51.1% of the variance in isokinetic muscle strength, with jump height having the strongest impact (beta = 0.49, P < .001) and explaining 31.5% of the variance. Initial analysis showed a strong association between isokinetic strength and jump height. The study population encompassed various backgrounds, skill levels, and activity profiles, which might have affected the outcome. Even after controlling for age and sex, isokinetic strength was still moderately associated with jump height. Therefore, the jump technique and type of sport should be considered in future research.
48 CFR 837.7003 - Funeral authorization.
Code of Federal Regulations, 2013 CFR
2013-10-01
... be of sufficient strength to support the weight of an adult human body. Cardboard or press paper or... provided. The services must consist of the following: (1) Preparation of the body, embalming. (2) Clothing...) accompanies the casket to the place of burial. (c) An additional allowance for transportation of the body to...
48 CFR 837.7003 - Funeral authorization.
Code of Federal Regulations, 2012 CFR
2012-10-01
... be of sufficient strength to support the weight of an adult human body. Cardboard or press paper or... provided. The services must consist of the following: (1) Preparation of the body, embalming. (2) Clothing...) accompanies the casket to the place of burial. (c) An additional allowance for transportation of the body to...
48 CFR 837.7003 - Funeral authorization.
Code of Federal Regulations, 2014 CFR
2014-10-01
... be of sufficient strength to support the weight of an adult human body. Cardboard or press paper or... provided. The services must consist of the following: (1) Preparation of the body, embalming. (2) Clothing...) accompanies the casket to the place of burial. (c) An additional allowance for transportation of the body to...
48 CFR 837.7003 - Funeral authorization.
Code of Federal Regulations, 2011 CFR
2011-10-01
... be of sufficient strength to support the weight of an adult human body. Cardboard or press paper or... provided. The services must consist of the following: (1) Preparation of the body, embalming. (2) Clothing...) accompanies the casket to the place of burial. (c) An additional allowance for transportation of the body to...
48 CFR 837.7003 - Funeral authorization.
Code of Federal Regulations, 2010 CFR
2010-10-01
... be of sufficient strength to support the weight of an adult human body. Cardboard or press paper or... provided. The services must consist of the following: (1) Preparation of the body, embalming. (2) Clothing...) accompanies the casket to the place of burial. (c) An additional allowance for transportation of the body to...
NASA Astrophysics Data System (ADS)
Wardhono, Arie; Law, David W.; Sutikno, Dani, Hasan
2017-09-01
This paper presents the effect of slag addition on strength development and workability of fly ash/slag based geopolymer (FASLG) concrete cured at normal temperature. Class C fly ash with high ferrite (Fe) content was used as the primary material. The proportions of fly ash (FA) to slag (SL) are: 1 FA : 0 SL, 0.9 FA : 0.1 SL, 0.7 FA : 0.3 SL, and 0.5 FA : 0.5 SL. The workability and strength properties were determined by slump, vikat, and compressive strength tests. The result shows that the highest compressive strength was achieved by FASLG-3 concrete with 30% slag addition and exhibited a comparable strength to that normal concrete at 28 days. The 30% slag addition also improve the workability and increase the setting time of FASLG concrete specimens. It can be concluded that the slag inclusion on fly ash will improve the performance of geopolymer concrete at normal temperature.
Peat Soil Stabilization using Lime and Cement
NASA Astrophysics Data System (ADS)
Zambri, Nadhirah Mohd; Ghazaly, Zuhayr Md.
2018-03-01
This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.
Category-length and category-strength effects using images of scenes.
Baumann, Oliver; Vromen, Joyce M G; Boddy, Adam C; Crawshaw, Eloise; Humphreys, Michael S
2018-06-21
Global matching models have provided an important theoretical framework for recognition memory. Key predictions of this class of models are that (1) increasing the number of occurrences in a study list of some items affects the performance on other items (list-strength effect) and that (2) adding new items results in a deterioration of performance on the other items (list-length effect). Experimental confirmation of these predictions has been difficult, and the results have been inconsistent. A review of the existing literature, however, suggests that robust length and strength effects do occur when sufficiently similar hard-to-label items are used. In an effort to investigate this further, we had participants study lists containing one or more members of visual scene categories (bathrooms, beaches, etc.). Experiments 1 and 2 replicated and extended previous findings showing that the study of additional category members decreased accuracy, providing confirmation of the category-length effect. Experiment 3 showed that repeating some category members decreased the accuracy of nonrepeated members, providing evidence for a category-strength effect. Experiment 4 eliminated a potential challenge to these results. Taken together, these findings provide robust support for global matching models of recognition memory. The overall list lengths, the category sizes, and the number of repetitions used demonstrated that scene categories are well-suited to testing the fundamental assumptions of global matching models. These include (A) interference from memories for similar items and contexts, (B) nondestructive interference, and (C) that conjunctive information is made available through a matching operation.
2013-01-01
Background With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested. Methods/Design Healthy old people (n = 54) between the age of 65 to 80 years will participate in this trial. The testing protocol comprises tests for the assessment of static / dynamic steady-state balance (i.e., Sharpened Romberg Test, instrumented gait analysis), proactive balance (i.e., Functional Reach Test; Timed Up and Go Test), reactive balance (i.e., perturbation test during bipedal stance; Push and Release Test), strength (i.e., hand grip strength test; Chair Stand Test), and power (i.e., Stair Climb Power Test; countermovement jump). Further, body composition will be analysed using a bioelectrical impedance analysis system. In addition, questionnaires for the assessment of psychosocial (i.e., World Health Organisation Quality of Life Assessment-Bref), cognitive (i.e., Mini Mental State Examination), and fall risk determinants (i.e., Fall Efficacy Scale – International) will be included in the study protocol. Participants will be randomized into two intervention groups or the control / waiting group. After baseline measures, participants in the intervention groups will conduct a 12-week balance and strength / power exercise intervention 3 times per week, with each training session lasting 30 min. (actual training time). One intervention group will complete an extensive supervised training program, while the other intervention group will complete a short version ('3 times 3’) that is home-based and controlled by weekly phone calls. Post-tests will be conducted right after the intervention period. Additionally, detraining effects will be measured 12 weeks after program cessation. The control group / waiting group will not participate in any specific intervention during the experimental period, but will receive the extensive supervised program after the experimental period. Discussion It is expected that particularly the supervised combination of balance and strength / power training will improve performance in variables of balance, strength / power, body composition, cognitive function, psychosocial well-being, and falls self-efficacy of older adults. In addition, information regarding fall risk assessment, dose–response-relations, detraining effects, and supervision of training will be provided. Further, training-induced health-relevant changes, such as improved performance in activities of daily living, cognitive function, and quality of life, as well as a reduced risk for falls may help to lower costs in the health care system. Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention. Trial registration ClinicalTrials.gov Identifier: NCT01906034 PMID:24106864
The Mechanisms of Dispersion Strengthening and Fracture in Al-based XD (TM) Alloys
NASA Technical Reports Server (NTRS)
Aiken, R. M., Jr.
1990-01-01
The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength, and the fracture toughness of metal matrix composites of both pure aluminum and Al(4 percent)Cu(1.5 percent)Mg with 0 to 15 vol percent TiB2 were examined. Higher TiB2 volume fractions increased the tensile yield strength both at room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. The fracture toughness of the Al(4 percent)Cu(1.5 percent)Mg alloys decreased rapidly with TiB2 additions of 0 to 5 vol percent and more slowly with TiB2 additions of 5 to 15 vol percent. Fracture toughness appears to be independent of TiB2 particle size. The isothermal-aging response of the precipitation strengthened Al(4 percent)Cu(1.5 percent)Mg alloys was not altered by the presence of TiB2.
Weld formation during material extrusion additive manufacturing.
Seppala, Jonathan E; Hoon Han, Seung; Hillgartner, Kaitlyn E; Davis, Chelsea S; Migler, Kalman B
2017-10-04
Material extrusion (ME) is a layer-by-layer additive manufacturing process that is now used in personal and commercial production where prototyping and customization are required. However, parts produced from ME frequently exhibit poor mechanical performance relative to those from traditional means; moreover, fundamental knowledge of the factors leading to development of inter-layer strength in this highly non-isothermal process is limited. In this work, we seek to understand the development of inter-layer weld strength from the perspective of polymer interdiffusion under conditions of rapidly changing mobility. Our framework centers around three interrelated components: in situ thermal measurements (via infrared imaging), temperature dependent molecular processes (via rheology), and mechanical testing (via mode III fracture). We develop the concept of an equivalent isothermal weld time and test its relationship to fracture energy. For the printing conditions studied the equivalent isothermal weld time for T ref = 230 °C ranged from 0.1 ms to 100 ms. The results of these analysis provide a basis for optimizing inter-layer strength, the limitations of the ME process, and guide development of new materials.
Influence of synthetic calcium silicates on the strength properties of fine-grained concrete
NASA Astrophysics Data System (ADS)
Yarusova, S. B.; Gordienko, P. S.; Kozin, A. V.; Zhevtun, I. G.; Perfilev, A. V.
2018-04-01
The effect of additives based on acicular calcium hydrosilicates (xonotlite and tobermorite) and wollastonite, obtained from boric acid production waste in autoclave synthesis at a temperature of 220 °C, on the strength of fine-grained concrete, has been studied in this paper. It was shown that when the calcium hydrosilicates and wollastonite are introduced, an increase in the strength characteristics of concrete is observed. After heat and moisture treatment, the maximum increase in strength is observed with the addition of 4% of mass content of calcium hydrosilicates and 6% of mass content of wollastonite. After 28 days of hardening under normal conditions, the maximum increase in strength of concrete is observed with the addition of 4% of mass content of both types of additives. It was shown that the water absorption of concrete decreases with a maximum when 4% of mass content is added, as in the case of the introduction of calcium hydrosilicates, and wollastonite. With a further increase in the number of additives, the amount of water absorption increases, but these values remain below the values for the control sample without additives.
The effect of instability training on knee joint proprioception and core strength.
Cuğ, Mutlu; Ak, Emre; Ozdemir, Recep Ali; Korkusuz, Feza; Behm, David G
2012-01-01
Although there are many studies demonstrating increased trunk activation under unstable conditions, it is not known whether this increased activation would translate into meaningful trunk strength with a prolonged training program. Additionally, while balance-training programs have been shown to improve stability, their effect on specific joint proprioception is not clear. Thus the objective of this study was to examine training adaptations associated with a 10-week instability-training program. Participants were tested pre- and post-training for trunk extension and flexion strength and knee proprioception. Forty-three participants participated in either a 10-week (3 days per week) instability-training program using Swiss balls and body weight as resistance or a control group (n = 17). The trained group increased (p < 0. 05) trunk extension peak torque/body weight (23.6%) and total work output (20.1%) from pre- to post-training while the control group decreased by 6.8% and 6.7% respectively. The exercise group increased their trunk flexion peak torque/body weight ratios by 18.1% while the control group decreased by 0.4%. Knee proprioception (combined right and left joint repositioning) improved 44.7% from pre- to post-training (p = 0.0006) and persisted (21.5%) for 9 months post-training. In addition there was a side interaction with the position sense of the right knee at 9 months showing 32.1% (p = 0.03) less deviation from the reference angle than the right knee during pre-testing. An instability-training program using Swiss balls with body weight as resistance can provide prolonged improvements in joint proprioception and core strength in previously untrained individuals performing this novel training stress which would contribute to general health. Key pointsAlthough traditional free weight resistance exercises have been recommended as most beneficial for improving strength and power in athletes (Behm et al., 2010b), an IT program using Swiss balls and body weight as a resistance may provide an alternative starting point for the sedentary untrained population.As it is well documented that force or strength is decreased when unbalanced (Behm et al., 2010b) and balance-training programs improve balance (Behm and Kean 2006), this type of instability RT program can provide significant adaptations to improve trunk strength especially with the untrained.This type of training should also be incorporated into a new program as the improvements in joint proprioception may help protect from joint injuries over a protracted period.The finding that improved joint proprioception persists for months after training should be emphasized to those individuals whose training is regularly or inconsistently interrupted.
Living better with dementia: strengths-based social work practice and dementia care.
McGovern, Justine
2015-01-01
This article first argues that quality of life is possible despite the onset of dementia in late life. It also demonstrates how core concepts of social work practice, such as family systems theory, the strengths perspective, and use of self, can be applied to practice with dementia-affected persons. In addition, it provides practical suggestions for supporting care partners in nurturing "we-ness", focusing on what remains rather than was is lost, and remaining authentic. When strengths-based social work practice is integrated into dementia care protocols, wellbeing can increase. As a result, the more than 40 million persons worldwide who are affected by dementia do not have to resign themselves to the despair, devastation and inevitable demise of quality of life that dominate perception of the illness.
Fritz, Nora E; Keller, Jennifer; Calabresi, Peter A; Zackowski, Kathleen M
2017-01-01
At least 85% of individuals with multiple sclerosis report walking dysfunction as their primary complaint. Walking and strength measures are common clinical measures to mark increasing disability or improvement with rehabilitation. Previous studies have shown an association between strength or walking ability and spinal cord MRI measures, and strength measures with brainstem corticospinal tract magnetization transfer ratio. However, the relationship between walking performance and brain corticospinal tract magnetization transfer imaging measures and the contribution of clinical measurements of walking and strength to the underlying integrity of the corticospinal tract has not been explored in multiple sclerosis. The objectives of this study were explore the relationship of quantitative measures of walking and strength to whole-brain corticospinal tract-specific MRI measures and to determine the contribution of quantitative measures of function in addition to basic clinical measures (age, gender, symptom duration and Expanded Disability Status Scale) to structural imaging measures of the corticospinal tract. We hypothesized that quantitative walking and strength measures would be related to brain corticospinal tract-specific measures, and would provide insight into the heterogeneity of brain pathology. Twenty-nine individuals with relapsing-remitting multiple sclerosis (mean(SD) age 48.7 (11.5) years; symptom duration 11.9(8.7); 17 females; median[range] Expanded Disability Status Scale 4.0 [1.0-6.5]) and 29 age and gender-matched healthy controls (age 50.8(11.6) years; 20 females) participated in clinical tests of strength and walking (Timed Up and Go, Timed 25 Foot Walk, Two Minute Walk Test ) as well as 3 T imaging including diffusion tensor imaging and magnetization transfer imaging. Individuals with multiple sclerosis were weaker (p = 0.0024) and walked slower (p = 0.0013) compared to controls. Quantitative measures of walking and strength were significantly related to corticospinal tract fractional anisotropy (r > 0.26; p < 0.04) and magnetization transfer ratio (r > 0.29; p < 0.03) measures. Although the Expanded Disability Status Scale was highly correlated with walking measures, it was not significantly related to either corticospinal tract fractional anisotropy or magnetization transfer ratio (p > 0.05). Walk velocity was a significant contributor to magnetization transfer ratio (p = 0.006) and fractional anisotropy (p = 0.011) in regression modeling that included both quantitative measures of function and basic clinical information. Quantitative measures of strength and walking are associated with brain corticospinal tract pathology. The addition of these quantitative measures to basic clinical information explains more of the variance in corticospinal tract fractional anisotropy and magnetization transfer ratio than the basic clinical information alone. Outcome measurement for multiple sclerosis clinical trials has been notoriously challenging; the use of quantitative measures of strength and walking along with tract-specific imaging methods may improve our ability to monitor disease change over time, with intervention, and provide needed guidelines for developing more effective targeted rehabilitation strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. A. Smith; D. L. Cottle; B. H. Rabin
2013-09-01
This report summarizes work conducted to-date on the implementation of new laser-based capabilities for characterization of bond strength in nuclear fuel plates, and presents preliminary results obtained from fresh fuel studies on as-fabricated monolithic fuel consisting of uranium-10 wt.% molybdenum alloys clad in 6061 aluminum by hot isostatic pressing. Characterization involves application of two complementary experimental methods, laser-shock testing and laser-ultrasonic imaging, collectively referred to as the Laser Shockwave Technique (LST), that allows the integrity, physical properties and interfacial bond strength in fuel plates to be evaluated. Example characterization results are provided, including measurement of layer thicknesses, elastic properties ofmore » the constituents, and the location and nature of generated debonds (including kissing bonds). LST provides spatially localized, non-contacting measurements with minimum specimen preparation, and is ideally suited for applications involving radioactive materials, including irradiated materials. The theoretical principles and experimental approaches employed in characterizing nuclear fuel plates are described, and preliminary bond strength measurement results are discussed, with emphasis on demonstrating the capabilities and limitations of these methods. These preliminary results demonstrate the ability to distinguish bond strength variations between different fuel plates. Although additional development work is necessary to validate and qualify the test methods, these results suggest LST is viable as a method to meet fuel qualification requirements to demonstrate acceptable bonding integrity.« less
NASA Astrophysics Data System (ADS)
Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad
2017-01-01
This paper sheds further light on the fundamental relationships between simple methods, rock strength, and brittleness of igneous rocks. In particular, the relationship between mechanical (point load strength index I s(50) and brittleness value S 20), basic physical (dry density and porosity), and dynamic properties (P-wave velocity and Schmidt rebound values) for a wide range of Iranian igneous rocks is investigated. First, 30 statistical models (including simple and multiple linear regression analyses) were built to identify the relationships between mechanical properties and simple methods. The results imply that rocks with different Schmidt hardness (SH) rebound values have different physicomechanical properties or relations. Second, using these results, it was proved that dry density, P-wave velocity, and SH rebound value provide a fine complement to mechanical properties classification of rock materials. Further, a detailed investigation was conducted on the relationships between mechanical and simple tests, which are established with limited ranges of P-wave velocity and dry density. The results show that strength values decrease with the SH rebound value. In addition, there is a systematic trend between dry density, P-wave velocity, rebound hardness, and brittleness value of the studied rocks, and rocks with medium hardness have a higher brittleness value. Finally, a strength classification chart and a brittleness classification table are presented, providing reliable and low-cost methods for the classification of igneous rocks.
Hajizadeh, Hila; Nasseh, Atefeh; Rahmanpour, Naim
2015-01-01
Background Silorane-based composites and their specific self-etch adhesive were introduced to conquest the polymerization shrinkage of methacrylate-based composites. It has been shown that additional etching of enamel and dentin can improve the bond strength of self-etch methacrylate-based adhesives but this claim is not apparent about silorane-based adhesives. Our objective was to compare the shear bond strength (SBS) of enamel and dentin between silorane-based adhesive resin and a methacrylate-based resin with or without additional etching. Material and Methods 40 sound human premolars were prepared and divided into two groups: 1- Filtek P60 composite and Clearfil SE Bond adhesive; 2- Filtek P90 composite and Silorane adhesive. Each group divided into two subgroups: with or without additional etching. For additional etching, 37% acid phosphoric was applied before bonding procedure. A cylinder of the composite was bonded to the surface. After 24 hours storage and 500 thermo cycling between 5-55°C, shear bond strength was assessed with the cross head speed of 0.5 mm/min. Then, bonded surfaces were observed under stereomicroscope to determine the failure mode. Data were analyzed with two-way ANOVA and Fischer exact test. Results Shear bond strength of Filtek P60 composite was significantly higher than Filtek P90 composite both in enamel and dentin surfaces (P<0.05). However, additional etching had no significant effect on shear bond strength in enamel or dentin for each of the composites (P>0.05). There was no interaction between composite type and additional etching (P>0.05). Failure pattern was mainly adhesive and no significant correlation was found between failure and composite type or additional etching (P>0.05). Conclusions Shear bond strength of methacrylate-based composite was significantly higher than silorane-based composite both in enamel and dentin surfaces and additional etching had no significant effect on shear bond strength in enamel or dentin for each of the composites. The mode of failure had no meaningful relation to the type of composite and etching factor. Key words:Shear bond strength, adhesive, composite resin, silorane, methacrylate. PMID:26644830
Permanent-magnet multipole with adjustable strength
Halbach, K.
1982-09-20
Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling there between. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.
Permanent magnet multipole with adjustable strength
Halbach, Klaus
1985-01-01
Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling therebetween. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.
NASA Astrophysics Data System (ADS)
Wise, J. L.; Adams, D. P.; Nishida, E. E.; Song, B.; Maguire, M. C.; Carroll, J.; Reedlunn, B.; Bishop, J. E.; Palmer, T. A.
2017-01-01
Gas-gun experiments have probed the compression and release behavior of impact-loaded 304L stainless steel specimens that were machined from additively manufactured (AM) blocks as well as baseline ingot-derived bar stock. The AM technology permits direct fabrication of net- or near-net-shape metal parts. For the present investigation, velocity interferometer (VISAR) diagnostics provided time-resolved measurements of sample response for one-dimensional (i.e., uniaxial strain) shock compression to peak stresses ranging from 0.2 to 7.0 GPa. The acquired wave-profile data have been analyzed to determine the comparative Hugoniot Elastic Limit (HEL), Hugoniot equation of state, spall strength, and high-pressure yield strength of the AM and conventional materials. The possible contributions of various factors, such as composition, porosity, microstructure (e.g., grain size and morphology), residual stress, and/or sample axis orientation relative to the additive manufacturing deposition trajectory, are considered to explain differences between the AM and baseline 304L dynamic material results.
Bell, Gordon J; Game, Alex; Jones, Richard; Webster, Travis; Forbes, Scott C; Syrotuik, Dan
2013-01-01
The purpose of this study was to examine respiratory muscle training (RMT) combined with 9 weeks of resistance and endurance training on rowing performance and cardiopulmonary responses. Twenty-seven rowers (mean ± SD: age = 27 ± 9 years; height = 176.9 ± 10.8 cm; and body mass = 76.1 ± 12.6 kg) were randomly assigned to an inspiratory only (n = 13) or expiratory only (n = 14) training group. Both RMT programs were 3 sets of 10 reps, 6 d/wk in addition to an identical 3 d/wk resistance and 3 d/wk endurance training program. Both groups showed similar improvements in 2000 m rowing performance, cardiorespiratory fitness, strength, and maximum inspiratory (PImax) and expiratory (PEmax) pressures (p < .05). It was concluded that there were no additional benefits of 9 weeks of inspiratory or expiratory RMT on simulated 2000 m rowing performance or cardiopulmonary responses when combined with resistance and endurance training in rowers.
Elevated temperature mechanical behavior of monolithic and SiC whisker-reinforced silicon nitrides
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Choi, Sung R.; Sanders, William A.; Fox, Dennis S.
1991-01-01
The mechanical behavior of a 30 volume percent SiC whisker reinforced silicon nitride and a similar monolithic silicon nitride were measured at several temperatures. Measurements included strength, fracture toughness, crack growth resistance, dynamic fatigue susceptibility, post oxidation strength, and creep rate. Strength controlling defects were determined with fractographic analysis. The addition of SiC whiskers to silicon nitride did not substantially improve the strength, fracture toughness, or crack growth resistance. However, the fatigue resistance, post oxidation strength, and creep resistance were diminished by the whisker addition.
Addition of Silica Fume to Improve Strength of Cement Paste
NASA Astrophysics Data System (ADS)
Chen, Jiajian; Chen, Hongniao; Li, Gu
2018-03-01
This study measured the packing densities of 0 to 30% silica fume (SF) added cementitious materials and strength of the cementitious pastes with various water content. The results revealed that addition of silica fume up to a certain level has great effects on packing density and strength. In-depth analysis illustrated that a lower W/CM ratio would not always result in a higher cube strength, and the range between 0.05 and 0.07 µm would be the amount of water film thickness (WFT) for muximum strength.
Development and Evaluation of Stitched Sandwich Panels
NASA Technical Reports Server (NTRS)
Stanley, Larry E.; Adams, Daniel O.; Reeder, James R. (Technical Monitor)
2001-01-01
This study explored the feasibility and potential benefits provided by the addition of through-the-thickness reinforcement to sandwich structures. Through-the-thickness stitching is proposed to increase the interlaminar strength and damage tolerance of composite sandwich structures. A low-cost, out-of-autoclave processing method was developed to produce composite sandwich panels with carbon fiber face sheets, a closed-cell foam core, and through-the-thickness Kevlar stitching. The sandwich panels were stitched in a dry preform state, vacuum bagged, and infiltrated using Vacuum Assisted Resin Transfer Molding (VARTM) processing. For comparison purposes, unstitched sandwich panels were produced using the same materials and manufacturing methodology. Test panels were produced initially at the University of Utah and later at NASA Langley Research Center. Four types of mechanical tests were performed: flexural testing, flatwise tensile testing, core shear testing, and edgewise compression testing. Drop-weight impact testing followed by specimen sectioning was performed to characterize the damage resistance of stitched sandwich panels. Compression after impact (CAI) testing was performed to evaluate the damage tolerance of the sandwich panels. Results show significant increases in the flexural stiffness and strength, out-of-plane tensile strength, core shear strength, edgewise compression strength, and compression-after-impact strength of stitched sandwich structures.
Fracture behaviors of ceramic tissue scaffolds for load bearing applications
NASA Astrophysics Data System (ADS)
Entezari, Ali; Roohani-Esfahani, Seyed-Iman; Zhang, Zhongpu; Zreiqat, Hala; Dunstan, Colin R.; Li, Qing
2016-07-01
Healing large bone defects, especially in weight-bearing locations, remains a challenge using available synthetic ceramic scaffolds. Manufactured as a scaffold using 3D printing technology, Sr-HT-Gahnite at high porosity (66%) had demonstrated significantly improved compressive strength (53 ± 9 MPa) and toughness. Nevertheless, the main concern of ceramic scaffolds in general remains to be their inherent brittleness and low fracture strength in load bearing applications. Therefore, it is crucial to establish a robust numerical framework for predicting fracture strengths of such scaffolds. Since crack initiation and propagation plays a critical role on the fracture strength of ceramic structures, we employed extended finite element method (XFEM) to predict fracture behaviors of Sr-HT-Gahnite scaffolds. The correlation between experimental and numerical results proved the superiority of XFEM for quantifying fracture strength of scaffolds over conventional FEM. In addition to computer aided design (CAD) based modeling analyses, XFEM was conducted on micro-computed tomography (μCT) based models for fabricated scaffolds, which took into account the geometric variations induced by the fabrication process. Fracture strengths and crack paths predicted by the μCT-based XFEM analyses correlated well with relevant experimental results. The study provided an effective means for the prediction of fracture strength of porous ceramic structures, thereby facilitating design optimization of scaffolds.
Softball: Nothing Soft about It
ERIC Educational Resources Information Center
Nachtigal, Jon; Kim, Minhyun; Lee, Kyongmin; Seidler, Todd; Stocz, Mike
2016-01-01
Softball is a popular sport in the United States and continues to grow internationally. It is a team sport that enables females and males of all age groups to participate. Softball is an enjoyable and exciting sport and provides significant health benefits, such as enhancing fitness as well as upper- and lower-body strength. Additionally,…
Ahn, Joonghee; Jung, Kyoung-Hwa; Son, Sung-Ae; Hur, Bock; Kwon, Yong-Hoon
2015-01-01
Objectives This study examined the effects of additional acid etching on the dentin bond strength of one-step self-etch adhesives with different compositions and pH. The effect of ethanol wetting on etched dentin bond strength of self-etch adhesives was also evaluated. Materials and Methods Forty-two human permanent molars were classified into 21 groups according to the adhesive types (Clearfil SE Bond [SE, control]; G-aenial Bond [GB]; Xeno V [XV]; Beauti Bond [BB]; Adper Easy Bond [AE]; Single Bond Universal [SU]; All Bond Universal [AU]), and the dentin conditioning methods. Composite resins were placed on the dentin surfaces, and the teeth were sectioned. The microtensile bond strength was measured, and the failure mode of the fractured specimens was examined. The data were analyzed statistically using two-way ANOVA and Duncan's post hoc test. Results In GB, XV and SE (pH ≤ 2), the bond strength was decreased significantly when the dentin was etched (p < 0.05). In BB, AE and SU (pH 2.4 - 2.7), additional etching did not affect the bond strength (p > 0.05). In AU (pH = 3.2), additional etching increased the bond strength significantly (p < 0.05). When adhesives were applied to the acid etched dentin with ethanol-wet bonding, the bond strength was significantly higher than that of the no ethanol-wet bonding groups, and the incidence of cohesive failure was increased. Conclusions The effect of additional acid etching on the dentin bond strength was influenced by the pH of one-step self-etch adhesives. Ethanol wetting on etched dentin could create a stronger bonding performance of one-step self-etch adhesives for acid etched dentin. PMID:25671215
Ab initio LDA+U prediction of the tensile properties of chromia across multiple length scales
NASA Astrophysics Data System (ADS)
Mosey, Nicholas J.; Carter, Emily A.
2009-02-01
Periodic density functional theory (DFT) and DFT+U calculations are used to evaluate various mechanical properties associated with the fracture of chromia (Cr 2O 3) along the [0 0 0 1] and [0 1 1¯ (3/2) (a/c)2 2] directions. The properties investigated include the tensile strength, elastic constants, and surface energies. The tensile strengths are evaluated using an ideal tensile test, which provides the theoretical tensile strength, and by fitting the calculated data to universal binding energy relationships (UBER), which permit the extrapolation of the calculated results to arbitrary length scales. The results demonstrate the ability of the UBER to yield a realistic estimate of the tensile strength of a 10-μm-thick sample of Cr 2O 3 using data obtained through calculations on nanoscopic systems. We predict that Cr 2O 3 will fracture most easily in the [0 1 1¯ (3/2) (a/c)2 2] direction, with a best estimate for the tensile strength of 386 MPa for a 10 μm grain, consistent with flexural strength measurements for chromia. The grain becomes considerably stronger at the nanoscale, where we predict a tensile strength along the same direction of 32.1 GPa for 1.45 nm crystallite. The results also provide insight into the origin of the direction dependence of the mechanical properties of Cr 2O 3, with the differences in the behavior along different directions being related to the number of Cr-O bonds supporting the applied tensile load. Additionally, the results shed light on various practical aspects of modeling the mechanical properties of materials with DFT+U calculations and in using UBERs to estimate the mechanical properties of materials across disparate length scales.
NASA Astrophysics Data System (ADS)
Wang, Ruzhuan; Li, Weiguo; Ji, Baohua; Fang, Daining
2017-10-01
The particulate-reinforced ultra-high temperature ceramics (pUHTCs) have been particularly developed for fabricating the leading edge and nose cap of hypersonic vehicles. They have drawn intensive attention of scientific community for their superior fracture strength at high temperatures. However, there is no proper model for predicting the fracture strength of the ceramic composites and its dependency on temperature. In order to account for the effect of temperature on the fracture strength, we proposed a concept called energy storage capacity, by which we derived a new model for depicting the temperature dependent fracture toughness of the composites. This model gives a quantitative relationship between the fracture toughness and temperature. Based on this temperature dependent fracture toughness model and Griffith criterion, we developed a new fracture strength model for predicting the temperature dependent fracture strength of pUHTCs at different temperatures. The model takes into account the effects of temperature, flaw size and residual stress without any fitting parameters. The predictions of the fracture strength of pUHTCs in argon or air agreed well with the experimental measurements. Additionally, our model offers a mechanism of monitoring the strength of materials at different temperatures by testing the change of flaw size. This study provides a quantitative tool for design, evaluation and monitoring of the fracture properties of pUHTCs at high temperatures.
NASA Astrophysics Data System (ADS)
Aggarwal, Kanti M.; Keenan, Francis P.
2013-04-01
We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 108 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for some forbidden transitions, are also discussed. Finally, discrepancies between the present results for effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions.
Zhang, Ting; Cao, Weihua; Lv, Jun; Wang, Ning; Reilly, Kathleen Heather; Zhu, Qian; Li, Liming
2012-05-01
To characterize the level of personal support available to people living with HIV/AIDS (PLWHA) in Henan and Beijing, China, face-to-face interviews were conducted to collect information on network size, composition, and strength of ties. The number of people as sources of support for participants in Henan varied from 1 to 13 and 1 to 16 in Beijing. In Henan, family members were more likely to provide support than non-relatives and they provided support more frequently; in Beijing non-relatives were more likely to provide support than family members. Family members were closer to PLWHA than non-relatives in both sites, but the closest type of relative and non-relative supporters were different between Henan and Beijing. PLWHA in Henan and Beijing receive considerable social support, but there is still opportunity for additional social support. Efforts should be made to mobilize civil society to provide support for PLWHA in China.
Effect of Superimposed Electromyostimulation on Back Extensor Strengthening: A Pilot Study.
Park, Jae Hyeon; Seo, Kwan Sik; Lee, Shi-Uk
2016-09-01
Park, JH, Seo, KS, and Lee, S-U. Effect of superimposed electromyostimulation on back extensor strengthening: a pilot study. J Strength Cond Res 30(9): 2470-2475, 2016-Electromyostimulation (EMS) superimposed on voluntary contraction (VC) can increase muscle strength. However, no study has examined the effect of superimposing EMS on back extensor strengthening. The purpose of this study was to determine the effect of superimposed EMS on back extensor strengthening in healthy adults. Twenty healthy men, 20-29 years of age, without low-back pain were recruited. In the EMS group, electrodes were attached to bilateral L2 and L4 paraspinal muscles. Stimulation intensity was set for maximally tolerable intensity. With VC, EMS was superimposed for 10 seconds followed by a 20-second rest period. The same protocol was used in the sham stimulation (SS) group, except that the stimulation intensity was set at the lowest intensity (5 mA). All subjects performed back extension exercise using a Swiss ball, with 10 repetitions per set, 2 sets each day, 5 times a week for 2 weeks. The primary outcome measure was the change in isokinetic strength of the back extensor using an isokinetic dynamometer. Additionally, endurance was measured using the Sorensen test. After 2 weeks of back extension exercise, the peak torque and endurance increased significantly in both groups (p ≤ 0.05). Effect size between the EMS group and the SS group was medium in strength and endurance. However, there was no statistically significant difference between 2 groups. In conclusion, 2 weeks of back extensor strengthening exercise was effective for strength and endurance. Superimposing EMS on back extensor strengthening exercise could provide an additional effect on increasing strength.
Effects of Small Addition of Ti on Strength and Microstructure of a Cu-Ni-Si Alloy
NASA Astrophysics Data System (ADS)
Watanabe, Chihiro; Takeshita, Satoshi; Monzen, Ryoichi
2015-06-01
The effect of addition of 0.04 or 0.2 mass pct Ti on the mechanical properties of a Cu-2.0 mass pct Ni-0.5 mass pct Si alloy has been investigated. The addition of 0.04 mass pct Ti enhances the strength of the Cu-Ni-Si alloy without reducing its electrical conductivity. This increase in strength is caused by the decrease in inter-precipitate spacing of δ-Ni2Si precipitates. The addition of trace Ti reduces the equilibrium concentration of Ni and Si atoms in the alloy bearing the δ precipitates, resulting in an increase in the volume fraction of δ precipitates and decrease in the inter-precipitate spacing. However, the addition of 0.2 mass pct Ti to the Cu-Ni-Si alloy decreases the strength of the alloy. The reduction in strength is attributed to the decrease in the volume fraction of δ precipitates caused by the reduction in Ni and Si atoms in the Cu matrix resulting from the formation of Ni16Si7Ti6 particles.
Microbial strengthening of loose sand.
Banagan, B L; Wertheim, B M; Roth, M J S; Caslake, L F
2010-08-01
To test whether the addition of Flavobacterium johnsoniae could increase the strength of saturated Ottawa 30 sand. A box model was built that simulates groundwater-like flow through a main sand compartment. Strength tests were performed at seven locations and at two depths, 10.8 and 20.3 cm below the top of the tank, using a vane shear device before and after the addition of bacteria. After the addition of Fl. johnsoniae, sand samples were obtained from multiple sampling ports on the vertical sides of the box model. The presence of a bacterial biofilm was confirmed by staining these sand samples with SYTO-9 and Alexa Fluor 633 and viewing with a confocal microscope. The average shear strength increases after the addition of Fl. johnsoniae were 15.2-87.5%, depending on the experimental conditions. Flavobacterium johnsoniae caused a statistically significant increase in the strength of saturated Ottawa 30 sand. Biofilm-forming bacteria can increase the shear strength of saturated sand. The addition of biofilm-forming bacteria to a building site may be an alternate method to mitigate the effects of liquefaction.
Grauch, V.J.S.; Ruleman, Chester A.
2013-01-01
Combined interpretation of aeromagnetic and LiDAR data builds on the strength of the aeromagnetic method to locate normal faults with significant offset under cover and the strength of LiDAR interpretation to identify the age and sense of motion of faults. Each data set helps resolve ambiguities in interpreting the other. In addition, gravity data can be used to infer the sense of motion for totally buried faults inferred solely from aeromagnetic data. Combined interpretation to identify active faults at the northern end of the San Luis Basin of the northern Rio Grande rift has confirmed general aspects of previous geologic mapping but has also provided significant improvements. The interpretation revises and extends mapped fault traces, confirms tectonic versus fluvial origins of steep stream banks, and gains additional information on the nature of active and potentially active partially and totally buried faults. Detailed morphology of surfaces mapped from the LiDAR data helps constrain ages of the faults that displace the deposits. The aeromagnetic data provide additional information about their extents in between discontinuous scarps and suggest that several totally buried, potentially active faults are present on both sides of the valley.
Novel fiber optic sensor for grip testing
NASA Astrophysics Data System (ADS)
Zhao, Li Ping; Fang, Zhong Ping; Paul, Jinu; Ngoi, Bryan K. A.; Ng, Jun Hong
2004-12-01
Grip strength is an easy measure of skeletal muscle function as well as a powerful predictor of disability, morbidity and mortality. In order to measure the grip strength, a novel fiber optic approach is proposed and demonstrated. Strain dependent wavelength response of fiber Bragg gratings (FBGs) has been utilized to obtain the strength of individual fingers. Five FBGs are written at different center wavelengths on a single photosensitive fiber. Each FBG is used to get the response from each individual finger. The fiber containing the gratings is attached to a suitable grip holder, which can effectively transfer the grip force to the FBGs. An additional reference FBG is also provided to make the device temperature insensitive. Experimental results show that the wavelength shifts of the order of 0.2-0.5 nm can be achieved for individual fingers. The device is calibrated in terms of load to convert the wavelength shift to the strength of the grip. The time dependent wavelength fluctuations was also studied and presented in this paper.
Controlling the motion of solitons in 1-D magnonic crystal
NASA Astrophysics Data System (ADS)
Giridharan, D.; Sabareesan, P.; Daniel, M.
2018-04-01
We investigate nonlinear localized magnetic excitations in a simple form of one dimensional magnonic crystal by considering a ferromagnetic medium under periodic applied magnetic field of spatially varying strength. The governing Landau-Lifshitz equation is transformed into nonlinear evolution equation of a complex function through stereographic projection technique. The associated evolution equation numerically solved by using split-step Fourier method (SSFM). From the obtained results it is observed that the excitations appear in the form of solitons and the periodic magnetic field of spatially varying strength perturbs the soliton propagation. Bright and dark soliton solutions are constructed and studied the effect of tuning the strength of spatially periodic applied magnetic field on the nonlinear excitation of magnetization. The results show that the amplitude and velocity of the soliton can be effectively managed by varying the strength of spatially periodic applied magnetic field and it act as periodic potential which provides an additional degree of freedom to control the nature of soliton propagation in a ferromagnetic medium.
Simenz, Christopher J; Dugan, Carrie A; Ebben, William P
2005-08-01
This study describes the results of a survey of the practices of National Basketball Association strength and conditioning (NBA S&C) coaches. The response rate was 68.9% (20 of 29). This survey examines (a) background information, (b) physical testing, (c) flexibility development, (d) speed development, (e) plyometrics, (f) strength/power development, (g) unique aspects, and (h) comments from coaches providing additional information. Results indicate, in part, that coaches assess an average of 7.3 parameters of fitness, with body composition testing being the most common. All coaches used a variety of flexibility development strategies. Results reveal that 17 of 20 (85.0%) of NBA S&C coaches follow a periodization model. Nineteen of 20 coaches (95.0%) indicated that their athletes used Olympic-style lifts. All coaches employed plyometric exercises with their athletes. The squat and its variations, as well as the Olympic-style lifts and their variations, were the most frequently used exercises. The survey serves as a review and a source of applied information and new ideas.
NASA Technical Reports Server (NTRS)
Bast, Callie Corinne Scheidt
1994-01-01
This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.
Effect of silver nano particles on flexural strength of acrylic resins.
Sodagar, Ahmad; Kassaee, Mohammad Zaman; Akhavan, Azam; Javadi, Negar; Arab, Sepideh; Kharazifard, Mohammad Javad
2012-04-01
Poly(methyl methacrylate), PMMA, is widely used for fabrication of removable orthodontic appliances. Silver nano particles (AgNps) have been added to PMMA because of their antimicrobial properties. The aim of this study is to investigate the effect of AgNps on the flexural strength of PMMA. Acrylic liquid containing 0.05% and 0.2% AgNps was prepared for two kinds of acrylic resins: Rapid Repair &Selecta Plus. Two groups without AgNps were used as control groups. For each one, flexural strength was investigated via Three Point Bending method for the 15 acrylic blocks. Two-way ANOVA, one way ANOVA and Tukey tests were used for statistical analysis. Rapid Repair without AgNps showed the highest flexural strength. Addition of 0.05% AgNps to Rapid Repair, significantly decreased its flexural strength while, continuing the addition up to 0.2% increased it nearly up to its primary level. In contrast, addition of AgNps to Selecta Plus increased its flexural strength but addition of 0.05% nano particles was more effective than 0.2%. The effect of AgNps on flexural strength of PMMA depends on several factors including the type of acrylics and the concentrations of nano particles. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
NDE detectability of fatigue type cracks in high strength alloys
NASA Technical Reports Server (NTRS)
Christner, B. K.; Rummel, W. D.
1983-01-01
Specimens suitable for investigating the reliability of production nondestructive evaluation (NDE) to detect tightly closed fatigue cracks in high strength alloys representative of those materials used in spacecraft engine/booster construction were produced. Inconel 718 was selected as representative of nickel base alloys and Haynes 188 was selected as representative of cobalt base alloys used in this application. Cleaning procedures were developed to insure the reusability of the test specimens and a flaw detection reliability assessment of the fluorescent penetrant inspection method was performed using the test specimens produced to characterize their use for future reliability assessments and to provide additional NDE flaw detection reliability data for high strength alloys. The statistical analysis of the fluorescent penetrant inspection data was performed to determine the detection reliabilities for each inspection at a 90% probability/95% confidence level.
Developing radiopure copper alloys for high strength low background applications
NASA Astrophysics Data System (ADS)
Suriano, A. M.; Howard, S. M.; Christofferson, C. D.; Arnquist, I. J.; Hoppe, E. W.
2018-01-01
High purity copper continues to play an important role for ultra-low-background detectors. Measurements of rare nuclear decays, e.g. neutrinoless double-beta decay, and searches for dark matter can require construction materials that have high thermal and electrical conductivity with bulk radiopurity less than one micro-Becquerel per kilogram. However, experiments currently using components constructed of radiopure electroformed copper struggle with design of structural and mechanical parts due to the physical properties of pure copper. A higher strength material which possesses many of the favorable attributes of copper yet remains radiopure is desired. A number of copper alloying candidates which may provide improved mechanical performance and adequate radiopurity were considered. Development of an electrodeposited copper-chrome alloy from additive-free electrolyte systems is discussed. The resulting material is shown to possess high strength and meets the aforementioned radiopurity goals.
Study on shear strengthening of RC continuous T-beams using different layers of CFRP strips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alferjani, M. B. S.; Samad, A. A. Abdul; Mohamad, Noridah
2015-05-15
Carbon fiber reinforced polymer (CFRP) laminates are externally bonded to reinforced concrete (RC) members to provide additional strength such as flexural, shear, etc. However, this paper presents the results of an experimental investigation for enhancing the shear capacity of reinforced concrete (RC) continuous T- beams using different layers of CFRP wrapping schemes. A total of three concrete beams were tested and various sheet configurations and layouts were studied to determine their effects on ultimate shear strength and shear capacity of the beams. One beam was kept as control beams, while other beams were strengthened with externally bonded CFRP strips withmore » three side bonding and one or two layers of CFRP strips. From the test results, it was found that all schemes were found to be effective in enhancing the shear strength of RC beams. It was observed that the strength increases with the number of sheet layers provided the most effective strengthening for RC continuous T- beam. Beam strengthened using this scheme showed 23.21% increase in shear capacity as compared to the control beam. Two prediction models available in literature were used for computing the contribution of CFRP strips and compared with the experimental results.« less
Latorre Román, Pedro Ángel; López, David Mora; Aguayo, Beatriz Berrios; Fuentes, Alejandro Robles; García-Pinillos, Felipe; Redondo, Melchor Martínez
2017-07-01
The purpose of this study was to examine the influence of age, sex and anthropometric variables in handgrip strength and to determine norm-referenced values for preschool children. Cross-sectional study. Schools. A total of 1215 children, aged 3-6 years (590 girls and 625 boys). Not applicable. Handgrip strength (HS), measured by the CAMRY hydraulic hand dynamometer (EH101; Camry, Guangdong Province, China). Boys exhibited a greater performance than girls in the 4 and 5 years age groups, but no significant differences were found at 3 and 6 years. In relation to growth, HS performance was greater with increased age. The Pearson correlation analysis showed significant correlations between HS and body mass (r = 0.354, p < 0.001), body height (r = 0.352, p < 0.001), body mass index (r = 0.164, p < 0.001) and waist circumference (r = 0.118, p < 0.001). This study provides references values for muscular strength assessment by an HS test carried out on a large sample of preschoolers in relation to age and sex. Additionally, some differences in HS performance were found according to sex. Copyright © 2017 Elsevier Ltd. All rights reserved.
Maziasz, Philip J.; McGreevy, Tim; Pollard, Michael James; Siebenaler, Chad W.; Swindeman, Robert W.
2006-12-26
A CF8C type stainless steel alloy and articles formed therefrom containing about 18.0 weight percent to about 22.0 weight percent chromium and 11.0 weight percent to about 14.0 weight percent nickel; from about 0.05 weight percent to about 0.15 weight percent carbon; from about 2.0 weight percent to about 10.0 weight percent manganese; and from about 0.3 weight percent to about 1.5 weight percent niobium. The present alloys further include less than 0.15 weight percent sulfur which provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. The disclosed alloys also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon.
Mazias, Philip J [Oak Ridge, TN; McGreevy, Tim [Morton, IL; Pollard, Michael James [East Peoria, IL; Siebenaler, Chad W [Peoria, IL; Swindeman, Robert W [Oak Ridge, TN
2007-08-14
A cast stainless steel alloy and articles formed therefrom containing about 0.5 wt. % to about 10 wt. % manganese, 0.02 wt. % to 0.50 wt. % N, and less than 0.15 wt. % sulfur provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. Alloys of the present invention also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon. Such solution strengthening enhances the high temperature precipitation-strengthening benefits of fine dispersions of NbC. Such solid solution effects also enhance the stability of the austenite matrix from resistance to excess sigma phase or chrome carbide formation at higher service temperatures. The presence of sulfides is substantially eliminated.
Maziasz, Philip J.; McGreevy, Tim; Pollard, Michael James; Siebenaler, Chad W.; Swindeman, Robert W.
2010-08-17
A CF8C type stainless steel alloy and articles formed therefrom containing about 18.0 weight percent to about 22.0 weight percent chromium and 11.0 weight percent to about 14.0 weight percent nickel; from about 0.05 weight percent to about 0.15 weight percent carbon; from about 2.0 weight percent to about 10.0 weight percent manganese; and from about 0.3 weight percent to about 1.5 weight percent niobium. The present alloys further include less than 0.15 weight percent sulfur which provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. The disclosed alloys also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon.
Engineering Promoter Architecture in Oleaginous Yeast Yarrowia lipolytica.
Shabbir Hussain, Murtaza; Gambill, Lauren; Smith, Spencer; Blenner, Mark A
2016-03-18
Eukaryotic promoters have a complex architecture to control both the strength and timing of gene transcription spanning up to thousands of bases from the initiation site. This complexity makes rational fine-tuning of promoters in fungi difficult to predict; however, this very same complexity enables multiple possible strategies for engineering promoter strength. Here, we studied promoter architecture in the oleaginous yeast, Yarrowia lipolytica. While recent studies have focused on upstream activating sequences, we systematically examined various components common in fungal promoters. Here, we examine several promoter components including upstream activating sequences, proximal promoter sequences, core promoters, and the TATA box in autonomously replicating expression plasmids and integrated into the genome. Our findings show that promoter strength can be fine-tuned through the engineering of the TATA box sequence, core promoter, and upstream activating sequences. Additionally, we identified a previously unreported oleic acid responsive transcription enhancement in the XPR2 upstream activating sequences, which illustrates the complexity of fungal promoters. The promoters engineered here provide new genetic tools for metabolic engineering in Y. lipolytica and provide promoter engineering strategies that may be useful in engineering other non-model fungal systems.
Comparison of the effects of an eight-week push-up program using stable versus unstable surfaces.
Chulvi-Medrano, Iván; Martínez-Ballester, Esteban; Masiá-Tortosa, Laura
2012-12-01
Recently, the trend among physical training and rehabilitation professionals is the use of resistance exercise on unstable equipment in order to increase the effort of the agonist and stabilizing muscles. It is unknown if performing exercises on unstable surfaces provides a greater training stimulus as compared to training on a stable training surface. Therefore, the purpose of this research was to compare the effect that push-up training on stable and unstable surfaces had on strength performance in healthy young men. Thirty subjects with experience in resistance training participated in push-up training two days per week for eight weeks on one of three different surfaces: the floor (Tp), the T-Bow® (TBp) or the BOSU® (Bp). Strength, as measured by one repetition maximum (1-RM) and muscle endurance, as measured by number of pushups performed did not improve significantly (p>0.05) for any of the intervention groups. The addition of unstable surfaces in push-up training does not provide greater improvement in muscular strength and endurance than push up training performed on a stable surface in young men. 3b.
Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height
Fischer, Felix; Blank, Cornelia; Dünnwald, Tobias; Gföller, Peter; Herbst, Elmar; Hoser, Christian; Fink, Christian
2017-01-01
Background: Isokinetic strength testing is an important tool in the evaluation of the physical capacities of athletes as well as for decision making regarding return to sports after anterior cruciate ligament (ACL) reconstruction in both athletes and the lay population. However, isokinetic testing is time consuming and requires special testing equipment. Hypothesis: A single-jump test, regardless of leg dominance, may provide information regarding knee extension strength through the use of correlation analysis of jump height and peak torque of isokinetic muscle strength. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A total of 169 patients who underwent ACL reconstruction were included in this study. Isokinetic testing was performed on the injured and noninjured legs. Additionally, a single-leg countermovement jump was performed to assess jump height using a jump accelerometer sensor. Extension strength values were used to assess the association between isokinetic muscle strength and jump height. Results: The sample consisted of 60 female (mean age, 20.8 ± 8.3 years; mean weight, 61.7 ± 6.5 kg; mean height, 167.7 ± 5.3 cm) and 109 male (mean age, 23.2 ± 7.7 years; mean weight, 74.6 ± 10.2 kg; mean height, 179.9 ± 6.9 cm) patients. Bivariate correlation analysis showed an association (r = 0.56, P < .001) between jump height and isokinetic extension strength on the noninvolved side as well as an association (r = 0.52, P < .001) for the involved side. Regression analysis showed that in addition to jump height (beta = 0.49, P < .001), sex (beta = –0.17, P = .008) and body mass index (beta = 0.37, P < .001) affected isokinetic strength. The final model explained 51.1% of the variance in isokinetic muscle strength, with jump height having the strongest impact (beta = 0.49, P < .001) and explaining 31.5% of the variance. Conclusion: Initial analysis showed a strong association between isokinetic strength and jump height. The study population encompassed various backgrounds, skill levels, and activity profiles, which might have affected the outcome. Even after controlling for age and sex, isokinetic strength was still moderately associated with jump height. Therefore, the jump technique and type of sport should be considered in future research. PMID:29147670
NASA Technical Reports Server (NTRS)
Chen, Po-Shou; Mitchell, Michael
2005-01-01
NASA-HR-1 is a high-strength Fe-Ni-base superalloy that resists high-pressure hydrogen environment embrittlement (HEE), oxidation, and corrosion. Originally derived from JBK-75, NASA-HR-1 has exceptional HEE resistance that can be attributed to its gamma-matrix and eta-free (Ni3Ti) grain boundaries. The chemistry was formulated using a design approach capable of accounting for the simultaneous effects of several alloy additions. This approach included: (1) Systematically modifying gamma-matrix compositions based on JBK-75; (2) Increasing gamma (Ni3(Al,Ti)) volume fraction and adding gamma-matrix strengthening elements to obtain higher strength; and (3) Obtaining precipitate-free grain boundaries. The most outstanding attribute of NASA-HR-1 is its ability to resist HEE while showing much improved strength. NASA-HR-1 has approximately 25% higher yield strength than JXK-75 and exhibits tensile elongation of more than 20% with no ductility loss in a hydrogen environment at 5 ksi, an achievement unparalleled by any other commercially available alloy. Its Cr and Ni contents provide exceptional resistance to environments that promote oxidation and corrosion. Microstructural stability was maintained by improved solid solubility of the gamma-matrix, along with the addition of alloying elements to retard eta (Ni3Ti) precipitation. NASA-HR-1 represents a new system that greatly extends the compositional ranges of existing HEE-resistant Fe-Ni-base superalloys.
Guerreiro-Tanomaru, Juliane Maria; Trindade-Junior, Adinael; Cesar Costa, Bernardo; da Silva, Guilherme Ferreira; Drullis Cifali, Leonardo; Basso Bernardi, Maria Inês
2014-01-01
The aim of the present study was to evaluate the antibiofilm activity against Enterococcus faecalis, compressive strength. and radiopacity of Portland cement (PC) added to zirconium oxide (ZrO2), as radiopacifier, with or without nanoparticulated zinc oxide (ZnO). The following experimental materials were evaluated: PC, PC + ZrO2, PC + ZrO2 + ZnO (5%), and PC + ZrO2 + ZnO (10%). Antibiofilm activity was analyzed by using direct contact test (DCT) on Enterococcus faecalis biofilm, for 5 h or 15 h. The analysis was conducted by using the number of colony-forming units (CFU/mL). The compressive strength was performed in a mechanical testing machine. For the radiopacity tests, the specimens were radiographed together with an aluminium stepwedge. The results were submitted to ANOVA and Tukey tests, with level of significance at 5%. The results showed that all materials presented similar antibiofilm activity (P > 0.05). The addition of nanoparticulated ZnO decreased the compressive strength of PC. All materials presented higher radiopacity than pure PC. It can be concluded that the addition of ZrO2 and ZnO does not interfere with the antibiofilm activity and provides radiopacity to Portland cement. However, the presence of ZnO (5% or 10%) significantly decreased the compressive strength of the materials. PMID:25431798
Numerical calculation of ion polarization in the NICA collider
NASA Astrophysics Data System (ADS)
Kovalenko, A. D.; Butenko, A. V.; Kekelidze, V. D.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.
2016-02-01
The NICA Collider with two solenoid Siberian snakes is “transparent” to the spin. The collider transparent to the spin provides a unique capability to control any polarization direction of protons and deuterons using additional weak solenoids without affecting orbital parameters of the beam. The spin tune induced by the control solenoids must significantly exceed the strength of the zero-integer spin resonance, which contains a coherent part associated with errors in the collider's magnetic structure and an incoherent part associated with the beam emittances. We present calculations of the coherent part of the resonance strength in the NICA collider for proton and deuteron beams.
Controlled release in transdermal pressure sensitive adhesives using organosilicate nanocomposites.
Shaikh, Sohel; Birdi, Anil; Qutubuddin, Syed; Lakatosh, Eric; Baskaran, Harihara
2007-12-01
Polydimethyl siloxane (PDMS) based pressure sensitive adhesives (PSA) incorporating organo-clays at different loadings were fabricated via solution casting. Partially exfoliated nanocomposites were obtained for the hydroxyl terminated PDMS in ethyl acetate solvent as determined by X-ray diffraction and atomic force microscopy. Drug release studies showed that the initial burst release was substantially reduced and the drug release could be controlled by the addition of organo-clay. Shear strength and shear adhesion failure temperature (SAFT) measurements indicated substantial improvement in adhesive properties of the PSA nanocomposite adhesives. Shear strength showed more than 200% improvement at the lower clay loadings and the SAFT increased by about 21% due to the reinforcement provided by the nano-dispersed clay platelets. It was found that by optimizing the level of the organosilicate additive to the polymer matrix, superior control over drug release kinetics and simultaneous improvements in adhesive properties could be attained for a transdermal PSA formulation.
Hydrodynamics with strength: scaling-invariant solutions for elastic-plastic cavity expansion models
NASA Astrophysics Data System (ADS)
Albright, Jason; Ramsey, Scott; Baty, Roy
2017-11-01
Spherical cavity expansion (SCE) models are used to describe idealized detonation and high-velocity impact in a variety of materials. The common theme in SCE models is the presence of a pressure-driven cavity or void within a domain comprised of plastic and elastic response sub-regions. In past work, the yield criterion characterizing material strength in the plastic sub-region is usually taken for granted and assumed to take a known functional form restrictive to certain classes of materials, e.g. ductile metals or brittle geologic materials. Our objective is to systematically determine a general functional form for the yield criterion under the additional requirement that the SCE admits a similarity solution. Solutions determined under this additional requirement have immediate implications toward development of new compressible flow algorithm verification test problems. However, more importantly, these results also provide novel insight into modeling the yield criteria from the perspective of hydrodynamic scaling.
NASA Astrophysics Data System (ADS)
Wang, Xian-Ping; Zhang, Yi; Xia, Yu; Jiang, Wei-Bing; Liu, Hui; Liu, Wang; Gao, Yun-Xia; Zhang, Tao; Fang, Qian-Feng
2017-03-01
A novel micro-vibration sensitive-type high-damping Al matrix composites reinforced with Li7- x La3Zr2- x Nb x O12 (LLZNO, x = 0.25) was designed and prepared using an advanced spark plasma sintering (SPS) technique. The damping capacity and mechanical properties of LLZNO/Al composites (LLZNO content: 0-40 wt.%) were found to be greatly improved by the LLZNO addition. The maximum damping capacity and the ultimate tensile strength (UTS) of LLZNO/Al composite can be respectively up to 0.033 and 101.2 MPa in the case of 20 wt.% LLZNO addition. The enhancement of damping and mechanical properties of the composites was ascribed to the intrinsic high-damping capacity and strengthening effects of hard LLZNO particulate. This investigation provides a new insight to sensitively suppress micro-vibration of payloads in the aerospace environment.
Tensile test of pressureless-sintered silicon nitride at elevated temperature
NASA Technical Reports Server (NTRS)
Matsusue, K.; Fujisawa, Y.; Takahara, K.
1985-01-01
Uniaxial tensile strength tests of pressureless sintered silicon nitride were carried out in air at temperatures ranging from room temperature up to 1600 C. Silicon nitrides containing Y2O3, Al2O3, Al2O3-MgO, or MgO-CeO2 additives were tested. The results show that the composition of the additive used influences the strength characteristics of the silicon nitride. The tensile strength rapidly decreased at temperatures above 1000 C for the materials containing MgO as the additive and above 1000 C for the material with Y2O3. When the temperature increased to as high as 1300 C, the strength decreased to about 10 percent of the room temperature strength in each case. Observations of the fracture origin and of the crack propagation on the fracture surfaces are discussed.
National Defense Authorization Act for Fiscal Year 2014
2013-06-20
Administrator ............................................................... 251 Defense environmental cleanup (sec. 3102...415 Department of Energy national security authorizations (sec. 4701) ..... 416 LEGISLATIVE REQUIREMENTS...SR044rm aj et te o n D S K 2T P T V N 1P R O D w ith H E A R IN G 2 and manpower strengths; provide certain additional legislative authority, and
A.C.T. Student Opinion Survey, Spring 1998: Summary Report of Verbatim Comments.
ERIC Educational Resources Information Center
Wild, Nancy
This report shows the results of 1998 student opinion survey at Rogue Community College (RCC) (Oregon). Results of the survey provide broad insight into strengths and weaknesses of the college's programs, services, and image. As part of the additional questions that RCC incorporated into the survey, students were given the opportunity to offer…
Method For Making Electronic Circuits Having Nial And Ni3al Substrates
Deevi, Seetharama C.; Sikka, Vinod K.
2001-01-30
A method for making electronic circuit component having improved mechanical properties and thermal conductivity comprises steps of providing NiAl and/or Ni.sub.3 Al, and forming an alumina layer thereupon prior to applying the conductive elements. Additional layers of copper-aluminum alloy or copper further improve mechanical strength and thermal conductivity.
Schmidt, David E; Halmin, Märit; Wikman, Agneta; Östlund, Anders; Ågren, Anna
2017-10-01
Massive traumatic haemorrhage is aggravated through the development of trauma-induced coagulopathy, which is managed by plasma transfusion and/or fibrinogen concentrate administration. It is yet unclear whether these treatments are equally potent in ensuring adequate haemostasis, and whether additional factor XIII (FXIII) administration provides further benefits. In this study, we compared ROTEM whole blood coagulation profiles after experimental massive transfusion with different transfusion regimens in an in vitro model of dilution- and transfusion-related coagulopathy. Healthy donor blood was mixed 1 + 1 with six different transfusion regimens. Each regimen contained RBC, platelet concentrate, and either fresh frozen plasma (FFP) or Ringer's acetate (RA). The regimens were further augmented through addition of a low- or medium-dose fibrinogen concentrate and FXIII. Transfusion with FFP alone was insufficient to maintain tissue-factor activated clot strength, coincidental with a deficiency in fibrin-based clot strength. Fibrinogen concentrate conserved, but did not improve coagulation kinetics and overall clot strength. Only combination therapy with FFP and low-dose fibrinogen concentrate improved both coagulation kinetics and fibrin-based clot strength. Administration of FXIII did not result in an improvement of clot strength. In conclusion, combination therapy with both FFP and low-dose fibrinogen concentrate improved clotting time and produced firm clots, representing a possible preferred first-line regimen to manage trauma-induced coagulopathy when RBC and platelets are also transfused. Further research is required to identify optimal first-line transfusion fluids for massive traumatic haemorrhage.
Development of Superconducting Insertion Device Magnets at NSRRC
NASA Astrophysics Data System (ADS)
Hwang, C. S.; Chang, C. H.; Chen, H. H.; Jan, J. C.; Lin, F. Y.; Fan, T. C.; Chen, J.; Hsu, S. N.; Hsu, K. T.; Huang, M. H.; Chang, H. P.; Hsiung, G. Y.; Chien, Y. C.; Chen, J. R.; Kuo, C. C.; Chen, C. T.
2007-01-01
A superconducting wavelength shifter (SWLS) with a magnetic field of 6.5 T in cryogen-free operation provides X-rays for high-resolution X-ray microscopy, EXAFS, and medical imaging beamlines. A 32-pole superconducting wiggler (SW) with a period of 6.1 cm and a magnetic field of 3.2 T in a liquid helium bath provides for three dedicated protein crystallography beamlines. Additionally, three 16-pole in-achromatic superconducting wigglers (IASW) with a period of 6.1 cm and a field strength of 3.1 T were constructed in-house and installed between the first and second bending magnets of a TBA arc section. Development of a prototype superconducting undulator (SU15) with a period of 15 mm and a field strength of 1.4 T is currently underway at National Synchrotron Radiation Research Center (MSRRC).
Abu-Alhaija, Elham; Jaradat, Mohammad; Alwahadni, Ahed
2017-03-01
Molar bonding procedures need continuous improvement to be widely accepted clinically and eventually replace molar bands. The purpose of this study was to determine the effects of enamel micro-abrasion and silane coating of the base of molar tubes on shear and tensile bond strengths of orthodontic molar tubes. A total of 200 third molars were randomly allocated into five groups of 40 teeth as follows: group 1: molar tubes bonded to etched teeth (37% phosphoric acid gel; control group); group 2: molar tubes bonded to etched teeth (37% phosphoric acid) with the addition of silane to the base of molar tubes; group 3: molar tubes bonded to teeth pre-treated with 18% hydrochloric acid and pumice (micro-abrasion); group 4: molar tubes bonded to teeth pre-treated with microabrasion with the addition of silane to the base of molar tubes; group 5: molar tubes bonded to teeth pre-treated with microabrasion before conventional acid etching combined with the addition of silane to the base of molar tubes. The bond strength testing was performed using a computer control electromechanical universal testing machine. The highest mean shear and tensile bond strengths were recorded in group 5 (13.81±2.54MPa and 13.97±2.29 MPa, respectively). Micro-abrasion alone (group 3) and the combination of enamel micro-abrasion and the addition of silane (group 4) produced bond strength values comparable to the control. Enamel surface pre-treatment (micro abrasion) before conventional acid etching combined with the addition of silane to the base of the molar tube produced the highest bond strengths among all tested groups. Key words: Molar, shear strength, tensile strength, orthodontic appliances.
Alwahadni, Ahed
2017-01-01
Background Molar bonding procedures need continuous improvement to be widely accepted clinically and eventually replace molar bands. Material and Methods The purpose of this study was to determine the effects of enamel micro-abrasion and silane coating of the base of molar tubes on shear and tensile bond strengths of orthodontic molar tubes. A total of 200 third molars were randomly allocated into five groups of 40 teeth as follows: group 1: molar tubes bonded to etched teeth (37% phosphoric acid gel; control group); group 2: molar tubes bonded to etched teeth (37% phosphoric acid) with the addition of silane to the base of molar tubes; group 3: molar tubes bonded to teeth pre-treated with 18% hydrochloric acid and pumice (micro-abrasion); group 4: molar tubes bonded to teeth pre-treated with microabrasion with the addition of silane to the base of molar tubes; group 5: molar tubes bonded to teeth pre-treated with microabrasion before conventional acid etching combined with the addition of silane to the base of molar tubes. The bond strength testing was performed using a computer control electromechanical universal testing machine. Results The highest mean shear and tensile bond strengths were recorded in group 5 (13.81±2.54MPa and 13.97±2.29 MPa, respectively). Micro-abrasion alone (group 3) and the combination of enamel micro-abrasion and the addition of silane (group 4) produced bond strength values comparable to the control. Conclusions Enamel surface pre-treatment (micro abrasion) before conventional acid etching combined with the addition of silane to the base of the molar tube produced the highest bond strengths among all tested groups. Key words:Molar, shear strength, tensile strength, orthodontic appliances. PMID:28298990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nehdi, M.; Tariq, A.
2008-11-15
In the present research, industrial byproducts, namely, cement kiln dust (CKD) and Class C fly ash (FAC) have been used as candidate materials along with the partial addition of sulfate-resistant cement (SRC) in the Stabilization/solidification of polymetallic sulfidic mine tailings (MT). The effectiveness of S/S was assessed by comparing laboratory experimental values obtained from unconfined compressive strength, hydraulic conductivity and leaching propensity tests of S/S samples with regulatory standards for safe surface disposal of such wastes. Despite general regulatory compliance of compressive strength and hydraulic conductivity, some solidified/stabilized-cured matrices were found unable to provide the required immobilization of pollutants. Solidified/stabilizedmore » and 90-day cured mine tailings specimens made with composite binders containing (10% CKD + 10% FAC), (5% SRC + 15% FAC) and (5% SRC + 5% CKD + 10% FAC) significantly impaired the solubility of all contaminants investigated and proved successful in fixing metals within the matrix, in addition to achieving adequate unconfined compressive strength and hydraulic conductivity values, thus satisfying USEPA regulations. Laboratory investigations revealed that, for polymetallic mining waste, leachate concentrations are the most critical factor in assessing the effectiveness of S/S technology.« less
Wu, Brian W; Berger, Max; Sum, Jonathan C; Hatch, George F; Schroeder, E Todd
2014-12-06
The anterior cruciate ligament (ACL) is one of four major ligaments in the knee that provide stability during physical activity. A tear in the ACL is characterized by joint instability that leads to decreased activity, knee dysfunction, reduced quality of life and a loss of muscle mass and strength. While rehabilitation is the standard-of-care for return to daily function, additional surgical reconstruction can provide individuals with an opportunity to return to sports and strenuous physical activity. Over 200,000 ACL reconstructions are performed in the United States each year, and rehabilitation following surgery is slow and expensive. One possible method to improve the recovery process is the use of intramuscular testosterone, which has been shown to increase muscle mass and strength independent of exercise. With short-term use of supraphysiologic doses of testosterone, we hope to reduce loss of muscle mass and strength and minimize loss of physical function following ACL reconstruction compared to standard-of-care alone. This study is a double-blinded randomized control trial. Men 18-50 years of age, scheduled for ACL reconstruction are randomized into two groups. Participants randomized to the testosterone group receive intramuscular testosterone administration once per week for 8 weeks starting 2 weeks prior to surgery. Participants randomized to the control group receive a saline placebo intramuscularly instead of testosterone. Lean mass, muscle strength and physical function are measured at 5 time points: 2 weeks pre-surgery, 1 day pre-surgery, and 6, 12, 24 weeks post-surgery. Both groups follow standard-of-care rehabilitation protocol. We believe that testosterone therapy will help reduce the loss of muscle mass and strength experienced after ACL injury and reconstruction. Hopefully this will provide a way to shorten the rehabilitation necessary following ACL reconstruction. If successful, testosterone therapy may also be used for other injuries involving trauma and muscle atrophy. NCT01595581, REGISTRATION: May 8, 2012.
The isokinetic rotator cuff strength ratios in overhead athletes: Assessment and exercise effect.
Berckmans, Kelly; Maenhout, Annelies G; Matthijs, Lien; Pieters, Louise; Castelein, Birgit; Cools, Ann M
2017-09-01
Muscle strength imbalance in the shoulder region can be considered as a predisposing factor in the development of movement dysfunctions, possibly leading to overuse injuries. Repetitive overhead throwing, performed in sports, may result in muscle imbalance between the external (ER) and internal (IR) rotators. Muscle strength measured with an isokinetic device, is reported as a concentric (CON) or eccentric (ECC) force. The balance between an agonist and an antagonist is mentioned as a ratio (CON/CON or ECC/CON). The aim of this systematic literature review is to provide an overview of the existing evidence considering the isokinetic muscle strength ratios of ER and IR of the shoulder in healthy overhead athletes. In addition, the effect of exercise programs on these ratios was investigated. Two online databases (Web of Science and PubMed) were consulted using different search strategies. Articles were selected based on inclusion and exclusion criteria. All included articles were assessed on their methodological quality. There is moderate evidence for a lower functional deceleration ratio (ECC ER/CON IR) at the dominant side. This lower ratio is due to a large overweight of CON IR strength on that side. There is no consensus about which exercise program is the most effective in altering the shoulder isokinetic strength ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.
Strengthening behavior of chopped multi-walled carbon nanotube reinforced aluminum matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, S.E.; Bae, D.H., E-mail: donghyun@yonsei.ac.kr
2013-09-15
Strengthening behavior of the aluminum composites reinforced with chopped multi-walled carbon nanotubes (MWCNTs) or aluminum carbide formed during annealing at 500 °C has been investigated. The composites were fabricated by hot-rolling the powders which were ball-milled under various conditions. During the early annealing process, aluminum atoms can cluster inside the tube due to the diffusional flow of aluminum atoms into the tube, providing an increase of the strength of the composite. Further annealing induces the formation of the aluminum carbide phase, leading to an overall drop in the strength of the composites. While the strength of the composites can bemore » evaluated according to the rule of mixture, a particle spacing effect can be additionally imparted on the strength of the composites reinforced with the chopped MWCNTs or the corresponding carbides since the reinforcing agents are smaller than the submicron matrix grains. - Highlights: • Strengthening behavior of chopped CNT reinforced Al-based composites is investigated. • Chopped CNTs have influenced the strength and microstructures of the composites. • Chopped CNTs are created under Ar- 3% H2 atmosphere during mechanical milling. • Strength can be evaluated by the rule of the mixture and a particle spacing effect.« less
The Effect of Instability Training on Knee Joint Proprioception and Core Strength
Cuğ, Mutlu; Ak, Emre; Özdemir, Recep Ali; Korkusuz, Feza; Behm, David G
2012-01-01
Although there are many studies demonstrating increased trunk activation under unstable conditions, it is not known whether this increased activation would translate into meaningful trunk strength with a prolonged training program. Additionally, while balance-training programs have been shown to improve stability, their effect on specific joint proprioception is not clear. Thus the objective of this study was to examine training adaptations associated with a 10-week instability-training program. Participants were tested pre- and post-training for trunk extension and flexion strength and knee proprioception. Forty-three participants participated in either a 10-week (3 days per week) instability-training program using Swiss balls and body weight as resistance or a control group (n = 17). The trained group increased (p < 0. 05) trunk extension peak torque/body weight (23.6%) and total work output (20.1%) from pre- to post-training while the control group decreased by 6.8% and 6.7% respectively. The exercise group increased their trunk flexion peak torque/body weight ratios by 18.1% while the control group decreased by 0.4%. Knee proprioception (combined right and left joint repositioning) improved 44.7% from pre- to post-training (p = 0.0006) and persisted (21.5%) for 9 months post-training. In addition there was a side interaction with the position sense of the right knee at 9 months showing 32.1% (p = 0.03) less deviation from the reference angle than the right knee during pre-testing. An instability-training program using Swiss balls with body weight as resistance can provide prolonged improvements in joint proprioception and core strength in previously untrained individuals performing this novel training stress which would contribute to general health. Key pointsAlthough traditional free weight resistance exercises have been recommended as most beneficial for improving strength and power in athletes (Behm et al., 2010b), an IT program using Swiss balls and body weight as a resistance may provide an alternative starting point for the sedentary untrained population.As it is well documented that force or strength is decreased when unbalanced (Behm et al., 2010b) and balance-training programs improve balance (Behm and Kean 2006), this type of instability RT program can provide significant adaptations to improve trunk strength especially with the untrained.This type of training should also be incorporated into a new program as the improvements in joint proprioception may help protect from joint injuries over a protracted period.The finding that improved joint proprioception persists for months after training should be emphasized to those individuals whose training is regularly or inconsistently interrupted. PMID:24149355
Dallmeijer, A J; Baker, R; Dodd, K J; Taylor, N F
2011-03-01
The purpose of this study was to determine the association between isometric muscle strength of the lower limbs and gait joint kinetics in adolescents and young adults with cerebral palsy (CP). Twenty-five participants (11 males) with bilateral spastic CP, aged 14-22 years (mean: 18.9, sd: 2.0 yr) and Gross Motor Function Classification System (GMFCS) level II (n=19) and III (n=6) were tested. Hand held dynamometry was used to measure isometric strength (expressed in Nm/kg) of the hip, knee, and ankle muscles using standardized testing positions and procedures. 3D gait analysis was performed with a VICON system to calculate joint kinetics in the hip, knee and ankle during gait. Ankle peak moments exceeded by far the levels of isometric strength of the plantar flexors, while the knee and hip peak moments were just at or below maximal isometric strength of knee and hip muscles. Isometric muscle strength showed weak to moderate correlations with peak ankle and hip extension moment and power during walking. Despite considerable muscle weakness, joint moment curves were similar to norm values. Results suggest that passive stretch of the muscle-tendon complex of the triceps surae contributes to the ankle moment during walking and that muscle strength assessment may provide additional information to gait kinetics. Copyright © 2010 Elsevier B.V. All rights reserved.
Soil-roots Strength Performance of Extensive Green Roof by Using Axonopus Compressus
NASA Astrophysics Data System (ADS)
Yusoff, N. A.; Ramli, M. N.; Chik, T. N. T.; Ahmad, H.; Abdullah, M. F.; Kasmin, H.; Embong, Z.
2016-07-01
Green roof technology has been proven to provide potential environmental benefits including improved building thermal performance, removal of air pollution and reduced storm water runoff. Installation of green roof also involved soil element usage as a plant growth medium which creates several interactions between both strands. This study was carried out to investigate the soil-roots strength performance of green roof at different construction period up to 4 months. Axonopus compressus (pearl grass) was planted in a ExE test plot with a designated suitable soil medium. Direct shear test was conducted for each plot to determine the soil shear strength according to different construction period. In addition, some basic geotechnical testing also been carried out. The results showed that the shear strength of soil sample increased over different construction period of 1st, 2nd, 3rd and 4th month with average result 3.81 kPa, 5.55 kPa, 6.05 kPa and 6.48 kPa respectively. Shear strength of rooted soil samples was higher than the soil samples without roots (control sample). In conclusion, increment of soil-roots shear strength was due to root growth over the time. The soil-roots shear strength development of Axonopus compressus can be expressed in a linear equation as: y = 0.851x + 3.345, where y = shear stress and x = time.
Kirsch, A J; Chang, D T; Kayton, M L; Libutti, S K; Connor, J P; Hensle, T W
1996-01-01
Tissue welding using laser-activated protein solders may soon become an alternative to sutured tissue approximation. In most cases, approximating sutures are used both to align tissue edges and provide added tensile strength. Collateral thermal injury, however, may cause disruption of tissue alignment and weaken the tensile strength of sutures. The objective of this study was to evaluate the effect of laser welding on the tensile strength of suture materials used in urologic surgery. Eleven types of sutures were exposed to diode laser energy (power density = 15.9 W/cm2) for 10, 30, and 60 seconds. Each suture was compared with and without the addition of dye-enhanced albumin-based solder. After exposure, each suture material was strained (2"/min) until ultimate breakage on a tensometer and compared to untreated sutures using ANOVA. The strength of undyed sutures were not significantly affected; however, violet and green-dyed sutures were in general weakened by laser exposure in the presence of dye-enhanced glue. Laser activation of the smallest caliber, dyed sutures (7-0) in the presence of glue caused the most significant loss of tensile strength of all sutures tested. These results indicate that the thermal effects of laser welding using our technique decrease the tensile strength of dyed sutures. A thermally resistant suture material (undyed or clear) may prevent disruption of wounds closed by laser welding techniques.
Composite lead for conducting an electrical current between 75--80K and 4. 5K temperatures
Negm, Y.; Zimmerman, G.O.; Powers, R.E. Jr.; McConeghy, R.J.; Kaplan, A.
1994-12-27
A composite lead is provided which electrically links and conducts a current between about 75-80K and liquid helium temperature of about 4.5K. The composite lead may be employed singly or in multiples concurrently to provide conduction of electrical current from normal conductors and semi-conductors at room temperature to superconductors operating at 4.5K. In addition, a variety of organizational arrangements and assemblies are provided by which the mechanical strength and electrical reliability of the composite lead is maintained. 12 figures.
Composite lead for conducting an electrical current between 75-80K and 4.5K temperatures
Negm, Yehia; Zimmerman, George O.; Powers, Jr., Robert E.; McConeghy, Randy J.; Kaplan, Alvaro
1994-12-27
A composite lead is provided which electrically links and conducts a current between about 75-80K. and liquid helium temperature of about 4.5K. The composite lead may be employed singly or in multiples concurrently to provide conduction of electrical current from normal conductors and semi-conductors at room temperature to superconductors operating at 4.5K. In addition, a variety of organizationl arrangements and assemblies are provided by which the mechanical strength and electrical reliability of the composite lead is maintained.
RoboGlove: Initial Work Toward a Robotically Assisted EVA Glove
NASA Technical Reports Server (NTRS)
Rogers, Jonathan
2015-01-01
The RoboGlove is a device designed to provide additional grip strength or endurance for a user. In applying this Robonaut 2 spinoff technology to the Phase VI Space Suit glove, the project is using robotic tendons and actuators to regain some of the hand performance that is lost when wearing a pressurized glove. An array of sensors embedded into the finger softgoods provides input to the control system which retracts the tendons, helping to close the user's hand. While active, this system provides augmentation, but is nonintrusive to glove usage when disabled.
Muzíková, J; Páleník, L
2005-05-01
The paper studies the tensile strength and disintegration time of compacts from the mixed dry binder MicroceLac 100. Tensile strength and disintegration time of tablets were tested in connection with the following factors: compression force, compression rate, addition of magnesium stearate, addition of ascorbic acid, the model active principle. The compression forces employed were 5, 6, and 7 kN, compression rates, 20 and 40 mm/min, stearate concentration 0, 0.4, and 0.8%, ascorbic acid concentration, 25 and 50%. With increasing addition of the stearate, the strength of compacts from MicroceLacu 100 was decreased for both compression rates, but with a higher rate, in a concentration of 0.4%, the decrease in strength was more marked. Disintegration time was increased with compression force and the addition of the stearate, but in all cases it was very short. Increased addition of ascorbic acid further intensified the decrease in the strength of compacts and decreased the disintegration time and the effect of the stearate on it. Disintegration time of compacts with ascorbic acid in a concentration of 50% did not increase with compression force.
Preserving mobility in older adults.
Buchner, D M
1997-01-01
Age-related loss of strength contributes to impaired mobility and increases the risk of falls. Recent research has focused on 2 approaches to preventing age-related loss of strength--promoting physical activity and exercise (especially strength training) and using trophic factors to enhance muscle performance. Epidemiologic evidence strongly supports a role of regular physical activity in successful aging by preserving muscle performance, promoting mobility, and reducing fall risk. Randomized controlled trials provide convincing evidence that strength and endurance training improve muscle performance in older adults. Evidence is rapidly accumulating from randomized trials that endurance, strength, and balance training promote mobility and reduce fall risk, though exercise effects differ according to the type of exercise, details of the exercise program, and the target group of older adults. Because lifetime regular physical activity is recommended for all older adults, a reasonable strategy (especially for weak adults) is an activity program that includes strength training. In contrast, insufficient evidence exists to recommend the long-term use of trophic factors to preserve muscular performance. An intervention that merits additional study is avoiding the use of psychoactive drugs because drugs like benzodiazepines appear to be risk factors for inactivity and may have unrecognized direct effects on muscular performance. Because chronic illness is a risk factor for inactivity and disuse muscle atrophy, randomized trials comparing strength training with other interventions would be useful in understanding whether strength training has advantages in preserving muscle performance and improving health-related quality of life in a variety of chronic illnesses such as depressive illness. PMID:9348757
van Woerkom, Marianne; Bakker, Arnold B; Nishii, Lisa H
2016-01-01
Absenteeism associated with accumulated job demands is a ubiquitous problem. We build on prior research on the benefits of counteracting job demands with resources by focusing on a still untapped resource for buffering job demands-that of strengths use. We test the idea that employees who are actively encouraged to utilize their personal strengths on the job are better positioned to cope with job demands. Based on conservation of resources (COR) theory, we hypothesized that job demands can accumulate and together have an exacerbating effect on company registered absenteeism. In addition, using job demands-resources theory, we hypothesized that perceived organizational support for strengths use can buffer the impact of separate and combined job demands (workload and emotional demands) on absenteeism. Our sample consisted of 832 employees from 96 departments (response rate = 40.3%) of a Dutch mental health care organization. Results of multilevel analyses indicated that high levels of workload strengthen the positive relationship between emotional demands and absenteeism and that support for strength use interacted with workload and emotional job demands in the predicted way. Moreover, workload, emotional job demands, and strengths use interacted to predict absenteeism. Strengths use support reduced the level of absenteeism of employees who experienced both high workload and high emotional demands. We conclude that providing strengths use support to employees offers organizations a tool to reduce absenteeism, even when it is difficult to redesign job demands. (c) 2016 APA, all rights reserved).
Studies for understanding effects of additions on the strength of cement concrete
NASA Astrophysics Data System (ADS)
Bucur, R. D.; Barbuta, M.; Konvalina, P.; Serbanoiu, A. A.; Bernas, J.
2017-09-01
The paper analyzes the effects of different types of additions introduced in concrete mix on the compressive strength. The current studies show that additions contribute to improve some characteristics of concrete and to reduce the cement dosage, so it can obtain concretes which are cheaper and friendlier with environment. In the experimental mixes were introduced: crushed natural aggregates, slag aggregates, silica fume, fly ash, chopped tire, polystyrene granule, glass fibers and metallic fibers. The experimental values of compressive strengths were compared for two concrete grades (C20/25 and C25/30). The study shown that near the well-known possibilities of improving mechanical strengths of cement concrete by increasing cement dosage and strength, by using crushed aggregates and by reducing the water/cement ratio, there are other methods in which less cement is used by replacing it with different wastes or by adding fiber.
Roos, Malgorzata; Stawarczyk, Bogna
2012-07-01
This study evaluated and compared Weibull parameters of resin bond strength values using six different general-purpose statistical software packages for two-parameter Weibull distribution. Two-hundred human teeth were randomly divided into 4 groups (n=50), prepared and bonded on dentin according to the manufacturers' instructions using the following resin cements: (i) Variolink (VAN, conventional resin cement), (ii) Panavia21 (PAN, conventional resin cement), (iii) RelyX Unicem (RXU, self-adhesive resin cement) and (iv) G-Cem (GCM, self-adhesive resin cement). Subsequently, all specimens were stored in water for 24h at 37°C. Shear bond strength was measured and the data were analyzed using Anderson-Darling goodness-of-fit (MINITAB 16) and two-parameter Weibull statistics with the following statistical software packages: Excel 2011, SPSS 19, MINITAB 16, R 2.12.1, SAS 9.1.3. and STATA 11.2 (p≤0.05). Additionally, the three-parameter Weibull was fitted using MNITAB 16. Two-parameter Weibull calculated with MINITAB and STATA can be compared using an omnibus test and using 95% CI. In SAS only 95% CI were directly obtained from the output. R provided no estimates of 95% CI. In both SAS and R the global comparison of the characteristic bond strength among groups is provided by means of the Weibull regression. EXCEL and SPSS provided no default information about 95% CI and no significance test for the comparison of Weibull parameters among the groups. In summary, conventional resin cement VAN showed the highest Weibull modulus and characteristic bond strength. There are discrepancies in the Weibull statistics depending on the software package and the estimation method. The information content in the default output provided by the software packages differs to very high extent. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Fatigue strength degradation of metals in corrosive environments
NASA Astrophysics Data System (ADS)
Adasooriya, N. D.; Hemmingsen, T.; Pavlou, D.
2017-12-01
Structures exposed to aggressive environmental conditions are often subjected to time-dependent loss of coating and loss of material due to corrosion; this causes reduction in the cross-sectional properties of the members, increased surface roughness, surface irregularities and corrosion pits, and degradation of material strengths. These effects have been identified and simulated in different research studies. However, time and corrosive media dependent fatigue strength curves for materials have not been discussed in the design or assessment guidelines for structures. This paper attempts to review the corrosion degradation process and available approaches/models used to determine the fatigue strength of corroded materials and to interpolate corrosion deterioration data. High cycle fatigue and full range fatigue life formulae for fatigue strength of corroded materials are proposed. The above formulae depend on the endurance limit of corroded material, in addition to the stress-life fatigue curve parameters of the uncorroded material. The endurance limit of corroded material can either be determined by a limited number of tests in the very high-cycle fatigue region or predicted by an analytical approach. Comparison with experimentally measured corrosion fatigue behavior of several materials is provided and discussed.
NASA Astrophysics Data System (ADS)
Balguri, Praveen Kumar; Harris Samuel, D. G.; Aditya, D. B.; Vijaya Bhaskar, S.; Thumu, Udayabhaskararao
2018-02-01
Investigating the mechanical properties of polymer nanocomposite materials has been greatly increased in the last decade. In particular, flexural strength plays a major role in resisting bending and shear loads of a composite material. Here, one dimensional (1D) tellurium nanowires (TeNWs) reinforced epoxy composites have been prepared and the flexural properties of resulted TeNWs/epoxy nanocomposites are studied. The diameter and length of the TeNWs used to make TeNWs/epoxy nanocomposites are 21±2.5 nm and 697±87 nm, respectively. Plain and TeNWs/epoxy nanocomposites are characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). Furthermore, significant enhancement in the flexural strength of TeNWs/epoxy nanocomposite is observed in comparison to plain epoxy composite, i.e. flexural strength is increased by 65% with the addition of very little amount of TeNWs content (0.05 wt.%) to epoxy polymer. Structural details of plain and TeNWs/epoxy at micrometer scale were examined by scanning electron microscopy (SEM). We believe that our results provide a new type of semiconductor nanowires based high strength epoxy polymer nanocomposites.
Effects of porosity on weld-joint tensile strength of aluminum alloys
NASA Technical Reports Server (NTRS)
Lovoy, C. V.
1974-01-01
Tensile properties in defect-free weldments of aluminum alloys 2014-T6 and 2219-T87 (sheet and plate) are shown to be related to the level or concentration of induced simulated porosity. The scatter diagram shows that the ultimate tensile strength of the weldments displays the most pronounced linear relationship with the level of porosity. The relationships between yield strength or elongation and porosity are either trivial or inconsequential in the lower and intermediate levels of porosity content. In highly concentrated levels of porosity, both yield strength and elongation values decrease markedly. Correlation coefficients were obtained by simple straight line regression analysis between the variables of ultimate tensile strength and pore level. The coefficients were greater, indicating a better correlation, using a pore area accumulation concept or pore volume accumulation than the accumulation of the pore diameters. These relationships provide a useful tool for assessing the existing aerospace radiographic acceptance standards with respect to permissible porosity. In addition, these relationships, in combination with known design load requirements, will serve as an engineering guideline in determining when a weld repair is necessary based on accumulative pore level as detected by radiographic techniques.
NASA Astrophysics Data System (ADS)
Dhua, Sanjay Kumar; Sarkar, Partha Pratim; Saxena, Atul; Jha, Bimal Kumar
2016-12-01
Low-carbon bainitic steels have created enormous interest among scientists across the world in the past few decades because of their high strength, toughness, and weldability replacing the conventional quenched and tempered medium-carbon steels. Three experimental steels with varying alloy additions were made in a 100-kg laboratory induction furnace and cast into 100-mm-diameter cylindrical ingots. These ingots were hot-rolled and air-cooled to 6-mm plates in an experimental rolling mill with selected thermomechanical parameters. Steels processed through this process provided an ultrafine low-carbon bainitic microstructure with maximum yield strength (YS) and ultimate tensile strength (UTS) 575 and 705 MPa, respectively. The Charpy impact toughness of the experimental steels was excellent, and at 253 K (-20 °C), it varied from 114 to 170 Joules. Cu-B-added steel was found to give an optimum combination of strength, YS-575 MPa, and toughness, 114 J at 253 K (-20 °C). Thus, fine-grained, low-carbon bainitic steels could be developed with a proper combination of alloying elements and thermomechanical parameters even by air-cooling.
Safiuddin, Md; Raman, Sudharshan N; Zain, Muhammad Fauzi Mohd
2015-12-10
The aim of the work reported in this article was to investigate the effects of medium temperature and industrial by-products on the key hardened properties of high performance concrete. Four concrete mixes were prepared based on a water-to-binder ratio of 0.35. Two industrial by-products, silica fume and Class F fly ash, were used separately and together with normal portland cement to produce three concrete mixes in addition to the control mix. The properties of both fresh and hardened concretes were examined in the laboratory. The freshly mixed concrete mixes were tested for slump, slump flow, and V-funnel flow. The hardened concretes were tested for compressive strength and dynamic modulus of elasticity after exposing to 20, 35 and 50 °C. In addition, the initial surface absorption and the rate of moisture movement into the concretes were determined at 20 °C. The performance of the concretes in the fresh state was excellent due to their superior deformability and good segregation resistance. In their hardened state, the highest levels of compressive strength and dynamic modulus of elasticity were produced by silica fume concrete. In addition, silica fume concrete showed the lowest level of initial surface absorption and the lowest rate of moisture movement into the interior of concrete. In comparison, the compressive strength, dynamic modulus of elasticity, initial surface absorption, and moisture movement rate of silica fume-fly ash concrete were close to those of silica fume concrete. Moreover, all concretes provided relatively low compressive strength and dynamic modulus of elasticity when they were exposed to 50 °C. However, the effect of increased temperature was less detrimental for silica fume and silica fume-fly ash concretes in comparison with the control concrete.
Safiuddin, Md.; Raman, Sudharshan N.; Zain, Muhammad Fauzi Mohd.
2015-01-01
The aim of the work reported in this article was to investigate the effects of medium temperature and industrial by-products on the key hardened properties of high performance concrete. Four concrete mixes were prepared based on a water-to-binder ratio of 0.35. Two industrial by-products, silica fume and Class F fly ash, were used separately and together with normal portland cement to produce three concrete mixes in addition to the control mix. The properties of both fresh and hardened concretes were examined in the laboratory. The freshly mixed concrete mixes were tested for slump, slump flow, and V-funnel flow. The hardened concretes were tested for compressive strength and dynamic modulus of elasticity after exposing to 20, 35 and 50 °C. In addition, the initial surface absorption and the rate of moisture movement into the concretes were determined at 20 °C. The performance of the concretes in the fresh state was excellent due to their superior deformability and good segregation resistance. In their hardened state, the highest levels of compressive strength and dynamic modulus of elasticity were produced by silica fume concrete. In addition, silica fume concrete showed the lowest level of initial surface absorption and the lowest rate of moisture movement into the interior of concrete. In comparison, the compressive strength, dynamic modulus of elasticity, initial surface absorption, and moisture movement rate of silica fume-fly ash concrete were close to those of silica fume concrete. Moreover, all concretes provided relatively low compressive strength and dynamic modulus of elasticity when they were exposed to 50 °C. However, the effect of increased temperature was less detrimental for silica fume and silica fume-fly ash concretes in comparison with the control concrete. PMID:28793732
Naganathan, Sivakumar; Razak, Hashim Abdul; Hamid, Siti Nadzriah Abdul
2010-09-01
Incineration of industrial waste produces large quantities of bottom ash which are normally sent to secured landfill, but is not a sustainable solution. Use of bottom ash in engineering applications will contribute to sustainability and generate revenue. One way of using the industrial waste incineration bottom ash is in controlled low-strength material (CLSM). Use of bottom ash in CLSM has problems related to bleeding and excessive strength development and so an additive has to be used to control bleeding and strength development. The main objective of this research is to study the effect of kaolin addition on the performance of CLSM made using industrial waste incineration bottom ash. CLSM mixes were made with bottom ash, cement, and refined kaolin. Various tests were performed on the CLSM in fresh and hardened states including compressive strength, water absorption, California bearing ratio (CBR) and the tests for concentration of leachable substances on the bleed and leachate. The compressive strength of CLSM tested ranged from 0.11 to 9.86 MPa. CBR values ranged from 6 to 46, and water absorption values from 12 to 36%. It was shown that the addition of kaolin delayed the initial setting time of CLSM mixtures, reduced bleeding, lowered the compressive strength, and increased the values of water absorption, sorption, and initial surface absorption. The CLSM tested did not have corrosivity. It was shown that the hardened CLSM was non hazardous, and the addition of kaolin increased the concentration of heavy metals and salts in the bleed and leachate.
Chen, Zhe; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin
2018-01-30
Wear occurs between two rubbing surfaces. Severe wear due to seizure under high pressure leads to catastrophic failures of mechanical systems and raises wide concerns. In this paper, a kind of synthetic oil-soluble ultrathin MoS 2 sheets is synthesized and investigated as lubricant additives between steel surfaces. It is found that, with the ultrathin MoS 2 sheets, the wear can be controlled under the nominal pressure of about 1 GPa, whereas the bearable nominal pressure for traditional lubricants is only a few hundred megapascals. It is found that when wear is under control, the real pressure between the asperities agrees with the breaking strength of ultrathin MoS 2 . Therefore, it is believed that, because of the good oil solubility and ultrasmall thickness, the ultrathin MoS 2 sheets can easily enter the contact area between the contacting asperities. Then, the localized seizure and further wear are prevented because there will be no metal-to-metal contact as long as the real pressure between the asperities is below the breaking strength of ultrathin MoS 2 . In this way, the upper limit pressure the lubricant can work is dependent on the mechanical properties of the containing ultrathin two-dimensional (2D) sheets. Additionally, ultrathin MoS 2 sheets with various lateral sizes are compared, and it is found that sheets with a larger size show better lubrication performance. This work discovers the lubrication mechanism of ultrathin MoS 2 sheets as lubricant additives and provides an inspiration to develop a novel generation of lubricant additives with high-strength ultrathin 2D materials.
An evaluation of the effects of PEO/PEG molecular weights on extruded alumina rods
NASA Astrophysics Data System (ADS)
Bolger, Nancy Beth
1998-12-01
Alumina rods were piston extruded from bodies containing polyethylene glycols (PEGs) and polyethylene oxides (PEOs) with molecular weights ranging from 1,300 to 3,800,000 g/mol. A blend of aluminas possessing different particle size distributions was evaluated with regard to its extrusion pressure by varying the amount of PEG/PEO addition. Behavior exhibited by the alumina blend was dependent upon the additive that was used. The higher molecular weight binders with average molecular weight of 200,000 g/mol and 3,350,000 g/mol displayed the most severe behaviors of near dilatant and dilatant respectively. Physical properties of the green and fired states, as well as the binder burnout, were investigated with the changing additions. Correlation between the green and fired strengths and the changing molecular weights were examined. The additive present influenced the surface properties of the rods, which affected the green strengths. The highest average molecular weight polyethylene glycols showed higher green strengths, while the lowest green strengths were observed for the high molecular weight polyethylene oxides. Fired strengths generally ranged from approximately 12,000 psi to 16,000 psi for additive batches. Alumina pellets containing twelve separate combinations of polyethylene glycol with polyethylene oxide were dry pressed. Physical properties of the green and fired states were examined. Statistical analysis was performed upon the data and seven combinations of polyethylene glycol with polyethylene oxide were deemed significant. These combinations in conjunction with the same alumina blend were then piston extruded. The addition of polyethylene glycol reduced the near dilatant behavior exhibited by the 200,000 g/mol average molecular weight polyethylene oxide. Dilatant behavior was completely eliminated from the 3,350,000 g/mol average molecular weight polyethylene oxide batches. Physical properties of the green and fired states were again investigated with the changing additions. Polyethylene oxide, in combination with polyethylene glycol, did show an increase in green strength versus the polyethylene oxide alone. Strengths were still lower than those displayed by the polyethylene glycols alone. Reductions or degradations in molecular weight of the polymers due to mixing and extrusion processes may account for lower green strength of bodies, especially those containing polyethylene oxides.
NASA Astrophysics Data System (ADS)
Lucking, Greg; Stark, Nina; Lippmann, Thomas; Smyth, Stephen
2017-10-01
Tidal estuaries feature spatially and temporally varying sediment dynamics and characteristics. Particularly, the variability of geotechnical sediment parameters is still poorly understood, limiting the prediction of long-term sediment stability and dynamics. This paper presents results from an in situ investigation of surficial sediments (≤50 cm) in a tidal estuary in New Hampshire (USA), using a portable free fall penetrometer. The aim is to investigate variations in sediment strength and pore pressure behavior with regard to sediment type and seabed morphology. The study also provides a detailed analysis of high velocity impact pore pressure data to derive information about sediment type and permeability. The penetrometer was deployed 227 times, and the findings are correlated to 78 sediment samples. Differences in sediment strength and type were found when transitioning from tidal flats to the deeper channels. Finer-grained sediments located predominantly on the tidal flats appeared well consolidated with noticeable and spatially consistent sediment strength (reflected in an estimate of quasi-static bearing capacity qsbcmax 10 kPa). Sediments with higher sand content (>75%) showed more variations in strength relating to differences in gradation, and likely represent loose and poorly consolidated sands (qsbcmax 10-55 kPa). The rate at which the recorded excess pore pressures approached equilibrium after penetration was classified and related to sediment type. The data indicate that the development of excess pore pressures upon impact and during penetration may provide additional insight into the nature and layering of bed material, such as identifying a desiccated or over-consolidated dilative surficial layer. In summary, with varying sediment grain size distributions, bulk densities and morphology, sediment strength and pore pressure behavior can vary significantly within a tidal estuary.
Intermuscular Fat: A Review of the Consequences and Causes
Marcus, Robin L.; LaStayo, Paul C.; Ryan, Alice S.
2014-01-01
Muscle's structural composition is an important factor underlying muscle strength and physical function in older adults. There is an increasing amount of research to support the clear disassociation between the loss of muscle lean tissue mass and strength with aging. This disassociation implies that factors in addition to lean muscle mass are responsible for the decreases in strength and function seen with aging. Intermuscular adipose tissue (IMAT) is a significant predictor of both muscle function and mobility function in older adults and across a wide variety of comorbid conditions such as stroke, spinal cord injury, diabetes, and COPD. IMAT is also implicated in metabolic dysfunction such as insulin resistance. The purpose of this narrative review is to provide a review of the implications of increased IMAT levels in metabolic, muscle, and mobility function. Potential treatment options to mitigate increasing levels of IMAT will also be discussed. PMID:24527032
Feedback Seeking in Early Adolescence: Self-Enhancement or Self-Verification?
Rosen, Lisa H; Principe, Connor P; Langlois, Judith H
2013-02-13
The authors examined whether early adolescents ( N = 90) solicit self-enhancing feedback (i.e., positive feedback) or self-verifying feedback (i.e., feedback congruent with self-views, even when these views are negative). Sixth, seventh, and eighth graders first completed a self-perception measure and then selected whether to receive positive or negative feedback from an unknown peer in different domains of self. Results were consistent with self-verification theory; adolescents who perceived themselves as having both strengths and weaknesses were more likely to seek negative feedback regarding a self-perceived weakness compared to a self-perceived strength. The authors found similar support for self-verification processes when they considered the entire sample regardless of perceived strengths and weaknesses; hierarchical linear modeling (HLM) examined the predictive power of ratings of self-perceived ability, certainty, and importance on feedback seeking for all participants and provided additional evidence of self-verification strivings in adolescence.
Feedback Seeking in Early Adolescence: Self-Enhancement or Self-Verification?
Rosen, Lisa H.; Principe, Connor P.; Langlois, Judith H.
2012-01-01
The authors examined whether early adolescents (N = 90) solicit self-enhancing feedback (i.e., positive feedback) or self-verifying feedback (i.e., feedback congruent with self-views, even when these views are negative). Sixth, seventh, and eighth graders first completed a self-perception measure and then selected whether to receive positive or negative feedback from an unknown peer in different domains of self. Results were consistent with self-verification theory; adolescents who perceived themselves as having both strengths and weaknesses were more likely to seek negative feedback regarding a self-perceived weakness compared to a self-perceived strength. The authors found similar support for self-verification processes when they considered the entire sample regardless of perceived strengths and weaknesses; hierarchical linear modeling (HLM) examined the predictive power of ratings of self-perceived ability, certainty, and importance on feedback seeking for all participants and provided additional evidence of self-verification strivings in adolescence. PMID:23543746
A study on the strength of an armour-grade aluminum under high strain-rate loading
NASA Astrophysics Data System (ADS)
Appleby-Thomas, G. J.; Hazell, P. J.
2010-06-01
The aluminum alloy 5083 in tempers such as H32 and H131 is an established light-weight armour material. While its dynamic response under high strain-rates has been investigated elsewhere, little account of the effect of material orientation has been made. In addition, little information on its strength under such loadings is available in the literature. Here, both the longitudinal and lateral components of stress have been measured using embedded manganin stress gauges during plate-impact experiments on samples with the rolling direction aligned both orthogonal and parallel to the impact axis. The Hugoniot elastic limit, spall, and shear strengths were investigated for incident pressures in the range 1-8 GPa, providing an insight into the response of this alloy under shock loading. Further, the time dependence of lateral stress behind the shock front was investigated to give an indication of material response.
High performance aluminum–cerium alloys for high-temperature applications
Sims, Zachary C.; Rios, Orlando R.; Weiss, David; ...
2017-08-01
Light-weight high-temperature alloys are important to the transportation industry where weight, cost, and operating temperature are major factors in the design of energy efficient vehicles. Aluminum alloys fill this gap economically but lack high-temperature mechanical performance. Alloying aluminum with cerium creates a highly castable alloy, compatible with traditional aluminum alloy additions, that exhibits dramatically improved high-temperature performance. These compositions display a room temperature ultimate tensile strength of 400 MPa and yield strength of 320 MPa, with 80% mechanical property retention at 240 °C. A mechanism is identified that addresses the mechanical property stability of the Al-alloys to at least 300more » °C and their microstructural stability to above 500 °C which may enable applications without the need for heat treatment. Lastly, neutron diffraction under load provides insight into the unusual mechanisms driving the mechanical strength.« less
Mechanical properties of graphene oxides.
Liu, Lizhao; Zhang, Junfeng; Zhao, Jijun; Liu, Feng
2012-09-28
The mechanical properties, including the Young's modulus and intrinsic strength, of graphene oxides are investigated by first-principles computations. Structural models of both ordered and amorphous graphene oxides are considered and compared. For the ordered graphene oxides, the Young's modulus is found to vary from 380 to 470 GPa as the coverage of oxygen groups changes, respectively. The corresponding variations in the Young's modulus of the amorphous graphene oxides with comparable coverage are smaller at 290-430 GPa. Similarly, the ordered graphene oxides also possess higher intrinsic strength compared with the amorphous ones. As coverage increases, both the Young's modulus and intrinsic strength decrease monotonically due to the breaking of the sp(2) carbon network and lowering of the energetic stability for the ordered and amorphous graphene oxides. In addition, the band gap of the graphene oxide becomes narrower under uniaxial tensile strain, providing an efficient way to tune the electronic properties of graphene oxide-based materials.
Additively manufactured hierarchical stainless steels with high strength and ductility.
Wang, Y Morris; Voisin, Thomas; McKeown, Joseph T; Ye, Jianchao; Calta, Nicholas P; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T; Santala, Melissa K; Depond, Philip J; Matthews, Manyalibo J; Hamza, Alex V; Zhu, Ting
2018-01-01
Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.
Additively manufactured hierarchical stainless steels with high strength and ductility
NASA Astrophysics Data System (ADS)
Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; Ye, Jianchao; Calta, Nicholas P.; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T.; Santala, Melissa K.; Depond, Philip J.; Matthews, Manyalibo J.; Hamza, Alex V.; Zhu, Ting
2018-01-01
Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.
Thermal and mechanical behaviour of sub micron sized fly ash reinforced polyester resin composite
NASA Astrophysics Data System (ADS)
Nantha Kumar, P.; Rajadurai, A.; Muthuramalingam, T.
2018-04-01
The utilization of particles reinforced resin matrix composites is being increased owing to its lower density and high strength to weight ratio. In the present study, an attempt has been made to synthesize fly ash particles reinforced polyester resin composite for engine cowling application. The thermal stability and mechanical behaviours such as hardness and flexural strength of the composite with 2, 3 and 4 weight % of reinforcement is studied and analyzed. The thermo gravimetric analysis indicates that the higher addition of reinforcement increases the decomposition temperature due to its refractory nature. It is also observed that the hardness increases with higher filler addition owing to the resistance of FA particles towards penetration. The flexural strength is found to increase up to the addition of 3% of FA particles, whereas the polyester resin composite prepared with 4% FA particles addition is observed to have low flexural strength owing to agglomeration of particles.
Foam concrete of increased strength with the thermomodified peat additives
NASA Astrophysics Data System (ADS)
Kudyakov, A. I.; Kopanitsa, N. O.; Sarkisov, Ju S.; Kasatkina, A. V.; Prischepa, I. A.
2015-01-01
The paper presents the results of research of foam concrete with thermomodified peat additives. The aim of the research was to study the effect of modifying additives on cement stone and foam concrete properties. Peat additives are prepared by heat treatment of peat at 600 °C. Two approaches of obtaining additives are examined: in condition of open air access (TMT-600) and in condition of limited air access (TMT-600-k). Compressive strength of a cement stone with modifiers found to be increased by 28.9 - 65.2%. Introducing peat modifiers into foam concrete mix leads to increase of compressive strength by 44-57% at 28- day age and heat conductivity of foam concrete decreases by 0.089 W/(m·°C).
Park, Gayoung; Kim, Yun Hee; Kim, Dong Soo; Ko, Young Chun
2010-05-01
Morphology and vulcanizate properties of EPDM/SBR blends were investigated. AAHR (a mixture of aliphatic and aromatic hydrocarbon resins) was used as a compatibilizer and bis(3-triethoxysilylpropyl)tetrasulfide (TESPT) was used as a coupling agent. The vulcanizate properties and the morphological studies revealed that EPDM and SBR were incompatible, and the addition of AAHR was very effective to enhance the compatibility between EPDM and SBR. The weight percent of bound rubbers was increased with increasing SBR contents. The addition of an AAHR increased the amounts of bound rubbers, and hence the vulcanizate properties such as tear strength and fatigue resistance of the EPDM/SBR blends were improved. The dynamic mechanical analysis and the morphological studies revealed that the addition of TESPT increased the weight of bound rubbers and provided better dispersion of carbon black, resulting in good mechanical properties such as tear strength and fatigue resistance of the vulcanized EPDM/SBR blends. The smaller particle of zinc oxide (i.e., 50 nm > 100 nm > 1000 nm) yielded to the better blending properties of the polymer blend.
Boron carbide nanostructures: A prospective material as an additive in concrete
NASA Astrophysics Data System (ADS)
Singh, Paviter; Kaur, Gurpreet; Kumar, Rohit; Kumar, Umesh; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Kumar, Akshay
2018-05-01
In recent decades, manufacture and ingestion of concrete have increased particularly in developing countries. Due to its low cost, safety and strength, concrete have become an economical choice for protection of radiation shielding material in nuclear reactors. As boron carbide has been known as a neutron absorber material makes it a great candidate as an additive in concrete for shielding radiation. This paper presents the synthesis of boron carbide nanostructures by using ball milling method. The X-ray diffraction pattern, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope analysis confirms the formation of boron carbide nanostructures. The effect of boron carbide nanostructures on the strength of concrete samples was demonstrated. The compressive strength tests of concrete cube B4C powder additives for 0 % and 5 % of total weight of cement was compared for different curing time period such as 7, 14, 21 and 28 days. The high compressive strength was observed when 5 wt % boron carbide nanostructures were used as an additive in concrete samples after 28 days curing time and showed significant improvement in strength.
Low-energy modification of the γ strength function of the odd-even nucleus 115In
NASA Astrophysics Data System (ADS)
Versteegen, Maud; Denis-Petit, David; Méot, Vincent; Bonnet, Thomas; Comet, Maxime; Gobet, Franck; Hannachi, Fazia; Tarisien, Medhi; Morel, Pascal; Martini, Marco; Péru, Sophie
2016-10-01
Photoactivation yield measurements on 115In have been performed at the ELSA facility with Bremsstrahlung photon beams over a range of endpoint energies between 4.5 and 18 MeV. The measured photoexcitation yields of the Inm115 metastable state are compared with calculated yields using cross sections obtained with different models of the photon strength function. It is shown that additional photon strength with respect to the general Lorentzian model is needed at 8.1 MeV for the calculated yields to reproduce the data. The origin of this extra strength is unclear, because it is compatible with additional strength predicted in both E 1 and M 1 photon strength distributions by quasiparticle random-phase approximation calculations using the Gogny D1S force.
Guneser, Mehmet Burak; Arslan, Dilara; Dincer, Asiye Nur; Er, Gamze
2017-05-01
This study evaluated the effect of sodium hypochlorite (NaOCl) irrigation with or without surfactants on the bond strength of an epoxy-based sealer to the root canal dentin. Eighty decoronated single-rooted human mandibular premolars were instrumented using the rotary system. The roots were subsequently rinsed with 5 ml 17 % EDTA for 1 min and then randomly divided into 3 test groups (n = 20) and 1 control group (n = 20) according to the type of irrigation with experimental 5 % NaOCl (Wizard, RehberKimya, Istanbul, Turkey) solutions: Group 1: NaOCl-0.1 % benzalkonium chloride; Group 2: NaOCl-0.1 % Tween 80; Group 3: NaOCl-0.1 % Triton X-100; control group: NaOCl without any surfactants. Five samples from each group were prepared for scanning electron microscopy to examine the surface of root canal dentin. The 15 samples remaining in each group were obturated with gutta-percha and AH Plus (Dentsply DeTrey GmbH, Konstanz, Germany) using the cold lateral compaction technique. A push-out test was used to measure the bond strength between the sealer and root canal dentin. Data were analyzed using two-way analysis of variance and Tukey's post hoc tests (P = 0.05). The NaOCl-0.1 % Triton X-100 group demonstrated the highest mean bond-strength values in all root thirds among the groups (P < 0.05). However, the bond strength of the sealer in the NaOCl-0.1 % benzalkonium chloride and NaOCl-0.1 % Tween 80 groups did not differ from that in the control group (P > 0.05). Additionally, the bond-strength values decreased in the corono-apical direction for all groups (P < 0.05). NaOCl solution with Triton X-100 can provide higher bond strength of the epoxy resin-based sealer to root dentin compared to NaOCl solution wiithout any surfactant. The bond strength of sealer to dentin can be improved by the addition of the surfactants to NaOCl solution.
Alumina Matrix Composites with Non-Oxide Nanoparticle Addition and Enhanced Functionalities
Galusek, Dušan; Galusková, Dagmar
2015-01-01
The addition of SiC or TiC nanoparticles to polycrystalline alumina matrix has long been known as an efficient way of improving the mechanical properties of alumina-based ceramics, especially strength, creep, and wear resistance. Recently, new types of nano-additives, such as carbon nanotubes (CNT), carbon nanofibers (CNF), and graphene sheets have been studied in order not only to improve the mechanical properties, but also to prepare materials with added functionalities, such as thermal and electrical conductivity. This paper provides a concise review of several types of alumina-based nanocomposites, evaluating the efficiency of various preparation methods and additives in terms of their influence on the properties of composites. PMID:28347002
3D printing of high-strength aluminium alloys
NASA Astrophysics Data System (ADS)
Martin, John H.; Yahata, Brennan D.; Hundley, Jacob M.; Mayer, Justin A.; Schaedler, Tobias A.; Pollock, Tresa M.
2017-09-01
Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel superalloys and intermetallics. Furthermore, this technology could be used in conventional processing such as in joining, casting and injection moulding, in which solidification cracking and hot tearing are also common issues.
3D printing of high-strength aluminium alloys.
Martin, John H; Yahata, Brennan D; Hundley, Jacob M; Mayer, Justin A; Schaedler, Tobias A; Pollock, Tresa M
2017-09-20
Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel superalloys and intermetallics. Furthermore, this technology could be used in conventional processing such as in joining, casting and injection moulding, in which solidification cracking and hot tearing are also common issues.
ERIC Educational Resources Information Center
Schroeder, A.; Minocha, S.; Schneider, C.
2010-01-01
Social software is increasingly being used in higher and further education to support teaching and learning processes. These applications provide students with social and cognitive stimulation and also add to the interaction between students and educators. However, in addition to the benefits the introduction of social software into a course…
The Center Does Hold: The Sociological Literacy Framework
ERIC Educational Resources Information Center
Ferguson, Susan J.
2016-01-01
This article provides a critique and an addition to observations raised by Ballantine et al. in this issue. After reviewing the strengths of Ballantine et al.'s article about the need for a core in sociology, I argue that this debate has gone on long enough and needs to be reframed around areas of agreement. Three major curricular projects (that…
Firth, Joseph; Stubbs, Brendon; Vancampfort, Davy; Firth, Josh A; Large, Matthew; Rosenbaum, Simon; Hallgren, Mats; Ward, Philip B; Sarris, Jerome; Yung, Alison R
2018-06-06
Handgrip strength may provide an easily-administered marker of cognitive functional status. However, further population-scale research examining relationships between grip strength and cognitive performance across multiple domains is needed. Additionally, relationships between grip strength and cognitive functioning in people with schizophrenia, who frequently experience cognitive deficits, has yet to be explored. Baseline data from the UK Biobank (2007-2010) was analyzed; including 475397 individuals from the general population, and 1162 individuals with schizophrenia. Linear mixed models and generalized linear mixed models were used to assess the relationship between grip strength and 5 cognitive domains (visual memory, reaction time, reasoning, prospective memory, and number memory), controlling for age, gender, bodyweight, education, and geographical region. In the general population, maximal grip strength was positively and significantly related to visual memory (coefficient [coeff] = -0.1601, standard error [SE] = 0.003), reaction time (coeff = -0.0346, SE = 0.0004), reasoning (coeff = 0.2304, SE = 0.0079), number memory (coeff = 0.1616, SE = 0.0092), and prospective memory (coeff = 0.3486, SE = 0.0092: all P < .001). In the schizophrenia sample, grip strength was strongly related to visual memory (coeff = -0.155, SE = 0.042, P < .001) and reaction time (coeff = -0.049, SE = 0.009, P < .001), while prospective memory approached statistical significance (coeff = 0.233, SE = 0.132, P = .078), and no statistically significant association was found with number memory and reasoning (P > .1). Grip strength is significantly associated with cognitive functioning in the general population and individuals with schizophrenia, particularly for working memory and processing speed. Future research should establish directionality, examine if grip strength also predicts functional and physical health outcomes in schizophrenia, and determine whether interventions which improve muscular strength impact on cognitive and real-world functioning.
Quantum phases of dipolar rotors on two-dimensional lattices
NASA Astrophysics Data System (ADS)
Abolins, B. P.; Zillich, R. E.; Whaley, K. B.
2018-03-01
The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.
Cha, Ruitao; Wang, Chengyu; Cheng, Shaoling; He, Zhibin; Jiang, Xingyu
2014-09-22
Specialty paper (e.g. cigarette paper and battery diaphragm paper) requires extremely high strength properties. The addition of strength agents plays an important role in increasing strength properties of paper. Nanocrystalline cellulose (NCC), or cellulose whiskers, has the potential to enhance the strength properties of paper via improving inter-fibers bonding. This paper was to determine the potential of using carboxylated nanocrystalline cellulose (CNCC) to improve the strength properties of paper made of cellulosic fiber or poly (vinyl alcohol) (PVA) fiber. The results indicated that the addition of CNCC can effectively improve the strength properties. At a CNCC dosage of 0.7%, the tear index and tensile index of the cellulosic paper reached the maximum of 12.8 mN m2/g and 100.7 Nm/g, respectively. More importantly, when increasing the CNCC dosage from 0.1 to 1.0%, the tear index and tensile index of PVA fiber paper were increased by 67.29%, 22.55%, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The demand of high strength of cotton fibers has been increased dramatically with the advent of modern high speed spinning technology for producing yarn. Bundle fiber strength is affected by fiber-to-fiber interactions in addition to the individual fiber strength. The bundle fiber strength is not al...
Design and development of a 3D printed UAV
NASA Astrophysics Data System (ADS)
Banfield, Christopher P.
The purpose of this project was to investigate the viability and practicality of using a desktop 3D printer to fabricate small UAV airframes. To that end, ASTM based bending and tensile tests were conducted to assess the effects of print orientation, infill density, infill pattern, and infill orientation on the structural properties of 3D printed components. A Vernier Structures & Materials Tester was used to record force and displacement data from which stress-strain diagrams, yielding strength, maximum strength, and the moduli of elasticity were found. Results indicated that print orientation and infill density had the greatest impact on strength. In bending, vertically printed test pieces showed the greatest strength, with yield strengths 1.6 - 10.4% higher than conventionally extruded ABS's 64.0MPa average flexural strength. In contrast, the horizontally printed specimens showed yield strengths reduced anywhere from 17.0 - 34.9%. The tensile test specimens also exhibited reduced strength relative to ABS's average tensile yield strength of 40.7MPa. Test pieces with 20% infill density saw strength reductions anywhere from 47.8 - 55.6%, and those with 50% saw strength reductions from 33.6 - 47.8%. Only a single test piece with 100%, 45° crisscross infill achieved tensile performance on par with that of conventionally fabricated ABS. Its yield strength was 43MPa, a positive strength difference of 5.5%. As a supplement to the tensile and bending tests, a prototype printable airplane, the Phoebe, was designed. Its development process in turn provided the opportunity to develop techniques for printing various aircraft components such as fuselage sections, airfoils, and live-in hinges. Initial results seem promising, with the prototype's first production run requiring 19 hours of print time and an additional 4 - 5 hours of assembly time. The maiden flight test demonstrated that the design was stable and controllable in sustained flight.
NASA Astrophysics Data System (ADS)
Hill, Christopher Brandon
Carbon fiber reinforced composite materials have become commonplace in many industries including aerospace, automotive, and sporting goods. Previous research has determined a coupling relationship between the mechanical and electrical properties of these materials where the application of electrical current has been shown to improve their mechanical strengths. The next generations of these composites have started to be produced with the addition of nanocarbon buckypaper layers which provide even greater strength and electrical conductivity potentials. The focus of this current research was to characterize these new composites and compare their electro-mechanical coupling capabilities to those composites which do not contain any nonocarbons.
Stress-strain response of plastic waste mixed soil.
Babu, G L Sivakumar; Chouksey, Sandeep Kumar
2011-03-01
Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations. Copyright © 2010 Elsevier Ltd. All rights reserved.
von Carlowitz-Ghori, K; Bayraktaroglu, Z; Waterstraat, G; Curio, G; Nikulin, V V
2015-04-02
Corticomuscular coherence (CMC) relates to synchronization between activity in the motor cortex and the muscle activity. The strength of CMC can be affected by motor behavior. In a proof-of-principle study, we examined whether independent of motor output parameters, healthy subjects are able to voluntarily modulate CMC in a neurofeedback paradigm. Subjects received visual online feedback of their instantaneous CMC strength, which was calculated between an optimized spatial projection of multichannel electroencephalography (EEG) and electromyography (EMG) in an individually defined target frequency range. The neurofeedback training consisted of either increasing or decreasing CMC strength using a self-chosen mental strategy while performing a simple motor task. Evaluation of instantaneous coherence showed that CMC strength was significantly larger when subjects had to increase than when to decrease CMC; this difference between the two task conditions did not depend on motor performance. The exclusion of confounding factors such as motor performance, attention and task complexity in study design provides evidence that subjects were able to voluntarily modify CMC independent of motor output parameters. Additional analysis further strengthened the assumption that the subjects' response was specifically shaped by the neurofeedback. In perspective, we suggest that CMC-based neurofeedback could provide a therapeutic approach in clinical conditions, such as motor stroke, where CMC is altered. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Spray automated balancing of rotors: Methods and materials
NASA Technical Reports Server (NTRS)
Smalley, Anthony J.; Baldwin, Richard M.; Schick, Wilbur R.
1988-01-01
The work described consists of two parts. In the first part, a survey is performed to assess the state of the art in rotor balancing technology as it applies to Army gas turbine engines and associated power transmission hardware. The second part evaluates thermal spray processes for balancing weight addition in an automated balancing procedure. The industry survey reveals that: (1) computerized balancing equipment is valuable to reduce errors, improve balance quality, and provide documentation; (2) slow-speed balancing is used exclusively, with no forseeable need for production high-speed balancing; (3) automated procedures are desired; and (4) thermal spray balancing is viewed with cautious optimism whereas laser balancing is viewed with concern for flight propulsion hardware. The FARE method (Fuel/Air Repetitive Explosion) was selected for experimental evaluation of bond strength and fatigue strength. Material combinations tested were tungsten carbide on stainless steel (17-4), Inconel 718 on Inconel 718, and Triballoy 800 on Inconel 718. Bond strengths were entirely adequate for use in balancing. Material combinations have been identified for use in hot and cold sections of an engine, with fatigue strengths equivalent to those for hand-ground materials.
Developing an Asteroid Rotational Theory
NASA Astrophysics Data System (ADS)
Geis, Gena; Williams, Miguel; Linder, Tyler; Pakey, Donald
2018-01-01
The goal of this project is to develop a theoretical asteroid rotational theory from first principles. Starting at first principles provides a firm foundation for computer simulations which can be used to analyze multiple variables at once such as size, rotation period, tensile strength, and density. The initial theory will be presented along with early models of applying the theory to the asteroid population. Early results confirm previous work by Pravec et al. (2002) that show the majority of the asteroids larger than 200m have negligible tensile strength and have spin rates close to their critical breakup point. Additionally, results show that an object with zero tensile strength has a maximum rotational rate determined by the object’s density, not size. Therefore, an iron asteroid with a density of 8000 kg/m^3 would have a minimum spin period of 1.16h if the only forces were gravitational and centrifugal. The short-term goal is to include material forces in the simulations to determine what tensile strength will allow the high spin rates of asteroids smaller than 150m.
Measuring the B(E2) of the 1/2- ->3/2- transition in 7 Be
NASA Astrophysics Data System (ADS)
Henderson, S. L.; Ahn, T.; Caprio, M. A.; Constantinou, Ch.; Simon, A.; Twinsol Collaboration
2017-09-01
Ab-initio methods have been successful in describing the structure of light nuclei using realistic nucleon-nucleon interactions, but more experimental data is needed for light unstable nuclei. Recent no-core configuration interaction calculations have made predictions for the ratio of E2 transition strengths for the first excited state transition in 7 Be and 7 Li . Additional calculations that include clustering effects show a significant difference in the 7 Be and 7 Li B(E2) value. The E2 transition strength of the 7 Be first excited state has never been measured, which provides an interesting opportunity to investigate the accuracy of these calculations. To measure this E2 transition strength, a Coulomb Excitation experiment was performed at the University of Notre Dame. 7 Be was produced and separated using TwinSol. A beam of 7 Be ions were scattered off a gold target and the gamma rays from the inelastically scattered ions were detected using six clover Ge detectors. The most recent results for the E2 transition strength and its comparison to the no-core configuration interaction approach will be shown. In addition, new systematic checks on the experiment will be presented including the first stages of a Geant4 simulation to help account for beam anisotropies. This work has been supported by US NSF Grant No. PHY 14-19765 and DOE Grant Number DE-FG02-95ER-40934.
NASA Astrophysics Data System (ADS)
Sun, Zhongji; Tan, Xipeng; Tor, Shu Beng; Chua, Chee Kai
2018-04-01
Laser-based powder-bed fusion additive manufacturing or three-dimensional printing technology has gained tremendous attention due to its controllable, digital, and automated manufacturing process, which can afford a refined microstructure and superior strength. However, it is a major challenge to additively manufacture metal parts with satisfactory ductility and toughness. Here we report a novel selective laser melting process to simultaneously enhance the strength and ductility of stainless steel 316L by in-process engineering its microstructure into a <011> crystallographic texture. We find that the tensile strength and ductility of SLM-built stainless steel 316L samples could be enhanced by 16% and 40% respectively, with the engineered <011> textured microstructure compared to the common <001> textured microstructure. This is because the favorable nano-twinning mechanism was significantly more activated in the <011> textured stainless steel 316L samples during plastic deformation. In addition, kinetic simulations were performed to unveil the relationship between the melt pool geometry and crystallographic texture. The new additive manufacturing strategy of engineering the crystallographic texture can be applied to other metals and alloys with twinning-induced plasticity. This work paves the way to additively manufacture metal parts with high strength and high ductility.
Fisher, J; Van-Dongen, M; Sutherland, R
2014-10-08
Research considering combined vibration and strength training is extensive yet results are equivocal. However, to date there appears no research which has considered the combination of both direct vibration and whole---body vibration when used in an isometric deadlift position. The aims of this study were to compare groups performing isometric training with and without direct and whole---body vibration. Twenty four participants (19---24 years) were randomly divided into: isometric training with vibration (ST+VT: n=8), isometric training without vibration (ST: n=8), and control (CON: n=8). Within the training groups participants trained twice per week, for 6 weeks, performing 6---sets of maximal isometric deadlift contractions, increasing in duration from 30 seconds to 40 seconds (weeks 1---6). Hip and knee angle was maintained at 60° and 110°, respectively for both testing and training. Training sessions for ST+VT were identical to ST with the addition of a direct vibratory stimulus through hand---held straps and whole---body vibration via standing on vibration a platform. The amplitude remained constant (2mm) throughout the intervention whilst the frequency increased from 35Hz to 50Hz. Pre--- and post---test isometric strength was measured using an isometric deadlift dynamometer. Results revealed significant increases in isometric strength for both ST+VT (p < 0.001, 23.8%) and ST (p < 0.001, 32.5%) compared to CON, with no significant differences between ST+VT and ST training groups. The present study provides evidence to suggest that there are no greater gains to be incurred by the addition of a vibratory stimulus to traditional strength training.
Fisher, J; Van-Dongen, M; Sutherland, R
2015-09-01
Research considering combined vibration and strength training is extensive yet results are equivocal. However, to date there appears no research which has considered the combination of both direct vibration and whole-body vibration when used in an isometric deadlift position. The aim of this study was to compare groups performing isometric training with and without direct and whole-body vibration. Twenty four participants (19-24 years) were randomly divided into: isometric training with vibration (ST+VT: N.=8), isometric training without vibration (ST: N.=8), and control (CON: N.=8). Within the training groups participants trained twice per week, for 6 weeks, performing 6-sets of maximal isometric deadlift contractions, increasing in duration from 30 seconds to 40 seconds (weeks 1-6). Hip and knee angle was maintained at 60° and 110°, respectively for both testing and training. Training sessions for ST+VT were identical to ST with the addition of a direct vibratory stimulus through hand-held straps and whole-body vibration via standing on vibration a platform. The amplitude remained constant (2 mm) throughout the intervention whilst the frequency increased from 35Hz to 50Hz. Pre- and post-test isometric strength was measured using an isometric deadlift dynamometer. Results revealed significant increases in isometric strength for both ST+VT (P<0.001, 23.8%) and ST (P<0.001, 32.5%) compared to CON, with no significant differences between ST+VT and ST training groups. The present study provides evidence to suggest that there are no greater gains to be incurred by the addition of a vibratory stimulus to traditional strength training.
Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida
2016-01-01
This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Isokinetic muscular strength and power were increased ( P < 0.05) in participants of both RT and RT-LRS groups. RT-LRS group had shown increases ( P < 0.05) in shoulder extension peak torque, shoulder flexion and extension average power, knee flexion peak torque, and knee flexion and extension average power. There were also increases ( P < 0.05) in anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases ( P < 0.05) in shoulder flexion average power, knee flexion and extension peak torque, and knee flexion and extension average power. In addition, increases ( P < 0.05) in anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits.
Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida
2016-01-01
Background: This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Methods: Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Results: Isokinetic muscular strength and power were increased (P < 0.05) in participants of both RT and RT-LRS groups. RT-LRS group had shown increases (P < 0.05) in shoulder extension peak torque, shoulder flexion and extension average power, knee flexion peak torque, and knee flexion and extension average power. There were also increases (P < 0.05) in anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases (P < 0.05) in shoulder flexion average power, knee flexion and extension peak torque, and knee flexion and extension average power. In addition, increases (P < 0.05) in anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. Conclusions: RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits. PMID:27833721
Reinforced cementitous composite with in situ shrinking microfibers
NASA Astrophysics Data System (ADS)
Kim, Eric S.; Lee, Jason K.; Lee, Patrick C.; Huston, Dryver R.; Tan, Ting; Al-Ghamdi, Saleh
2017-03-01
This paper describes an innovative fiber reinforcement technology for cementitious composite structures that employs in situ shrinking microfibers to provide supplemental strength-enhancing compressive stresses. Reinforced concrete is one of the most commonly used structural materials in construction industry, primarily due to its cost, durability, ability to be easily fabricated into a variety of shapes on site, and locally abundant raw material availability almost everywhere. Unlike incumbent passive reinforcing microfiber technology, in situ shrinking microfibers that respond to an in situ stimulus such as heat, pH, or moisture variations can induce pre-compression to matrix and create additional resistance from external loads, creating stronger composite structures. In this paper, heat-activated-shrinking (HAS) microfibers made from polyolefin, and pH-activated-shrinking (pHAS) microfibers made from chitosan powder were used to study effects of shrinking microfiber reinforcing in concrete. Shrinking ratios and tensile strengths of both microfibers were measured. Cementitious specimens with active shrinking microfibers, passive non shrinking fibers, as well as control samples were made. Mechanical properties of the samples were compared with compression and three-point bending tests. The optimum microfiber weight percentages for HAS microfibers were 0.5 wt% in compression tests, and 1.0 wt% in three-point bending tests. For pHAS microfibers, the optimum weight percentages were 0.5 wt% in three-point bending tests. Compared to heat passive microfibers specimens, 45% increase in the maximum compression strengths, and 124% increase in the maximum bending strengths were achieved at the optimum weight percentages of HAS microfibers. In addition, with 0.5 wt% of pHAS microfibers, 145% increase in the maximum bending strengths of three-point bending tests resulted compared to pH passive microfibers specimens.
Dynapenia and Aging: An Update
Clark, Brian C.
2012-01-01
In 2008, we published an article arguing that the age-related loss of muscle strength is only partially explained by the reduction in muscle mass and that other physiologic factors explain muscle weakness in older adults (Clark BC, Manini TM. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci. 2008;63:829–834). Accordingly, we proposed that these events (strength and mass loss) be defined independently, leaving the term “sarcopenia” to be used in its original context to describe the age-related loss of muscle mass. We subsequently coined the term “dynapenia” to describe the age-related loss of muscle strength and power. This article will give an update on both the biological and clinical literature on dynapenia—serving to best synthesize this translational topic. Additionally, we propose a working decision algorithm for defining dynapenia. This algorithm is specific to screening for and defining dynapenia using age, presence or absence of risk factors, a grip strength screening, and if warranted a test for knee extension strength. A definition for a single risk factor such as dynapenia will provide information in building a risk profile for the complex etiology of physical disability. As such, this approach mimics the development of risk profiles for cardiovascular disease that include such factors as hypercholesterolemia, hypertension, hyperglycemia, etc. Because of a lack of data, the working decision algorithm remains to be fully developed and evaluated. However, these efforts are expected to provide a specific understanding of the role that dynapenia plays in the loss of physical function and increased risk for disability among older adults. PMID:21444359
Dynapenia and aging: an update.
Manini, Todd M; Clark, Brian C
2012-01-01
In 2008, we published an article arguing that the age-related loss of muscle strength is only partially explained by the reduction in muscle mass and that other physiologic factors explain muscle weakness in older adults (Clark BC, Manini TM. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci. 2008;63:829-834). Accordingly, we proposed that these events (strength and mass loss) be defined independently, leaving the term "sarcopenia" to be used in its original context to describe the age-related loss of muscle mass. We subsequently coined the term "dynapenia" to describe the age-related loss of muscle strength and power. This article will give an update on both the biological and clinical literature on dynapenia-serving to best synthesize this translational topic. Additionally, we propose a working decision algorithm for defining dynapenia. This algorithm is specific to screening for and defining dynapenia using age, presence or absence of risk factors, a grip strength screening, and if warranted a test for knee extension strength. A definition for a single risk factor such as dynapenia will provide information in building a risk profile for the complex etiology of physical disability. As such, this approach mimics the development of risk profiles for cardiovascular disease that include such factors as hypercholesterolemia, hypertension, hyperglycemia, etc. Because of a lack of data, the working decision algorithm remains to be fully developed and evaluated. However, these efforts are expected to provide a specific understanding of the role that dynapenia plays in the loss of physical function and increased risk for disability among older adults.
NASA Astrophysics Data System (ADS)
Song, Ningfang; Wu, Chunxiao; Luo, Wenyong; Zhang, Zuchen; Li, Wei
2016-12-01
High strength fusion splicing hollow core photonic crystal fiber (HC-PCF) and single-mode fiber (SMF) requires sufficient energy, which results in collapse of the air holes inside HC-PCF. Usually the additional splice loss induced by the collapse of air holes is too large. By large offset reheating, the collapse length of HC-PCF is reduced, thus the additional splice loss induced by collapse is effectively suppressed. This method guarantees high-strength fusion splicing between the two types of fiber with a low splice loss. The strength of the splice compares favorably with the strength of HC-PCF itself. This method greatly improves the reliability of splices between HC-PCFs and SMFs.
Toughening of Epoxy Adhesives by Combined Interaction of Carbon Nanotubes and Silsesquioxanes
Barra, Giuseppina; Vertuccio, Luigi; Vietri, Umberto; Naddeo, Carlo; Guadagno, Liberata
2017-01-01
The extensive use of adhesives in many structural applications in the transport industry and particularly in the aeronautic field is due to numerous advantages of bonded joints. However, still many researchers are working to enhance the mechanical properties and rheological performance of adhesives by using nanoadditives. In this study the effect of the addition of Multi-Wall Carbon Nanotubes (MWCNTs) with Polyhedral Oligomeric Silsesquioxane (POSS) compounds, either Glycidyl Oligomeric Silsesquioxanes (GPOSS) or DodecaPhenyl Oligomeric Silsesquioxanes (DPHPOSS) to Tetraglycidyl Methylene Dianiline (TGMDA) epoxy formulation, was investigated. The formulations contain neither a tougher matrix such as elastomers nor other additives typically used to provide a closer match in the coefficient of thermal expansion in order to discriminate only the effect of the addition of the above-mentioned components. Bonded aluminium single lap joints were made using both untreated and Chromic Acid Anodisation (CAA)-treated aluminium alloy T2024 adherends. The effects of the different chemical functionalities of POSS compounds, as well as the synergistic effect between the MWCNT and POSS combination on adhesion strength, were evaluated by viscosity measurement, tensile tests, Dynamic Mechanical Analysis (DMA), single lap joint shear strength tests, and morphological investigation. The best performance in the Lap Shear Strength (LSS) of the manufactured joints has been found for treated adherends bonded with epoxy adhesive containing MWCNTs and GPOSS. Carbon nanotubes have been found to play a very effective bridging function across the fracture surface of the bonded joints. PMID:28946691
A Strength Training Program for Primary Care Patients, Central Pennsylvania, 2012
Patel, Vijay A.; Kraschnewski, Jennifer L.; Rovniak, Liza S.; Messina, Dino A.; Stuckey, Heather L.; Curry, William J.; Chuang, Cynthia H.; Sherwood, Lisa L.; Hess, Stacy L.
2014-01-01
Introduction Primary care providers can recommend strength training programs to use “Exercise as Medicine,” yet few studies have examined the interest of primary care patients in these programs. Methods We conducted a cross-sectional survey of primary care patients in central Pennsylvania. Interest in participating in free group-based strength training and weight control programs was assessed, in addition to patient demographics, medical history, and quality of life. Results Among 414 patients, most (61.0%) were aged 54 or older, and 64.0% were female. More patients were interested in a strength training program (55.3%) than in a weight control program (45.4%). Nearly three-quarters (72.8%) of those reporting 10 or more days of poor physical health were interested in a strength training program compared with 49.5% of those reporting no days of poor physical health. After adjusting for potential confounders, those reporting poorer physical health had 2.7 greater odds (95% confidence interval, 1.4–5.1) of being interested in a strength training program compared with those reporting better physical health. Patients with hypertension, diabetes, or high cholesterol were not more interested in a strength training program than those without these conditions. Conclusion Primary care practices may consider offering or referring patients to community-based strength training programs. This study observed high levels of interest in these widely available programs. Practices may also consider screening and referring those with poorer physical health, as they may be the most interested and have the most to gain from participating. PMID:24967829
NASA Astrophysics Data System (ADS)
Deev, Artem; Kuznetsov, Pavel; Zhukov, Anton; Bobyr, Vitaliy
Additive technologies, which obtained the wide spreading in the last decade, allow producing items of any shape from metal materials practically without additional mechanical treatment. This approach based on the layer by layer melting of powder material accordingly to the premade 3D-CAD model, provides the geometrical accuracy which mostly depends on the size of the used material. In the present study, as material a 410 L steel powder was chosen, for which the basic dependencies between the selective laser melting (SLM) parameters and the mechanical properties were determined. Trial batches of standard samples for uniaxial tension and impact strength tests (according to the ASTM A370 and ASTM E8 M standards) were produced. It was shown that in the as build (after SLM) the fracture appeared to be brittle with the impact strength 3-5 J/cm2. The carried out heat treatment of quenching-tempering cycle and subsequent tests provide the viscous fracture and evaluation of impact strength up to 20-30 J/cm2. Presumably, this is due to a refinement of the grain structure and the inner stresses reduction of the samples, which also acknowledges the execution EBSD analysis, which points to the presence of quenched and tempered martensite. The presence of high inner stresses can be attributed to two α-γ-α transformations that were revealed by dilatometry investigation. In the range of cooling or heating rates from 1 to 500 °C/s temperatures of phase transformation are shifted.
Schaefer, Carolyn E; Kupwade-Patil, Kunal; Ortega, Michael; Soriano, Carmen; Büyüköztürk, Oral; White, Anne E; Short, Michael P
2018-01-01
Concrete production contributes heavily to greenhouse gas emissions, thus a need exists for the development of durable and sustainable concrete with a lower carbon footprint. This can be achieved when cement is partially replaced with another material, such as waste plastic, though normally with a tradeoff in compressive strength. This study discusses progress toward a high/medium strength concrete with a dense, cementitious matrix that contains an irradiated plastic additive, recovering the compressive strength while displacing concrete with waste materials to reduce greenhouse gas generation. Compressive strength tests showed that the addition of high dose (100kGy) irradiated plastic in multiple concretes resulted in increased compressive strength as compared to samples containing regular, non-irradiated plastic. This suggests that irradiating plastic at a high dose is a viable potential solution for regaining some of the strength that is lost when plastic is added to cement paste. X-ray Diffraction (XRD), Backscattered Electron Microscopy (BSE), and X-ray microtomography explain the mechanisms for strength retention when using irradiated plastic as a filler for cement paste. By partially replacing Portland cement with a recycled waste plastic, this design may have a potential to contribute to reduced carbon emissions when scaled to the level of mass concrete production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rizvi, Abbas; Zafar, Muhammad S; Al-Wasifi, Yasser; Fareed, Wamiq; Khurshid, Zohaib
2016-01-01
This study is aimed to establish the microtensile bond strength of enamel following exposure to an aerated drink at various time intervals with/without application of remineralization agent. In addition, degree of remineralization and demineralization of tooth enamel has been assessed using polarized light microscopy. Seventy extracted human incisors split into two halves were immersed in aerated beverage (cola drink) for 5 min and stored in saliva until the time of microtensile bond testing. Prepared specimens were divided randomly into two study groups; remineralizing group (n = 70): specimens were treated for remineralization using casein phosphopeptides and amorphous calcium phosphate (CPP-ACP) remineralization agent (Recaldent™; GC Europe) and control group (n = 70): no remineralization treatment; specimens were kept in artificial saliva. All specimens were tested for microtensile bond strength at regular intervals (1 h, 1 days, 2 days, 1 week, and 2 weeks) using a universal testing machine. The results statistically analyzed (P = 0.05) using two-way ANOVA test. Results showed statistically significant increase in bond strength in CPP-ACP tested group (P < 0.05) at all-time intervals. The bond strength of remineralizing group samples at 2 days (~13.64 megapascals [MPa]) is comparable to that of control group after 1 week (~12.44 MPa). CPP-ACP treatment of teeth exposed to an aerated drink provided significant increase in bond strength at a shorter interval compared to teeth exposed to saliva alone.
Saliba, E; Abbassi-Ghadi, S; Vowles, R; Camilleri, J; Hooper, S; Camilleri, J
2009-04-01
To study the effect of addition of various proportions of bismuth oxide on compressive strength and radiopacity of Portland cement. The compressive strength of white Portland cement and cement replaced with 10, 15, 20, 25 and 30% bismuth oxide was evaluated by testing cylinders 6 mm in diameter and 12 mm high. Twelve cylinders were tested for each material under study. The radiopacity of the cements tested was evaluated using an aluminium step-wedge and densitometer. The optical density was compared with the relevant thickness of aluminium (Al). Statistical analysis was performed using Analysis of Variance (ANOVA) with P = 0.05 and Tukey test to perform multiple comparison tests. Various additions of bismuth oxide had no significant effect on the strength of the material when compared with the unmodified Portland cement (P > 0.05). The radiopacity of the cements tested ranged from 2.02 mm Al for Portland cement to 9.79 mm Al for the highest bismuth replacement. Addition of bismuth oxide did not affect the compressive strength of Portland cement. All the bismuth oxide cement mixtures had radio-opacities higher than 3 mm thickness of aluminium.
Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix
2014-01-01
Objective To determine the relationship between thigh muscle strength and clinically relevant differences in self-assessed lower limb function. Methods Isometric knee extensor and flexor strength of 4553 Osteoarthritis Initiative participants (2651 women/1902 men) was related to Western Ontario McMasters Universities (WOMAC) physical function scores by linear regression. Further, groups of Male and female participant strata with minimal clinically important differences (MCIDs) in WOMAC function scores (6/68) were compared across the full range of observed values, and to participants without functional deficits (WOMAC=0). The effect of WOMAC knee pain and body mass index on the above relationships was explored using stepwise regression. Results Per regression equations, a 3.7% reduction in extensor and a 4.0% reduction in flexor strength were associated with an MCID in WOMAC function in women, and a 3.6%/4.8% reduction in men. For strength divided by body weight, reductions were 5.2%/6.7% in women and 5.8%/6.7% in men. Comparing MCID strata across the full observed range of WOMAC function confirmed the above estimates and did not suggest non-linear relationships across the spectrum of observed values. WOMAC pain correlated strongly with WOMAC function, but extensor (and flexor) muscle strength contributed significant independent information. Conclusion Reductions of approximately 4% in isometric muscle strength and of 6% in strength/weight were related to a clinically relevant difference in WOMAC functional disability. Longitudinal studies will need to confirm these relationships within persons. Muscle extensor (and flexor) strength (per body weight) provided significant independent information in addition to pain in explaining variability in lower limb function. PMID:25303012
Experimental and theoretical oscillator strengths of Mg I for accurate abundance analysis
NASA Astrophysics Data System (ADS)
Pehlivan Rhodin, A.; Hartman, H.; Nilsson, H.; Jönsson, P.
2017-02-01
Context. With the aid of stellar abundance analysis, it is possible to study the galactic formation and evolution. Magnesium is an important element to trace the α-element evolution in our Galaxy. For chemical abundance analysis, such as magnesium abundance, accurate and complete atomic data are essential. Inaccurate atomic data lead to uncertain abundances and prevent discrimination between different evolution models. Aims: We study the spectrum of neutral magnesium from laboratory measurements and theoretical calculations. Our aim is to improve the oscillator strengths (f-values) of Mg I lines and to create a complete set of accurate atomic data, particularly for the near-IR region. Methods: We derived oscillator strengths by combining the experimental branching fractions with radiative lifetimes reported in the literature and computed in this work. A hollow cathode discharge lamp was used to produce free atoms in the plasma and a Fourier transform spectrometer recorded the intensity-calibrated high-resolution spectra. In addition, we performed theoretical calculations using the multiconfiguration Hartree-Fock program ATSP2K. Results: This project provides a set of experimental and theoretical oscillator strengths. We derived 34 experimental oscillator strengths. Except from the Mg I optical triplet lines (3p 3P°0,1,2-4s 3S1), these oscillator strengths are measured for the first time. The theoretical oscillator strengths are in very good agreement with the experimental data and complement the missing transitions of the experimental data up to n = 7 from even and odd parity terms. We present an evaluated set of oscillator strengths, gf, with uncertainties as small as 5%. The new values of the Mg I optical triplet line (3p 3P°0,1,2-4s 3S1) oscillator strength values are 0.08 dex larger than the previous measurements.
ERIC Educational Resources Information Center
Adams, Katherine H.
In addition to providing a chronicle of the history of college writing programs in America, this book recognizes their common beginnings, their respective strengths, and the collaboration necessary to train students to be effective writers. The book examines the common roots of courses in creative writing, journalism, technical and business…
Thermoelectric effects and magnetic field amplification in magnetogasdynamic turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1991-01-01
It will be shown that thermoelectric effects amplify magnetic fields in compressible magnetogasdynamic turbulence (though not nearly as much as occurs across a curved reently bowshock). The importance of this result lies in the recognition that thermoelectric effects (in addition to kinetic effects) provide a real mechanism for the amplification of magnetic field strength (and total energy dissipation through ohmic losses) in a compressible, turbulent plasma.
Leucine Supplementation Improves Skeletal Muscle Regeneration after Cryolesion in Rats
Pereira, Marcelo G.; Baptista, Igor L.; Carlassara, Eduardo O. C.; Moriscot, Anselmo S.; Aoki, Marcelo S.; Miyabara, Elen H.
2014-01-01
This study was undertaken in order to provide further insight into the role of leucine supplementation in the skeletal muscle regeneration process, focusing on myofiber size and strength recovery. Young (2-month-old) rats were subjected or not to leucine supplementation (1.35 g/kg per day) started 3 days prior to cryolesion. Then, soleus muscles were cryolesioned and continued receiving leucine supplementation until 1, 3 and 10 days later. Soleus muscles from leucine-supplemented animals displayed an increase in myofiber size and a reduction in collagen type III expression on post-cryolesion day 10. Leucine was also effective in reducing FOXO3a activation and ubiquitinated protein accumulation in muscles at post-cryolesion days 3 and 10. In addition, leucine supplementation minimized the cryolesion-induced decrease in tetanic strength and increase in fatigue in regenerating muscles at post-cryolesion day 10. These beneficial effects of leucine were not accompanied by activation of any elements of the phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin signalling pathway in the regenerating muscles. Our results show that leucine improves myofiber size gain and strength recovery in regenerating soleus muscles through attenuation of protein ubiquitination. In addition, leucine might have therapeutic effects for muscle recovery following injury and in some muscle diseases. PMID:24416379
NASA Astrophysics Data System (ADS)
Ma, Yun-long; Li, Jin-feng
2017-09-01
The effect of small rare earth (RE) addition of 0.11%Ce, 0.2%Er and 0.082%Sc on aging precipitates and mechanical strength of an Al-(3.3-4.2)Cu-1.2Li-X alloy were investigated. It is found that Cu-rich residual particles containing RE element exist in the solutionized alloy, which leads to a decrease of dissolved Cu concentration in the solutionized matrix. Like RE-free alloy, the main aging precipitate types in RE-containing alloy are T1 (Al2CuLi) and θ' (Al2Cu), but their fraction is decreased. The strength of the corresponding alloys is therefore lowered by the small RE addition. Combined with the analysis of some reported references, it is proposed that the effect of small RE addition on Al-Cu-Li alloy strength is also associated with the Cu and Li concentrations and their ratio.
On the Processing of Martensitic Steels in Continuous Galvanizing Lines: Part II
NASA Astrophysics Data System (ADS)
Song, Taejin; Kwak, Jaihyun; de Cooman, B. C.
2012-01-01
The conventional continuous hot-dip galvanizing (GI) and galvannealing (GA) processes can be applied to untransformed austenite to produce Zn and Zn-alloy coated low-carbon ultra-high-strength martensitic steel provided specific alloying additions are made. The most suitable austenite decomposition behavior results from the combined addition of boron, Cr, and Mo, which results in a pronounced transformation bay during isothermal transformation. The occurrence of this transformation bay implies a considerable retardation of the austenite decomposition in the temperature range below the bay, which is close to the stages in the continuous galvanizing line (CGL) thermal cycle related to the GI and GA processes. After the GI and GA processes, a small amount of granular bainite, which consists of bainitic ferrite and discrete islands of martensite/austenite (M/A) constituents embedded in martensite matrix, is present in the microstructure. The ultimate tensile strength (UTS) of the steel after the GI and GA cycle was over 1300 MPa, and the stress-strain curve was continuous without any yielding phenomena.
Controlled Release in Transdermal Pressure Sensitive Adhesives using Organosilicate Nanocomposites
Shaikh, Sohel; Birdi, Anil; Qutubuddin, Syed; Lakatosh, Eric; Baskaran, Harihara
2010-01-01
Polydimethyl siloxane (PDMS) based pressure sensitive adhesives (PSA) incorporating organo-clays at different loadings were fabricated via solution casting. Partially exfoliated nanocomposites were obtained for the hydroxyl terminated PDMS in ethyl acetate solvent as determined by X-ray diffraction (XRD) and atomic force microscopy (AFM). Drug release studies showed that the initial burst release was substantially reduced and the drug release could be controlled by the addition of organo-clay. Shear strength and shear adhesion failure temperature (SAFT) measurements indicated substantial improvement in adhesive properties of the PSA nanocomposite adhesives. Shear strength showed more than 200 % improvement at the lower clay loadings and the SAFT increased by about 21% due to the reinforcement provided by the nano-dispersed clay platelets. It was found that by optimizing the level of the organosilicate additive to the polymer matrix, superior control over drug release kinetics and simultaneous improvements in adhesive properties could be attained for a transdermal PSA formulation. PMID:17786555
NASA Astrophysics Data System (ADS)
Yao, Yuangen; Ma, Chengzhang; Wang, Canjun; Yi, Ming; Gui, Rong
2018-02-01
We study the effects of multiplicative and additive cross-correlated sine-Wiener (CCSW) noises on the performance of sub-threshold periodic signal detection in the FitzHugh-Nagumo (FHN) neuron by calculating Fourier coefficients Q for measuring synchronization between sub-threshold input signal and the response of system. CCSW noises-induced transitions of electrical activity in the FHN neuron model can be observed. Moreover, the performance of sub-threshold periodic signal detection is achieved at moderate noise strength, cross-correlation time and cross-correlation strength of CCSW noises, which indicate the occurrence of CCSW noises-induced stochastic resonance. Furthermore, the performance of sub-threshold signal detection is strongly sensitive to cross-correlation time of CCSW noises. Therefore, the performance can be effectively controlled by regulating cross-correlation time of CCSW noises. These results provide a possible mechanism for amplifying or detecting the sub-threshold signal in the nervous system.
Thermo-mechanical Processing of TRIP-Aided Steels
NASA Astrophysics Data System (ADS)
Ranjan, Ravi; Beladi, Hossein; Singh, Shiv Brat; Hodgson, Peter D.
2015-07-01
The effects of the partial replacement of Si with Al and the addition of P on the microstructure and mechanical properties of experimental TRIP-aided steels subjected to different thermo-mechanical cycles were studied. Based on the available literature and thermodynamics-based calculations, three steels with different compositions were designed to obtain optimum results from a relatively low number of experiments. Different combinations of microstructure were developed through three different kinds of thermo-mechanical-controlled processing (TMCP) routes, and the corresponding tensile properties were evaluated. The results indicated that partial replacement of Si with Al improved the strength-ductility balance along with providing an improved variation in the incremental change in the strain-hardening exponent. However, the impact of the P addition was found to depend more on the final microstructure obtained by the different TMCP cycles. It has also been shown that an increase in the volume fraction of the retained austenite () or its carbon content () resulted in an improved strength-ductility balance, which can be attributed to better exploitation of the TRIP effect.
Evaluation on Compression Properties of Different Shape and Perforated rHDPE in Concrete Structures
NASA Astrophysics Data System (ADS)
Yuhazri, M. Y.; Hafiz, K. M.; Myia, Y. Z. A.; Jia, C. P.; Sihombing, H.; Sapuan, S. M.; Badarulzaman, N. A.
2017-10-01
The purpose of this study was to develop a concrete structure by incorporating waste HDPE plastic as the main reinforcement material and cement as the matrix via standard casting technique. There are eight different shapes of rHDPE reinforcing structure were used to investigate the compression properties of produced concrete composites. Experimental result shown that the highest shape in compressive strength of rHDPE reinforcing structure were the concrete with the addition of X-perforated beam (18.22 MPa), followed by X-beam (17.7 MPa), square perforated tube (17.54 MPa), round tube (17.42 MPa) and round perforated tube (16.69 MPa). In terms of their compressive behavior, the average concrete containing rHDPE reinforcement was successfully improved by 6 % of the mechanical characteristic compared to control concrete. It is shown that the addition of waste plastic as reinforcement structure can provide better compressive strength based on their shape and pattern respectively.
NASA Astrophysics Data System (ADS)
Kurade, S. S.; Ramteke, A. A.
2018-05-01
In this work, we have investigated the rate of reaction by using ionic strength at different temperatures. The main goal of this experiment is to determine the relation between ionic strength with reaction rate, reaction time and rate constant with temperature. It is observed that the addition of positive salt indicate the increasing ionic strength with increase in run time at various temperatures. Thus the temperature affects the speed of reaction and mechanism by which chemical reaction occurs and time variable plays vital role in the progress of reaction at different temperatures.
The mechanisms of dispersion strengthening and fracture in Al-based XD(tm) alloys, part 1
NASA Technical Reports Server (NTRS)
Aikin, R. M., Jr.
1990-01-01
The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength; the fracture toughness; and the fatigue crack growth rate of metal matrix composites of Al-4(pct)Cu-1.5(pct)Mg with TiB2 were examined. The influence of reinforcement volume fraction was also examined for pure aluminum with TiB2. Higher TiB2 volume fractions increased the tensile yield strength at both room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. Interparticle spacing appears to be the factor that controls the strength of these alloys, with the exact nature of the dependence relying on the nature of dislocation slip in the matrix (planar vs. diffuse). The isothermal aging response of the precipitation strengthened Al-4(pct)Cu-1.5(pct)Mg alloys was not accelerated by the presence of TiB2. Cold work prior to artificial aging created additional geometrically necessary dislocations which serve as heterogeneous nucleation sites leading to accelerated aging, a finer precipitate size, and an increase in the strength of the alloy.
NASA Astrophysics Data System (ADS)
Kaszynska, Maria; Skibicki, Szymon
2017-12-01
High-performance concrete (HPC) which contains increased amount of both higher grade cement and pozzolanic additives generates more hydration heat than the ordinary concrete. Prolonged periods of elevated temperature influence the rate of hydration process in result affecting the development of early-age strength and subsequent mechanical properties. The purpose of the presented research is to determine the relationship between the kinetics of the heat generation process and the compressive strength of early-age high performance concrete. All mixes were based on the Portland Cement CEM I 52.5 with between 7.5% to 15% of the cement mass replaced by the silica fume or metakaolin. Two characteristic for HPC water/binder ratios of w/b = 0.2 and w/b = 0.3 were chosen. A superplasticizer was used to maintain a 20-50 mm slump. Compressive strength was determined at 8h, 24h, 3, 7 and 28 days on 10x10x10 cm specimens that were cured in a calorimeter in a constant temperature of T = 20°C. The temperature inside the concrete was monitored continuously for 7 days. The study determined that the early-age strength (t<24h) of concrete with reactive mineral additives is lower than concrete without them. This is clearly visible for concretes with metakaolin which had the lowest compressive strength in early stages of hardening. The amount of the superplasticizer significantly influenced the early-age compressive strength of concrete. Concretes with additives reached the maximum temperature later than the concretes without them.
Martínez-Martí, María L.; Ruch, Willibald
2014-01-01
Character strengths are positive, morally valued traits of personality. This study aims at assessing the relationship between character strengths and subjective well-being (i.e., life satisfaction, positive and negative affect) in a representative sample of German-speaking adults living in Switzerland (N = 945). We further test whether this relationship is consistent at different stages in life. Results showed that hope, zest, love, social intelligence and perseverance yielded the highest positive correlations with life satisfaction. Hope, zest, humor, gratitude and love presented the highest positive correlations with positive affect. Hope, humor, zest, honesty, and open-mindedness had the highest negative correlations with negative affect. When examining the relationship between strengths and well-being across age groups, in general, hope, zest and humor consistently yielded the highest correlations with well-being. Additionally, in the 27–36 years group, strengths that promote commitment and affiliation (i.e., kindness and honesty) were among the first five positions in the ranking of the relationship between strengths and well-being. In the 37–46 years group, in addition to hope, zest and humor, strengths that promote the maintenance of areas such as family and work (i.e., love, leadership) were among the first five positions in the ranking. Finally, in the 47–57 years group, in addition to hope, zest and humor, strengths that facilitate integration and a vital involvement with the environment (i.e., gratitude, love of learning) were among the first five positions in the ranking. This study partially supports previous findings with less representative samples on the association between character strengths and well-being, and sheds light on the relative importance of some strengths over others for well-being across the life span. PMID:25408678
The threshold strength of laminar ceramics utilizing molar volume changes and porosity
NASA Astrophysics Data System (ADS)
Pontin, Michael Gene
It has been shown that uniformly spaced thin compressive layers within a ceramic body can arrest the propagation of an otherwise catastrophic crack, producing a threshold strength: a strength below which the probability of failure is zero. Previous work has shown that the threshold strength increases with both the magnitude of the compressive stress and the fracture toughness of the thin layer material, and finite element analysis predicts that the threshold strength can be further increased when the elastic modulus of the compressive layer is much smaller than the thicker layer. The current work describes several new approaches to increase the threshold strength of a laminar ceramic system. The initial method utilized a molar volume expansion within the thin layers, produced by the tetragonal-to-monoclinic phase transformation of unstabilized zirconia during cooling, in order to produce large compressive stresses within the thin layers. High threshold strengths were measured for this system, but they remained relatively constant as the zirconia content was increased. It was determined that microcracking produced during the transformation reduced the magnitude of the compressive stresses, but may also have served to reduce the modulus of the thin compressive layer, providing an additional strengthening mechanism. The second approach studied the addition of porosity to reduce the elastic modulus of the thin compressive layers. A new processing method was created and analyzed, in which thick layers of the laminate were fabricated by tape-casting, and then dip-coated into a slurry, containing rice starch, to create thin porous compressive layers upon densification. The effects of porosity on the residual compressive stress, elastic modulus, and fracture toughness of the thin layers were measured and calculated, and it was found that the elastic modulus mismatch between the thin and thick layers produced a large strengthening effect for volume fractions of porosity below a critical level. Specimens with greater volume fractions of porosity exhibited complete crack arrest, typically followed by non-catastrophic failure, as cracks initiating in adjacent thick layers coalesced by cracking or delamination along the thin porous layers.
NASA Astrophysics Data System (ADS)
Xiang, Bo; Zhang, Jun
2018-01-01
For the field of cool material, barium titanate (BaTiO3, BT) is still a new member that needs to be further studied. Herein, the effects of both content and surface hydrophobic modification of BT on the cooling properties of acrylonitrile-styrene-acrylate copolymer (ASA) were detailedly investigated, aiming to fabricate composited cool material. Butyl acrylate (BA) was employed to convert the surface of BT from hydrophilic to hydrophobic. The addition of unmodified BT could significantly improve the solar reflectance of ASA, especially when the addition amount is 3 vol%, the near infrared (NIR) reflectance increased from 22.02 to 72.60%. However, serious agglomeration occurred when the addition amount increased to 5 vol% and therefore led to a relatively smaller increase in solar reflectance and an obvious decline in impact strength. After surface hydrophobic modification, the modified BT (M-BT) presented better dispersibility in ASA matrix, which contributed to the improvement of both solar reflectance and impact strength. In addition, the temperature test provided a more sufficient and intuitive way to evaluate the cooling effect of the composited cool materials, and a significant decrease (over 10 °C) could be achieved in the temperature test when M-BT particles were introduced.
NASA Astrophysics Data System (ADS)
Kim, Young Min; Shin, Sang Yong; Lee, Hakcheol; Hwang, Byoungchul; Lee, Sunghak; Kim, Nack J.
2007-08-01
This study is concerned with the effects of V and Mo addition on tensile and Charpy impact properties of API X70 linepipe steels. Twelve kinds of steel specimens were produced by varying V and Mo additions and rolling conditions. The addition of V and Mo promoted the formation of acicular ferrite (AF), banitic ferrite (BF), and martensite-austenite (MA) constituents, while suppressing the formation of polygonal ferrite (PF) or pearlite (P). The tensile test results indicated that the tensile strength of the specimens rolled in the two-phase region increased with the addition of V and Mo, while the yield strength did not vary much in these specimens except the water-cooled specimens, which showed the increased yield strength with addition of Mo. The tensile strength of specimens rolled in the single-phase region followed by water cooling increased with increasing V and Mo contents. The yield strength, however, did not vary much with increasing V content or with addition of Mo to the low-V alloy. In these specimens, a substantial increase in the strengths was achieved only when Mo was added to the high-V alloy. The specimens rolled in the single-phase region had higher upper-shelf energy (USE) and lower ductile-brittle transition temperature (DBTT) than the specimens rolled in the two-phase region, because their microstructures were composed of AF and fine PF. According to the electron backscatter diffraction (EBSD) analysis data, the effective grain size in AF was determined by crystallographic packets composed of a few fine grains having similar orientations. Thus, the decreased DBTT in the specimens rolled in the single-phase region could be explained by the decrease in the overall effective grain size due to the presence of AF having smaller effective grain size.
Development of an Integrated Countermeasure Device for Use in Long-Duration Space Flight
NASA Technical Reports Server (NTRS)
Streeper, Tim; Cavanagh, Peter R.; Hanson, Andrea M.; Carpenter, Dana; Saeed, Isra; Kornak, John; Frassetto, Lynda; Grodsinsky, Carlos; Funk, Justin; Lee, Stuart M. C.;
2010-01-01
Prolonged weightlessness is associated with declines in musculoskeletal, cardiovascular, and sensorimotor health. Consequently, in-flight countermeasures are required to preserve astronaut health. We developed and tested a novel exercise countermeasure device (CCD) for use in spaceflight with the aim of preserving musculoskeletal and cardiovascular health along with an incorporated balance-training component. Additionally, the CCD features a compact footprint, and a low power requirement. Methods: After design and development of the CCD, we carried out a training study to test its ability to improve cardiovascular and muscular fitness in healthy volunteers. Fourteen male and female subjects (41.4+/-9.0 years, 69.5+/-15.4Kg) completed 12 weeks (3 sessions per week) of concurrent strength and endurance training on the CCD. Subjects were tested at baseline and after 12 weeks for 1-repetition max leg press strength (1RM), peak oxygen consumption (VO2peak), and isokinetic joint torque (ISO) at the hip, knee, and ankle. Additionally, we evaluated subjects after 6 weeks of training for changes in VO2peak and 1RM. Results: VO2peak and 1RM improved after 6-weeks, with additional improvements after 12 weeks (1.95+/-0.5, 2.28+/-0.5, 2.47+/-0.6 LY/min and 131.2+/-63.9,182.8+/-75.0, 207.0+/-75.0 Kg) for baseline, 6 weeks, and 12 weeks respectively. ISO for hip adduction, adduction, and ankle plantar flexion improved after 12 weeks of training (70.3+/-39.5, 76.8+/-39.2 and 55.7+/-21.7 N-m vs. 86.1+/-37.3, 85.1+/-34.3 and 62.1+/-26.4 N-m respectively). No changes were observed for ISO during hip flexion, knee extension, or knee flexion. Conclusions: The CCD is effective at improving cardiovascular fitness and isotonic leg strength in healthy adults. Further, the improvement in hip adductor and abductor torque provides support that the CCD may provide additional protection for the preservation of bone health at the hip.
Schwaiger, Benedikt J; Kopperdahl, David L; Nardo, Lorenzo; Facchetti, Luca; Gersing, Alexandra S; Neumann, Jan; Lee, Kwang J; Keaveny, Tony M; Link, Thomas M
2017-08-01
Bone fracture risk assessed ancillary to positron emission tomography with computed tomography co-registration (PET/CT) could provide substantial clinical value to oncology patients with elevated fracture risk without introducing additional radiation dose. The purpose of our study was to investigate the feasibility of obtaining valid measurements of bone mineral density (BMD) and finite element analysis-derived bone strength of the hip and spine using PET/CT examinations of prostate cancer patients by comparing against values obtained using routine multidetector-row computed tomography (MDCT) scans-as validated in previous studies-as a reference standard. Men with prostate cancer (n=82, 71.6±8.3 years) underwent Fluorine-18 NaF PET/CT and routine MDCT within three months. Femoral neck and total hip areal BMD, vertebral trabecular BMD and femur and vertebral strength based on finite element analysis were assessed in 63 paired PET/CT and MDCT examinations using phantomless calibration and Biomechanical-CT analysis. Men with osteoporosis or fragile bone strength identified at either the hip or spine (vertebral trabecular BMD ≤80mg/cm 3 , femoral neck or total hip T-score ≤-2.5, vertebral strength ≤6500N and femoral strength ≤3500N, respectively) were considered to be at high risk of fracture. PET/CT- versus MDCT-based BMD and strength measurements were compared using paired t-tests, linear regression and by generating Bland-Altman plots. Agreement in fracture-risk classification was assessed in a contingency table. All measurements from PET/CT versus MDCT were strongly correlated (R 2 =0.93-0.97; P<0.0001 for all). Mean differences for total hip areal BMD (0.001g/cm 2 , 1.1%), femoral strength (-60N, 1.3%), vertebral trabecular BMD (2mg/cm 3 , 2.6%) and vertebral strength (150N; 1.7%) measurements were not statistically significant (P>0.05 for all), whereas the mean difference in femoral neck areal BMD measurements was small but significant (-0.018g/cm 2 ; -2.5%; P=0.007). The agreement between PET/CT and MDCT for fracture-risk classification was 97% (0.89 kappa for repeatability). Ancillary analyses of BMD, bone strength, and fracture risk agreed well between PET/CT and MDCT, suggesting that PET/CT can be used opportunistically to comprehensively assess bone integrity. In subjects with high fracture risk such as cancer patients this may serve as an additional clinical tool to guide therapy planning and prevention of fractures. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bulanov, P. E.; Vdovin, E. A.; Mavliev, L. F.; Kuznetsov, D. A.
2018-03-01
The paper is focused on the research results of the main physical and technical properties of the cement-stabilized polymineral clay modified with a complex hydrophobic plasticizer based on polycarboxylate and octyltriethoxysilane ethers. A graphical result interpretation of the mathematic model which shows the influence of the complex hydrophobic plasticizer components on the cement-stabilized polymineral clay, containing more than 85% of relict minerals, has been designed. The research significance for the building sector lies in the fact that applying a complex hydrophobic plasticizer provides increasing the compressive strength of the cement-stabilized polymineral clay up to 102%, the tensile bending strength – up to 88%, the freeze-thaw resistance – up to 114%.
Use of Genetic Testing for Primary Immunodeficiency Patients.
Heimall, Jennifer R; Hagin, David; Hajjar, Joud; Henrickson, Sarah E; Hernandez-Trujillo, Hillary S; Tan, Yuval; Kobrynski, Lisa; Paris, Kenneth; Torgerson, Troy R; Verbsky, James W; Wasserman, Richard L; Hsieh, Elena W Y; Blessing, Jack J; Chou, Janet S; Lawrence, Monica G; Marsh, Rebecca A; Rosenzweig, Sergio D; Orange, Jordan S; Abraham, Roshini S
2018-04-01
Genetic testing plays a critical role in diagnosis for many primary immunodeficiency diseases. The goals of this report are to outline some of the challenges that clinical immunologists face routinely in the use of genetic testing for patient care. In addition, we provide a review of the types of genetic testing used in the diagnosis of PID, including their strengths and limitations. We describe the strengths and limitations of different genetic testing approaches for specific clinical contexts that raise concern for specific PID disorders in light of the challenges reported by the clinical immunologist members of the CIS in a recent membership survey. Finally, we delineate the CIS's recommendations for the use of genetic testing in light of these issues.
46 CFR 32.63-25 - Cargo tanks and supports-B/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... have sufficient additional strength so as to limit the maximum combined tank stress, including saddle horn and bending stresses, to 1.5 times the maximum allowable hoop stress in still water, and to the... shall have sufficient additional strength to limit the maximum combined tank stress, including saddle...
46 CFR 32.63-25 - Cargo tanks and supports-B/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... have sufficient additional strength so as to limit the maximum combined tank stress, including saddle horn and bending stresses, to 1.5 times the maximum allowable hoop stress in still water, and to the... shall have sufficient additional strength to limit the maximum combined tank stress, including saddle...
46 CFR 32.63-25 - Cargo tanks and supports-B/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... have sufficient additional strength so as to limit the maximum combined tank stress, including saddle horn and bending stresses, to 1.5 times the maximum allowable hoop stress in still water, and to the... shall have sufficient additional strength to limit the maximum combined tank stress, including saddle...
46 CFR 32.63-25 - Cargo tanks and supports-B/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... have sufficient additional strength so as to limit the maximum combined tank stress, including saddle horn and bending stresses, to 1.5 times the maximum allowable hoop stress in still water, and to the... shall have sufficient additional strength to limit the maximum combined tank stress, including saddle...
DOT National Transportation Integrated Search
2008-09-01
In this study, an attempt was made to determine the effect of prolonged heating on the bond strength between : aggregate and asphalt that contained anti-strip additives (LOF 6500 and Morelife 2200). On account of the : substantial decrease of anti-st...
High Fidelity Additive Manufacturing of Optically Transparent Glass Structures
NASA Astrophysics Data System (ADS)
Inamura, Chikara
Glass has been an integral part of human civilization with expressions across scales and disciplines: from the microscope to the telescope, from fiber optics to mobile interface, and from the petri dish to a building envelope. Such a diverse range of applications is enabled by the inherent material properties including mechanical strength, optical transparency and chemical inertness. Additive manufacturing provides opportunities for integrating the unique properties of glass to engineer novel structures that are functionary graded through precise spatiotemporal deposition of molten glass. This talk presents the Mediated Matter Group's latest development of a novel additive manufacturing platform, and related processes, for 3D Printing optically transparent glass for architectural scale applications.
Effects of Neodymium and Calcium on the Thermal Stability of AZ71 Magnesium Alloys
NASA Astrophysics Data System (ADS)
Yue, Cheng-Feng; Huang, Shi-Jei; Chen, Jhewn-Kuang; Li, Hsien-Tsung; Chan, Kam-Shau
2018-03-01
The effects of an addition of 0-2 wt% Nd on thermal stability of 0-3 wt% Ca-containing modified AZ71 magnesium alloys was investigated. The ignition temperature was found to increase from that of AZ71, 574, to 825 °C with the addition of 0.5 wt% Ca and 1 wt% Nd. The ignition temperature was further increased to 1114 °C when 3 wt% Ca was added. The Ca- and Nd-added AZ71 was isothermally maintained at a temperature of 500 °C in air for 12 h. The MgO-CaO-Nd2O3 formed on the surface to improve the thermal stability of the AZ71-xCa-yNd alloys. While both the tensile strength and ductility decreased with the Ca concentration in the alloy, an addition of 1 wt% Nd was found able to alleviate the degradation effects of Ca on the tensile strength and ductility at 170 °C. Both solid solution formation and precipitation strengthening contributed to the increase in toughness. AZ71 containing 0.5-2 wt% Ca and 1 wt% Nd provides the optimum combination of ignition resistance and mechanical properties.
Strength and microstructure of sintered Si3N4 with rare-earth-oxide additions
NASA Technical Reports Server (NTRS)
Sanders, W. A.; Mieskowski, D. M.
1985-01-01
Room temperature, 700-, 1000-, 1200-, and 1370-C examinations of the effect of 1.7-2.6 mol pct rare earth oxide additions to sintered Si3N4 are conducted. While the room temperature-1000 C bend strengths were higher for this material with Y2O3 additions than with CeO2, La2O3, or Sm2O3, the reverse was true at 1200-1370 C. This phenomenon is explained on the basis of microstructural differences, since quantitative microscopy of SEM replicas showed the Si3N4-Y2O3 composition to contain both a higher percentage of elongated grains and a coarser microstructure than the other three alternatives. The elongated grains appear to increase this composition's low temperature strength irrespective of microstructural coarseness; this coarseness, however, decreases strength relative to the other compositions at higher temperatures.
Erratum to: Application of addition-cured silicone denture relining materials to adjust mouthguards.
Fukasawa, Shintaro; Churei, Hiroshi; Chowdhury, Ruman Uddin; Shirako, Takahiro; Shahrin, Sharika; Shrestha, Abhishekhi; Wada, Takahiro; Uo, Motohiro; Takahashi, Hidekazu; Ueno, Toshiaki
2016-01-01
The purposes of this study were to examine the shock absorption capability of addition-cured silicone denture relining materials and the bonding strength of addition-cured silicone denture relining materials and a commercial mouthguard material to determine its applicability to mouthguard adjustment. Two addition-cured silicone denture relining materials were selected as test materials. The impact test was applied by a free-falling steel ball. On the other hand, bonding strength was determined by a delamination test. After prepared surface treatments using acrylic resin on MG sheet surface, 2 types of addition-cured silicone denture relining materials were glued to MG surface. The peak intensity, the time to peak intensity from the onset of the transmitted force and bonding strength were statistically analyzed using ANOVA and Tukey's honest significant difference post hoc test (p<0.05). These results suggest that the silicone denture relining materials could be clinically applicable as a mouthguard adjustment material.
Requirements of Inconel 718 alloy for aeronautical applications
NASA Astrophysics Data System (ADS)
Ghiban, Brandusa; Elefterie, Cornelia Florina; Guragata, Constantin; Bran, Dragos
2018-02-01
The main requirements imposed by aviation components made from super alloys based on Nickel are presented in present paper. A significant portion of fasteners, locking lugs, blade retainers and inserts are manufactured from Inconel 718 alloy. The thesis describes environmental factors (corrosion), conditions of external aggression (salt air, intense heat, heavy industrial pollution, high condensation, high pressure), mechanical characteristics (tensile strength, creep, density, yield strength, fracture toughness, fatigue resistance) and loadings (tensions, compression loads) that must be satisfied simultaneously by Ni-based super alloy, compared to other classes of aviation alloys (as egg. Titanium alloys, Aluminum alloys). For this alloy the requirements are strength, durability, damage tolerance, fail safety and so on. The corrosion can be an issue, but the fatigue under high-magnitude cyclic tensile loading it what limits the lifetime of the airframe. The excellent malleability and weldability characteristics of the 718 system make the material physical properties tolerant of manufacturing processes. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.
Aeronautical requirements for Inconel 718 alloy
NASA Astrophysics Data System (ADS)
Elefterie, C. F.; Guragata, C.; Bran, D.; Ghiban, B.
2017-06-01
The project goal is to present the requirements imposed by aviation components made from super alloys based on Nickel. A significant portion of fasteners, locking lugs, blade retainers and inserts are manufactured from Alloy 718. The thesis describes environmental factors (corrosion), conditions of external aggression (salt air, intense heat, heavy industrial pollution, high condensation, high pressure), mechanical characteristics (tensile strength, yield strength and fatigue resistance) and loadings (tensions, compression loads) that must be satisfied simultaneously by Ni-based super alloy, compared to other classes of aviation alloys (as egg. Titanium alloys, Aluminum alloys). For this alloy the requirements are strength durability, damage tolerance, fail safety and so on. The corrosion can be an issue, but the fatigue under high-magnitude cyclic tensile loading it’s what limits the lifetime of the airframe. Also, the excellent malleability and weldability characteristics of the 718 system make the material physical properties tolerant of manufacturing processes. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.
Collapse of caves at shallow depth in Gaziantep city center, Turkey: a case study
NASA Astrophysics Data System (ADS)
Canakci, Hanifi
2007-12-01
This paper focuses on an investigation of the possible causes for the collapse of limestone caves in Gaziantep, Turkey. The city contains a lot of man-made caves, at a shallow depth, of various width and length. These caves were mainly excavated to provide work or storage space. As the city has been growing fast with increased population, many structures were constructed over these caves. Recently, two caves collapsed and five houses were damaged. These caves are all made of limestone and it was observed after the collapse that the limestone was saturated with water due to sewer pipe leakage and surface water. Tests were carried out on the limestone and it was determined that the compressive strength of limestone decreases by about 50% and the tensile strength decreased by about 80% when saturated with water. It was concluded that the reduced strength of the limestone combined with additional loads due to the factors mentioned above seem to be the main reason for these collapses.
Critical joints in large composite aircraft structure
NASA Technical Reports Server (NTRS)
Nelson, W. D.; Bunin, B. L.; Hart-Smith, L. J.
1983-01-01
A program was conducted at Douglas Aircraft Company to develop the technology for critical structural joints of composite wing structure that meets design requirements for a 1990 commercial transport aircraft. The prime objective of the program was to demonstrate the ability to reliably predict the strength of large bolted composite joints. Ancillary testing of 180 specimens generated data on strength and load-deflection characteristics which provided input to the joint analysis. Load-sharing between fasteners in multirow bolted joints was computed by the nonlinear analysis program A4EJ. This program was used to predict strengths of 20 additional large subcomponents representing strips from a wing root chordwise splice. In most cases, the predictions were accurate to within a few percent of the test results. In some cases, the observed mode of failure was different than anticipated. The highlight of the subcomponent testing was the consistent ability to achieve gross-section failure strains close to 0.005. That represents a considerable improvement over the state of the art.
Wang, Lei; Chen, Liang; Tsang, Daniel C W; Li, Jiang-Shan; Yeung, Tiffany L Y; Ding, Shiming; Poon, Chi Sun
2018-08-01
Navigational dredging is an excavation of marine/freshwater sediment to maintain channels of sufficient depth for shipping safety. Due to historical inputs of anthropogenic contaminants, sediments are often contaminated by metals/metalloids, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other contaminants. Its disposal can present significant environmental and financial burdens. This study developed a novel and green remediation method for contaminated sediment using stabilization/solidification with calcium-rich/low-calcium industrial by-products and CO 2 utilization. The hydration products were evaluated by quantitative X-ray diffraction analysis and thermogravimetric analysis. The incorporation of calcium carbide residue (CCR) facilitated hydration reaction and provided relatively high 7-d strength. In contrast, the addition of Class-F pulverized fly ash (PFA) and ground granulated blast furnace slag (GGBS) was beneficial to the 28-d strength development due to supplementary pozzolanic and hydration reactions. The employment of 1-d CO 2 curing was found to promote strength development (98%) and carbon sequestration (4.3wt%), while additional 7-d air curing facilitated cement rehydration and further carbonation in the sediment blocks. The leachability tests indicated that all studied binders, especially CCR binder, effectively immobilized contaminants in the sediments. The calcium-rich CCR and GGBS were regarded as promising candidates for augmenting the efficacy of CO 2 curing, whereas GGBS samples could be applicable as eco-paving blocks in view of their superior 28-d strength. This study presents a new and sustainable way to transform contaminated sediment into value-added materials. Copyright © 2018 Elsevier B.V. All rights reserved.
Bremmell, Kristen E; Britcher, Leanne; Griesser, Hans J
2013-06-01
Addition of ionized terminal groups to PEG graft layers may cause additional interfacial forces to modulate the net interfacial interactions between PEG graft layers and proteins. In this study we investigated the effect of terminal sulfonate groups, characterizing PEG-aldehyde (PEG-CHO) and sulfonated PEG (PEG-SO3) graft layers by XPS and colloid probe AFM interaction force measurements as a function of ionic strength, in order to determine surface forces relevant to protein resistance and models of bio-interfacial interaction of such graft coatings. On the PEG-CHO surface the measured interaction force does not alter with ionic strength, typical of a repulsive steric barrier coating. An analogous repulsive interaction force of steric origin was also observed on the PEG-SO3 graft coating; however, the net interaction force changed with ionic strength. Interaction forces were modelled by steric and electrical double layer interaction theories, with fitting to a scaling theory model enabling determination of the spacing and stretching of the grafted chains. Albumin, fibrinogen, and lysozyme did not adsorb on the PEG-CHO coating, whereas the PEG graft with terminal sulfonate groups showed substantial adsorption of albumin but not fibrinogen or lysozyme from 0.15 M salt solutions. Under lower ionic strength conditions albumin adsorption was again minimized as a result of the increased electrical double-layer interaction observed with the PEG-SO3 modified surface. This unique and unexpected adsorption behaviour of albumin provides an alternative explanation to the "negative cilia" model used by others to rationalize observed thromboresistance on PEG-sulfonate coatings. Copyright © 2013 Elsevier B.V. All rights reserved.
Improving the strength of additively manufactured objects via modified interior structure
NASA Astrophysics Data System (ADS)
Al, Can Mert; Yaman, Ulas
2017-10-01
Additive manufacturing (AM), in other words 3D printing, is becoming more common because of its crucial advantages such as geometric complexity, functional interior structures, etc. over traditional manufacturing methods. Especially, Fused Filament Fabrication (FFF) 3D printing technology is frequently used because of the fact that desktop variants of these types of printers are highly appropriate for different fields and are improving rapidly. In spite of the fact that there are significant advantages of AM, the strength of the parts fabricated with AM is still a major problem especially when plastic materials, such as Acrylonitrile butadiene styrene (ABS), Polylactic acid (PLA), Nylon, etc., are utilized. In this study, an alternative method is proposed in which the strength of AM fabricated parts is improved employing direct slicing approach. Traditional Computer Aided Manufacturing (CAM) software of 3D printers takes only the geometry as an input in triangular mesh form (stereolithography, STL file) generated by Computer Aided Design software. This file format includes data only about the outer boundaries of the geometry. Interior of the artifacts are manufactured with homogeneous infill patterns, such as diagonal, honeycomb, linear, etc. according to the paths generated in CAM software. The developed method within this study provides a way to fabricate parts with heterogeneous infill patterns by utilizing the stress field data obtained from a Finite Element Analysis software, such as ABAQUS. According to the performed tensile tests, the strength of the test specimen is improved by about 45% compared to the conventional way of 3D printing.
Lau, Michael; Young, Paul M; Traini, Daniela
2017-08-01
The aim of the study was to understand the impact of different concentrations of the additive material, magnesium stearate (MGST), and the active pharmaceutical ingredient (API), respectively, on the physicochemical properties and aerosol performance of comilled formulations for high-dose delivery. Initially, blends of API/lactose with different concentrations of MGST (1-7.5% w/w) were prepared and comilled by the jet-mill apparatus. The optimal concentration of MGST in comilled formulations was investigated, specifically for agglomerate structure and strength, particle size, uniformity of content, surface coverage, and aerosol performance. Secondly, comilled formulations with different API (1-40% w/w) concentrations were prepared and similarly analyzed. Comilled 5% MGST (w/w) formulation resulted in a significant improvement in in vitro aerosol performance due to the reduction in agglomerate size and strength compared to the formulation comilled without MGST. Higher concentrations of MGST (7.5% w/w) led to reduction in aerosol performance likely due to excessive surface coverage of the micronized particles by MGST, which led to failure in uniformity of content and an increase in agglomerate strength and size. Generally, comilled formulations with higher concentrations of API increased the agglomerate strength and size, which subsequently caused a reduction in aerosol performance. High-dose delivery was achieved at API concentration of >20% (w/w). The study provided a platform for the investigation of aerosol performance and physicochemical properties of other API and additive materials in comilled formulations for the emerging field of high-dose delivery by dry powder inhalation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Zhenhua; Falzone, Gabriel; Das, Sumanta
The addition of phase change materials (PCMs) has been proposed as a way to mitigate thermal cracking in cementitious materials. However, the addition of PCMs, i.e., soft inclusions, degrades the compressive strength of cementitious composites. From a strength-of-materials viewpoint, such reductions in strength are suspected to increase the tendency of cementitious materials containing PCMs to crack under load (e.g., volume instability-induced stresses resulting from thermal and/or hygral deformations). Based on detailed assessments of free and restrained shrinkage, elastic modulus, and tensile strength, this study shows that the addition of PCMs does not alter the cracking sensitivity of the material. Inmore » fact, the addition of PCMs (or other soft inclusions) enhances the cracking resistance as compared to a plain cement paste or composites containing equivalent dosages of (stiff) quartz inclusions. This is because composites containing soft inclusions demonstrate benefits resulting from crack blunting and deflection, and improved stress relaxation. As a result, although the tensile stress at failure remains similar, the time to failure (i.e., macroscopic cracking) of PCM-containing composites is considerably extended. More generally, the outcomes indicate that dosages of soft(er) inclusions, and the resulting decrease in compressive strength does not amplify the cracking risk of cementitious composites.« less
Gjorgievska, Elizabeta S; Nicholson, John W; Coleman, Nichola J; Booth, Samantha; Dimkov, Aleksandar; Hurt, Andrew
2017-01-01
Root canal sealers with antimicrobial activity are highly beneficial; therefore, their antimicrobial properties could be improved by incorporation of antimicrobial agents. In the present study, the release of the quaternary ammonium compounds from endodontic sealers admixed with either benzalkonium chloride (BC) or cetylpyridinium chloride (CPC) at loadings of 2% wt was monitored. The effect of these additives on the compressive strengths and their release from the sealers was determined after 1 and 4 weeks. All of the materials studied were found to be capable of releasing antimicrobial additive in useful quantities. The release of CPC occurred to a statistically significant greater extent than BC for all materials. The addition of both BC and CPC generally decreased the compressive strength of all the endodontic sealers, with the exception of CPC in AH Plus, where the compressive strength was significantly increased. This suggests that, for these endodontic sealers, the antimicrobial additives alter the setting chemistry. AH Plus is an epoxy-based material cured with an amine, and in this case the increase in compressive strength with CPC is attributed to an enhanced cure reaction with this system. In all other cases, the additive inhibited the cure reaction to a greater or lesser extent.
Chevalier, Francine; Fernandez-Lao, Carolina; Cuesta-Vargas, Antonio Ignacio
2014-11-25
To describe the clinical, functional and quality of life characteristics in women with Stress Urinary Incontinence (SUI). In addition, to analyse the relationship between the variables reported by the patients and those informed by the clinicians, and the relationship between instrumented variables and the manual pelvic floor strength assessment. Two hundred and eighteen women participated in this observational, analytical study. An interview about Urinary Incontinence and the quality of life questionnaires (EuroQoL-5D and SF-12) were developed as outcomes reported by the patients. Manual muscle testing and perineometry as outcomes informed by the clinician were assessed. Descriptive and correlation analysis were carried out. The average age of the subjects was (39.93 ± 12.27 years), (24.49 ± 3.54 BMI). The strength evaluated by manual testing of the right levator ani muscles was 7.79 ± 2.88, the strength of left levator ani muscles was 7.51 ± 2.91 and the strength assessed with the perineometer was 7.64 ± 2.55. A positive correlation was found between manual muscle testing and perineometry of the pelvic floor muscles (p < .001). No correlation was found between outcomes of quality of life reported by the patients and outcomes of functional capacity informed by the physiotherapist. A stratification of the strength of pelvic floor muscles in a normal distribution of a large sample of women with SUI was done, which provided the clinic with a baseline. There is a relationship between the strength of the pelvic muscles assessed manually and that obtained by a perineometer in women with SUI. There was no relationship between these values of strength and quality of life perceived.
Fatemi, Farzaneh Sadat; Vojdani, Mahroo; Khaledi, Amir Ali Reza
2018-06-08
To investigate the influence of food-simulating agents on the shear bond strength between direct hard liners and denture base acrylic resin. In addition, mode of failure was evaluated. One hundred fifty cylindrical columns of denture base resin were fabricated and bonded to three types of hard reline materials (Hard GC Reline, Tokuyama Rebase II Fast, TDV Cold Liner Rebase). Specimens of each reline material were divided into five groups (n = 10) to undergo 12-day immersion in distilled water, 0.02 N citric acid aqueous solution, heptane, and 40% ethanol/water solution at 37°C. The control group was not immersed in any solution. The shear bond strength test was performed, and the failure mode was determined. Statistics were analyzed with two-way ANOVA and chi-square test (α = 0.05). Significant interaction was found between the hard liners and food simulating agents (p < 0.001). The shear bond strength of Tokuyama in 40% ethanol and TDV in heptane decreased significantly (p = 0.001, p < 0.001 respectively); however, none of the solutions could significantly affect the shear bond strength of Hard GC Reline (p = 0.208). The mixed failure mode occurred more frequently in Hard GC Reline compared with the other liners (p < 0.001) and was predominant in specimens with higher bond strength values (p = 0.012). Food simulating agents did not adversely affect the shear bond strength of Hard GC Reline; however, ethanol and heptane decreased the bond strength of Tokuyama and TDV, respectively. These findings may provide support to dentists to recommend restricted consumption of some foods and beverages for patients who have to use dentures relined with certain hard liners. © 2018 by the American College of Prosthodontists.
Woods, Julie L; Iuliano-Burns, Sandra; King, Susannah J; Strauss, Boyd J; Walker, Karen Z
2011-01-01
Purpose: To determine the prevalence of sarcopenia and investigate relationships among body composition, muscle strength, and physical function in elderly women in low-level aged care. Subjects and methods: Sixty-three ambulatory women (mean age 86 years) participated in this cross-sectional study where body composition was determined by dual energy X-ray absorptiometry (DXA); ankle, knee, and hip strength by the Nicholas Manual Muscle Tester; and physical function by ‘timed up and go’ (TUG) and walking speed (WS) over 6 meters. Body composition data from a female reference group (n = 62, mean age 29 years) provided cut-off values for defining sarcopenia. Results: Elderly women had higher body mass index (P < 0.001), lower lean mass (P < 0.001), and higher fat mass (P < 0.01) than the young reference group. Only a small proportion (3.2%) had absolute sarcopenia (defined by appendicular skeletal muscle mass/height squared) whereas 37% had relative sarcopenia class II (defined by percentage skeletal muscle mass). Scores for TUG and WS indicated relatively poor physical function, yet these measures were not associated with muscle mass or indices of sarcopenia. In multivariate analysis, only hip abductor strength predicted both TUG and WS (both P = 0.01). Conclusion: Hip strength is a more important indicator of physical functioning than lean mass. Measurement of hip strength may therefore be a useful screening tool to detect those at risk of functional decline and requirement for additional care. Further longitudinal studies with a range of other strength measures are warranted. PMID:21472094
Woods, Julie L; Iuliano-Burns, Sandra; King, Susannah J; Strauss, Boyd J; Walker, Karen Z
2011-01-01
To determine the prevalence of sarcopenia and investigate relationships among body composition, muscle strength, and physical function in elderly women in low-level aged care. Sixty-three ambulatory women (mean age 86 years) participated in this cross-sectional study where body composition was determined by dual energy X-ray absorptiometry (DXA); ankle, knee, and hip strength by the Nicholas Manual Muscle Tester; and physical function by 'timed up and go' (TUG) and walking speed (WS) over 6 meters. Body composition data from a female reference group (n = 62, mean age 29 years) provided cut-off values for defining sarcopenia. Elderly women had higher body mass index (P < 0.001), lower lean mass (P < 0.001), and higher fat mass (P < 0.01) than the young reference group. Only a small proportion (3.2%) had absolute sarcopenia (defined by appendicular skeletal muscle mass/height squared) whereas 37% had relative sarcopenia class II (defined by percentage skeletal muscle mass). Scores for TUG and WS indicated relatively poor physical function, yet these measures were not associated with muscle mass or indices of sarcopenia. In multivariate analysis, only hip abductor strength predicted both TUG and WS (both P = 0.01). Hip strength is a more important indicator of physical functioning than lean mass. Measurement of hip strength may therefore be a useful screening tool to detect those at risk of functional decline and requirement for additional care. Further longitudinal studies with a range of other strength measures are warranted.
Menta, Roger; Randhawa, Kristi; Côté, Pierre; Wong, Jessica J; Yu, Hainan; Sutton, Deborah; Varatharajan, Sharanya; Southerst, Danielle; D'Angelo, Kevin; Cox, Jocelyn; Brown, Courtney; Dion, Sarah; Mior, Silvano; Stupar, Maja; Shearer, Heather M; Lindsay, Gail M; Jacobs, Craig; Taylor-Vaisey, Anne
2015-09-01
The purpose of this systematic review was to evaluate the effectiveness of exercise compared to other interventions, placebo/sham intervention, or no intervention in improving self-rated recovery, functional recovery, clinical, and/or administrative outcomes in individuals with musculoskeletal disorders and injuries of the elbow, forearm, wrist, and hand. We searched MEDLINE, EMBASE, CINAHL, PsycINFO, and the Cochrane Central Register of Controlled Trials from 1990 to 2015. Paired reviewers independently screened studies for relevance and assessed the risk of bias using the Scottish Intercollegiate Guidelines Network criteria. We synthesized the evidence using the best evidence synthesis methodology. We identified 5 studies with a low risk of bias. Our review suggests that, for patients with persistent lateral epicondylitis, (1) adding concentric or eccentric strengthening exercises to home stretching exercises provides no additional benefits; (2) a home program of either eccentric or concentric strengthening exercises leads to similar outcomes; (3) home wrist extensor strengthening exercises lead to greater short-term improvements in pain reduction compared to "wait and see"; and (4) clinic-based, supervised exercise may be more beneficial than home exercises with minimal improvements in pain and function. For hand pain of variable duration, supervised progressive strength training added to advice to continue normal physical activity provides no additional benefits. The relative effectiveness of stretching vs strengthening for the wrist extensors remains unknown for the management of persistent lateral epicondylitis. The current evidence shows that the addition of supervised progressive strength training does not provide further benefits over advice to continue normal physical activity for hand pain of variable duration. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.
Srisawasdi, Thanida; Petcharoen, Karat; Sirivat, Anuvat; Jamieson, Alexander M
2015-11-01
Pure silk fibroin (SF) hydrogel and polycarbazole/silk fibroin (SF/PCZ) hydrogels were fabricated by solvent casting technique to evaluate electromechanical responses, dielectric properties, and cantilever deflection properties as functions of electric field strength, SF concentration, glutaraldehyde concentration, and PCZ concentration in the blends. Electromechanical properties were characterized in oscillatory shear mode at electric field strengths ranging from 0 to 600V/mm and at a temperature of 27°C. For both the pristine SF and SF/PCZ hydrogels, the storage modulus response (ΔG') and the storage modulus sensitivity (ΔG'/G'0) increased dramatically with increasing electric field strength. The pristine hydrogel possessed the highest storage modulus sensitivity value of 5.87, a relatively high value when compared with other previously studied electroactive polymers. With the addition of conductive PCZ in SF hydrogel, the storage modulus sensitivity and the relative dielectric constant decreased; the conductive polymer thus provided the softening effect under electric field. In the deflection response, the dielectrophoresis force and deflection distance increased monotonically with electric field strength, where the pure SF hydrogel showed the highest deflection distance and dielectrophoresis force. Copyright © 2015 Elsevier B.V. All rights reserved.
Chan, Karen Y T; Zhao, Chunyi; Siren, Erika M J; Chan, Jeanne C Y; Boschman, Jeffrey; Kastrup, Christian J
2016-06-13
The adhesion of blood clots to blood vessels, such as through the adhesion of fibrin, is essential in hemostasis. While numerous strategies for initiating clot formation and preventing clot lysis are being developed to create improved hemostatic agents, strategies for enhancing clot adhesion have not been widely explored. Here, we show that adhesion of blood clots can be increased by adding a previously characterized synthetic polymer that is crosslinked by coagulation factor XIIIa during clotting. Addition of the polymer to normal plasma increased the adhesive strength of clots by 2-fold. It also recovered the adhesive strength of nonadhesive fibrinogen-deficient whole blood clots from <0.06 kPa to 1.9 ± 0.14 kPa, which is similar to the adhesive strength of a fibrinogen-rich clot (1.8 ± 0.64 kPa). The polymer also enabled plasma clots to remain adhered under fibrinolytic conditions. By demonstrating that the adhesive strength of clots can be increased with a synthetic material, this provides a potential strategy for creating advanced hemostatic materials, such as treatments for fibrinogen deficiency in trauma-induced coagulopathy.
NASA Astrophysics Data System (ADS)
Mavlyutov, A. M.; Kasatkin, I. A.; Murashkin, M. Yu.; Valiev, R. Z.; Orlova, T. S.
2015-10-01
The microstructural features, strength, and electrical conductivity of the electrotechnical aluminum alloy 6201 of the Al-Mg-Si system was investigated. The alloy was nanostructured using severe plastic deformation by high pressure torsion at different temperatures and in different deformation regimes. As a result, the samples had an ultrafine-grain structure with nanoinclusions of secondary phases, which provided an excellent combination of high strength (conventional yield strength σ0.2 = 325-410 MPa) and electrical conductivity (55-52% IACS). The contributions from different mechanisms to the strengthening were analyzed. It was experimentally found that the introduction of an additional dislocation density (an increase from 2 × 1013 to 5 × 1013 m-2) with the same basic parameters of the ultrafine-grain structure (grain size, size and distribution of particles of secondary strengthening phases) leads to an increase in the strength of the alloy by ~15%, while the electrical conductivity of the material changes insignificantly. The contribution from grain boundaries to the electrical resistivity of the alloy with an ultrafine-grain structure upon the change in their state, most likely, due to a change in the degree of nonequilibrium was estimated.
Vertebral body bone strength: the contribution of individual trabecular element morphology.
Parkinson, I H; Badiei, A; Stauber, M; Codrington, J; Müller, R; Fazzalari, N L
2012-07-01
Although the amount of bone explains the largest amount of variability in bone strength, there is still a significant proportion unaccounted for. The morphology of individual bone trabeculae explains a further proportion of the variability in bone strength and bone elements that contribute to bone strength depending on the direction of loading. Micro-CT imaging enables measurement of bone microarchitecture and subsequently mechanical strength of the same sample. It is possible using micro-CT data to perform morphometric analysis on individual rod and plate bone trabeculae using a volumetric spatial decomposition algorithm and hence determine their contribution to bone strength. Twelve pairs of vertebral bodies (T12/L1 or L4/L5) were harvested from human cadavers, and bone cubes (10 × 10 × 10 mm) were obtained. After micro-CT imaging, a volumetric spatial decomposition algorithm was applied, and measures of individual trabecular elements were obtained. Bone strength was measured in compression, where one bone specimen from each vertebral segment was tested supero-inferiorly (SI) and the paired specimen was tested antero-posteriorly (AP). Bone volume fraction was the strongest individual determinant of SI strength (r(2) = 0.77, p < 0.0001) and AP (r(2) = 0.54, p < 0.0001). The determination of SI strength was improved to r(2) = 0.87 with the addition of mean rod length and relative plate bone volume fraction. The determination of AP strength was improved to r(2) = 0.85 with the addition of mean rod volume and relative rod bone volume fraction. Microarchitectural measures of individual trabeculae that contribute to bone strength have been identified. In addition to the contribution of BV/TV, trabecular rod morphology increased the determination of AP strength by 57%, whereas measures of trabecular plate and rod morphology increased determination of SI strength by 13%. Decomposing vertebral body bone architecture into its constituent morphological elements shows that trabecular element morphology has specific functional roles to assist in maintaining skeletal integrity.
NASA Astrophysics Data System (ADS)
Armwood, Catherine K.
In this project, 26 fiber-reinforced mortar (FRM) mixtures are evaluated for their workability and strength characteristics. The specimens tested include two control mixtures and 24 FRMs. The mixtures were made of two types of binders; Type N Portland cement lime (Type N-PCL) and Natural Hydrated Lime 5 (NHL5); and 6 fiber types (5 synthetic fibers and one organic). When tested in flexure, the results indicate that majority of the synthetic fiber mixtures enhanced the performance of the mortar and the nano-nylon and horse hair fibers were the least effective in improving the mortar's modulus of rupture, ductility, and energy absorption. Four FRMs that improved the mortar's mechanical properties most during the flexural strength test were then used to conduct additional experiments. The FRM's compressive strength, as well as flexural and shear bond strength with clay and concrete masonry units were determined. Those four mixtures included Type N-PCL as the binder and 4 synthetic fibers. They were evaluated at a standard laboratory flow rate of 110% +/- 5% and a practical field flow rate of 130% +/- 5%. Results indicate that the use of fibers decreases the compressive strength of the mortar most of the time. However, the bond strength test results were promising: 81% of the FRM mixtures increased the flexural bond strength of the prism. The mixtures at 110 +/- 5% flow rate bonded better with concrete bricks and those ate 130+/-5% flow rate bonded better with clay bricks. The results of the shear bond strength show 50% of the FRM mixtures improved the shear bond strength. The FRM mixtures at 110+/-5% flow rate bonded with clay units provided the most improvement in shear bond strength compared to control specimen results. Along with detailed discussions and derived conclusions of these experiments, this dissertation includes recommendations for the most feasible FRM for different applications.
Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix
2015-04-01
To determine the relationship between thigh muscle strength and clinically relevant differences in self-assessed lower leg function. Isometric knee extensor and flexor strength of 4,553 Osteoarthritis Initiative participants (2,651 women and 1,902 men) was related to the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function scores by linear regression. Further, groups of male and female participant strata with minimum clinically important differences (MCIDs) in WOMAC function scores (6 of 68 units) were compared across the full range of observed values and to participants without functional deficits (WOMAC score 0). The effect of WOMAC knee pain and body mass index on the above relationships was explored using stepwise regression. Per regression equations, a 3.7% reduction in extensor strength and a 4.0% reduction in flexor strength were associated with an MCID in WOMAC function in women, and, respectively, a 3.6% and 4.8% reduction in men. For strength divided by body weight, reductions were 5.2% and 6.7%, respectively, in women and 5.8% and 6.7%, respectively, in men. Comparing MCID strata across the full observed range of WOMAC function confirmed the above estimates and did not suggest nonlinear relationships across the spectrum of observed values. WOMAC pain correlated strongly with WOMAC function, but extensor (and flexor) muscle strength contributed significant independent information. Reductions of approximately 4% in isometric muscle strength and of 6% in strength per body weight were related to a clinically relevant difference in WOMAC functional disability. Longitudinal studies will need to confirm these relationships within persons. Muscle extensor (and flexor) strength (per body weight) provided significant independent information in addition to pain in explaining variability in lower leg function. Copyright © 2015 by the American College of Rheumatology.
Hart, Trevor A; Noor, Syed W; Adam, Barry D; Vernon, Julia R G; Brennan, David J; Gardner, Sandra; Husbands, Winston; Myers, Ted
2017-10-01
Syndemics research shows the additive effect of psychosocial problems on high-risk sexual behavior among gay and bisexual men (GBM). Psychosocial strengths may predict less engagement in high-risk sexual behavior. In a study of 470 ethnically diverse HIV-negative GBM, regression models were computed using number of syndemic psychosocial problems, number of psychosocial strengths, and serodiscordant condomless anal sex (CAS). The number of syndemic psychosocial problems correlated with serodiscordant CAS (RR = 1.51, 95% CI 1.18-1.92; p = 0.001). When adding the number of psychosocial strengths to the model, the effect of syndemic psychosocial problems became non-significant, but the number of strengths-based factors remained significant (RR = 0.67, 95% CI 0.53-0.86; p = 0.002). Psychosocial strengths may operate additively in the same way as syndemic psychosocial problems, but in the opposite direction. Consistent with theories of resilience, psychosocial strengths may be an important set of variables predicting sexual risk behavior that is largely missing from the current HIV behavioral literature.
NASA Astrophysics Data System (ADS)
Ahmad, Z.; Ansell, M. P.; Smedley, D.
2011-02-01
This research work is concerned with in situ bonded-in timber connection using pultruded rod; where the manufacturing of such joint requires adhesive which can produce thick glue-lines and does not allow any use of pressure and heat. Four types of thixotropic (for ease application) and room temperature cured epoxy based were used namely CB10TSS (regarded as standards adhesive), Nanopox (modification of CB10TSS with addition of nanosilica), Albipox (modification of CB10TSS with addition of liquid rubber) and Timberset (an epoxy-based adhesive with addition of micro-size ceramic particles). The quality of the adhesive bonds was accessed using block shear test in accordance with ASTM D905. The bond strength depends on how good the adhesive wet the timber surface. Therefore the viscosity and contact angle was also measured. The nano- and microfiller additions increased the bond strength significantly. The viscosity correlates well with contact angle measurements where lower viscosities are associated with lower contact angles. However contact angle contradicts with measured strength and wettability.
Hot isostatic pressing of silicon nitride with boron nitride, boron carbide, and carbon additions
NASA Technical Reports Server (NTRS)
Mieskowski, Diane M.; Sanders, William A.
1989-01-01
Si3N4 test bars containing additions of BN, B4C, and C, were hot isostatically pressed in Ta cladding at 1900 and 2050 C to 98.9 percent to 99.5 percent theoretical density. Room-temperature strength data on specimens containing 2 wt pct BN and 0.5 wt pct C were comparable to data obtained for Si3N4 sintered with Y2O3, Y2O3 and Al2O3, or ZrO2. The 1370 C strengths were less than those obtained for additions of Y2O3 or ZrO2 but greater than those obtained from a combination of Y2O3 and Al2O3. SEM fractography indicated that, as with other types of Si3N4, room-temperature strength was controlled by processing flaws. The decrease in strength at 1370 C was typical of Si3N4 having an amorphous grain-boundary phase. The primary advantage of nonoxide additions appears to be in facilitating specimen removal from the Ta cladding.
Role of enamel deminerlization and remineralization on microtensile bond strength of resin composite
Rizvi, Abbas; Zafar, Muhammad S.; Al-Wasifi, Yasser; Fareed, Wamiq; Khurshid, Zohaib
2016-01-01
Objective: This study is aimed to establish the microtensile bond strength of enamel following exposure to an aerated drink at various time intervals with/without application of remineralization agent. In addition, degree of remineralization and demineralization of tooth enamel has been assessed using polarized light microscopy. Materials and Methods: Seventy extracted human incisors split into two halves were immersed in aerated beverage (cola drink) for 5 min and stored in saliva until the time of microtensile bond testing. Prepared specimens were divided randomly into two study groups; remineralizing group (n = 70): specimens were treated for remineralization using casein phosphopeptides and amorphous calcium phosphate (CPP-ACP) remineralization agent (Recaldent™; GC Europe) and control group (n = 70): no remineralization treatment; specimens were kept in artificial saliva. All specimens were tested for microtensile bond strength at regular intervals (1 h, 1 days, 2 days, 1 week, and 2 weeks) using a universal testing machine. The results statistically analyzed (P = 0.05) using two-way ANOVA test. Results: Results showed statistically significant increase in bond strength in CPP-ACP tested group (P < 0.05) at all-time intervals. The bond strength of remineralizing group samples at 2 days (~13.64 megapascals [MPa]) is comparable to that of control group after 1 week (~12.44 MPa). Conclusions: CPP-ACP treatment of teeth exposed to an aerated drink provided significant increase in bond strength at a shorter interval compared to teeth exposed to saliva alone. PMID:27403057
Peat soils stabilization using Effective Microorganisms (EM)
NASA Astrophysics Data System (ADS)
Yusof, N. Z.; Samsuddin, N. S.; Hanif, M. F.; Syed Osman, S. B.
2018-04-01
Peat soil is known as geotechnical problematic soil since it is the softest soil having highly organic and moisture content which led to high compressibility, low shear strength and long-term settlement. The aim of this study was to obtain the stabilized peat soils using the Effective Microorganisms (EM). The volume of EM added and mixed with peat soils varied with 2%, 4%, 6%, 8% and 10% and then were cured for 7, 14 and 21 days. The experiment was done for uncontrolled and controlled moisture content. Prior conducting the main experiments, the physical properties such as moisture content, liquid limit, specific gravity, and plastic limit etc. were measure for raw peat samples. The Unconfined Compressive Strength (UCS) test was performed followed by regression analysis to check the effect of EM on the soil strength. Obtained results have shown that the mix design for controlled moisture contents showed the promising improvement in their compressive strength. The peat soil samples with 10% of EM shows the highest increment in UCS value and the percentage of increments are in the range of 44% to 65% after curing for 21 days. The regression analysis of the EM with the soil compressive strength showed that in controlled moisture conditions, EM significantly improved the soil stability as the value of R2 ranged between 0.97 – 0.78. The results have indicated that the addition of EM in peat soils provides significant improving in the strength of the soil as well as the other engineering properties.
NASA Astrophysics Data System (ADS)
Zhong, Yuan; Rännar, Lars-Erik; Liu, Leifeng; Koptyug, Andrey; Wikman, Stefan; Olsen, Jon; Cui, Daqing; Shen, Zhijian
2017-04-01
A feasibility study was performed to fabricate ITER In-Vessel components by one of the metal additive manufacturing methods, Electron Beam Melting® (EBM®). Solid specimens of SS316L with 99.8% relative density were prepared from gas atomized precursor powder granules. After the EBM® process the phase remains as austenite and the composition has practically not been changed. The RCC-MR code used for nuclear pressure vessels provides guidelines for this study and tensile tests and Charpy-V tests were carried out at 22 °C (RT) and 250 °C (ET). This work provides the first set of mechanical and microstructure data of EBM® SS316L for nuclear fusion applications. The mechanical testing shows that the yield strength, ductility and toughness are well above the acceptance criteria and only the ultimate tensile strength of EBM® SS316L is below the RCC-MR code. Microstructure characterizations reveal the presence of hierarchical structures consisting of solidified melt pools, columnar grains and irregular shaped sub-grains. Lots of precipitates enriched in Cr and Mo are observed at columnar grain boundaries while no sign of element segregation is shown at the sub-grain boundaries. Such a unique microstructure forms during a non-equilibrium process, comprising rapid solidification and a gradient 'annealing' process due to anisotropic thermal flow of accumulated heat inside the powder granule matrix. Relations between process parameters, specimen geometry (total building time) and sub-grain structure are discussed. Defects are formed mainly due to the large layer thickness (100 μm) which generates insufficient bonding between a few of the adjacently formed melt pools during the process. Further studies should focus on adjusting layer thickness to improve the strength of EBM® SS316L and optimizing total building time.
Properties of High Strength Concrete Applied on Semarang - Bawen Highway
NASA Astrophysics Data System (ADS)
Setiyawan, Prabowo; Antonius; Wedyowibowo, R. Hawik Jenny
2018-04-01
To fulfill the needs of highway construction then a high quality concrete is expected to be produced by a short time and high workability, therefore the addition of additive chemicals needs to be conducted. The objective of the study was to find out the properties of high quality concrete including slump value, compressive strength, flexural strength, elasticity modulus and stress-strain diagrams with the addition of fly ash and superplasticizer. There were five types of mixtures were made in this study with a fas (cement water factor) was 0,41 and an additional 15% of fly ash and a varied superplasticizer of 0%, 0.5%, 1%, 2% towards the weight/volume and cement/water. Test samples of cylinders and prisms or beams were tested in the laboratory at 1, 3, 7, 14, and 28 days. The test results were then compared with the test results made without additional additives. Based on the result of this research, it can be concluded that the increase of slump value due to the addition of 15% fly ash is 0,53 cm of the base slump value. The use of superplasticizer causes the weight of the type to be greater. The optimum dose of superplasticizer is 1,2%, it is still in the usage level according to the F-type admixture brochure (water reducing, high-range admixture) such as 0,6 % -1,5 %. All mixture types which use addition materials for flexural strength (fr'=45kg/cm2) can be achieved at 3 days.
de Bruijn, Gert-Jan; Kroeze, Willemieke; Oenema, Anke; Brug, Johannes
2008-09-01
The additive and interactive effects of habit strength in the explanation of saturated fat intake were explored within the framework of the Theory of Planned Behaviour (TPB). Cross-sectional data were gathered in a Dutch adult sample (n=764) using self-administered questionnaires and analyzed using hierarchical regression analyses and simple slope analyses. Results showed that habit strength was a significant correlate of fat intake (beta=-0.11) and significantly increased the amount of explained variance in fat intake (R(2-change)=0.01). Furthermore, based on a significant interaction effect (beta=0.11), simple slope analyses revealed that intention was a significant correlate of fat intake for low levels (beta=-0.29) and medium levels (beta=-0.19) of habit strength, but a weaker and non-significant correlate for high levels (beta=-0.07) of habit strength. Higher habit strength may thus make limiting fat intake a non-intentional behaviour. Implications for information and motivation-based interventions are discussed.
Kalita, V I; Komlev, D I; Komlev, V S; Radyuk, A A
2016-03-01
A plasma spraying process for the deposition of three-dimensional capillary-porous titanium coatings using a wire has been developed. In this process, two additional dc arcs are discharged between plasmatron and both the wire and the substrate, resulting in additional activation of the substrate and the particles, particularly by increasing their temperature. The shear strength of the titanium coating with 46% porosity is 120.6 MPa. A new procedure for estimating the shear strength of porous coatings has been developed. Copyright © 2015 Elsevier B.V. All rights reserved.
Effects of fiber, matrix, and interphase on carbon fiber composite compression strength
NASA Technical Reports Server (NTRS)
Nairn, John A.; Harper, Sheila I.; Bascom, Willard D.
1994-01-01
The major goal of this project was to obtain basic information on compression failure properties of carbon fiber composites. To do this, we investigated fiber effects, matrix effects, and fiber/matrix interface effects. Using each of nine fiber types, we prepared embedded single-fiber specimens, single-ply specimens, and full laminates. From the single-fiber specimens, in addition to the standard fragmentation test analysis, we were able to use the low crack density data to provide information about the distribution of fiber flaws. The single-ply specimens provided evidence of a correlation between the size of kink band zones and the quality of the interface. Results of the laminate compression experiments mostly agreed with the results from single-ply experiments, although the ultimate compression strengths of laminates were higher. Generally, these experiments showed a strong effect of interfacial properties. Matrix effects were examined using laminates subjected to precracking under mixed-mode loading conditions. A large effect of precracking conditions on the mode 1 toughness of the laminates was found. In order to control the properties of the fiber/matrix interface, we prepared composites of carbon fiber and polycarbonate and subjected these to annealing. The changes in interfacial properties directly correlated with changes in compression strength.
Vibration training: could it enhance the strength, power, or speed of athletes?
Wilcock, Ian M; Whatman, Chris; Harris, Nigel; Keogh, Justin W L
2009-03-01
The aim of this literature review was to determine whether vibration training could produce chronic improvements in the physical performance of trained athletes. Although the main objective was to analyze any performance benefits, a brief review of possible mechanisms linked to performance enhancement is also included. Vibration causes an increase in the g-forces acting on the muscles, increasing the loading parameters of any exercise. Increased loading should aid muscle hypertrophy, and some authors have suggested that vibration may enhance neuromuscular potentiation. Considering the 6 studies on trained athletes, there does seem to be some evidence to suggest that vibration may provide a small benefit to maximal strength (1-repetition maximum) and power (countermovement jumps) of trained athletes. Speed does not seem to be enhanced by vibration training. There is a lack of evidence to support the theory that long-term vibration training increases neuromuscular potentiation in trained athletes. What mechanism(s) could be responsible for possible strength and power enhancement is unclear. Because whole-body vibration does not seem to be detrimental to performance when used in a controlled manner, it could provide an additional training stimulus for athletes. However, further research is required to determine optimum vibration training protocols and to clarify whether vibration training produces performance benefits greater than those of traditional training methods.
Discrete Model for the Structure and Strength of Cementitious Materials
NASA Astrophysics Data System (ADS)
Balopoulos, Victor D.; Archontas, Nikolaos; Pantazopoulou, Stavroula J.
2017-12-01
Cementitious materials are characterized by brittle behavior in direct tension and by transverse dilatation (due to microcracking) under compression. Microcracking causes increasingly larger transverse strains and a phenomenological Poisson's ratio that gradually increases to about ν =0.5 and beyond, at the limit point in compression. This behavior is due to the underlying structure of cementitious pastes which is simulated here with a discrete physical model. The computational model is generic, assembled from a statistically generated, continuous network of flaky dendrites consisting of cement hydrates that emanate from partially hydrated cement grains. In the actual amorphous material, the dendrites constitute the solid phase of the cement gel and interconnect to provide the strength and stiffness against load. The idealized dendrite solid is loaded in compression and tension to compute values for strength and Poisson's effects. Parametric studies are conducted, to calibrate the statistical parameters of the discrete model with the physical and mechanical characteristics of the material, so that the familiar experimental trends may be reproduced. The model provides a framework for the study of the mechanical behavior of the material under various states of stress and strain and can be used to model the effects of additives (e.g., fibers) that may be explicitly simulated in the discrete structure.
Study on Mechanical Properties of Concrete Using Plastic Waste as an Aggregate
NASA Astrophysics Data System (ADS)
Jaivignesh, B.; Sofi, A.
2017-07-01
Disposal of large quantity of plastic causes land, water and air pollution etc.., so a study is conducted to recycle the plastic in concrete. This work investigates about the replacement of natural aggregate with non-biodegradable plastic aggregate made up of mixed plastic waste in concrete. Several tests are conducted such as compressive strength of cube, split tensile strength of cylinder, flexural strength test of prism to identify the properties and behavior of concrete using plastic aggregate. Replacement of fine aggregate weight by 10%, 15%, 20% with Plastic fine (PF) aggregate and for each replacement of fine aggregate 15%, 20%, 25% of coarse aggregate replacement also conducted with Plastic Coarse(PC) aggregate. In literatures reported that the addition of plastic aggregate in concrete causes the reduction of strength in concrete due to poor bonding between concrete and plastic aggregate, so addition of 0.3% of steel fiber by weight of cement in concrete is done to improve the concrete strength. Totally 60 cubes, 60 cylinders and 40 prisms are casted to identify the compressive strength, split tensile strength and flexural strength respectively. Casted specimens are tested at 7 and 28 days. The identified results from concrete using plastic aggregate are compared with conventional concrete. Result shows that reduction in mechanical properties of plastic aggregate added concrete. This reduction in strength is mainly due to poor bond strength between cement and plastic aggregate.
Additive manufactured push-fit implant fixation with screw-strength pull out.
van Arkel, Richard J; Ghouse, Shaaz; Milner, Piers E; Jeffers, Jonathan R T
2017-10-11
Additive manufacturing offers exciting new possibilities for improving long-term metallic implant fixation in bone through enabling open porous structures for bony ingrowth. The aim of this research was to investigate how the technology could also improve initial fixation, a precursor to successful long-term fixation. A new barbed fixation mechanism, relying on flexible struts was proposed and manufactured as a push-fit peg. The technology was optimized using a synthetic bone model and compared with conventional press-fit peg controls tested over a range of interference fits. Optimum designs, achieving maximum pull-out force, were subsequently tested in a cadaveric femoral condyle model. The barbed fixation surface provided more than double the pull-out force for less than a third of the insertion force compared to the best performing conventional press-fit peg (p < 0.001). Indeed, it provided screw-strength pull out from a push-fit device (1,124 ± 146 N). This step change in implant fixation potential offers new capabilities for low profile, minimally invasive implant design, while providing new options to simplify surgery, allowing for one-piece push-fit components with high levels of initial stability. © 2017 The Authors. Journal of Orthopaedic Research Published by WileyPeriodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 9999:1-11, 2017. © 2017 The Authors. Journal of Orthopaedic Research Published by WileyPeriodicals, Inc. on behalf of the Orthopaedic Research Society.
Kim, Hwang-Hee; Kim, Chun-Soo; Jeon, Ji-Hong; Park, Chan-Gi
2016-01-29
To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene ( SB) latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing latex and aggregate replacement rates up to 60% satisfied the target void ratio and compressive strength.
Koli, Jayappa M; Basu, Subrata; Nayak, Binay B; Kannuchamy, Nagalakshmi; Gudipati, Venkateshwarlu
2011-08-01
Fish gelatin is a potential alternative to mammalian gelatin. However, poor gel strength and low melting point limit its applications. The study was aimed at improving these properties by adding coenhancers in the range obtained from response surface methodology (RSM) by using Box-Behnken design. Three different coenhancers, MgSO₄, sucrose, and transglutaminase were used as the independent variables for improving the gel strength and melting point of gelatin extracted from Tiger-toothed croaker (Otolithes ruber). Addition of coenhancers at different combinations resulted gel strength and melting point in the range of 150.5 to 240.5 g and 19.5 to 22.5 °C, respectively. The optimal concentrations of coenhancers for predicted maximum gel strength (242.8 g) obtained by RSM were 0.23 M MgSO₄, 12.60% sucrose (w/v), and 5.92 mg/g transglutaminase and for predicted maximum melting point (22.57 °C), the values were 0.24 M MgSO₄, 10.44% sucrose (w/v), and 5.72 mg/g transglutaminase. By addition of coenhancers at these optimal concentrations in verification experiments, the gel strength and melting point were improved from 170 to 240.89 g and 20.3 to 22.7 °C, respectively. These experimental values agreed well with the predicted values demonstrating the fitness of the models. Results from the present study clearly revealed that the addition of coenhancers at a particular combination can improve the gel strength and melting point of fish gelatin to enhance its range of applications. There is a growing interest in the use of fish gelatin as an alternative to mammalian gelatin. However, poor gel strength and low melting point of fish gelatin have limited its commercial applications. The gel strength and melting point of fish gelatin can be increased by incorporation of coenhancers such as magnesium sulphate, sucrose, and transglutaminase. Results of this work help to produce the fish gelatin suitable for wide range of applications in the food industry. © 2011 Institute of Food Technologists®
Kim, Hwang-Hee; Kim, Chun-Soo; Jeon, Ji-Hong; Park, Chan-Gi
2016-01-01
To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene (SB) latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing latex and aggregate replacement rates up to 60% satisfied the target void ratio and compressive strength. PMID:28787883
Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates.
Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B
2015-01-01
Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA.
Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates
Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B.
2015-01-01
Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA. PMID:26161440
NASA Astrophysics Data System (ADS)
Wibowo; Fadillah, Y.
2018-03-01
Efficiency in a construction works is a very important thing. Concrete with ease of workmanship and rapid achievement of service strength will to determine the level of efficiency. In this research, we studied the optimization of accelerator usage in achieving performance on compressive strength of concrete in function of time. The addition of variation of 0.3% - 2.3% to the weight of cement gives a positive impact of the rapid achievement of hardened concrete, however the speed of increasing of concrete strength achievement in term of time influence present increasing value of filling ability parameter of self-compacting concrete. The right composition of accelerator aligned with range of the values standard of filling ability parameters of HSSCC will be an advantage guidance for producers in the ready-mix concrete industry.
Time-Dependent Behavior of High-Strength Kevlar and Vectran Webbing
NASA Technical Reports Server (NTRS)
Jones, Thomas C.; Doggett, William R.
2014-01-01
High-strength Kevlar and Vectran webbings are currently being used by both NASA and industry as the primary load-bearing structure in inflatable space habitation modules. The time-dependent behavior of high-strength webbing architectures is a vital area of research that is providing critical material data to guide a more robust design process for this class of structures. This paper details the results of a series of time-dependent tests on 1-inch wide webbing including an initial set of comparative tests between specimens that underwent realtime and accelerated creep at 65 and 70% of their ultimate tensile strength. Variability in the ultimate tensile strength of the webbings is investigated and compared with variability in the creep life response. Additional testing studied the effects of load and displacement rate, specimen length and the time-dependent effects of preconditioning the webbings. The creep test facilities, instrumentation and test procedures are also detailed. The accelerated creep tests display consistently longer times to failure than their real-time counterparts; however, several factors were identified that may contribute to the observed disparity. Test setup and instrumentation, grip type, loading scheme, thermal environment and accelerated test postprocessing along with material variability are among these factors. Their effects are discussed and future work is detailed for the exploration and elimination of some of these factors in order to achieve a higher fidelity comparison.
Effect of transition metal impurities on the strength of grain boundaries in vanadium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xuebang; Kong, Xiang-Shan; You, Yu-Wei
2016-09-07
Effects of 3d (Ti-Ni), 4d (Zr-Pd), and 5d (Hf-Pt) transition metal impurities on strength of two representative vanadium grain boundaries (GBs), symmetric Σ3(111) and asymmetric Σ5(210), were studied by first-principles calculations within the framework of the Rice-Wang thermodynamic model and within the computational tensile test. The desirable elements to increase the GB cohesion were predicted based on their segregation and strengthening behaviors across the different GB sites. It reveals that the elements Ti, Zr, Hf, Nb, and Ta are good choices for the GB cohesion enhancers. In addition, the GB strengthening by solutes is sensitive to the GB structures. Themore » elements Cr, Mn, Fe, Co, and Ni decrease the GB strength of the Σ3(111) GB but they can increase the cohesion of the Σ5(210) GB. Furthermore, the origin of Ti-induced change of the GB strength was uncovered by analyzing the atomic bonds and electronic structures as well as the tensile strength. This work provides a theoretical guidance to screen promising alloying elements in V-based materials with improved resistance to GB decohesion and also helps us to understand the formation mechanism of Ti-rich precipitates in the V-Cr-Ti alloys under neutron or ion irradiation environments.« less
Chain Ends and the Ultimate Tensile Strength of Polyethylene Fibers
NASA Astrophysics Data System (ADS)
O'Connor, Thomas C.; Robbins, Mark O.
Determining the tensile yield mechanisms of oriented polymer fibers remains a challenging problem in polymer mechanics. By maximizing the alignment and crystallinity of polyethylene (PE) fibers, tensile strengths σ ~ 6 - 7 GPa have been achieved. While impressive, first-principal calculations predict carbon backbone bonds would allow strengths four times higher (σ ~ 20 GPa) before breaking. The reduction in strength is caused by crystal defects like chain ends, which allow fibers to yield by chain slip in addition to bond breaking. We use large scale molecular dynamics (MD) simulations to determine the tensile yield mechanism of orthorhombic PE crystals with finite chains spanning 102 -104 carbons in length. The yield stress σy saturates for long chains at ~ 6 . 3 GPa, agreeing well with experiments. Chains do not break but always yield by slip, after nucleation of 1D dislocations at chain ends. Dislocations are accurately described by a Frenkel-Kontorova model, parametrized by the mechanical properties of an ideal crystal. We compute a dislocation core size ξ = 25 . 24 Å and determine the high and low strain rate limits of σy. Our results suggest characterizing such 1D dislocations is an efficient method for predicting fiber strength. This research was performed within the Center for Materials in Extreme Dynamic Environments (CMEDE) under the Hopkins Extreme Materials Institute at Johns Hopkins University. Financial support was provided by Grant W911NF-12-2-0022.
Lifting strength in two-person teamwork.
Lee, Tzu-Hsien
2016-01-01
This study examined the effects of lifting range, hand-to-toe distance, and lifting direction on single-person lifting strengths and two-person teamwork lifting strengths. Six healthy males and seven healthy females participated in this study. Two-person teamwork lifting strengths were examined in both strength-matched and strength-unmatched groups. Our results showed that lifting strength significantly decreased with increasing lifting range or hand-to-toe distance. However, lifting strengths were not affected by lifting direction. Teamwork lifting strength did not conform to the law of additivity for both strength-matched and strength-unmatched groups. In general, teamwork lifting strength was dictated by the weaker of the two members, implying that weaker members might be exposed to a higher potential danger in teamwork exertions. To avoid such overexertion in teamwork, members with significantly different strength ability should not be assigned to the same team.
Electrical and Mechanical Properties of 3D-Printed Graphene-Reinforced Epoxy
NASA Astrophysics Data System (ADS)
Compton, Brett G.; Hmeidat, Nadim S.; Pack, Robert C.; Heres, Maximilian F.; Sangoro, Joshua R.
2018-03-01
Recent developments in additive manufacturing have demonstrated the potential for thermoset polymer feedstock materials to achieve high strength, stiffness, and functionality through incorporation of structural and functional filler materials. In this work, graphene was investigated as a potential filler material to provide rheological properties necessary for direct-write three-dimensional (3D) printing and electrostatic discharge properties to the printed component. The rheological properties of epoxy/graphene mixtures were characterized, and printable epoxy/graphene inks formulated. Sheet resistance values for printed epoxy/graphene composites ranged from 0.67 × 102 Ω/sq to 8.2 × 103 Ω/sq. The flexural strength of printed epoxy/graphene composites was comparable to that of cast neat epoxy ( 80 MPa), suggesting great potential for these new materials in multifunctional 3D-printed devices.
NASA Technical Reports Server (NTRS)
Campbell, Sandi; Papadopoulos, Demetrios; Heimann, Paula; Inghram, Linda; McCorkle, Linda
2005-01-01
Expanded graphite was compressed into graphite sheets and used as a coating for carbon fiber reinforced PMR-15 composites. BET analysis of the graphite indicated an increase in graphite pore size on compression, however the material was proven to be an effective barrier to oxygen when prepegged with PMR-15 resin. Oxygen permeability of the PMR-15/graphite was an order of magnitude lower than the compressed graphite sheet. By providing a barrier to oxygen permeation, the rate of oxidative degradation of PMR-15 was decreased. As a result, the composite thermo-oxidative stability increased by up to 25%. The addition of a graphite sheet as a top ply on the composites yielded little change in the material's flexural strength or interlaminar shear strength.
Ergonomic assessment of airport shuttle driver tasks using an ergonomic analysis toolset.
Çakıt, Erman
2018-06-01
This study aimed to (a) evaluate strength requirements and lower back stresses during lifting and baggage handling tasks with the 3D Static Strength Prediction Program (3DSSPP) and (b) provide additional analyses using rapid entire body assessment (REBA) and the NASA task load index (TLX) to assess the risks associated with the tasks. Four healthy female shuttle drivers of good health aged between 55 and 60 years were observed and interviewed in an effort to determine the tasks required of their occupations. The results indicated that lifting bags and placing them in a shuttle were high risk for injury and possible changes should be further investigated. The study concluded there was a potential for injury associated with baggage storing and retrieval tasks of a shuttle driver.
Dynamic Strength of Titin's Z-Disk End
Kollár, Veronika; Szatmári, Dávid; Grama, László; Kellermayer, Miklós S. Z.
2010-01-01
Titin is a giant filamentous protein traversing the half sarcomere of striated muscle with putative functions as diverse as providing structural template, generating elastic response, and sensing and relaying mechanical information. The Z-disk region of titin, which corresponds to the N-terminal end of the molecule, has been thought to be a hot spot for mechanosensing while also serving as anchorage for its sarcomeric attachment. Understanding the mechanics of titin's Z-disk region, particularly under the effect of binding proteins, is of great interest. Here we briefly review recent findings on the structure, molecular associations, and mechanics of titin's Z-disk region. In addition, we report experimental results on the dynamic strength of titin's Z1Z2 domains measured by nanomechanical manipulation of the chemical dimer of a recombinant protein fragment. PMID:20414364
Dynamic strength of titin's Z-disk end.
Kollár, Veronika; Szatmári, Dávid; Grama, László; Kellermayer, Miklós S Z
2010-01-01
Titin is a giant filamentous protein traversing the half sarcomere of striated muscle with putative functions as diverse as providing structural template, generating elastic response, and sensing and relaying mechanical information. The Z-disk region of titin, which corresponds to the N-terminal end of the molecule, has been thought to be a hot spot for mechanosensing while also serving as anchorage for its sarcomeric attachment. Understanding the mechanics of titin's Z-disk region, particularly under the effect of binding proteins, is of great interest. Here we briefly review recent findings on the structure, molecular associations, and mechanics of titin's Z-disk region. In addition, we report experimental results on the dynamic strength of titin's Z1Z2 domains measured by nanomechanical manipulation of the chemical dimer of a recombinant protein fragment.
NASA Technical Reports Server (NTRS)
Palumbo, Daniel L.; Klos, Jacob
2010-01-01
Sandwich honeycomb composite panels are lightweight and strong, and, therefore, provide a reasonable alternative to the aluminum ring frame/stringer architecture currently used for most aircraft airframes. The drawback to honeycomb panels is that they radiate noise into the aircraft cabin veil- efficiently provoking the need for additional sound treatment which adds weight and reduces the material's cost advantage. A series of honeycomb panels was made -hick incorporated different design strategies aimed at reducing the honeycomb panels' radiation efficiency while at the same time maintaining their strength. The majority of the designs were centered around the concept of creating areas of reduced stiffness in the panel by adding voids and recesses to the core. The effort culminated with a reinforced/recessed panel which had 6 dB higher transmission loss than the baseline solid core panel while maintaining comparable strength.
Review of methyl methacrylate (MMA)/tributylborane (TBB)-initiated resin adhesive to dentin.
Taira, Yohsuke; Imai, Yohji
2014-01-01
This review, focusing mainly on research related to methyl methacrylate/tributylborane (MMA/TBB) resin, presents the early history of dentin bonding and MMA/TBB adhesive resin, followed by characteristics of resin bonding to dentin. Bond strengths of MMA/TBB adhesive resin to different adherends were discussed and compared with other bonding systems. Factors affecting bond strength (such as conditioners, primers, and medicaments used for dental treatment), bonding mechanism, and polymerization characteristics of MMA/TBB resin were also discussed. This review further reveals the unique adhesion features between MMA/TBB resin and dentin: in addition to monomer diffusion into the demineralized dentin surface, graft polymerization of MMA onto dentin collagen and interfacial initiation of polymerization at the resin-dentin interface provide the key bonding mechanisms.
Lewinstein, I; Zenziper, E; Block, J; Kfir, A
2012-11-01
To test the antibacterial capacities and tensile strengths of three commercially available provisional cements to which chlorhexidine diacetate was added and compare them to the same unmodified cements. Sixty cylindrical samples were prepared from either three noneugenol provisional cements or the same cements modified by the addition of chlorhexidine diacetate at 7.5% w/w, with a total of 360 samples. The cements tested included Tempbond NE, Rely X Temp NE and Freegenol. Forty-eight samples from each cement were aged in saline that was replaced twice a week for up to 96 days. Twelve of these samples were removed at either 1, 15, 30 or 96 days and assessed for antibacterial properties against Streptococcus mutans with an agar diffusion test. Twelve samples of each cement, with and without chlorhexidine diacetate, were also tested 7 days after the initial setting for their tensile strength using a diametrical tensile strength test applied with an Instron machine. The results were analysed using either one-way or three-way anova. The addition of chlorhexidine diacetate resulted in provisional cements with antibacterial properties that persisted through ageing in saline for up to 96 days. The addition of chlorhexidine did not reduce the diametrical strength of the cements. The addition of chlorhexidine diacetate to provisional cements rendered all three cements antibacterial against S. mutans and this activity was maintained even after prolonged ageing of the cements, without compromising their tensile strength at 7 days. © 2012 International Endodontic Journal.
NASA Astrophysics Data System (ADS)
Andayani, Sih Wuri; Suratman, Rochim; Imran, Iswandi; Mardiyati
2018-05-01
Portland cement concrete have been used in construction due to its strength and ecomical value. But it has some limitations, such low flexural strength, low tensile strength, low chemical resistant and etc. Due to its limitations in flexural and tensile strength, Portland cement concrete more susceptible by seismic force. There are some methods for improving its limitations. Polymer addition into concrete mixture could be one of solution for improving the flexural and tensile strength, in aiming to get erthquake resistant properties. Also, the eartquake resistant could be achieved by improving energy dissipation capacity. In this research, the earthquake resistant evalution was approached from dynamic evaluation through energy dissipation capacity, after polymer addition as concrete additives. The polymers were natural latex (Indonesian naural resource) grafted with styrene and methacrylate, forming copolymer - natural latex methacrylate (KOLAM) and copolymer - natural latex styrene (KOLAS). They were added into concrete mixture resulting polymer modified concrete. The composition of polymer are 1%, 5% and 10% weight/weight of cement. The higher capacity of energy dissipation will give more capability in either absorbing or dissipating energy, and it was predicted would give better earthquake resistant.. The use of KOLAM gave better performance than KOLAS in energy dissipation capacity. It gave about 46% for addition of 1% w/w compared to Portland cement concrete. But for addition 5% w/w and 10% w/w, they gave about 7% and 5% higher energy dissipation capacity. The KOLAM addition into concrete mixture would reduce the maximum impact load with maximumabout 35% impact load reducing after 1% w/w addition. The higher concentration of KOLAM in concrete mixture, lower reducing of impact load, they were about 4% and 3% for KOLAM 5% and 10%. For KOLAS addition in any compositions, there were no positive trend either in energy dissipation capacity or impact load properties, compared to Portland cement concrete.
The effect of various pozzolanic additives on the concrete strength index
NASA Astrophysics Data System (ADS)
Vitola, L.; Sahmenko, G.; Erdmane, D.; Bumanis, G.; Bajare, D.
2017-10-01
The concrete industry is searching continuously for new effective mineral additives to improve the concrete properties. Replacing cement with the pozzolanic additives in most cases has resulted not only in positive impact on the environment but also has improved strength and durability of the concrete. Effective pozzolanic additives can be obtained from natural resources such as volcanic ashes, kaolin and other sediments as well as from different production industries that create various by-products with high pozzolanic reactivity. Current research deals with effectiveness evaluation of various mineral additives/wastes, such as coal combustion bottom ash, barley bottom ash, waste glass and metakaolin containing waste as well as calcined illite clays as supplementary cementitious materials, to be used in concrete production as partial cement replacement. Most of the examined materials are used as waste stream materials with potential reactive effect on the concrete. Milling time and fineness of the tested supplementary material has been evaluated and effectiveness was detected. Results indicate that fineness of the tested materials has crucial effect on the concrete compressive strength index. Not in all cases the prolonged milling time can increase fineness and reactivity of the supplementary materials; however the optimal milling time and fineness of the pozolanic additives increased the strength index of concrete up to 1.16 comparing to reference, even in cases when cement was substituted by 20 w%.
NASA Astrophysics Data System (ADS)
Alejos, Martin Fernando
Additive manufacturing has become a highly researched topic in recent years all over the world. The current research evaluates the merits of additive manufacturing based on the mechanical, microstructural, and fracture properties of additive manufactured AlSi10Mg test specimens. The additive manufactured build plates consisted of tensile and fatigue test specimens. They were printed in the 0°, 30°, 60°, and 90° orientations relative to the build platform. Tensile and dynamic fatigue tests were conducted followed by microstructural characterization and fracture analysis. A wrought 6061 T6 aluminum alloy was also tested for comparison. Tensile tests revealed similar ultimate tensile strengths for all aluminum tensile specimens (350-380 MPa). Fatigue strength was greatest for wrought 6061 T6 aluminum (175 MPa). The fatigue behavior was a strong function of build orientation for the additive manufactured specimens. The 0°, 30°, and 60° orientations had fatigue strengths close to 104 MPa while the 90° orientation had a fatigue strength of 125 MPa. All test specimens failed primarily in a ductile manner. The effect of laser power, hatch spacing, and scan speed were also studied using microstructural analysis. Increasing laser power decreased grain size and void size. Increasing scan speed led to the formation of columnar grains. Increasing hatch spacing decreased grain size and the amount of voids present in the microstructure.
Parra-Robles, Juan; Cross, Albert R; Santyr, Giles E
2005-05-01
Hyperpolarized noble gases (HNGs) provide exciting possibilities for MR imaging at ultra-low magnetic field strengths (<0.15 T) due to the extremely high polarizations available from optical pumping. The fringe field of many superconductive magnets used in clinical MR imaging can provide a stable magnetic field for this purpose. In addition to offering the benefit of HNG MR imaging alongside conventional high field proton MRI, this approach offers the other useful advantage of providing different field strengths at different distances from the magnet. However, the extremely strong field gradients associated with the fringe field present a major challenge for imaging since impractically high active shim currents would be required to achieve the necessary homogeneity. In this work, a simple passive shimming method based on the placement of a small number of ferromagnetic pieces is proposed to reduce the fringe field inhomogeneities to a level that can be corrected using standard active shims. The method explicitly takes into account the strong variations of the field over the volume of the ferromagnetic pieces used to shim. The method is used to obtain spectra in the fringe field of a high-field (1.89 T) superconducting magnet from hyperpolarized 129Xe gas samples at two different ultra-low field strengths (8.5 and 17 mT). The linewidths of spectra measured from imaging phantoms (30 Hz) indicate a homogeneity sufficient for MRI of the rat lung.
Deutz, Nicolaas E. P.; Bauer, Jurgen M.; Barazzoni, Rocco; Biolo, Gianni; Boirie, Yves; Bosy-Westphal, Anja; Cederholm, Tommy; Cruz-Jentoft, Alfonso; Krznaric, Zeljko; Nair, K. Sreekumaran; Singer, Pierre; Teta, Daniel; Tipton, Kevin; Calder, Philip C.
2014-01-01
The aging process is associated with gradual and progressive loss of muscle mass along with lowered strength and physical endurance. This condition, sarcopenia, has been widely observed with aging in sedentary adults. Regular aerobic and resistance exercise programs have been shown to counteract most aspects of sarcopenia. In addition, good nutrition, especially adequate protein and energy intake, can help limit and treat age-related declines in muscle mass, strength, and functional abilities. Protein nutrition in combination with exercise is considered optimal for maintaining muscle function. With the goal of providing recommendations for health care professionals to help older adults sustain muscle strength and function into older age, the European Society for Clinical Nutrition and Metabolism (ESPEN) hosted a Workshop on Protein Requirements in the Elderly, held in Dubrovnik on November 24 and 25, 2013. Based on the evidence presented and discussed, the following recommendations are made: (1) for healthy older people, the diet should provide at least 1.0 to 1.2 g protein/kg body weight/day (2) for older people who are malnourished or at risk of malnutrition because they have acute or chronic illness, the diet should provide 1.2 to 1.5 g protein/kg body weight/day, with even higher intake for individuals with severe illness or injury, and (3) daily physical activity or exercise (resistance training, aerobic exercise) should be undertaken by all older people, for as long as possible. PMID:24814383
Effect of etching on bonding of a self-etch adhesive to dentine affected by amelogenesis imperfecta.
Epasinghe, Don Jeevanie; Yiu, Cynthia Kar Yung
2018-02-01
Dentine affected by amelogenesis imperfecta (AI) is histologically altered due to loss of hypoplastic enamel and becomes hypermineralized. In the present study, we examined the effect of additional acid etching on microtensile bond strength of a self-etch adhesive to AI-affected dentine. Flat coronal dentine obtained from extracted AI-affected and non-carious permanent molars were allocated to two groups: (a) Clearfil SE Bond (control); and (b) Clearfil SE Bond and additional etching with 34% phosphoric acid for 15 seconds. The bonded teeth were sectioned into .8-mm 2 beams for microtensile bond strength testing, and stressed to failure under tension. The bond strength data were analyzed using two-way analysis of variance (dentine type and etching step) and Student-Newman-Keuls multiple comparison test (P<.05). Representative fractured beams from each group were examined under scanning electron microscopy. Both factors, dentine substrate (P<.001) and etching step (P<.05), and their interactions (P<.001), were statistically significant. Additional etching had an adverse effect on the bond strength of Clearfil SE Bond to normal dentine (P<.005), and no significant improvement was found for AI-affected dentine (P=.479). Additional acid etching does not improve the bond strength of a self-etch adhesive to AI-affected dentine. © 2017 John Wiley & Sons Australia, Ltd.
High-Temperature Inorganic Self-Healing Inorganic Cement Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyatina, Tatiana; Sugama, Toshifumi
The data files below summarize the results from various experiments testing properties of high-temperature self-healing inorganic cement composites. These properties include cement-carbon steel bond strength, Young's modulus recovery, matrix recovery strength, and compressive strength and Yonug's modulus for cement composites modified with Pozzolanic Clay additives.
Batra, Charu; Nagpal, Rajni; Tyagi, Shashi Prabha; Singh, Udai Pratap; Manuja, Naveen
2014-08-01
To evaluate the effect of additional enamel etching on the shear bond strength of three self-etch adhesives. Class II box type cavities were made on extracted human molars. Teeth were randomly divided into one control group of etch and rinse adhesive and three test groups of self-etch adhesives (Clearfil S3 Bond, Futurabond NR, Xeno V). The teeth in the control group (n = 10) were treated with Adper™ Single Bond 2. The three test groups were further divided into two subgroups (n = 10): (i) self-etch adhesive was applied as per the manufacturer's instructions; (ii) additional etching of enamel surfaces was done prior to the application of self-etch adhesives. All cavities were restored with Filtek Z250. After thermocycling, shear bond strength was evaluated using a Universal testing machine. Data were analyzed using anova independent sample's 't' test and Dunnett's test. The failure modes were evaluated with a stereomicroscope at a magnification of 10×. Additional phosphoric acid etching of the enamel surface prior to the application of the adhesive system significantly increased the shear bond strength of all the examined self-etch adhesives. Additional phosphoric acid etching of enamel surface significantly improved the shear bond strength. © 2013 Wiley Publishing Asia Pty Ltd.
Nicholson, John W.; Coleman, Nichola J.; Booth, Samantha; Dimkov, Aleksandar
2017-01-01
Root canal sealers with antimicrobial activity are highly beneficial; therefore, their antimicrobial properties could be improved by incorporation of antimicrobial agents. In the present study, the release of the quaternary ammonium compounds from endodontic sealers admixed with either benzalkonium chloride (BC) or cetylpyridinium chloride (CPC) at loadings of 2% wt was monitored. The effect of these additives on the compressive strengths and their release from the sealers was determined after 1 and 4 weeks. All of the materials studied were found to be capable of releasing antimicrobial additive in useful quantities. The release of CPC occurred to a statistically significant greater extent than BC for all materials. The addition of both BC and CPC generally decreased the compressive strength of all the endodontic sealers, with the exception of CPC in AH Plus, where the compressive strength was significantly increased. This suggests that, for these endodontic sealers, the antimicrobial additives alter the setting chemistry. AH Plus is an epoxy-based material cured with an amine, and in this case the increase in compressive strength with CPC is attributed to an enhanced cure reaction with this system. In all other cases, the additive inhibited the cure reaction to a greater or lesser extent. PMID:28620615
Rahmann, Ann E; Brauer, Sandra G; Nitz, Jennifer C
2009-05-01
To evaluate the effect of inpatient aquatic physiotherapy in addition to usual ward physiotherapy on the recovery of strength, function, and gait speed after total hip or knee replacement surgery. Pragmatic randomized controlled trial with blinded 6-month follow-up. Acute-care private hospital. People (n=65) undergoing primary hip or knee arthroplasty (average age, 69.6+/-8.2y; 30 men). Participants were randomly assigned to receive supplementary inpatient physiotherapy, beginning on day 4: aquatic physiotherapy, nonspecific water exercise, or additional ward physiotherapy. Strength, gait speed, and functional ability at day 14. At day 14, hip abductor strength was significantly greater after aquatic physiotherapy intervention than additional ward treatment (P=.001) or water exercise (P=.011). No other outcome measures were significantly different at any time point in the trial, but relative differences favored the aquatic physiotherapy intervention at day 14. No adverse events occurred with early aquatic intervention. A specific inpatient aquatic physiotherapy program has a positive effect on early recovery of hip strength after joint replacement surgery. Further studies are required to confirm these findings. Our research indicates that aquatic physiotherapy can be safely considered in this early postoperative phase.
The effects of boric acid and phosphoric acid on the compressive strength of glass-ionomer cements.
Prentice, Leon H; Tyas, Martin J; Burrow, Michael F
2006-01-01
Both boric acid (H3BO3) and phosphoric acid (H3PO4) are components of dental cements, commonly incorporated into glass (as ingredients in the melt) and occasionally added to the powder or liquid components. This study investigated the effect of boric acid addition to an experimental glass-ionomer powder and the effect of phosphoric acid addition to a glass-ionomer liquid on the 24-h compressive strength. Boric acid powder was added in various concentrations to an experimental glass-ionomer powder and, separately, phosphoric acid was added to an experimental glass-ionomer liquid. Powders and liquids were dosed into capsules at various powder:liquid ratios and cements thus formed were assessed for 24-h compressive strength. Incorporation of boric acid in glass-ionomer powder resulted in a pronounced decrease (p < 0.05 at 1% boric acid) in compressive strength. Addition of phosphoric acid produced initially stronger cements (up to 13% increase at 1% phosphoric acid) before also declining. The incorporation of less than 2% w/w phosphoric acid in glass-ionomer liquids may improve cement strengths without compromising clinical usefulness. The incorporation of boric acid in glass-ionomer cements is contraindicated.
Optimization of Fibrin Glue Spray Systems for Ophthalmic Surgery
Chaurasia, Shyam S.; Champakalakshmi, Ravi; Angunawela, Romesh I.; Tan, Donald T.; Mehta, Jodhbir S.
2012-01-01
Purpose To optimize fibrin glue (FG) spray for ophthalmic surgery using two spray applicators, EasySpray and DuploSpray systems, by varying the distance from point of application and the pressure/flow rate, and to compare the adhesive strength of sutured and sutureless (FG sprayed) conjunctival graft surgery in a rabbit model. Methods FG was sprayed on a 0.2 mm-thick sheet of paper using EasySpray by variously combining application distances of 2.5, 5, 7.5, and 10 cm with pressures of 10, 15, and 20 psi. DuploSpray was used at the same distances but with varying flow rates of 1 and 2 L/min. Subsequently, FG was sprayed on porcine corneas and FG thickness was analyzed by histology. In addition, adhesive strength of the conjunctival graft (0.5 × 0.5 cm) attached to the rabbit cornea by sutured and sutureless surgery (FG spray) was compared using a tension meter. Results Histology measurements revealed that the FG thickness decreased with increases in distance and pressure of spray using the EasySpray applicator on paper and porcine corneal sections. The adhesive strength of the sutured conjunctival graft (41 ± 4.85 [kilopascal] KPa) was found to be higher than the graft attached by spraying (10 ± 2.3 KPa) and the sequential addition of FG (6 ± 0.714 KPa). Conclusions The EasySpray applicator formed a uniform spread of FG at a distance-pressure combination of 5 cm and 20 psi. The conjunctival graft attached with sutures had higher adhesive strength compared with grafts glued with a spray applicator. Although the adhesive strength of FG applied through the applicator was similar to the drop-wise sequential technique, the former was more cost effective because more samples could be sprayed compared with the sequential manual technique. Translational Relevance The standardization of the spray system for the application of FG in ophthalmology will provide an economical method for delivering consistent healing results after surgery. PMID:24049702
Bosse, John D; Dixon, Brian M
2012-09-08
An appreciable volume of human clinical data supports increased dietary protein for greater gains from resistance training, but not all findings are in agreement. We recently proposed "protein spread theory" and "protein change theory" in an effort to explain discrepancies in the response to increased dietary protein in weight management interventions. The present review aimed to extend "protein spread theory" and "protein change theory" to studies examining the effects of protein on resistance training induced muscle and strength gains. Protein spread theory proposed that there must have been a sufficient spread or % difference in g/kg/day protein intake between groups during a protein intervention to see muscle and strength differences. Protein change theory postulated that for the higher protein group, there must be a sufficient change from baseline g/kg/day protein intake to during study g/kg/day protein intake to see muscle and strength benefits. Seventeen studies met inclusion criteria. In studies where a higher protein intervention was deemed successful there was, on average, a 66.1% g/kg/day between group intake spread versus a 10.2% g/kg/day spread in studies where a higher protein diet was no more effective than control. The average change in habitual protein intake in studies showing higher protein to be more effective than control was +59.5% compared to +6.5% when additional protein was no more effective than control. The magnitudes of difference between the mean spreads and changes of the present review are similar to our previous review on these theories in a weight management context. Providing sufficient deviation from habitual intake appears to be an important factor in determining the success of additional protein in enhancing muscle and strength gains from resistance training. An increase in dietary protein favorably effects muscle and strength during resistance training.
2012-01-01
An appreciable volume of human clinical data supports increased dietary protein for greater gains from resistance training, but not all findings are in agreement. We recently proposed “protein spread theory” and “protein change theory” in an effort to explain discrepancies in the response to increased dietary protein in weight management interventions. The present review aimed to extend “protein spread theory” and “protein change theory” to studies examining the effects of protein on resistance training induced muscle and strength gains. Protein spread theory proposed that there must have been a sufficient spread or % difference in g/kg/day protein intake between groups during a protein intervention to see muscle and strength differences. Protein change theory postulated that for the higher protein group, there must be a sufficient change from baseline g/kg/day protein intake to during study g/kg/day protein intake to see muscle and strength benefits. Seventeen studies met inclusion criteria. In studies where a higher protein intervention was deemed successful there was, on average, a 66.1% g/kg/day between group intake spread versus a 10.2% g/kg/day spread in studies where a higher protein diet was no more effective than control. The average change in habitual protein intake in studies showing higher protein to be more effective than control was +59.5% compared to +6.5% when additional protein was no more effective than control. The magnitudes of difference between the mean spreads and changes of the present review are similar to our previous review on these theories in a weight management context. Providing sufficient deviation from habitual intake appears to be an important factor in determining the success of additional protein in enhancing muscle and strength gains from resistance training. An increase in dietary protein favorably effects muscle and strength during resistance training. PMID:22958314
Śliwowski, Robert; Jadczak, Łukasz; Hejna, Rafał; Wieczorek, Andrzej
2015-01-01
The purpose of this study was to investigate the effects of a resistance training program on the muscular strength of soccer players’ knees that initially presented unilateral and bilateral differences. For this study, a team of 24 male well-trained junior soccer players was divided into two strength program training groups: a Resistance Training Control Group (RTCG) composed of 10 players that did not have muscular imbalances and a Resistance Training Experimental Group (RTEG) composed of 14 players that had muscular imbalances. All players followed a resistance training program for six weeks, two times per week, during the transition period. The program of individualized strength training consisted of two parts. The first part, which was identical in terms of the choice of training loads, was intended for both training groups and contained two series of exercises including upper and lower body exercises. The second part of the program was intended only for RTEG and consisted of two additional series for the groups of muscles that had identified unilateral and bilateral differences. The applied program showed various directions in the isokinetic profile of changes. In the case of RTCG, the adaptations related mainly to the quadriceps muscle (the peak torque (PT) change for the dominant leg was statistically significant (p < 0.05)). There were statistically significant changes in RTEG (p < 0.05) related to PT for the hamstrings in both legs, which in turn resulted in an increase in the conventional hamstring/quadriceps ratio (H/Q). It is interesting that the statistically significant (p < 0.05) changes were noted only for the dominant leg. No statistically significant changes in bilateral differences (BD) were noted in either group. These results indicate that individualized resistance training programs could provide additional benefits to traditional strength training protocols to improve muscular imbalances in post-adolescent soccer players. PMID:26630271
Using of borosilicate glass waste as a cement additive
NASA Astrophysics Data System (ADS)
Han, Weiwei; Sun, Tao; Li, Xinping; Sun, Mian; Lu, Yani
2016-08-01
Borosilicate glass waste is investigated as a cement additive in this paper to improve the properties of cement and concrete, such as setting time, compressive strength and radiation shielding. The results demonstrate that borosilicate glass is an effective additive, which not only improves the radiation shielding properties of cement paste, but also shows the irradiation effect on the mechanical and optical properties: borosilicate glass can increase the compressive strength and at the same time it makes a minor impact on the setting time and main mineralogical compositions of hydrated cement mixtures; and when the natural river sand in the mortar is replaced by borosilicate glass sand (in amounts from 0% to 22.2%), the compressive strength and the linear attenuation coefficient firstly increase and then decrease. When the glass waste content is 14.8%, the compressive strength is 43.2 MPa after 28 d and the linear attenuation coefficient is 0.2457 cm-1 after 28 d, which is beneficial for the preparation of radiation shielding concrete with high performances.
Single Crystal Fibers of Yttria-Stabilized Cubic Zirconia with Ternary Oxide Additions
NASA Technical Reports Server (NTRS)
Ritzert, F. J.; Yun, H. M.; Miner, R. V.
1997-01-01
Single crystal fibers of yttria (Y2O3)-stabilized cubic zirconia, (ZrO2) with ternary oxide additions were grown using the laser float zone fiber processing technique. Ternary additions to the ZrO2-Y2O3 binary system were studied aimed at increasing strength while maintaining the high coefficient of thermal expansion of the binary system. Statistical methods aided in identifying the most promising ternary oxide candidate (Ta2O5, Sc2O3, and HfO2) and optimum composition. The yttria, range investigated was 14 to 24 mol % and the ternary oxide component ranged from 1 to 5 mol %. Hafnium oxide was the most promising ternary oxide component based on 816 C tensile strength results and ease of fabrication. The optimum composition for development was 81 ZrO2-14 Y203-5 HfO2 based upon the same elevated temperature strength tests. Preliminary results indicate process improvements could improve the fiber performance. We also investigated the effect of crystal orientation on strength.
NASA Astrophysics Data System (ADS)
Li, Wei; Wang, Nan; Fu, Gui-qin; Chu, Man-sheng; Zhu, Miao-yong
2018-04-01
As part of a research project to develop a novel clean smelting process for the comprehensive utilization of Hongge vanadium titanomagnetite (HVTM), in this study, the effect of Cr2O3 addition on the oxidation induration mechanism of HVTM pellets (HVTMPs) was investigated in detail. The results showed that the compressive strength of the HVTMPs was greatly weakened by the Cr2O3 addition, mainly because of a substantial increase in the porosity of the HVTMPs. The Cr2O3 addition marginally affected the phase composition but greatly affected the microstructural changes of the HVTMPs. Increased amounts of Cr2O3 resulted in a decrease in the uniform distribution of the hematite grains and in an increase in the Fe-Cr solid solutions (Fe1.2Cr0.8O3 and Fe0.7Cr1.3O3) embedded in the hematite grains. Moreover, the compact hematite was destroyed by forming a dispersed structure and the hematite recrystallization was hindered during the oxidation induration, which adversely affected the compressive strength. On the basis of these results, a schematic was formulated to describe the oxidation induration mechanism with different amounts of added Cr2O3. This study provides theoretical and technical foundations for the effective production of HVTMPs and a reference for chromium-bearing minerals.
Characterization of Depleted-Uranium Strength and Damage Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, III, George T.; Chen, Shuh-Rong; Bronkhorst, Curt A.
2012-12-17
The intent of this report is to document the status of our knowledge of the mechanical and damage behavior of Depleted Uranium(DU hereafter). This report briefly summaries the motivation of the experimental and modeling research conducted at Los Alamos National Laboratory(LANL) on DU since the early 1980’s and thereafter the current experimental data quantifying the strength and damage behavior of DU as a function of a number of experimental variables including processing, strain rate, temperature, stress state, and shock prestraining. The effect of shock prestraining on the structure-property response of DU is described and the effect on post-shock mechanical behaviormore » of DU is discussed. The constitutive experimental data utilized to support the derivation of two constitutive strength (plasticity) models, the Preston-Tonks-Wallace (PTW) and Mechanical Threshold Stress (MTS) models, for both annealed and shock prestrained DU are detailed and the Taylor cylinder validation tests and finite-element modeling (FEM) utilized to validate these strength models is discussed. The similarities and differences in the PTW and MTS model descriptions for DU are discussed for both the annealed and shock prestrained conditions. Quasi-static tensile data as a function of triaxial constraint and spallation test data are described. An appendix additionally briefly describes low-pressure equation-of-state data for DU utilized to support the spallation experiments. The constitutive behavior of DU screw/bolt material is presented. The response of DU subjected to dynamic tensile extrusion testing as a function of temperature is also described. This integrated experimental technique is planned to provide an additional validation test in the future. The damage data as a function of triaxiality, tensile and spallation data, is thereafter utilized to support derivation of the Tensile Plasticity (TEPLA) damage model and simulations for comparison to the DU spallation data are presented. Finally, a discussion of future needs in the area of needed DU strength and damage research at LANL is presented to support the development of physically-based predictive strength and damage modeling capability.« less
Uzun, Gülay; Keyf, Filiz
2003-04-01
Fracture resistance of provisional restorations is an important clinical concern. This property is directly related to transverse strength. Strengthening of provisional fixed partial dentures may result from reinforcement with various fiber types. This study evaluated the effect of fiber type and water storage on the transverse strength of a commercially available provisional resin under two different conditions. The denture resin was reinforced with either glass or aramid fiber or no reinforcement was used. Uniform samples were made from a commercially available autopolymerizing provisional fixed partial denture resin. Sixteen bar-shaped specimens (60 x 10 x 4 mm) were reinforced with pre-treated epoxy resin-coated glass fibers, with aramid fibers, or with no fibers. Eight specimens of each group, with and without fibers, were tested after 24 h of fabrication (immediate group), and after 30-day water storage. A three-point loading test was used to measure the transverse strength, the maximal deflection, and the modulus of elasticity. The Kruskal-Wallis Analysis of Variance was used to examine differences among the three groups, and then the Mann-Whitney U Test and Wilcoxon Signed Ranks Test were applied to determine pair-wise differences. The transverse strength and the maximal deflection values in the immediate group and in the 30-day water storage group were not statistically significant. In the group tested immediately, the elasticity modulus was found to be significant (P = 0.042). In the 30-day water storage group, all the values were statistically insignificant. The highest transverse strength was displayed by the glass-reinforced resin (66.25MPa) in the immediate group. The transverse strength value was 62.04MPa for the unreinforced samples in the immediate group. All the specimens exhibited lower transverse strength with an increase in water immersion time. The transverse strength value was 61.13 MPa for the glass-reinforced resin and was 61.24 MPa for the unreinforced resin. The aramid-reinforced resin decreased from 62.29 to 58.77 MPa. The addition of fiber reinforcement enhanced the physical properties (the transverse strength, the maximal deflection, the modulus of elasticity) of the processed material over that seen with no addition of fiber. Water storage did not statistically affect the transverse strength of the provisional denture resin compared to that of the unreinforced resin. The transverse strength was lowered at water storage but it was not statistically significant. The transverse strength was enhanced by fiber addition compared to the unreinforced resin. The glass fiber was superior to the other fiber. Also the modulus of elasticity was enhanced by fiber addition compared to the unreinforced resin.
Occupational-Specific Strength Predicts Astronaut-Related Task Performance in a Weighted Suit.
Taylor, Andrew; Kotarsky, Christopher J; Bond, Colin W; Hackney, Kyle J
2018-01-01
Future space missions beyond low Earth orbit will require deconditioned astronauts to perform occupationally relevant tasks within a planetary spacesuit. The prediction of time-to-completion (TTC) of astronaut tasks will be critical for crew safety, autonomous operations, and mission success. This exploratory study determined if the addition of task-specific strength testing to current standard lower body testing would enhance the prediction of TTC in a 1-G test battery. Eight healthy participants completed NASA lower body strength tests, occupationally specific strength tests, and performed six task simulations (hand drilling, construction wrenching, incline walking, collecting weighted samples, and dragging an unresponsive crewmember to safety) in a 48-kg weighted suit. The TTC for each task was recorded and summed to obtain a total TTC for the test battery. Linear regression was used to predict total TTC with two models: 1) NASA lower body strength tests; and 2) NASA lower body strength tests + occupationally specific strength tests. Total TTC of the test battery ranged from 20.2-44.5 min. The lower body strength test alone accounted for 61% of the variability in total TTC. The addition of hand drilling and wrenching strength tests accounted for 99% of the variability in total TTC. Adding occupationally specific strength tests (hand drilling and wrenching) to standard lower body strength tests successfully predicted total TTC in a performance test battery within a weighted suit. Future research should couple these strength tests with higher fidelity task simulations to determine the utility and efficacy of task performance prediction.Taylor A, Kotarsky CJ, Bond CW, Hackney KJ. Occupational-specific strength predicts astronaut-related task performance in a weighted suit. Aerosp Med Hum Perform. 2018; 89(1):58-62.
Effect of Lime on Mechanical and Durability Properties of Blended Cement Based Concrete
NASA Astrophysics Data System (ADS)
Acharya, Prasanna Kumar; Patro, Sanjaya Kumar; Moharana, Narayana C.
2016-06-01
This work presents the results of experimental investigations performed to evaluate the effect of lime on mechanical and durability properties of concrete mixtures made with blended cement like Portland Slag Cement (PSC) and Portland Pozzolana Cement (PPC) with lime content of 0, 5, 7 and 10 %. Test result indicated that inclusion of hydraulic lime on replacement of cement up to 7 % increases compressive strength of concrete made with both PSC and PPC. Flexural strength increased with lime content. Highest flexural strength is reported at 7 % lime content for both PSC and PPC. Workability is observed to decrease with lime addition which could be compensated with introduction of super plasticizer. Acid and sulphate resistance increase slightly up to 7 % of lime addition and is found to decrease with further addition of lime. Lime addition up to 10 % does not affect the soundness of blended cements like PSC and PPC.
Additively manufactured hierarchical stainless steels with high strength and ductility
Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; ...
2017-10-30
Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength–ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearlymore » six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.« less
Additively manufactured hierarchical stainless steels with high strength and ductility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.
Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength–ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearlymore » six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.« less
Application of addition-cured silicone denture relining materials to adjust mouthguards.
Fukasawa, Shintaro; Churei, Hiroshi; Chowdhury, Ruman Uddin; Shirako, Takahiro; Shahrin, Sharika; Shrestha, Abhishekhi; Wada, Takahiro; Uo, Motohiro; Takahashi, Hidekazu; Ueno, Toshiaki
2016-01-01
The purposes of this study were to examine the shock absorption capability of addition-cured silicone denture relining materials and the bonding strength of addition-cured silicone denture relining materials and a commercial mouthguard material to determine its applicability to mouthguard adjustment. Two addition-cured silicone denture relining materials and eleven commercial mouthguard materials were selected as test materials. The impact test was applied by a free-falling steel ball. On the other hand, bonding strength was determined by a delamination test. After prepared surface treatments using acrylic resin on MG sheet surface, 2 types of addition-cured silicone denture relining materials were glued to MG surface. The peak intensity, the time to peak intensity from the onset of the transmitted force and bonding strength were statistically analyzed using ANOVA and Tukey's honest significant difference post hoc test (p<0.05). These results suggest that the silicone denture relining materials could be clinically applicable as a mouthguard adjustment material.
NASA Astrophysics Data System (ADS)
Suh, Dong-Woo; Park, Seong-Jun; Lee, Tae-Ho; Oh, Chang-Seok; Kim, Sung-Joon
2010-02-01
Microstructural design with an Al addition is suggested for low-carbon, manganese transformation-induced-plasticity (Mn TRIP) steel for application in the continuous-annealing process. With an Al content of 1 mass pct, the competition between the recrystallization of the cold-rolled microstructure and the austenite formation cannot be avoided during intercritical annealing, and the recrystallization of the deformed matrix does not proceed effectively. The addition of 3 mass pct Al, however, allows nearly complete recrystallization of the deformed microstructure by providing a dual-phase cold-rolled structure consisting of ferrite and martensite and by suppressing excessive austenite formation at a higher annealing temperature. An optimized annealing condition results in the room-temperature stability of the intercritical austenite in Mn TRIP steel containing 3 mass pct Al, permitting persistent transformation to martensite during tensile deformation. The alloy presents an excellent strength-ductility balance combining a tensile strength of approximately 1 GPa with a total elongation over 25 pct, which is comparable to that of Mn TRIP steel subjected to batch-type annealing.
Mohammadi, Narmin; Bahari, Mahmoud; Kimyai, Soodabeh; Rahbani Nobar, Behnam
2015-01-01
Objectives: Composite repair is a minimally invasive and conservative approach. This study aimed to evaluate the effect of an additional hydrophobic resin layer on the repair shear bond strength of a silorane-based composite repaired with silorane or methacrylate-based composite. Materials and Methods: Sixty bar-shaped composite blocks were fabricated and stored in saline for 72 hours. The surface of the samples were roughened by diamond burs and etched with phosphoric acid; then, they were randomly divided into three groups according to the repairing process: Group 1: Silorane composite-silorane bonding agent-silorane composite; group 2: Silorane composite-silorane bonding agent-hydrophobic resin-silorane composite, and group 3: Silorane composite-silorane bonding agent-hydrophobic resin methacrylate-based composite. Repairing composite blocks measured 2.5×2.5×5mm. After repairing, the samples were stored in saline for 24 hours and thermocycled for 1500 cycles. The repair bond strength was measured at a strain rate of 1mm/min. Twenty additional cylindrical composite blocks (diameter: 2.5mm, height: 6mm) were also fabricated for measuring the cohesive strength of silorane-based composite. The data were analyzed using One-way ANOVA and the post hoc Tukey’s test (α=0.05). Results: Cohesive bond strength of silorane composite was significantly higher than the repair bond strengths in other groups (P<0.001). The repair bond strength of group 3 was significantly higher than that of group 1 (P=0.001). Conclusion: Application of an additional hydrophobic resin layer for repair of silorane-based composite with a methacrylate-based composite enhanced the repair shear bond strength. PMID:27559348
Statistical aspects of the failure of organic-fiber-reinforced plastics
NASA Astrophysics Data System (ADS)
Bazhenov, S. L.; Kuperman, A. M.; Puchkov, L. V.; Zelenskii, É. S.; Berlin, Al. Al.; Kharchenko, E. F.; Kul'kov, A. A.
1985-11-01
Dispersion of the strength of filaments and of the Weibull coefficient β leads to a drop in strength of a strand compared with the strength of the components when the adhesion by gluing together does not amount to 2-5%. The drop in strength is determined by the dispersion of strength which depends on the length of the tested specimens. Gluing together of the fibers in filaments changes the nature of the load diagrams σ-ɛ of a filament when its length exceeds δ0. A consequence is that the mechanism of rupture of the strand changes, and this leads to an additional drop of its strength. When specimens are 500 mm long, the drop in strength of the strand compared with the mean strength of the filaments amounts to 10%. Because of the dispersion of the Weibull coefficient β, the strength of filaments does not correspond exactly to the strength of the microplastic obtained from these filaments. When there is dispersion of the strength of the filaments, failure of the plastic proceeds by failure of the microplastics as a whole. Gluing together of fibers has a double effect on the strength of the material: increased degree of gluing together of the fibers reduces the "noneffective length" from δ0 to 0.4-0.5 mm, and this leads to an increase of approximately 50% of the strength of the microplastic; increased gluing together leads to a change in the mechanism of failure of the strand and of the organic-fiber-plastic made from it if there is dispersion of the strength of the component filaments, and this reduces the strength of the material in accordance with (3) (by 12-14% in our case). The longitudinal instability of the properties of the filament leads to an additional drop in strength of the material by 4.5%.
NASA Technical Reports Server (NTRS)
Rajulu, Sudhakar L.; Klute, Glenn K.
1993-01-01
Astronauts have the task of retrieving and deploying satellites and handling massive objects in a around the payload bay. Concerns were raised that manual handling of such massive objects might induce loads to the shuttle suits exceeding the design-certified loads. The Crew and Thermal Division of NASA JSC simulated the satellite handling tasks (Satellite Manload Tests 1 and 3) and determined the maximum possible load that a suited member could impart onto the suit. In addition, the tests revealed that the load to the suit by an astronaut could be calculated from the astronaut's maximum hand grasp breakaway strength. Thus, this study was conducted to document that hand grasp breakaway strengths of the astronauts who were scheduled to perform EVA during the upcoming missions. In addition, this study verified whether the SML 3 test results were sufficient for documenting the maximum possible load. An attempt was made to predict grasp strength from grip strength and hand anthropometry. Based on the results from this study, the SML 3 test results were deemed sufficient to document the maximum possible load on the suit. Finally, prediction of grasp strength from grip strength was not as accurate as expected. Hence, it was recommended that grasp strength be collected from the astronauts in order to obtain accurate load estimation.
Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2
NASA Technical Reports Server (NTRS)
Ray, Ranjan; Jha, Sunil C.
1987-01-01
Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.
Kosmac, T; Oblak, C; Jevnikar, P; Funduk, N; Marion, L
1999-11-01
This study was conducted to evaluate the effect of grinding and sandblasting on the microstructure, biaxial flexural strength and reliability of two yttria stabilized tetragonal zirconia (Y-TZP) ceramics. Two Y-TZP powders were used to produce fine grained and coarse grained microstructures. Sixty discs from each material were randomly divided into six groups of ten. For each group, a different surface treatment was applied: dry grinding, wet grinding, sandblasting, dry grinding + sandblasting, sandblasting + dry grinding and a control group. Biaxial flexural strength was determined and data were analyzed using one-way ANOVA, followed by Tukey's HSD test (p < 0.05). In addition, Weibull statistics was used to analyze the variability of flexural strength. The relative amount of transformed monoclinic zirconia, corresponding transformed zone depth (TZD) and the mean critical defect size Ccr were calculated. There was no difference in mean strength between the as sintered fine and coarse grained Y-TZP. Significant differences (p < 0.05) were found between the control group and ground fine grained material for both wet and dry grinding. Sandblasting significantly increased the strength in fine and coarse grained materials. All surface treatment procedures reduced the Weibull modulus of Y-TZP. For both materials, the highest amount of the monoclinic phase and the largest TZD was found after sandblasting. Lower amounts of the monoclinic phase were obtained after both grinding procedures, where the highest mean critical defect size Ccr was also calculated. Our results indicate that sandblasting may provide a powerful technique for strengthening Y-TZP in clinical practice. In contrast, grinding may lead to substantial strength degradation and reduced reliability of prefabricated zirconia elements, therefore, sandblasting of ground surfaces is suggested.
Bond strength of orthodontic light-cured resin-modified glass ionomer cement.
Cheng, Hsiang Yu; Chen, Chien Hsiu; Li, Chuan Li; Tsai, Hung Huey; Chou, Ta Hsiung; Wang, Wei Nan
2011-04-01
The purpose of this study was to compare the bond strengths and debonded interfaces achieved with light-cured resin-modified glass ionomer cement (RMGIC) and conventional light-cured composite resin. In addition, the effects of acid etching and water contamination were examined. One hundred human premolars were randomly divided into five equal groups. The mini Dyna-lock upper premolar bracket was selected for testing. The first four groups were treated with light-cured RMGIC with or without 15 per cent phosphoric acid-etching treatment and with or without water contamination preceding bracket bonding. The control samples were treated with the conventional light-cured Transbond composite resin under acid etching and without water contamination. Subsequently, the brackets were debonded by tensile force using an Instron machine. The modified adhesive remnant index (ARI) scores were assigned to the bracket base of the debonded interfaces using a scanning electron microscope. The bond strength and modified ARI scores were determined and analysed statistically by one-way analysis of variance and chi-square test. Under all four conditions, the bond strength of the light-cure RMGIC was equal to or higher than that of the conventional composite resin. The highest bond strength was achieved when using RMGIC with acid etching but without water contamination. The modified ARI scores were 2 for Fuji Ortho LC and 3 for Transbond. No enamel detachment was found in any group. Fifteen per cent phosphoric acid etching without moistening the enamel of Fuji Ortho LC provided the more favourable bond strength. Enamel surfaces, with or without water contamination and with or without acid etching, had the same or a greater bond strength than Transbond.
Fishnet model for failure probability tail of nacre-like imbricated lamellar materials
NASA Astrophysics Data System (ADS)
Luo, Wen; Bažant, Zdeněk P.
2017-12-01
Nacre, the iridescent material of the shells of pearl oysters and abalone, consists mostly of aragonite (a form of CaCO3), a brittle constituent of relatively low strength (≈10 MPa). Yet it has astonishing mean tensile strength (≈150 MPa) and fracture energy (≈350 to 1,240 J/m2). The reasons have recently become well understood: (i) the nanoscale thickness (≈300 nm) of nacre's building blocks, the aragonite lamellae (or platelets), and (ii) the imbricated, or staggered, arrangement of these lamellea, bound by biopolymer layers only ≈25 nm thick, occupying <5% of volume. These properties inspire manmade biomimetic materials. For engineering applications, however, the failure probability of ≤10-6 is generally required. To guarantee it, the type of probability density function (pdf) of strength, including its tail, must be determined. This objective, not pursued previously, is hardly achievable by experiments alone, since >10^8 tests of specimens would be needed. Here we outline a statistical model of strength that resembles a fishnet pulled diagonally, captures the tail of pdf of strength and, importantly, allows analytical safety assessments of nacreous materials. The analysis shows that, in terms of safety, the imbricated lamellar structure provides a major additional advantage—˜10% strength increase at tail failure probability 10^-6 and a 1 to 2 orders of magnitude tail probability decrease at fixed stress. Another advantage is that a high scatter of microstructure properties diminishes the strength difference between the mean and the probability tail, compared with the weakest link model. These advantages of nacre-like materials are here justified analytically and supported by millions of Monte Carlo simulations.
Hartard, M; Haber, P; Ilieva, D; Preisinger, E; Seidl, G; Huber, J
1996-01-01
Physical exercise is often recommended as a therapeutic tool to combat pre- and postmenopausal loss of bone density. However, the relationship between training dosage (intensity, duration, frequency) and the effect on bone density still is undergoing discussion. Furthermore, the exercise quantification programs are often described so inadequately that they are neither quantitatively nor qualitatively reproducible. The aim of this investigation was to determine whether a clearly defined training of muscle strength, under defined safety aspects, performed only twice weekly, can counteract bone density loss in women with postmenopausal osteopenia. Data from 16 women in the training group (age, 63.6 +/- 6.2 yr) and 15 women in the control group (age, 67.4 +/-9.7 yr), of comparable height and weight, were evaluated. Strength training was performed for 6 mo as continually adapted strength training, providing an intensity of about 70% of each test person's one repetition maximum. Bone mineral density of lumbar vertebrae 2 to 4 and the femoral neck was measured by dual-energy x-ray absorptiometry. Maximum performance in watts and parameters of hemodynamics were controlled with a bicycle ergometer test to maximal effort. In addition, metabolic data were assessed. In the lumbar spine and femoral neck, the training group showed no significant changes, whereas the control group demonstrated a significant loss of bone mineral density, especially in the femoral neck (P<0.05). The strength increase was highly significant in all exercised muscle groups, rising to about 70% above the pretraining status (P<0.001). Heart rate and blood pressure data indicated a slight economization, metabolism was not significantly influenced. Based on these findings, we conclude that continually adapted strength training is an effective, safe, reproducible, and adaptable method of therapeutic strength training, following only two exercise sessions per week.
The ratio and allometric scaling of speed, power, and strength in elite male rugby union players.
Crewther, Blair T; McGuigan, Mike R; Gill, Nicholas D
2011-07-01
This study compared the effectiveness of ratio and allometric scaling for normalizing speed, power, and strength in elite male rugby union players. Thirty rugby players (body mass [BM] 107.1 ± 10.1 kg, body height [BH] 187.8 ± 7.1 cm) were assessed for sprinting speed, peak power during countermovement jumps and squat jumps, and horizontal jumping distance. One-repetition maximum strength was assessed during a bench press, chin-up, and back squat. Performance was normalized using ratio and allometric scaling (Y/X), where Y is the performance, X, the body size variable (i.e., BM or BH), and b is the power exponent. An exponent of 1.0 was used during ratio scaling. Allometric scaling was applied using proposed exponents and derived exponents for each data set. The BM and BH variables were significantly related, or close to, performance during the speed, power and/or strength tests (p < 0.001-0.066). Ratio scaling and allometric scaling using proposed exponents were effective in normalizing performance (i.e., no significant correlations) for some of these tests. Allometric scaling with derived exponents normalized performance across all the tests undertaken, thereby removing the confounding effects of BM and BH. In terms of practical applications, allometric scaling with derived exponents may be used to normalize performance between larger rugby forwards and smaller rugby backs, and could provide additional information on rugby players of similar body size. Ratio scaling may provide the best predictive measure of performance (i.e., strongest correlations).
Mehta, R K
2015-02-01
Obesity and stress are independently associated with decrements in neuromuscular functions. The present study examined the interplay of obesity and stress on neuromuscular fatigue and associated heart rate variability (HRV). Forty-eight non-obese (18.5
NASA Astrophysics Data System (ADS)
Birney, R.; Cumming, A. V.; Campsie, P.; Gibson, D.; Hammond, G. D.; Hough, J.; Martin, I. W.; Reid, S.; Rowan, S.; Song, S.; Talbot, C.; Vine, D.; Wallace, G.
2017-12-01
Further improvements in the low frequency sensitivity of gravitational wave detectors are important for increasing the observable population of astrophysical sources, such as intermediate mass compact black hole binary systems. Improvements in the lower stage mirror and suspension systems will set challenging targets for the required thermal noise performance of the cantilever blade springs, which provide vertical softness and, thus, isolation to the mirror suspension stack. This is required due to the coupling between the vertical and horizontal axes due to the curvature of the Earth. This can be achieved through use of high mechanical Q materials, which are compatible with cryogenic cooling, such as crystalline silicon. However, such materials are brittle, posing further challenges for assembly/jointing and, more generally, for long-term robustness. Here, we report on experimental studies of the breaking strength of silicon at room temperature, via both tensile and 4-point flexural testing; and on the effects of various surface treatments and coatings on durability and strength. Single- and multi-layer DLC (diamond-like carbon) coatings, together with magnetron-sputtered silica and thermally-grown silica, are investigated, as are the effects of substrate preparation and argon plasma pre-treatment. Application of single- or multi-layer DLC coatings can significantly improve the failure stress of silicon flexures, in addition to improved robustness for handling (assessed through abrasion tests). Improvements of up to 80% in tensile strength, a twofold increase in flexural strength, in addition to a 6.4 times reduction in the vertical thermal noise contribution of the suspension stack at 10 Hz are reported (compared to current Advanced LIGO design). The use of silicon blade springs would also significantly reduce potential ‘crackling noise’ associated with the underlying discrete events associated with plastic deformation in loaded flexures.
Rate laws of the self-induced aggregation kinetics of Brownian particles
NASA Astrophysics Data System (ADS)
Mondal, Shrabani; Sen, Monoj Kumar; Baura, Alendu; Bag, Bidhan Chandra
2016-03-01
In this paper we have studied the self induced aggregation kinetics of Brownian particles in the presence of both multiplicative and additive noises. In addition to the drift due to the self aggregation process, the environment may induce a drift term in the presence of a multiplicative noise. Then there would be an interplay between the two drift terms. It may account qualitatively the appearance of the different laws of aggregation process. At low strength of white multiplicative noise, the cluster number decreases as a Gaussian function of time. If the noise strength becomes appreciably large then the variation of cluster number with time is fitted well by the mono exponentially decaying function of time. For additive noise driven case, the decrease of cluster number can be described by the power law. But in case of multiplicative colored driven process, cluster number decays multi exponentially. However, we have explored how the rate constant (in the mono exponentially cluster number decaying case) depends on strength of interference of the noises and their intensity. We have also explored how the structure factor at long time depends on the strength of the cross correlation (CC) between the additive and the multiplicative noises.
Moore, Amy M; Dennison, David G
2014-06-01
The volar lunate facet fragment of a distal radius fracture may not be stabilized with volar-locked plating alone due to the small size and distal location of the fragment. Identification and stabilization of this small fragment is critical as unstable fixation may result in radiocarpal and radioulnar joint subluxation. The addition of spring wire fixation with volar plating can provide stable internal fixation of this critical fracture fragment. A retrospective review (2006-2011) identified nine patients with distal radius fractures with an associated volar lunate facet fragment that were treated with volar-locked plating and spring wire fixation of the volar lunate facet fragment. Radiographic indices, range of motion, grip strength, and postoperative Patient-related wrist evaluation (PRWE) scores were obtained to assess pain and function. All distal radius fractures healed, and the volar lunate facet fragment reduction was maintained. The mean follow-up was 54 weeks. Mean active range of motion was 46° wrist flexion, 51° wrist extension, 80° pronation, and 68° supination. The mean grip strength was 21 Kg, achieving 66 % of the uninjured limb. The average PRWE score was 17. No patient required removal of hardware or had evidence of tendon irritation. The addition of spring wire fixation to volar-locked plating provided stable fixation of the volar lunate facet fragment of distal radius fractures without complication. This technique addresses a limitation of volar-locked plating to control the small volar lunate facet fragment in distal radius fractures otherwise amenable to volar plating. A retrospective case series, Level IV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majumdar, P., E-mail: m.pallab@gmail.com; Singh, S.B.; Chakraborty, M.
2010-12-15
Fatigue behaviour of heat treated Ti-13Zr-13Nb (TZN) and Ti-13Zr-13Nb-0.5B (TZNB) alloys for biomedical implants has been investigated by rotating bending test. It was found that fatigue strength of TZN and TZNB alloys is comparable with that of conventionally used biomedical titanium alloys. Addition of boron to TZN alloy deteriorates fatigue strength. - Research Highlights: {yields}The microstructure of the aged TZN consists of {alpha} phase in {beta} matrix. {yields}Addition of boron to TZN leads to the formation of dispersed acicular TiB. {yields}Presence of TiB deteriorates the fatigue strength of TZN alloy. {yields}Fatigue strength of aged TZN/TZNB alloys is comparable with biomedicalmore » Ti-alloys.« less
Effect of Electron Beam Irradiation on the Tensile Properties of Carbon Nanotubes Sheets and Yarns
NASA Technical Reports Server (NTRS)
Williams, Tiffany S.; Miller, Sandi G.; Baker, James S.; McCorkle, Linda S.; Meador, Michael A.
2013-01-01
Carbon nanotube sheets and yarns were irradiated using electron beam (e-beam) energy to determine the effect of irradiation dose on the tensile properties. Results showed that a slight change in tensile strength occurred after irradiating as-received CNT sheets for 20 minutes, and a slight decrease in tensile strength as the irradiation time approached 90 minutes. On the other hand, the addition of small molecules to the CNT sheet surface had a greater effect on the tensile properties of e-beam irradiated CNT sheets. Some functionalized CNT sheets displayed up to a 57% increase in tensile strength following 90 minutes of e-beam exposure. In addition, as-received CNT yarns showed a significant increase in tensile strength as the irradiation time increased.
Sources of strength-training information and strength-training behavior among Japanese older adults.
Harada, Kazuhiro; Shibata, Ai; Lee, Euna; Oka, Koichiro; Nakamura, Yoshio
2016-03-01
The promotion of strength training is now recognized as an important component of public health initiatives for older adults. To develop successful communication strategies to increase strength-training behavior among older adults, the identification of effective communication channels to reach older adults is necessary. This study aimed to identify the information sources about strength training that were associated with strength-training behaviors among Japanese older adults. The participants were 1144 adults (60-74 years old) randomly sampled from the registry of residential addresses. A cross-sectional questionnaire survey was conducted. The independent variables were sources of strength-training information (healthcare providers, friends, families, radio, television, newspapers, newsletters, posters, books, magazines, booklets, the Internet, lectures, other sources), and the dependent variable was regular strength-training behavior. Logistic regression analysis was used to identify potential relationships. After adjusting for demographic factors and all other information sources, strength-training information from healthcare providers, friends, books and the Internet were positively related to regular strength-training behavior. The findings of the present study contribute to a better understanding of strength-training behavior and the means of successful communication directed at increasing strength training among older adults. The results suggest that healthcare providers, friends, books and the Internet are effective methods of communication for increasing strength-training behaviors among older adults. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Cryogenic and elevated temperature strengths of an Al-Zn-Mg-Cu alloy modified with Sc and Zr
NASA Astrophysics Data System (ADS)
Senkova, S. V.; Senkov, O. N.; Miracle, D. B.
2006-12-01
The effect of minor additions of Sc and Zr on tensile properties of two developmental Al-Zn-Mg-Cu alloys was studied in the temperature range -196°C to 300°C. Due to the presence of Sc and Zr in a fine dispersoid form, both low-temperature and elevated temperature strengths of these alloys are much higher than those of similar 7000 series alloys that do not contain these elements. After short holding times (up to 10 hours) at 205°C, the strength of these alloys is higher than those of high-temperature Al alloys 2219-T6 and 2618-T6; however, the latter alloys show better strength after longer holding times. It is suggested that additional alloying of the Sc-containing Al-Zn-Mg-Cu alloys with other dispersoid-forming elements, such as Ni, Fe, Mn, and Si, with a respective decrease in the amounts of Zn and Mg may further improve the elevated temperature strength and decrease the loss of strength with extended elevated temperature exposure.
NASA Astrophysics Data System (ADS)
Carroll, Mark Christopher
Aluminum alloys of the 5000 series (AI-Mg-Mn) are extremely popular in a wide range of applications that call for a balance of moderately high strength, good corrosion resistance, and light weight, all at a moderate cost. One of the most popular 5000 series alloys is designated A1-5083, containing, in addition to aluminum, approximately 4 wt% magnesium and 0.7 wt% manganese. In order to increase the range of versatility of this particular alloy, a number of modifications have been examined that will potentially improve the strength and corrosion resistance characteristics while maintaining a chemical composition that is very close to the proven 5083 alloy. The strength of the 5083-based alloys under study are investigated with two goals in mind---to maximize the potential strength characteristics in a "standard" 5083 form through changes in minor processing parameters or through minor alloying additions. Increasing the standard alloy's potential is possible through improved efficiency of "preprocessing" heat treatments that maximize the homogeneous dispersion of secondary manganese-based particles. For the modified alloy study, additions of scandium and zirconium are shown to improve strength not only by forming secondary particles in the alloy, but also through substitutional solid solution strengthening, even when added at very small levels. Corrosion resistance of these 5083-based alloys is investigated once again through minor alloying additions; specifically zinc, copper, and silver. Zinc is particularly effective in that it changes the corrosion-susceptible binary aluminum-magnesium phase that would otherwise form on grain boundaries following exposure to moderately elevated temperatures for extended periods of time to a ternary aluminum-magnesium-zinc phase. This chemical composition of this ternary phase that forms following zinc additions can be further altered through minor additions of copper and silver. By determining threshold levels for these modifications while maintaining a chemical composition that is very near that of standard Al-5083, it can be shown that even minor modifications to processing and alloying parameters can have a favorable effect on the final bulk properties of the alloy. The increased range of strength and corrosion resistance of these lightly modified alloys make them more attractive in a broadened range of potential applications.
The Influence of Addition of Plastiment-VZ to Concrete Characteristics in Riau Province
NASA Astrophysics Data System (ADS)
Wahyuni Megasari, Shanti; Winayati
2017-12-01
Riau Province has an area of 8,702,000 ha consisting of 7,121.344,00 ha of forest and 3,867,000 ha in the form of peatlands. Peat structures are soft and have pores that make it easy to hold water. Peat water has a high color intensity, low pH, high organic content and has an acidic properties So it does not qualify as a mixture of concrete. To meet the needs of water in the concrete mix then water should be obtained from another place but it will require a greater cost and time. To resolve the issue, the advancement of concrete technology has resulted in admixture that can help in maintaining the quality of concrete. Plastiment-VZ is a plasticizer material that can increase workability of concrete without adding water. However, for the use in the field, the selection of admixture must be adjusted to the planned concrete situation and condition. Excessive use of admixture will also result in uneconomical concrete. The design of the job mix using the Department of Environment (DOE) method with compressive strength concrete plan fc ' = 25 MPa. The percentage of Plastiment-VZ addition is 0%, 0,05%; 0,10%; 0,15% and 0,20% to the weight of cement. The reduction of the amount of water in this study is 10% of the total amount of water. Specimens in each variation were made using cylinder mold with 15 cm in diameter and 30 cm high. After specimens are created and maintained, testing of compressive strength concrete held in 28 days. The test results show that the trend of average compressive strength has increased along with the addition of Plastiment-VZ percentage. The equation resulting from the average compressive strength is y = -362,7x2 + 133,3x + 28,10 with value R2 = 0,969. The highest average compressive strength value was obtained in the addition of 0,20% Plastiment-VZ at 40,76 MPa. Statistical testing with Analysis of Variance - ANOVA states that there is a very real interaction or treatment between the compressive strength of the concrete with the addition of Plastiment-VZ. So it can be concluded that the reduction of the amount of water with the addition of Plastiment-VZ has an effect on the increasing of concrete compressive strength characteristics.
NASA Astrophysics Data System (ADS)
Taylor, K. A.; Hansen, S. S.
1991-10-01
The structures and mechanical properties of a series of thermomechanically processed, direct-quenched martensitic 0.1C-1.4Mn-0.5Mo-B steels containing from 0 to 0.24 wt pct va have been investigated and compared to those obtained after a conventional austenitizing-and-quenching treatment. For all processing conditions, vanadium additions to the base composition are found to increase hardenability (ideal critical parameter, D,); the largest effects (up to a 90 pct increase in D I) are noted when samples are hot-rolled prior to direct quenching. Vanadium additions are also observed to provide significant strengthening in the quenched-and-tempered condition as the result of the precipitation of fine V-Mo carbides. The strengthening increment due to these precipitates is approximately 100 MPa/0.1 wt pct V over the range of vanadium additions examined. At the same time, however, these precipitates reduce notch toughness; on the average, the 20 J transition temperature increases by about 4 °C for each 10 MPa increment in yield strength. For the conditions examined, the best balance of strength and toughness is obtained in direct-quenched samples which are control-rolled (i.e., rolling is completed below the austenite recrystallization temperature) prior to quenching.
Professional development themes in strength and conditioning coaches.
Tod, David A; Bond, Kath A; Lavallee, David
2012-03-01
The purpose of this study was to explore professional development themes in experienced strength and conditioning coaches. Strength and conditioning coaches (N = 15, mean age = 34.3 years, SD = 5.2 years) with 11.4 (SD = 4.9) years experience working with elite, professional, or talented athletes were interviewed about their professional development. The interviews were transcribed verbatim and content analyzed. Over time, subjects' service-delivery practices became more flexible and client driven. Their role understanding also broadened to include various dimensions, such as the need to consider various stakeholders and the value of good relationships with athletes. The subjects shifted from relying on external justification for professional decision making to their experience-based knowledge. The subjects believed athlete work experience, interactions with senior strength and conditioning coaches and other colleagues, the professional literature, and nonprofessional experiences, such as their own athletic experience and sales or managerial training, were the primary influences on their professional development. Typically, the subjects experienced anxiety about their competence, both early in their careers and when working in new contexts or with new athlete groups, but over time, they developed increased confidence. In addition, the subjects experienced reduced narcissism over time about the control they had over athletes and their competitive results. The current results provide information about the characteristics of effective strength and conditioning coaches, the ways they develop their competencies to help athletes, and the emotions they experience throughout their careers. These results may help strength and conditioning practitioners in planning and optimizing their professional development and effectiveness with athletes.
Chung, Yi-Shih
2015-09-01
An increasing amount of evidence suggests that aberrant driving behaviors are not entirely rational. On the basis of the dual-process theory, this study postulates that drivers may learn to perform irrational aberrant driving behaviors, and these behaviors could be derived either from a deliberate or an intuitive decision-making approach. Accordingly, a seemingly irrational driving behavior model is proposed; in this model, the theory of planned behavior (TPB) was adopted to represent the deliberate decision-making mechanism, and habit strength was incorporated to reflect the intuitive decision process. A multiple trivariate mediation structure was designed to reflect the process through which driving behaviors are learned. Anticipated affective reactions (AARs) were further included to examine the effect of affect on aberrant driving behaviors. Considering the example of speeding behaviors, this study developed scales and conducted a two-wave survey of students in two departments at a university in Northern Taiwan. The analysis results show that habit strength consists of multiple aspects, and frequency of past behavior cannot be a complete repository for accumulating habit strength. Habit strength appeared to be a crucial mediator between intention antecedents (e.g., attitude) and the intention itself. Including habit strength in the TPB model enhanced the explained variance of speeding intention by 26.7%. In addition, AARs were different from attitudes; particularly, young drivers tended to perform speeding behaviors to reduce negative feelings such as regret. The proposed model provides an effective alternative approach for investigating aberrant driving behaviors; corresponding countermeasures are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kendrick, Jackie Evan; Smith, Rosanna; Sammonds, Peter; Meredith, Philip G.; Dainty, Matthew; Pallister, John S.
2013-07-01
Stratovolcanoes and lava domes are particularly susceptible to sector collapse resulting from wholesale rock failure as a consequence of decreasing rock strength. Here, we provide insights into the influence of thermal and cyclic stressing on the strength and mechanical properties of volcanic rocks. Specifically, this laboratory study examines the properties of samples from Mount St. Helens; chosen because its strength and stability have played a key role in its history, influencing the character of the infamous 1980 eruption. We find that thermal stressing exerts different effects on the strengths of different volcanic units; increasing the heterogeneity of rocks in situ. Increasing the uniaxial compressive stress generates cracking, the timing and magnitude of which was monitored via acoustic emission (AE) output during our experiments. AEs accelerated in the approach to failure, sometimes following the pattern predicted by the failure forecast method (Kilburn 2003). Crack damage during the experiments was tracked using the evolving static Young's modulus and Poisson's ratio, which represent the quasi-static deformation in volcanic edifices more accurately than dynamic elastic moduli which are usually implemented in volcanic models. Cyclic loading of these rocks resulted in a lower failure strength, confirming that volcanic rocks may be weakened by repeated inflation and deflation of the volcanic edifice. Additionally, volcanic rocks in this study undergo significant elastic hysteresis; in some instances, a material may fail at a stress lower than the peak stress which has previously been endured. Thus, a volcanic dome repeatedly inflated and deflated may progressively weaken, possibly inducing failure without necessarily exceeding earlier conditions.
Goiato, Marcelo Coelho; Zuccolotti, Bruna Carolina Rossatti; Haddad, Marcela Filié; Moreno, Amália; Pesqueira, Aldiéris Alves; Gennari, Humberto Filho; Dos Santos, Daniela Micheline
2015-12-01
The aim of this study was to assess the flexural strength of two brands of thermopolymerisable acrylic resins (Onda Cryl, Artigos Odontológicos Clássico Ltda, São Paulo, SP, Brazil; and Lucitone 550, Dentsply, York, PA, USA) with varying concentrations of pigment (Poli-Côr, Artigos Odontológicos Clássico Ltda, São Paulo, SP, Brazil) under the influence of thermocycling, storage and disinfection. A total of 210 samples were manufactured (105 for each acrylic resin brand), with dimensions of 64 x 10 x 3.3 mm. The samples were divided into 30 subgroups (n = 7) according to the proportion of pigment used (without pigment, 3% and 7%), the assessment period (initial or thermocycling for 2000 cycles) and disinfection method (immersion in 1% sodium hypochlorite, (Apothicário, Araçatuba, SP, Brazil), microwave energy or immersion in alkaline peroxide (Efferdent, Pfizer, Morris Plains, NJ, USA). The samples were submitted to the flexural strength test before and after thermocycling, and after storage with disinfection. The disinfection process was performed every 3 days, for 60 days. Data were submitted to analysis of variance (ANOVA) and Tukey test (p < 0.05). The factors that provided statistical alteration in flexural strength values were resin type and assessment period. The Onda Cryl resin and the period after disinfection (126 ± 25 MPa) exhibited the higher values of flexural strength. Following disinfection, Onda-Cryl resin exhibited the highest values of flexural strength. All the samples obtained are considered clinically acceptable.
The influence of heat treatments on several types of base-metal removable partial denture alloys.
Morris, H F; Asgar, K; Rowe, A P; Nasjleti, C E
1979-04-01
Four removable partial denture alloys, Vitallium (Co-Cr alloy), Dentillium P.D. (Fe-Cr alloy), Durallium L.G. (Co-Cr-Ni alloy), and Ticonium 100 (Ni-Cr alloy), were evaluated in the as-cast condition and after heat treatment for 15 minutes at 1,300 degrees, 1,600 degrees, 1,900 degrees, and 2,200 degrees F followed by quenching in water. The following properties were determined and compared for each alloy at each heat treatment condition: the yield strengths at 0.01%, 0.1%, and 0.2% offsets, the ultimate tensile strength, the percent elongation, the modulus of elasticity, and the Knoop microhardness. The results were statistically analyzed. Photomicrographs were examined for each alloy and test condition. The following conclusions were made: 1. The "highest values" were exhibited by the as-cast alloy. 2. Heat treatment of the partial denture alloys tested resulted in reductions in strength, while the elongations varied. This study demonstrates that, in practice, one should avoid (a) prolonged "heat-soaking" while soldering and (b) grinding or polishing of the casting until the alloy is "red hot". 3. Durallium L.G. was the least affected by the various heat treatment conditions. 4. Conventional reporting of the yield strength at 0.2% offset, the ultimate tensile strength, and percent elongation are not adequate to completely describe and compare the mechanical behavior of alloys. The reporting of the yield strength at 0.01% offset, in addition to the other reported properties, will provide a more complete description of the behavior of the dental alloys.
NASA Astrophysics Data System (ADS)
Alrasyid, Harun; Safi, Fahrudin; Iranata, Data; Chen-Ou, Yu
2017-11-01
This research shows the prediction of shear behavior of High-Strength Reinforced Concrete Columns using Finite-Element Method. The experimental data of nine half scale high-strength reinforced concrete were selected. These columns using specified concrete compressive strength of 70 MPa, specified yield strength of longitudinal and transverse reinforcement of 685 and 785 MPa, respectively. The VecTor2 finite element software was used to simulate the shear critical behavior of these columns. The combination axial compression load and monotonic loading were applied at this prediction. It is demonstrated that VecTor2 finite element software provides accurate prediction of load-deflection up to peak at applied load, but provide similar behavior at post peak load. The shear strength prediction provide by VecTor 2 are slightly conservative compare to test result.
NASA Astrophysics Data System (ADS)
Pollen, N.; Simon, A.
2006-12-01
Research on the interactions between vegetation and channel flow dynamics has shown that vegetation is an important control on river morphology and planform. Increased vegetation density is commonly linked to a decrease in bank erosion and lateral migration rates. Roots add to bank strength through the production of a reinforced soil-root matrix, and vegetation can also act to increase bank stability through its hydrological effects, including canopy interception, and removal of soil water through evapotranspiration. Flow dynamics are also affected by vegetation, with a number of studies showing a linkage between vegetation density and width- depth-velocity relations and bank roughness. To evaluate the effects of vegetation on channel morphology and planform, several experimental studies in flumes have used alfalfa sprouts (Medicago sativa) to seed the bed and banks of experimental channels. In such studies, the effects of vegetation are accounted for by qualitatively increasing the resistance of the bank material to lateral erosion. However, the material properties of alfalfa roots and stems, and the actual increase in resistance provided to the banks under different densities of alfalfa have thus far been ignored. To quantify this added erosion resistance, alfalfa sprouts were grown for 7 to 21 days, in sand with a d50 of 0.23 mm. At regular intervals, roots and stems were tested to measure tensile strength and forces required for pullout. Results of the tensile-strength measurements display the typical non-linear decrease of tensile strength (in MPa) with increasing root diameter but the curve is shifted to the left (weaker for a given diameter) of other riparian species. However, to calculate the increase in bank cohesion due to alfalfa roots, it is necessary to also account for the number of roots, and the distribution of different root diameters. The number of roots was calculated for a range of stem densities (0 to 10 stems/cm2), assuming a single, un-branching root per stem. Values for the additional cohesion provided by the alfalfa roots were calculated using the root- reinforcement model, RipRoot, producing values of 0 to 11.8 kPa. These results provide a means of quantifying the additional bank resistance provided to experimental channels under different stem/root densities. Cohesion values obtained in this way were successfully related to studies of braiding intensity published by others. The geometric properties of alfalfa scale up from experiments in flumes to approximate young trees on a floodplain. However, soil properties such as cohesion cannot be scaled. As such, the cohesion values due to roots calculated here represent the actual magnitude of reinforcement provided, rather than a scaled value.
Respiratory weakness in patients with chronic neck pain.
Dimitriadis, Zacharias; Kapreli, Eleni; Strimpakos, Nikolaos; Oldham, Jacqueline
2013-06-01
Respiratory muscle strength is one parameter that is currently proposed to be affected in patients with chronic neck pain. This study was aimed at examining whether patients with chronic neck pain have reduced respiratory strength and with which neck pain problems their respiratory strength is associated. In this controlled cross-sectional study, 45 patients with chronic neck pain and 45 healthy well-matched controls were recruited. Respiratory muscle strength was assessed through maximal mouth pressures. The subjects were additionally assessed for their pain intensity and disability, neck muscle strength, endurance of deep neck flexors, neck range of movement, forward head posture and psychological states. Paired t-tests showed that patients with chronic neck pain have reduced Maximal Inspiratory (MIP) (r = 0.35) and Maximal Expiratory Pressures (MEP) (r = 0.39) (P < 0.05). Neck muscle strength (r > 0.5), kinesiophobia (r < -0.3) and catastrophizing (r < -0.3) were significantly associated with maximal mouth pressures (P < 0.05), whereas MEP was additionally negatively correlated with neck pain and disability (r < -0.3, P < 0.05). Neck muscle strength was the only predictor that remained as significant into the prediction models of MIP and MEP. It can be concluded that patients with chronic neck pain present weakness of their respiratory muscles. This weakness seems to be a result of the impaired global and local muscle system of neck pain patients, and psychological states also appear to have an additional contribution. Clinicians are advised to consider the respiratory system of patients with chronic neck pain during their usual assessment and appropriately address their treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Renting, Nienke; Gans, Rijk O B; Borleffs, Jan C C; Van Der Wal, Martha A; Jaarsma, A Debbie C; Cohen-Schotanus, Janke
2016-07-01
Residents benefit from regular, high quality feedback on all CanMEDS roles during their training. However, feedback mostly concerns Medical Expert, leaving the other roles behind. A feedback system was developed to guide supervisors in providing feedback on CanMEDS roles. We analyzed whether feedback was provided on the intended roles and explored differences in quality of written feedback. In the feedback system, CanMEDS roles were assigned to five authentic situations: Patient Encounter, Morning Report, On-call, CAT, and Oral Presentation. Quality of feedback was operationalized as specificity and inclusion of strengths and improvement points. Differences in specificity between roles were tested with Mann-Whitney U tests with a Bonferroni correction (α = 0.003). Supervisors (n = 126) provided residents (n = 120) with feedback (591 times). Feedback was provided on the intended roles, most frequently on Scholar (78%) and Communicator (71%); least on Manager (47%), and Collaborator (56%). Strengths (78%) were mentioned more frequently than improvement points (52%), which were lacking in 40% of the feedback on Manager, Professional, and Collaborator. Feedback on Scholar was more frequently (p = 0.000) and on Reflective Professional was less frequently (p = 0.003) specific. Assigning roles to authentic situations guides supervisors in providing feedback on different CanMEDS roles. We recommend additional supervisor training on how to observe and evaluate the roles.
The Influence of Soil Suction on the Shear Strength of Unsaturated Soil
1990-09-01
the shear strength parameters c’ and 0’ for montmorillonitic and kaolinitic clays increased following the addition of divalent calcium hydroxide to...503-513. Sridharan, A., Rao, S.N., and Rao, G.V. (1971), "Shear Strength Char- acteristics of Saturated Montmorillonite and Kaolinite Clays," Soils...Summary of Shear Strengths of Unsaturated Specimens of Compacted Kaolinite and Compacted Red Earth (After Murthy, Sridharan and Nagaraj, 1987
Alternative Penetrometers to Measure the Near Surface Strength of Soft Seafloor Soils
2011-09-30
penetrometer (CPT), standard ball penetrometer (BPT), mini-ball penetrometer (mBPT) and a shear vane ( VST ). The CPT and BPT measure electronically a...The VST records the undrained shear strength of the soil at discreet depths. In addition, Shelby tube samples were collected for triaxial and...benchmark strengths from the VST and triaxial/simple shear tests. Thus far, the VST strengths have compared favorably with the results. Results from the
Martorelli, Saulo; Cadore, Eduardo Lusa; Izquierdo, Mikel; Celes, Rodrigo; Martorelli, André; Cleto, Vitor Alonso; Alvarenga, José Gustavo; Bottaro, Martim
2017-01-01
This study investigated the effects of a 10-week resistance training to failure on neuromuscular adaptations in young women. Eighty-nine active young women were randomly assigned to one of three groups: 1) repetitions to failure (RF; three sets of repetitions to failure); 2) repetitions not to failure with equalized volume (RNFV; four sets of 7 repetitions); and 3) repetitions not to failure (RNF; three sets of 7 repetitions). All groups performed the elbow flexor exercise (bilateral biceps curl) and trained 2 days per week using 70% of 1RM. There were significant increases (p<0.05) in muscle strength after 5 (15.9% for RF, 18.4% for RNF, and 19.9% for RNFV) and 10 (28.3% for RF, 26.8% for RNF, and 28.3% for RNFV) weeks of training, with no significant differences between groups. Additionally, muscular endurance increased after 5 and 10 weeks, with no differences between groups. However, peak torque (PT) increased significantly at 180°.s-1 in the RNFV (13.7%) and RNF (4.1%) groups (p<0.05), whereas no changes were observed in the RF group (-0.5%). Muscle thickness increased significantly (p<0.05) in the RF and RNFV groups after 5 (RF: 8.4% and RNFV: 2.3%) and 10 weeks of training (RF: 17.5%, and RNFV: 8.5%), whereas no significant changes were observed in the RNF group (3.9 and 2.1% after 5 and 10 weeks, respectively). These data suggest that short-term training of repetitions to failure do not yield additional overall neuromuscular improvements in young women. PMID:28713535
van Waart, Hanna; Stuiver, Martijn M; van Harten, Wim H; Sonke, Gabe S; Aaronson, Neil K
2010-12-07
Cancer chemotherapy is frequently associated with a decline in general physical condition, exercise tolerance, and muscle strength and with an increase in fatigue. While accumulating evidence suggests that physical activity and exercise interventions during chemotherapy treatment may contribute to maintaining cardiorespiratory fitness and strength, the results of studies conducted to date have not been consistent. Additional research is needed to determine the optimal intensity of exercise training programs in general and in particular the relative effectiveness of supervised, outpatient (hospital- or physical therapy practice-based) versus home-based programs. This multicenter, prospective, randomized trial will evaluate the effectiveness of a low to moderate intensity, home-based, self-management physical activity program, and a high intensity, structured, supervised exercise program, in maintaining or enhancing physical fitness (cardiorespiratory fitness and muscle strength), in minimizing fatigue and in enhancing the health-related quality of life (HRQoL). Patients receiving adjuvant chemotherapy for breast or colon cancer (n = 360) are being recruited from twelve hospitals in the Netherlands, and randomly allocated to one of the two treatment groups or to a 'usual care' control group. Performance-based and self-reported outcomes are assessed at baseline, at the end of chemotherapy and at six month follow-up. This large, multicenter, randomized clinical trial will provide additional empirical evidence regarding the effectiveness of physical exercise during adjuvant chemotherapy in enhancing physical fitness, minimizing fatigue, and maintaining or enhancing patients' quality of life. If demonstrated to be effective, exercise intervention programs will be a welcome addition to the standard program of care offered to patients with cancer receiving chemotherapy. This study is registered at the Netherlands Trial Register (NTR 2159).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talwar, R.; Kay, B. P.; Mitchell, A. J.
The nu 0h(9/2) and nu 0i(13/2) strength at Xe-137, a single neutron outside the N = 82 shell closure, has been determined using the Xe-136(alpha, He-3)Xe-137 reaction carried out at 100 MeV. We confirm the recent observation of the second 13/2(+) state and reassess previous data on the 9/2(-) states, obtaining spectroscopic factors. These new data provide additional constraints on predictions of the same single-neutron excitations at Sn-133.
1987-06-01
refinement of NICUAGE by addition of Chromium and Molybdenum with prescribed heat ’I. 24 [I.% treatments to even further lower the DBTT to -115 degrees F...sulpher a., reduces hi temp transformation products " provides solid solution strengthening copper - precipitation strengthening O chromium - optimize...contractors and oil companies include GTAW , GMAW, FCAW, and SMAW. My sense was -, that the most popular technique was the GTAW root pass * followed by the
Survey of long-term durability of fiberglass reinforced plastic structures
NASA Technical Reports Server (NTRS)
Lieblein, S.
1981-01-01
Included are fluid containment vessels, marine structures, and aircraft components with up to 19 years of service. Correlations were obtained for the variation of static fatigue strength, cyclic fatigue strength, and residual burst strength for pressure vessels. In addition, data are presented for the effects of moisture on strength retention. Data variations were analyzed, and relationships and implications for testing are discussed. Change in strength properties for complete structures was examined for indications of the effects of environmental conditions such as moisture and outdoor exposure (ultraviolet radiation, weathering) on long term durability.
Jones, Andrew W; Post, David M
2013-06-01
Intraspecific competition is considered a principal driver of dietary variation, but empirical studies provide mixed support for this mechanism. Here we link comparative and experimental work testing the effects of competition and resource availability on the dietary variation of the alewife (Alosa pseudoharengus). The alewife, a consumer with extreme effects on its resources, was specifically utilized to additionally test the idea that strong interactions between a consumer and its resources can diminish the diversifying effect of competition. First, we compared the short- and long-term diet measures of wild populations across a wide range of densities. Second, in a pair of large-scale field mesocosm experiments, we explored the influence of competition and interaction strength on alewife dietary variation. Results from a whole-lake comparison and field experiments indicated that increasing competition was negatively correlated with population dietary variation. Further, altering the strength of the interaction between the alewife and its prey via prey supplementation eliminated this negative relationship. Collectively, our results suggest that competitive interactions may not drive dietary diversification in the alewife and, potentially, in other highly effective consumers. Our results also indicate that further consideration of the strength of species interactions (and the consumer traits that underlie them) would improve our understanding of the link between intraspecific competition and variation.
Salivary contamination during bonding procedures with a one-bottle adhesive system.
Fritz, U B; Finger, W J; Stean, H
1998-09-01
The effect of salivary contamination of enamel and dentin on bonding efficacy of an experimental one-bottle resin adhesive was investigated. The adhesive was a light-curing urethane dimethacrylate/hydroxyethyl methacrylate/4-methacryloxyethyl trimellitate anhydride mixture dissolved in acetone. Evaluation parameters were shear bond strength and marginal gap width in a dental cavity. Apart from a control group without contamination (group 1), etched enamel and dentin were (2) contaminated with saliva and air dried; (3) contaminated, rinsed, and blot dried; (4) coated with adhesive, contaminated, rinsed, and blot dried; (5) coated with adhesive, light cured, contaminated, rinsed, and air dried; or (6) treated as in group 5, with additional adhesive application after air drying. There was no negative effect in groups 3 and 4, compared with control. Air drying after salivary contamination (group 2) resulted in low shear bond strengths and wide marginal gaps. Contamination of the cured adhesive layer (groups 5 and 6) had no adverse effect on enamel shear bond strengths, but resulted in 50% reduced dentin shear bond strengths and wide marginal gaps. The one-bottle adhesive system is relatively insensitive to salivary contamination, provided that the contamination occurs prior to light curing of the adhesive and is carefully rinsed and blot dried. Salivary contact after adhesive curing must be avoided.
Spatial complexity reduces interaction strengths in the meta-food web of a river floodplain mosaic
Bellmore, James Ryan; Baxter, Colden Vance; Connolly, Patrick J.
2015-01-01
Theory states that both the spatial complexity of landscapes and the strength of interactions between consumers and their resources are important for maintaining biodiversity and the 'balance of nature.' Spatial complexity is hypothesized to promote biodiversity by reducing potential for competitive exclusion; whereas, models show weak trophic interactions can enhance stability and maintain biodiversity by dampening destabilizing oscillations associated with strong interactions. Here we show that spatial complexity can reduce the strength of consumer-resource interactions in natural food webs. By sequentially aggregating food webs of individual aquatic habitat patches across a floodplain mosaic, we found that increasing spatial complexity resulted in decreases in the strength of interactions between predators and prey, owing to a greater proportion of weak interactions and a reduced proportion of strong interactions in the meta-food web. The main mechanism behind this pattern was that some patches provided predation refugia for species which were often strongly preyed upon in other patches. If weak trophic interactions do indeed promote stability, then our findings may signal an additional mechanism by which complexity and stability are linked in nature. In turn, this may have implications for how the values of landscape complexity, and the costs of biophysical homogenization, are assessed.
Xue, Qian-Li; Yang, Huanle; Li, Hui-Fen; Abadir, Peter M; Burks, Tyesha N; Koch, Lauren G; Britton, Steven L; Carlson, Joshua; Chen, Laura; Walston, Jeremy D; Leng, Sean X
2016-04-01
Rapamycin is known to extend lifespan. We conducted a randomized placebo-controlled study of enteric rapamycin-treatment to evaluate its effect on physical function in old low capacity runner (LCR) rats, a rat model selected from diverse genetic background for low intrinsic aerobic exercise capacity without genomic manipulation and characterized by increased complex disease risks and aging phenotypes. The study was performed in 12 male and 16 female LCR rats aged 16-22 months at baseline. The treatment group was fed with rapamycin-containing diet pellets at approximately 2.24mg/kg body weight per day and the placebo group with the same diet without rapamycin for six months. Observation was extended for additional 2 months. Physical function measurements include grip strength measured as maximum tensile force using a rat grip strength meter and maximum running distance (MRD) using rat physical treadmill test. The results showed that rapamycin improved grip strength by 13% (p=.036) and 60% (p=.001) from its baseline in female and male rats, respectively. Rapamycin attenuated MRD decline by 66% (p=.001) and 46% (p=.319) in females and males, respectively. These findings provide initial evidence for beneficial effect of rapamycin on physical functioning in an aging rat model of high disease risks with significant implication in humans.
Dang, Baokang; Chen, Yipeng; Wang, Hanwei; Chen, Bo; Jin, Chunde; Sun, Qingfeng
2018-01-01
Fe3O4/wood fiber composites are prepared with a green mechanical method using only distilled water as a solvent without any chemical agents, and then a binderless composite board with high mechanical properties is obtained via a hot-press for electromagnetic (EM) absorption. The fibers are connected by hydrogen bonds after being mechanically pretreated, and Fe3O4 nanoparticles (NPs) are attached to the fiber surface through physical adsorption. The composite board is bonded by an adhesive, which is provided by the reaction of fiber composition under high temperature and pressure. The Nano-Fe3O4/Fiber (NFF) binderless composite board shows remarkable microwave absorption properties and high mechanical strength. The optional reflection loss (RL) of the as-prepared binderless composite board is −31.90 dB. The bending strength of the NFF binderless composite board is 36.36 MPa with the addition of 6% nano-Fe3O4, the modulus of elasticity (MOE) is 6842.16 MPa, and the internal bond (IB) strength is 0.81 MPa. These results demonstrate that magnetic nanoparticles are deposited in binderless composite board by hot pressing, which is the easiest way to produce high mechanical strength and EM absorbers. PMID:29361726
ZERODUR: bending strength data for etched surfaces
NASA Astrophysics Data System (ADS)
Hartmann, Peter; Leys, Antoine; Carré, Antoine; Kerz, Franca; Westerhoff, Thomas
2014-07-01
In a continuous effort since 2007 a considerable amount of new data and information has been gathered on the bending strength of the extremely low thermal expansion glass ceramic ZERODUR®. By fitting a three parameter Weibull distribution to the data it could be shown that for homogenously ground surfaces minimum breakage stresses exist lying much higher than the previously applied design limits. In order to achieve even higher allowable stress values diamond grain ground surfaces have been acid etched, a procedure widely accepted as strength increasing measure. If surfaces are etched taking off layers with thickness which are comparable to the maximum micro crack depth of the preceding grinding process they also show statistical distributions compatible with a three parameter Weibull distribution. SCHOTT has performed additional measurement series with etch solutions with variable composition testing the applicability of this distribution and the possibility to achieve further increase of the minimum breakage stress. For long term loading applications strength change with time and environmental media are important. The parameter needed for prediction calculations which is combining these influences is the stress corrosion constant. Results from the past differ significantly from each other. On the basis of new investigations better information will be provided for choosing the best value for the given application conditions.
Miller, Charlotte N; Harper, Andrea L; Trick, Martin; Werner, Peter; Waldron, Keith; Bancroft, Ian
2016-07-16
The current approach to reducing the tendency for wheat grown under high fertilizer conditions to collapse (lodge) under the weight of its grain is based on reducing stem height via the introduction of Rht genes. However, these reduce the yield of straw (itself an important commodity) and introduce other undesirable characteristics. Identification of alternative height-control loci is therefore of key interest. In addition, the improvement of stem mechanical strength provides a further way through which lodging can be reduced. To investigate the prospects for genetic alternatives to Rht, we assessed variation for plant height and stem strength properties in a training genetic diversity panel of 100 wheat accessions fixed for Rht. Using mRNAseq data derived from RNA purified from leaves, functional genotypes were developed for the panel comprising 42,066 Single Nucleotide Polymorphism (SNP) markers and 94,060 Gene Expression Markers (GEMs). In the first application in wheat of the recently-developed method of Associative Transcriptomics, we identified associations between trait variation and both SNPs and GEMs. Analysis of marker-trait associations revealed candidates for the causative genes underlying the trait variation, implicating xylan acetylation and the COP9 signalosome as contributing to stem strength and auxin in the control of the observed variation for plant height. Predictive capabilities of key markers for stem strength were validated using a test genetic diversity panel of 30 further wheat accessions. This work illustrates the power of Associative Transcriptomics for the exploration of complex traits of high agronomic importance in wheat. The careful selection of genotypes included in the analysis, allowed for high resolution mapping of novel trait-controlling loci in this staple crop. The use of Gene Expression markers coupled with the more traditional sequence-based markers, provides the power required to understand the biological context of the marker-trait associations observed. This not only adds to the wealth of knowledge that we strive to accumulate regarding gene function and plant adaptation, but also provides breeders with the information required to make more informed decisions regarding the potential consequences of incorporating the use of particular markers into future breeding programmes.
NASA Technical Reports Server (NTRS)
Anderson, Kenneth Reed
2000-01-01
Ternary Cu-Cr-Nb alloys, particularly Cu-8 Cr-4 Nb (in at.%), have demonstrated good thermal stability as well as high strength and conductivity at elevated temperatures. The initial powder material has a bimodal size distribution of Cr2Nb precipitates. Primary Cr2Nb precipitates are approx. 1 micron, and secondary Cr2Nb particles are 30-200 nm. The particle coarsening was analyzed and found to follow LSW-type behavior, This study provides a detailed examination of the stability and strengthening effects of Cr2Nb particles. This investigation also revealed that the primary particles provide direct grain boundary pinning and indirect grain boundary strengthening but virtually no Orowan strengthening. The secondary particles found within grains do provide Orowan strengthening. For extruded material, grain bound-ary strengthening (Hall-Petch effect) accounts for two-thirds of the strength with Orowan effects contributing the remainder. The proven advantages of Cu-Cr-Nb were the motivation to improve these attributes via microstructural refinement. Mechanical milling (MM) of Cu- 4 Cr-2 Nb and Cu-8 Cr-2 Nb produced an increase in hot pressed Vickers hardness of 122% and 96%, respectively. The increase in hardness was more due to Cu grain-size refinement than to Cr,,Nb refinement. This study also demonstrated enhanced stability of MM Cu-4 Cr-2 Nb. Hot pressed 4 h milled Cu-4 Cr-2 Nb experienced only a 22% drop in hardness when annealed at 1273 K for 50 h versus a 30% drop for extruded Cu-8 Cr-4 Nb. The goal of improving the strength and stability of Cu-4 Cr-2 Nb to better than such properties for as- extruded Cu-8 Cr-4 Nb has been met. In addition, a figure-of-merit (FOM) coupling hardness and thermal conductivity was maximized for the case of 4 h milled Cu-4 Cr-2 Nb material. Overall, Cu-Cr-Nb alloys not only possess high strength, conductivity and thermal stability but also can be further developed to improve strength and stability.
Development of an integrated countermeasure device for use in long-duration spaceflight
NASA Astrophysics Data System (ADS)
Streeper, T.; Cavanagh, P. R.; Hanson, A. M.; Carpenter, R. D.; Saeed, I.; Kornak, J.; Frassetto, L.; Grodsinsky, C.; Funk, J.; Lee, S. M. C.; Spiering, B. A.; Bloomberg, J.; Mulavara, A.; Sibonga, J.; Lang, T.
2011-06-01
Prolonged weightlessness is associated with declines in musculoskeletal, cardiovascular, and sensorimotor health. Consequently, in-flight countermeasures are required to preserve astronaut health. We developed and tested a novel exercise countermeasure device (CCD) for use in spaceflight with the aim of preserving musculoskeletal and cardiovascular health along with an incorporated balance training component. Additionally, the CCD features a compact footprint, and a low power requirement. Methods: After design and development of the CCD, we carried out a training study to test its ability to improve cardiovascular and muscular fitness in healthy volunteers. Fourteen male and female subjects (41.4±9.0 years, 69.5±15.4 kg) completed 12 weeks (3 sessions per week) of concurrent strength and endurance training on the CCD. All training was conducted with the subject in orthostasis. When configured for spaceflight, subjects will be fixed to the device via a vest with loop attachments secured to subject load devices. Subjects were tested at baseline and after 12 weeks for 1-repetition max leg press strength (1RM), peak oxygen consumption (VO 2peak), and isokinetic joint torque (ISO) at the hip, knee, and ankle. Additionally, we evaluated subjects after 6 weeks of training for changes in VO 2peak and 1RM. Results: VO 2peak and 1RM improved after 6 weeks, with additional improvements after 12 weeks (1.95±0.5, 2.28±0.5, 2.47±0.6 L min -1, and 131.2±63.9,182.8±75.0, 207.0±75.0 kg) for baseline, 6 weeks, and 12 weeks, respectively. ISO for hip adduction, adduction, and ankle plantar flexion improved after 12 weeks of training (70.3±39.5, 76.8±39.2, and 55.7±21.7 N m vs. 86.1±37.3, 85.1±34.3, and 62.1±26.4 N m, respectively). No changes were observed for ISO during hip flexion, knee extension, or knee flexion. Conclusions: The CCD is effective at improving cardiovascular fitness and isotonic leg strength in healthy adults. Further, the improvement in hip adductor and abductor torque provides support that the CCD may provide additional protection for the preservation of bone health at the hip.
NASA Astrophysics Data System (ADS)
Zhang, Zuhua; Wang, Hao
2016-08-01
The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA) and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm) is considered. This “critical void model” is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.
Biotic indices for assessing the status of coastal waters: a review of strengths and weaknesses.
Martínez-Crego, Begoña; Alcoverro, Teresa; Romero, Javier
2010-05-01
Biotic indices have become key assessment tools in most recent national and trans-national policies aimed at improving the quality of coastal waters and the integrity of their associated ecosystems. In this study we analyzed 90 published biotic indices, classified them into four types, and analyzed the strengths and weaknesses of each type in relation to the requirements of these policies. We identified three main type-specific weaknesses. First, the problems of applicability, due to practical and conceptual difficulties, which affect most indices related to ecosystem function. Second, the failure of many indices based on structural attributes of the community (e.g. taxonomic composition) to link deterioration with causative stressors, or to provide an early-detection capacity. Third, the poor relevance to the ecological integrity of indices based on attributes at the sub-individual level (e.g. multi-biomarkers). Additionally, most indices still fail on two further aspects: the broad-scale applicability and the definition of reference conditions. Nowadays, the most promising approach seems to be the aggregation of indices with complementary strengths, and obtained from different biological communities.
Guo, Jinshan; Kim, Gloria B.; Shan, Dingying; Kim, Jimin P.; Hu, Jianqing; Wang, Wei; Hamad, Fawzi G.; Qian, Guoying; Rizk, Elias B.; Yang, Jian
2016-01-01
For the first time, a convenient copper-catalyzed azide-alkyne cycloaddition (CuAAC, click chemistry) was successfully introduced into injectable citrate-based mussel-inspired bioadhesives (iCMBAs, iCs) to improve both cohesive and wet adhesive strengths and elongate the degradation time, providing numerous advantages in surgical applications. The major challenge to developing such an adhesive was the mutual inhibition effect between the oxidant used for crosslinking catechol groups and the Cu(II) reductant used for CuAAC, which was successfully minimized by adding a biocompatible buffering agent typically used in cell culture, 4-(2-hydroxyethyl) -1-piperazineethanesulfonic acid (HEPES), as a copper chelating agent. Among the investigated formulations, the highest adhesion strength achieved (223.11 ± 15.94 kPa) was around 13 times higher than that of a commercially available fibrin glue (15.4 ± 2.8 kPa). In addition, dual-crosslinked (i.e. click crosslinking and mussel-inspired crosslinking) iCMBAs still preserved considerable antibacterial and antifungal capabilities that are beneficial for the bioadhesives used as hemostatic adhesives or sealants for wound management. PMID:27770631
Adhesive and Cohesive Strength in FeB/Fe2B Systems
NASA Astrophysics Data System (ADS)
Meneses-Amador, A.; Blancas-Pérez, D.; Corpus-Mejía, R.; Rodríguez-Castro, G. A.; Martínez-Trinidad, J.; Jiménez-Tinoco, L. F.
2018-05-01
In this work, FeB/Fe2B systems were evaluated by the scratch test. The powder-pack boriding process was performed on the surface of AISI M2 steel. The mechanical parameters, such as yield stress and Young's modulus of the boride layer, were obtained by the instrumented indentation technique. Residual stresses produced on the boride layer were estimated by using the x-ray diffraction (XRD) technique. The scratch test was performed in order to evaluate the cohesive/adhesive strength of the FeB/Fe2B coating. In addition, a numerical evaluation of the scratch test on boride layers was performed by the finite element method. Maximum principal stresses were related to the failure mechanisms observed by the experimental scratch test. Shear stresses at the interfaces of the FeB/Fe2B/substrate system were also evaluated. Finally, the results obtained provide essential information about the effect of the layer thickness, the residual stresses, and the resilience modulus on the cohesive/adhesive strength in FeB/Fe2B systems.
Fabrication of Titanium Bonded Joint Specimens for High Temperature Testing
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S., III; Kovach, Michael P.; Hudson, Wanda
2005-01-01
Four sets of adhesively bonded, titanium lap-shear coupon specimens were fabricated for ultimate strength testing according to the ASTM D1002 and D3165 standards. Important features of the fabrication methods, processing details, and lap-shear test results are presented for specimens fabricated using a modified bismaleimide adhesive, EA 9673, on titanium. Surface treatment of the titanium was performed using surface abrasion followed by one of two separate chemical etching processes. Although cure cycle requirements are different among most adhesives, a single surface preparation method was sought as the preferred method for conditioning the titanium specimens prior to bonding and curing. A fabrication process using a combination of low-pressure grit-blasting of the titanium surface followed by anodization with a sodium hydroxide solution applied to the D1002 specimen geometry provided the highest lapshear strengths in the study. Additionally, difficulties documented during the fabrication process of the D3165 specimens along with features of the D3165 geometry were identified as factors that contributed to lower lap-shear strength results for the D3165 specimens as compared to the results for the D1002 specimens.
Pathogens as Predictors of Honey Bee Colony Strength in England and Wales.
Budge, Giles E; Pietravalle, Stéphane; Brown, Mike; Laurenson, Lynn; Jones, Ben; Tomkies, Victoria; Delaplane, Keith S
2015-01-01
Inspectors with the UK National Bee Unit were asked for 2007-2008 to target problem apiaries in England and Wales for pathogen screening and colony strength measures. Healthy colonies were included in the sampling to provide a continuum of health conditions. A total of 406 adult bee samples was screened and yielded 7 viral, 1 bacterial, and 2 microsporidial pathogens and 1 ectoparasite (Acarapis woodi). In addition, 108 samples of brood were screened and yielded 4 honey bee viruses. Virus prevalence varied from common (deformed wing virus, black queen cell virus) to complete absence (Israeli acute paralysis virus). When colonies were forced into one of two classes, strong or weak, the weak colonies contained more pathogens in adult bees. Among observed pathogens, only deformed wing virus was able to predict colony strength. The effect was negative such that colonies testing positive for deformed wing virus were likely to have fewer combs of bees or brood. This study constitutes the first record for Nosema ceranae in Great Britain. These results contribute to the growing body of evidence linking pathogens to poor honey bee health.
Novel Polymer Aerogel toward High Dimensional Stability, Mechanical Property, and Fire Safety.
Shang, Ke; Yang, Jun-Chi; Cao, Zhi-Jie; Liao, Wang; Wang, Yu-Zhong; Schiraldi, David A
2017-07-12
Inorganc silica-based aerogels, the earliest and widely used aerogels, have poorer mechanical properties than their organic substitutes, which are flammable. In this study, a novel polymeric aerogel with high strength, inherent flame retardancy, and cost-effectiveness, which is based on poly(vinyl alcohol) (PVA) cross-linked with melamine-formaldehyde (MF), was prepared under aqueous condition with an ecofriendly freeze-drying and postcuring process. Combined with the additional rigid MF network and benifited from the resulting unique infrastructure of inter-cross-linked flexible PVA segments and rigid MF segments, PVA-based aerogels exibited a significantly decreased degradation rate and sharply decreased peak heat release rate (PHRR) in cone calorimeter tests (by as much as 83%) compared with neat PVA. The polymer aerogels have a limiting oxygen index (LOI) as high as 36.5% and V-0 rating in UL-94 test. Furthermore, the aerogel samples exposured to harsh temperatures maintain their dimensions (<10% change), original mechanical strength and fire safety. Therefore, this work provides a novel stragegy for preparing pure organic polymeric aerogel materials with high mechanical strength, dimensional stability, and fire safety.
Jamróz, Ewelina; Juszczak, Lesław; Kucharek, Mateusz
2018-07-15
Lavender essential oil (OEL) was added to starch, furcellaran and gelatin (S/F/G) films in concentrations of 2%, 4% and 6%. The films were examined in terms of physical properties (thickness, density, water solubility, water absorption and degree of swelling) and mechanical properties (tensile strength, elongation at break). The test results show that the film thickness increased upon addition of OEL. The solubility, water absorption and degree of swelling of the film decreased with increasing concentration of oils. Tensile strength (TS) decreased considerably with increasing concentration of oil, which resulted in lower mechanical strength. Parameters of elongation at break (EAB) were not changed. The thermal behaviour of the film was affected by OEL. Possible interaction between film matrix and lavender oil was confirmed using FTIR. Antioxidant properties proved to be significantly enhanced with increasing OEL concentration. The microbiological analysis confirmed antimicrobial properties of S/F/G with OEL. S/F/G films with OEL can provide new formulation of active packaging with potential food-technology applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Fiber-enriched double-setting calcium phosphate bone cement.
dos Santos, Luís Alberto; Carrodéguas, Raúl Garcia; Boschi, Anselmo Ortega; Fonseca de Arruda, Antônio Celso
2003-05-01
Calcium phosphate bone cements are useful in orthopedics and traumatology, their main advantages being their biocompatibility and bioactivity, which render bone tissue osteoconductive, providing in situ hardening and easy handling. However, their low mechanical strength, which, in the best of cases, is equal to the trabecular bone, and their very low toughness are disadvantages. Calcium phosphate cement compositions with mechanical properties more closely resembling those of human bone would broaden the range of applications, which is currently limited to sites subjected to low loads. This study investigated the influence of added polypropylene, nylon, and carbon fibers on the mechanical properties of double setting alpha-tricalcium phosphate-based cement, using calcium phosphate cement added to an in situ polymerizable acrylamide-based system recently developed by the authors. Although the addition of fibers was found to reduce the compression strength of the double-setting calcium phosphate cement because of increased porosity, it strongly increased the cement's toughness (J(IC)) and tensile strength. The composites developed in this work, therefore, have a potential application in shapes subjected to flexure. Copyright 2003 Wiley Periodicals, Inc.
Velasco, Carlos; Wan, Xiaoang; Knoeferle, Klemens; Zhou, Xi; Salgado-Montejo, Alejandro; Spence, Charles
2015-01-01
Prior research provides robust support for the existence of a number of associations between colors and flavors. In the present study, we examined whether congruent (vs. incongruent) combinations of product packaging colors and flavor labels would facilitate visual search for products labeled with specific flavors. The two experiments reported here document a Stroop-like effect between flavor words and packaging colors. The participants were able to search for packaging flavor labels more rapidly when the color of the packaging was congruent with the flavor label (e.g., red/tomato) than when it was incongruent (e.g., yellow/tomato). In addition, when the packaging color was incongruent, those flavor labels that were more strongly associated with a specific color yielded slower reaction times and more errors (Stroop interference) than those that were less strongly tied to a specific color. Importantly, search efficiency was affected both by color/flavor congruence and association strength. Taken together, these results therefore highlight the role of color congruence and color-word association strength when it comes to searching for specific flavor labels.
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Thakkar, Ajit J.
2010-02-01
The construction of the dipole oscillator strength distribution (DOSD) from theoretical and experimental photoabsorption cross sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and molar refractivity data is a well-established technique that has been successfully applied to more than 50 species. Such DOSDs are insufficiently accurate at large photon energies. A novel iterative procedure is developed that rectifies this deficiency by using the high-energy asymptotic behavior of the dipole oscillator strength density as an additional constraint. Pilot applications are made for the neon, argon, krypton, and xenon atoms. The resulting DOSDs improve the agreement of the predicted S2 and S1 sum rules with ab initio calculations while preserving the accuracy of the remainder of the moments. Our DOSDs exploit new and more accurate experimental data. Improved estimates of dipole properties for these four atoms and of dipole-dipole C6 and triple-dipole C9 dispersion coefficients for the interactions among them are reported.
Gupta, Bhavana; Kumar, N.; Panda, Kalpataru; Dash, S.; Tyagi, A. K.
2016-01-01
Optimized concentration of reduced graphene oxide (rGO) in the lube is one of the important factors for effective lubrication of solid body contacts. At sufficiently lower concentration, the lubrication is ineffective and friction/wear is dominated by base oil. In contrast, at sufficiently higher concentration, the rGO sheets aggregates in the oil and weak interlayer sliding characteristic of graphene sheets is no more active for providing lubrication. However, at optimized concentration, friction coefficient and wear is remarkably reduced to 70% and 50%, respectively, as compared to neat oil. Traditionally, such lubrication is described by graphene/graphite particle deposited in contact surfaces that provides lower shear strength of boundary tribofilm. In the present investigation, graphene/graphite tribofilm was absent and existing traditional lubrication mechanism for the reduction of friction and wear is ruled out. It is demonstrated that effective lubrication is possible, if rGO is chemically linked with PEG molecules through hydrogen bonding and PEG intercalated graphene sheets provide sufficiently lower shear strength of freely suspended composite tribofilm under the contact pressure. The work revealed that physical deposition and adsorption of the graphene sheets in the metallic contacts is not necessary for the lubrication. PMID:26725334
Engineering Properties and Correlation Analysis of Fiber Cementitious Materials
Lin, Wei-Ting; Wu, Yuan-Chieh; Cheng, An; Chao, Sao-Jeng; Hsu, Hui-Mi
2014-01-01
This study focuses on the effect of the amount of silica fume addition and volume fraction of steel fiber on the engineering properties of cementitious materials. Test variables include dosage of silica fume (5% and 10%), water/cement ratio (0.35 and 0.55) and steel fiber dosage (0.5%, 1.0% and 2.0%). The experimental results included: compressive strength, direct tensile strength, splitting tensile strength, surface abrasion and drop-weight test, which were collected to carry out the analysis of variance to realize the relevancy and significance between material parameters and those mechanical properties. Test results illustrate that the splitting tensile strength, direct tensile strength, strain capacity and ability of crack-arresting increase with increasing steel fiber and silica fume dosages, as well as the optimum mixture of the fiber cementitious materials is 5% replacement silica fume and 2% fiber dosage. In addition, the Pearson correlation coefficient was conducted to evaluate the influence of the material variables and corresponds to the experiment result. PMID:28788256
Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.
Lee, H K; Kim, H K; Hwang, E A
2010-02-01
Recently, millions tons of bottom ash wastes from thermoelectric power plants have been disposed of in landfills and coastal areas, regardless of its recycling possibility in construction fields. Fiber-reinforced cellular concrete (FRCC) of low density and of high strength may be attainable through the addition of bottom ash due to its relatively high strength. This paper focuses on evaluating the feasibility of utilizing bottom ash of thermoelectric power plant wastes as aggregates in FRCC. The flow characteristics of cement mortar with bottom ash aggregates and the effect of aggregate type and size on concrete density and compressive strength were investigated. In addition, the effects of adding steel and polypropylene fibers for improving the strength of concrete were also investigated. The results from this study suggest that bottom ash can be applied as a construction material which may not only improve the compressive strength of FRCC significantly but also reduce problems related to bottom ash waste.
NASA Astrophysics Data System (ADS)
Zaid, Adnan I. O.; Qandil, A.; Qattous, M. A. A.
2016-08-01
It was repeatedly reported that the clay bricks industry in Jordan is facing both weak mechanical strength and poor quality which caused marketing problems where it is expected to serve the increasing demand of housing in the country especially after the political crises in the neighboring countries Iraq and Syria. It is therefore anticipated that improvement of the mechanical strength and quality of the produced clay evaluation of the brick industry in Jordan is worth investigating. In this paper, theoretical and experimental investigation obtained from field visits to the factories producing clay bricks were carried out. Furthermore, the effect of using some additives from locally available materials namely: Battn El-Ghoul Clay, Suweileh sand and Olive extracts on the mechanical strength, thermal conductivity and surface quality of the produced bricks is investigated and discussed. The experimental results indicated that thermal conductivity, color and durability were all enhanced and the ultimate compressive strength was reduced but remained higher than the acceptable value for brickwork.
An overview of strength training injuries: acute and chronic.
Lavallee, Mark E; Balam, Tucker
2010-01-01
This article introduces the history of strength training, explains the many different styles of strength training, and discusses common injuries specific to each style. Strength training is broken down into five disciplines: basic strength or resistance training, bodybuilding, power lifting, style-dependant strength sports (e.g., strongman competitions, Highland games, field events such as shot put, discus, hammer throw, and javelin), and Olympic-style weightlifting. Each style has its own principal injuries, both acute and chronic, related to the individual technique. Acute injuries should be further categorized as emergent or nonemergent. Specific age-related populations (i.e., the very young and the aging athlete) carry additional considerations.
NASA Astrophysics Data System (ADS)
Thompson, N.; Watters, R. J.; Schiffman, P.
2004-12-01
Selected portions of the 3-km HSDP II core were tested to provide unconfined rock strength data from hyaloclastite alteration zones and pillow lavas. Though the drilling project was not originally intended for strength purpose, it is believed the core can provide unique rock strength insights into the flank stability of the Hawaiian Islands. The testing showed that very weak rock exists in the hyaloclastite abundant zones in the lower 2-km of the core with strength dependent on the degree of consolidation and type of alteration. Walton and Schiffman identified three zones of alteration, an upper incipient alteration zone (1080-1335m), a smectitic zone (1405-1573m) and a lower palagonitic zone from about 1573 m to the base of the core. These three zones were sampled and tested together with pillow lava horizons for comparison. Traditional cylindrical core was not available as a consequence of the entire core having been split lengthwise for archival purposes. Hence, point load strength testing was utilized which provides the unconfined compressive strength on irregular shaped samples. The lowest unconfined strengths were recorded from incipient alteration zones with a mean value of 9.5 MPa. Smectitic alteration zones yielded mean values of 16.4 MPa, with the highest measured alteration strengths from the palagonite zones with a mean value of 32.1 MPa. As anticipated, the highest strengths were from essentially unaltered lavas with a mean value of 173 MPa. Strength variations of between one to two orders of magnitude were identified in comparing the submarine hyaloclastite with the intercalated submarine lavas. The weakest zones within the hyaloclastites may provide horizons for assisting flank collapse by serving as potential thrust zones and landslide surfaces.
Development of Quiet Honeycomb Panels
NASA Technical Reports Server (NTRS)
Palumbo, Daniel L.; Klos, Jacob
2009-01-01
Sandwich honeycomb composite panels are lightweight and strong, and, therefore, provide a reasonable alternative to the aluminum ring framelstringer architecture currently used for most aircraft airframes. The drawback to honeycomb panels is that they radiate noise into the aircraft cabin very efficiently provoking the need for additional sound treatment which adds weight and reduces the material's cost advantage. A series of honeycomb panels were made which incorporated different design strategies aimed at reducing the honeycomb panels' radiation efficiency while at the same time maintaining its strength. The majority of the desi gns were centered around the concept of creatin g areas of reduced stiffness in the panel by adding voids and recesses to the core. The effort culminated with a reinforced./recessed panel which had 6 dB higher transmission loss than the baseline solid core panel while maintaining comparable strength.
Requirements of titanium alloys for aeronautical industry
NASA Astrophysics Data System (ADS)
Ghiban, Brânduşa; Bran, Dragoş-Teodor; Elefterie, Cornelia Florina
2018-02-01
The project presents the requirements imposed for aeronatical components made from Titanium based alloys. Asignificant portion of the aircraft pylons are manufactured from Titanium alloys. Strength, weight, and reliability are the primary factors to consider in aircraft structures. These factors determine the requirements to be met by any material used to construct or repair the aircraft. Many forces and structural stresses act on an aircraft when it is flying and when it is static and this thesis describes environmental factors, conditions of external aggression, mechanical characteristics and loadings that must be satisfied simultaneously by a Ti-based alloy, compared to other classes of aviation alloys (as egg. Inconel super alloys, Aluminum alloys). For this alloy class, the requirements are regarding strength to weight ratio, reliability, corrosion resistance, thermal expansion and so on. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.
An entropy and viscosity corrected potential method for rotor performance prediction
NASA Technical Reports Server (NTRS)
Bridgeman, John O.; Strawn, Roger C.; Caradonna, Francis X.
1988-01-01
An unsteady Full-Potential Rotor code (FPR) has been enhanced with modifications directed at improving its drag prediction capability. The shock generated entropy has been included to provide solutions comparable to the Euler equations. A weakly interacted integral boundary layer has also been coupled to FPR in order to estimate skin-friction drag. Pressure distributions, shock positions, and drag comparisons are made with various data sets derived from two-dimensional airfoil, hovering, and advancing high speed rotor tests. In all these comparisons, the effect of the nonisentropic modification improves (i.e., weakens) the shock strength and wave drag. In addition, the boundary layer method yields reasonable estimates of skin-friction drag. Airfoil drag and hover torque data comparisons are excellent, as are predicted shock strength and positions for a high speed advancing rotor.
Aeronautical Industry Requirements for Titanium Alloys
NASA Astrophysics Data System (ADS)
Bran, D. T.; Elefterie, C. F.; Ghiban, B.
2017-06-01
The project presents the requirements imposed for aviation components made from Titanium based alloys. A significant portion of the aircraft pylons are manufactured from Titanium alloys. Strength, weight, and reliability are the primary factors to consider in aircraft structures. These factors determine the requirements to be met by any material used to construct or repair the aircraft. Many forces and structural stresses act on an aircraft when it is flying and when it is static and this thesis describes environmental factors, conditions of external aggression, mechanical characteristics and loadings that must be satisfied simultaneously by a Ti-based alloy, compared to other classes of aviation alloys (as egg. Inconel super alloys, Aluminum alloys).For this alloy class, the requirements are regarding strength to weight ratio, reliability, corrosion resistance, thermal expansion and so on. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.
Calcium hypochlorite as a disinfecting additive for dental stone.
Twomey, Jonathan O; Abdelaziz, Khalid M; Combe, Edward C; Anderson, Dwight L
2003-09-01
Dental casts come into direct contact with impression materials and other items that are contaminated by saliva and blood from a patient's mouth, leaving the casts susceptible to cross-contamination. Topical methods of disinfecting casts are difficult to control, while immersion methods are potentially destructive. Thus, an additional method to control cross-contamination between patients and laboratory personnel is needed. This study was undertaken in an attempt to develop a dental stone with disinfecting properties and adequate compressive and tensile strengths. Calcium hypochlorite [Ca(OCl)(2)] in aqueous solution in concentrations from 0 to 1.5% was tested as a disinfecting additive to type V dental stone. The compressive and tensile strength properties of the modified stone were measured (MPa) using a universal testing machine at a consistency similar to unmodified stone. Strength data were analyzed by 1-way ANOVA and post hoc Tukey-Kramer procedure (alpha < or =.05). To measure the disinfecting ability, the effect on Bacillis subtilis bacteriophage phi29 was tested in triplicate to find the minimum concentration at which no phage was detected. Additionally, 3 impressions were disinfected with CaviCide, and 3 impressions rinsed in water served as controls. In general, the effect of adding the disinfectant to the stone was a decrease in strength. Exceptions were the dry compressive strength, for which there was a significant increase in strength (P=.048) at 0.5%, and the wet compressive and wet tensile strength, which showed no significant difference between the 1.5% and the control. When Ca(OCl)(2) was added at the concentration 0.5% (2765 ppm available chlorine), the gypsum had acceptable mechanical properties; dry compressive strength was 78.86 +/- 4.12 MPa, and dry tensile strength was 10.64 +/- 1.27 MPa, compared to control values of 67.85 +/- 6.28 and 13.41 +/- 1.24 MPa, respectively. At concentrations of 0.3% and higher (36 1650 ppm of available chlorine), calcium hypochlorite was able to completely inactivate phi29. It is possible to prepare a type V dental stone that contains a disinfectant, has adequate mechanical properties, and will reduce numbers of residual microorganisms. For example, stone mixed with water containing 0.5% Ca(OCl)(2) meets these criteria.
Gluebond strength of laser cut wood
Charles W. McMillin; Henry A. Huber
1985-01-01
The degree of strength loss when gluing laser cut wood as compared to conventionally sawn wood and the amount of additional surface treatment needed to improve bond quality were assessed under normal furniture plant operating conditions. The strength of laser cut oak glued with polyvinyl acetate adhesive was reduced to 75 percent of sawn joints and gum was reduced 43...
Backfilling behavior of a mixed aggregate based on construction waste and ultrafine tailings
Zhang, Qinli; Xiao, Chongchun; Chen, Xin
2017-01-01
To study the possibility of utilizing mixed construction waste and ultrafine tailings (CW&UT) as a backfilling aggregate that can be placed underground in a mine, physicochemical evaluation, proportioning strength tests, and pumpability experiments were conducted. It was revealed that mixed CW&UT can be used as a backfilling aggregate due to the complementarities of their physicochemical properties. In addition, as the results of the proportioning strength tests show, the compressive strength of a cemented CW&UT backfilling specimen cured for 28 days, with a mass fraction of 72–74%, a cement-sand ratio of 1:12, and a CW proportion of 30%, is higher than 1.0 MPa, which meets the safety requirements and economic consideration of backfilling technology in many underground metal mines, and can also be enhanced with an increase in the cement-sand ratio. The results of the pumpability experiments show that cemented backfilling slurry based on CW&UT can be transported to the stope underground with a common filling pump, with a 16.6 MPa maximum pressure, with the condition that the time of emergency shut-down is less than approximately 20 min. All in all, the research to utilize mixed CW&UT as a backfilling aggregate can not only provide a way to dispose of CW&UT but also will bring large economic benefits and can provide constructive guidance for environmental protection. PMID:28662072
NASA Astrophysics Data System (ADS)
Qian, Guian; Lei, Wei-Sheng; Niffenegger, M.; González-Albuixech, V. F.
2018-04-01
The work relates to the effect of temperature on the model parameters in local approaches (LAs) to cleavage fracture. According to a recently developed LA model, the physical consensus of plastic deformation being a prerequisite to cleavage fracture enforces any LA model of cleavage fracture to observe initial yielding of a volume element as its threshold stress state to incur cleavage fracture in addition to the conventional practice of confining the fracture process zone within the plastic deformation zone. The physical consistency of the new LA model to the basic LA methodology and the differences between the new LA model and other existing models are interpreted. Then this new LA model is adopted to investigate the temperature dependence of LA model parameters using circumferentially notched round tensile specimens. With the published strength data as input, finite element (FE) calculation is conducted for elastic-perfectly plastic deformation and the realistic elastic-plastic hardening, respectively, to provide stress distributions for model calibration. The calibration results in temperature independent model parameters. This leads to the establishment of a 'master curve' characteristic to synchronise the correlation between the nominal strength and the corresponding cleavage fracture probability at different temperatures. This 'master curve' behaviour is verified by strength data from three different steels, providing a new path to calculate cleavage fracture probability with significantly reduced FE efforts.
Observation of a remarkable reduction of correlation effects in BaCr2As2 by ARPES.
Nayak, Jayita; Filsinger, Kai; Fecher, Gerhard H; Chadov, Stanislav; Minár, Ján; Rienks, Emile D L; Büchner, Bernd; Parkin, Stuart P; Fink, Jörg; Felser, Claudia
2017-11-21
The superconducting phase in iron-based high-[Formula: see text] superconductors (FeSC), as in other unconventional superconductors such as the cuprates, neighbors a magnetically ordered one in the phase diagram. This proximity hints at the importance of electron correlation effects in these materials, and Hund's exchange interaction has been suggested to be the dominant correlation effect in FeSCs because of their multiband nature. By this reasoning, correlation should be strongest for materials closest to a half-filled [Formula: see text] electron shell (Mn compounds, hole-doped FeSCs) and decrease for systems with both higher (electron-doped FeSCs) and lower (Cr-pnictides) [Formula: see text] counts. Here we address the strength of correlation effects in nonsuperconducting antiferromagnetic BaCr 2 As 2 by means of angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. This combination provides us with two handles on the strength of correlation: First, a comparison of the experimental and calculated effective masses yields the correlation-induced mass renormalization. In addition, the lifetime broadening of the experimentally observed dispersions provides another measure of the correlation strength. Both approaches reveal a reduction of electron correlation in BaCr 2 As 2 with respect to systems with a [Formula: see text] count closer to five. Our results thereby support the theoretical predictions that Hund's exchange interaction is important in these materials.
Backfilling behavior of a mixed aggregate based on construction waste and ultrafine tailings.
Chen, Qiusong; Zhang, Qinli; Xiao, Chongchun; Chen, Xin
2017-01-01
To study the possibility of utilizing mixed construction waste and ultrafine tailings (CW&UT) as a backfilling aggregate that can be placed underground in a mine, physicochemical evaluation, proportioning strength tests, and pumpability experiments were conducted. It was revealed that mixed CW&UT can be used as a backfilling aggregate due to the complementarities of their physicochemical properties. In addition, as the results of the proportioning strength tests show, the compressive strength of a cemented CW&UT backfilling specimen cured for 28 days, with a mass fraction of 72-74%, a cement-sand ratio of 1:12, and a CW proportion of 30%, is higher than 1.0 MPa, which meets the safety requirements and economic consideration of backfilling technology in many underground metal mines, and can also be enhanced with an increase in the cement-sand ratio. The results of the pumpability experiments show that cemented backfilling slurry based on CW&UT can be transported to the stope underground with a common filling pump, with a 16.6 MPa maximum pressure, with the condition that the time of emergency shut-down is less than approximately 20 min. All in all, the research to utilize mixed CW&UT as a backfilling aggregate can not only provide a way to dispose of CW&UT but also will bring large economic benefits and can provide constructive guidance for environmental protection.
Shear bond strength of self-etch adhesives to enamel with additional phosphoric acid etching.
Lührs, Anne-Katrin; Guhr, Silke; Schilke, Reinhard; Borchers, Lothar; Geurtsen, Werner; Günay, Hüsamettin
2008-01-01
This study evaluated the shear bond strength of self-etch adhesives to enamel and the effect of additional phosphoric acid etching. Seventy sound human molars were randomly divided into three test groups and one control group. The enamel surfaces of the control group (n=10) were treated with Syntac Classic (SC). Each test group was subdivided into two groups (each n=10). In half of each test group, ground enamel surfaces were coated with the self-etch adhesives AdheSe (ADH), Xeno III (XE) or Futurabond NR (FNR). In the remaining half of each test group, an additional phosphoric acid etching of the enamel surface was performed prior to applying the adhesives. The shear bond strength was measured with a universal testing machine at a crosshead speed of 1 mm/minute after storing the samples in distilled water at 37 degrees C for 24 hours. Fracture modes were determined by SEM examination. For statistical analysis, one-way ANOVA and the two-sided Dunnett Test were used (p>0.05). Additional phosphoric etching significantly increased the shear bond strength of all the examined self-etch adhesives (p<0.001). The highest shear bond strength was found for FNR after phosphoric acid etching. Without phosphoric acid etching, only FNR showed no significant differences compared to the control (SC). SEM evaluations showed mostly adhesive fractures. For all the self-etch adhesives, a slight increase in mixed fractures occurred after conditioning with phosphoric acid. An additional phosphoric acid etching of enamel should be considered when using self-etch adhesives. More clinical studies are needed to evaluate the long-term success of the examined adhesives.
Al2O3 Nanoparticle Addition to Commercial Magnesium Alloys: Multiple Beneficial Effects
Paramsothy, Muralidharan; Chan, Jimmy; Kwok, Richard; Gupta, Manoj
2012-01-01
The multiple beneficial effects of Al2O3 nanoparticle addition to cast magnesium based systems (followed by extrusion) were investigated, constituting either: (a) enhanced strength; or (b) simultaneously enhanced strength and ductility of the corresponding magnesium alloys. AZ31 and ZK60A nanocomposites containing Al2O3 nanoparticle reinforcement were each fabricated using solidification processing followed by hot extrusion. Compared to monolithic AZ31 (tension levels), the corresponding nanocomposite exhibited higher yield strength (0.2% tensile yield strength (TYS)), ultimate strength (UTS), failure strain and work of fracture (WOF) (+19%, +21%, +113% and +162%, respectively). Compared to monolithic AZ31 (compression levels), the corresponding nanocomposite exhibited higher yield strength (0.2% compressive yield strength (CYS)) and ultimate strength (UCS), lower failure strain and higher WOF (+5%, +5%, −4% and +11%, respectively). Compared to monolithic ZK60A (tension levels), the corresponding nanocomposite exhibited lower 0.2% TYS and higher UTS, failure strain and WOF (−4%, +13%, +170% and +200%, respectively). Compared to monolithic ZK60A (compression levels), the corresponding nanocomposite exhibited lower 0.2% CYS and higher UCS, failure strain and WOF (−10%, +7%, +15% and +26%, respectively). The capability of Al2O3 nanoparticles to enhance the properties of cast magnesium alloys in a way never seen before with micron length scale reinforcements is clearly demonstrated. PMID:28348301
Krishnamurthy, Madhuram; Kumar, V Naveen; Leburu, Ashok; Dhanavel, Chakravarthy; Selvendran, Kasiswamy E; Praveen, Nehrudhas
2018-04-01
Aim: The aim of the present study was to compare the antibacterial activity of a self-etching primer containing antibacterial monomer methacryloyloxydodecylpyridinium bromide (MDPB) (Clearfil protect bond) with a conventional self-etching primer without MDPB (Clearfil SE bond) against Streptococcus mutans and the effect of incorporation of MDPB on the tensile bond strength of the experimental self-etching primer (Clearfil protect bond). Materials and methods: The antibacterial activity of the self-etching primers was assessed using agar disk diffusion method and the diameters of the zones of inhibition were measured and ranked. For tensile bond strength testing, 20 noncarious human molars were selected and randomly divided into two groups comprising 10 teeth in each group. Group I specimens were treated with Clearfil SE bond (without MDPB). Group II specimens were treated with Clearfil protect bond (with MDPB). Composite material was placed incrementally and cured for 40 seconds in all the specimens. Tensile bond strength was estimated using the Instron Universal testing machine at a crosshead speed of 1 mm/min. Results: The addition of MDPB into a self-etching primer exerts potential antibacterial effect against S. mutans. The tensile bond strength of MDPB containing self-etching primer was slightly lower than that of the conventional self-etching Clearfil protect bond primer, but the difference was not statistically significant. Conclusion: Thus, a self-etching primer containing MDPB will be a boon to adhesive dentistry as it has bactericidal property with adequate tensile bond strength. Clinical significance: The concept of prevention of extension in adhesive dentistry would result in micro/nanoleakage due to the presence of residual bacteria in the cavity. Self-etching primers with MDPB would improve the longevity of such restorations by providing adequate antibacterial activity without compromising the bond strength. Keywords: Antibacterial property, Methacryloyloxydodecy-lpyridinium bromide, Self-etching primers, Tensile bond strength.
Causal strength induction from time series data.
Soo, Kevin W; Rottman, Benjamin M
2018-04-01
One challenge when inferring the strength of cause-effect relations from time series data is that the cause and/or effect can exhibit temporal trends. If temporal trends are not accounted for, a learner could infer that a causal relation exists when it does not, or even infer that there is a positive causal relation when the relation is negative, or vice versa. We propose that learners use a simple heuristic to control for temporal trends-that they focus not on the states of the cause and effect at a given instant, but on how the cause and effect change from one observation to the next, which we call transitions. Six experiments were conducted to understand how people infer causal strength from time series data. We found that participants indeed use transitions in addition to states, which helps them to reach more accurate causal judgments (Experiments 1A and 1B). Participants use transitions more when the stimuli are presented in a naturalistic visual format than a numerical format (Experiment 2), and the effect of transitions is not driven by primacy or recency effects (Experiment 3). Finally, we found that participants primarily use the direction in which variables change rather than the magnitude of the change for estimating causal strength (Experiments 4 and 5). Collectively, these studies provide evidence that people often use a simple yet effective heuristic for inferring causal strength from time series data. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Kılınç, Muhammed; Yıldırım, Sibel A.; Tan, Ersin
2015-01-01
Objective: To evaluate and compare the effects of exercise therapy and electrical stimulation on muscle strength and functional activities in patients with limb-girdle muscular dystrophy (LGMD). Methods: This controlled clinical trial included 24 subjects who were diagnosed with LGMD by the Neurology Department of the Hacettepe University Hospital, Ankara, Turkey and were referred to the Physical Therapy Department between May 2013 and December 2014. Subjects were enrolled into an electrical stimulation (11 patients) group, or an exercise therapy (13 patients) group. Results: The mean age of patients was 31.62 years in the electrical stimulation group, and 30.14 years in the exercise therapy group. The most important results in this controlled clinical study were that the muscle strength in both groups was significantly decreased and post-treatment evaluation results indicated that muscle strength of the Deltoideus was higher in the electrical stimulation group, and the difference between the groups was maintained in the follow-up period (p<0.05). However, the muscle strength of quadriceps was similar in both groups, according to the post-treatment and follow-up evaluation results (p>0.05). Additionally, the electrical stimulation group presented more obvious overall improvements than the exercise therapy group according to muscle strength, endurance, and timed performance tests. Conclusions: Since no definitive treatments currently exist for patients with LGMD, these results provide important information on the role of exercise therapy and electrical stimulation for clinicians working in rehabilitation. PMID:26166595
Effect of Nb on microstructure and yield strength of a high temperature tempered martensitic steel
NASA Astrophysics Data System (ADS)
Wang, Qian; Sun, Yu; Zhang, Chuanyou; Wang, Qingfeng; Zhang, Fucheng
2018-04-01
Martensitic steels based on a composition of 25CrMo47NbVTi with different concentrations of Nb (0.003%–0.060%) were quenched (Q) at 900 °C and tempered (T) at 700 °C to obtain oil country tubular goods (OCTG) with higher yield strength. The precipitation and microstructures were characterized and quantified by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD). The results show that the increased Nb content led to an enhanced overall precipitation, the rising solution-precipitation temperature, the increased mass or volume fraction of the Nb-containing precipitates, and the decreased average diameter of Nb-containing particles. With the enhanced precipitation of small sized Nb-containing particles, the austenite grain and corresponding martensitic packet and block were evidently refined. In addition, the dislocation density increased slightly with increasing Nb addition. The yield strength was experimentally measured and quantitatively estimated. The findings based on theoretical calculations indicated that as a consequence of intensified strengthening from grain boundaries, precipitates and dislocations, the yield strength was enhanced significantly by Nb addition.
Nelson, Douglas L; Fisher, Serena L; Akirmak, Umit
2007-12-01
The extralist cued recall task simulates everyday reminding because a memory is encoded on the fly and retrieved later by an unexpected cue. Target words are studied individually, and recall is cued by associatively related words having preexisting forward links to them. In Experiments 1 and 2, forward cue-to-target and backward target-to-cue strengths were varied over an extended range in order to determine how these two sources of strength are related and which source has a greater effect. Forward and backward strengths had additive effects on recall, with forward strength having a consistently larger effect. The PIER2 model accurately predicted these findings, but a plausible generation-recognition version of the model, called PIER.GR, could not. In Experiment 3, forward and backward strengths, level of processing, and study time were varied in order to determine how preexisting lexical knowledge is related to knowledge acquired during the study episode. The main finding indicates that preexisting knowledge and episodic knowledge have additive effects on extralist cued recall. PIER2 can explain these findings because it assumes that these sources of strength contribute independently to recall, whereas the eSAM model cannot explain the findings because it assumes that the sources of strength are multiplicatively related.
Guo, Jie; Tang, Yinen; Xu, Zhenming
2010-07-15
A new kind of wood plastic composite (WPC) was produced by compounding nonmetals from waste printed circuit boards (PCBs), recycled high-density polyethylene (HDPE), wood flour and other additives. The blended granules were then extruded to profile WPC products by a conical counter-rotating twin-screw extruder. The results showed that the addition of nonmetals in WPC improved the flexural strength and tensile strength and reduced screw withdrawal strength. When the added content of nonmetals was 40%, the flexural strength of WPC was 23.4 MPa, tensile strength was 9.6 MPa, impact strength was 3.03 J/m(2) and screw withdrawal strength was 1755 N. Dimensional stability and fourier transform infrared spectroscopy (FTIR) of WPC panels were also investigated. Furthermore, thermogravimetric analysis showed that thermal degradation of WPC mainly included two steps. The first step was the decomposition of wood flour and nonmetals from 260 to 380 degrees C, and the second step was the decomposition of HDPE from 440 to 500 degrees C. The performance and thermal behavior of WPC produced by nonmetals from PCBs achieves the standard of WPC. It offers a novel method to treat nonmetals from PCBs. 2010 Elsevier B.V. All rights reserved.
de Bruijn, Gert-Jan
2010-02-01
The additive and interactive effect of habit strength in the explanation of young adults' fruit consumption was studied within the context of the theory of planned behaviour (TPB). Additionally, behavioural and control beliefs were modelled as predictors of profile membership based on current fruit consumption, motivation and habit strength towards fruit consumption. Cross-sectional data were available from undergraduate students (n=538; mean age=21.19; S.D.=2.57) who completed measures of fruit consumption, habit strength, TPB-concepts, and behavioural and control beliefs. Data were analyzed using stepwise regression analysis, simple slope analysis, and discriminant function analysis. Results showed that, based on a significant intention x habit interaction (beta=.13), the intention-fruit consumption relationship was more than twice as strong at low levels of habit strength (beta=.39) than at high levels of habit strength (beta=.16). Furthermore, beliefs regarding health and weight management were relatively unable to distinguish profiles created from motivation, habit strength and current fruit consumption. Rather, beliefs about controllability of fruit consumption were amongst the most consistent discriminating beliefs. Findings suggest that stronger fruit consumption habits make fruit consumption less intentional and that interventions aiming to increase fruit consumption may need to develop persuasive messages focusing on situational beliefs, rather than emphasizing health outcomes. 2009 Elsevier Ltd. All rights reserved.
Concurrent Training for Sports Performance: The Two Sides of the Medal.
Berryman, Nicolas; Mujika, Inigo; Bosquet, Laurent
2018-05-29
The classical work by Robert C. Hickson showed in 1980 that the addition of a resistance training protocol to a predominantly aerobic program could lead to impaired leg strength adaptations in comparison to a resistance-only training regimen. This interference phenomenon was later highlighted in many reports, including a meta-analysis. However, it seems that the interference effect has not been consistently reported, probably because of the complex interactions between training variables and methodological issues. On the other side of the medal, Dr Hickson and colleagues subsequently (1986) reported that a strength training mesocycle could be beneficial for endurance performance in running and cycling. In recent meta-analyses and review articles, it was demonstrated that such a training strategy could improve middle- and long-distance performance in many disciplines (running, cycling, cross-country skiing and swimming). Interestingly, it appears that improvements in the energy cost of locomotion could be associated with these performance enhancements. Despite these benefits, it was also reported that strength training could represent a detrimental stimulus for endurance performance if an inappropriate training plan has been prepared. Taken together, these observations suggest that coaches and athletes should be careful when concurrent training seems imperative in order to meet the complex physiological requirements of their sport. Therefore, this brief review will present a practical appraisal of concurrent training for sports performance. In addition, recommendations will be provided so that practitioners could adapt their interventions based on the training objectives.
Parameters of Concrete Modified with Glass Meal and Chalcedonite Dust
NASA Astrophysics Data System (ADS)
Kotwa, Anna
2017-10-01
Additives used for production of concrete mixtures affect the rheological properties and parameters of hardened concrete, including compressive strength, water resistance, durability and shrinkage of hardened concrete. By their application, the use of cement and production costs may be reduced. The scheduled program of laboratory tests included preparation of six batches of concrete mixtures with addition of glass meal and / or chalcedonite dust. Mineral dust is a waste product obtained from crushed aggregate mining, with grain size below 0,063μm. The main ingredient of chalcedonite dust is silica. Glass meal used in the study is a material with very fine grain size, less than 65μm. This particle size is present in 60% - 90% of the sample. Additives were used to replace cement in concrete mixes in an amount of 15% and 25%. The amount of aggregate was left unchanged. The study used Portland cement CEM I 42.5R. Concrete mixes were prepared with a constant rate w / s = 0.4. The aim of the study was to identify the effect of the addition of chalcedonite dust and / or glass meal on the parameters of hardened concrete, i.e. compressive strength, water absorption and capillarity. Additives used in the laboratory tests significantly affect the compressive strength. The largest decrease in compressive strength of concrete samples was recorded for samples with 50% substitutes of cement additives. This decrease is 34.35%. The smallest decrease in compressive strength was noted in concrete with the addition of 15% of chalcedonite dust or 15% glass meal, it amounts to an average of 15%. The study of absorption shows that all concrete with the addition of chalcedonite dust and glass meal gained a percentage weight increase between 2.7 ÷ 3.1% for the test batches. This is a very good result, which is probably due to grout sealing. In capillary action for the test batches, the percentage weight gains of samples ranges from 4.6% to 5.1%. However, the reference concrete obtained the lowest water absorption as compared to other batches.
Mechanical properties of {beta}-SiC pressureless sintered with Al{sub 2}O{sub 3} additions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulla, M.A.; Krstic, V.D.
1994-01-01
Mechanical properties of pressureless sintered SiC with Al{sub 2}O{sub 3}addition were measured. The increase in fracture toughness and strength is attributed to the presence of a liquid phase which results in the formation of platelets of an {alpha}-SiC. The highest values for flexural strength and toughness were measured on samples with {approximately}10%Al{sub 2}O{sub 3} addition. Pull out, crack bridging and crack deflection are identified as the major strengthening and toughening mechanisms.
NASA Astrophysics Data System (ADS)
Kumbhar, A. P.; Vyavahare, R. T.; Kulkarni, S. G.
2018-05-01
Aluminium alloy based metal matrix composites (AAMMC) are mainly used in sliding wear application, automobile, Aircraft and aerospace components, Marine fittings, Transport and other industry are becoming highly advantageous due to their excellent wear resistance, lighter weight, higher strength and durability. In this paper the effect of reinforcement percentage on vibration response and mechanical properties of metal matrix composite has been investigated. Composite material was prepared by varying Sic (0, 3, 6, and 9 wt. %) by stir casting method. Natural frequency, tensile strength, rockwell hardness and compressive strength were analyzed. The result shows that, addition of sic in aluminium matrix increases natural frequency, hardness, tensile strength, compressive strength and 9 wt. % showed maximum natural frequency, hardness, tensile strength, compressive strength.
Bell-Tolliver, LaVerne; Burgess, Ruby; Brock, Linda J
2009-07-01
With the exception of Hill's (1971, 1999) work, historically much of the literature on African American families has focused more on pathology than strengths. This study used interviews with 30 African American psychotherapists, self-identified as employing a strengths perspective with African American families, to investigate which strengths they identified in the families and how they use those strengths in therapy. Themes emerging from data analysis confirmed the continued importance of the five strengths Hill noted. In addition, two new strengths were identified by the participants: a willingness of a greater number of families to seek therapy, and the importance of family structure. Strategies used in engaging the families in therapy and practice implications for family therapists are discussed.
Tsanzi, Embedzayi; Light, Heather R; Tou, Janet C
2008-05-01
Consumption of sugar beverages has increased among adolescents. Additionally, the replacement of sucrose with high fructose corn syrup (HFCS) as the predominant sweetener has resulted in higher fructose intake. Few studies have investigated the effect of drinking different sugar-sweetened beverages on bone, despite suggestions that sugar consumption negatively impacts mineral balance. The objective of this study was to determine the effect of drinking different sugar-sweetened beverages on bone mass and strength. Adolescent (age 35d) female Sprague-Dawley rats were randomly assigned (n=8-9/group) to consume deionized distilled water (ddH2O, control) or ddH2O containing 13% w/v glucose, sucrose, fructose or high fructose corn syrup (HFCS-55) for 8weeks. Tibia and femur measurements included bone morphometry, bone turnover markers, determination of bone mineral density (BMD) and bone mineral content (BMC) by dual energy X-ray absorptiometry (DXA) and bone strength by three-point bending test. The effect of sugar-sweetened beverage consumption on mineral balance, urinary and fecal calcium (Ca) and phosphorus (P) was measured by inductively coupled plasma optical emission spectrometry. The results showed no difference in the bone mass or strength of rats drinking the glucose-sweetened beverage despite their having the lowest food intake, but the highest beverage and caloric consumption. Only in comparisons among the rats provided sugar-sweetened beverage were femur and tibia BMD lower in rats drinking the glucose-sweetened beverage. Differences in bone and mineral measurements appeared most pronounced between rats drinking glucose versus fructose-sweetened beverages. Rats provided the glucose-sweetened beverage had reduced femur and tibia total P, reduced P and Ca intake and increased urinary Ca excretion compared to the rats provided the fructose-sweetened beverage. The results suggested that glucose rather than fructose exerted more deleterious effects on mineral balance and bone.
Effects of waste glass additions on quality of textile sludge-based bricks.
Rahman, Ari; Urabe, Takeo; Kishimoto, Naoyuki; Mizuhara, Shinji
2015-01-01
This research investigated the utilization of textile sludge as a substitute for clay in brick production. The addition of textile sludge to a brick specimen enhanced its pores, thus reducing the quality of the product. However, the addition of waste glass to brick production materials improved the quality of the brick in terms of both compressive strength and water absorption. Maximum compressive strength was observed with the following composition of waste materials: 30% textile sludge, 60% clay and 10% waste glass. The melting of waste glass clogged up pores on the brick, which improved water absorption performance and compressive strength. Moreover, a leaching test on a sludge-based brick to which 10% waste glass did not detect significant heavy metal compounds in leachates, with the product being in conformance with standard regulations. The recycling of textile sludge for brick production, when combined with waste glass additions, may thus be promising in terms of both product quality and environmental aspects.
Development in high-grade dual phase steels with low C and Si design
NASA Astrophysics Data System (ADS)
Zhu, Guo-hui; Zhang, Xue-hui; Mao, Wei-min
2009-12-01
Cold rolled dual phase steels with low C and Si addition were investigated in terms of combination of composition and processing in order to improve mechanical properties and workability including welding and galvanizing. Mo and Cr could be used as alloying elements to partially replace C and Si to assure enough hardening ability of the steels and also give solute-hardening. Mo addition is more effective than Cr addition in terms of obtaining the required volume fraction of martensite and mechanical strength. The ferrite grain was effectively refined by addition of Nb microalloying, which gives optimized mechanical properties. The experimental results show that it is possible to obtain the required mechanical properties of high grade 800 MPa dual phase steel, i.e., tensile strength > 780 MPa, elongation > 15%, and yield/tensile strength ratio < 0.6 in the condition of low carbon (C < 0.11 wt.%) and low silicon design (Si < 0.05 wt.%) through adequate combination of composition and processing.
Hot-pressed silicon nitride with various lanthanide oxides as sintering additives
NASA Technical Reports Server (NTRS)
Ueno, K.; Toibana, Y.
1984-01-01
The effects of addition of various lanthanide oxides and their mixture with Y2O3 on the sintering of Si3N4 were investigated. The addition of simple and mixed lanthanide oxides promoted the densification of Si3N4 in hot-pressing at 1800 C under 300-400kg/ centimeters squared for 60 min. The crystallization of yttrium and lanthanide-silicon oxynitrides which was observed inn the sintered body containing yttrium-lanthanide mixed oxides as additives led to the formation of a highly refractory Si3N4 ceramic having a bending strength of 82 and 84 kg/millimeters squared at room temperature and 1300 C respectively. In a Y2O3+La2O3 system, a higher molar ratio of La2O3 to Y2O3 gave a higher hardness and strength at high temperatures. It was found that 90 min was an optimum sintering time for the highest strength.
Characteristics of ADC12/nano Al2O3composites with Addition of Ti Produced By Stir Casting Method
NASA Astrophysics Data System (ADS)
Zulfia, A.; Krisiphala; Ferdian, D.; Utomo, B. W.; Dhaneswara, D.
2018-03-01
The mechanical properties and microstructure of ADC12/nano Al2O3 matrix composites have been studied in this work. The composites were produced by stir casting method. ADC 12 as matrix composites was combined by Mg and Ti. The addition of Ti was varied from 0.02 to 0.08 wt-% as grain refinement wetting to improve mechanical properties such as tensile strength, hardness and wear resistance, while Mg addition was to promote wetting between ADC 12 and nano Al2O3. The optimum tensile strength was found at 0.04 wt-% addition of Ti with value of 132.5 MPa, further adding more Ti cause a poisoning mechanism that will hindered the grain refining process and reduce the tensile strength. The hardness and wear resistance of composites would also increase because of the refinement process. and the added Magnesium in the material that will form Mg2Si primary phases who have a high hardness value.
NASA Technical Reports Server (NTRS)
Bast, Callie C.; Boyce, Lola
1995-01-01
This report presents the results of both the fifth and sixth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA). The research included on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for five variables, namely, high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using an updated version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of high-cycle mechanical fatigue, creep and thermal fatigue was performed. Then using the current version of PROMISS, entitled PROMISS94, a second sensitivity study including the effect of low-cycle mechanical fatigue, as well as, the three previous effects was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of high-cycle mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.
2012-01-01
Background Women with cancer are significantly more likely to fall than women without cancer placing them at higher risk of fall-related fractures, other injuries and disability. Currently, no evidence-based fall prevention strategies exist that specifically target female cancer survivors. The purpose of the GET FIT (Group Exercise Training for Functional Improvement after Treatment) trial is to compare the efficacy of two distinct types of exercise, tai chi versus strength training, to prevent falls in women who have completed treatment for cancer. The specific aims of this study are to: 1) Determine and compare the efficacy of both tai chi training and strength training to reduce falls in older female cancer survivors, 2) Determine the mechanism(s) by which tai chi and strength training each reduces falls and, 3) Determine whether or not the benefits of each intervention last after structured training stops. Methods/Design We will conduct a three-group, single-blind, parallel design, randomized controlled trial in women, aged 50–75 years old, who have completed chemotherapy for cancer comparing 1) tai chi 2) strength training and 3) a placebo control group of seated stretching exercise. Women will participate in supervised study programs twice per week for six months and will be followed for an additional six months after formal training stops. The primary outcome in this study is falls, which will be prospectively tracked by monthly self-report. Secondary outcomes are maximal leg strength measured by isokinetic dynamometry, postural stability measured by computerized dynamic posturography and physical function measured by the Physical Performance Battery, all measured at baseline, 3, 6 and 12 months. The sample for this trial (N=429, assuming 25% attrition) will provide adequate statistical power to detect at least a 47% reduction in the fall rate over 1 year by being in either of the 2 exercise groups versus the control group. Discussion The GET FIT trial will provide important new knowledge about preventing falls using accessible and implementable exercise interventions for women following chemotherapy for cancer. ClinicalTrials.gov NCT01635413 PMID:23217054
Muzíková, J; Hájková, P; Vinklarová, S
2004-07-01
The paper studied the strength of compacts of dry binders consisting of powdered cellulose and directly compressible lactose. The powdered cellulose employed was Arbocel A300, the directly compressible lactose, Pharmatosa DCL 21. The first step of the evaluation comprised the tensile strength of compacts and sensitivity of dry binders alone to an addition of magnesium stearate. The same method of evaluation was then used for mixed dry binders from Arbocel A300 and Pharmatosa DCL 21 in ratios of 3:1, 1:1 and 1:3. The tested concentrations of magnesium stearate were 0.4 and 0.8%. Sensitivity of dry binders to an addition of the lubricant was evaluated by means of lubricant sensitivity ratio (LSR) values. The compacts with the highest strength and at the same time the lowest sensitivity to an addition of magnesium stearate were produced using a mixture of Arbocel A300 and Pharmatosa DCL 21 in a ratio of 1:3. The evaluation also included the commercially produced mixed dry binder Cellactosa 80, in which higher sensitivity to an addition of stearate than in a mixture of Arbocel A300 and Pharmatosa DCL 21 in a ratio of 1:3 was found.
NASA Technical Reports Server (NTRS)
Manning, C. R., Jr.; Honeycutt, L., III
1974-01-01
Evaluation of tantalum carbide-tungsten fiber composites has been completed as far as weight percent carbon additions and weight percent additions of tungsten fiber. Extensive studies were undertaken concerning Young's Modulus and fracture strength of this material. Also, in-depth analysis of the embrittling effects of the extra carbon additions on the tungsten fibers has been completed. The complete fabrication procedure for the tantalum carbide-tungsten fiber composites with extra carbon additions is given. Microprobe and metallographic studies showed the effect of extra carbon on the tungsten fibers, and evaluation of the thermal shock parameter fracture strength/Young's Modulus is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fifield, Leonard S.; Simmons, Kevin L.; Laddha, Sachin
2010-05-17
Plant-based bio-fiber has the potential to achieve weight and cost savings over glass fiber in automotive polymer composites if moisture stability and fiber-resin compatibility issues can be solved. This paper describes the compression molding of 50vol% 2 inch random nonwoven mat kenaf fiber vinyl ester composites with and without chemical resin additives intended to improve moisture stability and resin compatibility. The 2wt% addition of n-undecanoyl chloride or 10-undecenoyl chloride to the styrene-based resin prior to molding of the kenaf composites was observed to decrease the 24hr, 25oC moisture uptake of the molded panels by more than 50%. The tensile stiffnessmore » and flexural stiffness of the soaked panels containing these additives were seen to increase by more than 30% and 70%, respectively, relative to panels made with no additives. While ‘dry’ panel (50% relative humidity at 25oC) strengths did not significantly change in the presence of the additives, tensile strength was observed to increase by more than 40% and flexural strength more than doubled for the soaked panels.« less
Development of high strength ferritic steel for interconnect application in SOFCs
NASA Astrophysics Data System (ADS)
Froitzheim, J.; Meier, G. H.; Niewolak, L.; Ennis, P. J.; Hattendorf, H.; Singheiser, L.; Quadakkers, W. J.
High-Cr ferritic model steels containing various additions of the refractory elements Nb and/or W were studied with respect to oxidation behaviour (hot) tensile properties, creep behaviour and high-temperature electrical conductivity of the surface oxide scales. Whereas W additions of around 2 wt.% had hardly any effect on the oxidation rates at 800 and 900 °C, Nb additions of 1% led to a substantially enhanced growth rate of the protective surface oxide scale. It was found that this adverse effect can be alleviated by suitable Si additions. This is related to the incorporation of Si and Nb into Laves phase precipitates which also contribute to increased creep and hot tensile strength. The dispersion of Laves phase precipitates was greatly refined by combined additions of Nb and W. The high-temperature electrical conductivity of the surface oxide scales was similar to that of the Nb/W-free alloys. Thus the combined additions of Nb, W and Si resulted in an alloy with oxidation resistance, ASR contribution and thermal expansion comparable to the commercial alloy Crofer 22 APU, but with creep strength far greater than that of Crofer 22 APU.
Ultimate strength performance of tankers associated with industry corrosion addition practices
NASA Astrophysics Data System (ADS)
Kim, Do Kyun; Kim, Han Byul; Zhang, Xiaoming; Li, Chen Guang; Paik, Jeom Kee
2014-09-01
In the ship and offshore structure design, age-related problems such as corrosion damage, local denting, and fatigue damage are important factors to be considered in building a reliable structure as they have a significant influence on the residual structural capacity. In shipping, corrosion addition methods are widely adopted in structural design to prevent structural capacity degradation. The present study focuses on the historical trend of corrosion addition rules for ship structural design and investigates their effects on the ultimate strength performance such as hull girder and stiffened panel of double hull oil tankers. Three types of rules based on corrosion addition models, namely historic corrosion rules (pre-CSR), Common Structural Rules (CSR), and harmonised Common Structural Rules (CSRH) are considered and compared with two other corrosion models namely UGS model, suggested by the Union of Greek Shipowners (UGS), and Time-Dependent Corrosion Wastage Model (TDCWM). To identify the general trend in the effects of corrosion damage on the ultimate longitudinal strength performance, the corrosion addition rules are applied to four representative sizes of double hull oil tankers namely Panamax, Aframax, Suezmax, and VLCC. The results are helpful in understanding the trend of corrosion additions for tanker structures
Androulakis-Korakakis, Patroklos; Langdown, Louis; Lewis, Adam; Fisher, James P; Gentil, Paulo; Paoli, Antonio; Steele, James
2018-02-01
Androulakis-Korakakis, P, Langdown, L, Lewis, A, Fisher, JP, Gentil, P, Paoli, A, and Steele, J. Effects of exercise modality during additional "high-intensity interval training" on aerobic fitness and strength in powerlifting and strongman athletes. J Strength Cond Res 32(2): 450-457, 2018-Powerlifters and strongman athletes have a necessity for optimal levels of muscular strength while maintaining sufficient aerobic capacity to perform and recover between events. High-intensity interval training (HIIT) has been popularized for its efficacy in improving both aerobic fitness and strength but never assessed within the aforementioned population group. This study looked to compare the effect of exercise modality, e.g., a traditional aerobic mode (AM) and strength mode (SM), during HIIT on aerobic fitness and strength. Sixteen well resistance-trained male participants, currently competing in powerlifting and strongman events, completed 8 weeks of approximately effort- and volume-matched HIIT in 2 groups: AM (cycling, n = 8) and SM (resistance training, n = 8). Aerobic fitness was measured as predicted V[Combining Dot Above]O2max using the YMCA 3 minutes step test and strength as predicted 1 repetition maximum from a 4-6RM test using a leg extension. Both groups showed significant improvements in both strength and aerobic fitness. There was a significant between-group difference for aerobic fitness improvements favoring the AM group (p ≤ 0.05). There was no between-group difference for change in strength. Magnitude of change using within-group effect size for aerobic fitness and strength was considered large for each group (aerobic fitness, AM = 2.6, SM = 2.0; strength, AM = 1.9, SM = 1.9). In conclusion, our results support enhanced strength and aerobic fitness irrespective of exercise modality (e.g., traditional aerobic and resistance training). However, powerlifters and strongman athletes wishing to enhance their aerobic fitness should consider HIIT using an aerobic HIIT mode.
Weege, Bettina; Pham, Michael N; Shackelford, Todd K; Fink, Bernhard
2015-01-01
Physical strength provides information about male quality and can be assessed from facial and body morphology. Research on perception of dance movements indicates that body movement also provides information about male physical strength. These relationships have not been investigated for women. We investigated relationships of handgrip strength (HGS) and dance attractiveness perception in 75 men and 84 women. We identified positive relationships between HGS and opposite-sex assessments of dance attractiveness for men but not women. The replication of previous research investigating relationships between dance attractiveness and physical strength in men corroborates the hypothesis that dance movements provide information about male quality. We argue that these relationships are interpretable in contexts of inter- and intra-sexual selection. © 2015 Wiley Periodicals, Inc.
High-j neutron excitations outside 136Xe
NASA Astrophysics Data System (ADS)
Talwar, R.; Kay, B. P.; Mitchell, A. J.; Adachi, S.; Entwisle, J. P.; Fujita, Y.; Gey, G.; Noji, S.; Ong, H. J.; Schiffer, J. P.; Tamii, A.
2017-08-01
The ν 0 h9 /2 and ν 0 i13 /2 strength at 137Xe, a single neutron outside the N =82 shell closure, has been determined using the 136Xe(α ,3He)137Xe reaction carried out at 100 MeV. We confirm the recent observation of the second 13 /2+ state and reassess previous data on the 9 /2- states, obtaining spectroscopic factors. These new data provide additional constraints on predictions of the same single-neutron excitations at 133Sn.
1980-03-01
Construction ... ........... ... 71 7 FkAEC"IWAG FitAZbL~ai-am naJ" LIST OF ILLUSTRATIONS (CONT’D) Figure Page 2.26 Grid Point System for AN/TRC-145...systems consists of a basic shelter structure whose side walls are of sandwich construction with internal stiffeners. Channel extrusions along each...free edge of the shelter provide additional strength and stiffening. The shelters contain electronic equipment racks of open framework construction using
2016-10-01
reductions reported in average strength bNumber of reductions reported in full-time equivalents Note: DOD costs savings provided for the prior FY are...comparing costs from FY 2012 to FY 2017, and not each year in between. Further, officials stated that DOD did not include full- time equivalents ...Application FTE Full-time Equivalent NDAA National Defense Authorization Act This is a work of the U.S. government and is not subject to copyright
Mechanical performance of porous concrete pavement containing nano black rice husk ash
NASA Astrophysics Data System (ADS)
Ibrahim, M. Y. Mohd; Ramadhansyah, P. J.; Rosli, H. Mohd; Ibrahim, M. H. Wan
2018-01-01
This paper presents an experimental research on the performance of nano black rice husk ash on the porous concrete pavement properties. The performance of the porous concrete pavement mixtures was investigated based on their compressive strength, flexural strength, and splitting tensile strength. The results indicated that using nano material from black rice husk ash improved the mechanical properties of porous concrete pavement. In addition, the result of compressive, flexural, and splitting tensile strength was increased with increasing in curing age. Finally, porous concrete pavement with 10% replacement levels exhibited an excellent performance with good strength compared to others.
Sealing of cracks in cement using microencapsulated sodium silicate
NASA Astrophysics Data System (ADS)
Giannaros, P.; Kanellopoulos, A.; Al-Tabbaa, A.
2016-08-01
Cement-based materials possess an inherent autogenous self-healing capability allowing them to seal, and potentially heal, microcracks. This can be improved through the addition of microencapsulated healing agents for autonomic self-healing. The fundamental principle of this self-healing mechanism is that when cracks propagate in the cementitious matrix, they rupture the dispersed capsules and their content (cargo material) is released into the crack volume. Various healing agents have been explored in the literature for their efficacy to recover mechanical and durability properties in cementitious materials. In these materials, the healing agents are most commonly encapsulated in macrocontainers (e.g. glass tubes or capsules) and placed into the material. In this work, microencapsulated sodium silicate in both liquid and solid form was added to cement specimens. Sodium silicate reacts with the calcium hydroxide in hydrated cement paste to form calcium-silicate-hydrate gel that fills cracks. The effect of microcapsule addition on rheological and mechanical properties of cement is reported. It is observed that the microcapsule addition inhibits compressive strength development in cement and this is observed through a plateau in strength between 28 and 56 days. The improvement in crack-sealing for microcapsule-containing specimens is quantified through sorptivity measurements over a 28 day healing period. After just seven days, the addition of 4% microcapsules resulted in a reduction in sorptivity of up to 45% when compared to specimens without any microcapsule addition. A qualitative description of the reaction between the cargo material and the cementitious matrix is also provided using x-ray diffraction analysis.
Physico-chemical studies of hardened cement paste structure with micro-reinforcing fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steshenko, Aleksei, E-mail: steshenko.alexey@gmail.com; Kudyakov, Aleksander; Konusheva, Viktoriya
The results of physico-chemical studies of modified hardened cement paste with micro-reinforcing fibers are given in this article. The goal was to study the reasons of the increase of strength properties of modified hardened cement paste by the method of X-ray diffraction and electron microscopy. It is shown that the use of mineral fibers in the production of cement based material has positive effect on its properties. The study found out that the increase in the strength of the hardened cement paste with micro-reinforcing fibers is due to the increase of the rate of hydration of cement without a significantmore » change in the phase composition in comparison with hardened cement paste without additive. The results of microstructure investigation (of control samples and samples of the reinforced hardened cement paste) have shown that introduction of mineral fibers in the amount of 0.1-2 % by weight of cement provides the structure of the homogeneous microporous material with uniform distribution of the crystalline phase provided by densely packed hydrates.« less
Yousefi, Hossein; Azad, Sona; Mashkour, Mahdi; Khazaeian, Abolghasem
2018-05-01
A cellulose nanofiber board (CNF-board) with a nominal thickness of 3 mm was fabricated without adhesive or additive. To provide comparison, a cellulose fiber board (CF-board) was also fabricated. A novel cold pre-press apparatus was made to dewater highly absorbent CNF gel prior to drying. A mild drying condition in the vacuum oven at 70 °C and 0.005 MPa was enough to provide the CNF-board with a density of 1.3 g/cm 3 thanks to its self-densification capability. Unlike the CF-board, the fabricated CNF-board had a high water-activated dimensional recovery ratio (averagely 96%) during the five cyclic wetting-drying process. The flexural and tensile strengths of CNF-board obtained were 162 MPa and 85 MPa, respectively. The corresponding values for CF-board were 28 MPa and 11 MPa, respectively. The specific flexural and tensile strengths of CNF-board obtained were higher than those of CF-board as well as some other traditional wood-based composites, polymers and structural ASTM A36 steel. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nano-sized Superlattice Clusters Created by Oxygen Ordering in Mechanically Alloyed Fe Alloys
NASA Astrophysics Data System (ADS)
Hu, Yong-Jie; Li, Jing; Darling, Kristopher A.; Wang, William Y.; Vanleeuwen, Brian K.; Liu, Xuan L.; Kecskes, Laszlo J.; Dickey, Elizabeth C.; Liu, Zi-Kui
2015-07-01
Creating and maintaining precipitates coherent with the host matrix, under service conditions is one of the most effective approaches for successful development of alloys for high temperature applications; prominent examples include Ni- and Co-based superalloys and Al alloys. While ferritic alloys are among the most important structural engineering alloys in our society, no reliable coherent precipitates stable at high temperatures have been found for these alloys. Here we report discovery of a new, nano-sized superlattice (NSS) phase in ball-milled Fe alloys, which maintains coherency with the BCC matrix up to at least 913 °C. Different from other precipitates in ferritic alloys, this NSS phase is created by oxygen-ordering in the BCC Fe matrix. It is proposed that this phase has a chemistry of Fe3O and a D03 crystal structure and becomes more stable with the addition of Zr. These nano-sized coherent precipitates effectively double the strength of the BCC matrix above that provided by grain size reduction alone. This discovery provides a new opportunity for developing high-strength ferritic alloys for high temperature applications.
NASA Astrophysics Data System (ADS)
De Mey, K.; Clays, K.; Therien, Michael J.; Beratan, David N.; Asselberghs, Inge
2010-08-01
Successfully predicting the frequency dispersion of electronic hyperpolarizabilities is an unresolved challenge in materials science and electronic structure theory. It has been shown1 that the generalized Thomas-Kuhn sum rules combined with linear absorption data and measured hyperpolarizabilities at one or two frequencies, may be used to predict the entire frequency-dependent electronic hyperpolarizability spectrum. This treatment includes two- and threelevel contributions that arise from the lowest two or three excited state manifolds, enabling us to describe the unusual observed frequency dispersion of the dynamic hyperpolarizability in high oscillator strength M-PZn chromophores, where (porphinato)zinc(II) (PZn) and metal(II)polypyridyl (M) units are connected via an ethyne unit that aligns the high oscillator strength transition dipoles of these components in a head-to-tail arrangement. Importantly, this approach provides a quantitative scheme to use linear optical absorption spectra and very few individual hyperpolarizability values to predict the entire frequency-dependent nonlinear optical response. In addition we provide here experimental dynamic hyperpolarizability values determined by hyper-Rayleigh scattering that underscore the validity of our approach.
Quantifying yield behaviour in metals by X-ray nanotomography
Mostafavi, M.; Bradley, R.; Armstrong, D. E. J.; Marrow, T. J.
2016-01-01
Nanoindentation of engineering materials is commonly used to study, at small length scales, the continuum mechanical properties of elastic modulus and yield strength. However, it is difficult to measure strain hardening via nanoindentation. Strain hardening, which describes the increase in strength with plastic deformation, affects fracture toughness and ductility, and is an important engineering material property. The problem is that the load-displacement data of a single nanoindentation do not provide a unique solution for the material’s plastic properties, which can be described by its stress-strain behaviour. Three-dimensional mapping of the displacement field beneath the indentation provides additional information that can overcome this difficulty. We have applied digital volume correlation of X-ray nano-tomographs of a nanoindentation to measure the sub-surface displacement field and so obtain the plastic properties of a nano-structured oxide dispersion strengthened steel. This steel has potential applications in advanced nuclear energy systems, and this novel method could characterise samples where proton irradiation of the surface simulates the effects of fast neutron damage, since facilities do not yet exist that can replicate this damage in bulk materials. PMID:27698472
Micronutrients in parenteral nutrition: boron, silicon, and fluoride.
Nielsen, Forrest H
2009-11-01
Boron may be beneficial for bone growth and maintenance, central nervous system function, and the inflammatory response, and silicon may be beneficial for bone maintenance and wound healing. Fluoride is not an essential element but amounts provided by contamination may be beneficial for bone strength. Fluoride toxicity may be a concern in parenteral nutrition. Further studies are warranted to determine whether there are optimal amounts of boron and silicon that should be delivered to typical and special population patients receiving parenteral nutrition. In addition, further studies are needed to determine whether providing the dietary guideline of adequate intake amounts of fluoride parenterally would prevent or treat parenteral nutrition osteopenia.
Polyimides containing carbonyl and ether connecting groups - II
NASA Technical Reports Server (NTRS)
Hergenrother, P. M.; Havens, S. J.
1989-01-01
In a study of polyimides containing carbonyl and ether connecting groups between aromatic rings, several new polyimides were prepared and characterized. A few of these polymers were semicrystalline. Glass transition temperatures ranged from 164 to 258 C, and crystalline melt temperatures were observed between 350 and 424 C. The semicrystalline polyimide from the reaction of 3.3',4,4'-benzophenonetetracarboxylic dianhydride and 1,3-bis(4-aminophenoxy-4'-benzoyl)benzene provided transparent orange films with excellent tensile properties, exceptional resistance to solvents and strong base, and high thermooxidative stability. In addition, this polyimide provided excellent adhesive strength for joining titanium (6Al-4V) to titanium.
Coal/rock interface detection by sensitized pick, part A
NASA Technical Reports Server (NTRS)
Wu, P. T. K.; Erkes, J. W.
1981-01-01
In order to increase the operating margins of the detector for safe, reliable operation under difficult in-mine conditions the transmitted signal strength was increased to provide additional signal margin for in-mine conditions and the transmitter section was redesigned to reduce frequency pulling of the transmitter frequency with variations in antenna load. The linearity of the pick load SCO signal with true pick load was increased, and hysteresis effects were minimized. The sensitized pick hardware was ruggedized for rough inmine use. The sensitized pick and telemetry system provided excellent, high quality signals proportional to cutting load under all conditions experienced during testing.
Arefi, Mohammad Reza; Rezaei-Zarchi, Saeed
2012-01-01
In the present study, the mechanical properties of self-compacting concrete were investigated after the addition of different amounts of ZnO nanoparticles. The zinc oxide nanoparticles, with an average particle size of about 30 nm, were synthesized and their properties studied with the help of a scanning electron microscope (SEM) and X-ray diffraction. The prepared nanoparticles were partially added to self-compacting concrete at different concentrations (0.05, 0.1, 0.2, 0.5 and 1.0%), and the mechanical (flexural and split tensile) strength of the specimens measured after 7, 14, 21 and 28 days, respectively. The present results have shown that the ZnO nanoparticles were able to improve the flexural strength of self-compacting concrete. The increased ZnO content of more than 0.2% could increase the flexural strength, and the maximum flexural and split tensile strength was observed after the addition of 0.5% nanoparticles. Finally, ZnO nanoparticles could improve the pore structure of the self-compacted concrete and shift the distributed pores to harmless and less-harmful pores, while increasing mechanical strength. PMID:22605981
Arefi, Mohammad Reza; Rezaei-Zarchi, Saeed
2012-01-01
In the present study, the mechanical properties of self-compacting concrete were investigated after the addition of different amounts of ZnO nanoparticles. The zinc oxide nanoparticles, with an average particle size of about 30 nm, were synthesized and their properties studied with the help of a scanning electron microscope (SEM) and X-ray diffraction. The prepared nanoparticles were partially added to self-compacting concrete at different concentrations (0.05, 0.1, 0.2, 0.5 and 1.0%), and the mechanical (flexural and split tensile) strength of the specimens measured after 7, 14, 21 and 28 days, respectively. The present results have shown that the ZnO nanoparticles were able to improve the flexural strength of self-compacting concrete. The increased ZnO content of more than 0.2% could increase the flexural strength, and the maximum flexural and split tensile strength was observed after the addition of 0.5% nanoparticles. Finally, ZnO nanoparticles could improve the pore structure of the self-compacted concrete and shift the distributed pores to harmless and less-harmful pores, while increasing mechanical strength.
Behr, Sebastian; Jungblut, Laura; Swain, Michael V; Schneider, Gerold A
2016-10-12
The common tensile lap-shear test for adhesive joints is inappropriate for brittle substrates such as glasses or ceramics where stress intensifications due to clamping and additional bending moments invalidate results. Nevertheless, bonding of glasses and ceramics is still important in display applications for electronics, in safety glass and ballistic armor, for dental braces and restoratives, or in recently developed bioinspired composites. To mechanically characterize adhesive bondings in these fields nonetheless, a novel approach based on the so-called Schwickerath test for dental sintered joints is used. This new method not only matches data from conventional analysis but also uniquely combines the accurate determination of interfacial shear strength and toughness in one simple test. The approach is verified for sapphire-epoxy joints that are of interest for bioinspired composites. For these, the procedure not only provides quantitative interfacial properties for the first time, it also exemplarily suggests annealing of sapphire at 1000 °C for 10 h for mechanically and economically effective improvements of the interfacial bond strength and toughness. With increases of strength and toughness from approximately 8 to 29 MPa and from 2.6 to 35 J/m 2 , respectively, this thermal modification drastically enhances the properties of unmodified sapphire-epoxy interfaces. At the same time, it is much more convenient than wet-chemical approaches such as silanization. Hence, besides the introduction of a new testing procedure for adhesive joints of brittle or expensive substrates, a new and facile annealing process for improvements of the adhesive properties of sapphire is suggested and quantitative data for the mechanical properties of sapphire-epoxy interfaces that are common in synthetic nacre-inspired composites are provided for the first time.
Hammami, Raouf; Granacher, Urs; Makhlouf, Issam; Behm, David G; Chaouachi, Anis
2016-12-01
Hammami, R, Granacher, U, Makhlouf, I, Behm, DG, and Chaouachi, A. Sequencing effects of balance and plyometric training on physical performance in youth soccer athletes. J Strength Cond Res 30(12): 3278-3289, 2016-Balance training may have a preconditioning effect on subsequent power training with youth. There are no studies examining whether the sequencing of balance and plyometric training has additional training benefits. The objective was to examine the effect of sequencing balance and plyometric training on the performance of 12- to 13-year-old athletes. Twenty-four young elite soccer players trained twice per week for 8 weeks either with an initial 4 weeks of balance training followed by 4 weeks of plyometric training (BPT) or 4 weeks of plyometric training proceeded by 4 weeks of balance training (PBT). Testing was conducted pre- and posttraining and included medicine ball throw; horizontal and vertical jumps; reactive strength; leg stiffness; agility; 10-, 20-, and 30-m sprints; Standing Stork balance test; and Y-Balance test. Results indicated that BPT provided significantly greater improvements with reactive strength index, absolute and relative leg stiffness, triple hop test, and a trend for the Y-Balance test (p = 0.054) compared with PBT. Although all other measures had similar changes for both groups, the average relative improvement for the BPT was 22.4% (d = 1.5) vs. 15.0% (d = 1.1) for the PBT. BPT effect sizes were greater with 8 of 13 measures. In conclusion, although either sequence of BPT or PBT improved jumping, hopping, sprint acceleration, and Standing Stork and Y-Balance, BPT initiated greater training improvements in reactive strength index, absolute and relative leg stiffness, triple hop test, and the Y-Balance test. BPT may provide either similar or superior performance enhancements compared with PBT.
Nanoindentation of Electropolished FeCrAl Alloy Welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jordan; Aydogan, Eda; Mara, Nathan Allan
The present report summarizes Berkovich nanoindentation modulus and hardness measurements on two candidate FeCrAl alloys (C35M and C37M) on as-received (AR) and welded samples. In addition, spherical nanoindentation stress-strain measurements were performed on individual grains to provide further information and demonstrate the applicability of these protocols to mechanically characterizing welds in FeCrAl alloys. The indentation results are compared against the reported tensile properties for these alloys to provide relationships between nanoindentation and tensile tests and insight into weldsoftening for these FeCrAl alloys. Hardness measurements revealed weld-softening for both alloys in good agreement with tensile test results. C35M showed a largermore » reduction in hardness at the weld center from the AR material compared to C37M; this is also consistent with tensile tests. In general, nanohardness was shown to be a good predictor of tensile yield strength and ultimate tensile stress for FeCrAl alloys. Spherical nanoindentation measurements revealed that the fusion zone (FZ) + heat affected zone (HAZ) has a very low defect density typical of well-annealed metals as indicated by the frequent pop-in events. Spherical nanoindentation yield strength, Berkovich hardness, and tensile yield strength measurements on the welded material all show that the C37M welded material has a higher strength than C35M welded material. From the comparison of nanoindentation and tensile tests, EBSD microstructure analysis, and information on the processing history, it can be deduced that the primary driver for weld-softening is a change in the defect structure at the grain-scale between the AR and welded material. These measurements serve as baseline data for utilizing nanoindentation for studying the effects of radiation damage on these alloys.« less
Comparison of Three Information Sources for Smoking Information in Electronic Health Records
Wang, Liwei; Ruan, Xiaoyang; Yang, Ping; Liu, Hongfang
2016-01-01
OBJECTIVE The primary aim was to compare independent and joint performance of retrieving smoking status through different sources, including narrative text processed by natural language processing (NLP), patient-provided information (PPI), and diagnosis codes (ie, International Classification of Diseases, Ninth Revision [ICD-9]). We also compared the performance of retrieving smoking strength information (ie, heavy/light smoker) from narrative text and PPI. MATERIALS AND METHODS Our study leveraged an existing lung cancer cohort for smoking status, amount, and strength information, which was manually chart-reviewed. On the NLP side, smoking-related electronic medical record (EMR) data were retrieved first. A pattern-based smoking information extraction module was then implemented to extract smoking-related information. After that, heuristic rules were used to obtain smoking status-related information. Smoking information was also obtained from structured data sources based on diagnosis codes and PPI. Sensitivity, specificity, and accuracy were measured using patients with coverage (ie, the proportion of patients whose smoking status/strength can be effectively determined). RESULTS NLP alone has the best overall performance for smoking status extraction (patient coverage: 0.88; sensitivity: 0.97; specificity: 0.70; accuracy: 0.88); combining PPI with NLP further improved patient coverage to 0.96. ICD-9 does not provide additional improvement to NLP and its combination with PPI. For smoking strength, combining NLP with PPI has slight improvement over NLP alone. CONCLUSION These findings suggest that narrative text could serve as a more reliable and comprehensive source for obtaining smoking-related information than structured data sources. PPI, the readily available structured data, could be used as a complementary source for more comprehensive patient coverage. PMID:27980387
Magnetic-Field Density-Functional Theory (BDFT): Lessons from the Adiabatic Connection.
Reimann, Sarah; Borgoo, Alex; Tellgren, Erik I; Teale, Andrew M; Helgaker, Trygve
2017-09-12
We study the effects of magnetic fields in the context of magnetic field density-functional theory (BDFT), where the energy is a functional of the electron density ρ and the magnetic field B. We show that this approach is a worthwhile alternative to current-density functional theory (CDFT) and may provide a viable route to the study of many magnetic phenomena using density-functional theory (DFT). The relationship between BDFT and CDFT is developed and clarified within the framework of the four-way correspondence of saddle functions and their convex and concave parents in convex analysis. By decomposing the energy into its Kohn-Sham components, we demonstrate that the magnetizability is mainly determined by those energy components that are related to the density. For existing density functional approximations, this implies that, for the magnetizability, improvements of the density will be more beneficial than introducing a magnetic-field dependence in the correlation functional. However, once a good charge density is achieved, we show that high accuracy is likely only obtainable by including magnetic-field dependence. We demonstrate that adiabatic-connection (AC) curves at different field strengths resemble one another closely provided each curve is calculated at the equilibrium geometry of that field strength. In contrast, if all AC curves are calculated at the equilibrium geometry of the field-free system, then the curves change strongly with increasing field strength due to the increasing importance of static correlation. This holds also for density functional approximations, for which we demonstrate that the main error encountered in the presence of a field is already present at zero field strength, indicating that density-functional approximations may be applied to systems in strong fields, without the need to treat additional static correlation.
Forman-Hoffman, Valerie L; Middleton, Jennifer Cook; McKeeman, Joni L; Stambaugh, Leyla F; Christian, Robert B; Gaynes, Bradley N; Kane, Heather Lynne; Kahwati, Leila C; Lohr, Kathleen N; Viswanathan, Meera
2017-07-24
Some outcomes for children with mental health problems remain suboptimal because of poor access to care and the failure of systems and providers to adopt established quality improvement strategies and interventions with proven effectiveness. This review had three goals: (1) assess the effectiveness of quality improvement, implementation, and dissemination strategies intended to improve the mental health care of children and adolescents; (2) examine harms associated with these strategies; and (3) determine whether effectiveness or harms differ for subgroups based on system, organizational, practitioner, or patient characteristics. Sources included MEDLINE®, the Cochrane Library, PsycINFO, and CINAHL, from database inception through February 17, 2017. Additional sources included gray literature, additional studies from reference lists, and technical experts. Two reviewers selected relevant randomized controlled trials (RCTs) and observational studies, extracted data, and assessed risk of bias. Dual analysis, synthesis, and grading of the strength of evidence for each outcome followed for studies meeting inclusion criteria. We also used qualitative comparative analysis to examine relationships between combinations of strategy components and improvements in outcomes. We identified 18 strategies described in 19 studies. Eleven strategies significantly improved at least one measure of intermediate outcomes, final health outcomes, or resource use. Moderate strength of evidence (from one RCT) supported using provider financial incentives such as pay for performance to improve the competence with which practitioners can implement evidence-based practices (EBPs). We found inconsistent evidence involving strategies with educational meetings, materials, and outreach; programs appeared to be successful in combination with reminders or providing practitioners with newly collected clinical information. We also found low strength of evidence for no benefit for initiatives that included only educational materials or meetings (or both), or only educational materials and outreach components. Evidence was insufficient to draw conclusions on harms and moderators of interventions. Several strategies can improve both intermediate and final health outcomes and resource use. This complex and heterogeneous body of evidence does not permit us to have a high degree of confidence about the efficacy of any one strategy because we generally found only a single study testing each strategy. PROSPERO, CRD42015024759 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P.
Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functionalmore » applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNL’s unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNL’s expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNL’s Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials’ product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.« less
NASA Astrophysics Data System (ADS)
Nurzal; Nursyuhada, Aries
2017-12-01
This research aims based on SNI 03-0691-1996 to investigate the effect of coloring and compacting pressure with the addition of 5 wt.% fly ash (Fa) on compressive strength. Fa derived from waste material coal-fired Sijantang Sawahlunto thermal power plant. The growing production of Fa caused negative environmental impact. So, one of the solutions to overcome that effects is to use the Fa as a raw material for paving block mixture that can reduce the cost of raw material and increase its strength. Paving blocks are gray and red with 0 wt.%, 5 wt.% Fa + Pb composition. Compaction pressure variations 55, 65, 75, 85 and 95 Kg/cm2. The drying time for 35 days. Specimens were produced in the form of rectangular bar (length, L = 20 cm, width, B = 10 cm, thickness, W = 6 cm). The test results showed that the addition of 5 wt% FA has a compressive strength value higher than 0 wt%. The red color has a compressive strength lower than the gray color paving block caused the red color (Iron Oxide) is less binding at the time of mixing the material. Gray and red Paving blocks both increase in each additional compaction pressure, because the higher the compaction pressure will increase the bond between the particles so porosity is reduced increased compressive strength. The overall data, the gray paving block with the composition of 5 wt% FA at compaction pressure 95 kg/cm2 with the optimal compressive strength value of 36.1 MPa and the lowest value is found in the red color paving block at 0 wt% FA at a pressure of 55 kg/cm2 with a value of 6.5 MPa. Gray and red Color paving blocks has a compressive strength quality based on SNI 03-0691-1996.
NASA Astrophysics Data System (ADS)
Terrazas, Oscar R.
The demand for advanced high strength steels (AHSS) with higher strengths is increasing in the automotive industry. While there have been major improvements recently in the trade-off between ductility and strength, sheared-edge formability of AHSS remains a critical issue. AHSS sheets exhibit cracking during stamping and forming operations below the predictions of forming limits. It has become important to understand the correlation between microstructure and sheared edge formability. The present work investigates the effects of shearing conditions, microstructure, and tensile properties on sheared edge formability. Seven commercially produced steels with tensile strengths of 1000 +/- 100 MPa were evaluated: five dual-phase (DP) steels with different compositions and varying microstructural features, one trip aided bainitic ferrite (TBF) steel, and one press-hardened steel tempered to a tensile strength within the desired range. It was found that sheared edge formability is influenced by the martensite in DP steels. Quantitative stereology measurements provided results that showed martensite size and distribution affect hole expansion ratio (HER). The overall trend is that HER increases with more evenly dispersed martensite throughout the microstructure. This microstructure involves a combination of martensite size, contiguity, mean free distance, and number of colonies per unit area. Additionally, shear face characterization showed that the fracture and burr region affect HER. The HER decreases with increasing size of fracture and burr region. With a larger fracture and burr region more defects and/or micro-cracks will be present on the shear surface. This larger fracture region on the shear face facilitates cracking in sheared edge formability. Finally, the sheared edge formability is directly correlated to true fracture strain (TFS). The true fracture strain from tensile samples correlates to the HER values. HER increases with increasing true fracture strain.
Ercan, Sabriye; Çetin, Cem; Yavuz, Turhan; Demir, Hilmi M; Atalay, Yurdagül B
2018-05-01
Objective The aim of this study was to observe the change of the ankle joint range of motion, the muscle strength values measured with an isokinetic dynamometer, pain scores, quality of life scale, and venous return time in chronic venous insufficiency diagnosed patients by prospective follow-up after 12-week exercise program including isokinetic exercises. Methods The patient group of this study comprised 27 patients (23 female, 4 male) who were diagnosed with chronic venous insufficiency. An exercise program including isokinetic exercise for the calf muscle was given to patients three days per week for 12 weeks. At the end of 12 weeks, five of the patients left the study due to inadequate compliance with the exercise program. As a result, control data of 22 patients were included. Ankle joint range of active motion, isokinetic muscle strength, pain, quality of life, and photoplethysmography measurements were assessed before starting and after the exercise program. Results Evaluating changes of the starting and control data depending on time showed that all isokinetic muscle strength measurement parameters, range of motion, and overall quality of life values of patients improved. Venous return time values have also increased significantly ( p < 0.05). Conclusion In conclusion, increase in muscle strength has been provided with exercise therapy in patients with chronic venous insufficiency. It has been determined that the increase in muscle strength affected the venous pump and this ensured improvement in venous function and range of motion of the ankle. In addition, it has been detected that pain reduced and quality of life improved after the exercise program.
The Use of Additive Manufacturing for Fabrication of Multi-Function Small Satellite Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horais, Brian J; Love, Lonnie J; Dehoff, Ryan R
2013-01-01
The use of small satellites in constellations is limited only by the growing functionality of smallsats themselves. Additive manufacturing provides exciting new design opportunities for development of multifunction CubeSat structures that integrate such functions as propulsion and thermal control into the satellite structures themselves. Manufacturing of these complex multifunction structures is now possible in lightweight, high strength, materials such as titanium by using existing electron beam melting additive manufacturing processes. However, the use of today's additive manufacturing capabilities is often cost-prohibitive for small companies due to the large capital investments required. To alleviate this impediment the U.S. Department of Energymore » has established a Manufacturing Demonstration Facility (MDF) at their Oak Ridge National Laboratory (ORNL) in Tennessee that provides industry access to a broad range of energy-efficient additive manufacturing equipment for collaborative use by both small and large organizations. This paper presents a notional CubeSat multifunction design that integrates the propulsion system into a three-unit (3U) CubeSat structure. The full-scale structure has been designed and fabricated at the ORNL MDF. The use of additive manufacturing for spacecraft fabrication is opening up many new possibilities in design and fabrication capabilities for what had previously been impossible structures to fabricate.« less
Directionally solidified eutectic alloy gamma-beta
NASA Technical Reports Server (NTRS)
Tewari, S. N.
1977-01-01
A pseudobinary eutectic alloy composition was determined by a previously developed bleed-out technique. The directionally solidified eutectic alloy with a composition of Ni-37.4Fe-10.0Cr-9.6Al (in wt%) had tensile strengths decreasing from 1,090 MPa at room temperature to 54 MPa at 1,100 C. The low density, excellent microstructural stability, and oxidation resistance of the alloy during thermal cycling suggest that it might have applicability as a gas turbine vane alloy while its relatively low high temperature strength precludes its use as a blade alloy. A zirconium addition increased the 750 C strength, and a tungsten addition was ineffective. The gamma=beta eutectic alloys appeared to obey a normal freezing relation.
Flexible energetic materials and related methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heaps, Ronald J.
Energetic compositions and methods of forming components from the compositions are provided. In one embodiment, a composition includes aluminum, molybdenum trioxide, potassium perchlorate, and a binder. In one embodiment, the binder may include a silicone material. The materials may be mixed with a solvent, such as xylene, de-aired, shaped and cured to provide a self-supporting structure. In one embodiment, one or more reinforcement members may be added to provide additional strength to the structure. For example, a weave or mat of carbon fiber material may be added to the mixture prior to curing. In one embodiment, blade casting techniques maymore » be used to form a structure. In another embodiment, a structure may be formed using 3-dimensional printing techniques.« less
Proton donor acidity controls selectivity in nonaromatic nitrogen heterocycle synthesis.
Duttwyler, Simon; Chen, Shuming; Takase, Michael K; Wiberg, Kenneth B; Bergman, Robert G; Ellman, Jonathan A
2013-02-08
Piperidines are prevalent in natural products and pharmaceutical agents and are important synthetic targets for drug discovery and development. We report on a methodology that provides highly substituted piperidine derivatives with regiochemistry selectively tunable by varying the strength of acid used in the reaction. Readily available starting materials are first converted to dihydropyridines via a cascade reaction initiated by rhodium-catalyzed carbon-hydrogen bond activation. Subsequent divergent regio- and diastereoselective protonation of the dihydropyridines under either kinetic or thermodynamic control provides two distinct iminium ion intermediates that then undergo highly diastereoselective nucleophilic additions. X-ray structural characterization of both the kinetically and thermodynamically favored iminium ions along with density functional theory calculations provide a theoretical underpinning for the high selectivities achieved for the reaction sequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peralta, Pedro; Fortin, Elizabeth; Opie, Saul
Activities for this grant included: 1) Development of dynamic impact experiments to probe strength and phase transition influence on dynamic deformation, 2) development of modern strength and phase aware simulation capabilities, 3) and post-processing of experimental data with simulation and closed form analytical techniques. Two different dynamic experiments were developed to probe material strengths in solid metals (largely copper and iron in this effort). In the first experiment a flyer plate impacts a flat target with an opposite rippled surface that is partially supported by a weaker window material. Post mortem analysis of the target sample showed a strong andmore » repeatable residual plastic deformation dependence on grain orientation. Yield strengths for strain rates near 10 5 s -1 and plastic strains near ~50% were estimated to be around 180 to 240 MPa, varying in this range with grain orientation. Unfortunately dynamic real-time measurements were difficult with this setup due to diagnostic laser scattering; hence, an additional experimental setup was developed to complement these results. In the second set of experiments a rippled surface was ablated by a controlled laser pulsed, which launched a rippled shock front to an opposite initially flat diagnostic surface that was monitored in real-time with spatially resolved velocimetry techniques, e.g., line VISAR in addition to Transient Imaging Displacement Interferometry (TIDI) displacement measurements. This setup limited the displacements at the diagnostic surface to a reasonable level for TIDI measurements (~ less than one micrometer). These experiments coupled with analytical and numerical solutions provided evidence that viscous and elastic deviatoric strength affect shock front perturbation evolution in clearly different ways. Particularly, normalized shock front perturbation amplitudes evolve with viscosity (η) and perturbation wavelength (λ) as η/λ, such that increasing viscosity (or decreasing the initial wavelength) delays the perturbation decay. Conversely our experimental data, analysis and simulations show that for materials with elastic yield strength Y the normalized shock perturbation amplitude evolves with Yλ/A 0, which shows wavelength increases have the opposite effect as in viscous materials and perturbation decay is also dependent on initial amplitude A 0 (viscous materials are independent of this parameter). Materials where strength had clear strain rate dependence, e.g., such as a PTW material law, behaved similarly to materials with only an effective yield stress (elastic-perfectly plastic) in the shock front perturbation studies obeying a Y effλA 0 relationship where Y eff was a constant (near ~400 MPa for Cu for strain rates around 10 6 s -1). Magnitude changes in strain rate would increase Y eff as would be expected from the PTW behavior, but small perturbations (typical of regions behind the shock front) near a mean had little effect. Additional work based on simulations showed that phase transformation kinetics can affect the behavior of the perturbed shock front as well as the evolution of the RM-like instability that develops due to the imprint of the perturbed shock front on the initially flat surface as the shock breaks out.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaguchi, Nobuyoshi; Nakao, Masato; Murakami, Masahide
2008-07-08
For seismic design, ductility-related force modification factors are named R factor in Uniform Building Code of U.S, q factor in Euro Code 8 and Ds (inverse of R) factor in Japanese Building Code. These ductility-related force modification factors for each type of shear elements are appeared in those codes. Some constructions use various types of shear walls that have different ductility, especially for their retrofit or re-strengthening. In these cases, engineers puzzle the decision of force modification factors of the constructions. Solving this problem, new method to calculate lateral strengths of stories for simple shear wall systems is proposed andmore » named 'Stiffness--Potential Energy Addition Method' in this paper. This method uses two design lateral strengths for each type of shear walls in damage limit state and safety limit state. Two lateral strengths of stories in both limit states are calculated from these two design lateral strengths for each type of shear walls in both limit states. Calculated strengths have the same quality as values obtained by strength addition method using many steps of load-deformation data of shear walls. The new method to calculate ductility factors is also proposed in this paper. This method is based on the new method to calculate lateral strengths of stories. This method can solve the problem to obtain ductility factors of stories with shear walls of different ductility.« less
Taylor, Rachel M; Feltbower, Richard G; Aslam, Natasha; Raine, Rosalind; Whelan, Jeremy S; Gibson, Faith
2016-01-01
Objectives To provide international consensus on the competencies required by healthcare professionals in order to provide specialist care for teenagers and young adults (TYA) with cancer. Design Modified e-Delphi survey. Setting International, multicentre study. Participants Experts were defined as professionals having worked in TYA cancer care for more than 12 months. They were identified through publications and professional organisations. Methods Round 1, developed from a previous qualitative study, included 87 closed-ended questions with responses on a nine-point Likert scale and further open-ended responses to identify other skills, knowledge and attitudes. Round 2 contained only items with no consensus in round 1 and suggestions of additional items of competency. Consensus was defined as a median score ranging from 7 to 9 and strength of agreement using mean absolute deviation of the median. Results A total of 179 registered to be members of the expert panel; valid responses were available from 158 (88%) in round 1 and 136/158 (86%) in round 2. The majority of participants were nurses (35%) or doctors (39%) from Europe (55%) or North America (35%). All 87 items in round 1 reached consensus with an additional 15 items identified for round 2, which also reached consensus. The strength of agreement was mostly high for statements. The areas of competence rated most important were agreed to be: ‘Identify the impact of disease on young people's life’ (skill), ‘Know about side effects of treatment and how this might be different to those experienced by children or older adults’ (knowledge), ‘Honesty’ (attitude) and ‘Listen to young people's concerns’ (aspect of communication). Conclusions Given the high degree of consensus, this list of competencies should influence education curriculum, professional development and inform workforce planning. Variation in strength of agreement for some competencies between professional groups should be explored further in pursuit of effective multidisciplinary team working. PMID:27142859
Woods, Cindy; Carlisle, Karen; Larkins, Sarah; Thompson, Sandra Claire; Tsey, Komla; Matthews, Veronica; Bailie, Ross
2017-01-01
Continuous Quality Improvement is a process for raising the quality of primary health care (PHC) across Indigenous PHC services. In addition to clinical auditing using plan, do, study, and act cycles, engaging staff in a process of reflecting on systems to support quality care is vital. The One21seventy Systems Assessment Tool (SAT) supports staff to assess systems performance in terms of five key components. This study examines quantitative and qualitative SAT data from five high-improving Indigenous PHC services in northern Australia to understand the systems used to support quality care. High-improving services selected for the study were determined by calculating quality of care indices for Indigenous health services participating in the Audit and Best Practice in Chronic Disease National Research Partnership. Services that reported continuing high improvement in quality of care delivered across two or more audit tools in three or more audits were selected for the study. Precollected SAT data (from annual team SAT meetings) are presented longitudinally using radar plots for quantitative scores for each component, and content analysis is used to describe strengths and weaknesses of performance in each systems' component. High-improving services were able to demonstrate strong processes for assessing system performance and consistent improvement in systems to support quality care across components. Key strengths in the quality support systems included adequate and orientated workforce, appropriate health system supports, and engagement with other organizations and community, while the weaknesses included lack of service infrastructure, recruitment, retention, and support for staff and additional costs. Qualitative data revealed clear voices from health service staff expressing concerns with performance, and subsequent SAT data provided evidence of changes made to address concerns. Learning from the processes and strengths of high-improving services may be useful as we work with services striving to improve the quality of care provided in other areas.
The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength
NASA Technical Reports Server (NTRS)
Mesloh, Miranda; England, Scott; Benson, Elizabeth; Thompson, Shelby; Rajulu, Sudhakar
2010-01-01
The purpose of this study was to characterize hand strength, while wearing a Phase VI Extravehicular Activity (EVA) glove in an Extravehicular Mobility Unit (EMU) suit. Three types of data were collected: hand grip, lateral pinch, and pulp-2 pinch, wider three different conditions: bare-handed, gloved with no Thermal Micrometeoroid Garment (TMG), and glove with TMG. In addition, during the gloved conditions, subjects were tested when unpressurized and pressurized (43 psi). As a percentage of bare-hand strength, the TMG condition showed reduction in grip strength to 55% unpressurized and 46% pressurized. Without the TMG, grip strength increased to 66% unpressurized and 58% pressurized of bare-hand strength. For lateral pinch strength, the reduction in strength was the same for both pressure conditions and with and without the TMG, about 8.5% of bare-hand Pulp-2 pinch strength with no TMG showed an increase to 122% unpressurized and 115% pressurized of bare-hand strength. While wearing the TMG, pulp-2 pinch strength was 115% of bare-hand strength for both pressure conditions.
Dielectric properties of polyhedral oligomeric silsesquioxane (POSS)-based nanocomposites at 77k
NASA Astrophysics Data System (ADS)
Pan, Ming-Jen; Gorzkowski, Edward; McAllister, Kelly
2011-10-01
The goal of this study is to develop dielectric nanocomposites for high energy density applications at liquid nitrogen temperature by utilizing a unique nano-material polyhedral oligomeric silsesquioxanes (POSS). A POSS molecule is consisted of a silica cage core with 8 silicon and 12 oxygen atoms and organic functional groups attached to the corners of the cage. In this study, we utilize POSS for the fabrication of nanocomposites both as a silica nanoparticle filler to enhance the breakdown strength and as a surfactant for effective dispersion of high permittivity ceramic nanoparticles in a polymer matrix. The matrix materials selected for the study are polyvinylidene fluoride (PVDF) and poly(methyl methacrylate) (PMMA). The ceramic nanoparticles are barium strontium titanate (BST 50/50) and strontium titanate. The dielectric properties of the solution-cast nanocomposites films were correlated to the composition and processing conditions. We determined that the addition of POSS did not provide enhanced dielectric performance in PVDF- and PMMA-based materials at either room temperature or 77K. In addition, we found that the dielectric breakdown strength of PMMA is lower at 77K than at room temperature, contradicting literature data.
Nuclear spin-isospin excitations from covariant quasiparticle-vibration coupling
NASA Astrophysics Data System (ADS)
Robin, Caroline; Litvinova, Elena
2016-09-01
Methods based on the relativistic Lagrangian of quantum hadrodynamics and nuclear field theory provide a consistent framework for the description of nuclear excitations, naturally connecting the high- and medium-energy scales of mesons to the low-energy domain of nucleonic collective motion. Applied in the neutral channel, this approach has been quite successful in describing the overall transition strength up to high excitation energies, as well as fine details of the low-lying distribution. Recently, this method has been extended to the description of spin-isospin excitations in open-shell nuclei. In the charge-exchange channel, the coupling between nucleons and collective vibrations generates a time-dependent proton-neutron effective interaction, in addition to the static pion and rho-meson exchange, and introduces complex configurations that induce fragmentation and spreading of the resonances. Such effects have a great impact on the quenching of the strength and on the computing of weak reaction rates that are needed for astrophysics modeling. Gamow-Teller transitions in medium-mass nuclei and associated beta-decay half-lives will be presented. Further developments aiming to include additional ground-state correlations will also be discussed. This work is supported by US-NSF Grants PHY-1404343 and PHY-1204486.
R2NA: Received Signal Strength (RSS) Ratio-Based Node Authentication for Body Area Network
Wu, Yang; Wang, Kai; Sun, Yongmei; Ji, Yuefeng
2013-01-01
The body area network (BAN) is an emerging branch of wireless sensor networks for personalized applications. The services in BAN usually have a high requirement on security, especially for the medical diagnosis. One of the fundamental directions to ensure security in BAN is how to provide node authentication. Traditional research using cryptography relies on prior secrets shared among nodes, which leads to high resource cost. In addition, most existing non-cryptographic solutions exploit out-of-band (OOB) channels, but they need the help of additional hardware support or significant modifications to the system software. To avoid the above problems, this paper presents a proximity-based node authentication scheme, which only uses wireless modules equipped on sensors. With only one sensor and one control unit (CU) in BAN, we could detect a unique physical layer characteristic, namely, the difference between the received signal strength (RSS) measured on different devices in BAN. Through the above-mentioned particular difference, we can tell whether the sender is close enough to be legitimate. We validate our scheme through both theoretical analysis and experiments, which are conducted on the real Shimmer nodes. The results demonstrate that our proposed scheme has a good security performance.
NASA Astrophysics Data System (ADS)
Anne Zulfia, S.; Salshabia, Nadella; Dhaneswara, Donanta; Utomo, Budi Wahyu
2018-05-01
ADC12 reinforced nano SiC has been successfully produced by stir casting process. Nano SiC was added into ADC12 alloy varied from 0.05 to 0.3 vf-% while Al-5Ti-1B and Sr were kept constant at 0.04 and 0.02 wt-% respectively to all composites. Mg was added 10 wt% to improve reinforce's wettability. The addition of Al-5Ti-1B to the alloy was as grain refiner while Sr was added to modify Mg2Si. All composites were characterized both microstructures analysis and mechanical properties include tensile strength, hardness, wear rate, impact strength, and porosity. The highest properties of composites was obtained at 0.3 vf-% nano SiC addition with UTS of 155.4 MPa, hardness of 46.16 HRB, impact strength of 0.22 J/mm2, and wear rate of 1.71 × 10-5 mm3/m. Tensile strength and hardness increased as grain size and porosities decreased. The highest wear resistance was investigated on the composition with the highest hardness. Impact strength decreased due to increasing volume fraction of nano-SiC. The phases present in microsturucture was dominantly Mg2Si which also affected mechanical properties of these composites.
NASA Astrophysics Data System (ADS)
Saputra, Asep Handaya; Sungkar, Faraj
2017-11-01
Epoxy has a wide range of applications in many sectors, but it still has deficiency in fire retardancy. Therefore, it is combined with fire retardant additives. Fire retardant additive commonly contains halogen compounds that causes environmental and health problems. Therefore Al (OH)3 additive is used to improve the fire retardancy properties of composite through decomposition that produced water vapour and formation of oxide layer on its surface. In this research, synthesis of fire retardant composite has been conducted by varying filler carbon black and silica (1%, 2.5%, 5%, 7.5%, 10%wt) with composition of Al (OH)3 50%wt and epoxy 50%wt. Fire retardancy of composite was observed by UL-94V standard, while thermal degradation behaviour of composite was analyzed by thermal gravimetric analysis and differential scanning calorimetry. Whereas, mechanical properties was studied based on its tensile strength and hardness. It was found that the best concentration for carbon black and silica is 1%wt and 2.5%wt respectively. The addition of carbon black 1%wt and silica 2.5%wt could improve the flame retardancy and gives V-0 flammability rating. Besides that, the addition of carbon black 1%wt is able to increase the thermal stability of composite by reducing mass loss rate until 10.75%/minute and total mass loss until 53.76%. While adding silica 2.5%wt could also enhance its thermal stability by decreasing mass loss rate until 9.32%/minute and total mass loss until 51.06%. Furthermore, the addition of carbon black and silica could decrease its tensile strength and hardness. The addition of carbon black 1%wt yields composite with 6.59 MPa for tensile strength and 65.8 shore D for hardness. Whereas the addition of of silica 2.5%wt produces composite with the tensile strength up to 9.89MPa and hardness up to71.2 shore D.
ERIC Educational Resources Information Center
Murphy, Patricia Marie
2009-01-01
The purpose of this qualitative study was to determine Texas Public School counselors' perceptions of family strengths in Hurricane Katrina African American evacuee children and adolescents and in their families. An additional purpose of this study was to determine how these counselors may have called upon these perceived strengths to intervene in…
Rafiq, Rachida; Prins, Hendrik J; Boersma, Wim G; Daniels, Johannes Ma; den Heijer, Martin; Lips, Paul; de Jongh, Renate T
2017-01-01
Although vitamin D is well known for its function in calcium homeostasis and bone mineralization, several studies have shown positive effects on muscle strength and physical function. In addition, vitamin D has been associated with pulmonary function and the incidence of airway infections. As vitamin D deficiency is highly prevalent in chronic obstructive pulmonary disease (COPD) patients, supplementation might have a beneficial effect in these patients. To assess the effect of vitamin D supplementation on respiratory muscle strength and physical performance in vitamin D-deficient COPD patients. Secondary outcomes are pulmonary function, handgrip strength, exacerbation rate, and quality of life. We performed a randomized, double-blind, placebo-controlled pilot trial. Participants were randomly allocated to receive 1,200 IU vitamin D3 per day (n=24) or placebo (n=26) during 6 months. Study visits were conducted at baseline, and at 3 and 6 months after randomization. During the visits, blood was collected, respiratory muscle strength was measured (maximum inspiratory and expiratory pressure), physical performance and 6-minute walking tests were performed, and handgrip strength and pulmonary function were assessed. In addition, participants kept a diary card in which they registered respiratory symptoms. At baseline, the mean (standard deviation [SD]) serum 25-hydroxyvitamin D (25(OH)D) concentration (nmol/L) was 42.3 (15.2) in the vitamin D group and 40.6 (17.0) in the placebo group. Participants with vitamin D supplementation had a larger increase in serum 25(OH)D compared to the placebo group after 6 months (mean difference (SD): +52.8 (29.8) vs +12.3 (25.1), P <0.001). Primary outcomes, respiratory muscle strength and physical performance, did not differ between the groups after 6 months. In addition, no differences were found in the 6-minute walking test results, handgrip strength, pulmonary function, exacerbation rate, or quality of life. Vitamin D supplementation did not affect (respiratory) muscle strength or physical performance in this pilot trial in vitamin D-deficient COPD patients.
Study of borehole probing methods to improve the ground characterization
NASA Astrophysics Data System (ADS)
Naeimipour, Ali
Collecting geological information allows for optimizing ground control measures in underground structures. This includes understanding of the joints and discontinuities and rock strength to develop rock mass classifications. An ideal approach to collect such information is through correlating the drilling data from the roofbolters to assess rock strength and void location and properties. The current instrumented roofbolters are capable of providing some information on these properties but not fully developed for accurate ground characterization. To enhance existing systems additional instrumentation and testing was conducted in laboratory and field conditions. However, to define the geology along the boreholes, the use of probing was deemed to be most efficient approach for locating joints and structures in the ground and evaluation of rock strength. Therefore, this research focuses on selection and evaluation of proper borehole probes that can offer a reliable assessment of rock mass structure and rock strength. In particular, attention was paid to borehole televiewer to characterize rock mass structures and joints and development of mechanical rock scratcher for determination of rock strength. Rock bolt boreholes are commonly drilled in the ribs and the roof of underground environments. They are often small (about 1.5 inches) and short (mostly 2-3 meter). Most of them are oriented upward and thus, mostly dry or perhaps wet but not filled with water. No suitable system is available for probing in such conditions to identify the voids/joints and specifically to measure rock strength for evaluation of rock mass and related optimization of ground support design. A preliminary scan of available borehole probes proved that the best options for evaluation of rock structure is through analysis of borehole images, captured by optical televiewers. Laboratory and field trials with showed that these systems can be used to facilitate measurement of the location, frequency and partially condition of discontinuities. Two of the more promising tools have been tested during this project, which are QL40OBI Optical TV and Slim Borehole Scanner (SBS) manufacture by ALT-Mount Sopris and DMT, respectively. The field experiment with QL40OBI showed that the images generated for downward and sub-horizontal boreholes are of good quality and can be used to evaluate the joint conditions. However, this device is not suitable for use inside the upward drillholes. The Slim Borehole Scanner (SBS) manufactured by DMT in Germany has the required features for borescoping the roofbolt holes. This includes the ease of operation and suitable geometry along with an unwrapped 360-degree picture of the borehole wall. This instrument was concluded to be the best option yet for obtaining images from boreholes with any arbitrary orientation. In addition, a new tool, called Rock Strength Borehole Probe (RSBP), was developed for estimation of the rock strength through scratching the rock surface in the borehole. This device is designed to be a light, flexible, quick, non-disruptive, and cost effective alternative to estimate the rock strength inside the boreholes in underground mines and tunnels. An extensive number of laboratory tests under variable conditions were conducted to develop equations to estimate the Uniaxial Compressive Strength (UCS) and Brazilian Tensile Strength (BTS) of the rock from measured cutting forces. In these experiments, 27 different rock types were tested by full scale scratch tests, including the cutting tests by a miniature disc. The results show a good correlation between the normal force and the compressive strength of sedimentary/metamorphic rock if the depth of scratch is known. No significant correlation was observed for igneous rocks, due to the impacts of grain size. Current studies show promising results for using RSBP. The laboratory and field tests proved the functionality of this tool. This probe is capable of entering boreholes of 45 mm (1¾ in) diameter in any direction and create a groove on the walls and by measurement of the location and cutting forces, estimate rock strength. Additional testing in various underground operations are needed for fine tune the operational features of this probe and make it more accurate. The combination of rock strength and joint conditions will allow for development of rock mass classification that could be used for 3D imaging of the ground conditions around an underground opening as well as hazard maps for the roof.
Characterization of silver nanoparticle-infused tissue adhesive for ophthalmic use.
Yee, William; Selvaduray, Guna; Hawkins, Benjamin
2015-03-01
In this work, we demonstrate the successful enhancement of breaking strength, adhesive strength, and antibacterial efficacy of ophthalmic tissue adhesive (2-octyl cyanoacrylate) by doping with silver nanoparticles, and investigate the effects of nanoparticle size and concentration. Recent work has shown that silver nanoparticles are a viable antibacterial additive to many compounds, but their efficacy in tissue adhesives was heretofore untested. Our results indicate that doping the adhesive with silver nanoparticles reduced bacterial growth by an order of magnitude or more; nanoparticle size and concentration had minimal influence in the range tested. Tensile breaking strength of polymerized adhesive samples and adhesive strength between a T-shaped support and excised porcine sclera were measured using a universal testing machine according to ASTM (formerly American Society for Testing and Materials) standard techniques. Both tests showed significant improvement with the addition of silver nanoparticles. The enhanced mechanical strength and antibacterial efficacy of the doped adhesive supports the use of tissue adhesives as a viable supplement or alternative to sutures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kishore, Vidya; Ajinjeru, Christine; Nycz, Andrzej; ...
2017-03-01
The Big Area Additive Manufacturing (BAAM) system can print structures on the order of several meters at high extrusion rates, thereby having the potential to significantly impact automotive, aerospace and energy sectors. The functional use of such parts, however, may be limited by mechanical anisotropy in which the strength of printed parts across successive layers in the build direction (z-direction) is significantly lower than the corresponding in-plane strength (x-y directions). This has been primarily attributed to poor bonding between printed layers as the lower layers cool below the glass transition temperature (Tg) before the next layer is deposited. Therefore, themore » potential of using infrared heating is considered for increasing the surface temperature of the printed layer just prior to deposition of new material to improve the interlayer strength of the components. This study found significant improvements in bond strength for the deposition of acrylonitrile butadiene styrene (ABS) reinforced with 20% chopped carbon fiber when the surface temperature of the substrate material was increased from below Tg to close to or above Tg using infrared heating.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishore, Vidya; Ajinjeru, Christine; Nycz, Andrzej
The Big Area Additive Manufacturing (BAAM) system can print structures on the order of several meters at high extrusion rates, thereby having the potential to significantly impact automotive, aerospace and energy sectors. The functional use of such parts, however, may be limited by mechanical anisotropy in which the strength of printed parts across successive layers in the build direction (z-direction) is significantly lower than the corresponding in-plane strength (x-y directions). This has been primarily attributed to poor bonding between printed layers as the lower layers cool below the glass transition temperature (Tg) before the next layer is deposited. Therefore, themore » potential of using infrared heating is considered for increasing the surface temperature of the printed layer just prior to deposition of new material to improve the interlayer strength of the components. This study found significant improvements in bond strength for the deposition of acrylonitrile butadiene styrene (ABS) reinforced with 20% chopped carbon fiber when the surface temperature of the substrate material was increased from below Tg to close to or above Tg using infrared heating.« less
Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Wu, Hao-liang
2016-02-01
This study presents a systematic investigation of effects of carbonation on the contaminant leachability and unconfined compressive strength of KMP stabilized contaminated soils. A field soil spiked with Zn and Pb individually and together is stabilized using a new KMP additive under standard curing conditions and also with carbonation. The KMP additive is composed of oxalic acid-activated phosphate rock, monopotassium phosphate and reactive magnesia. The stabilized soils are tested for acid neutralization capacity, toxic characteristics leaching characteristics, contaminant speciation and unconfined compression strength. X-ray diffraction, scanning electron microscope and energy dispersive spectroscopy analyses are performed to assess reaction products. The results demonstrate that carbonation increases both acid buffer capacity index and unconfined compressive strength, but decreases leachability of KMP stabilized soils. These results are interpreted based on the changes in chemical speciation of Zn and Pb and also stability and solubility of the reaction products (metal phosphates and carbonates) formed in the soils. Overall, this study demonstrates that carbonation has positive effects on leachability and strength of the KMP stabilized soils. Copyright © 2015 Elsevier Ltd. All rights reserved.
Verbal messages strengthen bench press efficacy.
Wise, James B; Posner, Amy E; Walker, Gretchen L
2004-02-01
This study examined the effects of verbal messages on bench press efficacy: the confidence to lift progressively heavier weights for 1 repetition. Thirty-two women who had not bench pressed within the previous 18 months were assigned to 1 of 2 groups and exposed to 2 sources of efficacy information. First, subjects in both groups performed 10 repetitions on a fixed movement, vertical bench press machine and completed the bench press efficacy scale. Next, each group received 1 of 2 possible verbal messages. Both messages included the speaker's strength training qualifications. In addition, one message conveyed specific performance feedback while the other contained more general information. Then efficacy was measured again. Results indicated both messages strengthened efficacy. Strength professionals who work one-on-one with novice women should: (a) make sure lifters are aware of their professional qualifications, (b) provide specific feedback, and (c) profess their beliefs in the lifters' abilities to perform the exercises.
NASA Astrophysics Data System (ADS)
Sutarno, Soepriyanto, Syoni; Korda, Akhmad A.; Dirgantara, Tatacipta
2015-09-01
The physical mechanical properties of Al-7000 aluminium foam product and processing has been evaluated in this study. The characterization through the compressive testing refers to flatwise direction provided more confident result than edgewise direction. This experiment may correlate with formation of side products of calcia alumina and alumina silica that involved in metal mixture of aluminium foam. These compounds are formed from additional calcium carbonate and silica in the mixture. Calcium carbonate (CaCO3) roles as a blowing agent source of carbon dioxide (CO2). The formation of calcia alumina (CaO.Al2O3) may role to strengthen of cell wall of aluminium foam and to improve the viscosity of melting metal. The Al-7000 aluminium foam indicated a decrease of compressive strength probably due to existence of alumina silica (3Al2O3.SiO2) in the metal mixture.
Xiang, Shulin; Wang, Xiaojun; Gupta, Manoj; Wu, Kun; Hu, Xiaoshi; Zheng, Mingyi
2016-01-01
In this work, graphene nanoplatelets (GNPs) reinforced magnesium (Mg) matrix composites were synthesised using the multi-step dispersion route. Well-dispersed but inhomogeneously distributed GNPs were obtained in the matrix. Compared with the monolithic alloy, the nanocomposites exhibited dramatically enhanced Young’s modulus, yield strength and ultimate tensile strength and relatively high plasticity, which mainly attributed to the significant heterogeneous laminated microstructure induced by the addition of GNPs. With increasing of the concentration of GNPs, mechanical properties of the composites were gradually improved. Especially, the strengthening efficiency of all the composites exceeded 100%, which was significantly higher than that of carbon nanotubes reinforced Mg matrix composites. The grain refinement and load transfer provided by the two-dimensional and wrinkled surface structure of GNPs were the dominated strengthening mechanisms of the composites. This investigation develops a new method for incorporating GNPs in metals for fabricating high-performance composites. PMID:27941839
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Yao; Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714; Chu, Jin
2016-05-23
Graphene nanowalls (GNWs) were grown directly on carbon fibers using a chemical vapor deposition technique which is simple and catalyst-free. We found that there is very strong π-π stacking which is a benefit for the GNWs/carbon fiber interface. This single modified filament then was embedded into an epoxy matrix to be a single-fiber composite in which was formed a “tenon-mortise” structure. Such a “tenon-mortise” model provides a simple, stable, and powerful connection between carbon fiber and the epoxy matrix. In addition, it was demonstrated that the epoxy matrix can be well embedded into GNWs through a field emission scanning electronmore » microscope. The results of the single-fiber composite tests indicated that the interfacial strength of the composites was immensely improved by 173% compared to those specimens without GNWs.« less
NASA Astrophysics Data System (ADS)
Xiang, Shulin; Wang, Xiaojun; Gupta, Manoj; Wu, Kun; Hu, Xiaoshi; Zheng, Mingyi
2016-12-01
In this work, graphene nanoplatelets (GNPs) reinforced magnesium (Mg) matrix composites were synthesised using the multi-step dispersion route. Well-dispersed but inhomogeneously distributed GNPs were obtained in the matrix. Compared with the monolithic alloy, the nanocomposites exhibited dramatically enhanced Young’s modulus, yield strength and ultimate tensile strength and relatively high plasticity, which mainly attributed to the significant heterogeneous laminated microstructure induced by the addition of GNPs. With increasing of the concentration of GNPs, mechanical properties of the composites were gradually improved. Especially, the strengthening efficiency of all the composites exceeded 100%, which was significantly higher than that of carbon nanotubes reinforced Mg matrix composites. The grain refinement and load transfer provided by the two-dimensional and wrinkled surface structure of GNPs were the dominated strengthening mechanisms of the composites. This investigation develops a new method for incorporating GNPs in metals for fabricating high-performance composites.
Intrinsic paleointensity bias and the long-term history of the geodynamo.
Smirnov, Aleksey V; Kulakov, Evgeniy V; Foucher, Marine S; Bristol, Katie E
2017-02-01
Many geodynamo models predict an inverse relationship between geomagnetic reversal frequency and field strength. However, most of the absolute paleointensity data, obtained predominantly by the Thellier method from bulk volcanic rocks, fail to confirm this relationship. Although low paleointensities are commonly observed during periods of high reversal rate (notably, in the late Jurassic), higher than present-day intensity values are rare during periods of no or few reversals (superchrons). We have identified a fundamental mechanism that results in a pervasive and previously unrecognized low-field bias that affects most paleointensity data in the global database. Our results provide an explanation for the discordance between the experimental data and numerical models, and lend additional support to an inverse relationship between the reversal rate and field strength as a fundamental property of the geodynamo. We demonstrate that the accuracy of future paleointensity analyses can be improved by integration of the Thellier protocol with low-temperature demagnetizations.
Laboratory test for ice adhesion strength using commercial instrumentation.
Wang, Chenyu; Zhang, Wei; Siva, Adarsh; Tiea, Daniel; Wynne, Kenneth J
2014-01-21
A laboratory test method for evaluating ice adhesion has been developed employing a commercially available instrument normally used for dynamic mechanical analysis (TA RSA-III). This is the first laboratory ice adhesion test that does not require a custom-built apparatus. The upper grip range of ∼10 mm is an enabling feature that is essential for the test. The method involves removal of an ice cylinder from a polymer coating with a probe and the determination of peak removal force (Ps). To validate the test method, the strength of ice adhesion was determined for a prototypical glassy polymer, poly(methyl methacrylate). The distance of the probe from the PMMA surface has been identified as a critical variable for Ps. The new test provides a readily available platform for investigating fundamental surface characteristics affecting ice adhesion. In addition to the ice release test, PMMA coatings were characterized using DSC, DCA, and TM-AFM.
Intrinsic paleointensity bias and the long-term history of the geodynamo
Smirnov, Aleksey V.; Kulakov, Evgeniy V.; Foucher, Marine S.; Bristol, Katie E.
2017-01-01
Many geodynamo models predict an inverse relationship between geomagnetic reversal frequency and field strength. However, most of the absolute paleointensity data, obtained predominantly by the Thellier method from bulk volcanic rocks, fail to confirm this relationship. Although low paleointensities are commonly observed during periods of high reversal rate (notably, in the late Jurassic), higher than present-day intensity values are rare during periods of no or few reversals (superchrons). We have identified a fundamental mechanism that results in a pervasive and previously unrecognized low-field bias that affects most paleointensity data in the global database. Our results provide an explanation for the discordance between the experimental data and numerical models, and lend additional support to an inverse relationship between the reversal rate and field strength as a fundamental property of the geodynamo. We demonstrate that the accuracy of future paleointensity analyses can be improved by integration of the Thellier protocol with low-temperature demagnetizations. PMID:28246644
Hybrid Welding Possibilities of Thick Sections for Arctic Applications
NASA Astrophysics Data System (ADS)
Bunaziv, Ivan; Akselsen, Odd M.; Ren, Xiaobo; Salminen, Antti
The arctic shelf contains about 20% of all undiscovered hydrocarbons on our planet, therefore oil and gas industry requires advanced steels to be used which withstand appropriate fracture toughness up to -60 °C and suitable welding technologies. High brightness laser with combination with arc source can be appropriate joining process even for very high strength advanced steels above 700 MPa for low temperature applications. Hybrid welding has improved each year becoming more standardized and reliable welding process. However, until now, its application was limited to shipbuilding and pipeline industry. Due to many reasonable advantages, hybrid welding, especially when it is combined with MIG/MAG, can be used in every possible industry. Inherent filler wire addition from the MIG/MAG source can improve fracture toughness at lower temperatures and increase overall productivity. This paper provides information about recent breakthrough in hybrid welding of thick section high-strength steels.
NASA Astrophysics Data System (ADS)
Liang, Jing; Yu, Jian-xing; Yu, Yang; Lam, W.; Zhao, Yi-yu; Duan, Jing-hui
2016-06-01
Energy transfer ratio is the basic-factor affecting the level of pipe damage during the impact between dropped object and submarine pipe. For the purpose of studying energy transfer and damage mechanism of submarine pipe impacted by dropped objects, series of experiments are designed and carried out. The effective yield strength is deduced to make the quasi-static analysis more reliable, and the normal distribution of energy transfer ratio caused by lateral impact on pipes is presented by statistic analysis of experimental results based on the effective yield strength, which provides experimental and theoretical basis for the risk analysis of submarine pipe system impacted by dropped objects. Failure strains of pipe material are confirmed by comparing experimental results with finite element simulation. In addition, impact contact area and impact time are proved to be the major influence factors of energy transfer by sensitivity analysis of the finite element simulation.
Timing of Deglacial AMOC Variability From a High-Resolution Seawater Cadmium Reconstruction
NASA Astrophysics Data System (ADS)
Valley, Shannon; Lynch-Stieglitz, Jean; Marchitto, Thomas M.
2017-11-01
A new, high-resolution record of benthic seawater Cd (Cdw) was generated from a Florida Straits sediment core at 546 m water depth. The record provides additional evidence for Cdw below modern values in this channel during the Younger Dryas and Heinrich Stadial 1—climatological periods associated with ice sheet melt. Lower Cdw values are interpreted as a weakening of the Atlantic Meridional Overturning Circulation (AMOC), reflecting a decreased northward transport of southern sourced higher-nutrient intermediate waters by the surface return flow of AMOC. Comparison of this new Cdw record with previously published neodymium isotope and δ18O records from the same core shows synchronous transitions, further illustrating the connection between Cdw levels and AMOC strength in the Florida Straits. An increase in Cdw near 16 ka bolsters existing evidence for a resumption of upper branch AMOC strength approximately midway through Heinrich Stadial 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allmond, J. M.; Beausang, C. W.; Ross, T. J.
A segmented Si-telescope and HPGe array, STARS-LIBERACE, was used to study the 156Gd(p,t )154Gd direct reaction by particle- coincidence spectroscopy. New cross sections with a 25- MeV proton beam are reported and compared to previous (p,t) and (t,p) studies. Furthermore, additional evidence for coexisting K = 0+1 , 2+1 and 0+2 , 2+2 configurations at N = 90 is presented. Direct and indirect population patterns of the low-lying states are also explored. Review of the new and existing evidence fa- vors an interpretation based on a configuration-dependent pairing interaction. The weakening of monopole pairing strength and an increase in quadrupolemore » pairing strength could bring 2p-2h 0+ states below 2 . This may account for a large number of the low-lying 0+ states observed in two-nucleon transfer reactions. A hypothesis for the the origin of the 0+2 and 0+3 states is provided.« less
Evolution model with a cumulative feedback coupling
NASA Astrophysics Data System (ADS)
Trimper, Steffen; Zabrocki, Knud; Schulz, Michael
2002-05-01
The paper is concerned with a toy model that generalizes the standard Lotka-Volterra equation for a certain population by introducing a competition between instantaneous and accumulative, history-dependent nonlinear feedback the origin of which could be a contribution from any kind of mismanagement in the past. The results depend on the sign of that additional cumulative loss or gain term of strength λ. In case of a positive coupling the system offers a maximum gain achieved after a finite time but the population will die out in the long time limit. In this case the instantaneous loss term of strength u is irrelevant and the model exhibits an exact solution. In the opposite case λ<0 the time evolution of the system is terminated in a crash after ts provided u=0. This singularity after a finite time can be avoided if u≠0. The approach may well be of relevance for the qualitative understanding of more realistic descriptions.
Fiber laser welding of nickel based superalloy Inconel 625
NASA Astrophysics Data System (ADS)
Janicki, Damian M.
2013-01-01
The paper describes the application of single mode high power fiber laser (HPFL) for the welding of nickel based superalloy Inconel 625. Butt joints of Inconel 625 sheets 0,8 mm thick were laser welded without an additional material. The influence of laser welding parameters on weld quality and mechanical properties of test joints was studied. The quality and mechanical properties of the joints were determined by means of tensile and bending tests, and micro hardness tests, and also metallographic examinations. The results showed that a proper selection of laser welding parameters provides non-porous, fully-penetrated welds with the aspect ratio up to 2.0. The minimum heat input required to achieve full penetration butt welded joints with no defect was found to be 6 J/mm. The yield strength and ultimate tensile strength of the joints are essentially equivalent to that for the base material.
NASA Astrophysics Data System (ADS)
Zhang, Chong; Zha, Jun-Wei; Yan, Hong-Da; Li, Wei-Kang; Dang, Zhi-Min
2018-02-01
Polypropylene is one kind of eco-friendly insulating material, which has attracted more attention for use in high voltage direct current (HVDC) insulation due to the long-distance transmission, low loss, and recyclability. In this work, the morphology and thermal and electrical properties of the block polypropylene with various β-nucleating agent (β-NA) contents were investigated. The relative fraction of the β-crystal can reach 64.7% after adding 0.05 wt. % β-NA. The β-NA also greatly reduced the melting point and improved the crystallization temperature. The electrical property results showed that the alternating and direct current breakdown strength and conduction current were obviously improved. In addition, space charge accumulation was significantly suppressed by introducing the β-NA. This work provides an attractive strategy of design and fabrication of polypropylene for HVDC application.
Basso-Vanelli, Renata P; Di Lorenzo, Valéria A Pires; Labadessa, Ivana G; Regueiro, Eloisa M G; Jamami, Mauricio; Gomes, Evelim L F D; Costa, Dirceu
2016-01-01
Patients with COPD may experience respiratory muscle weakness. Two therapeutic approaches to the respiratory muscles are inspiratory muscle training and calisthenics-and-breathing exercises. The aims of the study are to compare the effects of inspiratory muscle training and calisthenics-and-breathing exercises associated with physical training in subjects with COPD as an additional benefit of strength and endurance of the inspiratory muscles, thoracoabdominal mobility, physical exercise capacity, and reduction in dyspnea on exertion. In addition, these gains were compared between subjects with and without respiratory muscle weakness. 25 subjects completed the study: 13 composed the inspiratory muscle training group, and 12 composed the calisthenics-and-breathing exercises group. Subjects were assessed before and after training by spirometry, measurements of respiratory muscle strength and test of inspiratory muscle endurance, thoracoabdominal excursion measurements, and the 6-min walk test. Moreover, scores for the Modified Medical Research Council dyspnea scale were reported. After intervention, there was a significant improvement in both groups of respiratory muscle strength and endurance, thoracoabdominal mobility, and walking distance in the 6-min walk test. Additionally, there was a decrease of dyspnea in the 6-min walk test peak. A difference was found between groups, with higher values of respiratory muscle strength and thoracoabdominal mobility and lower values of dyspnea in the 6-min walk test peak and the Modified Medical Research Council dyspnea scale in the inspiratory muscle training group. In the inspiratory muscle training group, subjects with respiratory muscle weakness had greater gains in inspiratory muscle strength and endurance. Both interventions increased exercise capacity and decreased dyspnea during physical effort. However, inspiratory muscle training was more effective in increasing inspiratory muscle strength and endurance, which could result in a decreased sensation of dyspnea. In addition, subjects with respiratory muscle weakness that performed inspiratory muscle training had higher gains in inspiratory muscle strength and endurance but not of dyspnea and submaximal exercise capacity. (ClinicalTrials.gov registration NCT01510041.). Copyright © 2016 by Daedalus Enterprises.
Properties of wastepaper sludge in geopolymer mortars for masonry applications.
Yan, Shiqin; Sagoe-Crentsil, Kwesi
2012-12-15
This paper presents the results of an investigation into the use of wastepaper sludge in geopolymer mortar systems for manufacturing construction products. The investigation was driven by the increasing demand for reuse options in paper-recycling industry. Both fresh and hardened geopolymer mortar properties are evaluated for samples incorporating dry wastepaper sludge, and the results indicate potential end-use benefits in building product manufacture. Addition of wastepaper sludge to geopolymer mortar reduces flow properties, primarily due to dry sludge absorbing water from the binder mix. The average 91-day compressive strength of mortar samples incorporating 2.5 wt% and 10 wt% wastepaper sludge respectively retained 92% and 52% of the reference mortar strength. However, contrary to the normal trend of increasing drying shrinkage with increasing paper sludge addition to Portland cement matrices, the corresponding geopolymer drying shrinkage decreased by 34% and 64%. Equally important, the water absorption of hardened geopolymer mortar decreased with increasing paper sludge content at ambient temperatures, providing good prospects of overall potential for wastepaper sludge incorporation in the production of building and masonry elements. The results indicate that, despite its high moisture absorbance due to the organic matter and residual cellulose fibre content, wastepaper sludge appears compatible with geopolymer chemistry, and hence serves as a potential supplementary additive to geopolymer cementitious masonry products. Copyright © 2012 Elsevier Ltd. All rights reserved.
Highly oriented carbon fiber–polymer composites via additive manufacturing
Tekinalp, Halil L.; Kunc, Vlastimil; Velez-Garcia, Gregorio M.; ...
2014-10-16
Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructuremore » and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. Furthermore, this phenomena is explained based on the changes in fiber orientation, dispersion and void formation.« less
ERIC Educational Resources Information Center
Niemiec, Ryan M.; Shogren, Karrie A.; Wehmeyer, Michael L.
2017-01-01
There has been limited focus in the disability field on assessing and intervening to promote strengths of character. However, character strengths have received significant attention in the broader field of positive psychology. This paper provides an overview of the growing science of character strengths and explores why and how character strengths…
Allahham, Ayman; Stewart, Peter J; Das, Shyamal C
2013-11-30
Influence of ternary, poorly water-soluble components on the agglomerate strength of cohesive indomethacin mixtures during dissolution was studied to explore the relationship between agglomerate strength and extent of de-agglomeration and dissolution of indomethacin (Ind). Dissolution profiles of Ind from 20% Ind-lactose binary mixtures, and ternary mixtures containing additional dibasic calcium phosphate (1% or 10%; DCP), calcium sulphate (10%) and talc (10%) were determined. Agglomerate strength distributions were estimated by Monte Carlo simulation of particle size, work of cohesion and packing fraction distributions. The agglomerate strength of Ind decreased from 1.19 MPa for the binary Ind mixture to 0.84 MPa for 1DCP:20Ind mixture and to 0.42 MPa for 1DCP:2Ind mixture. Both extent of de-agglomeration, demonstrated by the concentration of the dispersed indomethacin distribution, and extent of dispersion, demonstrated by the particle size of the dispersed indomethacin, were in descending order of 1DCP:2Ind>1DCP:20Ind>binary Ind. The addition of calcium sulphate dihydrate and talc also reduced the agglomerate strength and improved de-agglomeration and dispersion of indomethacin. While not definitively causal, the improved de-agglomeration and dispersion of a poorly water soluble drug by poorly water soluble components was related to the agglomerate strength of the cohesive matrix during dissolution. Copyright © 2013 Elsevier B.V. All rights reserved.
Fitness characteristics of a suburban special weapons and tactics team.
Pryor, Riana R; Colburn, Deanna; Crill, Matthew T; Hostler, David P; Suyama, J
2012-03-01
Special Weapons and Tactics (SWAT) operators are specialized law enforcement officers who traditionally perform their duties with higher anticipated workloads because of additional body armor, weapons, and equipment used for enhanced operations and protection. This elevated workload increases the need for SWAT operators to improve or maintain their physical fitness to consistently perform routine operations. Typical tasks require trunk rotation, overhead upper extremity use, upper and lower body strength use, and long waiting periods followed by explosive movements while wearing additional equipment. Eleven male SWAT operators from 1 SWAT team performed flexibility, strength, power, and aerobic capacity tests and a variety of job-related tasks. Data were compared with age- and gender-based normative data. Fitness testing revealed that officers ranked high on tests of muscular strength (leg strength, 90th percentile; bench press, 85th percentile); however, body composition (55th percentile), core body strength, and flexibility ranked lower. Furthermore, aerobic capacity and muscular power had a wide range of scores and were also not ideal to support maximal performance during routine operations. These data can assist exercise specialists choose fitness programs specifically for job-related tasks of SWAT operators when creating fitness programs. Fitness programming for law enforcement should focus on improving aerobic fitness, flexibility, core strength, and muscular power while maintaining muscular strength to meet the needs of these specialized officers.
Effect of light aging on silicone-resin bond strength in maxillofacial prostheses.
Polyzois, Gregory; Pantopoulos, Antonis; Papadopoulos, Triantafillos; Hatamleh, Muhanad
2015-04-01
The aim of this study was to investigate the effect of accelerated light aging on bond strength of a silicone elastomer to three types of denture resin. A total of 60 single lap joint specimens were fabricated with auto-, heat-, and photopolymerized (n = 20) resins. An addition-type silicone elastomer (Episil-E) was bonded to resins treated with the same primer (A330-G). Thirty specimens served as controls and were tested after 24 hours, and the remaining were aged under accelerated exposure to daylight for 546 hours (irradiance 765 W/m(2) ). Lap shear joint tests were performed to evaluate bond strength at 50 mm/min crosshead speed. Two-way ANOVA and Tukey's test were carried out to detect statistical significance (p < 0.05). ANOVA showed that the main effect of light aging was the most important factor determining the shear bond strength. The mean bond strength values ranged from 0.096 to 0.136 MPa. The highest values were recorded for auto- (0.131 MPa) and photopolymerized (0.136 MPa) resins after aging. Accelerated light aging for 546 hours affects the bond strength of an addition-type silicone elastomer to three different denture resins. The bond strength significantly increased after aging for photo- and autopolymerized resins. All the bonds failed adhesively. © 2014 by the American College of Prosthodontists.
Gutiérrez, M F; Malaquias, P; Matos, T P; Szesz, A; Souza, S; Bermudez, J; Reis, A; Loguercio, A D; Farago, P V
2017-03-01
To evaluate the effect of addition of copper nanoparticles (CN) at different concentrations into a two-step etch-and-rinse (2-ER) adhesive on antimicrobial activity (AMA), copper release (CR), ultimate tensile strength (UTS), degree of conversion (DC), water sorption (WS), solubility (SO), as well as the immediate (IM) and 1-year resin-dentin bond strength (μTBS) and nanoleakage (NL). Seven adhesives were formulated according to the addition of CN (0, 0.0075, 0.015, 0.06, 0.1, 0.5 and 1wt%) in adhesive. The AMA was evaluated against Streptococcus mutans using agar diffusion assay. For CR, WS and SO, specimens were constructed and tested for 28 days. For UTS, specimens were tested after 24h and 28 days. For DC, specimens were constructed and tested after 24h by FTIR. After enamel removal, the ER was applied to dentin. After composite resin build-ups, specimens were sectioned to obtain resin-dentin sticks. For μTBS and NL, specimens were tested after 24h and 1-year periods. All data were submitted to statistical analysis (α=0.05). The addition of CN provided AMA to the adhesives at all concentrations. Higher CR was observed in adhesives with higher concentration of CN. UTS, DC, WS and SO were not influenced. For μTBS an increase was observed in 0.1 and 0.5% copper group. For NL, a significant decrease was observed in all groups in comparison with control group. After 1-year, no significant reductions of μTBS and no significant increases of NL were observed for copper containing adhesives compared to the control group. The addition of CN in concentrations up to 1wt% in the 2-ER adhesive may be an alternative to provide AMA and preserve the bonding to dentin, without reducing adhesives' mechanical properties evaluated. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Rauch, T.; Quinet, T.; Hoyer, D.; Werner, K.; Demleitner, M.; Kruk, J. W.
2016-01-01
For the spectral analysis of high-resolution and high signal-to-noise (SN) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims: To identify molybdenum lines in the ultraviolet (UV) spectra of the DA-type white dwarf G191B2B and the DO-type white dwarf RE 0503289 and, to determine their photospheric Mo abundances, reliable Mo iv-vii oscillator strengths are used. Methods: We newly calculated Mo iv-vii oscillator strengths to consider their radiative and collisional bound-bound transitions indetail in our NLTE stellar-atmosphere models for the analysis of Mo lines exhibited in high-resolution and high SN UV observations of RE 0503289.Results. We identified 12 Mo v and nine Mo vi lines in the UV spectrum of RE 0503289 and measured a photospheric Mo abundance of 1.2 3.0 104(mass fraction, 22 500 56 400 times the solar abundance). In addition, from the As v and Sn iv resonance lines,we measured mass fractions of arsenic (0.51.3 105, about 300 1200 times solar) and tin (1.33.2 104, about 14 300 35 200 times solar). For G191B2B, upper limits were determined for the abundances of Mo (5.3 107, 100 times solar) and, in addition, for Kr (1.1106, 10 times solar) and Xe (1.7107, 10 times solar). The arsenic abundance was determined (2.35.9 107, about 21 53 times solar). A new, registered German Astrophysical Virtual Observatory (GAVO) service, TOSS, has been constructed to provide weighted oscillator strengths and transition probabilities.Conclusions. Reliable measurements and calculations of atomic data are a prerequisite for stellar-atmosphere modeling. Observed Mo v-vi line profiles in the UV spectrum of the white dwarf RE 0503289 were well reproduced with our newly calculated oscillator strengths. For the first time, this allowed the photospheric Mo abundance in a white dwarf to be determined.
NASA Astrophysics Data System (ADS)
Abdul Hakeem, Z.; Noorsuhada, M. N.; Azmi, I.; Noor Syafeekha, M. S.; Soffian Noor, M. S.
2017-12-01
In this study, steel fibre reinforced concrete (SFRC) beams strengthened with carbon fibre reinforced polymer (CFRP) were investigated using acoustic emission (AE) technique. Three beams with dimension of 150 mm width, 200 mm depth and 1500 mm length were fabricated. The results generated from AE parameters were analysed as well as signal strength and cumulative signal strength. Three relationships were produced namely load versus deflection, signal strength versus time and cumulative signal strength with respect to time. Each relationship indicates significant physical behaviour as the crack propagated in the beams. It is found that an addition of steel fibre in the concrete mix and strengthening of CFRP increase the ultimate load of the beam and the activity of signal strength. Moreover, the highest signal strength generated can be identified. From the study, the occurrence of crack in the beam can be predicted using AE signal strength.
Gluten and Aluminum Content in Synthroid® (Levothyroxine Sodium Tablets).
Espaillat, Ramon; Jarvis, Michael F; Torkelson, Cory; Sinclair, Brent
2017-07-01
Inquiries from healthcare providers and patients about the gluten and aluminum content of Synthroid ® (levothyroxine sodium tablets) have increased. The objective of this study was to measure and evaluate the gluten content of the raw materials used in the manufacturing of Synthroid. Additionally, this study determined the aluminum content in different strengths of Synthroid tablets by estimating the amount of aluminum in the raw materials used in the manufacturing of Synthroid. Gluten levels of three lots of the active pharmaceutical ingredient (API) and one lot of each excipient from different vendors were examined. The ingredients in all current Synthroid formulations (strengths) were evaluated for their quantity of aluminum. Gluten concentrations were below the lowest limit of detection (<3.0 ppm) for all tested lots of the API and excipients of Synthroid tablets. Aluminum content varied across tablet strengths (range 19-137 µg/tablet). Gluten levels of the API and excipients were found to be below the lowest level of detection and are considered gluten-free based on the US Food and Drug Administration (FDA) definition for food products. Across the various tablet strengths of Synthroid, the maximum aluminum levels were well below the FDA-determined minimal risk level for chronic oral aluminum exposure (1 mg/kg/day). These data demonstrate that Synthroid tablets are not a source for dietary gluten and are a minimal source of aluminum. AbbVie Inc.
Yasuda, Akihito; Onuki, Yoshinori; Obata, Yasuko; Yamamoto, Rie; Takayama, Kozo
2013-01-01
The "quality by design" concept in pharmaceutical formulation development requires the establishment of a science-based rationale and a design space. We integrated thin-plate spline (TPS) interpolation and Kohonen's self-organizing map (SOM) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline tablets were prepared based on a standard formulation. The tensile strength, disintegration time, and stability of these variables were measured as response variables. These responses were predicted quantitatively based on nonlinear TPS. A large amount of data on these tablets was generated and classified into several clusters using an SOM. The experimental values of the responses were predicted with high accuracy, and the data generated for the tablets were classified into several distinct clusters. The SOM feature map allowed us to analyze the global and local correlations between causal factors and tablet characteristics. The results of this study suggest that increasing the proportion of microcrystalline cellulose (MCC) improved the tensile strength and the stability of tensile strength of these theophylline tablets. In addition, the proportion of MCC has an optimum value for disintegration time and stability of disintegration. Increasing the proportion of magnesium stearate extended disintegration time. Increasing the compression force improved tensile strength, but degraded the stability of disintegration. This technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline tablet formulations.
Analysis of elbow muscle strength parameters in Brazilian jiu-jitsu practitioners.
Follmer, Bruno; Dellagrana, Rodolfo André; de Lima, Luis Antonio Pereira; Herzog, Walter; Diefenthaeler, Fernando
2017-12-01
Upper-body dynamic and isometric maximum strength are essential components for success in Brazilian jiu-jitsu (BJJ). This study was aimed at analysing strength parameters in the elbow flexor and extensor muscles of BJJ practitioners. Participants (n = 28) performed maximum isometric contractions of elbow flexors and extensors to determine peak torque (PT), rate of force development (RFD), and the torque-angle (T-A) relationship at elbow angles of 45°, 60°, 75°, 90°, 105°, and 120°. Additionally, concentric and eccentric PTs were measured at 1.04 rad·s -1 . Student t-test and ANOVA were performed using α = 0.05. Elbow flexors were stronger isometrically (P < 0.001, ES = 1.23) but weaker concentrically (P < 0.05, ES = 0.54) than extensor muscles, possibly because of the extensive grip disputes and pushing of opponents in BJJ. The T-A relationship had an inverted "U"-shape. Torque differences across elbow angles were moderate (ES = 0.62) for the extensor and large (ES = 0.92) for the flexor muscles. Isometric torque was greatest for elbow angles of 105° and 75° and smallest for 45° and 120° for extensor and flexor muscles, respectively. Elbow flexors had a greater RFD than extensors, regardless of elbow angle. The present study provides comprehensive results for elbow muscle strength in BJJ practitioners.
Xue, Qian-Li; Yang, Huanle; Li, Hui-Fen; Abadir, Peter M.; Burks, Tyesha N.; Koch, Lauren G.; Britton, Steven L.; Carlson, Joshua; Chen, Laura; Walston, Jeremy D.; Leng, Sean X.
2016-01-01
Rapamycin is known to extend lifespan. We conducted a randomized placebo-controlled study of enteric rapamycin-treatment to evaluate its effect on physical function in old low capacity runner (LCR) rats, a rat model selected from diverse genetic background for low intrinsic aerobic exercise capacity without genomic manipulation and characterized by increased complex disease risks and aging phenotypes. The study was performed in 12 male and 16 female LCR rats aged 16-22 months at baseline. The treatment group was fed with rapamycin-containing diet pellets at approximately 2.24mg/kg body weight per day and the placebo group with the same diet without rapamycin for six months. Observation was extended for additional 2 months. Physical function measurements include grip strength measured as maximum tensile force using a rat grip strength meter and maximum running distance (MRD) using rat physical treadmill test. The results showed that rapamycin improved grip strength by 13% (p=.036) and 60% (p<.001) from its baseline in female and male rats, respectively. Rapamycin attenuated MRD decline by 66% (p<.001) and 46% (p=.319) in females and males, respectively. These findings provide initial evidence for beneficial effect of rapamycin on physical functioning in an aging rat model of high disease risks with significant implication in humans. PMID:26997106
Landslide maps and seismic noise: Rockmass weakening caused by shallow earthquakes
NASA Astrophysics Data System (ADS)
Uchida, Tara; Marc, Odin; Sens-Schönfelder, Christoph; Sawazaki, Kaoru; Hobiger, Manuel; Hovius, Niels
2015-04-01
Some studies have suggested that the shaking and deformation associated with earthquake would result in a temporary increased hillslope erodibility. However very few data have been able to clarify such effect. We present integrated geomorphic data constraining an elevated landslide rate following 4 continental shallow earthquakes, the Mw 6.9 Finisterre (1993), the Mw 7.6 ChiChi (1999), the Mw 6.6 Niigata (2004) and the Mw 6.8 Iwate-Miyagi (2008) earthquakes. We constrained the magnitude, the recovery time and somewhat the mechanism at the source of this higher landslide risk. We provide some evidences excluding aftershocks or rain forcing intensity as possible mechanism and leaving subsurface weakening as the most likely. The landslide data suggest that this ground strength weakening is not limited to the soil cover but also affect the shallow bedrock. Additionally, we used ambient noise autocorrelation techniques to monitor shallow subsurface seismic velocity within the epicentral area of three of those earthquakes. For most stations we observe a velocity drop followed by a recovery processes of several years in fair agreement with the recovery time estimated based on landslide observation. Thus a common processes could alter the strength of the first 10m of soil/rock and simultaneously drive the landslide rate increase and the seismic velocity drop. The ability to firmly demonstrate this link require additional constraints on the seismic signal interpretation but would provide a very useful tool for post-earthquake risk managment.
Farmer, Elizabeth M.Z.; Burns, Barbara J.; Wagner, H. Ryan; Murray, Maureen; Southerland, Dannia G.
2009-01-01
Objectives This article reports the initial findings from a randomized trial to enhance Treatment Foster Care (TFC) in “usual care” agencies. The intervention, Together Facing the Challenge, was built upon a combination of practice-based elements from a prior descriptive study of TFC and selected elements from Chamberlain’s evidence-based model (MTFC) to fill conspicuous gaps in usual practice. The study was designed to examine whether additional training and consultation to staff and treatment parents improved outcomes for youth. Methods The study was conducted with 247 youth in TFC and their treatment parents from 14 TFC agencies in a southeastern state. Half of the agencies were randomized to the intervention condition and received study-provided training and consultation. Control agencies continued to provide training and treatment as usual. Data for the current analyses come from interviews with treatment parents at baseline, 6, and 12 months. Results Youth in the intervention group showed significant improvement (compared to the youth in the control group) on the three focal domains – symptoms, behaviors, and strengths. Effects were larger for behaviors and symptoms than for strengths. Conclusions This study employs a “hybrid” model to improve practice. It builds upon current practices in existing agencies and infuses additional training and consultation to overcome observed deficits. Such an approach has tremendous potential for moving beyond a singular focus on disseminating evidence-based interventions to a broader view of improving practice in a wide range of agencies. PMID:20513677
Strength Training and Children's Health.
ERIC Educational Resources Information Center
Faigenbaum, Avery D.
2001-01-01
Provides an overview of the potential health benefits of strength training for children, discussing the role of strength training in preventing sports-related injuries and highlighting design considerations for such programs. The focus is on musculoskeletal adaptations to strength training that are observable in healthy children. Guidelines for…
NASA Astrophysics Data System (ADS)
Murakami, Yuki; Dong, Wei; Oshita, Hideki; Suzuki, Shuichi; Tsutsumi, Tomoaki
In this study, to evaluate flexural strength and shear strength with def ective anchorages due to corrosion of reinforcemen t, the bending test of the RC beams r eceived damage in the anchorage region due to corrosion was carried out. As a result, it is se ems that the residual shear strength of RC beams with defective anchorages depends on shear span ratio in addition to the anchorage performance. Furthermore, the authors propose an evaluation model for an shear strength of RC beams with defective anchorages on the basis of these experimental results and analy tical result. The value of residual shear strength calculated using this model corresponds to the test results in the past.
Effect of moisture on the physical and durability properties of methyl methacrylate polymer concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontana, J.J.; Reams, W.
1983-01-01
The compressive strength of methyl methacrylate PC composites decays very rapidly as the moisture content of the coarse aggregate is increased from 0 to 1 wt %. The durability of the PC also shows evidence of decay. Addition of silane coupling agent, such as A-1120, to the monomer component of a PC composite increases the compressive strength of such composites made with moist coarse aggregates. The compressive strengths of such PC composites are as high as a normal PCC used in highway applications. The durability of PC composites made with a silane additive seems to increase as the composite undergoesmore » freeze-thaw cycling which reinforces the justification that such materials can be used for PCC repairs without a sacrifice in use lifespans. However, for the convenience of using moist aggregates, one must endure the additional cost of the silane coupling agent. If it costs more than $0.02/lb to dry the aggregate, and one is willing to accept the reduced strengths associated with moist aggregates, then the use of a silane coupling agent can be cost effective. 3 figures, 4 tables.« less
NASA Astrophysics Data System (ADS)
Bankhead, N.; Simon, A.
2008-12-01
Several complex interactions occur between riparian vegetation and bank stability processes. Although there are both positive and negative effects of riparian vegetation on streambank stability, a link between increased vegetation density and decreased bank erosion and lateral migration rates of channels has generally been recorded. The ability of vegetation to promote increased bank stability leads to a positive feedback, in which bank stability then allows the growth and establishment of more vegetation. To study interactions between vegetation density and channel planform, past flume studies have used alfalfa sprouts (Medicago sativa), seeded over the entire floodplain in varying densities. Such studies have observed reductions in braiding intensity with increased alfalfa density. It has been assumed in these studies that the alfalfa sprouts increase the resistance of the bank material to lateral erosion. When alfalfa sprouts are scaled up they simulate mature riparian trees well. However, the geotechnical properties of alfalfa roots, and quantification of the increase in resistance provided to the banks under different densities of alfalfa have thus far been ignored. It is therefore unknown if the resistance provided by the alfalfa roots also scales well to real-world root-reinforcement values. To quantify additional bank strength, alfalfa sprouts were grown in sand and the roots tested at regular intervals to measure tensile strength. Results of tensile-strength measurements for alfalfa sprouts displayed the typical non-linear decrease of tensile strength (in MPa) with increasing root diameter. Values for the additional cohesion provided by alfalfa roots were calculated by inputting alfalfa tensile-strength and root density data to the root-reinforcement model, RipRoot, resulting in root-reinforcement values of 0 to 11.8 kPa. These values are similar to those that would be expected under field conditions. The root-cohesion values calculated for alfalfa sprouts were then used in conjunction with the Bank Stability and Toe Erosion Model (BSTEM), and a series of laboratory experiments, to evaluate if the factor of safety (FS) of experimental channels lined with different densities of alfalfa could be predicted. Sand banks ranging in height from 1.25 to 3.75 cm were modeled and tested experimentally for cases with different groundwater heights and flow depths in the channel, and with cohesion due to roots being scaled appropriately using a length reduction factor. Model results showed that for alfalfa stem densities ranging from 0 to 10 stems/cm2, bank FS ranged from 0.60 to 1.87 and from 0.60 to 1.12 for 1.25 cm and 3.75 cm-high banks respectively. Preliminary results of the laboratory experiments have successfully shown that if cohesion due to roots calculated from the RipRoot model is scaled appropriately, the stability of experimental channels lined with alfalfa of different densities can be predicted. By quantifying the geotechnical resistance of banks during such studies, more accurate predictions of the conditions necessary to create meandering versus braided channel planforms, and the feedback between channel planform and vegetation density in both experimental and real-world scenarios may now be possible.
Microscale mechanical characterization of materials for extreme environments
NASA Astrophysics Data System (ADS)
Ozerinc, Sezer
Nanocrystalline metals are promising materials for applications that require outstanding strength and stability in extreme environments. Further improvements in the desirable mechanical properties of these materials require a better understanding of the relationship between their microstructure and grain boundary deformation behavior. Previous molecular dynamics simulations suggested that solute additions to grain boundaries can enhance the strength of nanocrystalline metals, but there has been a lack of experimental studies investigating this prediction. This dissertation presents mechanical and microstructural characterization of nanocrystalline Cu alloys and demonstrate that addition of Nb solutes to grain boundaries greatly enhances the strength of Cu. The measured hardness of Cu90Nb10 alloy is 5.6 GPa which is more than double the hardness of nanocrystalline pure Cu. Microstructural characterization through transmission electron microscopy and energy-dispersive X-ray spectroscopy on these alloys indicates a strong correlation between the grain boundary composition and the hardness. Variation of measured hardness with measured grain boundary composition is in very good agreement with previous molecular dynamics simulation predictions. The results of this work provide experimental evidence that grain boundary doping enhances the strength of nanocrystalline Cu far beyond that predicted by classical Hall-Petch strengthening and decreasing grain boundary energy through solute additions is the key to reaching theoretical strength in nanocrystalline metals. Irradiation induced creep is a deformation mechanism that takes place under combined stress and particle bombardment. Effective characterization of this phenomenon on nanostructured materials is crucial for the assessment of their potential use in next generation nuclear power plants. Direct measurements of irradiation induced creep under MeV-heavy ion bombardment have not been feasible until recently due to the requirements of micron-sized specimens, muN-level force sensitivity, and nm-level displacement sensitivity. A recently developed mechanical characterization technique, micropillar compression, has enabled the testing of miniaturized specimens; however, there has been no demonstration of the application of this technique to irradiation induced creep measurements. This dissertation presents the development of an in situ measurement apparatus for compression testing of micron-sized cylindrical specimens under MeV-heavy ion bombardment. The apparatus has a force resolution of 1 muN and a displacement resolution of 1 nm. The apparatus measured irradiation induced creep in four different amorphous materials and the findings clarified the significance of different creep mechanisms in these materials. In amorphous metals and amorphous Si, the measured irradiation induced fluidity is ≈ 3 dpa-1GPa-1 (dpa: displacements per atom). The measured fluidity is in excellent agreement with previous molecular dynamics simulation predictions, providing experimental evidence for point defect mediated plastic flow under ion bombardment. For amorphous SiO2, stress relaxation through thermal spikes further contribute to the creep response, resulting in higher fluidities up to ≈ 83 dpa-1GPa -1. Finally, this dissertation presents the further development of the creep testing apparatus for high temperature measurements. The apparatus demonstrated good thermal and mechanical stability and measured irradiation induced creep of nanocrystalline Cu at 200°C. Resulting irradiation induced fluidity is ≈ 10% of the fluidity of the amorphous metals, in agreement with previous measurements on free-standing films. Understanding the creep behavior of nanostructured metals under heavy ion bombardment at elevated temperatures is important for identifying the governing creep mechanisms in these materials. The developed apparatus provides a new and effective method of accelerated mechanical characterization of such promising materials for their potential use in future nuclear applications.
Influence of Silicon-Containing Additives on Concrete Waterproofness Property
NASA Astrophysics Data System (ADS)
Butakova, M. D.; Saribekyan, S. S.; Mikhaylov, A. V.
2017-11-01
The article studies the influence of silicon-containing additives on the property of the water resistance of concrete samples. It provides a review of the literature on common approaches and technologies improving concrete waterproofness and reinforced concrete structures. Normal hardening samples were obtained on the basis of concretes containing microsilica, aerosil or ash, or the combinations thereof. This research is aimed at the study of the complex modifier effect r on the basis of metakaolin, superplasticizer and silicon containing additives on the property of concrete water resistance. The need to use a superplasticizer to reduce the water-cement ratio and metakaolin as a hardening accelerator along with the set of strength is substantiated. This article describes a part of the results of the experiment conducted to find alternative options for colmatizing expensive additives used in the concreting foundations of private house-building. The implementation of the scientific work will not only clarify this area but will also broaden the knowledge of such additive as aerosol.
Kinetic Determinants of Reactive Strength in Highly Trained Sprint Athletes.
Douglas, Jamie; Pearson, Simon; Ross, Angus; McGuigan, Mike
2018-06-01
Douglas, J, Pearson, S, Ross, A, and McGuigan, M. Kinetic determinants of reactive strength in highly trained sprint athletes. J Strength Cond Res 32(6): 1562-1570, 2018-The purpose of this study was to determine the braking and propulsive phase kinetic variables underpinning reactive strength in highly trained sprint athletes in comparison with a nonsprint-trained control group. Twelve highly trained sprint athletes and 12 nonsprint-trained participants performed drop jumps (DJs) from 0.25, 0.50, and 0.75 m onto a force plate. One familiarization session was followed by an experimental testing session within the same week. Reactive strength index (RSI), contact time, flight time, and leg stiffness were determined. Kinetic variables including force, power, and impulse were assessed within the braking and propulsive phases. Sprint-trained athletes demonstrated higher RSI vs. nonsprint-trained participants across all drop heights {3.02 vs. 2.02; ES (±90% confidence limit [CL]): 3.11 ± 0.86}. This difference was primarily attained by briefer contact times (0.16 vs. 0.22 seconds; effect size [ES]: -1.49 ± 0.53) with smaller differences observed for flight time (0.50 vs. 0.46 seconds; ES: 0.53 ± 0.58). Leg stiffness, braking and propulsive phase force, and power were higher in sprint-trained athletes. Very large differences were observed in mean braking force (51 vs. 38 N·kg; ES: 2.57 ± 0.73) which was closely associated with contact time (r ±90% CL: -0.93 ± 0.05). Sprint-trained athletes exhibited superior reactive strength than nonsprint-trained participants. This was due to the ability to strike the ground with a stiffer leg spring, an enhanced expression of braking force, and possibly an increased utilization of elastic structures. The DJ kinetic analysis provides additional insight into the determinants of reactive strength which may inform subsequent testing and training.
CRACK GROWTH ANALYSIS OF SOLID OXIDE FUEL CELL ELECTROLYTES
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Bandopadhyay; N. Nagabhushana
2003-10-01
Defects and Flaws control the structural and functional property of ceramics. In determining the reliability and lifetime of ceramics structures it is very important to quantify the crack growth behavior of the ceramics. In addition, because of the high variability of the strength and the relatively low toughness of ceramics, a statistical design approach is necessary. The statistical nature of the strength of ceramics is currently well recognized, and is usually accounted for by utilizing Weibull or similar statistical distributions. Design tools such as CARES using a combination of strength measurements, stress analysis, and statistics are available and reasonably wellmore » developed. These design codes also incorporate material data such as elastic constants as well as flaw distributions and time-dependent properties. The fast fracture reliability for ceramics is often different from their time-dependent reliability. Further confounding the design complexity, the time-dependent reliability varies with the environment/temperature/stress combination. Therefore, it becomes important to be able to accurately determine the behavior of ceramics under simulated application conditions to provide a better prediction of the lifetime and reliability for a given component. In the present study, Yttria stabilized Zirconia (YSZ) of 9.6 mol% Yttria composition was procured in the form of tubes of length 100 mm. The composition is of interest as tubular electrolytes for Solid Oxide Fuel Cells. Rings cut from the tubes were characterized for microstructure, phase stability, mechanical strength (Weibull modulus) and fracture mechanisms. The strength at operating condition of SOFCs (1000 C) decreased to 95 MPa as compared to room temperature strength of 230 MPa. However, the Weibull modulus remains relatively unchanged. Slow crack growth (SCG) parameter, n = 17 evaluated at room temperature in air was representative of well studied brittle materials. Based on the results, further work was planned to evaluate the strength degradation, modulus and failure in more representative environment of the SOFCs.« less