Sample records for provide explicit formulas

  1. Explicit Formulae for the Continued Fraction Convergents of "Square Root of D"

    ERIC Educational Resources Information Center

    Braza, Peter A.

    2010-01-01

    The formulae for the convergents of continued fractions are always given recursively rather than in explicit form. This article derives explicit formulae for the convergents of the continued fraction expansions for square roots.

  2. Financing School Capital Projects in New York State.

    ERIC Educational Resources Information Center

    Howe, Edward T.

    1990-01-01

    Financing school capital projects in New York State is a responsibility involving both local school districts and the state government. State building aid is provided through an aid ratio and approved expenditure formula. This formula has an equalizing effect among districts by explicitly providing an aid amount inversely proportional to property…

  3. The number of reduced alignments between two DNA sequences

    PubMed Central

    2014-01-01

    Background In this study we consider DNA sequences as mathematical strings. Total and reduced alignments between two DNA sequences have been considered in the literature to measure their similarity. Results for explicit representations of some alignments have been already obtained. Results We present exact, explicit and computable formulas for the number of different possible alignments between two DNA sequences and a new formula for a class of reduced alignments. Conclusions A unified approach for a wide class of alignments between two DNA sequences has been provided. The formula is computable and, if complemented by software development, will provide a deeper insight into the theory of sequence alignment and give rise to new comparison methods. AMS Subject Classification Primary 92B05, 33C20, secondary 39A14, 65Q30 PMID:24684679

  4. Recurrences and explicit formulae for the expansion and connection coefficients in series of Bessel polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Ahmed, H. M.

    2004-08-01

    A formula expressing explicitly the derivatives of Bessel polynomials of any degree and for any order in terms of the Bessel polynomials themselves is proved. Another explicit formula, which expresses the Bessel expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of its original Bessel coefficients, is also given. A formula for the Bessel coefficients of the moments of one single Bessel polynomial of certain degree is proved. A formula for the Bessel coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Bessel coefficients is also obtained. Application of these formulae for solving ordinary differential equations with varying coefficients, by reducing them to recurrence relations in the expansion coefficients of the solution, is explained. An algebraic symbolic approach (using Mathematica) in order to build and solve recursively for the connection coefficients between Bessel-Bessel polynomials is described. An explicit formula for these coefficients between Jacobi and Bessel polynomials is given, of which the ultraspherical polynomial and its consequences are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Bessel and Hermite-Bessel are also developed.

  5. The Effects of Explicit Instruction of Formulaic Sequences on Second-Language Writers

    ERIC Educational Resources Information Center

    Colovic-Markovic, Jelena

    2012-01-01

    The present study investigated the effects of the explicit teaching of formulaic sequences (i.e., academic and topic-induced) on L2 writing. The research examined separately the effects of the treatment on the students' abilities to produce the target formulaic sequences in controlled (i.e., C-tests) and uncontrolled situations (i.e.,…

  6. Teaching Formulaic Sequences in an English-Language Class: The Effects of Explicit Instruction versus Coursebook Instruction

    ERIC Educational Resources Information Center

    Le-Thi, Duyen; Rodgers, Michael P. H.; Pellicer-Sánchez, Ana

    2017-01-01

    This study investigates the relative effectiveness of different teaching approaches on the learning of formulaic sequences. Three comparisons were made in this study: the effects of explicit teaching of formulaic sequences versus teaching embedded in traditional coursebook instruction, the effects of the degree of salience of the sequences in the…

  7. An explicit predictor-corrector solver with applications to Burgers' equation

    NASA Technical Reports Server (NTRS)

    Dey, S. K.; Dey, C.

    1983-01-01

    Forward Euler's explicit, finite-difference formula of extrapolation, is used as a predictor and a convex formula as a corrector to integrate differential equations numerically. An application has been made to Burger's equation.

  8. Multidimensional Extension of the Generalized Chowla-Selberg Formula

    NASA Astrophysics Data System (ADS)

    Elizalde, E.

    After recalling the precise existence conditions of the zeta function of a pseudodifferential operator, and the concept of reflection formula, an exponentially convergent expression for the analytic continuation of a multidimensional inhomogeneous Epstein-type zeta function of the general form with A the p×p$ matrix of a quadratic form, a p vector and q a constant, is obtained. It is valid on the whole complex s-plane, is exponentially convergent and provides the residua at the poles explicitly. It reduces to the famous formula of Chowla and Selberg in the particular case p=2, , q=0. Some variations of the formula and physical applications are considered.

  9. Explicit formula of finite difference method to estimate human peripheral tissue temperatures during exposure to severe cold stress.

    PubMed

    Khanday, M A; Hussain, Fida

    2015-02-01

    During cold exposure, peripheral tissues undergo vasoconstriction to minimize heat loss to preserve the maintenance of a normal core temperature. However, vasoconstricted tissues exposed to cold temperatures are susceptible to freezing and frostbite-related tissue damage. Therefore, it is imperative to establish a mathematical model for the estimation of tissue necrosis due to cold stress. To this end, an explicit formula of finite difference method has been used to obtain the solution of Pennes' bio-heat equation with appropriate boundary conditions to estimate the temperature profiles of dermal and subdermal layers when exposed to severe cold temperatures. The discrete values of nodal temperature were calculated at the interfaces of skin and subcutaneous tissues with respect to the atmospheric temperatures of 25 °C, 20 °C, 15 °C, 5 °C, -5 °C and -10 °C. The results obtained were used to identify the scenarios under which various degrees of frostbite occur on the surface of skin as well as the dermal and subdermal areas. The explicit formula of finite difference method proposed in this model provides more accurate predictions as compared to other numerical methods. This model of predicting tissue temperatures provides researchers with a more accurate prediction of peripheral tissue temperature and, hence, the susceptibility to frostbite during severe cold exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Kubo formulas for dispersion in heterogeneous periodic nonequilibrium systems.

    PubMed

    Guérin, T; Dean, D S

    2015-12-01

    We consider the dispersion properties of tracer particles moving in nonequilibrium heterogeneous periodic media. The tracer motion is described by a Fokker-Planck equation with arbitrary spatially periodic (but constant in time) local diffusion tensors and drifts, eventually with the presence of obstacles. We derive a Kubo-like formula for the time-dependent effective diffusion tensor valid in any dimension. From this general formula, we derive expressions for the late time effective diffusion tensor and drift in these systems. In addition, we find an explicit formula for the late finite-time corrections to these transport coefficients. In one dimension, we give a closed analytical formula for the transport coefficients. The formulas derived here are very general and provide a straightforward method to compute the dispersion properties in arbitrary nonequilibrium periodic advection-diffusion systems.

  11. A reaction-diffusion within-host HIV model with cell-to-cell transmission.

    PubMed

    Ren, Xinzhi; Tian, Yanni; Liu, Lili; Liu, Xianning

    2018-06-01

    In this paper, a reaction-diffusion within-host HIV model is proposed. It incorporates cell mobility, spatial heterogeneity and cell-to-cell transmission, which depends on the diffusion ability of the infected cells. In the case of a bounded domain, the basic reproduction number [Formula: see text] is established and shown as a threshold: the virus-free steady state is globally asymptotically stable if [Formula: see text] and the virus is uniformly persistent if [Formula: see text]. The explicit formula for [Formula: see text] and the global asymptotic stability of the constant positive steady state are obtained for the case of homogeneous space. In the case of an unbounded domain and [Formula: see text], the existence of the traveling wave solutions is proved and the minimum wave speed [Formula: see text] is obtained, providing the mobility of infected cells does not exceed that of the virus. These results are obtained by using Schauder fixed point theorem, limiting argument, LaSalle's invariance principle and one-side Laplace transform. It is found that the asymptotic spreading speed may be larger than the minimum wave speed via numerical simulations. However, our simulations show that it is possible either to underestimate or overestimate the spread risk [Formula: see text] if the spatial averaged system is used rather than one that is spatially explicit. The spread risk may also be overestimated if we ignore the mobility of the cells. It turns out that the minimum wave speed could be either underestimated or overestimated as long as the mobility of infected cells is ignored.

  12. On the coefficients of integrated expansions of Bessel polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Ahmed, H. M.

    2006-03-01

    A new formula expressing explicitly the integrals of Bessel polynomials of any degree and for any order in terms of the Bessel polynomials themselves is proved. Another new explicit formula relating the Bessel coefficients of an expansion for infinitely differentiable function that has been integrated an arbitrary number of times in terms of the coefficients of the original expansion of the function is also established. An application of these formulae for solving ordinary differential equations with varying coefficients is discussed.

  13. Periodic orbits of the integrable swinging Atwood's machine

    NASA Astrophysics Data System (ADS)

    Nunes, Ana; Casasayas, Josefina; Tufillaro, Nicholas

    1995-02-01

    We identify all the periodic orbits of the integrable swinging Atwood's machine by calculating the rotation number of each orbit on its invariant tori in phase space, and also providing explicit formulas for the initial conditions needed to generate each orbit.

  14. Explicit analytical expression for the condition number of polynomials in power form

    NASA Astrophysics Data System (ADS)

    Rack, Heinz-Joachim

    2017-07-01

    In his influential papers [1-3] W. Gautschi has defined and reshaped the condition number κ∞ of polynomials Pn of degree ≤ n which are represented in power form on a zero-symmetric interval [-ω, ω]. Basically, κ∞ is expressed as the product of two operator norms: an explicit factor times an implicit one (the l∞-norm of the coefficient vector of the n-th Chebyshev polynomial of the first kind relative to [-ω, ω]). We provide a new proof, economize the second factor and express it by an explicit analytical formula.

  15. 27 CFR 25.57 - Formula information.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... OF THE TREASURY LIQUORS BEER Miscellaneous Provisions Formulas § 25.57 Formula information. (a..., or after fermentation). (3) For formulas that include the use of flavors and other nonbeverage ingredients containing alcohol, you must explicitly indicate: (i) The volume and alcohol content of the beer...

  16. 27 CFR 25.57 - Formula information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... OF THE TREASURY ALCOHOL BEER Miscellaneous Provisions Formulas § 25.57 Formula information. (a..., or after fermentation). (3) For formulas that include the use of flavors and other nonbeverage ingredients containing alcohol, you must explicitly indicate: (i) The volume and alcohol content of the beer...

  17. 27 CFR 25.57 - Formula information.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... OF THE TREASURY LIQUORS BEER Miscellaneous Provisions Formulas § 25.57 Formula information. (a..., or after fermentation). (3) For formulas that include the use of flavors and other nonbeverage ingredients containing alcohol, you must explicitly indicate: (i) The volume and alcohol content of the beer...

  18. 27 CFR 25.57 - Formula information.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... OF THE TREASURY ALCOHOL BEER Miscellaneous Provisions Formulas § 25.57 Formula information. (a..., or after fermentation). (3) For formulas that include the use of flavors and other nonbeverage ingredients containing alcohol, you must explicitly indicate: (i) The volume and alcohol content of the beer...

  19. Higher-order formulas of amplitude-dependent tune shift caused by a sextupole magnetic field distribution

    NASA Astrophysics Data System (ADS)

    Soutome, Kouichi; Tanaka, Hitoshi

    2017-06-01

    Nowadays, designs for ring-based light sources use multibend lattices for achieving a very small emittance of around 100 pmrad. In this type of storage ring, the chromaticity correcting sextupoles generally have greater strengths than those used in typical third-generation light sources. Therefore, controlling lattice nonlinearity such as amplitude-dependent tune shift (ADTS) is important for enabling stable operations and smooth beam commissioning. As the strength of the sextupoles increases, their higher-order terms contribute significantly to ADTS, rendering well-known lowest-order formulas inadequate for describing tune variations at large horizontal amplitudes. In response, we have derived explicit expressions of ADTS up to the fourth order in sextupole strength based on the canonical perturbation theory, assuming that the amplitude of a vertical betatron oscillation is smaller compared with the horizontal one. The new formulas express the horizontal and vertical betatron tune variations as functions of the action variables: Jx and Jy up to O (Jx2) and O (Jy) . The derived formulas were applied to a five-bend achromat lattice designed for the SPring-8 upgrade. By comparing the calculated results with the tracking simulations, we found that (1) the formulas accurately express ADTS around a horizontal amplitude of ˜10 mm and (2) the nonlinear terms of the fourth order in sextupole strength govern the behaviors of circulating electrons at large horizontal amplitudes. In this paper, we present explicit expressions of fourth-order formulas of ADTS and provide some examples to illustrate their effectiveness.

  20. Explicit formulae for Chern-Simons invariants of the hyperbolic orbifolds of the knot with Conway's notation C(2n, 3)

    NASA Astrophysics Data System (ADS)

    Ham, Ji-Young; Lee, Joongul

    2017-03-01

    We calculate the Chern-Simons invariants of the hyperbolic orbifolds of the knot with Conway's notation C(2n, 3) using the Schläfli formula for the generalized Chern-Simons function on the family of C(2n, 3) cone-manifold structures. We present the concrete and explicit formula of them. We apply the general instructions of Hilden, Lozano, and Montesinos-Amilibia and extend the Ham and Lee's methods. As an application, we calculate the Chern-Simons invariants of cyclic coverings of the hyperbolic C(2n, 3) orbifolds.

  1. Least-Squares Data Adjustment with Rank-Deficient Data Covariance Matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J.G.

    2011-07-01

    A derivation of the linear least-squares adjustment formulae is required that avoids the assumption that the covariance matrix of prior parameters can be inverted. Possible proofs are of several kinds, including: (i) extension of standard results for the linear regression formulae, and (ii) minimization by differentiation of a quadratic form of the deviations in parameters and responses. In this paper, the least-squares adjustment equations are derived in both these ways, while explicitly assuming that the covariance matrix of prior parameters is singular. It will be proved that the solutions are unique and that, contrary to statements that have appeared inmore » the literature, the least-squares adjustment problem is not ill-posed. No modification is required to the adjustment formulae that have been used in the past in the case of a singular covariance matrix for the priors. In conclusion: The linear least-squares adjustment formula that has been used in the past is valid in the case of a singular covariance matrix for the covariance matrix of prior parameters. Furthermore, it provides a unique solution. Statements in the literature, to the effect that the problem is ill-posed are wrong. No regularization of the problem is required. This has been proved in the present paper by two methods, while explicitly assuming that the covariance matrix of prior parameters is singular: i) extension of standard results for the linear regression formulae, and (ii) minimization by differentiation of a quadratic form of the deviations in parameters and responses. No modification is needed to the adjustment formulae that have been used in the past. (author)« less

  2. On the connection coefficients and recurrence relations arising from expansions in series of Laguerre polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2003-05-01

    A formula expressing the Laguerre coefficients of a general-order derivative of an infinitely differentiable function in terms of its original coefficients is proved, and a formula expressing explicitly the derivatives of Laguerre polynomials of any degree and for any order as a linear combination of suitable Laguerre polynomials is deduced. A formula for the Laguerre coefficients of the moments of one single Laguerre polynomial of certain degree is given. Formulae for the Laguerre coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Laguerre coefficients are also obtained. A simple approach in order to build and solve recursively for the connection coefficients between Jacobi-Laguerre and Hermite-Laguerre polynomials is described. An explicit formula for these coefficients between Jacobi and Laguerre polynomials is given, of which the ultra-spherical polynomials of the first and second kinds and Legendre polynomials are important special cases. An analytical formula for the connection coefficients between Hermite and Laguerre polynomials is also obtained.

  3. On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2004-01-01

    Formulae expressing explicitly the Jacobi coefficients of a general-order derivative (integral) of an infinitely differentiable function in terms of its original expansion coefficients, and formulae for the derivatives (integrals) of Jacobi polynomials in terms of Jacobi polynomials themselves are stated. A formula for the Jacobi coefficients of the moments of one single Jacobi polynomial of certain degree is proved. Another formula for the Jacobi coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its original expanded coefficients is also given. A simple approach in order to construct and solve recursively for the connection coefficients between Jacobi-Jacobi polynomials is described. Explicit formulae for these coefficients between ultraspherical and Jacobi polynomials are deduced, of which the Chebyshev polynomials of the first and second kinds and Legendre polynomials are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Jacobi and Hermite-Jacobi are developed.

  4. On Exact Solutions of Rarefaction-Rarefaction Interactions in Compressible Isentropic Flow

    NASA Astrophysics Data System (ADS)

    Jenssen, Helge Kristian

    2017-12-01

    Consider the interaction of two centered rarefaction waves in one-dimensional, compressible gas flow with pressure function p(ρ )=a^2ρ ^γ with γ >1. The classic hodograph approach of Riemann provides linear 2nd order equations for the time and space variables t, x as functions of the Riemann invariants r, s within the interaction region. It is well known that t( r, s) can be given explicitly in terms of the hypergeometric function. We present a direct calculation (based on works by Darboux and Martin) of this formula, and show how the same approach provides an explicit formula for x( r, s) in terms of Appell functions (two-variable hypergeometric functions). Motivated by the issue of vacuum and total variation estimates for 1-d Euler flows, we then use the explicit t-solution to monitor the density field and its spatial variation in interactions of two centered rarefaction waves. It is found that the variation is always non-monotone, and that there is an overall increase in density variation if and only if γ >3. We show that infinite duration of the interaction is characterized by approach toward vacuum in the interaction region, and that this occurs if and only if the Riemann problem defined by the extreme initial states generates a vacuum. Finally, it is verified that the minimal density in such interactions decays at rate O(1)/ t.

  5. Higher-order jump conditions for conservation laws

    NASA Astrophysics Data System (ADS)

    Oksuzoglu, Hakan

    2018-04-01

    The hyperbolic conservation laws admit discontinuous solutions where the solution variables can have finite jumps in space and time. The jump conditions for conservation laws are expressed in terms of the speed of the discontinuity and the state variables on both sides. An example from the Gas Dynamics is the Rankine-Hugoniot conditions for the shock speed. Here, we provide an expression for the acceleration of the discontinuity in terms of the state variables and their spatial derivatives on both sides. We derive a jump condition for the shock acceleration. Using this general expression, we show how to obtain explicit shock acceleration formulas for nonlinear hyperbolic conservation laws. We start with the Burgers' equation and check the derived formula with an analytical solution. We next derive formulas for the Shallow Water Equations and the Euler Equations of Gas Dynamics. We will verify our formulas for the Euler Equations using an exact solution for the spherically symmetric blast wave problem. In addition, we discuss the potential use of these formulas for the implementation of shock fitting methods.

  6. A direct method for nonlinear ill-posed problems

    NASA Astrophysics Data System (ADS)

    Lakhal, A.

    2018-02-01

    We propose a direct method for solving nonlinear ill-posed problems in Banach-spaces. The method is based on a stable inversion formula we explicitly compute by applying techniques for analytic functions. Furthermore, we investigate the convergence and stability of the method and prove that the derived noniterative algorithm is a regularization. The inversion formula provides a systematic sensitivity analysis. The approach is applicable to a wide range of nonlinear ill-posed problems. We test the algorithm on a nonlinear problem of travel-time inversion in seismic tomography. Numerical results illustrate the robustness and efficiency of the algorithm.

  7. Asymptotic formulae for likelihood-based tests of new physics

    NASA Astrophysics Data System (ADS)

    Cowan, Glen; Cranmer, Kyle; Gross, Eilam; Vitells, Ofer

    2011-02-01

    We describe likelihood-based statistical tests for use in high energy physics for the discovery of new phenomena and for construction of confidence intervals on model parameters. We focus on the properties of the test procedures that allow one to account for systematic uncertainties. Explicit formulae for the asymptotic distributions of test statistics are derived using results of Wilks and Wald. We motivate and justify the use of a representative data set, called the "Asimov data set", which provides a simple method to obtain the median experimental sensitivity of a search or measurement as well as fluctuations about this expectation.

  8. Explicitly solvable complex Chebyshev approximation problems related to sine polynomials

    NASA Technical Reports Server (NTRS)

    Freund, Roland

    1989-01-01

    Explicitly solvable real Chebyshev approximation problems on the unit interval are typically characterized by simple error curves. A similar principle is presented for complex approximation problems with error curves induced by sine polynomials. As an application, some new explicit formulae for complex best approximations are derived.

  9. Singular vectors for the WN algebras

    NASA Astrophysics Data System (ADS)

    Ridout, David; Siu, Steve; Wood, Simon

    2018-03-01

    In this paper, we use free field realisations of the A-type principal, or Casimir, WN algebras to derive explicit formulae for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock module as well as the Jack symmetric functions.

  10. A Variant of the Mukai Pairing via Deformation Quantization

    NASA Astrophysics Data System (ADS)

    Ramadoss, Ajay C.

    2012-06-01

    Let X be a smooth projective complex variety. The Hochschild homology HH•( X) of X is an important invariant of X, which is isomorphic to the Hodge cohomology of X via the Hochschild-Kostant-Rosenberg isomorphism. On HH•( X), one has the Mukai pairing constructed by Caldararu. An explicit formula for the Mukai pairing at the level of Hodge cohomology was proven by the author in an earlier work (following ideas of Markarian). This formula implies a similar explicit formula for a closely related variant of the Mukai pairing on HH•( X). The latter pairing on HH•( X) is intimately linked to the study of Fourier-Mukai transforms of complex projective varieties. We give a new method to prove a formula computing the aforementioned variant of Caldararu's Mukai pairing. Our method is based on some important results in the area of deformation quantization. In particular, we use part of the work of Kashiwara and Schapira on Deformation Quantization modules together with an algebraic index theorem of Bressler, Nest and Tsygan. Our new method explicitly shows that the "Noncommutative Riemann-Roch" implies the classical Riemann-Roch. Further, it is hoped that our method would be useful for generalization to settings involving certain singular varieties.

  11. Formulae as Scientific Stories

    ERIC Educational Resources Information Center

    Horsewell, Ian

    2017-01-01

    In science lessons many students struggle to apply the principles of rearranging formulae, even after coverage in maths. A structured approach is suggested that focuses on describing a narrative linking cause and effect before explicit mathematical terms are introduced.

  12. Scaling of Rényi entanglement entropies of the free fermi-gas ground state: a rigorous proof.

    PubMed

    Leschke, Hajo; Sobolev, Alexander V; Spitzer, Wolfgang

    2014-04-25

    In a remarkable paper [Phys. Rev. Lett. 96, 100503 (2006)], Gioev and Klich conjectured an explicit formula for the leading asymptotic growth of the spatially bipartite von Neumann entanglement entropy of noninteracting fermions in multidimensional Euclidean space at zero temperature. Based on recent progress by one of us (A. V. S.) in semiclassical functional calculus for pseudodifferential operators with discontinuous symbols, we provide here a complete proof of that formula and of its generalization to Rényi entropies of all orders α>0. The special case α=1/2 is also known under the name logarithmic negativity and often considered to be a particularly useful quantification of entanglement. These formulas exhibiting a "logarithmically enhanced area law" have been used already in many publications.

  13. Asymptotics of a Class of Solutions to the Cylindrical Toda Equations

    NASA Astrophysics Data System (ADS)

    Tracy, Craig A.; Widom, Harold

    The small t asymptotics of a class of solutions to the 2D cylindrical Toda equations is computed. The solutions, , have the representation where Kk$ are integral operators. This class includes the n-periodic cylindrical Toda equations. For n=2 our results reduce to the previously computed asymptotics of the 2D radial sinh-Gordon equation and for n=3 (and with an additional symmetry constraint) they reduce to earlier results for the radial Bullough-Dodd equation. Both of these special cases are examples of Painlevé III and have arisen in various applications. The asymptotics of are derived by computing the small t asymptotics where explicit formulas are given for the quantities ak and bk. The method consists of showing that the resolvent operator of Kk has an approximation in terms of resolvents of certain Wiener-Hopf operators, for which there are explicit integral formulas.

  14. Explicit formula for the Holevo bound for two-parameter qubit-state estimation problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Jun, E-mail: junsuzuki@uec.ac.jp

    The main contribution of this paper is to derive an explicit expression for the fundamental precision bound, the Holevo bound, for estimating any two-parameter family of qubit mixed-states in terms of quantum versions of Fisher information. The obtained formula depends solely on the symmetric logarithmic derivative (SLD), the right logarithmic derivative (RLD) Fisher information, and a given weight matrix. This result immediately provides necessary and sufficient conditions for the following two important classes of quantum statistical models; the Holevo bound coincides with the SLD Cramér-Rao bound and it does with the RLD Cramér-Rao bound. One of the important results ofmore » this paper is that a general model other than these two special cases exhibits an unexpected property: the structure of the Holevo bound changes smoothly when the weight matrix varies. In particular, it always coincides with the RLD Cramér-Rao bound for a certain choice of the weight matrix. Several examples illustrate these findings.« less

  15. Modal Logics with Counting

    NASA Astrophysics Data System (ADS)

    Areces, Carlos; Hoffmann, Guillaume; Denis, Alexandre

    We present a modal language that includes explicit operators to count the number of elements that a model might include in the extension of a formula, and we discuss how this logic has been previously investigated under different guises. We show that the language is related to graded modalities and to hybrid logics. We illustrate a possible application of the language to the treatment of plural objects and queries in natural language. We investigate the expressive power of this logic via bisimulations, discuss the complexity of its satisfiability problem, define a new reasoning task that retrieves the cardinality bound of the extension of a given input formula, and provide an algorithm to solve it.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plachenov, A B; Kudashov, V N; Radin, A M

    Explicit formulas are obtained for a resonator with the fundamental mode in the form of a Gaussian beam with complex astigmatism. The formulas describe the parameters of the beam directly in terms of the ray matrix without using the procedure of finding its eigenvectors. An example is considered. (resonators. modes)

  17. Matrix elements for type 1 unitary irreducible representations of the Lie superalgebra gl(m|n)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gould, Mark D.; Isaac, Phillip S.; Werry, Jason L.

    Using our recent results on eigenvalues of invariants associated to the Lie superalgebra gl(m|n), we use characteristic identities to derive explicit matrix element formulae for all gl(m|n) generators, particularly non-elementary generators, on finite dimensional type 1 unitary irreducible representations. We compare our results with existing works that deal with only subsets of the class of type 1 unitary representations, all of which only present explicit matrix elements for elementary generators. Our work therefore provides an important extension to existing methods, and thus highlights the strength of our techniques which exploit the characteristic identities.

  18. Counting surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group with motivations from string theory and QFT

    NASA Astrophysics Data System (ADS)

    Bibak, Khodakhast; Kapron, Bruce M.; Srinivasan, Venkatesh

    2016-09-01

    Graphs embedded into surfaces have many important applications, in particular, in combinatorics, geometry, and physics. For example, ribbon graphs and their counting is of great interest in string theory and quantum field theory (QFT). Recently, Koch et al. (2013) [12] gave a refined formula for counting ribbon graphs and discussed its applications to several physics problems. An important factor in this formula is the number of surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group. The aim of this paper is to give an explicit and practical formula for the number of such epimorphisms. As a consequence, we obtain an 'equivalent' form of Harvey's famous theorem on the cyclic groups of automorphisms of compact Riemann surfaces. Our main tool is an explicit formula for the number of solutions of restricted linear congruence recently proved by Bibak et al. using properties of Ramanujan sums and of the finite Fourier transform of arithmetic functions.

  19. Non-inverse-square force-distance law for long thin magnets-revisited.

    PubMed

    Darvell, Brian W; Gilding, Brian H

    2012-05-01

    It had previously been shown that the inverse-square law does not apply to the force-distance relationship in the case of a long, thin magnet with one end in close proximity to its image in a permeable plane when simple point-like poles are assumed. Treating the system instead as having a 'polar disc', arising from an assumed bundle of dipoles, led to a double integral that could only be evaluated numerically, and a relationship that still did not match observed behavior. Using an elaborate 'stretched' exponential polynomial to represent the position of an 'elastic' polar disc resulted in a fair representation of the physical response, but this was essentially merely the fitting of an arbitrary function. The present purpose was therefore to find an explicit formula for the force-distance relationship in the polar-disc problem and assess its fit to the previously obtained experimental data. Starting from Coulomb's law a corrected integral formula for the force-distance relationship was derived. The integral in this formula was evaluated explicitly using rescaling, changes of order of integration, reduction by symmetry, and change of variables. The resulting formula was then fitted to data that had been obtained for the force exerted by eighty-five rod-shaped magnets (Alnico V, 3 mm diameter, 170 mm long) perpendicular to a large steel plate, as a function of distance, at small separations (<5 mm). Subsequently, the fit of alternative functions was explored. An explicit formula in terms of elliptic integrals was obtained for the polar-disc problem. Despite the greater fidelity, this too was found not to fit the observed physical behavior. Given that failure, nevertheless a simple formula that conforms closely and parsimoniously to the actual magnet data was found. A key feature remains the marked departure from inverse-square behavior. The failure of the explicit formula to fit the data indicates an inadequate model of the physical system. Nonetheless it constitutes a useful tool for quantifying the force-distance relationship on the premise of polar discs. Given these insights, it may now be possible to address the original motivating problem of the behavior of real dental magnets. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. The Translated Dowling Polynomials and Numbers.

    PubMed

    Mangontarum, Mahid M; Macodi-Ringia, Amila P; Abdulcarim, Normalah S

    2014-01-01

    More properties for the translated Whitney numbers of the second kind such as horizontal generating function, explicit formula, and exponential generating function are proposed. Using the translated Whitney numbers of the second kind, we will define the translated Dowling polynomials and numbers. Basic properties such as exponential generating functions and explicit formula for the translated Dowling polynomials and numbers are obtained. Convexity, integral representation, and other interesting identities are also investigated and presented. We show that the properties obtained are generalizations of some of the known results involving the classical Bell polynomials and numbers. Lastly, we established the Hankel transform of the translated Dowling numbers.

  1. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling.

    PubMed

    Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C; Joyce, Kevin P; Kovalenko, Andriy

    2016-11-01

    Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing ([Formula: see text] for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining [Formula: see text] compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to [Formula: see text]. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple [Formula: see text] correction improved agreement with experiment from [Formula: see text] to [Formula: see text], despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.

  2. Gluons and gravitons at one loop from ambitwistor strings

    NASA Astrophysics Data System (ADS)

    Geyer, Yvonne; Monteiro, Ricardo

    2018-03-01

    We present new and explicit formulae for the one-loop integrands of scattering amplitudes in non-supersymmetric gauge theory and gravity, valid for any number of particles. The results exhibit the colour-kinematics duality in gauge theory and the double-copy relation to gravity, in a form that was recently observed in supersymmetric theories. The new formulae are expressed in a particular representation of the loop integrand, with only one quadratic propagator, which arises naturally from the framework of the loop-level scattering equations. The starting point in our work are the expressions based on the scattering equations that were recently derived from ambitwistor string theory. We turn these expressions into explicit formulae depending only on the loop momentum, the external momenta and the external polarisations. These formulae are valid in any number of spacetime dimensions for pure Yang-Mills theory (gluon) and its natural double copy, NS-NS gravity (graviton, dilaton, B-field), and we also present formulae in four spacetime dimensions for pure gravity (graviton). We perform several tests of our results, such as checking gauge invariance and directly matching our four-particle formulae to previously known expressions. While these tests would be elaborate in a Feynman-type representation of the loop integrand, they become straightforward in the representation we use.

  3. Bidirectional holographic codes and sub-AdS locality

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Hayden, Patrick; Qi, Xiaoliang

    Tensor networks implementing quantum error correcting codes have recently been used as toy models of the holographic duality which explicitly realize some of the more puzzling features of the AdS/CFT correspondence. These models reproduce the Ryu-Takayanagi entropy formula for boundary intervals, and allow bulk operators to be mapped to the boundary in a redundant fashion. These exactly solvable, explicit models have provided valuable insight but nonetheless suffer from many deficiencies, some of which we attempt to address in this talk. We propose a new class of tensor network models that subsume the earlier advances and, in addition, incorporate additional features of holographic duality, including: (1) a holographic interpretation of all boundary states, not just those in a ''code'' subspace, (2) a set of bulk states playing the role of ''classical geometries'' which reproduce the Ryu-Takayanagi formula for boundary intervals, (3) a bulk gauge symmetry analogous to diffeomorphism invariance in gravitational theories, (4) emergent bulk locality for sufficiently sparse excitations, and the ability to describe geometry at sub-AdS resolutions or even flat space. David and Lucile Packard Foundation.

  4. Bidirectional holographic codes and sub-AdS locality

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Hayden, Patrick; Qi, Xiao-Liang

    2016-01-01

    Tensor networks implementing quantum error correcting codes have recently been used to construct toy models of holographic duality explicitly realizing some of the more puzzling features of the AdS/CFT correspondence. These models reproduce the Ryu-Takayanagi entropy formula for boundary intervals, and allow bulk operators to be mapped to the boundary in a redundant fashion. These exactly solvable, explicit models have provided valuable insight but nonetheless suffer from many deficiencies, some of which we attempt to address in this article. We propose a new class of tensor network models that subsume the earlier advances and, in addition, incorporate additional features of holographic duality, including: (1) a holographic interpretation of all boundary states, not just those in a "code" subspace, (2) a set of bulk states playing the role of "classical geometries" which reproduce the Ryu-Takayanagi formula for boundary intervals, (3) a bulk gauge symmetry analogous to diffeomorphism invariance in gravitational theories, (4) emergent bulk locality for sufficiently sparse excitations, and (5) the ability to describe geometry at sub-AdS resolutions or even flat space.

  5. Information entropy of Gegenbauer polynomials and Gaussian quadrature

    NASA Astrophysics Data System (ADS)

    Sánchez-Ruiz, Jorge

    2003-05-01

    In a recent paper (Buyarov V S, López-Artés P, Martínez-Finkelshtein A and Van Assche W 2000 J. Phys. A: Math. Gen. 33 6549-60), an efficient method was provided for evaluating in closed form the information entropy of the Gegenbauer polynomials C(lambda)n(x) in the case when lambda = l in Bbb N. For given values of n and l, this method requires the computation by means of recurrence relations of two auxiliary polynomials, P(x) and H(x), of degrees 2l - 2 and 2l - 4, respectively. Here it is shown that P(x) is related to the coefficients of the Gaussian quadrature formula for the Gegenbauer weights wl(x) = (1 - x2)l-1/2, and this fact is used to obtain the explicit expression of P(x). From this result, an explicit formula is also given for the polynomial S(x) = limnrightarrowinfty P(1 - x/(2n2)), which is relevant to the study of the asymptotic (n rightarrow infty with l fixed) behaviour of the entropy.

  6. Electrically charged black hole on AdS3 : Scale invariance and the Smarr formula

    NASA Astrophysics Data System (ADS)

    Erices, Cristián; Fuentealba, Oscar; Riquelme, Miguel

    2018-01-01

    The Einstein-Maxwell theory with negative cosmological constant in three spacetime dimensions is considered. It is shown that the Smarr relation for the electrically charged Bañados-Teitelboim-Zanelli (BTZ) black hole emerges from two different approaches based on the scaling symmetry of the asymptotic behavior of the fields at infinity. In the first approach, we prove that the conservation law associated to the scale invariance of the action for a class of stationary and circularly symmetric configurations, allows to obtain the Smarr formula as long as a special set of holographic boundary conditions is satisfied. This particular set is singled out making the integrability conditions for the energy compatible with the scale invariance of the reduced action. In the second approach, it is explicitly shown that the Smarr formula is recovered through the Euler theorem for homogeneous functions, provided the same set of holographic boundary conditions is fulfilled.

  7. On a quadrature formula of Gori and Micchelli

    NASA Astrophysics Data System (ADS)

    Yang, Shijun

    2005-04-01

    Sparked by Bojanov (J. Comput. Appl. Math. 70 (1996) 349), we provide an alternate approach to quadrature formulas based on the zeros of the Chebyshev polynomial of the first kind for any weight function w introduced and studied in Gori and Micchelli (Math. Comp. 65 (1996) 1567), thereby improving on their observations. Upon expansion of the divided differences, we obtain explicit expressions for the corresponding Cotes coefficients in Gauss-Turan quadrature formulas for and I(fTn;w) for a Gori-Micchelli weight function. It is also interesting to mention what has been neglected for about 30 years by the literature is that, as a consequence of expansion of the divided differences in the special case when , the solution of the famous Turan's Problem 26 raised in 1980 was in fact implied by a result of Micchelli and Rivlin (IBM J. Res. Develop. 16 (1972) 372) in 1972. Some concluding comments are made in the final section.

  8. Formula for the Transition Probability Induced by Long-range Potential Terms Varying as R-8 and R-10 for Atom-dimer Collisions

    NASA Astrophysics Data System (ADS)

    Matthews, N. F.; Robson, D.; Grant, M. A.

    1990-12-01

    An explicit formula is derived for the transition probability between two different states of the atom-dimer collisional system governed by second-order long-range interaction potential terms varying as R-8 and R-10.

  9. W-transform for exponential stability of second order delay differential equations without damping terms.

    PubMed

    Domoshnitsky, Alexander; Maghakyan, Abraham; Berezansky, Leonid

    2017-01-01

    In this paper a method for studying stability of the equation [Formula: see text] not including explicitly the first derivative is proposed. We demonstrate that although the corresponding ordinary differential equation [Formula: see text] is not exponentially stable, the delay equation can be exponentially stable.

  10. The Radius and Entropy of a Magnetized, Rotating, Fully Convective Star: Analysis with Depth-dependent Mixing Length Theories

    NASA Astrophysics Data System (ADS)

    Ireland, Lewis G.; Browning, Matthew K.

    2018-04-01

    Some low-mass stars appear to have larger radii than predicted by standard 1D structure models; prior work has suggested that inefficient convective heat transport, due to rotation and/or magnetism, may ultimately be responsible. We examine this issue using 1D stellar models constructed using Modules for Experiments in Stellar Astrophysics (MESA). First, we consider standard models that do not explicitly include rotational/magnetic effects, with convective inhibition modeled by decreasing a depth-independent mixing length theory (MLT) parameter α MLT. We provide formulae linking changes in α MLT to changes in the interior specific entropy, and hence to the stellar radius. Next, we modify the MLT formulation in MESA to mimic explicitly the influence of rotation and magnetism, using formulations suggested by Stevenson and MacDonald & Mullan, respectively. We find rapid rotation in these models has a negligible impact on stellar structure, primarily because a star’s adiabat, and hence its radius, is predominantly affected by layers near the surface; convection is rapid and largely uninfluenced by rotation there. Magnetic fields, if they influenced convective transport in the manner described by MacDonald & Mullan, could lead to more noticeable radius inflation. Finally, we show that these non-standard effects on stellar structure can be fabricated using a depth-dependent α MLT: a non-magnetic, non-rotating model can be produced that is virtually indistinguishable from one that explicitly parameterizes rotation and/or magnetism using the two formulations above. We provide formulae linking the radially variable α MLT to these putative MLT reformulations.

  11. Dynamics of the Smooth Positons of the Wadati-Konno-Ichikawa Equation

    NASA Astrophysics Data System (ADS)

    Wang, Gai-Hua; Zhang, Yong-Shuai; He, Jing-Song

    2018-03-01

    We discuss a modified Wadati-Konno-Ichikawa (mWKI) equation, which is equivalent to the WKI equation by a hodograph transformation. The explicit formula of degenerated solution of mWKI equation is provided by using degenerate Darboux transformation with respect to the eigenvalues, which yields two kinds of smooth solutions possessing the vanishing and nonvanishing boundary conditions respectively. In particular, a method for the decomposition of modulus square is operated to the positon solution, and the approximate orbits before and after collision of positon solutions are displayed explicitly. Supported by the National Natural Science Foundation of China under Grant No. 11671219, the K. C. Wong Magna Fund in Ningbo University

  12. Statistical Analysis on the Performance of Molecular Mechanics Poisson-Boltzmann Surface Area versus Absolute Binding Free Energy Calculations: Bromodomains as a Case Study.

    PubMed

    Aldeghi, Matteo; Bodkin, Michael J; Knapp, Stefan; Biggin, Philip C

    2017-09-25

    Binding free energy calculations that make use of alchemical pathways are becoming increasingly feasible thanks to advances in hardware and algorithms. Although relative binding free energy (RBFE) calculations are starting to find widespread use, absolute binding free energy (ABFE) calculations are still being explored mainly in academic settings due to the high computational requirements and still uncertain predictive value. However, in some drug design scenarios, RBFE calculations are not applicable and ABFE calculations could provide an alternative. Computationally cheaper end-point calculations in implicit solvent, such as molecular mechanics Poisson-Boltzmann surface area (MMPBSA) calculations, could too be used if one is primarily interested in a relative ranking of affinities. Here, we compare MMPBSA calculations to previously performed absolute alchemical free energy calculations in their ability to correlate with experimental binding free energies for three sets of bromodomain-inhibitor pairs. Different MMPBSA approaches have been considered, including a standard single-trajectory protocol, a protocol that includes a binding entropy estimate, and protocols that take into account the ligand hydration shell. Despite the improvements observed with the latter two MMPBSA approaches, ABFE calculations were found to be overall superior in obtaining correlation with experimental affinities for the test cases considered. A difference in weighted average Pearson ([Formula: see text]) and Spearman ([Formula: see text]) correlations of 0.25 and 0.31 was observed when using a standard single-trajectory MMPBSA setup ([Formula: see text] = 0.64 and [Formula: see text] = 0.66 for ABFE; [Formula: see text] = 0.39 and [Formula: see text] = 0.35 for MMPBSA). The best performing MMPBSA protocols returned weighted average Pearson and Spearman correlations that were about 0.1 inferior to ABFE calculations: [Formula: see text] = 0.55 and [Formula: see text] = 0.56 when including an entropy estimate, and [Formula: see text] = 0.53 and [Formula: see text] = 0.55 when including explicit water molecules. Overall, the study suggests that ABFE calculations are indeed the more accurate approach, yet there is also value in MMPBSA calculations considering the lower compute requirements, and if agreement to experimental affinities in absolute terms is not of interest. Moreover, for the specific protein-ligand systems considered in this study, we find that including an explicit ligand hydration shell or a binding entropy estimate in the MMPBSA calculations resulted in significant performance improvements at a negligible computational cost.

  13. On the Matrix Exponential Function

    ERIC Educational Resources Information Center

    Hou, Shui-Hung; Hou, Edwin; Pang, Wan-Kai

    2006-01-01

    A novel and simple formula for computing the matrix exponential function is presented. Specifically, it can be used to derive explicit formulas for the matrix exponential of a general matrix A satisfying p(A) = 0 for a polynomial p(s). It is ready for use in a classroom and suitable for both hand as well as symbolic computation.

  14. Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots

    NASA Astrophysics Data System (ADS)

    Ham, J.-Y.; Lee, J.

    2016-09-01

    We calculate the Chern-Simons invariants of twist-knot orbifolds using the Schläfli formula for the generalized Chern-Simons function on the family of twist knot cone-manifold structures. Following the general instruction of Hilden, Lozano, and Montesinos-Amilibia, we here present concrete formulae and calculations. We use the Pythagorean Theorem, which was used by Ham, Mednykh and Petrov, to relate the complex length of the longitude and the complex distance between the two axes fixed by two generators. As an application, we calculate the Chern-Simons invariants of cyclic coverings of the hyperbolic twist-knot orbifolds. We also derive some interesting results. The explicit formulae of the A-polynomials of twist knots are obtained from the complex distance polynomials. Hence the edge polynomials corresponding to the edges of the Newton polygons of the A-polynomials of twist knots can be obtained. In particular, the number of boundary components of every incompressible surface corresponding to slope -4n+2 turns out to be 2. Bibliography: 39 titles.

  15. Double-time correlation functions of two quantum operations in open systems

    NASA Astrophysics Data System (ADS)

    Ban, Masashi

    2017-10-01

    A double-time correlation function of arbitrary two quantum operations is studied for a nonstationary open quantum system which is in contact with a thermal reservoir. It includes a usual correlation function, a linear response function, and a weak value of an observable. Time evolution of the correlation function can be derived by means of the time-convolution and time-convolutionless projection operator techniques. For this purpose, a quasidensity operator accompanied by a fictitious field is introduced, which makes it possible to derive explicit formulas for calculating a double-time correlation function in the second-order approximation with respect to a system-reservoir interaction. The derived formula explicitly shows that the quantum regression theorem for calculating the double-time correlation function cannot be used if a thermal reservoir has a finite correlation time. Furthermore, the formula is applied for a pure dephasing process and a linear dissipative process. The quantum regression theorem and the the Leggett-Garg inequality are investigated for an open two-level system. The results are compared with those obtained by exact calculation to examine whether the formula is a good approximation.

  16. Closed form of the Baker-Campbell-Hausdorff formula for the generators of semisimple complex Lie algebras

    NASA Astrophysics Data System (ADS)

    Matone, Marco

    2016-11-01

    Recently it has been introduced an algorithm for the Baker-Campbell-Hausdorff (BCH) formula, which extends the Van-Brunt and Visser recent results, leading to new closed forms of BCH formula. More recently, it has been shown that there are 13 types of such commutator algebras. We show, by providing the explicit solutions, that these include the generators of the semisimple complex Lie algebras. More precisely, for any pair, X, Y of the Cartan-Weyl basis, we find W, linear combination of X, Y, such that exp (X) exp (Y)=exp (W). The derivation of such closed forms follows, in part, by using the above mentioned recent results. The complete derivation is provided by considering the structure of the root system. Furthermore, if X, Y, and Z are three generators of the Cartan-Weyl basis, we find, for a wide class of cases, W, a linear combination of X, Y and Z, such that exp (X) exp (Y) exp (Z)=exp (W). It turns out that the relevant commutator algebras are type 1c-i, type 4 and type 5. A key result concerns an iterative application of the algorithm leading to relevant extensions of the cases admitting closed forms of the BCH formula. Here we provide the main steps of such an iteration that will be developed in a forthcoming paper.

  17. Geometric description of a discrete power function associated with the sixth Painlevé equation.

    PubMed

    Joshi, Nalini; Kajiwara, Kenji; Masuda, Tetsu; Nakazono, Nobutaka; Shi, Yang

    2017-11-01

    In this paper, we consider the discrete power function associated with the sixth Painlevé equation. This function is a special solution of the so-called cross-ratio equation with a similarity constraint. We show in this paper that this system is embedded in a cubic lattice with [Formula: see text] symmetry. By constructing the action of [Formula: see text] as a subgroup of [Formula: see text], i.e. the symmetry group of P VI , we show how to relate [Formula: see text] to the symmetry group of the lattice. Moreover, by using translations in [Formula: see text], we explain the odd-even structure appearing in previously known explicit formulae in terms of the τ function.

  18. A Compact Formula for Rotations as Spin Matrix Polynomials

    DOE PAGES

    Curtright, Thomas L.; Fairlie, David B.; Zachos, Cosmas K.

    2014-08-12

    Group elements of SU(2) are expressed in closed form as finite polynomials of the Lie algebra generators, for all definite spin representations of the rotation group. Here, the simple explicit result exhibits connections between group theory, combinatorics, and Fourier analysis, especially in the large spin limit. Salient intuitive features of the formula are illustrated and discussed.

  19. A Boundary Value Problem for Introductory Physics?

    ERIC Educational Resources Information Center

    Grundberg, Johan

    2008-01-01

    The Laplace equation has applications in several fields of physics, and problems involving this equation serve as paradigms for boundary value problems. In the case of the Laplace equation in a disc there is a well-known explicit formula for the solution: Poisson's integral. We show how one can derive this formula, and in addition two equivalent…

  20. Poisson Coordinates.

    PubMed

    Li, Xian-Ying; Hu, Shi-Min

    2013-02-01

    Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.

  1. Teaching Formulaic Sequences in the Classroom: Effects on Spoken Fluency

    ERIC Educational Resources Information Center

    McGuire, Michael; Larson-Hall, Jenifer

    2017-01-01

    Formulaic sequences (FS) are frequently used by native speakers and have been found to help non-native speakers sound more fluent as well. We hypothesized that explicitly teaching FS to classroom ESL learners would increase the use of such language, which could further result in increased second language (L2) fluency. We report on a 5-week study…

  2. A "Paperclip" Approach to Curvature, Torsion, and the Frenet-Serret Formulas

    ERIC Educational Resources Information Center

    Hoensch, Ulrich A.

    2009-01-01

    We explore how curvature and torsion determine the shape of a curve via the Frenet-Serret formulas. The connection is made explicit using the existence of solutions to ordinary differential equations. We use a paperclip as a concrete, visual example and generate its graph in 3-space using a CAS. We also show how certain physical deformations to…

  3. Conformally Invariant Powers of the Laplacian, Q-Curvature, and Tractor Calculus

    NASA Astrophysics Data System (ADS)

    Gover, A. Rod; Peterson, Lawrence J.

    We describe an elementary algorithm for expressing, as explicit formulae in tractor calculus, the conformally invariant GJMS operators due to C.R. Graham et alia. These differential operators have leading part a power of the Laplacian. Conformal tractor calculus is the natural induced bundle calculus associated to the conformal Cartan connection. Applications discussed include standard formulae for these operators in terms of the Levi-Civita connection and its curvature and a direct definition and formula for T. Branson's so-called Q-curvature (which integrates to a global conformal invariant) as well as generalisations of the operators and the Q-curvature. Among examples, the operators of order 4, 6 and 8 and the related Q-curvatures are treated explicitly. The algorithm exploits the ambient metric construction of Fefferman and Graham and includes a procedure for converting the ambient curvature and its covariant derivatives into tractor calculus expressions. This is partly based on [12], where the relationship of the normal standard tractor bundle to the ambient construction is described.

  4. Scalar products of Bethe vectors in models with {\\mathfrak{gl}}(2| 1) symmetry 1. Super-analog of Reshetikhin formula

    NASA Astrophysics Data System (ADS)

    Hutsalyuk, A.; Liashyk, A.; Pakuliak, S. Z.; Ragoucy, E.; Slavnov, N. A.

    2016-11-01

    We study the scalar products of Bethe vectors in integrable models solvable by the nested algebraic Bethe ansatz and possessing {gl}(2| 1) symmetry. Using explicit formulas of the monodromy matrix entries’ multiple actions onto Bethe vectors we obtain a representation for the scalar product in the most general case. This explicit representation appears to be a sum over partitions of the Bethe parameters. It can be used for the analysis of scalar products involving on-shell Bethe vectors. As a by-product, we obtain a determinant representation for the scalar products of generic Bethe vectors in integrable models with {gl}(1| 1) symmetry. Dedicated to the memory of Petr Petrovich Kulish.

  5. Generalization of the Time-Energy Uncertainty Relation of Anandan-Aharonov Type

    NASA Technical Reports Server (NTRS)

    Hirayama, Minoru; Hamada, Takeshi; Chen, Jin

    1996-01-01

    A new type of time-energy uncertainty relation was proposed recently by Anandan and Aharonov. Their formula, to estimate the lower bound of time-integral of the energy-fluctuation in a quantum state is generalized to the one involving a set of quantum states. This is achieved by obtaining an explicit formula for the distance between two finitely separated points in the Grassman manifold.

  6. Calabi-Yau structures on categories of matrix factorizations

    NASA Astrophysics Data System (ADS)

    Shklyarov, Dmytro

    2017-09-01

    Using tools of complex geometry, we construct explicit proper Calabi-Yau structures, that is, non-degenerate cyclic cocycles on differential graded categories of matrix factorizations of regular functions with isolated critical points. The formulas involve the Kapustin-Li trace and its higher corrections. From the physics perspective, our result yields explicit 'off-shell' models for categories of topological D-branes in B-twisted Landau-Ginzburg models.

  7. The Critical Z-Invariant Ising Model via Dimers: Locality Property

    NASA Astrophysics Data System (ADS)

    Boutillier, Cédric; de Tilière, Béatrice

    2011-01-01

    We study a large class of critical two-dimensional Ising models, namely critical Z-invariant Ising models. Fisher (J Math Phys 7:1776-1781, 1966) introduced a correspondence between the Ising model and the dimer model on a decorated graph, thus setting dimer techniques as a powerful tool for understanding the Ising model. In this paper, we give a full description of the dimer model corresponding to the critical Z-invariant Ising model, consisting of explicit expressions which only depend on the local geometry of the underlying isoradial graph. Our main result is an explicit local formula for the inverse Kasteleyn matrix, in the spirit of Kenyon (Invent Math 150(2):409-439, 2002), as a contour integral of the discrete exponential function of Mercat (Discrete period matrices and related topics, 2002) and Kenyon (Invent Math 150(2):409-439, 2002) multiplied by a local function. Using results of Boutillier and de Tilière (Prob Theor Rel Fields 147(3-4):379-413, 2010) and techniques of de Tilière (Prob Th Rel Fields 137(3-4):487-518, 2007) and Kenyon (Invent Math 150(2):409-439, 2002), this yields an explicit local formula for a natural Gibbs measure, and a local formula for the free energy. As a corollary, we recover Baxter's formula for the free energy of the critical Z-invariant Ising model (Baxter, in Exactly solved models in statistical mechanics, Academic Press, London, 1982), and thus a new proof of it. The latter is equal, up to a constant, to the logarithm of the normalized determinant of the Laplacian obtained in Kenyon (Invent Math 150(2):409-439, 2002).

  8. Design of price incentives for adjunct policy goals in formula funding for hospitals and health services

    PubMed Central

    Duckett, Stephen J

    2008-01-01

    Background Hospital policy involves multiple objectives: efficiency of service delivery, pursuit of high quality care, promoting access. Funding policy based on hospital casemix has traditionally been considered to be only about promoting efficiency. Discussion Formula-based funding policy can be (and has been) used to pursue a range of policy objectives, not only efficiency. These are termed 'adjunct' goals. Strategies to incorporate adjunct goals into funding design must, implicitly or explicitly, address key decision choices outlined in this paper. Summary Policy must be clear and explicit about the behaviour to be rewarded; incentives must be designed so that all facilities with an opportunity to improve have an opportunity to benefit; the reward structure is stable and meaningful; and the funder monitors performance and gaming. PMID:18384694

  9. Numerically stable formulas for a particle-based explicit exponential integrator

    NASA Astrophysics Data System (ADS)

    Nadukandi, Prashanth

    2015-05-01

    Numerically stable formulas are presented for the closed-form analytical solution of the X-IVAS scheme in 3D. This scheme is a state-of-the-art particle-based explicit exponential integrator developed for the particle finite element method. Algebraically, this scheme involves two steps: (1) the solution of tangent curves for piecewise linear vector fields defined on simplicial meshes and (2) the solution of line integrals of piecewise linear vector-valued functions along these tangent curves. Hence, the stable formulas presented here have general applicability, e.g. exact integration of trajectories in particle-based (Lagrangian-type) methods, flow visualization and computer graphics. The Newton form of the polynomial interpolation definition is used to express exponential functions of matrices which appear in the analytical solution of the X-IVAS scheme. The divided difference coefficients in these expressions are defined in a piecewise manner, i.e. in a prescribed neighbourhood of removable singularities their series approximations are computed. An optimal series approximation of divided differences is presented which plays a critical role in this methodology. At least ten significant decimal digits in the formula computations are guaranteed to be exact using double-precision floating-point arithmetic. The worst case scenarios occur in the neighbourhood of removable singularities found in fourth-order divided differences of the exponential function.

  10. The singular behavior of massive QCD amplitudes

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander; Moch, Sven-Olaf

    2007-05-01

    We discuss the structure of infrared singularities in on-shell QCD amplitudes with massive partons and present a general factorization formula in the limit of small parton masses. The factorization formula gives rise to an all-order exponentiation of both, the soft poles in dimensional regularization and the large collinear logarithms of the parton masses. Moreover, it provides a universal relation between any on-shell amplitude with massive external partons and its corresponding massless amplitude. For the form factor of a heavy quark we present explicit results including the fixed-order expansion up to three loops in the small mass limit. For general scattering processes we show how our constructive method applies to the computation of all singularities as well as the constant (mass-independent) terms of a generic massive n-parton QCD amplitude up to the next-to-next-to-leading order corrections.

  11. Exact analysis of intrinsic qualitative features of phosphorelays using mathematical models.

    PubMed

    Knudsen, Michael; Feliu, Elisenda; Wiuf, Carsten

    2012-05-07

    Phosphorelays are a class of signaling mechanisms used by cells to respond to changes in their environment. Phosphorelays (of which two-component systems constitute a special case) are particularly abundant in prokaryotes and have been shown to be involved in many fundamental processes such as stress response, osmotic regulation, virulence, and chemotaxis. We develop a general model of phosphorelays extending existing models of phosphorelays and two-component systems. We analyze the model analytically under the assumption of mass-action kinetics and prove that a phosphorelay has a unique stable steady-state. Furthermore, we derive explicit functions relating stimulus to the response in any layer of a phosphorelay and show that a limited degree of ultrasensitivity in the bottom layer of a phosphorelay is an intrinsic feature which does not depend on any reaction rates or substrate amounts. On the other hand, we show how adjusting reaction rates and substrate amounts may lead to higher degrees of ultrasensitivity in intermediate layers. The explicit formulas also enable us to prove how the response changes with alterations in stimulus, kinetic parameters, and substrate amounts. Aside from providing biological insight, the formulas may also be used to replace the time-consuming simulations in numerical analyses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Finite-size analysis of the detectability limit of the stochastic block model

    NASA Astrophysics Data System (ADS)

    Young, Jean-Gabriel; Desrosiers, Patrick; Hébert-Dufresne, Laurent; Laurence, Edward; Dubé, Louis J.

    2017-06-01

    It has been shown in recent years that the stochastic block model is sometimes undetectable in the sparse limit, i.e., that no algorithm can identify a partition correlated with the partition used to generate an instance, if the instance is sparse enough and infinitely large. In this contribution, we treat the finite case explicitly, using arguments drawn from information theory and statistics. We give a necessary condition for finite-size detectability in the general SBM. We then distinguish the concept of average detectability from the concept of instance-by-instance detectability and give explicit formulas for both definitions. Using these formulas, we prove that there exist large equivalence classes of parameters, where widely different network ensembles are equally detectable with respect to our definitions of detectability. In an extensive case study, we investigate the finite-size detectability of a simplified variant of the SBM, which encompasses a number of important models as special cases. These models include the symmetric SBM, the planted coloring model, and more exotic SBMs not previously studied. We conclude with three appendices, where we study the interplay of noise and detectability, establish a connection between our information-theoretic approach and random matrix theory, and provide proofs of some of the more technical results.

  13. Local approximation of a metapopulation's equilibrium.

    PubMed

    Barbour, A D; McVinish, R; Pollett, P K

    2018-04-18

    We consider the approximation of the equilibrium of a metapopulation model, in which a finite number of patches are randomly distributed over a bounded subset [Formula: see text] of Euclidean space. The approximation is good when a large number of patches contribute to the colonization pressure on any given unoccupied patch, and when the quality of the patches varies little over the length scale determined by the colonization radius. If this is the case, the equilibrium probability of a patch at z being occupied is shown to be close to [Formula: see text], the equilibrium occupation probability in Levins's model, at any point [Formula: see text] not too close to the boundary, if the local colonization pressure and extinction rates appropriate to z are assumed. The approximation is justified by giving explicit upper and lower bounds for the occupation probabilities, expressed in terms of the model parameters. Since the patches are distributed randomly, the occupation probabilities are also random, and we complement our bounds with explicit bounds on the probability that they are satisfied at all patches simultaneously.

  14. Universality of entropy scaling in one dimensional gapless models.

    PubMed

    Korepin, V E

    2004-03-05

    We consider critical models in one dimension. We study the ground state in the thermodynamic limit (infinite lattice). We are interested in an entropy of a subsystem. We calculate the entropy of a part of the ground state from a space interval (0,x). At zero temperature it describes the entanglement of the part of the ground state from this interval with the rest of the ground state. We obtain an explicit formula for the entropy of the subsystem at any temperature. At zero temperature our formula reproduces a logarithmic formula, discovered by Vidal, Latorre, Rico, and Kitaev for spin chains. We prove our formula by means of conformal field theory and the second law of thermodynamics. Our formula is universal. We illustrate it for a Bose gas with a delta interaction and for the Hubbard model.

  15. Lagrange thermodynamic potential and intrinsic variables for He-3 He-4 dilute solutions

    NASA Technical Reports Server (NTRS)

    Jackson, H. W.

    1983-01-01

    For a two-fluid model of dilute solutions of He-3 in liquid He-4, a thermodynamic potential is constructed that provides a Lagrangian for deriving equations of motion by a variational procedure. This Lagrangian is defined for uniform velocity fields as a (negative) Legendre transform of total internal energy, and its primary independent variables, together with their thermodynamic conjugates, are identified. Here, similarities between relations in classical physics and quantum statistical mechanics serve as a guide for developing an alternate expression for this function that reveals its character as the difference between apparent kinetic energy and intrinsic internal energy. When the He-3 concentration in the mixtures tends to zero, this expression reduces to Zilsel's formula for the Lagrangian for pure liquid He-4. An investigation of properties of the intrinsic internal energy leads to the introduction of intrinsic chemical potentials along with other intrinsic variables for the mixtures. Explicit formulas for these variables are derived for a noninteracting elementary excitation model of the fluid. Using these formulas and others also derived from quantum statistical mechanics, another equivalent expression for the Lagrangian is generated.

  16. Implementation of Rosenbrock methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shampine, L. F.

    1980-11-01

    Rosenbrock formulas have shown promise in research codes for the solution of initial-value problems for stiff systems of ordinary differential equations (ODEs). To help assess their practical value, the author wrote an item of mathematical software based on such a formula. This required a variety of algorithmic and software developments. Those of general interest are reported in this paper. Among them is a way to select automatically, at every step, an explicit Runge-Kutta formula or a Rosenbrock formula according to the stiffness of the problem. Solving linear systems is important to methods for stiff ODEs, and is rather special formore » Rosenbrock methods. A cheap, effective estimate of the condition of the linear systems is derived. Some numerical results are presented to illustrate the developments.« less

  17. Discrete maximal regularity of time-stepping schemes for fractional evolution equations.

    PubMed

    Jin, Bangti; Li, Buyang; Zhou, Zhi

    2018-01-01

    In this work, we establish the maximal [Formula: see text]-regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order [Formula: see text], [Formula: see text], in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank-Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis (Math Ann 319:735-758, 2001. doi:10.1007/PL00004457) and its discrete analogue due to Blunck (Stud Math 146:157-176, 2001. doi:10.4064/sm146-2-3). These results generalize the corresponding results for parabolic problems.

  18. Equivalence of quantum Boltzmann equation and Kubo formula for dc conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Z.B.; Chen, L.Y.

    1990-02-01

    This paper presents a derivation of the quantum Boltzmann equation for linear dc transport with a correction term to Mahan-Hansch's equations and derive a formal solution to it. Based on this formal solution, the authors find the electric conductivity can be expressed as the retarded current-current correlation. Therefore, the authors explicitly demonstrate the equivalence of the two most important theoretical methods: quantum Boltzmann equation and Kubo formula.

  19. Diffracted wavefield by an arbitrary aperture from Maggi-Rubinowicz transformation

    NASA Astrophysics Data System (ADS)

    Ganci, S.

    2008-01-01

    Fraunhofer diffraction patterns through apertures in opaque screens are the cases of most interest in optics. The major purpose of this paper is to establish a general and explicit formula for calculating diffracted wavefield from Maggi-Rubinowicz transformation. The 2-D integration (Rayleigh-Sommerfeld or Helmholtz-Kirchhoff integral formulas) is reduced to a 1-D integration over the rim of the aperture. Some examples for elliptical and polygonal apertures are given.

  20. Optimal generalized multistep integration formulae for real-time digital simulation

    NASA Technical Reports Server (NTRS)

    Moerder, D. D.; Halyo, N.

    1985-01-01

    The problem of discretizing a dynamical system for real-time digital simulation is considered. Treating the system and its simulation as stochastic processes leads to a statistical characterization of simulator fidelity. A plant discretization procedure based on an efficient matrix generalization of explicit linear multistep discrete integration formulae is introduced, which minimizes a weighted sum of the mean squared steady-state and transient error between the system and simulator outputs.

  1. Asymptotics of bivariate generating functions with algebraic singularities

    NASA Astrophysics Data System (ADS)

    Greenwood, Torin

    Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of uni- variate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reducing to the univariate case. Pemantle and Wilson (2013) outlined new multivariate ana- lytic techniques and used them to analyze the coefficients of rational generating functions. After overviewing these methods, we use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing the integrand near these points, leading to explicit asymptotic formulae. Next, we use this formula to analyze an example from current research. In the following chapter, we apply multivariate analytic techniques to quan- tum walks. Bressler and Pemantle (2007) found a (d + 1)-dimensional rational generating function whose coefficients described the amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the amplitude of a particle in a given position, normalized by the number of steps n, as n approaches infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using Groebner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling window of size the square root of n near the peaks, each amplitude is asymptotic to an Airy function.

  2. A Natural Language for AdS/CFT Correlators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, A.Liam; /Boston U.; Kaplan, Jared

    2012-02-14

    We provide dramatic evidence that 'Mellin space' is the natural home for correlation functions in CFTs with weakly coupled bulk duals. In Mellin space, CFT correlators have poles corresponding to an OPE decomposition into 'left' and 'right' sub-correlators, in direct analogy with the factorization channels of scattering amplitudes. In the regime where these correlators can be computed by tree level Witten diagrams in AdS, we derive an explicit formula for the residues of Mellin amplitudes at the corresponding factorization poles, and we use the conformal Casimir to show that these amplitudes obey algebraic finite difference equations. By analyzing the recursivemore » structure of our factorization formula we obtain simple diagrammatic rules for the construction of Mellin amplitudes corresponding to tree-level Witten diagrams in any bulk scalar theory. We prove the diagrammatic rules using our finite difference equations. Finally, we show that our factorization formula and our diagrammatic rules morph into the flat space S-Matrix of the bulk theory, reproducing the usual Feynman rules, when we take the flat space limit of AdS/CFT. Throughout we emphasize a deep analogy with the properties of flat space scattering amplitudes in momentum space, which suggests that the Mellin amplitude may provide a holographic definition of the flat space S-Matrix.« less

  3. Explicitly computing geodetic coordinates from Cartesian coordinates

    NASA Astrophysics Data System (ADS)

    Zeng, Huaien

    2013-04-01

    This paper presents a new form of quartic equation based on Lagrange's extremum law and a Groebner basis under the constraint that the geodetic height is the shortest distance between a given point and the reference ellipsoid. A very explicit and concise formulae of the quartic equation by Ferrari's line is found, which avoids the need of a good starting guess for iterative methods. A new explicit algorithm is then proposed to compute geodetic coordinates from Cartesian coordinates. The convergence region of the algorithm is investigated and the corresponding correct solution is given. Lastly, the algorithm is validated with numerical experiments.

  4. Measure-valued solutions to nonlocal transport equations on networks

    NASA Astrophysics Data System (ADS)

    Camilli, Fabio; De Maio, Raul; Tosin, Andrea

    2018-06-01

    Aiming to describe traffic flow on road networks with long-range driver interactions, we study a nonlinear transport equation defined on an oriented network where the velocity field depends not only on the state variable but also on the distribution of the population. We prove existence, uniqueness and continuous dependence results of the solution intended in a suitable measure-theoretic sense. We also provide a representation formula in terms of the push-forward of the initial and boundary data along the network and discuss an explicit example of nonlocal velocity field fitting our framework.

  5. Green operators for low regularity spacetimes

    NASA Astrophysics Data System (ADS)

    Sanchez Sanchez, Yafet; Vickers, James

    2018-02-01

    In this paper we define and construct advanced and retarded Green operators for the wave operator on spacetimes with low regularity. In order to do so we require that the spacetime satisfies the condition of generalised hyperbolicity which is equivalent to well-posedness of the classical inhomogeneous problem with zero initial data where weak solutions are properly supported. Moreover, we provide an explicit formula for the kernel of the Green operators in terms of an arbitrary eigenbasis of H 1 and a suitable Green matrix that solves a system of second order ODEs.

  6. The influence of learning and updating speed on the growth of commercial websites

    NASA Astrophysics Data System (ADS)

    Wan, Xiaoji; Deng, Guishi; Bai, Yang; Xue, Shaowei

    2012-08-01

    In this paper, we study the competition model of commercial websites with learning and updating speed, and further analyze the influence of learning and updating speed on the growth of commercial websites from a nonlinear dynamics perspective. Using the center manifold theory and the normal form method, we give the explicit formulas determining the stability and periodic fluctuation of commercial sites. Numerical simulations reveal that sites periodically fluctuate as the speed of learning and updating crosses one threshold. The study provides reference and evidence for website operators to make decisions.

  7. Traveling waves in a spring-block chain sliding down a slope

    NASA Astrophysics Data System (ADS)

    Morales, J. E.; James, G.; Tonnelier, A.

    2017-07-01

    Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit. The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.

  8. Traveling waves in a spring-block chain sliding down a slope.

    PubMed

    Morales, J E; James, G; Tonnelier, A

    2017-07-01

    Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit. The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.

  9. Higher-Loop Amplitude Monodromy Relations in String and Gauge Theory.

    PubMed

    Tourkine, Piotr; Vanhove, Pierre

    2016-11-18

    The monodromy relations in string theory provide a powerful and elegant formalism to understand some of the deepest properties of tree-level field theory amplitudes, like the color-kinematics duality. This duality has been instrumental in tremendous progress on the computations of loop amplitudes in quantum field theory, but a higher-loop generalization of the monodromy construction was lacking. In this Letter, we extend the monodromy relations to higher loops in open string theory. Our construction, based on a contour deformation argument of the open string diagram integrands, leads to new identities that relate planar and nonplanar topologies in string theory. We write one and two-loop monodromy formulas explicitly at any multiplicity. In the field theory limit, at one-loop we obtain identities that reproduce known results. At two loops, we check our formulas by unitarity in the case of the four-point N=4 super-Yang-Mills amplitude.

  10. Viscous damping and spring force in periodic perforated planar microstructures when the Reynolds’ equation cannot be applied

    PubMed Central

    Homentcovschi, Dorel; Miles, Ronald N.

    2010-01-01

    A model of squeeze-film behavior is developed based on Stokes’ equations for viscous, compressible isothermal flows. The flow domain is an axisymmetrical, unit cell approximation of a planar, periodic, perforated microstructure. The model is developed for cases when the lubrication approximation cannot be applied. The complex force generated by vibrations of the diaphragm driving the flow has two components: the damping force and the spring force. While for large frequencies the spring force dominates, at low (acoustical) frequencies the damping force is the most important part. The analytical approach developed here yields an explicit formula for both forces. In addition, using a finite element software package, the damping force is also obtained numerically. A comparison is made between the analytic result, numerical solution, and some experimental data found in the literature, which validates the analytic formula and provides compelling arguments about its value in designing microelectomechanical devices. PMID:20329828

  11. Study of the Ernst metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esteban, E.P.

    In this thesis some properties of the Ernst metric are studied. This metric could provide a model for a Schwarzschild black hole immersed in a magnetic field. In chapter I, some standard propertiess of the Ernst's metric such as the affine connections, the Riemann, the Ricci, and the Weyl conformal tensor are calculated. In chapter II, the geodesics described by test particles in the Ernst space-time are studied. As an application a formula for the perihelion shift is derived. In the last chapter a null tetrad analysis of the Ernst metric is carried out and the resulting formalism applied tomore » the study of three problems. First, the algebraic classification of the Ernst metric is determined to be of type I in the Petrov scheme. Secondly, an explicit formula for the Gaussian curvature for the event horizon is derived. Finally, the form of the electromagnetic field is evaluated.« less

  12. Quasi-Classical Asymptotics for the Pauli Operator

    NASA Astrophysics Data System (ADS)

    Sobolev, Alexander V.

    We study the behaviour of the sums of the eigenvalues of the Pauli operator in , in a magnetic field and electric field V(x) as the Planck constant ħ tends to zero and the magnetic field strength μ tends to infinity. We show that for the sum obeys the natural Weyl type formula where σ = (d- 2)/2 + γ, with an explicit constant Cγ, d. If the field B has a constant direction, then this formula is uniform in μ>= 0. The method is based on Colin de Verdiere's approach proposed in his work on ``magnetic bottles'' (Commun. Math Phys, 105 , 327-335 (1986)).

  13. Geometrically derived difference formulae for the numerical integration of trajectory problems

    NASA Technical Reports Server (NTRS)

    Mcleod, R. J. Y.; Sanz-Serna, J. M.

    1981-01-01

    The term 'trajectory problem' is taken to include problems that can arise, for instance, in connection with contour plotting, or in the application of continuation methods, or during phase-plane analysis. Geometrical techniques are used to construct difference methods for these problems to produce in turn explicit and implicit circularly exact formulae. Based on these formulae, a predictor-corrector method is derived which, when compared with a closely related standard method, shows improved performance. It is found that this latter method produces spurious limit cycles, and this behavior is partly analyzed. Finally, a simple variable-step algorithm is constructed and tested.

  14. New Formulae for the High-Order Derivatives of Some Jacobi Polynomials: An Application to Some High-Order Boundary Value Problems

    PubMed Central

    Abd-Elhameed, W. M.

    2014-01-01

    This paper is concerned with deriving some new formulae expressing explicitly the high-order derivatives of Jacobi polynomials whose parameters difference is one or two of any degree and of any order in terms of their corresponding Jacobi polynomials. The derivatives formulae for Chebyshev polynomials of third and fourth kinds of any degree and of any order in terms of their corresponding Chebyshev polynomials are deduced as special cases. Some new reduction formulae for summing some terminating hypergeometric functions of unit argument are also deduced. As an application, and with the aid of the new introduced derivatives formulae, an algorithm for solving special sixth-order boundary value problems are implemented with the aid of applying Galerkin method. A numerical example is presented hoping to ascertain the validity and the applicability of the proposed algorithms. PMID:25386599

  15. Rapid evaluation for dielectronic recombination rate coefficients of the H-like isoelectronic sequence.

    NASA Astrophysics Data System (ADS)

    Teng, H.; Xu, Z.

    1996-09-01

    The authors present a set of accurate formulae for the rapid calculation of dielectronic recombination rate coefficients of H-like ions from Ne (Z = 10) to Ni (Z = 29) with an electron temperature range from 0.6 to 10 keV. This set of formulae are obtained by fitting directly the dielectronic recombination rate coefficients calculated on the basis of the intermediate - coupling multi - configuration Hartree-Fock model made by Karim and Bhalla (1988). The dielectronic recombination rate coefficients from these formulae are in close agreement with the original results of Karim et al. The errors are generally less than 0.1%. The results are also compared with the ones obtained by a set of new rate formulae developed by Hahn. These formulae can be used for generating dielectronic recombination rate coefficients of some H-like ions where the explicit calculations are unavailable. The detailed results are tabulated and discussed.

  16. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    NASA Technical Reports Server (NTRS)

    Walker, M.; Will, C. M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluates the appropriate asymptotic quantities by matching along the correct space-time light cones.

  17. Exact Solution of the Classical Dimer Model on a Triangular Lattice: Monomer-Monomer Correlations

    NASA Astrophysics Data System (ADS)

    Basor, Estelle; Bleher, Pavel

    2017-12-01

    We obtain an asymptotic formula, as {n\\to∞}, for the monomer-monomer correlation function {K_2(n)} in the classical dimer model on a triangular lattice, with the horizontal and vertical weights {w_h=w_v=1} and the diagonal weight {w_d=t > 0}, between two monomers at vertices q and r that are n spaces apart in adjacent rows. We find that {t_c=1/2} is a critical value of t. We prove that in the subcritical case, {0 < t < 1/2}, as {n\\to∞, K_2(n)=K_2(∞)[1-e^{-n/ξ}/n \\Big(C_1+C_2(-1)^n+ O(n^{-1})\\Big) ]}, with explicit formulae for {K_2(∞), ξ, C_1}, and {C_2}. In the supercritical case, {1/2 < t < 1}, we prove that as {n\\to∞, K_2(n)=K_2(∞)\\Bigg[1-e^{-n/ξ}/n \\Big(C_1 cos(ω n+φ_1)+C_2(-1)^n cos(ω n+φ_2)+ C_3+C_4(-1)^n + O(n^{-1})\\Big)\\Bigg]}, with explicit formulae for {K_2(∞), ξ,ω}, and {C_1, C_2, C_3, C_4, φ_1, φ_2}. The proof is based on an extension of the Borodin-Okounkov-Case-Geronimo formula to block Toeplitz determinants and on an asymptotic analysis of the Fredholm determinants in hand.

  18. Mutual potential between two rigid bodies with arbitrary shapes and mass distributions

    NASA Astrophysics Data System (ADS)

    Hou, Xiyun; Scheeres, Daniel J.; Xin, Xiaosheng

    2017-03-01

    Formulae to compute the mutual potential, force, and torque between two rigid bodies are given. These formulae are expressed in Cartesian coordinates using inertia integrals. They are valid for rigid bodies with arbitrary shapes and mass distributions. By using recursive relations, these formulae can be easily implemented on computers. Comparisons with previous studies show their superiority in computation speed. Using the algorithm as a tool, the planar problem of two ellipsoids is studied. Generally, potential truncated at the second order is good enough for a qualitative description of the mutual dynamics. However, for ellipsoids with very large non-spherical terms, higher order terms of the potential should be considered, at the cost of a higher computational cost. Explicit formulae of the potential truncated to the fourth order are given.

  19. Hovering efficiency comparison of rotary and flapping flight for rigid rectangular wings via dimensionless multi-objective optimization.

    PubMed

    Bayiz, Yagiz; Ghanaatpishe, Mohammad; Fathy, Hosam; Cheng, Bo

    2018-05-08

    In this work, a multi-objective optimization framework is developed for optimizing low Reynolds number ([Formula: see text]) hovering flight. This framework is then applied to compare the efficiency of rigid revolving and flapping wings with rectangular shape under varying [Formula: see text] and Rossby number ([Formula: see text], or aspect ratio). The proposed framework is capable of generating sets of optimal solutions and Pareto fronts for maximizing the lift coefficient and minimizing the power coefficient in dimensionless space, explicitly revealing the trade-off between lift generation and power consumption. The results indicate that revolving wings are more efficient when the required average lift coefficient [Formula: see text] is low (<1 for [Formula: see text] and  <1.6 for [Formula: see text]), while flapping wings are more efficient in achieving higher [Formula: see text]. With the dimensionless power loading as the single-objective performance measure to be maximized, rotary flight is more efficient than flapping wings for [Formula: see text] regardless of the amount of energy storage assumed in the flapping wing actuation mechanism, while flapping flight is more efficient for [Formula: see text]. It is observed that wings with low [Formula: see text] perform better when higher [Formula: see text] is needed, whereas higher [Formula: see text] cases are more efficient at [Formula: see text] regions. However, for the selected geometry and [Formula: see text], the efficiency is weakly dependent on [Formula: see text] when the dimensionless power loading is maximized.

  20. United Formula for the Friction Factor in the Turbulent Region of Pipe Flow.

    PubMed

    Li, Shuolin; Huai, Wenxin

    2016-01-01

    Friction factor is an important element in both flow simulations and river engineering. In hydraulics, studies on the friction factor in turbulent regions have been based on the concept of three flow regimes, namely, the fully smooth regime, the fully rough regime, and the transitional regime, since the establishment of the Nikuradze's chart. However, this study further demonstrates that combining the friction factor with Reynolds number yields a united formula that can scale the entire turbulent region. This formula is derived by investigating the correlation between friction in turbulent pipe flow and its influencing factors, i.e., Reynolds number and relative roughness. In the present study, the formulae of Blasius and Stricklerare modified to rearrange the implicit model of Tao. In addition, we derive a united explicit formula that can compute the friction factor in the entire turbulent regimes based on the asymptotic behavior of the improved Tao's model. Compared with the reported formulae of Nikuradze, the present formula exhibits higher computational accuracy for the original pipe experiment data of Nikuradze.

  1. Band-to-band tunneling distance analysis in the heterogate electron–hole bilayer tunnel field-effect transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch; Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada; Palomares, A.

    In this work, we analyze the behavior of the band-to-band tunneling distance between electron and hole subbands resulting from field-induced quantum confinement in the heterogate electron–hole bilayer tunnel field-effect transistor. We show that, analogously to the explicit formula for the tunneling distance that can be easily obtained in the semiclassical framework where the conduction and valence band edges are allowed states, an equivalent analytical expression can be derived in the presence of field-induced quantum confinement for describing the dependence of the tunneling distance on the body thickness and material properties of the channel. This explicit expression accounting for quantum confinementmore » holds valid provided that the potential wells for electrons and holes at the top and bottom of the channel can be approximated by triangular profiles. Analytical predictions are compared to simulation results showing very accurate agreement.« less

  2. Special-case closed form of the Baker-Campbell-Hausdorff formula

    NASA Astrophysics Data System (ADS)

    Van-Brunt, Alexander; Visser, Matt

    2015-06-01

    The Baker-Campbell-Hausdorff formula is a general result for the quantity Z(X,Y)=ln ({{e}X}{{e}Y}), where X and Y are not necessarily commuting. For completely general commutation relations between X and Y, (the free Lie algebra), the general result is somewhat unwieldy. However in specific physics applications the commutator [X,Y], while non-zero, might often be relatively simple, which sometimes leads to explicit closed form results. We consider the special case [X,Y]=uX+vY+cI, and show that in this case the general result reduces to Furthermore we explicitly evaluate the symmetric function f(u,v)=f(v,u), demonstrating that and relate this to previously known results. For instance this result includes, but is considerably more general than, results obtained from either the Heisenberg commutator [P,Q]=-i\\hbar I or the creation-destruction commutator [a,{{a}\\dagger }]=I.

  3. A Representation of an Instantaneous Unit Hydrograph From Geomorphology

    NASA Astrophysics Data System (ADS)

    Gupta, Vijay K.; Waymire, Ed; Wang, C. T.

    1980-10-01

    The channel network and the overland flow regions in a river basin satisfy Horton's empirical geo-morphologic laws when ordered according to the Strahler ordering scheme. This setting is presently employed in a kinetic theoretic framework for obtaining an explicit mathematical representation for the instantaneous unit hydrograph (iuh) at the basin outlet. Two examples are developed which lead to explicit formulae for the iuh. These examples are formally analogous to the solutions that would result if a basin is represented in terms of linear reservoirs and channels, respectively, in series and in parallel. However, this analogy is only formal, and it does not carry through physically. All but one of the parameters appearing in the iuh formulae are obtained in terms of Horton's bifurcation ratio, stream length ratio, and stream area ratio. The one unknown parameter is obtained through specifying the basin mean lag time independently. Three basins from Illinois are selected to check the theoretical results with the observed direct surface runoff hydrographs. The theory provided excellent agreement for two basins with areas of the order of 1100 mi2 (1770 km2) but underestimates the peak flow for the smaller basin with 300-mi2 (483-km2) area. This relative lack of agreement for the smaller basin may be used to question the validity of the linearity assumption in the rainfall runoff transformation which is embedded in the above development.

  4. Paraboloid-aspheric lenses free of spherical aberration

    NASA Astrophysics Data System (ADS)

    Lozano-Rincón, Ninfa del C.; Valencia-Estrada, Juan Camilo

    2017-07-01

    A method to design singlet paraboloid-aspheric lenses free of all orders of spherical aberration with maximum aperture is described. This work includes all parametric formulas to describe paraboloid-aspheric or aspheric-paraboloid lenses for any finite conjugated planes. It also includes the Schwarzchilds approximations (which can be used to calculate one rigorous propagation of light waves in physic optics) to design convex paraboloid-aspheric lenses for imaging an object at infinity, with explicit formulas to calculate thicknesses easily. The results were verified with software through ray tracing.

  5. Intensity formulas for triplet bands

    NASA Technical Reports Server (NTRS)

    Budo, A.

    1982-01-01

    Previous work in this area is surveyed and the mathematics involved in determining the quantitative intensity measurements in triplet bands is presented. Explicit expressions for the intensity distribution in the branches of the 3 Sigma-3 Pi and 1 Sigma-3Pi bands valid for all values of the coupling constant Y of the 3 Pi terms are given. The intensity distribution calculated according to the formulas given is compared with measurements of PH, 3 Pi-3 Sigma. Good quantitative agreement is obtained.

  6. Sur les processus linéaires de naissance et de mort sous-critiques dans un environnement aléatoire.

    PubMed

    Bacaër, Nicolas

    2017-07-01

    An explicit formula is found for the rate of extinction of subcritical linear birth-and-death processes in a random environment. The formula is illustrated by numerical computations of the eigenvalue with largest real part of the truncated matrix for the master equation. The generating function of the corresponding eigenvector satisfies a Fuchsian system of singular differential equations. A particular attention is set on the case of two environments, which leads to Riemann's differential equation.

  7. Theory of intrinsic linewidth based on fluctuation-dissipation balance for thermal photons in THz quantum-cascade lasers.

    PubMed

    Yamanishi, Masamichi

    2012-12-17

    Intrinsic linewidth formula modified by taking account of fluctuation-dissipation balance for thermal photons in a THz quantum-cascade laser (QCL) is exhibited. The linewidth formula based on the model that counts explicitly the influence of noisy stimulated emissions due to thermal photons existing inside the laser cavity interprets experimental results on intrinsic linewidth, ~91.1 Hz reported recently with a 2.5 THz bound-to-continuum QCL. The line-broadening induced by thermal photons is estimated to be ~22.4 Hz, i.e., 34% broadening. The modified linewidth formula is utilized as a bench mark in engineering of THz thermal photons inside laser cavities.

  8. Calculating tracer currents through narrow ion channels: Beyond the independent particle model.

    PubMed

    Coalson, Rob D; Jasnow, David

    2018-06-01

    Discrete state models of single-file ion permeation through a narrow ion channel pore are employed to analyze the ratio of forward to backward tracer current. Conditions under which the well-known Ussing formula for this ratio hold are explored in systems where ions do not move independently through the channel. Building detailed balance into the rate constants for the model in such a way that under equilibrium conditions (equal rate of forward vs. backward permeation events) the Nernst Equation is satisfied, it is found that in a model where only one ion can occupy the channel at a time, the Ussing formula is always obeyed for any number of binding sites, reservoir concentrations of the ions and electric potential difference across the membrane which the ion channel spans, independent of the internal details of the permeation pathway. However, numerical analysis demonstrates that when multiple ions can occupy the channel at once, the nonequilibrium forward/backward tracer flux ratio deviates from the prediction of the Ussing model. Assuming an appropriate effective potential experienced by ions in the channel, we provide explicit formulae for the rate constants in these models. © 2018 IOP Publishing Ltd.

  9. On the Wiener Polarity Index of Lattice Networks.

    PubMed

    Chen, Lin; Li, Tao; Liu, Jinfeng; Shi, Yongtang; Wang, Hua

    2016-01-01

    Network structures are everywhere, including but not limited to applications in biological, physical and social sciences, information technology, and optimization. Network robustness is of crucial importance in all such applications. Research on this topic relies on finding a suitable measure and use this measure to quantify network robustness. A number of distance-based graph invariants, also known as topological indices, have recently been incorporated as descriptors of complex networks. Among them the Wiener type indices are the most well known and commonly used such descriptors. As one of the fundamental variants of the original Wiener index, the Wiener polarity index has been introduced for a long time and known to be related to the cluster coefficient of networks. In this paper, we consider the value of the Wiener polarity index of lattice networks, a common network structure known for its simplicity and symmetric structure. We first present a simple general formula for computing the Wiener polarity index of any graph. Using this formula, together with the symmetric and recursive topology of lattice networks, we provide explicit formulas of the Wiener polarity index of the square lattices, the hexagonal lattices, the triangular lattices, and the 33 ⋅ 42 lattices. We also comment on potential future research topics.

  10. Loop Integrands for Scattering Amplitudes from the Riemann Sphere

    NASA Astrophysics Data System (ADS)

    Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr

    2015-09-01

    The scattering equations on the Riemann sphere give rise to remarkable formulas for tree-level gauge theory and gravity amplitudes. Adamo, Casali, and Skinner conjectured a one-loop formula for supergravity amplitudes based on scattering equations on a torus. We use a residue theorem to transform this into a formula on the Riemann sphere. What emerges is a framework for loop integrands on the Riemann sphere that promises to have a wide application, based on off-shell scattering equations that depend on the loop momentum. We present new formulas, checked explicitly at low points, for supergravity and super-Yang-Mills amplitudes and for n -gon integrands at one loop. Finally, we show that the off-shell scattering equations naturally extend to arbitrary loop order, and we give a proposal for the all-loop integrands for supergravity and planar super-Yang-Mills theory.

  11. Nonlocal integrable PDEs from hierarchies of symmetry laws: The example of Pohlmeyer-Lund-Regge equation and its reflectionless potential solutions

    NASA Astrophysics Data System (ADS)

    Demontis, F.; Ortenzi, G.; van der Mee, C.

    2018-04-01

    By following the ideas presented by Fukumoto and Miyajima in Fukumoto and Miyajima (1996) we derive a generalized method for constructing integrable nonlocal equations starting from any bi-Hamiltonian hierarchy supplied with a recursion operator. This construction provides the right framework for the application of the full machinery of the inverse scattering transform. We pay attention to the Pohlmeyer-Lund-Regge equation coming from the nonlinear Schrödinger hierarchy and construct the formula for the reflectionless potential solutions which are generalizations of multi-solitons. Some explicit examples are discussed.

  12. Comment on ‘Special-case closed form of the Baker-Campbell-Hausdorff formula’

    NASA Astrophysics Data System (ADS)

    Lo, C. F.

    2016-05-01

    Recently Van-Brunt and Visser (2015 J. Phys. A: Math. Theor. 48 225207) succeeded in explicitly evaluating the Baker-Campbell-Hausdorff (BCH) expansion series for the noncommuting operators X and Y, provided that the two operators satisfy the commutation relation: [X,Y]={uX}+{vY}+{cI}, and the operator I commutes with both of them. In this comment we show that the closed-form BCH formula of this special case can be straightforwardly derived by the means of the Wei-Norman theorem and no summation of the infinite series is needed.

  13. Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave.

    PubMed

    Frisvad, Jeppe Revall

    2018-04-01

    In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation of the complex hypergeometric function F 1 2 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far-field scattering components, that is, the phase function. I include recurrence formulas for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity is not negligible for light entering an absorbing medium at an oblique angle. The presented theory could thus be useful for predicting scattering behavior in dye-based random lasing and in solar cell absorption enhancement.

  14. Combinatorial Formulas for Characteristic Classes, and Localization of Secondary Topological Invariants.

    NASA Astrophysics Data System (ADS)

    Smirnov, Mikhail

    1995-01-01

    The problems solved in this thesis originated from combinatorial formulas for characteristic classes. This thesis deals with Chern-Simons classes, their generalizations and related algebraic and analytic problems. (1) In this thesis, I describe a new class of algebras whose elements contain Chern and generalized Chern -Simons classes. There is a Poisson bracket in these algebras, similar to the bracket in Kontsevich's noncommutative symplectic geometry (Kon). I prove that the Poisson bracket gives rise to a graded Lie algebra containing differential forms representing Chern and Chern-Simons classes. This is a new result. I describe algebraic analogs of the dilogarithm and higher polylogarithms in the algebra corresponding to Chern-Simons classes. (2) I study the properties of this bracket. It is possible to write the exterior differential and other operations in the algebra using this bracket. The bracket of any two Chern classes is zero and the bracket of a Chern class and a Chern-Simons class is d-closed. The construction developed here easily gives explicit formulas for known secondary classes and makes it possible to construct new ones. (3) I develop an algebraic model for the action of the gauge group and describe how elements of algebra corresponding to the secondary characteristic classes change under this action (see theorem 3 page xi). (4) It is possible give new explicit formulas for cocycles on a gauge group of a bundle and for the corresponding cocycles on the Lie algebra of the gauge group. I use formulas for secondary characteristic classes and an algebraic approach developed in chapter 1. I also use the work of Faddeev, Reiman and Semyonov-Tian-Shanskii (FRS) on cocycles as quantum anomalies. (5) I apply the methods of differential geometry of formal power series to construct universal characteristic and secondary characteristic classes. Given a pair of gauge equivalent connections using local formulas I obtain dilogarithmic and trilogarithmic analogs of Chern-Simons classes.

  15. A time-domain Kirchhoff formula for the convective acoustic wave equation

    NASA Astrophysics Data System (ADS)

    Ghorbaniasl, Ghader; Siozos-Rousoulis, Leonidas; Lacor, Chris

    2016-03-01

    Kirchhoff's integral method allows propagated sound to be predicted, based on the pressure and its derivatives in time and space obtained on a data surface located in the linear flow region. Kirchhoff's formula for noise prediction from high-speed rotors and propellers suffers from the limitation of the observer located in uniform flow, thus requiring an extension to arbitrarily moving media. This paper presents a Kirchhoff formulation for moving surfaces in a uniform moving medium of arbitrary configuration. First, the convective wave equation is derived in a moving frame, based on the generalized functions theory. The Kirchhoff formula is then obtained for moving surfaces in the time domain. The formula has a similar form to the Kirchhoff formulation for moving surfaces of Farassat and Myers, with the presence of additional terms owing to the moving medium effect. The equation explicitly accounts for the influence of mean flow and angle of attack on the radiated noise. The formula is verified by analytical cases of a monopole source located in a moving medium.

  16. High-order finite-volume solutions of the steady-state advection-diffusion equation with nonlinear Robin boundary conditions

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Zhang, Qinghai

    2017-09-01

    We propose high-order finite-volume schemes for numerically solving the steady-state advection-diffusion equation with nonlinear Robin boundary conditions. Although the original motivation comes from a mathematical model of blood clotting, the nonlinear boundary conditions may also apply to other scientific problems. The main contribution of this work is a generic algorithm for generating third-order, fourth-order, and even higher-order explicit ghost-filling formulas to enforce nonlinear Robin boundary conditions in multiple dimensions. Under the framework of finite volume methods, this appears to be the first algorithm of its kind. Numerical experiments on boundary value problems show that the proposed fourth-order formula can be much more accurate and efficient than a simple second-order formula. Furthermore, the proposed ghost-filling formulas may also be useful for solving other partial differential equations.

  17. Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions

    NASA Astrophysics Data System (ADS)

    Zeng, Fanhai; Zhang, Zhongqiang; Karniadakis, George Em

    2017-12-01

    Starting with the asymptotic expansion of the error equation of the shifted Gr\\"{u}nwald--Letnikov formula, we derive a new modified weighted shifted Gr\\"{u}nwald--Letnikov (WSGL) formula by introducing appropriate correction terms. We then apply one special case of the modified WSGL formula to solve multi-term fractional ordinary and partial differential equations, and we prove the linear stability and second-order convergence for both smooth and non-smooth solutions. We show theoretically and numerically that numerical solutions up to certain accuracy can be obtained with only a few correction terms. Moreover, the correction terms can be tuned according to the fractional derivative orders without explicitly knowing the analytical solutions. Numerical simulations verify the theoretical results and demonstrate that the new formula leads to better performance compared to other known numerical approximations with similar resolution.

  18. On the coefficients of integrated expansions and integrals of ultraspherical polynomials and their applications for solving differential equations

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2002-02-01

    An analytical formula expressing the ultraspherical coefficients of an expansion for an infinitely differentiable function that has been integrated an arbitrary number of times in terms of the coefficients of the original expansion of the function is stated in a more compact form and proved in a simpler way than the formula suggested by Phillips and Karageorghis (27 (1990) 823). A new formula expressing explicitly the integrals of ultraspherical polynomials of any degree that has been integrated an arbitrary number of times of ultraspherical polynomials is given. The tensor product of ultraspherical polynomials is used to approximate a function of more than one variable. Formulae expressing the coefficients of differentiated expansions of double and triple ultraspherical polynomials in terms of the original expansion are stated and proved. Some applications of how to use ultraspherical polynomials for solving ordinary and partial differential equations are described.

  19. An alternative model for a partially coherent elliptical dark hollow beam

    NASA Astrophysics Data System (ADS)

    Li, Xu; Wang, Fei; Cai, Yangjian

    2011-04-01

    An alternative theoretical model named partially coherent hollow elliptical Gaussian beam (HEGB) is proposed to describe a partially coherent beam with an elliptical dark hollow profile. Explicit expression for the propagation factors of a partially coherent HEGB is derived. Based on the generalized Collins formula, analytical formulae for the cross-spectral density and mean-squared beam width of a partially coherent HEGB, propagating through a paraxial ABCD optical system, are derived. Propagation properties of a partially coherent HEGB in free space are studied as a numerical example.

  20. Dilational symmetry-breaking in thermodynamics

    NASA Astrophysics Data System (ADS)

    Lin, Chris L.; Ordóñez, Carlos R.

    2017-04-01

    Using thermodynamic relations and dimensional analysis we derive a general formula for the thermodynamical trace 2{ E}-DP for nonrelativistic systems and { E}-DP for relativistic systems, where D is the number of spatial dimensions, in terms of the microscopic scales of the system within the grand canonical ensemble. We demonstrate the formula for several cases, including anomalous systems which develop scales through dimensional transmutation. Using this relation, we make explicit the connection between dimensional analysis and the virial theorem. This paper is focused mainly on the non-relativistic aspects of this relation.

  1. The simultaneous integration of many trajectories using nilpotent normal forms

    NASA Technical Reports Server (NTRS)

    Grayson, Matthew A.; Grossman, Robert

    1990-01-01

    Taylor's formula shows how to approximate a certain class of functions by polynomials. The approximations are arbitrarily good in some neighborhood whenever the function is analytic and they are easy to compute. The main goal is to give an efficient algorithm to approximate a neighborhood of the configuration space of a dynamical system by a nilpotent, explicitly integrable dynamical system. The major areas covered include: an approximating map; the generalized Baker-Campbell-Hausdorff formula; the Picard-Taylor method; the main theorem; simultaneous integration of trajectories; and examples.

  2. Correlation Structure of Fractional Pearson Diffusions.

    PubMed

    Leonenko, Nikolai N; Meerschaert, Mark M; Sikorskii, Alla

    2013-09-01

    The stochastic solution to a diffusion equations with polynomial coefficients is called a Pearson diffusion. If the first time derivative is replaced by a Caputo fractional derivative of order less than one, the stochastic solution is called a fractional Pearson diffusion. This paper develops an explicit formula for the covariance function of a fractional Pearson diffusion in steady state, in terms of Mittag-Leffler functions. That formula shows that fractional Pearson diffusions are long range dependent, with a correlation that falls off like a power law, whose exponent equals the order of the fractional derivative.

  3. A link representation for gravity amplitudes

    NASA Astrophysics Data System (ADS)

    He, Song

    2013-10-01

    We derive a link representation for all tree amplitudes in supergravity, from a recent conjecture by Cachazo and Skinner. The new formula explicitly writes amplitudes as contour integrals over constrained link variables, with an integrand naturally expressed in terms of determinants, or equivalently tree diagrams. Important symmetries of the amplitude, such as supersymmetry, parity and (partial) permutation invariance, are kept manifest in the formulation. We also comment on rewriting the formula in a GL( k)-invariant manner, which may serve as a starting point for the generalization to possible Grassmannian contour integrals.

  4. Holographic entanglement for Chern-Simons terms

    NASA Astrophysics Data System (ADS)

    Azeyanagi, Tatsuo; Loganayagam, R.; Ng, Gim Seng

    2017-02-01

    We derive the holographic entanglement entropy contribution from pure and mixed gravitational Chern-Simons(CS) terms in AdS2 k+1. This is done through two different methods: first, by a direct evaluation of CS action in a holographic replica geometry and second by a descent of Dong's derivation applied to the corresponding anomaly polynomial. In lower dimensions ( k = 1 , 2), the formula coincides with the Tachikawa formula for black hole entropy from gravitational CS terms. New extrinsic curvature corrections appear for k ≥ 3: we give explicit and concise expressions for the two pure gravitational CS terms in AdS7 and present various consistency checks, including agreements with the black hole entropy formula when evaluated at the bifurcation surface.

  5. Vibration and stability of cracked hollow-sectional beams

    NASA Astrophysics Data System (ADS)

    Zheng, D. Y.; Fan, S. C.

    2003-10-01

    This paper presents simple tools for the vibration and stability analysis of cracked hollow-sectional beams. It comprises two parts. In the first, the influences of sectional cracks are expressed in terms of flexibility induced. Each crack is assigned with a local flexibility coefficient, which is derived by virtue of theories of fracture mechanics. The flexibility coefficient is a function of the depth of a crack. The general formulae are derived and expressed in integral form. It is then transformed to explicit form through 128-point Gauss quadrature. According to the depth of the crack, the formulae are derived under two scenarios. The first is for shallow cracks, of which the penetration depth is contained within the top solid-sectional region. The second is for deeper penetration, in which the crack goes into the middle hollow-sectional region. The explicit formulae are best-fitted equations generated by the least-squares method. The best-fitted curves are presented. From the curves, the flexibility coefficients can be read out easily, while the explicit expressions facilitate easy implementation in computer analysis. In the second part, the flexibility coefficients are employed in the vibration and stability analysis of hollow-sectional beams. The cracked beam is treated as an assembly of sub-segments linked up by rotational springs. Division of segments are made coincident with the location of cracks or any abrupt change of sectional property. The crack's flexibility coefficient then serves as that of the rotational spring. Application of the Hamilton's principle leads to the governing equations, which are subsequently solved through employment of a simple technique. It is a kind of modified Fourier series, which is able to represent any order of continuity of the vibration/buckling modes. Illustrative numerical examples are included.

  6. Techno-economic analysis of concentrated solar power plants in terms of levelized cost of electricity

    NASA Astrophysics Data System (ADS)

    Musi, Richard; Grange, Benjamin; Sgouridis, Sgouris; Guedez, Rafael; Armstrong, Peter; Slocum, Alexander; Calvet, Nicolas

    2017-06-01

    Levelized Cost of Electricity (LCOE) is an important metric which provides one way to compare the economic competitiveness of different electricity generation systems, calculated simply by dividing lifetime costs by lifetime production. Hidden behind the simplicity of this formula are various assumptions which may significantly alter results. Different LCOE studies exist in the literature, although their assumptions are rarely explicitly stated. This analysis gives all formulas and assumptions which allow for inter-study comparisons. The results of this analysis indicate that CSP LCOE is reducing markedly over time and that given the right location and market conditions, the SunShot 6¢/kWh 2020 target can be reached. Increased industrial cooperation is needed to advance the CSP market and continue to drive down LCOE. The results also indicate that there exist a country and technology level learning effect, either when installing an existing CSP technology in a new country or when using a new technology in an existing CSP country, which seems to impact market progress.

  7. Testing option pricing with the Edgeworth expansion

    NASA Astrophysics Data System (ADS)

    Balieiro Filho, Ruy Gabriel; Rosenfeld, Rogerio

    2004-12-01

    There is a well-developed framework, the Black-Scholes theory, for the pricing of contracts based on the future prices of certain assets, called options. This theory assumes that the probability distribution of the returns of the underlying asset is a Gaussian distribution. However, it is observed in the market that this hypothesis is flawed, leading to the introduction of a fudge factor, the so-called volatility smile. Therefore, it would be interesting to explore extensions of the Black-Scholes theory to non-Gaussian distributions. In this paper, we provide an explicit formula for the price of an option when the distributions of the returns of the underlying asset is parametrized by an Edgeworth expansion, which allows for the introduction of higher independent moments of the probability distribution, namely skewness and kurtosis. We test our formula with options in the Brazilian and American markets, showing that the volatility smile can be reduced. We also check whether our approach leads to more efficient hedging strategies of these instruments.

  8. On the Tracy-Widomβ Distribution for β=6

    NASA Astrophysics Data System (ADS)

    Grava, Tamara; Its, Alexander; Kapaev, Andrei; Mezzadri, Francesco

    2016-11-01

    We study the Tracy-Widom distribution function for Dyson's β-ensemble with β = 6. The starting point of our analysis is the recent work of I. Rumanov where he produces a Lax-pair representation for the Bloemendal-Virág equation. The latter is a linear PDE which describes the Tracy-Widom functions corresponding to general values of β. Using his Lax pair, Rumanov derives an explicit formula for the Tracy-Widom β=6 function in terms of the second Painlevé transcendent and the solution of an auxiliary ODE. Rumanov also shows that this formula allows him to derive formally the asymptotic expansion of the Tracy-Widom function. Our goal is to make Rumanov's approach and hence the asymptotic analysis it provides rigorous. In this paper, the first one in a sequel, we show that Rumanov's Lax-pair can be interpreted as a certain gauge transformation of the standard Lax pair for the second Painlevé equation. This gauge transformation though contains functional parameters which are defined via some auxiliary nonlinear ODE which is equivalent to the auxiliary ODE of Rumanov's formula. The gauge-interpretation of Rumanov's Lax-pair allows us to highlight the steps of the original Rumanov's method which needs rigorous justifications in order to make the method complete. We provide a rigorous justification of one of these steps. Namely, we prove that the Painlevé function involved in Rumanov's formula is indeed, as it has been suggested by Rumanov, the Hastings-McLeod solution of the second Painlevé equation. The key issue which we also discuss and which is still open is the question of integrability of the auxiliary ODE in Rumanov's formula. We note that this question is crucial for the rigorous asymptotic analysis of the Tracy-Widom function. We also notice that our work is a partial answer to one of the problems related to the β-ensembles formulated by Percy Deift during the June 2015 Montreal Conference on integrable systems.

  9. Explicit formulas for effective piezoelectric coefficients of ferroelectric 0-3 composites based on effective medium theory

    NASA Astrophysics Data System (ADS)

    Wong, C. K.; Poon, Y. M.; Shin, F. G.

    2003-01-01

    Explicit formulas were derived for the effective piezoelectric stress coefficients of a 0-3 composite of ferroelectric spherical particles in a ferroelectric matrix which were then combined to give the more commonly used strain coefficients. Assuming that the elastic stiffness of the inclusion phase is sufficiently larger than that of the matrix phase, the previously derived explicit expressions for the case of a low volume concentration of inclusion particles [C. K. Wong, Y. M. Poon, and F. G. Shin, Ferroelectrics 264, 39 (2001); J. Appl. Phys. 90, 4690 (2001)] were "transformed" analytically by an effective medium theory (EMT) with appropriate approximations, to suit the case of a more concentrated suspension. Predictions of the EMT expressions were compared with the experimental values of composites of lead zirconate titanate ceramic particles dispersed in polyvinylidene fluoride and polyvinylidene fluoride-trifluoroethylene copolymer, reported by Furukawa [IEEE Trans. Electr. Insul. 24, 375 (1989)] and by Ng et al. [IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1308 (2000)] respectively. Fairly good agreement was obtained. Comparisons with other predictions, including the predictions given by numerically solving the EMT scheme, were also made. It was found that the analytic and numeric EMT schemes agreed with each other very well for an inclusion of volume fraction not exceeding 60%.

  10. Determination of the expansion of the potential of the earth's normal gravitational field

    NASA Astrophysics Data System (ADS)

    Kochiev, A. A.

    The potential of the generalized problem of 2N fixed centers is expanded in a polynomial and Legendre function series. Formulas are derived for the expansion coefficients, and the disturbing function of the problem is constructed in an explicit form.

  11. Two-Dimensional Lorentz Force Image Reconstruction for Magnetoacoustic Tomography with Magnetic Induction

    NASA Astrophysics Data System (ADS)

    Li, Yi-Ling; Liu, Zhen-Bo; Ma, Qing-Yu; Guo, Xia-Sheng; Zhang, Dong

    2010-08-01

    Magnetoacoustic tomography with magnetic induction has shown potential applications in imaging the electrical impedance for biological tissues. We present a novel methodology for the inverse problem solution of the 2-D Lorentz force distribution reconstruction based on the acoustic straight line propagation theory. The magnetic induction and acoustic generation as well as acoustic detection are theoretically provided as explicit formulae and also validated by the numerical simulations for a multilayered cylindrical phantom model. The reconstructed 2-D Lorentz force distribution reveals not only the conductivity configuration in terms of shape and size but also the amplitude value of the Lorentz force in the examined layer. This study provides a basis for further study of conductivity distribution reconstruction of MAT-MI in medical imaging.

  12. Mimetic discretization of the Abelian Chern-Simons theory and link invariants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Bartolo, Cayetano; Grau, Javier; Leal, Lorenzo

    A mimetic discretization of the Abelian Chern-Simons theory is presented. The study relies on the formulation of a theory of differential forms in the lattice, including a consistent definition of the Hodge duality operation. Explicit expressions for the Gauss Linking Number in the lattice, which correspond to their continuum counterparts are given. A discussion of the discretization of metric structures in the space of transverse vector densities is presented. The study of these metrics could serve to obtain explicit formulae for knot an link invariants in the lattice.

  13. Isomonodromy for the Degenerate Fifth Painlevé Equation

    NASA Astrophysics Data System (ADS)

    Acosta-Humánez, Primitivo B.; van der Put, Marius; Top, Jaap

    2017-05-01

    This is a sequel to papers by the last two authors making the Riemann-Hilbert correspondence and isomonodromy explicit. For the degenerate fifth Painlevé equation, the moduli spaces for connections and for monodromy are explicitly computed. It is proven that the extended Riemann-Hilbert morphism is an isomorphism. As a consequence these equations have the Painlevé property and the Okamoto-Painlevé space is identified with a moduli space of connections. Using MAPLE computations, one obtains formulas for the degenerate fifth Painlevé equation, for the Bäcklund transformations.

  14. Mimetic discretization of the Abelian Chern-Simons theory and link invariants

    NASA Astrophysics Data System (ADS)

    Di Bartolo, Cayetano; Grau, Javier; Leal, Lorenzo

    2013-12-01

    A mimetic discretization of the Abelian Chern-Simons theory is presented. The study relies on the formulation of a theory of differential forms in the lattice, including a consistent definition of the Hodge duality operation. Explicit expressions for the Gauss Linking Number in the lattice, which correspond to their continuum counterparts are given. A discussion of the discretization of metric structures in the space of transverse vector densities is presented. The study of these metrics could serve to obtain explicit formulae for knot an link invariants in the lattice.

  15. Reflectionless CMV Matrices and Scattering Theory

    NASA Astrophysics Data System (ADS)

    Chu, Sherry; Landon, Benjamin; Panangaden, Jane

    2015-04-01

    Reflectionless CMV matrices are studied using scattering theory. By changing a single Verblunsky coefficient, a full-line CMV matrix can be decoupled and written as the sum of two half-line operators. Explicit formulas for the scattering matrix associated to the coupled and decoupled operators are derived. In particular, it is shown that a CMV matrix is reflectionless iff the scattering matrix is off-diagonal which in turn provides a short proof of an important result of Breuer et al. (Commun Math Phys 295:531-550, 2010). These developments parallel those recently obtained for Jacobi matrices Jakšić et al. (Commun Math Phys 827-838, 2014).

  16. Stochastic maps, continuous approximation, and stable distribution

    NASA Astrophysics Data System (ADS)

    Kessler, David A.; Burov, Stanislav

    2017-10-01

    A continuous approximation framework for general nonlinear stochastic as well as deterministic discrete maps is developed. For the stochastic map with uncorelated Gaussian noise, by successively applying the Itô lemma, we obtain a Langevin type of equation. Specifically, we show how nonlinear maps give rise to a Langevin description that involves multiplicative noise. The multiplicative nature of the noise induces an additional effective force, not present in the absence of noise. We further exploit the continuum description and provide an explicit formula for the stable distribution of the stochastic map and conditions for its existence. Our results are in good agreement with numerical simulations of several maps.

  17. Virtual photon impact factors with exact gluon kinematics

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Navelet, H.; Peschanski, R.

    2001-06-01

    An explicit analytic formula for the transverse and longitudinal impact factors ST, L( N, γ) of the photon using kT factorization with exact gluon kinematics is given. Applications to the QCD dipole model and the extraction of the unintegrated gluon structure function from data are proposed.

  18. On the Wiener Polarity Index of Lattice Networks

    PubMed Central

    Chen, Lin; Li, Tao; Liu, Jinfeng; Shi, Yongtang; Wang, Hua

    2016-01-01

    Network structures are everywhere, including but not limited to applications in biological, physical and social sciences, information technology, and optimization. Network robustness is of crucial importance in all such applications. Research on this topic relies on finding a suitable measure and use this measure to quantify network robustness. A number of distance-based graph invariants, also known as topological indices, have recently been incorporated as descriptors of complex networks. Among them the Wiener type indices are the most well known and commonly used such descriptors. As one of the fundamental variants of the original Wiener index, the Wiener polarity index has been introduced for a long time and known to be related to the cluster coefficient of networks. In this paper, we consider the value of the Wiener polarity index of lattice networks, a common network structure known for its simplicity and symmetric structure. We first present a simple general formula for computing the Wiener polarity index of any graph. Using this formula, together with the symmetric and recursive topology of lattice networks, we provide explicit formulas of the Wiener polarity index of the square lattices, the hexagonal lattices, the triangular lattices, and the 33 ⋅ 42 lattices. We also comment on potential future research topics. PMID:27930705

  19. A Procedure for Deriving Formulas to Convert Transition Rates to Probabilities for Multistate Markov Models.

    PubMed

    Jones, Edmund; Epstein, David; García-Mochón, Leticia

    2017-10-01

    For health-economic analyses that use multistate Markov models, it is often necessary to convert from transition rates to transition probabilities, and for probabilistic sensitivity analysis and other purposes it is useful to have explicit algebraic formulas for these conversions, to avoid having to resort to numerical methods. However, if there are four or more states then the formulas can be extremely complicated. These calculations can be made using packages such as R, but many analysts and other stakeholders still prefer to use spreadsheets for these decision models. We describe a procedure for deriving formulas that use intermediate variables so that each individual formula is reasonably simple. Once the formulas have been derived, the calculations can be performed in Excel or similar software. The procedure is illustrated by several examples and we discuss how to use a computer algebra system to assist with it. The procedure works in a wide variety of scenarios but cannot be employed when there are several backward transitions and the characteristic equation has no algebraic solution, or when the eigenvalues of the transition rate matrix are very close to each other.

  20. Leading multi-soft limits from scattering equations

    NASA Astrophysics Data System (ADS)

    Zlotnikov, Michael

    2017-10-01

    A Cachazo-He-Yuan (CHY) type formula is derived for the leading gluon, bi-adjoint scalar ϕ 3, Yang-Mills-scalar and non-linear sigma model m-soft factors S m in arbitrary dimension. The general formula is used to evaluate explicit examples for up to three soft legs analytically and up to four soft legs numerically via comparison with amplitude ratios under soft kinematics. A structural pattern for gluon m-soft factor is inferred and a simpler formula for its calculation is conjectured. In four dimensions, a Cachazo-Svrček-Witten (CSW) recursive procedure producing the leading m-soft gluon factor in spinor helicity formalism is developed as an alternative, and Britto-Cachazo-Feng-Witten (BCFW) recursion is used to obtain the leading four-soft gluon factor for all analytically distinct helicity configurations.

  1. A time-domain Kirchhoff formula for the convective acoustic wave equation

    PubMed Central

    Ghorbaniasl, Ghader; Siozos-Rousoulis, Leonidas; Lacor, Chris

    2016-01-01

    Kirchhoff’s integral method allows propagated sound to be predicted, based on the pressure and its derivatives in time and space obtained on a data surface located in the linear flow region. Kirchhoff’s formula for noise prediction from high-speed rotors and propellers suffers from the limitation of the observer located in uniform flow, thus requiring an extension to arbitrarily moving media. This paper presents a Kirchhoff formulation for moving surfaces in a uniform moving medium of arbitrary configuration. First, the convective wave equation is derived in a moving frame, based on the generalized functions theory. The Kirchhoff formula is then obtained for moving surfaces in the time domain. The formula has a similar form to the Kirchhoff formulation for moving surfaces of Farassat and Myers, with the presence of additional terms owing to the moving medium effect. The equation explicitly accounts for the influence of mean flow and angle of attack on the radiated noise. The formula is verified by analytical cases of a monopole source located in a moving medium. PMID:27118912

  2. Absorption coefficients of silicon: A theoretical treatment

    NASA Astrophysics Data System (ADS)

    Tsai, Chin-Yi

    2018-05-01

    A theoretical model with explicit formulas for calculating the optical absorption and gain coefficients of silicon is presented. It incorporates direct and indirect interband transitions and considers the effects of occupied/unoccupied carrier states. The indirect interband transition is calculated from the second-order time-independent perturbation theory of quantum mechanics by incorporating all eight possible routes of absorption or emission of photons and phonons. Absorption coefficients of silicon are calculated from these formulas. The agreements and discrepancies among the calculated results, the Rajkanan-Singh-Shewchun (RSS) formula, and Green's data are investigated and discussed. For example, the RSS formula tends to overestimate the contributions of indirect transitions for cases with high photon energy. The results show that the state occupied/unoccupied effect is almost negligible for silicon absorption coefficients up to the onset of the optical gain condition where the energy separation of Quasi-Femi levels between electrons and holes is larger than the band-gap energy. The usefulness of using the physics-based formulas, rather than semi-empirical fitting ones, for absorption coefficients in theoretical studies of photovoltaic devices is also discussed.

  3. Twostep-by-twostep PIRK-type PC methods with continuous output formulas

    NASA Astrophysics Data System (ADS)

    Cong, Nguyen Huu; Xuan, Le Ngoc

    2008-11-01

    This paper deals with parallel predictor-corrector (PC) iteration methods based on collocation Runge-Kutta (RK) corrector methods with continuous output formulas for solving nonstiff initial-value problems (IVPs) for systems of first-order differential equations. At nth step, the continuous output formulas are used not only for predicting the stage values in the PC iteration methods but also for calculating the step values at (n+2)th step. In this case, the integration processes can be proceeded twostep-by-twostep. The resulting twostep-by-twostep (TBT) parallel-iterated RK-type (PIRK-type) methods with continuous output formulas (twostep-by-twostep PIRKC methods or TBTPIRKC methods) give us a faster integration process. Fixed stepsize applications of these TBTPIRKC methods to a few widely-used test problems reveal that the new PC methods are much more efficient when compared with the well-known parallel-iterated RK methods (PIRK methods), parallel-iterated RK-type PC methods with continuous output formulas (PIRKC methods) and sequential explicit RK codes DOPRI5 and DOP853 available from the literature.

  4. Slip Boundary Conditions for the Compressible Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Aoki, Kazuo; Baranger, Céline; Hattori, Masanari; Kosuge, Shingo; Martalò, Giorgio; Mathiaud, Julien; Mieussens, Luc

    2017-11-01

    The slip boundary conditions for the compressible Navier-Stokes equations are derived systematically from the Boltzmann equation on the basis of the Chapman-Enskog solution of the Boltzmann equation and the analysis of the Knudsen layer adjacent to the boundary. The resulting formulas of the slip boundary conditions are summarized with explicit values of the slip coefficients for hard-sphere molecules as well as the Bhatnagar-Gross-Krook model. These formulas, which can be applied to specific problems immediately, help to prevent the use of often used slip boundary conditions that are either incorrect or without theoretical basis.

  5. Asymptotic Behavior of the Stock Price Distribution Density and Implied Volatility in Stochastic Volatility Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulisashvili, Archil, E-mail: guli@math.ohiou.ed; Stein, Elias M., E-mail: stein@math.princeton.ed

    2010-06-15

    We study the asymptotic behavior of distribution densities arising in stock price models with stochastic volatility. The main objects of our interest in the present paper are the density of time averages of the squared volatility process and the density of the stock price process in the Stein-Stein and the Heston model. We find explicit formulas for leading terms in asymptotic expansions of these densities and give error estimates. As an application of our results, sharp asymptotic formulas for the implied volatility in the Stein-Stein and the Heston model are obtained.

  6. Lattice QCD and the timelike pion form factor.

    PubMed

    Meyer, Harvey B

    2011-08-12

    We present a formula that allows one to calculate the pion form factor in the timelike region 2m(π) ≤ √(s) ≤ 4m(π) in lattice QCD. The form factor quantifies the contribution of two-pion states to the vacuum polarization. It must be known very accurately in order to reduce the theoretical uncertainty on the anomalous magnetic moment of the muon. At the same time, the formula constitutes a rare example where, in a restricted kinematic regime, the spectral function of a conserved current can be determined from Euclidean observables without an explicit analytic continuation.

  7. Statistical turbulence theory and turbulence phenomenology

    NASA Technical Reports Server (NTRS)

    Herring, J. R.

    1973-01-01

    The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.

  8. Testing subleading multiple soft graviton theorem for CHY prescription

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Subhroneel; Kashyap, Sitender Pratap; Sahoo, Biswajit; Sen, Ashoke; Verma, Mritunjay

    2018-01-01

    In arXiv:1707.06803 we derived the subleading multiple soft graviton theorem in a generic quantum theory of gravity for arbitrary number of soft external gravitons and arbitrary number of finite energy external states carrying arbitrary mass and spin. In this paper we verify this explicitly using the CHY formula for tree level scattering amplitudes of arbitrary number of gravitons in Einstein gravity. We pay special care to fix the signs of the amplitudes and resolve an apparent discrepancy between our general results in arXiv:1707.06803 and previous results on soft graviton theorem from CHY formula.

  9. Spatial derivatives of flow quantities behind curved shocks of all strengths

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1984-01-01

    Explicit formulas in terms of shock curvature are developed for spatial derivatives of flow quantities behind a curved shock for two-dimensional inviscid steady flow. Factors which yield the equations indeterminate as the shock strength approaches 0 have been cancelled analytically so that formulas are valid for shocks of any strength. An application for the method is shown in the solution of shock coalescence when nonaxisymmetric effects are felt through derivatives in the circumferential direction. The solution of this problem requires flow derivatives behind the shock in both the axial and radial direction.

  10. The Hidden Formula of Youth Digital Media Engagement. Tips

    ERIC Educational Resources Information Center

    Reynolds, Rebecca

    2009-01-01

    The slate of recent reports on youth technology engagement do not explicitly address the construct of "perceived competence," the third main affective state associated with intrinsically-motivated behavior in Edward Deci and Richard Ryan's broader psychological research. In the Spring of 2008, a team of researchers at Syracuse…

  11. A Note on the Computation of the Second-Order Derivatives of the Elementary Symmetric Functions in the Rasch Model.

    ERIC Educational Resources Information Center

    Formann, Anton K.

    1986-01-01

    It is shown that for equal parameters explicit formulas exist, facilitating the application of the Newton-Raphson procedure to estimate the parameters in the Rasch model and related models according to the conditional maximum likelihood principle. (Author/LMO)

  12. Cumulant generating function formula of heat transfer in ballistic systems with lead-lead coupling

    NASA Astrophysics Data System (ADS)

    Li, Huanan; Agarwalla, Bijay Kumar; Wang, Jian-Sheng

    2012-10-01

    Based on a two-time observation protocol, we consider heat transfer in a given time interval tM in a lead-junction-lead system taking coupling between the leads into account. In view of the two-time observation, consistency conditions are carefully verified in our specific family of quantum histories. Furthermore, its implication is briefly explored. Then using the nonequilibrium Green's function method, we obtain an exact formula for the cumulant generating function for heat transfer between the two leads, valid in both transient and steady-state regimes. Also, a compact formula for the cumulant generating function in the long-time limit is derived, for which the Gallavotti-Cohen fluctuation symmetry is explicitly verified. In addition, we briefly discuss Di Ventra's repartitioning trick regarding whether the repartitioning procedure of the total Hamiltonian affects the nonequilibrium steady-state current fluctuation. All kinds of properties of nonequilibrium current fluctuations, such as the fluctuation theorem in different time regimes, could be readily given according to these exact formulas.

  13. Identifying the genes of unconventional high temperature superconductors.

    PubMed

    Hu, Jiangping

    We elucidate a recently emergent framework in unifying the two families of high temperature (high [Formula: see text]) superconductors, cuprates and iron-based superconductors. The unification suggests that the latter is simply the counterpart of the former to realize robust extended s-wave pairing symmetries in a square lattice. The unification identifies that the key ingredients (gene) of high [Formula: see text] superconductors is a quasi two dimensional electronic environment in which the d -orbitals of cations that participate in strong in-plane couplings to the p -orbitals of anions are isolated near Fermi energy. With this gene, the superexchange magnetic interactions mediated by anions could maximize their contributions to superconductivity. Creating the gene requires special arrangements between local electronic structures and crystal lattice structures. The speciality explains why high [Formula: see text] superconductors are so rare. An explicit prediction is made to realize high [Formula: see text] superconductivity in Co/Ni-based materials with a quasi two dimensional hexagonal lattice structure formed by trigonal bipyramidal complexes.

  14. Further summation formulae related to generalized harmonic numbers

    NASA Astrophysics Data System (ADS)

    Zheng, De-Yin

    2007-11-01

    By employing the univariate series expansion of classical hypergeometric series formulae, Shen [L.-C. Shen, Remarks on some integrals and series involving the Stirling numbers and [zeta](n), Trans. Amer. Math. Soc. 347 (1995) 1391-1399] and Choi and Srivastava [J. Choi, H.M. Srivastava, Certain classes of infinite series, Monatsh. Math. 127 (1999) 15-25; J. Choi, H.M. Srivastava, Explicit evaluation of Euler and related sums, Ramanujan J. 10 (2005) 51-70] investigated the evaluation of infinite series related to generalized harmonic numbers. More summation formulae have systematically been derived by Chu [W. Chu, Hypergeometric series and the Riemann Zeta function, Acta Arith. 82 (1997) 103-118], who developed fully this approach to the multivariate case. The present paper will explore the hypergeometric series method further and establish numerous summation formulae expressing infinite series related to generalized harmonic numbers in terms of the Riemann Zeta function [zeta](m) with m=5,6,7, including several known ones as examples.

  15. Independence polynomial and matching polynomial of the Koch network

    NASA Astrophysics Data System (ADS)

    Liao, Yunhua; Xie, Xiaoliang

    2015-11-01

    The lattice gas model and the monomer-dimer model are two classical models in statistical mechanics. It is well known that the partition functions of these two models are associated with the independence polynomial and the matching polynomial in graph theory, respectively. Both polynomials have been shown to belong to the “#P-complete” class, which indicate the problems are computationally “intractable”. We consider these two polynomials of the Koch networks which are scale-free with small-world effects. Explicit recurrences are derived, and explicit formulae are presented for the number of independent sets of a certain type.

  16. Exact and explicit optimal solutions for trajectory planning and control of single-link flexible-joint manipulators

    NASA Technical Reports Server (NTRS)

    Chen, Guanrong

    1991-01-01

    An optimal trajectory planning problem for a single-link, flexible joint manipulator is studied. A global feedback-linearization is first applied to formulate the nonlinear inequality-constrained optimization problem in a suitable way. Then, an exact and explicit structural formula for the optimal solution of the problem is derived and the solution is shown to be unique. It turns out that the optimal trajectory planning and control can be done off-line, so that the proposed method is applicable to both theoretical analysis and real time tele-robotics control engineering.

  17. Analytical inversions in remote sensing of particle size distributions. IV - Comparison of Fymat and Box-McKellar solutions in the anomalous diffraction approximation

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.; Smith, C. B.

    1979-01-01

    It is shown that the inverse analytical solutions, provided separately by Fymat and Box-McKellar, for reconstructing particle size distributions from remote spectral transmission measurements under the anomalous diffraction approximation can be derived using a cosine and a sine transform, respectively. Sufficient conditions of validity of the two formulas are established. Their comparison shows that the former solution is preferable to the latter in that it requires less a priori information (knowledge of the particle number density is not needed) and has wider applicability. For gamma-type distributions, and either a real or a complex refractive index, explicit expressions are provided for retrieving the distribution parameters; such expressions are, interestingly, proportional to the geometric area of the polydispersion.

  18. EEG Classification with a Sequential Decision-Making Method in Motor Imagery BCI.

    PubMed

    Liu, Rong; Wang, Yongxuan; Newman, Geoffrey I; Thakor, Nitish V; Ying, Sarah

    2017-12-01

    To develop subject-specific classifier to recognize mental states fast and reliably is an important issue in brain-computer interfaces (BCI), particularly in practical real-time applications such as wheelchair or neuroprosthetic control. In this paper, a sequential decision-making strategy is explored in conjunction with an optimal wavelet analysis for EEG classification. The subject-specific wavelet parameters based on a grid-search method were first developed to determine evidence accumulative curve for the sequential classifier. Then we proposed a new method to set the two constrained thresholds in the sequential probability ratio test (SPRT) based on the cumulative curve and a desired expected stopping time. As a result, it balanced the decision time of each class, and we term it balanced threshold SPRT (BTSPRT). The properties of the method were illustrated on 14 subjects' recordings from offline and online tests. Results showed the average maximum accuracy of the proposed method to be 83.4% and the average decision time of 2.77[Formula: see text]s, when compared with 79.2% accuracy and a decision time of 3.01[Formula: see text]s for the sequential Bayesian (SB) method. The BTSPRT method not only improves the classification accuracy and decision speed comparing with the other nonsequential or SB methods, but also provides an explicit relationship between stopping time, thresholds and error, which is important for balancing the speed-accuracy tradeoff. These results suggest that BTSPRT would be useful in explicitly adjusting the tradeoff between rapid decision-making and error-free device control.

  19. Shape Control of Plates with Piezo Actuators and Collocated Position/Rate Sensors

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1994-01-01

    This paper treats the control problem of shaping the surface deformation of a circular plate using embedded piezo-electric actuators and collocated rate sensors. An explicit Linear Quadratic Gaussian (LQG) optimizer stability augmentation compensator is derived as well as the optimal feed-forward control. Corresponding performance evaluation formulas are also derived.

  20. Shape Control of Plates with Piezo Actuators and Collocated Position/Rate Sensors

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1994-01-01

    This paper treats the control problem of shaping the surface deformation of a circular plate using embedded piezo-electric actuator and collocated rate sensors. An explicit Linear Quadratic Gaussian (LQG) optimizer stability augmentation compensator is derived as well as the optimal feed-forward control. Corresponding performance evaluation formulas are also derived.

  1. Moments from Cumulants and Vice Versa

    ERIC Educational Resources Information Center

    Withers, Christopher S.; Nadarajah, Saralees

    2009-01-01

    Moments and cumulants are expressed in terms of each other using Bell polynomials. Inbuilt routines for the latter make these expressions amenable to use by algebraic manipulation programs. One of the four formulas given is an explicit version of Kendall's use of Faa di Bruno's chain rule to express cumulants in terms of moments.

  2. Teaching Mathematical Induction: An Alternative Approach.

    ERIC Educational Resources Information Center

    Allen, Lucas G.

    2001-01-01

    Describes experience using a new approach to teaching induction that was developed by the Mathematical Methods in High School Project. The basic idea behind the new approach is to use induction to prove that two formulas, one in recursive form and the other in a closed or explicit form, will always agree for whole numbers. (KHR)

  3. Hard Diffraction in Lepton--Hadron and Hadron--Hadron Collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.

    2002-09-01

    It is argued that the breakdown of factorization observed recently in the diffractive dijet production in deep inelastic lepton induced and hadron induced processes is naturally explained in the Good--Walker picture of diffraction dissociation. An explicit formula for the hadronic cross-section is given and successfully compared with the existing data.

  4. Exact Closed-form Solutions for Lamb's Problem

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Zhang, Haiming

    2018-04-01

    In this article, we report on an exact closed-form solution for the displacement at the surface of an elastic half-space elicited by a buried point source that acts at some point underneath that surface. This is commonly referred to as the 3-D Lamb's problem, for which previous solutions were restricted to sources and receivers placed at the free surface. By means of the reciprocity theorem, our solution should also be valid as a means to obtain the displacements at interior points when the source is placed at the free surface. We manage to obtain explicit results by expressing the solution in terms of elementary algebraic expression as well as elliptic integrals. We anchor our developments on Poisson's ratio 0.25 starting from Johnson's (1974) integral solutions which must be computed numerically. In the end, our closed-form results agree perfectly with the numerical results of Johnson (1974), which strongly confirms the correctness of our explicit formulas. It is hoped that in due time, these formulas may constitute a valuable canonical solution that will serve as a yardstick against which other numerical solutions can be compared and measured.

  5. Exact closed-form solutions for Lamb's problem

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Zhang, Haiming

    2018-07-01

    In this paper, we report on an exact closed-form solution for the displacement at the surface of an elastic half-space elicited by a buried point source that acts at some point underneath that surface. This is commonly referred to as the 3-D Lamb's problem for which previous solutions were restricted to sources and receivers placed at the free surface. By means of the reciprocity theorem, our solution should also be valid as a means to obtain the displacements at interior points when the source is placed at the free surface. We manage to obtain explicit results by expressing the solution in terms of elementary algebraic expression as well as elliptic integrals. We anchor our developments on Poisson's ratio 0.25 starting from Johnson's integral solutions which must be computed numerically. In the end, our closed-form results agree perfectly with the numerical results of Johnson, which strongly confirms the correctness of our explicit formulae. It is hoped that in due time, these formulae may constitute a valuable canonical solution that will serve as a yardstick against which other numerical solutions can be compared and measured.

  6. Seiberg-Witten/Whitham Equations and Instanton Corrections in {\\mathscr{N}}=2 Supersymmetric Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Dai, Jia-Liang; Fan, En-Gui

    2018-05-01

    We obtain the instanton correction recursion relations for the low energy effective prepotential in pure {\\mathscr{N}}=2 SU(n) supersymmetric Yang-Mills gauge theory from Whitham hierarchy and Seiberg-Witten/Whitham equations. These formulae provide us a powerful tool to calculate arbitrary order instanton corrections coefficients from the perturbative contributions of the effective prepotential in Seiberg-Witten gauge theory. We apply this idea to evaluate one- and twoorder instanton corrections coefficients explicitly in SU(n) case in detail through the dynamical scale parameter expressed in terms of Riemann’s theta-function. Supported by the National Natural Science Foundation of China under Grant No. 11271079

  7. A High Frequency Model of Cascade Noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1998-01-01

    Closed form asymptotic expressions for computing high frequency noise generated by an annular cascade in an infinite duct containing a uniform flow are presented. There are two new elements in this work. First, the annular duct mode representation does not rely on the often-used Bessel function expansion resulting in simpler expressions for both the radial eigenvalues and eigenfunctions of the duct. In particular, the new representation provides an explicit approximate formula for the radial eigenvalues obviating the need for solutions of the transcendental annular duct eigenvalue equation. Also, the radial eigenfunctions are represented in terms of exponentials eliminating the numerical problems associated with generating the Bessel functions on a computer. The second new element is the construction of an unsteady response model for an annular cascade. The new construction satisfies the boundary conditions on both the cascade and duct walls simultaneously adding a new level of realism to the noise calculations. Preliminary results which demonstrate the effectiveness of the new elements are presented. A discussion of the utility of the asymptotic formulas for calculating cascade discrete tone as well as broadband noise is also included.

  8. Period Integrals, L--Functions, and Applications to Subconvexity Bound and Mass Equidistribution

    NASA Astrophysics Data System (ADS)

    Hu, Yueke

    In this thesis we first study a period integral which gives the cuspidal part of a restricted Eisenstein series defined over a quadratic extension. This integral can be thought of as a complementary case to the well-known Rankin-Selberg integral and Triple product formula. We shall show the L-functions it represents and compute local integrals with ramifications. In the second part we will give explicit formula or bound for Triple product integral with very general ramifications. Such results can be applied to prove the subconvexity bound of triple product L--function and Mass equidistribution problems, greatly generalizing previous works.

  9. Some Simple Formulas for Posterior Convergence Rates

    PubMed Central

    2014-01-01

    We derive some simple relations that demonstrate how the posterior convergence rate is related to two driving factors: a “penalized divergence” of the prior, which measures the ability of the prior distribution to propose a nonnegligible set of working models to approximate the true model and a “norm complexity” of the prior, which measures the complexity of the prior support, weighted by the prior probability masses. These formulas are explicit and involve no essential assumptions and are easy to apply. We apply this approach to the case with model averaging and derive some useful oracle inequalities that can optimize the performance adaptively without knowing the true model. PMID:27379278

  10. Squeezing and its graphical representations in the anharmonic oscillator model

    NASA Astrophysics Data System (ADS)

    Tanaś, R.; Miranowicz, A.; Kielich, S.

    1991-04-01

    The problem of squeezing and its graphical representations in the anharmonic oscillator model is considered. Explicit formulas for squeezing, principal squeezing, and the quasiprobability distribution (QPD) function are given and illustrated graphically. Approximate analytical formulas for the variances, extremal variances, and QPD are obtained for the case of small nonlinearities and large numbers of photons. The possibility of almost perfect squeezing in the model is demonstrated and its graphical representations in the form of variance lemniscates and QPD contours are plotted. For large numbers of photons the crescent shape of the QPD contours is hardly visible and quite regular ellipses are obtained.

  11. Bounds on the power of proofs and advice in general physical theories.

    PubMed

    Lee, Ciarán M; Hoban, Matty J

    2016-06-01

    Quantum theory presents us with the tools for computational and communication advantages over classical theory. One approach to uncovering the source of these advantages is to determine how computation and communication power vary as quantum theory is replaced by other operationally defined theories from a broad framework of such theories. Such investigations may reveal some of the key physical features required for powerful computation and communication. In this paper, we investigate how simple physical principles bound the power of two different computational paradigms which combine computation and communication in a non-trivial fashion: computation with advice and interactive proof systems. We show that the existence of non-trivial dynamics in a theory implies a bound on the power of computation with advice. Moreover, we provide an explicit example of a theory with no non-trivial dynamics in which the power of computation with advice is unbounded. Finally, we show that the power of simple interactive proof systems in theories where local measurements suffice for tomography is non-trivially bounded. This result provides a proof that [Formula: see text] is contained in [Formula: see text], which does not make use of any uniquely quantum structure-such as the fact that observables correspond to self-adjoint operators-and thus may be of independent interest.

  12. The photon content of the proton

    NASA Astrophysics Data System (ADS)

    Manohar, Aneesh V.; Nason, Paolo; Salam, Gavin P.; Zanderighi, Giulia

    2017-12-01

    The photon PDF of the proton is needed for precision comparisons of LHC cross sections with theoretical predictions. In a recent paper, we showed how the photon PDF could be determined in terms of the electromagnetic proton structure functions F 2 and F L measured in electron-proton scattering experiments, and gave an explicit formula for the PDF including all terms up to next-to-leading order. In this paper we give details of the derivation. We obtain the photon PDF using the factorisation theorem and applying it to suitable BSM hard scattering processes. We also obtain the same PDF in a process-independent manner using the usual definition of PDFs in terms of light-cone Fourier transforms of products of operators. We show how our method gives an exact representation for the photon PDF in terms of F 2 and F L , valid to all orders in QED and QCD, and including all non-perturbative corrections. This representation is then used to give an explicit formula for the photon PDF to one order higher than our previous result. We also generalise our results to obtain formulæ for the polarised photon PDF, as well as the photon TMDPDF. Using our formula, we derive the P γ i subset of DGLAP splitting functions to order αα s and α 2, which agree with known results. We give a detailed explanation of the approach that we follow to determine a photon PDF and its uncertainty within the above framework.

  13. Statistical approach to tunneling time in attosecond experiments

    NASA Astrophysics Data System (ADS)

    Demir, Durmuş; Güner, Tuğrul

    2017-11-01

    Tunneling, transport of particles through classically forbidden regions, is a pure quantum phenomenon. It governs numerous phenomena ranging from single-molecule electronics to donor-acceptor transition reactions. The main problem is the absence of a universal method to compute tunneling time. This problem has been attacked in various ways in the literature. Here, in the present work, we show that a statistical approach to the problem, motivated by the imaginary nature of time in the forbidden regions, lead to a novel tunneling time formula which is real and subluminal (in contrast to various known time definitions implying superluminal tunneling). In addition to this, we show explicitly that the entropic time formula is in good agreement with the tunneling time measurements in laser-driven He ionization. Moreover, it sets an accurate range for long-range electron transfer reactions. The entropic time formula is general enough to extend to the photon and phonon tunneling phenomena.

  14. Diagonal Born-Oppenheimer correction for coupled-cluster wave-functions

    NASA Astrophysics Data System (ADS)

    Shamasundar, K. R.

    2018-06-01

    We examine how geometry-dependent normalisation freedom of electronic wave-functions affects extraction of a meaningful diagonal Born-Oppenheimer correction (DBOC) to the ground-state Born-Oppenheimer potential energy surface (PES). By viewing this freedom as a kind of gauge-freedom, it is shown that DBOC and the resulting associated mass-dependent adiabatic PES are gauge-invariant quantities. A sum-over-states (SOS) formula for DBOC which explicitly exhibits this invariance is derived. A biorthogonal formulation suitable for DBOC computations using standard unnormalised coupled-cluster (CC) wave-functions is presented. This is shown to lead to a biorthogonal version of SOS formula with similar properties. On this basis, different computational schemes for evaluating DBOC using approximate CC wave-functions are derived. One of this agrees with the formula used in the current literature. The connection to adiabatic-to-diabatic transformations in non-adiabatic dynamics is explored and complications arising from biorthogonal nature of CC theory are identified.

  15. Efficient algorithms for construction of recurrence relations for the expansion and connection coefficients in series of Al-Salam Carlitz I polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Ahmed, H. M.

    2005-12-01

    Two formulae expressing explicitly the derivatives and moments of Al-Salam-Carlitz I polynomials of any degree and for any order in terms of Al-Salam-Carlitz I themselves are proved. Two other formulae for the expansion coefficients of general-order derivatives Dpqf(x), and for the moments xellDpqf(x), of an arbitrary function f(x) in terms of its original expansion coefficients are also obtained. Application of these formulae for solving q-difference equations with varying coefficients, by reducing them to recurrence relations in the expansion coefficients of the solution, is explained. An algebraic symbolic approach (using Mathematica) in order to build and solve recursively for the connection coefficients between Al-Salam-Carlitz I polynomials and any system of basic hypergeometric orthogonal polynomials, belonging to the q-Hahn class, is described.

  16. Explicit densities of multidimensional ballistic Lévy walks.

    PubMed

    Magdziarz, Marcin; Zorawik, Tomasz

    2016-08-01

    Lévy walks have proved to be useful models of stochastic dynamics with a number of applications in the modeling of real-life phenomena. In this paper we derive explicit formulas for densities of the two- (2D) and three-dimensional (3D) ballistic Lévy walks, which are most important in applications. It turns out that in the 3D case the densities are given by elementary functions. The densities of the 2D Lévy walks are expressed in terms of hypergeometric functions and the right-side Riemann-Liouville fractional derivative, which allows us to efficiently evaluate them numerically. The theoretical results agree perfectly with Monte Carlo simulations.

  17. Self-sustained peristaltic waves: Explicit asymptotic solutions

    NASA Astrophysics Data System (ADS)

    Dudchenko, O. A.; Guria, G. Th.

    2012-02-01

    A simple nonlinear model for the coupled problem of fluid flow and contractile wall deformation is proposed to describe peristalsis. In the context of the model the ability of a transporting system to perform autonomous peristaltic pumping is interpreted as the ability to propagate sustained waves of wall deformation. Piecewise-linear approximations of nonlinear functions are used to analytically demonstrate the existence of traveling-wave solutions. Explicit formulas are derived which relate the speed of self-sustained peristaltic waves to the rheological properties of the transporting vessel and the transported fluid. The results may contribute to the development of diagnostic and therapeutic procedures for cases of peristaltic motility disorders.

  18. On Reconstruction of a Matrix by Its Minors

    ERIC Educational Resources Information Center

    Akhtyamov, Azamat; Amram, Meirav; Mouftakhov, Artour

    2018-01-01

    In this paper, we reconstruct matrices from their minors, and give explicit formulas for the reconstruction of matrices of orders 2 × 3, 2 × 4, 2 × n, 3 × 6 and m × n. We also formulate the Plücker relations, which are the conditions of the existence of a matrix related to its given minors.

  19. Fibonacci-Pell Hybridities

    ERIC Educational Resources Information Center

    Koshy, Thomas; Gao, Zhenguang

    2012-01-01

    We develop a recurrence satisfied by the Fibonacci and Pell families. We then use it to find explicit formulae and generating functions for the hybrids "F[subscript n]P[subscript n]", "L[subscript n]P[subscript n]", "F[subscript n]Q[subscript n]" and "L[subscript n]Q[subscript n]", where "F[subscript n]", "L[subscript n]", "P[subscript n]" and…

  20. On reconstruction of a matrix by its minors

    NASA Astrophysics Data System (ADS)

    Akhtyamov, Azamat; Amram, Meirav; Mouftakhov, Artour

    2018-02-01

    In this paper, we reconstruct matrices from their minors, and give explicit formulas for the reconstruction of matrices of orders 2 × 3, 2 × 4, 2 × n, 3 × 6 and m × n. We also formulate the Plücker relations, which are the conditions of the existence of a matrix related to its given minors.

  1. Double Ramification Cycles and Quantum Integrable Systems

    NASA Astrophysics Data System (ADS)

    Buryak, Alexandr; Rossi, Paolo

    2016-03-01

    In this paper, we define a quantization of the Double Ramification Hierarchies of Buryak (Commun Math Phys 336:1085-1107, 2015) and Buryak and Rossi (Commun Math Phys, 2014), using intersection numbers of the double ramification cycle, the full Chern class of the Hodge bundle and psi-classes with a given cohomological field theory. We provide effective recursion formulae which determine the full quantum hierarchy starting from just one Hamiltonian, the one associated with the first descendant of the unit of the cohomological field theory only. We study various examples which provide, in very explicit form, new (1+1)-dimensional integrable quantum field theories whose classical limits are well-known integrable hierarchies such as KdV, Intermediate Long Wave, extended Toda, etc. Finally, we prove polynomiality in the ramification multiplicities of the integral of any tautological class over the double ramification cycle.

  2. Explicit integration of Friedmann's equation with nonlinear equations of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shouxin; Gibbons, Gary W.; Yang, Yisong, E-mail: chensx@henu.edu.cn, E-mail: gwg1@damtp.cam.ac.uk, E-mail: yisongyang@nyu.edu

    2015-05-01

    In this paper we study the integrability of the Friedmann equations, when the equation of state for the perfect-fluid universe is nonlinear, in the light of the Chebyshev theorem. A series of important, yet not previously touched, problems will be worked out which include the generalized Chaplygin gas, two-term energy density, trinomial Friedmann, Born-Infeld, two-fluid models, and Chern-Simons modified gravity theory models. With the explicit integration, we are able to understand exactly the roles of the physical parameters in various models play in the cosmological evolution which may also offer clues to a profound understanding of the problems in generalmore » settings. For example, in the Chaplygin gas universe, a few integrable cases lead us to derive a universal formula for the asymptotic exponential growth rate of the scale factor, of an explicit form, whether the Friedmann equation is integrable or not, which reveals the coupled roles played by various physical sectors and it is seen that, as far as there is a tiny presence of nonlinear matter, conventional linear matter makes contribution to the dark matter, which becomes significant near the phantom divide line. The Friedmann equations also arise in areas of physics not directly related to cosmology. We provide some examples ranging from geometric optics and central orbits to soap films and the shape of glaciated valleys to which our results may be applied.« less

  3. The generalized formula for angular velocity vector of the moving coordinate system

    NASA Astrophysics Data System (ADS)

    Ermolin, Vladislav S.; Vlasova, Tatyana V.

    2018-05-01

    There are various ways for introducing the concept of the instantaneous angular velocity vector. In this paper we propose a method based on introducing of this concept by construction of the solution for the system of kinematic equations. These equations connect the function vectors defining the motion of the basis, and their derivatives. Necessary and sufficient conditions for the existence and uniqueness of the solution of this system are established. The instantaneous angular velocity vector is a solution of the algebraic system of equations. It is built explicitly. The derived formulas for the angular velocity vector generalize the earlier results, both for a basis of an affine oblique coordinate system and for an orthonormal basis.

  4. Global Melnikov Theory in Hamiltonian Systems with General Time-Dependent Perturbations

    NASA Astrophysics Data System (ADS)

    Gidea, Marian; de la Llave, Rafael

    2018-04-01

    We consider a mechanical system consisting of n-penduli and a d-degree-of-freedom rotator. The phase space of the rotator defines a normally hyperbolic invariant manifold Λ _0 . We apply a time-dependent perturbation, which is not assumed to be either Hamiltonian, or periodic, or quasi-periodic, as we allow for rather general time dependence. The strength of the perturbation is given by a parameter ɛ \\in R . For all |ɛ | sufficiently small, the augmented flow—obtained by making the time into a new variable—has a normally hyperbolic locally invariant manifold \\tilde{Λ }_ɛ . For ɛ =0 , \\tilde{Λ }_0=Λ _0× R . We define a Melnikov-type vector, which gives the first-order expansion of the displacement of the stable and unstable manifolds of \\tilde{Λ }_0 under the perturbation. We provide an explicit formula for the Melnikov vector in terms of convergent improper integrals of the perturbation along homoclinic orbits of the unperturbed system. We show that if the perturbation satisfies some explicit non-degeneracy conditions, then the stable and unstable manifolds of \\tilde{Λ }_ɛ , W^s(\\tilde{Λ }_ɛ ) and W^u(\\tilde{Λ }_ɛ ) , respectively, intersect along a transverse homoclinic manifold, and, moreover, the splitting of W^s(\\tilde{Λ }_ɛ ) and W^u(\\tilde{Λ }_ɛ ) can be explicitly computed, up to the first order, in terms of the Melnikov-type vector. This implies that the excursions along some homoclinic trajectories yield a non-trivial increase of order O(ɛ ) in the action variables of the rotator, for all sufficiently small perturbations. The formulas that we obtain are independent of the unperturbed motions in Λ _0 , and give, at the same time, the effects on periodic, quasi-periodic, or general-type orbits. When the perturbation is Hamiltonian, we express the effects of the perturbation, up to the first order, in terms of a Melnikov potential. In addition, if the perturbation is periodic, we obtain that the non-degeneracy conditions on the Melnikov potential are generic.

  5. Exact relations between homoclinic and periodic orbit actions in chaotic systems

    NASA Astrophysics Data System (ADS)

    Li, Jizhou; Tomsovic, Steven

    2018-02-01

    Homoclinic and unstable periodic orbits in chaotic systems play central roles in various semiclassical sum rules. The interferences between terms are governed by the action functions and Maslov indices. In this article, we identify geometric relations between homoclinic and unstable periodic orbits, and derive exact formulas expressing the periodic orbit classical actions in terms of corresponding homoclinic orbit actions plus certain phase space areas. The exact relations provide a basis for approximations of the periodic orbit actions as action differences between homoclinic orbits with well-estimated errors. This enables an explicit study of relations between periodic orbits, which results in an analytic expression for the action differences between long periodic orbits and their shadowing decomposed orbits in the cycle expansion.

  6. Inverse eigenproblem for R-symmetric matrices and their approximation

    NASA Astrophysics Data System (ADS)

    Yuan, Yongxin

    2009-11-01

    Let be a nontrivial involution, i.e., R=R-1[not equal to]±In. We say that is R-symmetric if RGR=G. The set of all -symmetric matrices is denoted by . In this paper, we first give the solvability condition for the following inverse eigenproblem (IEP): given a set of vectors in and a set of complex numbers , find a matrix such that and are, respectively, the eigenvalues and eigenvectors of A. We then consider the following approximation problem: Given an n×n matrix , find such that , where is the solution set of IEP and ||[dot operator]|| is the Frobenius norm. We provide an explicit formula for the best approximation solution by means of the canonical correlation decomposition.

  7. Two-dimensional motion of Brownian swimmers in linear flows.

    PubMed

    Sandoval, Mario; Jimenez, Alonso

    2016-03-01

    The motion of viruses and bacteria and even synthetic microswimmers can be affected by thermal fluctuations and by external flows. In this work, we study the effect of linear external flows and thermal fluctuations on the diffusion of those swimmers modeled as spherical active (self-propelled) particles moving in two dimensions. General formulae for their mean-square displacement under a general linear flow are presented. We also provide, at short and long times, explicit expressions for the mean-square displacement of a swimmer immersed in three canonical flows, namely, solid-body rotation, shear and extensional flows. These expressions can now be used to estimate the effect of external flows on the displacement of Brownian microswimmers. Finally, our theoretical results are validated by using Brownian dynamics simulations.

  8. Effective diffusion of confined active Brownian swimmers.

    PubMed

    Sandoval, Mario; Dagdug, Leornardo

    2014-12-01

    We theoretically find the effect of confinement and thermal fluctuations on the diffusivity of a spherical active swimmer moving inside a two-dimensional narrow cavity of general shape. The explicit formulas for the effective diffusion coefficient of a swimmer moving inside two particular cavities are presented. We also compare our analytical results with Brownian dynamics simulations and we obtain excellent agreement.

  9. Asymptotic solutions for flow in microchannels with ridged walls and arbitrary meniscus protrusion

    NASA Astrophysics Data System (ADS)

    Kirk, Toby

    2017-11-01

    Flow over structured surfaces exhibiting apparent slip, such as parallel ridges, have received much attention experimentally and numerically, but analytical and asymptotic solutions that account for the microstructure have so far been limited to unbounded geometries such as shear-driven flows. Analysis for channel flows has been limited to (close to) flat interfaces spanning the grooves between ridges, but in applications the interfaces (menisci) can highly protrude and have a significant impact on the apparent slip. In this presentation, we consider pressure-driven flow through a microchannel with longitudinal ridges patterning one or both walls. With no restriction on the meniscus protrusion, we develop explicit formulae for the slip length using a formal matched asymptotic expansion. Assuming the ratio of channel height to ridge period is large, the periodicity is confined to an inner layer close to the ridges, and the expansion is found to all algebraic orders. As a result, the error is exponentially small and, under a further ``diluteness'' assumption, the explicit formulae are compared to finite element solutions. They are found to have a very wide range of validity in channel height (even when the menisci can touch the opposing wall) and so are useful for practitioners.

  10. Efficient Translation of LTL Formulae into Buchi Automata

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Lerda, Flavio

    2001-01-01

    Model checking is a fully automated technique for checking that a system satisfies a set of required properties. With explicit-state model checkers, properties are typically defined in linear-time temporal logic (LTL), and are translated into B chi automata in order to be checked. This report presents how we have combined and improved existing techniques to obtain an efficient LTL to B chi automata translator. In particular, we optimize the core of existing tableau-based approaches to generate significantly smaller automata. Our approach has been implemented and is being released as part of the Java PathFinder software (JPF), an explicit state model checker under development at the NASA Ames Research Center.

  11. Fluctuations of the partition function in the generalized random energy model with external field

    NASA Astrophysics Data System (ADS)

    Bovier, Anton; Klimovsky, Anton

    2008-12-01

    We study Derrida's generalized random energy model (GREM) in the presence of uniform external field. We compute the fluctuations of the ground state and of the partition function in the thermodynamic limit for all admissible values of parameters. We find that the fluctuations are described by a hierarchical structure which is obtained by a certain coarse graining of the initial hierarchical structure of the GREM with external field. We provide an explicit formula for the free energy of the model. We also derive some large deviation results providing an expression for the free energy in a class of models with Gaussian Hamiltonians and external field. Finally, we prove that the coarse-grained parts of the system emerging in the thermodynamic limit tend to have a certain optimal magnetization, as prescribed by the strength of the external field and by parameters of the GREM.

  12. Beyond Aztec Castles: Toric Cascades in the dP 3 Quiver

    NASA Astrophysics Data System (ADS)

    Lai, Tri; Musiker, Gregg

    2017-12-01

    Given one of an infinite class of supersymmetric quiver gauge theories, string theorists can associate a corresponding toric variety (which is a Calabi-Yau 3-fold) as well as an associated combinatorial model known as a brane tiling. In combinatorial language, a brane tiling is a bipartite graph on a torus and its perfect matchings are of interest to both combinatorialists and physicists alike. A cluster algebra may also be associated to such quivers and in this paper we study the generators of this algebra, known as cluster variables, for the quiver associated to the cone over the del Pezzo surface d P 3. In particular, mutation sequences involving mutations exclusively at vertices with two in-coming arrows and two out-going arrows are referred to as toric cascades in the string theory literature. Such toric cascades give rise to interesting discrete integrable systems on the level of cluster variable dynamics. We provide an explicit algebraic formula for all cluster variables that are reachable by toric cascades as well as a combinatorial interpretation involving perfect matchings of subgraphs of the d P 3 brane tiling for these formulas in most cases.

  13. Quantum mechanics of a photon

    NASA Astrophysics Data System (ADS)

    Babaei, Hassan; Mostafazadeh, Ali

    2017-08-01

    A first-quantized free photon is a complex massless vector field A =(Aμ ) whose field strength satisfies Maxwell's equations in vacuum. We construct the Hilbert space H of the photon by endowing the vector space of the fields A in the temporal-Coulomb gauge with a positive-definite and relativistically invariant inner product. We give an explicit expression for this inner product, identify the Hamiltonian for the photon with the generator of time translations in H , determine the operators representing the momentum and the helicity of the photon, and introduce a chirality operator whose eigenfunctions correspond to fields having a definite sign of energy. We also construct a position operator for the photon whose components commute with each other and with the chirality and helicity operators. This allows for the construction of the localized states of the photon with a definite sign of energy and helicity. We derive an explicit formula for the latter and compute the corresponding electric and magnetic fields. These turn out to diverge not just at the point where the photon is localized but on a plane containing this point. We identify the axis normal to this plane with an associated symmetry axis and show that each choice of this axis specifies a particular position operator, a corresponding position basis, and a position representation of the quantum mechanics of a photon. In particular, we examine the position wave functions determined by such a position basis, elucidate their relationship with the Riemann-Silberstein and Landau-Peierls wave functions, and give an explicit formula for the probability density of the spatial localization of the photon.

  14. The construction of combinatorial manifolds with prescribed sets of links of vertices

    NASA Astrophysics Data System (ADS)

    Gaifullin, A. A.

    2008-10-01

    To every oriented closed combinatorial manifold we assign the set (with repetitions) of isomorphism classes of links of its vertices. The resulting transformation \\mathcal{L} is the main object of study in this paper. We pose an inversion problem for \\mathcal{L} and show that this problem is closely related to Steenrod's problem on the realization of cycles and to the Rokhlin-Schwartz-Thom construction of combinatorial Pontryagin classes. We obtain a necessary condition for a set of isomorphism classes of combinatorial spheres to belong to the image of \\mathcal{L}. (Sets satisfying this condition are said to be balanced.) We give an explicit construction showing that every balanced set of isomorphism classes of combinatorial spheres falls into the image of \\mathcal{L} after passing to a multiple set and adding several pairs of the form (Z,-Z), where -Z is the sphere Z with the orientation reversed. Given any singular simplicial cycle \\xi of a space X, this construction enables us to find explicitly a combinatorial manifold M and a map \\varphi\\colon M\\to X such that \\varphi_* \\lbrack M \\rbrack =r[\\xi] for some positive integer r. The construction is based on resolving singularities of \\xi. We give applications of the main construction to cobordisms of manifolds with singularities and cobordisms of simple cells. In particular, we prove that every rational additive invariant of cobordisms of manifolds with singularities admits a local formula. Another application is the construction of explicit (though inefficient) local combinatorial formulae for polynomials in the rational Pontryagin classes of combinatorial manifolds.

  15. Function of Hero and Heroine in Women's Formula Fiction: A Gaining of Self through Separation, Identification, and Assimilation.

    ERIC Educational Resources Information Center

    Moffitt, Mary Anne

    Romance novels have become increasingly popular and sexually explicit, in part because women may gain a sense of self through reading them and perhaps in reaction to the patriarchal structure of society. Women may seek escape and a sense of self-identity through the novels'"larger-than-life" characters and predictable endings. Readers of…

  16. Derivation of the Time-Reversal Anomaly for (2 +1 )-Dimensional Topological Phases

    NASA Astrophysics Data System (ADS)

    Tachikawa, Yuji; Yonekura, Kazuya

    2017-09-01

    We prove an explicit formula conjectured recently by Wang and Levin for the anomaly of time-reversal symmetry in (2 +1 )-dimensional fermionic topological quantum field theories. The crucial step is to determine the cross-cap state in terms of the modular S matrix and T2 eigenvalues, generalizing the recent analysis by Barkeshli et al. in the bosonic case.

  17. BPS States, Torus Links and Wild Character Varieties

    NASA Astrophysics Data System (ADS)

    Diaconescu, Duiliu-Emanuel; Donagi, Ron; Pantev, Tony

    2018-02-01

    A string theoretic framework is constructed relating the cohomology of wild character varieties to refined stable pair theory and torus link invariants. Explicit conjectural formulas are derived for wild character varieties with a unique irregular point on the projective line. For this case, this leads to a conjectural colored generalization of existing results of Hausel, Mereb and Wong as well as Shende, Treumann and Zaslow.

  18. Post Hoc Ergo Propter Hoc? Using Causation Diagrams to Empower Sixth-Form Students in Their Historical Thinking about Cause and Effect

    ERIC Educational Resources Information Center

    Alcoe, Alex

    2015-01-01

    Alex Alcoe was concerned that mastery of certain keywords and question formulae at GCSE perhaps obscured fundamental gaps in his students' understanding of the nature of causation. These gaps were revealed when he invited Year 12 students to make explicit, by annotating a diagram, their understanding of the relationship between particular causal…

  19. Complete D =11 embedding of SO(8) supergravity

    NASA Astrophysics Data System (ADS)

    Varela, Oscar

    2018-02-01

    The truncation formulas of D =11 supergravity on S7 to D =4 N =8 SO(8)-gauged supergravity are completed to include the full nonlinear dependence of the D =11 three-form potential A^ (3 ) on the D =4 fields, and their consistency is shown. The full embedding into A^ (3 ) is naturally expressed in terms of a restricted version, still N =8 but only SL(8)-covariant, of the D =4 tensor hierarchy. The redundancies introduced by this approach are removed at the level of the field strength F^ (4 ) by exploiting D =4 duality relations. Finally, new expressions for the full consistent truncation formulas are given that are explicit in all D =11 and D =4 fields.

  20. Generalized zeta function representation of groups and 2-dimensional topological Yang-Mills theory: The example of GL(2, #Mathematical Double-Struck Capital F#{sub q}) and PGL(2, #Mathematical Double-Struck Capital F#{sub q})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roche, Ph., E-mail: philippe.roche@univ-montp2.fr

    We recall the relation between zeta function representation of groups and two-dimensional topological Yang-Mills theory through Mednikh formula. We prove various generalisations of Mednikh formulas and define generalization of zeta function representations of groups. We compute some of these functions in the case of the finite group GL(2, #Mathematical Double-Struck Capital F#{sub q}) and PGL(2, #Mathematical Double-Struck Capital F#{sub q}). We recall the table characters of these groups for any q, compute the Frobenius-Schur indicator of their irreducible representations, and give the explicit structure of their fusion rings.

  1. Two-photon excitation cross section in light and intermediate atoms in frozen-core LS-coupling approximation

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    Using the method of explicit summation over the intermediate states two-photon absorption cross sections in light and intermediate atoms based on the simplistic frozen-core approximation and LS coupling have been formulated. Formulas for the cross section in terms of integrals over radial wave functions are given. Two selection rules, one exact and one approximate, valid within the stated approximations are derived. The formulas are applied to two-photon absorptions in nitrogen, oxygen, and chlorine. In evaluating the radial integrals, for low-lying levels, the Hartree-Fock wave functions, and for high-lying levels, hydrogenic wave functions obtained by the quantum-defect method have been used. A relationship between the cross section and the oscillator strengths is derived.

  2. Loop corrections for Kaluza-Klein AdS amplitudes

    NASA Astrophysics Data System (ADS)

    Aprile, F.; Drummond, J. M.; Heslop, P.; Paul, H.

    2018-05-01

    Recently we conjectured the four-point amplitude of graviton multiplets in AdS5 × S5 at one loop by exploiting the operator product expansion of N = 4 super Yang-Mills theory. Here we give the first extension of those results to include Kaluza-Klein modes, obtaining the amplitude for two graviton multiplets and two states of the first KK mode. Our method again relies on resolving the large N degeneracy among a family of long double-trace operators, for which we obtain explicit formulas for the leading anomalous dimensions. Having constructed the one-loop amplitude we are able to obtain a formula for the one-loop corrections to the anomalous dimensions of all twist five double-trace operators.

  3. Dynamics of a Chlorophyll Dimer in Collective and Local Thermal Environments

    DOE PAGES

    Merkli, M.; Berman, Gennady Petrovich; Sayre, Richard Thomas; ...

    2016-01-30

    Here we present a theoretical analysis of exciton transfer and decoherence effects in a photosynthetic dimer interacting with collective (correlated) and local (uncorrelated) protein-solvent environments. Our approach is based on the framework of the spin-boson model. We derive explicitly the thermal relaxation and decoherence rates of the exciton transfer process, valid for arbitrary temperatures and for arbitrary (in particular, large) interaction constants between the dimer and the environments. We establish a generalization of the Marcus formula, giving reaction rates for dimer levels possibly individually and asymmetrically coupled to environments. We identify rigorously parameter regimes for the validity of the generalizedmore » Marcus formula. The existence of long living quantum coherences at ambient temperatures emerges naturally from our approach.« less

  4. Statistical moments in superposition models and strongly intensive measures

    NASA Astrophysics Data System (ADS)

    Broniowski, Wojciech; Olszewski, Adam

    2017-06-01

    First, we present a concise glossary of formulas for composition of standard, cumulant, factorial, and factorial cumulant moments in superposition (compound) models, where final particles are created via independent emission from a collection of sources. Explicit mathematical formulas for the composed moments are given to all orders. We discuss the composition laws for various types of moments via the generating-function methods and list the formulas for the unfolding of the unwanted fluctuations. Second, the technique is applied to the difference of the scaled multiplicities of two particle types. This allows for a systematic derivation and a simple algebraic interpretation of the so-called strongly intensive fluctuation measures. With the help of the formalism we obtain several new strongly intensive measures involving higher-rank moments. The reviewed as well as the new results may be useful in investigations of mechanisms of particle production and event-by-event fluctuations in high-energy nuclear and hadronic collisions, and in particular in the search for signatures of the QCD phase transition at a finite baryon density.

  5. Corneal aberrations in keratoconic eyes: influence of pupil size and centering

    NASA Astrophysics Data System (ADS)

    Comastri, S. A.; Perez, L. I.; Pérez, G. D.; Martin, G.; Bianchetti, A.

    2011-01-01

    Ocular aberrations vary among subjects and under different conditions and are commonly analyzed expanding the wavefront aberration function in Zernike polynomials. In previous articles, explicit analytical formulas to transform Zernike coefficients of up to 7th order corresponding to an original pupil into those related to a contracted displaced new pupil are obtained. In the present paper these formulas are applied to 20 keratoconic corneas of varying severity. Employing the SN CT1000 topographer, aberrations of the anterior corneal surface for a pupil of semi-diameter 3 mm centered on the keratometric axis are evaluated, the relation between the higher-order root mean square wavefront error and the index KISA% characterizing keratoconus is studied and the size and centering of the ocular photopic natural pupil are determined. Using these data and the transformation formulas, new coefficients associated to the photopic pupil size are computed and their variation when coordinates origin is shifted from the keratometric axis to the ocular pupil centre is analyzed.

  6. Asymptotic One-Point Functions in Gauge-String Duality with Defects.

    PubMed

    Buhl-Mortensen, Isak; de Leeuw, Marius; Ipsen, Asger C; Kristjansen, Charlotte; Wilhelm, Matthias

    2017-12-29

    We take the first step in extending the integrability approach to one-point functions in AdS/dCFT to higher loop orders. More precisely, we argue that the formula encoding all tree-level one-point functions of SU(2) operators in the defect version of N=4 supersymmetric Yang-Mills theory, dual to the D5-D3 probe-brane system with flux, has a natural asymptotic generalization to higher loop orders. The asymptotic formula correctly encodes the information about the one-loop correction to the one-point functions of nonprotected operators once dressed by a simple flux-dependent factor, as we demonstrate by an explicit computation involving a novel object denoted as an amputated matrix product state. Furthermore, when applied to the Berenstein-Maldacena-Nastase vacuum state, the asymptotic formula gives a result for the one-point function which in a certain double-scaling limit agrees with that obtained in the dual string theory up to wrapping order.

  7. The Peierls stress of the moving [Formula: see text] screw dislocation in Ta.

    PubMed

    Liu, Ruiping; Wang, Shaofeng; Wu, Xiaozhi

    2009-08-26

    The Peierls stress of the moving [Formula: see text] screw dislocation with a planar and non-dissociated core structure in Ta has been calculated. The elastic strain energy which is associated with the discrete effect of the lattice and ignored in classical Peierls-Nabarro (P-N) theory has been taken into account in calculating the Peierls stress, and it can make the Peierls stress become smaller. The Peierls stress we obtain is very close to the experimental data. As shown in the numerical calculations and atomistic simulations, the core structure of the screw dislocation undergoes significant changes under the explicit stress before the screw dislocation moves. Moreover, the mechanism of the screw dislocation is revealed by our results and the experimental data that the screw dislocation retracts its extension in three {110} planes and transforms its dissociated core structure into a planar configuration. Therefore, the core structure of the moving [Formula: see text] screw dislocation in Ta is proposed to be planar.

  8. Exact sum rules for inhomogeneous drums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amore, Paolo, E-mail: paolo.amore@gmail.com

    2013-09-15

    We derive general expressions for the sum rules of the eigenvalues of drums of arbitrary shape and arbitrary density, obeying different boundary conditions. The formulas that we present are a generalization of the analogous formulas for one dimensional inhomogeneous systems that we have obtained in a previous paper. We also discuss the extension of these formulas to higher dimensions. We show that in the special case of a density depending only on one variable the sum rules of any integer order can be expressed in terms of a single series. As an application of our result we derive exact summore » rules for the homogeneous circular annulus with different boundary conditions, for a homogeneous circular sector and for a radially inhomogeneous circular annulus with Dirichlet boundary conditions. -- Highlights: •We derive an explicit expression for the sum rules of inhomogeneous drums. •We discuss the extension to higher dimensions. •We discuss the special case of an inhomogeneity only along one direction.« less

  9. Cumulant generating function formula of heat transfer in ballistic systems with lead-lead coupling and general nonlinear systems

    NASA Astrophysics Data System (ADS)

    Li, Huanan

    2013-03-01

    Based on a two-time observation protocol, we consider heat transfer in a given time interval tM in a lead-junction-lead system taking coupling between the leads into account. In view of the two-time observation, consistency conditions are carefully verified in our specific family of quantum histories. Furthermore, its implication is briefly explored. Then using the nonequilibrium Green's function method, we obtain an exact formula for the cumulant generating function for heat transfer between the two leads, valid in both transient and steady-state regimes. Also, a compact formula for the cumulant generating function in the long-time limit is derived, for which the Gallavotti-Cohen fluctuation symmetry is explicitly verified. In addition, we briefly discuss Di Ventra's repartitioning trick regarding whether the repartitioning procedure of the total Hamiltonian affects the nonequilibrium steady-state current fluctuation. All kinds of properties of nonequilibrium current fluctuations, such as the fluctuation theorem in different time regimes, could be readily given according to these exact formulas. Finally a practical formalism dealing with cumulants of heat transfer across general nonlinear quantum systems is established based on field theoretical/algebraic method.

  10. Potential profile near singularity point in kinetic Tonks-Langmuir discharges as a function of the ion sources temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kos, L.; Tskhakaya, D. D.; Jelic, N.

    2011-05-15

    A plasma-sheath transition analysis requires a reliable mathematical expression for the plasma potential profile {Phi}(x) near the sheath edge x{sub s} in the limit {epsilon}{identical_to}{lambda}{sub D}/l=0 (where {lambda}{sub D} is the Debye length and l is a proper characteristic length of the discharge). Such expressions have been explicitly calculated for the fluid model and the singular (cold ion source) kinetic model, where exact analytic solutions for plasma equation ({epsilon}=0) are known, but not for the regular (warm ion source) kinetic model, where no analytic solution of the plasma equation has ever been obtained. For the latter case, Riemann [J. Phys.more » D: Appl. Phys. 24, 493 (1991)] only predicted a general formula assuming relatively high ion-source temperatures, i.e., much higher than the plasma-sheath potential drop. Riemann's formula, however, according to him, never was confirmed in explicit solutions of particular models (e.g., that of Bissell and Johnson [Phys. Fluids 30, 779 (1987)] and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)]) since ''the accuracy of the classical solutions is not sufficient to analyze the sheath vicinity''[Riemann, in Proceedings of the 62nd Annual Gaseous Electronic Conference, APS Meeting Abstracts, Vol. 54 (APS, 2009)]. Therefore, for many years, there has been a need for explicit calculation that might confirm the Riemann's general formula regarding the potential profile at the sheath edge in the cases of regular very warm ion sources. Fortunately, now we are able to achieve a very high accuracy of results [see, e.g., Kos et al., Phys. Plasmas 16, 093503 (2009)]. We perform this task by using both the analytic and the numerical method with explicit Maxwellian and ''water-bag'' ion source velocity distributions. We find the potential profile near the plasma-sheath edge in the whole range of ion source temperatures of general interest to plasma physics, from zero to ''practical infinity.'' While within limits of ''very low'' and ''relatively high'' ion source temperatures, the potential is proportional to the space coordinate powered by rational numbers {alpha}=1/2 and {alpha}=2/3, with medium ion source temperatures. We found {alpha} between these values being a non-rational number strongly dependent on the ion source temperature. The range of the non-rational power-law turns out to be a very narrow one, at the expense of the extension of {alpha}=2/3 region towards unexpectedly low ion source temperatures.« less

  11. Deformed Calogero-Sutherland model and fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Atai, Farrokh; Langmann, Edwin

    2017-01-01

    The deformed Calogero-Sutherland (CS) model is a quantum integrable system with arbitrary numbers of two types of particles and reducing to the standard CS model in special cases. We show that a known collective field description of the CS model, which is based on conformal field theory (CFT), is actually a collective field description of the deformed CS model. This provides a natural application of the deformed CS model in Wen's effective field theory of the fractional quantum Hall effect (FQHE), with the two kinds of particles corresponding to electrons and quasi-hole excitations. In particular, we use known mathematical results about super-Jack polynomials to obtain simple explicit formulas for the orthonormal CFT basis proposed by van Elburg and Schoutens in the context of the FQHE.

  12. Nonlinear activity of acoustically driven gas bubble near a rigid boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maksimov, Alexey

    2015-10-28

    The presence of a boundary can produce considerable changes in the oscillation amplitude of the bubble and its scattered echo. The present study fills a gap in the literature, in that it is concerned theoretically with the bubble activity at relatively small distances from the rigid boundary. It was shown that the bi-spherical coordinates provide separation of variables and are more suitable for analysis of the dynamics of these constrained bubbles. Explicit formulas have been derived which describe the dependence of the bubble emission near a rigid wall on its size and the separation distance between the bubble and themore » boundary. As applications, time reversal technique for gas leakage detection and radiation forces that are induced by an acoustic wave on a constrained bubble were analyzed.« less

  13. Casimir force in a Lorentz violating theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Mariana; Turan, Ismail

    2006-08-01

    We study the effects of the minimal extension of the standard model including Lorentz violation on the Casimir force between two parallel conducting plates in the vacuum. We provide explicit solutions for the electromagnetic field using scalar field analogy, for both the cases in which the Lorentz violating terms come from the CPT-even or CPT-odd terms. We also calculate the effects of the Lorentz violating terms for a fermion field between two parallel conducting plates and analyze the modifications of the Casimir force due to the modifications of the Dirac equation. In all cases under consideration, the standard formulas formore » the Casimir force are modified by either multiplicative or additive correction factors, the latter case exhibiting different dependence on the distance between the plates.« less

  14. High-Order Semi-Discrete Central-Upwind Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bran R. (Technical Monitor)

    2002-01-01

    We present high-order semi-discrete central-upwind numerical schemes for approximating solutions of multi-dimensional Hamilton-Jacobi (HJ) equations. This scheme is based on the use of fifth-order central interpolants like those developed in [1], in fluxes presented in [3]. These interpolants use the weighted essentially nonoscillatory (WENO) approach to avoid spurious oscillations near singularities, and become "central-upwind" in the semi-discrete limit. This scheme provides numerical approximations whose error is as much as an order of magnitude smaller than those in previous WENO-based fifth-order methods [2, 1]. Thee results are discussed via examples in one, two and three dimensions. We also pregnant explicit N-dimensional formulas for the fluxes, discuss their monotonicity and tl!e connection between this method and that in [2].

  15. Local box-counting dimensions of discrete quantum eigenvalue spectra: Analytical connection to quantum spectral statistics

    NASA Astrophysics Data System (ADS)

    Sakhr, Jamal; Nieminen, John M.

    2018-03-01

    Two decades ago, Wang and Ong, [Phys. Rev. A 55, 1522 (1997)], 10.1103/PhysRevA.55.1522 hypothesized that the local box-counting dimension of a discrete quantum spectrum should depend exclusively on the nearest-neighbor spacing distribution (NNSD) of the spectrum. In this Rapid Communication, we validate their hypothesis by deriving an explicit formula for the local box-counting dimension of a countably-infinite discrete quantum spectrum. This formula expresses the local box-counting dimension of a spectrum in terms of single and double integrals of the NNSD of the spectrum. As applications, we derive an analytical formula for Poisson spectra and closed-form approximations to the local box-counting dimension for spectra having Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE), and Gaussian symplectic ensemble (GSE) spacing statistics. In the Poisson and GOE cases, we compare our theoretical formulas with the published numerical data of Wang and Ong and observe excellent agreement between their data and our theory. We also study numerically the local box-counting dimensions of the Riemann zeta function zeros and the alternate levels of GOE spectra, which are often used as numerical models of spectra possessing GUE and GSE spacing statistics, respectively. In each case, the corresponding theoretical formula is found to accurately describe the numerically computed local box-counting dimension.

  16. Constrained minimization problems for the reproduction number in meta-population models.

    PubMed

    Poghotanyan, Gayane; Feng, Zhilan; Glasser, John W; Hill, Andrew N

    2018-02-14

    The basic reproduction number ([Formula: see text]) can be considerably higher in an SIR model with heterogeneous mixing compared to that from a corresponding model with homogeneous mixing. For example, in the case of measles, mumps and rubella in San Diego, CA, Glasser et al. (Lancet Infect Dis 16(5):599-605, 2016. https://doi.org/10.1016/S1473-3099(16)00004-9 ), reported an increase of 70% in [Formula: see text] when heterogeneity was accounted for. Meta-population models with simple heterogeneous mixing functions, e.g., proportionate mixing, have been employed to identify optimal vaccination strategies using an approach based on the gradient of the effective reproduction number ([Formula: see text]), which consists of partial derivatives of [Formula: see text] with respect to the proportions immune [Formula: see text] in sub-groups i (Feng et al. in J Theor Biol 386:177-187, 2015.  https://doi.org/10.1016/j.jtbi.2015.09.006 ; Math Biosci 287:93-104, 2017.  https://doi.org/10.1016/j.mbs.2016.09.013 ). These papers consider cases in which an optimal vaccination strategy exists. However, in general, the optimal solution identified using the gradient may not be feasible for some parameter values (i.e., vaccination coverages outside the unit interval). In this paper, we derive the analytic conditions under which the optimal solution is feasible. Explicit expressions for the optimal solutions in the case of [Formula: see text] sub-populations are obtained, and the bounds for optimal solutions are derived for [Formula: see text] sub-populations. This is done for general mixing functions and examples of proportionate and preferential mixing are presented. Of special significance is the result that for general mixing schemes, both [Formula: see text] and [Formula: see text] are bounded below and above by their corresponding expressions when mixing is proportionate and isolated, respectively.

  17. Ewald method for polytropic potentials in arbitrary dimensionality

    NASA Astrophysics Data System (ADS)

    Osychenko, O. N.; Astrakharchik, G. E.; Boronat, J.

    2012-02-01

    The Ewald summation technique is generalized to power-law 1/| r | k potentials in three-, two- and one-dimensional geometries with explicit formulae for all the components of the sums. The cases of short-range, long-range and 'marginal' interactions are treated separately. The jellium model, as a particular case of a charge-neutral system, is discussed and the explicit forms of the Ewald sums for such a system are presented. A generalized form of the Ewald sums for a non-cubic (non-square) simulation cell for three- (two-) dimensional geometry is obtained and its possible field of application is discussed. A procedure for the optimization of the involved parameters in actual simulations is developed and an example of its application is presented.

  18. Special solutions to Chazy equation

    NASA Astrophysics Data System (ADS)

    Varin, V. P.

    2017-02-01

    We consider the classical Chazy equation, which is known to be integrable in hypergeometric functions. But this solution has remained purely existential and was never used numerically. We give explicit formulas for hypergeometric solutions in terms of initial data. A special solution was found in the upper half plane H with the same tessellation of H as that of the modular group. This allowed us to derive some new identities for the Eisenstein series. We constructed a special solution in the unit disk and gave an explicit description of singularities on its natural boundary. A global solution to Chazy equation in elliptic and theta functions was found that allows parametrization of an arbitrary solution to Chazy equation. The results have applications to analytic number theory.

  19. Exact sum rules for inhomogeneous systems containing a zero mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amore, Paolo, E-mail: paolo.amore@gmail.com

    2014-10-15

    We show that the formulas for the sum rules for the eigenvalues of inhomogeneous systems that we have obtained in two recent papers are incomplete when the system contains a zero mode. We prove that there are finite contributions of the zero mode to the sum rules and we explicitly calculate the expressions for the sum rules of order one and two. The previous results for systems that do not contain a zero mode are unaffected. - Highlights: • We discuss the sum rules of the eigenvalues of inhomogeneous systems containing a zero mode. • We derive the explicit expressionsmore » for sum rules of order one and two. • We perform accurate numerical tests of these results for three examples.« less

  20. Matrix elements of N-particle explicitly correlated Gaussian basis functions with complex exponential parameters

    NASA Astrophysics Data System (ADS)

    Bubin, Sergiy; Adamowicz, Ludwik

    2006-06-01

    In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.

  1. Matrix elements of N-particle explicitly correlated Gaussian basis functions with complex exponential parameters.

    PubMed

    Bubin, Sergiy; Adamowicz, Ludwik

    2006-06-14

    In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programmed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.

  2. Using weighted power mean for equivalent square estimation.

    PubMed

    Zhou, Sumin; Wu, Qiuwen; Li, Xiaobo; Ma, Rongtao; Zheng, Dandan; Wang, Shuo; Zhang, Mutian; Li, Sicong; Lei, Yu; Fan, Qiyong; Hyun, Megan; Diener, Tyler; Enke, Charles

    2017-11-01

    Equivalent Square (ES) enables the calculation of many radiation quantities for rectangular treatment fields, based only on measurements from square fields. While it is widely applied in radiotherapy, its accuracy, especially for extremely elongated fields, still leaves room for improvement. In this study, we introduce a novel explicit ES formula based on Weighted Power Mean (WPM) function and compare its performance with the Sterling formula and Vadash/Bjärngard's formula. The proposed WPM formula is ESWPMa,b=waα+1-wbα1/α for a rectangular photon field with sides a and b. The formula performance was evaluated by three methods: standard deviation of model fitting residual error, maximum relative model prediction error, and model's Akaike Information Criterion (AIC). Testing datasets included the ES table from British Journal of Radiology (BJR), photon output factors (S cp ) from the Varian TrueBeam Representative Beam Data (Med Phys. 2012;39:6981-7018), and published S cp data for Varian TrueBeam Edge (J Appl Clin Med Phys. 2015;16:125-148). For the BJR dataset, the best-fit parameter value α = -1.25 achieved a 20% reduction in standard deviation in ES estimation residual error compared with the two established formulae. For the two Varian datasets, employing WPM reduced the maximum relative error from 3.5% (Sterling) or 2% (Vadash/Bjärngard) to 0.7% for open field sizes ranging from 3 cm to 40 cm, and the reduction was even more prominent for 1 cm field sizes on Edge (J Appl Clin Med Phys. 2015;16:125-148). The AIC value of the WPM formula was consistently lower than its counterparts from the traditional formulae on photon output factors, most prominent on very elongated small fields. The WPM formula outperformed the traditional formulae on three testing datasets. With increasing utilization of very elongated, small rectangular fields in modern radiotherapy, improved photon output factor estimation is expected by adopting the WPM formula in treatment planning and secondary MU check. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  3. Effect of Infant Formula on Streptococcus Mutans Biofilm Formation.

    PubMed

    Hinds, Laura M; Moser, Elizabeth A S; Eckert, George; Gregory, Richard L

    This study investigated the effect that infant formula had on biofilm growth of Streptococcus mutans. Specifically, it compared biofilm growth in media containing lactose-based and sucrose-based formulas. It also analyzed biofilm formation with formulas of varying iron content. Biofilm growth was tested with the specific infant formula components sucrose, lactose, and ferric chloride. The study was designed to determine if these types of infant formulas and components affected S. mutans biofilm formation differently. A 24-hour culture of S. mutans was treated with various concentrations of infant formula diluted in bacteriological media. To test for biofilm formation, S. mutans was cultured with and without the infant formula and formula components. The biofilms were washed, fixed, and stained with crystal violet. The absorbance was measured to evaluate biofilm growth and total absorbance. Sucrose-based formulas provided significant increases in biofilm growth when compared to lactose-based formulas at two dilutions (1:5, 1:20). Similac Sensitive RS (sucrose-based) at most dilutions provided the most significant increase in biofilm growth when compared to the control. Sucrose tested as an individual component provided more of a significant increase on biofilm growth than lactose or iron when compared to the control. A low iron formula provided a significant increase in biofilm growth at one dilution (1:5) when compared to formula containing a normal iron content. There was no significant difference in biofilm growth when comparing high iron formula to normal iron formula or low iron formula. There was no significant difference when comparing Similac PM 60/40 (low iron formula) to Similac PM 60/40 with additional ferric chloride. The results of this study demonstrated that sucrose-based formula provided more of a significant increase in biofilm growth compared to lactose-based formula. Sucrose alone provided a significant increase of biofilm growth at more dilutions when compared to the control than lactose and iron. The amount of iron in formula had a significant effect on biofilm formation only when comparing low iron formula to normal iron formula at the highest concentration (1:5). There was no significant difference in biofilm growth when iron was added to the low iron formula. The information obtained expands current knowledge regarding the influence of infant formula on the primary dentition and reinforces the importance of oral hygiene habits once the first tooth erupts.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji Zhengfeng; Feng Yuan; Ying Mingsheng

    Local quantum operations and classical communication (LOCC) put considerable constraints on many quantum information processing tasks such as cloning and discrimination. Surprisingly, however, discrimination of any two pure states survives such constraints in some sense. We show that cloning is not that lucky; namely, probabilistic LOCC cloning of two product states is strictly less efficient than global cloning. We prove our result by giving explicitly the efficiency formula of local cloning of any two product states.

  5. BRIEF COMMUNICATION: A note on the Coulomb collision operator in curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Goncharov, P. R.

    2010-10-01

    The dynamic friction force, diffusion tensor, flux density in velocity space and Coulomb collision term are expressed in curvilinear coordinates via Trubnikov potential functions corresponding to each species of a background plasma. For comparison, explicit formulae are given for the dynamic friction force, diffusion tensor and collisional flux density in velocity space in curvilinear coordinates via Rosenbluth potential functions summed over all species of the background plasma.

  6. A Derivation of the Long-Term Degradation of a Pulsed Atomic Frequency Standard from a Control-Loop Model

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1996-01-01

    The phase of a frequency standard that uses periodic interrogation and control of a local oscillator (LO) is degraded by a long-term random-walk component induced by downconversion of LO noise into the loop passband. The Dick formula for the noise level of this degradation is derived from an explicit solution of an LO control-loop model.

  7. Quantitative theory of diffraction by cylindrical scroll nanotubes.

    PubMed

    Khadiev, Azat; Khalitov, Zufar

    2018-05-01

    A quantitative theory of Fraunhofer diffraction by right- and left-handed multiwalled cylindrical scroll nanotubes is developed on the basis of the kinematical approach. The proposed theory is mainly dedicated to structural studies of individual nanotubes by the selected-area electron diffraction technique. Strong and diffuse reflections of the scroll nanotube were studied and explicit formulas that govern relations between the direct and reciprocal lattice of the scroll nanotube are achieved.

  8. Integrability and correspondence of classical and quantum non-linear three-mode systems

    NASA Astrophysics Data System (ADS)

    Odzijewicz, A.; Wawreniuk, E.

    2018-04-01

    The relationship between classical and quantum three one-mode systems interacting in a non-linear way is described. We investigate the integrability of these systems by using the reduction procedure. The reduced coherent states for the quantum system are constructed. We find the explicit formulas for the reproducing measure for these states. Examples of some applications of the obtained results in non-linear quantum optics are presented.

  9. [On the extinction of populations with several types in a random environment].

    PubMed

    Bacaër, Nicolas

    2018-03-01

    This study focuses on the extinction rate of a population that follows a continuous-time multi-type branching process in a random environment. Numerical computations in a particular example inspired by an epidemic model suggest an explicit formula for this extinction rate, but only for certain parameter values. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silin, D.; Goloshubin, G.

    Analysis of compression wave propagation in a poroelastic medium predicts a peak of reflection from a high-permeability layer in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of Biot's model of poroelasticity. A review of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and Darcy's law suggests an alternative new physical interpretation of some coefficients ofmore » the classical poroelasticity. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The absolute value of this parameter is equal to the product of the kinematic reservoir fluid mobility and the wave frequency. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). Practical applications of the obtained asymptotic formulae are seismic modeling, inversion, and at-tribute analysis.« less

  11. Surface code implementation of block code state distillation.

    PubMed

    Fowler, Austin G; Devitt, Simon J; Jones, Cody

    2013-01-01

    State distillation is the process of taking a number of imperfect copies of a particular quantum state and producing fewer better copies. Until recently, the lowest overhead method of distilling states produced a single improved [formula: see text] state given 15 input copies. New block code state distillation methods can produce k improved [formula: see text] states given 3k + 8 input copies, potentially significantly reducing the overhead associated with state distillation. We construct an explicit surface code implementation of block code state distillation and quantitatively compare the overhead of this approach to the old. We find that, using the best available techniques, for parameters of practical interest, block code state distillation does not always lead to lower overhead, and, when it does, the overhead reduction is typically less than a factor of three.

  12. Pigovian taxes which work in the small-number case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittman, D.

    1985-06-01

    An appropriately conceived pollution tax can achieve a Pareto optimal equilibrium which is (1) stable in the presence of myopia, (2) not subject to strategic manipulation even in the small-number case, and (3) resistant to inefficient cost shifting by the participants when transaction costs are low. A considerable amount of confusion in the literature exists because different authors use different tax formulas (often implicitly) and different assumptions regarding conjectural behavior. Some of this confusion is cleared up by formally presenting various Pigovian tax formulas, explicitly considering whether there is Cournot or Stakleberg behavior, and comparing the properties of the variousmore » configurations. The author argues that charging for mitigated marginal cost rather than for actual damage avoids many pitfalls typically associated with Pignovian taxes. 15 references, 1 table.« less

  13. All two-loop maximally helicity-violating amplitudes in multi-Regge kinematics from applied symbology

    NASA Astrophysics Data System (ADS)

    Prygarin, Alexander; Spradlin, Marcus; Vergu, Cristian; Volovich, Anastasia

    2012-04-01

    Recent progress on scattering amplitudes has benefited from the mathematical technology of symbols for efficiently handling the types of polylogarithm functions which frequently appear in multiloop computations. The symbol for all two-loop maximally helicity violating amplitudes in planar supersymmetric Yang-Mills theory is known, but explicit analytic formulas for the amplitudes are hard to come by except in special limits where things simplify, such as multi-Regge kinematics. By applying symbology we obtain a formula for the leading behavior of the imaginary part (the Mandelstam cut contribution) of this amplitude in multi-Regge kinematics for any number of gluons. Our result predicts a simple recursive structure which agrees with a direct Balitsky-Fadin-Kuraev-Lipatov computation carried out in a parallel publication.

  14. The leading term of the Plancherel-Rotach asymptotic formula for solutions of recurrence relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aptekarev, A I; Tulyakov, D N

    Recurrence relations generating Padé and Hermite-Padé polynomials are considered. Their coefficients increase with the index of the relation, but after dividing by an appropriate power of the scaling function they tend to a finite limit. As a result, after scaling the polynomials 'stabilize' for large indices; this type of asymptotic behaviour is called Plancherel-Rotach asymptotics. An explicit expression for the leading term of the asymptotic formula, which is valid outside sets containing the zeros of the polynomials, is obtained for wide classes of three- and four-term relations. For three-term recurrence relations this result generalizes a theorem Van Assche obtained for recurrence relations withmore » 'regularly' growing coefficients. Bibliography: 19 titles.« less

  15. Probability distributions of linear statistics in chaotic cavities and associated phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivo, Pierpaolo; Majumdar, Satya N.; Bohigas, Oriol

    2010-03-01

    We establish large deviation formulas for linear statistics on the N transmission eigenvalues (T{sub i}) of a chaotic cavity, in the framework of random matrix theory. Given any linear statistics of interest A=SIGMA{sub i=1}{sup N}a(T{sub i}), the probability distribution P{sub A}(A,N) of A generically satisfies the large deviation formula lim{sub N-}>{sub i}nfinity[-2 log P{sub A}(Nx,N)/betaN{sup 2}]=PSI{sub A}(x), where PSI{sub A}(x) is a rate function that we compute explicitly in many cases (conductance, shot noise, and moments) and beta corresponds to different symmetry classes. Using these large deviation expressions, it is possible to recover easily known results and to produce newmore » formulas, such as a closed form expression for v(n)=lim{sub N-}>{sub i}nfinity var(T{sub n}) (where T{sub n}=SIGMA{sub i}T{sub i}{sup n}) for arbitrary integer n. The universal limit v*=lim{sub n-}>{sub i}nfinity v(n)=1/2pibeta is also computed exactly. The distributions display a central Gaussian region flanked on both sides by non-Gaussian tails. At the junction of the two regimes, weakly nonanalytical points appear, a direct consequence of phase transitions in an associated Coulomb gas problem. Numerical checks are also provided, which are in full agreement with our asymptotic results in both real and Laplace space even for moderately small N. Part of the results have been announced by Vivo et al. [Phys. Rev. Lett. 101, 216809 (2008)].« less

  16. A Derivation of the Dick Effect from Control-Loop Models for Periodically Interrogated Passive Frequency Standards

    NASA Technical Reports Server (NTRS)

    Greenhall, Charles A.

    1996-01-01

    The phase of a frequency standard that uses periodic interrogation and control of a local oscillator (LO) is degraded by a long-term random-walk component induced by downconversion of LO noise into the loop passband. The Dick formula for the noise level of this degradation can be derived from explicit solotions of two LO control-loop models. A summary of the derivations is given here.

  17. Equivariant Verlinde Algebra from Superconformal Index and Argyres-Seiberg Duality

    NASA Astrophysics Data System (ADS)

    Gukov, Sergei; Pei, Du; Yan, Wenbin; Ye, Ke

    2018-02-01

    In this paper, we show the equivalence between two seemingly distinct 2d TQFTs: one comes from the "Coulomb branch index" of the class S theory {T[Σ,G]} on {L(k,1) × S^1}, the other is the {^L G} "equivariant Verlinde formula", or equivalently partition function of {^L G_C} complex Chern-Simons theory on {Σ× S^1}. We first derive this equivalence using the M-theory geometry and show that the gauge groups appearing on the two sides are naturally G and its Langlands dual {^L G}. When G is not simply-connected, we provide a recipe of computing the index of {T[Σ,G]} as summation over the indices of T[Σ,\\tilde{G}] with non-trivial background 't Hooft fluxes, where \\tilde{G} is the universal cover of G. Then we check explicitly this relation between the Coulomb index and the equivariant Verlinde formula for {G=SU(2)} or SO(3). In the end, as an application of this newly found relation, we consider the more general case where G is SU( N) or PSU( N) and show that equivariant Verlinde algebra can be derived using field theory via (generalized) Argyres-Seiberg duality. We also attach a Mathematica notebook that can be used to compute the SU(3) equivariant Verlinde coefficients.

  18. An explicit analytical solution for sound propagation in a three-dimensional penetrable wedge with small apex angle.

    PubMed

    Petrov, Pavel S; Sturm, Frédéric

    2016-03-01

    A problem of sound propagation in a shallow-water waveguide with a weakly sloping penetrable bottom is considered. The adiabatic mode parabolic equations are used to approximate the solution of the three-dimensional (3D) Helmholtz equation by modal decomposition of the acoustic pressure field. The mode amplitudes satisfy parabolic equations that admit analytical solutions in the special case of the 3D wedge. Using the analytical formula for modal amplitudes, an explicit and remarkably simple expression for the acoustic pressure in the wedge is obtained. The proposed solution is validated by the comparison with a solution of the 3D penetrable wedge problem obtained using a fully 3D parabolic equation that includes a leading-order cross term correction.

  19. New Patterns of the Two-Dimensional Rogue Waves: (2+1)-Dimensional Maccari System

    NASA Astrophysics Data System (ADS)

    Wang, Gai-Hua; Wang, Li-Hong; Rao, Ji-Guang; He, Jing-Song

    2017-06-01

    The ocean rogue wave is one kind of puzzled destructive phenomenon that has not been understood thoroughly so far. The two-dimensional nature of this wave has inspired the vast endeavors on the recognizing new patterns of the rogue waves based on the dynamical equations with two-spatial variables and one-temporal variable, which is a very crucial step to prevent this disaster event at the earliest stage. Along this issue, we present twelve new patterns of the two-dimensional rogue waves, which are reduced from a rational and explicit formula of the solutions for a (2+1)-dimensional Maccari system. The extreme points (lines) of the first-order lumps (rogue waves) are discussed according to their analytical formulas. For the lower-order rogue waves, we show clearly in formula that parameter b 2 plays a significant role to control these patterns. Supported by the National Natural Science Foundation of China under Grant No. 11671219, the K. C. Wong Magna Fund in Ningbo University, Gai-Hua Wang is also supported by the Scientific Research Foundation of Graduate School of Ningbo University

  20. A Physical Based Formula for Calculating the Critical Stress of Snow Movement

    NASA Astrophysics Data System (ADS)

    He, S.; Ohara, N.

    2016-12-01

    In snow redistribution modeling, one of the most important parameters is the critical stress of snow movement, which is difficult to estimate from field data because it is influenced by various factors. In this study, a new formula for calculating critical stress of snow movement was derived based on the ice particle sintering process modeling and the moment balance of a snow particle. Through this formula, the influences of snow particle size, air temperature, and deposited time on the critical stress were explicitly taken into consideration. It was found that some of the model parameters were sensitive to the critical stress estimation through the sensitivity analysis using Sobol's method. The two sensitive parameters of the sintering process modeling were determined by a calibration-validation procedure using the observed snow flux data via FlowCapt. Based on the snow flux and metrological data observed at the ISAW stations (http://www.iav.ch), it was shown that the results of this formula were able to describe very well the evolution of the minimum friction wind speed required for the snow motion. This new formula suggested that when the snow just reaches the surface, the smaller snowflake can move easier than the larger particles. However, smaller snow particles require more force to move as the sintering between the snowflakes progresses. This implied that compact snow with small snow particles may be harder to erode by wind although smaller particles may have a higher chance to be suspended once they take off.

  1. Relations among several nuclear and electronic density functional reactivity indexes

    NASA Astrophysics Data System (ADS)

    Torrent-Sucarrat, Miquel; Luis, Josep M.; Duran, Miquel; Toro-Labbé, Alejandro; Solà, Miquel

    2003-11-01

    An expansion of the energy functional in terms of the total number of electrons and the normal coordinates within the canonical ensemble is presented. A comparison of this expansion with the expansion of the energy in terms of the total number of electrons and the external potential leads to new relations among common density functional reactivity descriptors. The formulas obtained provide explicit links between important quantities related to the chemical reactivity of a system. In particular, the relation between the nuclear and the electronic Fukui functions is recovered. The connection between the derivatives of the electronic energy and the nuclear repulsion energy with respect to the external potential offers a proof for the "Quantum Chemical le Chatelier Principle." Finally, the nuclear linear response function is defined and the relation of this function with the electronic linear response function is given.

  2. Higher-order force moments of active particles

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Elfring, Gwynn J.

    2018-04-01

    Active particles moving through fluids generate disturbance flows due to their activity. For simplicity, the induced flow field is often modeled by the leading terms in a far-field approximation of the Stokes equations, whose coefficients are the force, torque, and stresslet (zeroth- and first-order force moments) of the active particle. This level of approximation is quite useful, but may also fail to predict more complex behaviors that are observed experimentally. In this study, to provide a better approximation, we evaluate the contribution of the second-order force moments to the flow field and, by reciprocal theorem, present explicit formulas for the stresslet dipole, rotlet dipole, and potential dipole for an arbitrarily shaped active particle. As examples of this method, we derive modified Faxén laws for active spherical particles and resolve higher-order moments for active rod-like particles.

  3. Amplitudes for multiphoton quantum processes in linear optics

    NASA Astrophysics Data System (ADS)

    Urías, Jesús

    2011-07-01

    The prominent role that linear optical networks have acquired in the engineering of photon states calls for physically intuitive and automatic methods to compute the probability amplitudes for the multiphoton quantum processes occurring in linear optics. A version of Wick's theorem for the expectation value, on any vector state, of products of linear operators, in general, is proved. We use it to extract the combinatorics of any multiphoton quantum processes in linear optics. The result is presented as a concise rule to write down directly explicit formulae for the probability amplitude of any multiphoton process in linear optics. The rule achieves a considerable simplification and provides an intuitive physical insight about quantum multiphoton processes. The methodology is applied to the generation of high-photon-number entangled states by interferometrically mixing coherent light with spontaneously down-converted light.

  4. On the background independence of two-dimensional topological gravity

    NASA Astrophysics Data System (ADS)

    Imbimbo, Camillo

    1995-04-01

    We formulate two-dimensional topological gravity in a background covariant Lagrangian framework. We derive the Ward identities which characterize the dependence of physical correlators on the background world-sheet metric defining the gauge-slice. We point out the existence of an "anomaly" in Ward identitites involving correlators of observables with higher ghost number. This "anomaly" represents an obstruction for physical correlators to be globally defined forms on moduli space which could be integrated in a background independent way. Starting from the anomalous Ward identities, we derive "descent" equations whose solutions are cocycles of the Lie algebra of the diffeomorphism group with values in the space of local forms on the moduli space. We solve the descent equations and provide explicit formulas for the cocycles, which allow for the definition of background independent integrals of physical correlators on the moduli space.

  5. Rigorous derivation of the effective model describing a non-isothermal fluid flow in a vertical pipe filled with porous medium

    NASA Astrophysics Data System (ADS)

    Beneš, Michal; Pažanin, Igor

    2018-03-01

    This paper reports an analytical investigation of non-isothermal fluid flow in a thin (or long) vertical pipe filled with porous medium via asymptotic analysis. We assume that the fluid inside the pipe is cooled (or heated) by the surrounding medium and that the flow is governed by the prescribed pressure drop between pipe's ends. Starting from the dimensionless Darcy-Brinkman-Boussinesq system, we formally derive a macroscopic model describing the effective flow at small Brinkman-Darcy number. The asymptotic approximation is given by the explicit formulae for the velocity, pressure and temperature clearly acknowledging the effects of the cooling (heating) and porous structure. The theoretical error analysis is carried out to indicate the order of accuracy and to provide a rigorous justification of the effective model.

  6. Genetic code, hamming distance and stochastic matrices.

    PubMed

    He, Matthew X; Petoukhov, Sergei V; Ricci, Paolo E

    2004-09-01

    In this paper we use the Gray code representation of the genetic code C=00, U=10, G=11 and A=01 (C pairs with G, A pairs with U) to generate a sequence of genetic code-based matrices. In connection with these code-based matrices, we use the Hamming distance to generate a sequence of numerical matrices. We then further investigate the properties of the numerical matrices and show that they are doubly stochastic and symmetric. We determine the frequency distributions of the Hamming distances, building blocks of the matrices, decomposition and iterations of matrices. We present an explicit decomposition formula for the genetic code-based matrix in terms of permutation matrices, which provides a hypercube representation of the genetic code. It is also observed that there is a Hamiltonian cycle in a genetic code-based hypercube.

  7. Multiphoton amplitude in a constant background field

    NASA Astrophysics Data System (ADS)

    Ahmad, Aftab; Ahmadiniaz, Naser; Corradini, Olindo; Kim, Sang Pyo; Schubert, Christian

    2018-01-01

    In this contribution, we present our recent compact master formulas for the multiphoton amplitudes of a scalar propagator in a constant background field using the worldline fomulation of quantum field theory. The constant field has been included nonperturbatively, which is crucial for strong external fields. A possible application is the scattering of photons by electrons in a strong magnetic field, a process that has been a subject of great interest since the discovery of astrophysical objects like radio pulsars, which provide evidence that magnetic fields of the order of 1012G are present in nature. The presence of a strong external field leads to a strong deviation from the classical scattering amplitudes. We explicitly work out the Compton scattering amplitude in a magnetic field, which is a process of potential relevance for astrophysics. Our final result is compact and suitable for numerical integration.

  8. Stochastic Formal Correctness of Numerical Algorithms

    NASA Technical Reports Server (NTRS)

    Daumas, Marc; Lester, David; Martin-Dorel, Erik; Truffert, Annick

    2009-01-01

    We provide a framework to bound the probability that accumulated errors were never above a given threshold on numerical algorithms. Such algorithms are used for example in aircraft and nuclear power plants. This report contains simple formulas based on Levy's and Markov's inequalities and it presents a formal theory of random variables with a special focus on producing concrete results. We selected four very common applications that fit in our framework and cover the common practices of systems that evolve for a long time. We compute the number of bits that remain continuously significant in the first two applications with a probability of failure around one out of a billion, where worst case analysis considers that no significant bit remains. We are using PVS as such formal tools force explicit statement of all hypotheses and prevent incorrect uses of theorems.

  9. Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations

    NASA Technical Reports Server (NTRS)

    Kennedy, Christopher A.; Carpenter, Mark H.

    2001-01-01

    Additive Runge-Kutta (ARK) methods are investigated for application to the spatially discretized one-dimensional convection-diffusion-reaction (CDR) equations. First, accuracy, stability, conservation, and dense output are considered for the general case when N different Runge-Kutta methods are grouped into a single composite method. Then, implicit-explicit, N = 2, additive Runge-Kutta ARK2 methods from third- to fifth-order are presented that allow for integration of stiff terms by an L-stable, stiffly-accurate explicit, singly diagonally implicit Runge-Kutta (ESDIRK) method while the nonstiff terms are integrated with a traditional explicit Runge-Kutta method (ERK). Coupling error terms are of equal order to those of the elemental methods. Derived ARK2 methods have vanishing stability functions for very large values of the stiff scaled eigenvalue, z(exp [I]) goes to infinity, and retain high stability efficiency in the absence of stiffness, z(exp [I]) goes to zero. Extrapolation-type stage-value predictors are provided based on dense-output formulae. Optimized methods minimize both leading order ARK2 error terms and Butcher coefficient magnitudes as well as maximize conservation properties. Numerical tests of the new schemes on a CDR problem show negligible stiffness leakage and near classical order convergence rates. However, tests on three simple singular-perturbation problems reveal generally predictable order reduction. Error control is best managed with a PID-controller. While results for the fifth-order method are disappointing, both the new third- and fourth-order methods are at least as efficient as existing ARK2 methods while offering error control and stage-value predictors.

  10. From deep TLS validation to ensembles of atomic models built from elemental motions. II. Analysis of TLS refinement results by explicit interpretation

    DOE PAGES

    Afonine, Pavel V.; Adams, Paul D.; Urzhumtsev, Alexandre

    2018-06-08

    TLS modelling was developed by Schomaker and Trueblood to describe atomic displacement parameters through concerted (rigid-body) harmonic motions of an atomic group [Schomaker & Trueblood (1968), Acta Cryst. B 24 , 63–76]. The results of a TLS refinement are T , L and S matrices that provide individual anisotropic atomic displacement parameters (ADPs) for all atoms belonging to the group. These ADPs can be calculated analytically using a formula that relates the elements of the TLS matrices to atomic parameters. Alternatively, ADPs can be obtained numerically from the parameters of concerted atomic motions corresponding to the TLS matrices. Both proceduresmore » are expected to produce the same ADP values and therefore can be used to assess the results of TLS refinement. Here, the implementation of this approach in PHENIX is described and several illustrations, including the use of all models from the PDB that have been subjected to TLS refinement, are provided.« less

  11. From deep TLS validation to ensembles of atomic models built from elemental motions. II. Analysis of TLS refinement results by explicit interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afonine, Pavel V.; Adams, Paul D.; Urzhumtsev, Alexandre

    TLS modelling was developed by Schomaker and Trueblood to describe atomic displacement parameters through concerted (rigid-body) harmonic motions of an atomic group [Schomaker & Trueblood (1968), Acta Cryst. B 24 , 63–76]. The results of a TLS refinement are T , L and S matrices that provide individual anisotropic atomic displacement parameters (ADPs) for all atoms belonging to the group. These ADPs can be calculated analytically using a formula that relates the elements of the TLS matrices to atomic parameters. Alternatively, ADPs can be obtained numerically from the parameters of concerted atomic motions corresponding to the TLS matrices. Both proceduresmore » are expected to produce the same ADP values and therefore can be used to assess the results of TLS refinement. Here, the implementation of this approach in PHENIX is described and several illustrations, including the use of all models from the PDB that have been subjected to TLS refinement, are provided.« less

  12. Sample size requirements for the design of reliability studies: precision consideration.

    PubMed

    Shieh, Gwowen

    2014-09-01

    In multilevel modeling, the intraclass correlation coefficient based on the one-way random-effects model is routinely employed to measure the reliability or degree of resemblance among group members. To facilitate the advocated practice of reporting confidence intervals in future reliability studies, this article presents exact sample size procedures for precise interval estimation of the intraclass correlation coefficient under various allocation and cost structures. Although the suggested approaches do not admit explicit sample size formulas and require special algorithms for carrying out iterative computations, they are more accurate than the closed-form formulas constructed from large-sample approximations with respect to the expected width and assurance probability criteria. This investigation notes the deficiency of existing methods and expands the sample size methodology for the design of reliability studies that have not previously been discussed in the literature.

  13. Perturbation-theory analysis of ionization by a chirped few-cycle attosecond pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pronin, E. A.; Starace, Anthony F.; Peng Liangyou

    2011-07-15

    The angular distribution of electrons ionized from an atom by a chirped few-cycle attosecond pulse is analyzed using perturbation theory (PT), keeping terms in the transition amplitude up to second order in the pulse electric field. The dependence of the asymmetry in the ionized electron distributions on both the chirp and the carrier-envelope phase (CEP) of the pulse are explained using a simple analytical formula that approximates the exact PT result. This approximate formula (in which the chirp dependence is explicit) reproduces reasonably well the chirp-dependent oscillations of the electron angular distribution asymmetries found numerically by Peng et al. [Phys.more » Rev. A 80, 013407 (2009)]. It can also be used to determine the chirp rate of the attosecond pulse from the measured electron angular distribution asymmetry.« less

  14. Adjoint affine fusion and tadpoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urichuk, Andrew, E-mail: andrew.urichuk@uleth.ca; Walton, Mark A., E-mail: walton@uleth.ca; International School for Advanced Studies

    2016-06-15

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are writtenmore » for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.« less

  15. The separate universe approach to soft limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenton, Zachary; Mulryne, David J., E-mail: z.a.kenton@qmul.ac.uk, E-mail: d.mulryne@qmul.ac.uk

    We develop a formalism for calculating soft limits of n -point inflationary correlation functions using separate universe techniques. Our method naturally allows for multiple fields and leads to an elegant diagrammatic approach. As an application we focus on the trispectrum produced by inflation with multiple light fields, giving explicit formulae for all possible single- and double-soft limits. We also investigate consistency relations and present an infinite tower of inequalities between soft correlation functions which generalise the Suyama-Yamaguchi inequality.

  16. Symmetry reduction and exact solutions of two higher-dimensional nonlinear evolution equations.

    PubMed

    Gu, Yongyi; Qi, Jianming

    2017-01-01

    In this paper, symmetries and symmetry reduction of two higher-dimensional nonlinear evolution equations (NLEEs) are obtained by Lie group method. These NLEEs play an important role in nonlinear sciences. We derive exact solutions to these NLEEs via the [Formula: see text]-expansion method and complex method. Five types of explicit function solutions are constructed, which are rational, exponential, trigonometric, hyperbolic and elliptic function solutions of the variables in the considered equations.

  17. Unique Normal Form and the Associated Coefficients for a Class of Three-Dimensional Nilpotent Vector Fields

    NASA Astrophysics Data System (ADS)

    Li, Jing; Kou, Liying; Wang, Duo; Zhang, Wei

    2017-12-01

    In this paper, we mainly focus on the unique normal form for a class of three-dimensional vector fields via the method of transformation with parameters. A general explicit recursive formula is derived to compute the higher order normal form and the associated coefficients, which can be achieved easily by symbolic calculations. To illustrate the efficiency of the approach, a comparison of our result with others is also presented.

  18. Normal forms of dispersive scalar Poisson brackets with two independent variables

    NASA Astrophysics Data System (ADS)

    Carlet, Guido; Casati, Matteo; Shadrin, Sergey

    2018-03-01

    We classify the dispersive Poisson brackets with one dependent variable and two independent variables, with leading order of hydrodynamic type, up to Miura transformations. We show that, in contrast to the case of a single independent variable for which a well-known triviality result exists, the Miura equivalence classes are parametrised by an infinite number of constants, which we call numerical invariants of the brackets. We obtain explicit formulas for the first few numerical invariants.

  19. Local Stretching Theories

    DTIC Science & Technology

    2010-06-24

    diffusivity of the scalar. (If the scalar is heat, then the Schmidt number becomes the Prandtl number.) Momentum diffuses significantly faster than the...derive the Cramér function explicitly in the simple case where the xi have a Bernoulli distribution, though the general formula for S may be derived by...an analogous procedure. 5 Large deviation CLT for the Bernoulli distribution Let xi have the PDF of a fair coin, p(xi) = 1 2δ(xi + 1) + 1 2δ(xi − 1

  20. Catalan's intriguing factorial problem

    NASA Astrophysics Data System (ADS)

    Koshy, Thomas

    2012-01-01

    This article investigates the numbers ? , originally studied by Catalan. We re-confirm that they are indeed integers. Using the close relationship between them and the Catalan numbers C n , we develop some divisibility properties for C n . In particular, we establish that ? , where f k denotes the kth Fermat number ? and M k the kth Mersenne number 2 k - 1. Finally, we develop an explicit formula for X m,n using Pascal's triangle and Catalan numbers, and extract several interesting byproducts from it.

  1. Ultrasonic modeling of an embedded elliptic crack

    NASA Astrophysics Data System (ADS)

    Fradkin, Larissa Ju.; Zalipaev, Victor

    2000-05-01

    Experiments indicate that the radiating near zone of a compressional circular transducer directly coupled to a homogeneous and isotropic solid has the following structure: there are geometrical zones where one can distinguish a plane compressional wave and toroidal waves, both compressional and shear, radiated by the transducer rim. As has been shown previously the modern diffraction theory allows to describe these explicitly. It also gives explicit asymptotic description of waves present in the transition zones. In case of a normal incidence of a plane compressional wave the explicit expressions have been obtained by Achenbach and co-authors for the fields diffracted by a penny-shaped crack. We build on the above work by applying the uniform GTD to model an oblique incidence of a plane compressional wave on an elliptical crack. We compare our asymptotic results with numerical results based on the boundary integral code as developed by Glushkovs, Krasnodar University, Russia. The asymptotic formulas form a basis of a code for high-frequency simulation of ultrasonic scattering by elliptical cracks situated in the vicinity of a compressional circular transducer, currently under development at our Center.

  2. Bounds on complex polarizabilities and a new perspective on scattering by a lossy inclusion

    NASA Astrophysics Data System (ADS)

    Milton, Graeme W.

    2017-09-01

    Here, we obtain explicit formulas for bounds on the complex electrical polarizability at a given frequency of an inclusion with known volume that follow directly from the quasistatic bounds of Bergman and Milton on the effective complex dielectric constant of a two-phase medium. We also describe how analogous bounds on the orientationally averaged bulk and shear polarizabilities at a given frequency can be obtained from bounds on the effective complex bulk and shear moduli of a two-phase medium obtained by Milton, Gibiansky, and Berryman, using the quasistatic variational principles of Cherkaev and Gibiansky. We also show how the polarizability problem and the acoustic scattering problem can both be reformulated in an abstract setting as "Y problems." In the acoustic scattering context, to avoid explicit introduction of the Sommerfeld radiation condition, we introduce auxiliary fields at infinity and an appropriate "constitutive law" there, which forces the Sommerfeld radiation condition to hold. As a consequence, we obtain minimization variational principles for acoustic scattering that can be used to obtain bounds on the complex backwards scattering amplitude. Some explicit elementary bounds are given.

  3. Invariance of separability probability over reduced states in 4 × 4 bipartite systems

    NASA Astrophysics Data System (ADS)

    Lovas, Attila; Andai, Attila

    2017-07-01

    The geometric separability probability of composite quantum systems has been extensively studied in the recent decades. One of the simplest but strikingly difficult problem is to compute the separability probability of qubit-qubit and rebit-rebit quantum states with respect to the Hilbert-Schmidt measure. A lot of numerical simulations confirm the P{rebit - rebit}=\\frac{29}{64} and P{qubit-qubit}=\\frac{8}{33} conjectured probabilities. We provide a rigorous proof for the separability probability in the real case and we give explicit integral formulas for the complex and quaternionic case. Milz and Strunz studied the separability probability with respect to given subsystems. They conjectured that the separability probability of qubit-qubit (and qubit-qutrit) states of the form of ≤ft(\\begin{array}{@{}cc@{}} D1 & C \\ C* & D2 \\end{array}\\right) depends on D=D1+D2 (on single qubit subsystems), moreover it depends only on the Bloch radii (r) of D and it is constant in r. Using the Peres-Horodecki criterion for separability we give a mathematical proof for the \\frac{29}{64} probability and we present an integral formula for the complex case which hopefully will help to prove the \\frac{8}{33} probability, too. We prove Milz and Strunz’s conjecture for rebit-rebit and qubit-qubit states. The case, when the state space is endowed with the volume form generated by the operator monotone function f(x)=\\sqrt{x} is also studied in detail. We show that even in this setting Milz and Strunz’s conjecture holds true and we give an integral formula for separability probability according to this measure.

  4. Response formulae for n-point correlations in statistical mechanical systems and application to a problem of coarse graining

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio; Wouters, Jeroen

    2017-09-01

    Predicting the response of a system to perturbations is a key challenge in mathematical and natural sciences. Under suitable conditions on the nature of the system, of the perturbation, and of the observables of interest, response theories allow to construct operators describing the smooth change of the invariant measure of the system of interest as a function of the small parameter controlling the intensity of the perturbation. In particular, response theories can be developed both for stochastic and chaotic deterministic dynamical systems, where in the latter case stricter conditions imposing some degree of structural stability are required. In this paper we extend previous findings and derive general response formulae describing how n- point correlations are affected by perturbations to the vector flow. We also show how to compute the response of the spectral properties of the system to perturbations. We then apply our results to the seemingly unrelated problem of coarse graining in multiscale systems: we find explicit formulae describing the change in the terms describing the parameterisation of the neglected degrees of freedom resulting from applying perturbations to the full system. All the terms envisioned by the Mori-Zwanzig theory—the deterministic, stochastic, and non-Markovian terms—are affected at first order in the perturbation. The obtained results provide a more comprehensive understanding of the response of statistical mechanical systems to perturbations. They also contribute to the goal of constructing accurate and robust parameterisations and are of potential relevance for fields like molecular dynamics, condensed matter, and geophysical fluid dynamics. We envision possible applications of our general results to the study of the response of climate variability to anthropogenic and natural forcing and to the study of the equivalence of thermostatted statistical mechanical systems.

  5. A mathematical approach to HIV infection dynamics

    NASA Astrophysics Data System (ADS)

    Ida, A.; Oharu, S.; Oharu, Y.

    2007-07-01

    In order to obtain a comprehensive form of mathematical models describing nonlinear phenomena such as HIV infection process and AIDS disease progression, it is efficient to introduce a general class of time-dependent evolution equations in such a way that the associated nonlinear operator is decomposed into the sum of a differential operator and a perturbation which is nonlinear in general and also satisfies no global continuity condition. An attempt is then made to combine the implicit approach (usually adapted for convective diffusion operators) and explicit approach (more suited to treat continuous-type operators representing various physiological interactions), resulting in a semi-implicit product formula. Decomposing the operators in this way and considering their individual properties, it is seen that approximation-solvability of the original model is verified under suitable conditions. Once appropriate terms are formulated to describe treatment by antiretroviral therapy, the time-dependence of the reaction terms appears, and such product formula is useful for generating approximate numerical solutions to the governing equations. With this knowledge, a continuous model for HIV disease progression is formulated and physiological interpretations are provided. The abstract theory is then applied to show existence of unique solutions to the continuous model describing the behavior of the HIV virus in the human body and its reaction to treatment by antiretroviral therapy. The product formula suggests appropriate discrete models describing the dynamics of host pathogen interactions with HIV1 and is applied to perform numerical simulations based on the model of the HIV infection process and disease progression. Finally, the results of our numerical simulations are visualized and it is observed that our results agree with medical and physiological aspects.

  6. Aerodynamic coefficients in generalized unsteady thin airfoil theory

    NASA Technical Reports Server (NTRS)

    Williams, M. H.

    1980-01-01

    Two cases are considered: (1) rigid body motion of an airfoil-flap combination consisting of vertical translation of given amplitude, rotation of given amplitude about a specified axis, and rotation of given amplitude of the control surface alone about its hinge; the upwash for this problem is defined mathematically; and (2) sinusoidal gust of given amplitude and wave number, for which the upwash is defined mathematically. Simple universal formulas are presented for the most important aerodynamic coefficients in unsteady thin airfoil theory. The lift and moment induced by a generalized gust are evaluated explicitly in terms of the gust wavelength. Similarly, in the control surface problem, the lift, moment, and hinge moments are given as explicit algebraic functions of hinge location. These results can be used together with any of the standard numerical inversion routines for the elementary loads (pitch and heave).

  7. Actin-mediated bacterial propulsion: comet profile, velocity pulsations.

    PubMed

    Benza, V G

    2008-05-23

    The propulsion of bacteria under the action of an actin gel network is examined in terms of gel concentration dynamics. The model includes the elasticity of the network, the gel-bacterium interaction, the bulk and interface polymerization. A formula for the cruise velocity is obtained where the contributions to bacterial motility arising from elasticity and polymerization are made explicit. Higher velocities correspond to lower concentration peaks and longer tails, in agreement with experimental results. The condition for the onset of motion is explicitly given. The behavior of the system is explored by varying the growth rates and the gel elasticity. At steady state two regimes are found, respectively, of constant and pulsating velocity; in the latter case, the velocity undergoes sudden accelerations and subsequent recoveries. The transition to the pulsating regime is obtained by increasing the elastic response of the gel.

  8. Phonation threshold pressure: Comparison of calculations and measurements taken with physical models of the vocal fold mucosa

    PubMed Central

    Fulcher, Lewis P.; Scherer, Ronald C.

    2011-01-01

    In an important paper on the physics of small amplitude oscillations, Titze showed that the essence of the vertical phase difference, which allows energy to be transferred from the flowing air to the motion of the vocal folds, could be captured in a surface wave model, and he derived a formula for the phonation threshold pressure with an explicit dependence on the geometrical and biomechanical properties of the vocal folds. The formula inspired a series of experiments [e.g., R. Chan and I. Titze, J. Acoust. Soc. Am 119, 2351–2362 (2006)]. Although the experiments support many aspects of Titze’s formula, including a linear dependence on the glottal half-width, the behavior of the experiments at the smallest values of this parameter is not consistent with the formula. It is shown that a key element for removing this discrepancy lies in a careful examination of the properties of the entrance loss coefficient. In particular, measurements of the entrance loss coefficient at small widths done with a physical model of the glottis (M5) show that this coefficient varies inversely with the glottal width. A numerical solution of the time-dependent equations of the surface wave model shows that adding a supraglottal vocal tract lowers the phonation threshold pressure by an amount approximately consistent with Chan and Titze’s experiments. PMID:21895097

  9. Phonation threshold pressure: comparison of calculations and measurements taken with physical models of the vocal fold mucosa.

    PubMed

    Fulcher, Lewis P; Scherer, Ronald C

    2011-09-01

    In an important paper on the physics of small amplitude oscillations, Titze showed that the essence of the vertical phase difference, which allows energy to be transferred from the flowing air to the motion of the vocal folds, could be captured in a surface wave model, and he derived a formula for the phonation threshold pressure with an explicit dependence on the geometrical and biomechanical properties of the vocal folds. The formula inspired a series of experiments [e.g., R. Chan and I. Titze, J. Acoust. Soc. Am 119, 2351-2362 (2006)]. Although the experiments support many aspects of Titze's formula, including a linear dependence on the glottal half-width, the behavior of the experiments at the smallest values of this parameter is not consistent with the formula. It is shown that a key element for removing this discrepancy lies in a careful examination of the properties of the entrance loss coefficient. In particular, measurements of the entrance loss coefficient at small widths done with a physical model of the glottis (M5) show that this coefficient varies inversely with the glottal width. A numerical solution of the time-dependent equations of the surface wave model shows that adding a supraglottal vocal tract lowers the phonation threshold pressure by an amount approximately consistent with Chan and Titze's experiments. © 2011 Acoustical Society of America

  10. Goos-Hänchen and Imbert-Fedorov shifts for astigmatic Gaussian beams

    NASA Astrophysics Data System (ADS)

    Ornigotti, Marco; Aiello, Andrea

    2015-06-01

    In this work we investigate the role of the beam astigmatism in the Goos-Hänchen and Imbert-Fedorov shift. As a case study, we consider a Gaussian beam focused by an astigmatic lens and we calculate explicitly the corrections to the standard formulas for beam shifts due to the astigmatism induced by the lens. Our results show that the different focusing in the longitudinal and transverse direction introduced by an astigmatic lens may enhance the angular part of the shift.

  11. High-order centered difference methods with sharp shock resolution

    NASA Technical Reports Server (NTRS)

    Gustafsson, Bertil; Olsson, Pelle

    1994-01-01

    In this paper we consider high-order centered finite difference approximations of hyperbolic conservation laws. We propose different ways of adding artificial viscosity to obtain sharp shock resolution. For the Riemann problem we give simple explicit formulas for obtaining stationary one and two-point shocks. This can be done for any order of accuracy. It is shown that the addition of artificial viscosity is equivalent to ensuring the Lax k-shock condition. We also show numerical experiments that verify the theoretical results.

  12. Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Frederickson, Paul O.

    1990-01-01

    High order accurate finite-volume schemes for solving the Euler equations of gasdynamics are developed. Central to the development of these methods are the construction of a k-exact reconstruction operator given cell-averaged quantities and the use of high order flux quadrature formulas. General polygonal control volumes (with curved boundary edges) are considered. The formulations presented make no explicit assumption as to complexity or convexity of control volumes. Numerical examples are presented for Ringleb flow to validate the methodology.

  13. The theory of Enceladus and Dione: An application of computerized algebra in dynamical astronomy

    NASA Technical Reports Server (NTRS)

    Jefferys, W. H.; Ries, L. M.

    1974-01-01

    A theory of Saturn's satellites Enceladus and Dione is discussed which is literal (all constants of integration appear explicitly), canonically invariant (the Hori-Lie method is used), and which correctly handles the eccentricity-type resonance between the two satellites. Algebraic manipulations are designed to be performed using the TRIGMAN formula manipulation language, and computer programs were developed so that, with minor modifications, they can be used on the Mimas-Tethys and Titan-Hyperion systems.

  14. A tale of two Bethe ansätze

    NASA Astrophysics Data System (ADS)

    Lima-Santos, Antonio; Nepomechie, Rafael I.; Pimenta, Rodrigo A.

    2018-04-01

    We revisit the construction of the eigenvectors of the single and double-row transfer matrices associated with the Zamolodchikov–Fateev model, within the algebraic Bethe ansatz method. The left and right eigenvectors are constructed using two different methods: the fusion technique and Tarasov’s construction. A simple explicit relation between the eigenvectors from the two Bethe ansätze is obtained. As a consequence, we obtain the Slavnov formula for the scalar product between on-shell and off-shell Tarasov–Bethe vectors.

  15. Variational estimate method for solving autonomous ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Mungkasi, Sudi

    2018-04-01

    In this paper, we propose a method for solving first-order autonomous ordinary differential equation problems using a variational estimate formulation. The variational estimate is constructed with a Lagrange multiplier which is chosen optimally, so that the formulation leads to an accurate solution to the problem. The variational estimate is an integral form, which can be computed using a computer software. As the variational estimate is an explicit formula, the solution is easy to compute. This is a great advantage of the variational estimate formulation.

  16. An Equality in Stochastic Processes

    DTIC Science & Technology

    1971-06-21

    Neyman have dis- cussed extensively this model in their study of the probabilities of relapse, re- covery, and death for cancer patients [6] (see also Du...negative constant and vp a positive constant. Explicit formulas of the probabilities Pa )(to, t) have been derived in terms of vP.. and vP. (see [2...transitions from Sp occurring during (T, t); the probability of this sequence of events is (52) P’aja’(to 7-)[ vap d7-]P,’’ (TX t)- Integrating (52) from T

  17. Theory, implementation and applications of nonstationary Gabor frames

    PubMed Central

    Balazs, P.; Dörfler, M.; Jaillet, F.; Holighaus, N.; Velasco, G.

    2011-01-01

    Signal analysis with classical Gabor frames leads to a fixed time–frequency resolution over the whole time–frequency plane. To overcome the limitations imposed by this rigidity, we propose an extension of Gabor theory that leads to the construction of frames with time–frequency resolution changing over time or frequency. We describe the construction of the resulting nonstationary Gabor frames and give the explicit formula for the canonical dual frame for a particular case, the painless case. We show that wavelet transforms, constant-Q transforms and more general filter banks may be modeled in the framework of nonstationary Gabor frames. Further, we present the results in the finite-dimensional case, which provides a method for implementing the above-mentioned transforms with perfect reconstruction. Finally, we elaborate on two applications of nonstationary Gabor frames in audio signal processing, namely a method for automatic adaptation to transients and an algorithm for an invertible constant-Q transform. PMID:22267893

  18. Accurate acoustic power measurement for low-intensity focused ultrasound using focal axial vibration velocity

    NASA Astrophysics Data System (ADS)

    Tao, Chenyang; Guo, Gepu; Ma, Qingyu; Tu, Juan; Zhang, Dong; Hu, Jimin

    2017-07-01

    Low-intensity focused ultrasound is a form of therapy that can have reversible acoustothermal effects on biological tissue, depending on the exposure parameters. The acoustic power (AP) should be chosen with caution for the sake of safety. To recover the energy of counteracted radial vibrations at the focal point, an accurate AP measurement method using the focal axial vibration velocity (FAVV) is proposed in explicit formulae and is demonstrated experimentally using a laser vibrometer. The experimental APs for two transducers agree well with theoretical calculations and numerical simulations, showing that AP is proportional to the square of the FAVV, with a fixed power gain determined by the physical parameters of the transducers. The favorable results suggest that the FAVV can be used as a valuable parameter for non-contact AP measurement, providing a new strategy for accurate power control for low-intensity focused ultrasound in biomedical engineering.

  19. Entanglement entropy of ABJM theory and entropy of topological black hole

    NASA Astrophysics Data System (ADS)

    Nian, Jun; Zhang, Xinyu

    2017-07-01

    In this paper we discuss the supersymmetric localization of the 4D N = 2 offshell gauged supergravity on the background of the AdS4 neutral topological black hole, which is the gravity dual of the ABJM theory defined on the boundary {S}^1× H^2 . We compute the large- N expansion of the supergravity partition function. The result gives the black hole entropy with the logarithmic correction, which matches the previous result of the entanglement entropy of the ABJM theory up to some stringy effects. Our result is consistent with the previous on-shell one-loop computation of the logarithmic correction to black hole entropy. It provides an explicit example of the identification of the entanglement entropy of the boundary conformal field theory with the bulk black hole entropy beyond the leading order given by the classical Bekenstein-Hawking formula, which consequently tests the AdS/CFT correspondence at the subleading order.

  20. Distillation of mixed-state continuous-variable entanglement by photon subtraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Shengli; Loock, Peter van

    2010-12-15

    We present a detailed theoretical analysis for the distillation of one copy of a mixed two-mode continuous-variable entangled state using beam splitters and coherent photon-detection techniques, including conventional on-off detectors and photon-number-resolving detectors. The initial Gaussian mixed-entangled states are generated by transmitting a two-mode squeezed state through a lossy bosonic channel, corresponding to the primary source of errors in current approaches to optical quantum communication. We provide explicit formulas to calculate the entanglement in terms of logarithmic negativity before and after distillation, including losses in the channel and the photon detection, and show that one-copy distillation is still possible evenmore » for losses near the typical fiber channel attenuation length. A lower bound for the transmission coefficient of the photon-subtraction beam splitter is derived, representing the minimal value that still allows to enhance the entanglement.« less

  1. Steady state macroscopic model of the influence of water on the performances of a micro air-breathing fuel cell

    NASA Astrophysics Data System (ADS)

    Zeidan, M.; Turpin, Ch.; Cantin, F.; Astier, S.

    2011-05-01

    Water management is one of the most crucial issues to drive PEM fuel cells. The challenge is enhanced in the case of micro air-breathing proton exchange membrane fuel cells (μABFC): their thinness and their reduced surface indeed make their hydration state fast changing and very sensitive to the experimental conditions (temperature and relative humidity (RH)). It can lead to strong flooding or drying out issues. Firstly, this study highlights this sensitivity by various measurements. Then a steady state macroscopic model for the μABFC is proposed, focusing on the cathode, using a rather original approach for diffusion in porous media. Finally, a literal steady state formula for the water content is provided, and its influences on the performances of the μABFC are explicitly proposed. The model is parameterized and compared to measures in several atmospheric conditions.

  2. Cosmological perturbation theory using the FFTLog: formalism and connection to QFT loop integrals

    NASA Astrophysics Data System (ADS)

    Simonović, Marko; Baldauf, Tobias; Zaldarriaga, Matias; Carrasco, John Joseph; Kollmeier, Juna A.

    2018-04-01

    We present a new method for calculating loops in cosmological perturbation theory. This method is based on approximating a ΛCDM-like cosmology as a finite sum of complex power-law universes. The decomposition is naturally achieved using an FFTLog algorithm. For power-law cosmologies, all loop integrals are formally equivalent to loop integrals of massless quantum field theory. These integrals have analytic solutions in terms of generalized hypergeometric functions. We provide explicit formulae for the one-loop and the two-loop power spectrum and the one-loop bispectrum. A chief advantage of our approach is that the difficult part of the calculation is cosmology independent, need be done only once, and can be recycled for any relevant predictions. Evaluation of standard loop diagrams then boils down to a simple matrix multiplication. We demonstrate the promise of this method for applications to higher multiplicity/loop correlation functions.

  3. Vegetation regulation on streamflow intra-annual variability through adaption to climate variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Sheng; Li, Hongyi; Li, Shuai

    2015-12-16

    This study aims to provide a mechanistic explanation of the empirical patterns of streamflow intra-annual variability revealed by watershed-scale hydrological data across the contiguous United States. A mathematical extension of the Budyko formula with explicit account for the soil moisture storage change is used to show that, in catchments with a strong seasonal coupling between precipitation and potential evaporation, climate aridity has a dominant control on intra-annual streamflow variability, but in other catchments, additional factors related to soil water storage change also have important controls on how precipitation seasonality propagates to streamflow. More importantly, use of leaf area index asmore » a direct and indirect indicator of the above ground biomass and plant root system, respectively, reveals the vital role of vegetation in regulating soil moisture storage and hence streamflow intra-annual variability under different climate conditions.« less

  4. Kubo–Greenwood approach to conductivity in dense plasmas with average atom models

    DOE PAGES

    Starrett, C. E.

    2016-04-13

    In this study, a new formulation of the Kubo–Greenwood conductivity for average atom models is given. The new formulation improves upon previous treatments by explicitly including the ionic-structure factor. Calculations based on this new expression lead to much improved agreement with ab initio results for DC conductivity of warm dense hydrogen and beryllium, and for thermal conductivity of hydrogen. We also give and test a slightly modified Ziman–Evans formula for the resistivity that includes a non-free electron density of states, thus removing an ambiguity in the original Ziman–Evans formula. Again, results based on this expression are in good agreement withmore » ab initio simulations for warm dense beryllium and hydrogen. However, for both these expressions, calculations of the electrical conductivity of warm dense aluminum lead to poor agreement at low temperatures compared to ab initio simulations.« less

  5. A general formula for Rayleigh-Schroedinger perturbation energy utilizing a power series expansion of the quantum mechanical Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert, J.M.

    1997-02-01

    Perturbation theory has long been utilized by quantum chemists as a method for approximating solutions to the Schroedinger equation. Perturbation treatments represent a system`s energy as a power series in which each additional term further corrects the total energy; it is therefore convenient to have an explicit formula for the nth-order energy correction term. If all perturbations are collected into a single Hamiltonian operator, such a closed-form expression for the nth-order energy correction is well known; however, use of a single perturbed Hamiltonian often leads to divergent energy series, while superior convergence behavior is obtained by expanding the perturbed Hamiltonianmore » in a power series. This report presents a closed-form expression for the nth-order energy correction obtained using Rayleigh-Schroedinger perturbation theory and a power series expansion of the Hamiltonian.« less

  6. α '-corrected black holes in String Theory

    NASA Astrophysics Data System (ADS)

    Cano, Pablo A.; Meessen, Patrick; Ortín, Tomás; Ramírez, Pedro F.

    2018-05-01

    We consider the well-known solution of the Heterotic Superstring effective action to zeroth order in α ' that describes the intersection of a fundamental string with momentum and a solitonic 5-brane and which gives a 3-charge, static, extremal, supersymmetric black hole in 5 dimensions upon dimensional reduction on T5. We compute explicitly the first-order in α ' corrections to this solution, including SU(2) Yang-Mills fields which can be used to cancel some of these corrections and we study the main properties of this α '-corrected solution: supersymmetry, values of the near-horizon and asymptotic charges, behavior under α '-corrected T-duality, value of the entropy (using Wald formula directly in 10 dimensions), existence of small black holes etc. The value obtained for the entropy agrees, within the limits of approximation, with that obtained by microscopic methods. The α ' corrections coming from Wald's formula prove crucial for this result.

  7. On the stability of the electronic system in transition metal dichalcogenides.

    PubMed

    Faraggi, M N; Zubizarreta, X; Arnau, A; Silkin, V M

    2016-05-11

    Based on first-principles calculations, we prove that the origin of charge-density wave formation in metallic layered transition metal dichalcogenides (TMDC) is not due to an electronic effect, like the Fermi surface (FS) nesting, as it had been proposed. In particular, we consider NbSe2, NbS2, TaSe2, and TaS2 as representative examples of 2H-TMDC polytypes. Our main result consists that explicit inclusion of the matrix elements in first-principles calculations of the electron susceptibility [Formula: see text] removes, due to strong momentum dependence of the matrix elements, almost all the information about the FS topologies in the resulting [Formula: see text]. This finding strongly supports an interpretation in which the momentum dependence of the electron-phonon interaction is the only reason why the phenomenon of charge-density waves appears in this class of materials.

  8. Analytical expressions for the closure probability of a stiff wormlike chain for finite capture radius.

    PubMed

    Guérin, T

    2017-08-01

    Estimating the probability that two monomers of the same polymer chain are close together is a key ingredient to characterize intramolecular reactions and polymer looping. In the case of stiff wormlike polymers (rigid fluctuating elastic rods), for which end-to-end encounters are rare events, we derive an explicit analytical formula for the probability η(r_{c}) that the distance between the chain extremities is smaller than some capture radius r_{c}. The formula is asymptotically exact in the limit of stiff chains, and it leads to the identification of two distinct scaling regimes for the closure factor, originating from a strong variation of the fluctuations of the chain orientation at closure. Our theory is compatible with existing analytical results from the literature that cover the cases of a vanishing capture radius and of nearly fully extended chains.

  9. Analysis of current distribution in a large superconductor

    NASA Astrophysics Data System (ADS)

    Hamajima, Takataro; Alamgir, A. K. M.; Harada, Naoyuki; Tsuda, Makoto; Ono, Michitaka; Takano, Hirohisa

    An imbalanced current distribution which is often observed in cable-in-conduit (CIC) superconductors composed of multistaged, triplet type sub-cables, can deteriorate the performance of the coils. It is, hence very important to analyze the current distribution in a superconductor and find out methods to realize a homogeneous current distribution in the conductor. We apply magnetic flux conservation in a loop contoured by electric center lines of filaments in two arbitrary strands located on adjacent layers in a coaxial multilayer superconductor, and thereby analyze the current distribution in the conductor. A generalized formula governing the current distribution can be described as explicit functions of the superconductor construction parameters, such as twist pitch, twist direction and radius of individual layer. We numerically analyze a homogeneous current distribution as a function of the twist pitches of layers, using the fundamental formula. Moreover, it is demonstrated that we can control current distribution in the coaxial superconductor.

  10. Polynomial interpolation and sums of powers of integers

    NASA Astrophysics Data System (ADS)

    Cereceda, José Luis

    2017-02-01

    In this note, we revisit the problem of polynomial interpolation and explicitly construct two polynomials in n of degree k + 1, Pk(n) and Qk(n), such that Pk(n) = Qk(n) = fk(n) for n = 1, 2,… , k, where fk(1), fk(2),… , fk(k) are k arbitrarily chosen (real or complex) values. Then, we focus on the case that fk(n) is given by the sum of powers of the first n positive integers Sk(n) = 1k + 2k + ṡṡṡ + nk, and show that Sk(n) admits the polynomial representations Sk(n) = Pk(n) and Sk(n) = Qk(n) for all n = 1, 2,… , and k ≥ 1, where the first representation involves the Eulerian numbers, and the second one the Stirling numbers of the second kind. Finally, we consider yet another polynomial formula for Sk(n) alternative to the well-known formula of Bernoulli.

  11. Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density

    NASA Astrophysics Data System (ADS)

    Seino, Junji; Kageyama, Ryo; Fujinami, Mikito; Ikabata, Yasuhiro; Nakai, Hiromi

    2018-06-01

    A semi-local kinetic energy density functional (KEDF) was constructed based on machine learning (ML). The present scheme adopts electron densities and their gradients up to third-order as the explanatory variables for ML and the Kohn-Sham (KS) kinetic energy density as the response variable in atoms and molecules. Numerical assessments of the present scheme were performed in atomic and molecular systems, including first- and second-period elements. The results of 37 conventional KEDFs with explicit formulae were also compared with those of the ML KEDF with an implicit formula. The inclusion of the higher order gradients reduces the deviation of the total kinetic energies from the KS calculations in a stepwise manner. Furthermore, our scheme with the third-order gradient resulted in the closest kinetic energies to the KS calculations out of the presented functionals.

  12. Recurrence formulas for fully exponentially correlated four-body wave functions

    NASA Astrophysics Data System (ADS)

    Harris, Frank E.

    2009-03-01

    Formulas are presented for the recursive generation of four-body integrals in which the integrand consists of arbitrary integer powers (≥-1) of all the interparticle distances rij , multiplied by an exponential containing an arbitrary linear combination of all the rij . These integrals are generalizations of those encountered using Hylleraas basis functions and include all that are needed to make energy computations on the Li atom and other four-body systems with a fully exponentially correlated Slater-type basis of arbitrary quantum numbers. The only quantities needed to start the recursion are the basic four-body integral first evaluated by Fromm and Hill plus some easily evaluated three-body “boundary” integrals. The computational labor in constructing integral sets for practical computations is less than when the integrals are generated using explicit formulas obtained by differentiating the basic integral with respect to its parameters. Computations are facilitated by using a symbolic algebra program (MAPLE) to compute array index pointers and present syntactically correct FORTRAN source code as output; in this way it is possible to obtain error-free high-speed evaluations with minimal effort. The work can be checked by verifying sum rules the integrals must satisfy.

  13. Hamiltonian term for a uniform dc electric field under the adiabatic approximation

    NASA Astrophysics Data System (ADS)

    Siu, Zhuo Bin; Jalil, Mansoor B. A.; Tan, Seng Ghee

    2018-02-01

    In this work, we show that the disorder-free Kubo formula for the nonequilibrium value of an observable due to a dc electric field, represented by Exx ̂ in the Hamiltonian, can be interpreted as the standard time-independent theory response of the observable due to a time- and position-independent perturbation HMF. We derive the explicit expression for HMF and show that it originates from the adiabatic approximation to

  14. Point model equations for neutron correlation counting: Extension of Böhnel's equations to any order

    DOE PAGES

    Favalli, Andrea; Croft, Stephen; Santi, Peter

    2015-06-15

    Various methods of autocorrelation neutron analysis may be used to extract information about a measurement item containing spontaneously fissioning material. The two predominant approaches being the time correlation analysis (that make use of a coincidence gate) methods of multiplicity shift register logic and Feynman sampling. The common feature is that the correlated nature of the pulse train can be described by a vector of reduced factorial multiplet rates. We call these singlets, doublets, triplets etc. Within the point reactor model the multiplet rates may be related to the properties of the item, the parameters of the detector, and basic nuclearmore » data constants by a series of coupled algebraic equations – the so called point model equations. Solving, or inverting, the point model equations using experimental calibration model parameters is how assays of unknown items is performed. Currently only the first three multiplets are routinely used. In this work we develop the point model equations to higher order multiplets using the probability generating functions approach combined with the general derivative chain rule, the so called Faà di Bruno Formula. Explicit expression up to 5th order are provided, as well the general iterative formula to calculate any order. This study represents the first necessary step towards determining if higher order multiplets can add value to nondestructive measurement practice for nuclear materials control and accountancy.« less

  15. Pressure in an exactly solvable model of active fluid

    NASA Astrophysics Data System (ADS)

    Marini Bettolo Marconi, Umberto; Maggi, Claudio; Paoluzzi, Matteo

    2017-07-01

    We consider the pressure in the steady-state regime of three stochastic models characterized by self-propulsion and persistent motion and widely employed to describe the behavior of active particles, namely, the Active Brownian particle (ABP) model, the Gaussian colored noise (GCN) model, and the unified colored noise approximation (UCNA) model. Whereas in the limit of short but finite persistence time, the pressure in the UCNA model can be obtained by different methods which have an analog in equilibrium systems, in the remaining two models only the virial route is, in general, possible. According to this method, notwithstanding each model obeys its own specific microscopic law of evolution, the pressure displays a certain universal behavior. For generic interparticle and confining potentials, we derive a formula which establishes a correspondence between the GCN and the UCNA pressures. In order to provide explicit formulas and examples, we specialize the discussion to the case of an assembly of elastic dumbbells confined to a parabolic well. By employing the UCNA we find that, for this model, the pressure determined by the thermodynamic method coincides with the pressures obtained by the virial and mechanical methods. The three methods when applied to the GCN give a pressure identical to that obtained via the UCNA. Finally, we find that the ABP virial pressure exactly agrees with the UCNA and GCN results.

  16. Saffman-Taylor Instability for a non-Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir

    2013-11-01

    Motivated by applications, we study classical Saffman-Taylor instability involving displacement of an Oldroyd-B fluid displaced by air in a Hele-Shaw cell. The lubrication approximation is used by neglecting the vertical component of the velocity. We obtain an explicit expression of one of the components of the extra-stress perturbations tensor in terms of the horizontal velocity perturbations. The main result is an explicit formula for the growth constant (in time) of perturbations, given by a ratio in which a term depending on the relaxation and retardation (time) constants appears in the denominator of the ratio. This exact result compares extremely well with known numerical results. It is found that flow is more unstable than the corresponding Newtonian case. This is a joint work with Gelu Pasa. The research has been made possible by an NPRP Grant # 08-777-1-141 from the Qatar National Research Fund (a member of the Qatar Foundation).

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K. S.; Nakae, L. F.; Prasad, M. K.

    Here, we solve a simple theoretical model of time evolving fission chains due to Feynman that generalizes and asymptotically approaches the point model theory. The point model theory has been used to analyze thermal neutron counting data. This extension of the theory underlies fast counting data for both neutrons and gamma rays from metal systems. Fast neutron and gamma-ray counting is now possible using liquid scintillator arrays with nanosecond time resolution. For individual fission chains, the differential equations describing three correlated probability distributions are solved: the time-dependent internal neutron population, accumulation of fissions in time, and accumulation of leaked neutronsmore » in time. Explicit analytic formulas are given for correlated moments of the time evolving chain populations. The equations for random time gate fast neutron and gamma-ray counting distributions, due to randomly initiated chains, are presented. Correlated moment equations are given for both random time gate and triggered time gate counting. There are explicit formulas for all correlated moments are given up to triple order, for all combinations of correlated fast neutrons and gamma rays. The nonlinear differential equations for probabilities for time dependent fission chain populations have a remarkably simple Monte Carlo realization. A Monte Carlo code was developed for this theory and is shown to statistically realize the solutions to the fission chain theory probability distributions. Combined with random initiation of chains and detection of external quanta, the Monte Carlo code generates time tagged data for neutron and gamma-ray counting and from these data the counting distributions.« less

  18. Maximum and minimum entropy states yielding local continuity bounds

    NASA Astrophysics Data System (ADS)

    Hanson, Eric P.; Datta, Nilanjana

    2018-04-01

    Given an arbitrary quantum state (σ), we obtain an explicit construction of a state ρɛ * ( σ ) [respectively, ρ * , ɛ ( σ ) ] which has the maximum (respectively, minimum) entropy among all states which lie in a specified neighborhood (ɛ-ball) of σ. Computing the entropy of these states leads to a local strengthening of the continuity bound of the von Neumann entropy, i.e., the Audenaert-Fannes inequality. Our bound is local in the sense that it depends on the spectrum of σ. The states ρɛ * ( σ ) and ρ * , ɛ (σ) depend only on the geometry of the ɛ-ball and are in fact optimizers for a larger class of entropies. These include the Rényi entropy and the minimum- and maximum-entropies, providing explicit formulas for certain smoothed quantities. This allows us to obtain local continuity bounds for these quantities as well. In obtaining this bound, we first derive a more general result which may be of independent interest, namely, a necessary and sufficient condition under which a state maximizes a concave and Gâteaux-differentiable function in an ɛ-ball around a given state σ. Examples of such a function include the von Neumann entropy and the conditional entropy of bipartite states. Our proofs employ tools from the theory of convex optimization under non-differentiable constraints, in particular Fermat's rule, and majorization theory.

  19. An explicit closed-form analytical solution for European options under the CGMY model

    NASA Astrophysics Data System (ADS)

    Chen, Wenting; Du, Meiyu; Xu, Xiang

    2017-01-01

    In this paper, we consider the analytical pricing of European path-independent options under the CGMY model, which is a particular type of pure jump Le´vy process, and agrees well with many observed properties of the real market data by allowing the diffusions and jumps to have both finite and infinite activity and variation. It is shown that, under this model, the option price is governed by a fractional partial differential equation (FPDE) with both the left-side and right-side spatial-fractional derivatives. In comparison to derivatives of integer order, fractional derivatives at a point not only involve properties of the function at that particular point, but also the information of the function in a certain subset of the entire domain of definition. This ;globalness; of the fractional derivatives has added an additional degree of difficulty when either analytical methods or numerical solutions are attempted. Albeit difficult, we still have managed to derive an explicit closed-form analytical solution for European options under the CGMY model. Based on our solution, the asymptotic behaviors of the option price and the put-call parity under the CGMY model are further discussed. Practically, a reliable numerical evaluation technique for the current formula is proposed. With the numerical results, some analyses of impacts of four key parameters of the CGMY model on European option prices are also provided.

  20. Hypoallergenic formulas: optimal choices for treatment versus prevention.

    PubMed

    Bahna, Sami L

    2008-11-01

    To provide information on certain formulas that are relevant to allergy practice, focusing on their protein source and allergenicity, and to provide recommendations for selecting an optimal formula, taking into consideration efficacy, safety, palatability, and cost. A literature search using the PubMed database for the following keywords: hypoallergenic formulas, infant formulas, hydrolysate formulas, elemental formulas, and amino acids formulas. Information was derived from pertinent original studies and selected reviews, including recent Cochrane Database Systematic Reviews, published in the English-language literature. For a formula to be considered hypoallergenic, it should be well tolerated by at least 90% of individuals who are allergic to the parent protein from which that formula has been derived. Extensively hydrolyzed formulas (EHFs), derived from bovine casein or whey, are tolerated by approximately 95% of cow's milk allergic individuals. Elemental formulas are prepared from synthesized free amino acids and are well tolerated practically by all individuals, including those who are allergic to EHFs. Partially hydrolyzed whey formula (PHWFs) cause allergy in one-third to half of milk allergic individuals and are not considered hypoallergenic. Both EHFs and PHWFs seem to be equally effective in reducing the risk of development of allergy in infants of atopic families. The EHFs and amino acids formulas, but not the partially hydrolyzed formulas, are optimal for milk allergic individuals. All 3 types of formulas are useful for prevention. The cost and palatability should be considered in deciding which formula to use.

  1. Random effects coefficient of determination for mixed and meta-analysis models.

    PubMed

    Demidenko, Eugene; Sargent, James; Onega, Tracy

    2012-01-01

    The key feature of a mixed model is the presence of random effects. We have developed a coefficient, called the random effects coefficient of determination, [Formula: see text], that estimates the proportion of the conditional variance of the dependent variable explained by random effects. This coefficient takes values from 0 to 1 and indicates how strong the random effects are. The difference from the earlier suggested fixed effects coefficient of determination is emphasized. If [Formula: see text] is close to 0, there is weak support for random effects in the model because the reduction of the variance of the dependent variable due to random effects is small; consequently, random effects may be ignored and the model simplifies to standard linear regression. The value of [Formula: see text] apart from 0 indicates the evidence of the variance reduction in support of the mixed model. If random effects coefficient of determination is close to 1 the variance of random effects is very large and random effects turn into free fixed effects-the model can be estimated using the dummy variable approach. We derive explicit formulas for [Formula: see text] in three special cases: the random intercept model, the growth curve model, and meta-analysis model. Theoretical results are illustrated with three mixed model examples: (1) travel time to the nearest cancer center for women with breast cancer in the U.S., (2) cumulative time watching alcohol related scenes in movies among young U.S. teens, as a risk factor for early drinking onset, and (3) the classic example of the meta-analysis model for combination of 13 studies on tuberculosis vaccine.

  2. New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan's tau function.

    PubMed

    Milne, S C

    1996-12-24

    In this paper, we give two infinite families of explicit exact formulas that generalize Jacobi's (1829) 4 and 8 squares identities to 4n(2) or 4n(n + 1) squares, respectively, without using cusp forms. Our 24 squares identity leads to a different formula for Ramanujan's tau function tau(n), when n is odd. These results arise in the setting of Jacobi elliptic functions, Jacobi continued fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. We have also obtained many additional infinite families of identities in this same setting that are analogous to the eta-function identities in appendix I of Macdonald's work [Macdonald, I. G. (1972) Invent. Math. 15, 91-143]. A special case of our methods yields a proof of the two conjectured [Kac, V. G. and Wakimoto, M. (1994) in Progress in Mathematics, eds. Brylinski, J.-L., Brylinski, R., Guillemin, V. & Kac, V. (Birkhäuser Boston, Boston, MA), Vol. 123, pp. 415-456] identities involving representing a positive integer by sums of 4n(2) or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson's C(l) nonterminating (6)phi(5) summation theorem, and Andrews' basic hypergeometric series proof of Jacobi's 4 and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n(2) or n(n + 1) squares, respectively. Our sums of more than 8 squares identities are not the same as the formulas of Mathews (1895), Glaisher (1907), Ramanujan (1916), Mordell (1917, 1919), Hardy (1918, 1920), Kac and Wakimoto, and many others.

  3. 27 CFR 17.121 - Product formulas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... not be used subsequently. (d) Distribution and retention of approved formulas. One copy of each... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Product formulas. 17.121... PRODUCTS Formulas and Samples § 17.121 Product formulas. (a) General. Except as provided in §§ 17.132 and...

  4. 27 CFR 17.121 - Product formulas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... not be used subsequently. (d) Distribution and retention of approved formulas. One copy of each... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Product formulas. 17.121... PRODUCTS Formulas and Samples § 17.121 Product formulas. (a) General. Except as provided in §§ 17.132 and...

  5. 27 CFR 17.121 - Product formulas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... not be used subsequently. (d) Distribution and retention of approved formulas. One copy of each... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Product formulas. 17.121... PRODUCTS Formulas and Samples § 17.121 Product formulas. (a) General. Except as provided in §§ 17.132 and...

  6. 27 CFR 17.121 - Product formulas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... not be used subsequently. (d) Distribution and retention of approved formulas. One copy of each... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Product formulas. 17.121... PRODUCTS Formulas and Samples § 17.121 Product formulas. (a) General. Except as provided in §§ 17.132 and...

  7. Higgs physics at the CLIC electron-positron linear collider.

    PubMed

    Abramowicz, H; Abusleme, A; Afanaciev, K; Alipour Tehrani, N; Balázs, C; Benhammou, Y; Benoit, M; Bilki, B; Blaising, J-J; Boland, M J; Boronat, M; Borysov, O; Božović-Jelisavčić, I; Buckland, M; Bugiel, S; Burrows, P N; Charles, T K; Daniluk, W; Dannheim, D; Dasgupta, R; Demarteau, M; Díaz Gutierrez, M A; Eigen, G; Elsener, K; Felzmann, U; Firlej, M; Firu, E; Fiutowski, T; Fuster, J; Gabriel, M; Gaede, F; García, I; Ghenescu, V; Goldstein, J; Green, S; Grefe, C; Hauschild, M; Hawkes, C; Hynds, D; Idzik, M; Kačarević, G; Kalinowski, J; Kananov, S; Klempt, W; Kopec, M; Krawczyk, M; Krupa, B; Kucharczyk, M; Kulis, S; Laštovička, T; Lesiak, T; Levy, A; Levy, I; Linssen, L; Lukić, S; Maier, A A; Makarenko, V; Marshall, J S; Martin, V J; Mei, K; Milutinović-Dumbelović, G; Moroń, J; Moszczyński, A; Moya, D; Münker, R M; Münnich, A; Neagu, A T; Nikiforou, N; Nikolopoulos, K; Nürnberg, A; Pandurović, M; Pawlik, B; Perez Codina, E; Peric, I; Petric, M; Pitters, F; Poss, S G; Preda, T; Protopopescu, D; Rassool, R; Redford, S; Repond, J; Robson, A; Roloff, P; Ros, E; Rosenblat, O; Ruiz-Jimeno, A; Sailer, A; Schlatter, D; Schulte, D; Shumeiko, N; Sicking, E; Simon, F; Simoniello, R; Sopicki, P; Stapnes, S; Ström, R; Strube, J; Świentek, K P; Szalay, M; Tesař, M; Thomson, M A; Trenado, J; Uggerhøj, U I; van der Kolk, N; van der Kraaij, E; Vicente Barreto Pinto, M; Vila, I; Vogel Gonzalez, M; Vos, M; Vossebeld, J; Watson, M; Watson, N; Weber, M A; Weerts, H; Wells, J D; Weuste, L; Winter, A; Wojtoń, T; Xia, L; Xu, B; Żarnecki, A F; Zawiejski, L; Zgura, I-S

    2017-01-01

    The Compact Linear Collider (CLIC) is an option for a future [Formula: see text] collider operating at centre-of-mass energies up to [Formula: see text], providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: [Formula: see text], 1.4 and [Formula: see text]. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung ([Formula: see text]) and [Formula: see text]-fusion ([Formula: see text]), resulting in precise measurements of the production cross sections, the Higgs total decay width [Formula: see text], and model-independent determinations of the Higgs couplings. Operation at [Formula: see text] provides high-statistics samples of Higgs bosons produced through [Formula: see text]-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes [Formula: see text] and [Formula: see text] allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.

  8. Transit-time and age distributions for nonlinear time-dependent compartmental systems.

    PubMed

    Metzler, Holger; Müller, Markus; Sierra, Carlos A

    2018-02-06

    Many processes in nature are modeled using compartmental systems (reservoir/pool/box systems). Usually, they are expressed as a set of first-order differential equations describing the transfer of matter across a network of compartments. The concepts of age of matter in compartments and the time required for particles to transit the system are important diagnostics of these models with applications to a wide range of scientific questions. Until now, explicit formulas for transit-time and age distributions of nonlinear time-dependent compartmental systems were not available. We compute densities for these types of systems under the assumption of well-mixed compartments. Assuming that a solution of the nonlinear system is available at least numerically, we show how to construct a linear time-dependent system with the same solution trajectory. We demonstrate how to exploit this solution to compute transit-time and age distributions in dependence on given start values and initial age distributions. Furthermore, we derive equations for the time evolution of quantiles and moments of the age distributions. Our results generalize available density formulas for the linear time-independent case and mean-age formulas for the linear time-dependent case. As an example, we apply our formulas to a nonlinear and a linear version of a simple global carbon cycle model driven by a time-dependent input signal which represents fossil fuel additions. We derive time-dependent age distributions for all compartments and calculate the time it takes to remove fossil carbon in a business-as-usual scenario.

  9. A simple method for finding explicit analytic transition densities of diffusion processes with general diploid selection.

    PubMed

    Song, Yun S; Steinrücken, Matthias

    2012-03-01

    The transition density function of the Wright-Fisher diffusion describes the evolution of population-wide allele frequencies over time. This function has important practical applications in population genetics, but finding an explicit formula under a general diploid selection model has remained a difficult open problem. In this article, we develop a new computational method to tackle this classic problem. Specifically, our method explicitly finds the eigenvalues and eigenfunctions of the diffusion generator associated with the Wright-Fisher diffusion with recurrent mutation and arbitrary diploid selection, thus allowing one to obtain an accurate spectral representation of the transition density function. Simplicity is one of the appealing features of our approach. Although our derivation involves somewhat advanced mathematical concepts, the resulting algorithm is quite simple and efficient, only involving standard linear algebra. Furthermore, unlike previous approaches based on perturbation, which is applicable only when the population-scaled selection coefficient is small, our method is nonperturbative and is valid for a broad range of parameter values. As a by-product of our work, we obtain the rate of convergence to the stationary distribution under mutation-selection balance.

  10. A Simple Method for Finding Explicit Analytic Transition Densities of Diffusion Processes with General Diploid Selection

    PubMed Central

    Song, Yun S.; Steinrücken, Matthias

    2012-01-01

    The transition density function of the Wright–Fisher diffusion describes the evolution of population-wide allele frequencies over time. This function has important practical applications in population genetics, but finding an explicit formula under a general diploid selection model has remained a difficult open problem. In this article, we develop a new computational method to tackle this classic problem. Specifically, our method explicitly finds the eigenvalues and eigenfunctions of the diffusion generator associated with the Wright–Fisher diffusion with recurrent mutation and arbitrary diploid selection, thus allowing one to obtain an accurate spectral representation of the transition density function. Simplicity is one of the appealing features of our approach. Although our derivation involves somewhat advanced mathematical concepts, the resulting algorithm is quite simple and efficient, only involving standard linear algebra. Furthermore, unlike previous approaches based on perturbation, which is applicable only when the population-scaled selection coefficient is small, our method is nonperturbative and is valid for a broad range of parameter values. As a by-product of our work, we obtain the rate of convergence to the stationary distribution under mutation–selection balance. PMID:22209899

  11. Resistance Distances and Kirchhoff Index in Generalised Join Graphs

    NASA Astrophysics Data System (ADS)

    Chen, Haiyan

    2017-03-01

    The resistance distance between any two vertices of a connected graph is defined as the effective resistance between them in the electrical network constructed from the graph by replacing each edge with a unit resistor. The Kirchhoff index of a graph is defined as the sum of all the resistance distances between any pair of vertices of the graph. Let G=H[G1, G2, …, Gk ] be the generalised join graph of G1, G2, …, Gk determined by H. In this paper, we first give formulae for resistance distances and Kirchhoff index of G in terms of parameters of G'is {G'_i}s and H. Then, we show that computing resistance distances and Kirchhoff index of G can be decomposed into simpler ones. Finally, we obtain explicit formulae for resistance distances and Kirchhoff index of G when G'is {G'_i}s and H take some special graphs, such as the complete graph, the path, and the cycle.

  12. Constitutive error based parameter estimation technique for plate structures using free vibration signatures

    NASA Astrophysics Data System (ADS)

    Guchhait, Shyamal; Banerjee, Biswanath

    2018-04-01

    In this paper, a variant of constitutive equation error based material parameter estimation procedure for linear elastic plates is developed from partially measured free vibration sig-natures. It has been reported in many research articles that the mode shape curvatures are much more sensitive compared to mode shape themselves to localize inhomogeneity. Complying with this idea, an identification procedure is framed as an optimization problem where the proposed cost function measures the error in constitutive relation due to incompatible curvature/strain and moment/stress fields. Unlike standard constitutive equation error based procedure wherein a solution of a couple system is unavoidable in each iteration, we generate these incompatible fields via two linear solves. A simple, yet effective, penalty based approach is followed to incorporate measured data. The penalization parameter not only helps in incorporating corrupted measurement data weakly but also acts as a regularizer against the ill-posedness of the inverse problem. Explicit linear update formulas are then developed for anisotropic linear elastic material. Numerical examples are provided to show the applicability of the proposed technique. Finally, an experimental validation is also provided.

  13. Semi-nonparametric VaR forecasts for hedge funds during the recent crisis

    NASA Astrophysics Data System (ADS)

    Del Brio, Esther B.; Mora-Valencia, Andrés; Perote, Javier

    2014-05-01

    The need to provide accurate value-at-risk (VaR) forecasting measures has triggered an important literature in econophysics. Although these accurate VaR models and methodologies are particularly demanded for hedge fund managers, there exist few articles specifically devoted to implement new techniques in hedge fund returns VaR forecasting. This article advances in these issues by comparing the performance of risk measures based on parametric distributions (the normal, Student’s t and skewed-t), semi-nonparametric (SNP) methodologies based on Gram-Charlier (GC) series and the extreme value theory (EVT) approach. Our results show that normal-, Student’s t- and Skewed t- based methodologies fail to forecast hedge fund VaR, whilst SNP and EVT approaches accurately success on it. We extend these results to the multivariate framework by providing an explicit formula for the GC copula and its density that encompasses the Gaussian copula and accounts for non-linear dependences. We show that the VaR obtained by the meta GC accurately captures portfolio risk and outperforms regulatory VaR estimates obtained through the meta Gaussian and Student’s t distributions.

  14. Analytical Solution of Steady State Equations for Chemical Reaction Networks with Bilinear Rate Laws

    PubMed Central

    Halász, Ádám M.; Lai, Hong-Jian; McCabe, Meghan M.; Radhakrishnan, Krishnan; Edwards, Jeremy S.

    2014-01-01

    True steady states are a rare occurrence in living organisms, yet their knowledge is essential for quasi-steady state approximations, multistability analysis, and other important tools in the investigation of chemical reaction networks (CRN) used to describe molecular processes on the cellular level. Here we present an approach that can provide closed form steady-state solutions to complex systems, resulting from CRN with binary reactions and mass-action rate laws. We map the nonlinear algebraic problem of finding steady states onto a linear problem in a higher dimensional space. We show that the linearized version of the steady state equations obeys the linear conservation laws of the original CRN. We identify two classes of problems for which complete, minimally parameterized solutions may be obtained using only the machinery of linear systems and a judicious choice of the variables used as free parameters. We exemplify our method, providing explicit formulae, on CRN describing signal initiation of two important types of RTK receptor-ligand systems, VEGF and EGF-ErbB1. PMID:24334389

  15. High-order moments of spin-orbit energy in a multielectron configuration

    NASA Astrophysics Data System (ADS)

    Na, Xieyu; Poirier, M.

    2016-07-01

    In order to analyze the energy-level distribution in complex ions such as those found in warm dense plasmas, this paper provides values for high-order moments of the spin-orbit energy in a multielectron configuration. Using second-quantization results and standard angular algebra or fully analytical expressions, explicit values are given for moments up to 10th order for the spin-orbit energy. Two analytical methods are proposed, using the uncoupled or coupled orbital and spin angular momenta. The case of multiple open subshells is considered with the help of cumulants. The proposed expressions for spin-orbit energy moments are compared to numerical computations from Cowan's code and agree with them. The convergence of the Gram-Charlier expansion involving these spin-orbit moments is analyzed. While a spectrum with infinitely thin components cannot be adequately represented by such an expansion, a suitable convolution procedure ensures the convergence of the Gram-Charlier series provided high-order terms are accounted for. A corrected analytical formula for the third-order moment involving both spin-orbit and electron-electron interactions turns out to be in fair agreement with Cowan's numerical computations.

  16. A mathematical solution for the parameters of three interfering resonances

    NASA Astrophysics Data System (ADS)

    Han, X.; Shen, C. P.

    2018-04-01

    The multiple-solution problem in determining the parameters of three interfering resonances from a fit to an experimentally measured distribution is considered from a mathematical viewpoint. It is shown that there are four numerical solutions for a fit with three coherent Breit-Wigner functions. Although explicit analytical formulae cannot be derived in this case, we provide some constraint equations between the four solutions. For the cases of nonrelativistic and relativistic Breit-Wigner forms of amplitude functions, a numerical method is provided to derive the other solutions from that already obtained, based on the obtained constraint equations. In real experimental measurements with more complicated amplitude forms similar to Breit-Wigner functions, the same method can be deduced and performed to get numerical solutions. The good agreement between the solutions found using this mathematical method and those directly from the fit verifies the correctness of the constraint equations and mathematical methodology used. Supported by National Natural Science Foundation of China (NSFC) (11575017, 11761141009), the Ministry of Science and Technology of China (2015CB856701) and the CAS Center for Excellence in Particle Physics (CCEPP)

  17. A simple procedure for construction of the orthonormal basis vectors of irreducible representations of O(5) in the OT (3) ⊗ON (2) basis

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Ding, Xiaoxue; Launey, Kristina D.; Draayer, J. P.

    2018-06-01

    A simple and effective algebraic isospin projection procedure for constructing orthonormal basis vectors of irreducible representations of O (5) ⊃OT (3) ⊗ON (2) from those in the canonical O (5) ⊃ SUΛ (2) ⊗ SUI (2) basis is outlined. The expansion coefficients are components of null space vectors of the projection matrix with four nonzero elements in each row in general. Explicit formulae for evaluating OT (3)-reduced matrix elements of O (5) generators are derived.

  18. Multipoint Green's functions in 1 + 1 dimensional integrable quantum field theories

    DOE PAGES

    Babujian, H. M.; Karowski, M.; Tsvelik, A. M.

    2017-02-14

    We calculate the multipoint Green functions in 1+1 dimensional integrable quantum field theories. We use the crossing formula for general models and calculate the 3 and 4 point functions taking in to account only the lower nontrivial intermediate states contributions. Then we apply the general results to the examples of the scaling Z 2 Ising model, sinh-Gordon model and Z 3 scaling Potts model. We demonstrate this calculations explicitly. The results can be applied to physical phenomena as for example to the Raman scattering.

  19. Relativistic theory for picosecond time transfer in the vicinity of Earth

    NASA Technical Reports Server (NTRS)

    Petit, G.; Wolf, P.

    1994-01-01

    The problem of light propagation is treated in a geocentric reference system with the goal of ensuring picosecond accuracy for time transfer techniques using electromagnetic signals in the vicinity of the Earth. We give an explicit formula for a one way time transfer, to be applied when the spatial coordinates of the time transfer stations are known in a geocentric reference system rotating with the Earth. This expression is extended, at the same accuracy level of one picosecond, to the special cases of two way and LASSO time transfers via geostationary satellites.

  20. Upwind differencing and LU factorization for chemical non-equilibrium Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun

    1992-01-01

    By means of either the Roe or the Van Leer flux-splittings for inviscid terms, in conjunction with central differencing for viscous terms in the explicit operator and the Steger-Warming splitting and lower-upper approximate factorization for the implicit operator, the present, robust upwind method for solving the chemical nonequilibrium Navier-Stokes equations yields formulas for finite-volume discretization in general coordinates. Numerical tests in the illustrative cases of a hypersonic blunt body, a ramped duct, divergent nozzle flows, and shock wave/boundary layer interactions, establish the method's efficiency.

  1. Cosmological cosmic strings

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth

    1988-01-01

    The effect of an infinite cosmic string on a cosmological background is investigated. It is found that the metric is approximately a scaled version of the empty space string metric, i.e., conical in nature. Results are used to place bounds on the amount of cylindrical gravitational radiation currently emitted by such a string. The gravitational radiation equations are then analyzed explicitly and it is shown that even initially large disturbances are rapidly damped as the expansion proceeds. The implications of the gravitational radiation background and the limitations of the quadrupole formula are discussed.

  2. The spectral function of a singular differential operator of order 2m

    NASA Astrophysics Data System (ADS)

    Kozko, Artem I.; Pechentsov, Alexander S.

    2010-12-01

    We study the spectral function of a self-adjoint semibounded below differential operator on a Hilbert space L_2 \\lbrack 0,\\infty) and obtain the formulae for the spectral function of the operator (-1)^{m}y^{(2m)}(x) with general boundary conditions at the zero. In particular, for the boundary conditions y(0)=y'(0)=\\dots=y^{(m-1)}(0)=0 we find the explicit form of the spectral function \\Theta_{mB'}(x,x,\\lambda) on the diagonal x=y for \\lambda \\ge 0.

  3. Entanglement and nonlocality versus spontaneous emission in two-atom systems

    NASA Astrophysics Data System (ADS)

    Jakóbczyk, L.; Jamróz, A.

    2003-11-01

    We study evolution of entanglement of two two-level atoms in the presence of dissipation caused by spontaneous emission. We find explicit formulas for the amount of entanglement as a function of time, in the case of destruction of the initial entanglement and possible creation of a transient entanglement between atoms. We also discuss how spontaneous emission influences nonlocality of states expressed by violation of Bell-CHSH inequality. It is shown that evolving system very quickly becomes local, even if entanglement is still present or produced.

  4. A 3D Ginibre Point Field

    NASA Astrophysics Data System (ADS)

    Kargin, Vladislav

    2018-06-01

    We introduce a family of three-dimensional random point fields using the concept of the quaternion determinant. The kernel of each field is an n-dimensional orthogonal projection on a linear space of quaternionic polynomials. We find explicit formulas for the basis of the orthogonal quaternion polynomials and for the kernel of the projection. For number of particles n → ∞, we calculate the scaling limits of the point field in the bulk and at the center of coordinates. We compare our construction with the previously introduced Fermi-sphere point field process.

  5. Polarized 3-folds in a codimension 10 weighted homogeneous F4 variety

    NASA Astrophysics Data System (ADS)

    Qureshi, Muhammad Imran

    2017-10-01

    We describe the construction of a codimension 10 weighted homogeneous variety wΣF4(μ , u) corresponding to the exceptional Lie group F4 by explicit computation of its graded ring structure. We give a formula for the Hilbert series of the generic weighted wΣF4(μ , u) in terms of representation theoretic data of F4. We also construct some families of polarized 3-folds in codimension 10 whose general member is a weighted complete intersection of some wΣF4(μ , u) .

  6. Two-photon microscopy measurement of cerebral metabolic rate of oxygen using periarteriolar oxygen concentration gradients.

    PubMed

    Sakadžić, Sava; Yaseen, Mohammad A; Jaswal, Rajeshwer; Roussakis, Emmanuel; Dale, Anders M; Buxton, Richard B; Vinogradov, Sergei A; Boas, David A; Devor, Anna

    2016-10-01

    The cerebral metabolic rate of oxygen ([Formula: see text]) is an essential parameter for evaluating brain function and pathophysiology. However, the currently available approaches for quantifying [Formula: see text] rely on complex multimodal imaging and mathematical modeling. Here, we introduce a method that allows estimation of [Formula: see text] based on a single measurement modality-two-photon imaging of the partial pressure of oxygen ([Formula: see text]) in cortical tissue. We employed two-photon phosphorescence lifetime microscopy (2PLM) and the oxygen-sensitive nanoprobe PtP-C343 to map the tissue [Formula: see text] distribution around cortical penetrating arterioles. [Formula: see text] is subsequently estimated by fitting the changes of tissue [Formula: see text] around arterioles with the Krogh cylinder model of oxygen diffusion. We measured the baseline [Formula: see text] in anesthetized rats and modulated tissue [Formula: see text] levels by manipulating the depth of anesthesia. This method provides [Formula: see text] measurements localized within [Formula: see text] and it may provide oxygen consumption measurements in individual cortical layers or within confined cortical regions, such as in ischemic penumbra and the foci of functional activation.

  7. A comprehensive energy approach to predict fatigue life in CuAlBe shape memory alloy

    NASA Astrophysics Data System (ADS)

    Sameallah, S.; Legrand, V.; Saint-Sulpice, L.; Kadkhodaei, M.; Arbab Chirani, S.

    2015-02-01

    Stabilized dissipated energy is an effective parameter on the fatigue life of shape memory alloys (SMAs). In this study, a formula is proposed to directly evaluate the stabilized dissipated energy for different values of the maximum and minimum applied stresses, as well as the loading frequency, under cyclic tensile loadings. To this aim, a one-dimensional fully coupled thermomechanical constitutive model and a cycle-dependent phase diagram are employed to predict the uniaxial stress-strain response of an SMA in a specified cycle, including the stabilized one, with no need of obtaining the responses of the previous cycles. An enhanced phase diagram in which different slopes are defined for the start and finish of a backward transformation strip is also proposed to enable the capture of gradual transformations in a CuAlBe shape memory alloy. It is shown that the present approach is capable of reproducing the experimental responses of CuAlBe specimens under cyclic tensile loadings. An explicit formula is further presented to predict the fatigue life of CuAlBe as a function of the maximum and minimum applied stresses as well as the loading frequency. Fatigue tests are also carried out, and this formula is verified against the empirically predicted number of cycles for failure.

  8. Estimation of parameters in Shot-Noise-Driven Doubly Stochastic Poisson processes using the EM algorithm--modeling of pre- and postsynaptic spike trains.

    PubMed

    Mino, H

    2007-01-01

    To estimate the parameters, the impulse response (IR) functions of some linear time-invariant systems generating intensity processes, in Shot-Noise-Driven Doubly Stochastic Poisson Process (SND-DSPP) in which multivariate presynaptic spike trains and postsynaptic spike trains can be assumed to be modeled by the SND-DSPPs. An explicit formula for estimating the IR functions from observations of multivariate input processes of the linear systems and the corresponding counting process (output process) is derived utilizing the expectation maximization (EM) algorithm. The validity of the estimation formula was verified through Monte Carlo simulations in which two presynaptic spike trains and one postsynaptic spike train were assumed to be observable. The IR functions estimated on the basis of the proposed identification method were close to the true IR functions. The proposed method will play an important role in identifying the input-output relationship of pre- and postsynaptic neural spike trains in practical situations.

  9. Highly accurate analytic formulae for projectile motion subjected to quadratic drag

    NASA Astrophysics Data System (ADS)

    Turkyilmazoglu, Mustafa

    2016-05-01

    The classical phenomenon of motion of a projectile fired (thrown) into the horizon through resistive air charging a quadratic drag onto the object is revisited in this paper. No exact solution is known that describes the full physical event under such an exerted resistance force. Finding elegant analytical approximations for the most interesting engineering features of dynamical behavior of the projectile is the principal target. Within this purpose, some analytical explicit expressions are derived that accurately predict the maximum height, its arrival time as well as the flight range of the projectile at the highest ascent. The most significant property of the proposed formulas is that they are not restricted to the initial speed and firing angle of the object, nor to the drag coefficient of the medium. In combination with the available approximations in the literature, it is possible to gain information about the flight and complete the picture of a trajectory with high precision, without having to numerically simulate the full governing equations of motion.

  10. Bialgebra cohomology, deformations, and quantum groups.

    PubMed Central

    Gerstenhaber, M; Schack, S D

    1990-01-01

    We introduce cohomology and deformation theories for a bialgebra A (over a commutative unital ring k) such that the second cohomology group is the space of infinitesimal deformations. Our theory gives a natural identification between the underlying k-modules of the original and the deformed bialgebra. Certain explicit deformation formulas are given for the construction of quantum groups--i.e., Hopf algebras that are neither commutative nor cocommutative (whether or not they arise from quantum Yang-Baxter operators). These formulas yield, in particular, all GLq(n) and SLq(n) as deformations of GL(n) and SL(n). Using a Hodge decomposition of the underlying cochain complex, we compute our cohomology for GL(n). With this, we show that every deformation of GL(n) is equivalent to one in which the comultiplication is unchanged, not merely on elements of degree one but on all elements (settling in the strongest way a decade-old conjecture) and in which the quantum determinant, as an element of the underlying k-module, is identical with the usual one. PMID:11607053

  11. Abundance and Speciation of Water and Sulfate at Gusev Crater and Meridiani Planum

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Clark, B. C.; Klingelhoefer, G.; Gellert, R.; Rodionov, D.; Schroeder, C.; deSouza, P.; Yen, A.

    2005-01-01

    A major science goal of the Mars Exploration Rover (MER) mission is to search for evidence of water activity, and direct mineralogical evidence for aqueous activity has been reported for Meridiani Planum in the form of the iron sulfate hydroxide mineral jarosite and at Gusev crater in the form of goethite. The Spirit and Opportunity rovers have each collected 110+ Moessbauer (MB) and 75+ Alpha Particle X-Ray Spectrometer (APXS) spectra from Gusev crater and Meridiani Planum [1 - 4]. In this abstract, we use mineralogical and elemental data, primarily from the Moessbauer and APXS instruments, to infer the speciation and estimate the abundance of sulfate and water (as either the H2O molecule or the hydroxyl anion) at Gusev crater and Meridiani Planum. Throughout the abstract, we adopt a format for mineral formulas that shows water explicitly rather than the usual practice of structure-based formulas (e.g., for goethite we write Fe2O3xH2O instead of FeOOH).

  12. New approach in the treatment of data from an acid-base potentiometric titrationI. Monocomponent systems of monofunctional acids and bases.

    PubMed

    Maslarska, Vania; Tencheva, Jasmina; Budevsky, Omortag

    2003-01-01

    Based on precise analysis of the acid-base equilibrium, a new approach in the treatment of experimental data from a potentiometric titration is proposed. A new general formula giving explicitly the relation V=f([H(+)]) is derived, valid for every acid-base titration, which includes mono- and polyfunctional protolytes and their mixtures. The present study is the first practical application of this formula for the simplest case, the analysis of one monofunctional protolyte. The collected mV data during the titration are converted into pH-values by means of an auto pH-calibration procedure, thus avoiding preliminary preparation of the measuring system. The mentioned pH-calibration method is applicable also in water-organic mixtures and allows the quantitative determination of sparingly soluble substances (particularly pharmaceuticals). The treatment of the data is performed by means of ready-to-use software products, which makes the proposed approach accessible for a wide range of applications.

  13. Resistance Distances and Kirchhoff Index in Generalised Join Graphs

    NASA Astrophysics Data System (ADS)

    Chen, Haiyan

    2017-03-01

    The resistance distance between any two vertices of a connected graph is defined as the effective resistance between them in the electrical network constructed from the graph by replacing each edge with a unit resistor. The Kirchhoff index of a graph is defined as the sum of all the resistance distances between any pair of vertices of the graph. Let G=H[G1, G2, …, Gk ] be the generalised join graph of G1, G2, …, Gk determined by H. In this paper, we first give formulae for resistance distances and Kirchhoff index of G in terms of parameters of {G'_i}s and H. Then, we show that computing resistance distances and Kirchhoff index of G can be decomposed into simpler ones. Finally, we obtain explicit formulae for resistance distances and Kirchhoff index of G when {G'_i}s and H take some special graphs, such as the complete graph, the path, and the cycle.

  14. A charged particle in a homogeneous magnetic field accelerated by a time-periodic Aharonov-Bohm flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalvoda, T.; Stovicek, P., E-mail: stovicek@kmlinux.fjfi.cvut.cz

    2011-10-15

    We consider a nonrelativistic quantum charged particle moving on a plane under the influence of a uniform magnetic field and driven by a periodically time-dependent Aharonov-Bohm flux. We observe an acceleration effect in the case when the Aharonov-Bohm flux depends on time as a sinusoidal function whose frequency is in resonance with the cyclotron frequency. In particular, the energy of the particle increases linearly for large times. An explicit formula for the acceleration rate is derived with the aid of the quantum averaging method, and then it is checked against a numerical solution and a very good agreement is found.more » - Highlights: > A nonrelativistic quantum charged particle on a plane. > A homogeneous magnetic field and a periodically time-dependent Aharonov-Bohm flux. > The quantum averaging method applied to a time-dependent system. > A resonance of the AB flux with the cyclotron frequency. > An acceleration with linearly increasing energy; a formula for the acceleration rate.« less

  15. Nonlinear experimental dye-doped nematic liquid crystal optical transmission spectra estimated by neural network empirical physical formulas

    NASA Astrophysics Data System (ADS)

    Yildiz, Nihat; San, Sait Eren; Köysal, Oğuz

    2010-09-01

    In this paper, two complementary objectives related to optical transmission spectra of nematic liquid crystals (NLCs) were achieved. First, at room temperature, for both pure and dye (DR9) doped E7 NLCs, the 10-250 W halogen lamp transmission spectra (wavelength 400-1200 nm) were measured at various bias voltages. Second, because the measured spectra were inherently highly nonlinear, it was difficult to construct explicit empirical physical formulas (EPFs) to employ as transmittance functions. To avoid this difficulty, layered feedforward neural networks (LFNNs) were used to construct explicit EPFs for these theoretically unknown nonlinear NLC transmittance functions. As we theoretically showed in a previous work, a LFNN, as an excellent nonlinear function approximator, is highly relevant to EPF construction. The LFNN-EPFs efficiently and consistently estimated both the measured and yet-to-be-measured nonlinear transmittance response values. The experimentally obtained doping ratio dependencies and applied bias voltage responses of transmittance were also confirmed by LFFN-EPFs. This clearly indicates that physical laws embedded in the physical data can be faithfully extracted by the suitable LFNNs. The extraordinary success achieved with LFNN here suggests two potential applications. First, although not attempted here, these LFNN-EPFs, by such mathematical operations as derivation, integration, minimization etc., can be used to obtain further transmittance related functions of NLCs. Second, for a given NLC response function, whose theoretical nonlinear functional form is yet unknown, a suitable experimental data based LFNN-EPF can be constructed to predict the yet-to-be-measured values.

  16. Time Evolving Fission Chain Theory and Fast Neutron and Gamma-Ray Counting Distributions

    DOE PAGES

    Kim, K. S.; Nakae, L. F.; Prasad, M. K.; ...

    2015-11-01

    Here, we solve a simple theoretical model of time evolving fission chains due to Feynman that generalizes and asymptotically approaches the point model theory. The point model theory has been used to analyze thermal neutron counting data. This extension of the theory underlies fast counting data for both neutrons and gamma rays from metal systems. Fast neutron and gamma-ray counting is now possible using liquid scintillator arrays with nanosecond time resolution. For individual fission chains, the differential equations describing three correlated probability distributions are solved: the time-dependent internal neutron population, accumulation of fissions in time, and accumulation of leaked neutronsmore » in time. Explicit analytic formulas are given for correlated moments of the time evolving chain populations. The equations for random time gate fast neutron and gamma-ray counting distributions, due to randomly initiated chains, are presented. Correlated moment equations are given for both random time gate and triggered time gate counting. There are explicit formulas for all correlated moments are given up to triple order, for all combinations of correlated fast neutrons and gamma rays. The nonlinear differential equations for probabilities for time dependent fission chain populations have a remarkably simple Monte Carlo realization. A Monte Carlo code was developed for this theory and is shown to statistically realize the solutions to the fission chain theory probability distributions. Combined with random initiation of chains and detection of external quanta, the Monte Carlo code generates time tagged data for neutron and gamma-ray counting and from these data the counting distributions.« less

  17. Measurement of the differential cross section and charge asymmetry for inclusive [Formula: see text] production at [Formula: see text] TeV.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; König, A; Krammer, M; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Heracleous, N; Keaveney, J; Lowette, S; Moortgat, S; Moreels, L; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Brun, H; Caillol, C; Clerbaux, B; De Lentdecker, G; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Yonamine, R; Zenoni, F; Zhang, F; Benucci, L; Cimmino, A; Crucy, S; Dobur, D; Fagot, A; Garcia, G; Gul, M; Mccartin, J; Ocampo Rios, A A; Poyraz, D; Ryckbosch, D; Salva, S; Sigamani, M; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; Ceard, L; De Visscher, S; Delaere, C; Delcourt, M; Favart, D; Forthomme, L; Giammanco, A; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Mertens, A; Musich, M; Nuttens, C; Piotrzkowski, K; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Beliy, N; Hammad, G H; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hamer, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Costa, E M Da; Jesus Damiao, D De; Oliveira Martins, C De; De Souza, S Fonseca; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Souza Santos, A De; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Cheng, T; Du, R; Jiang, C H; Leggat, D; Plestina, R; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Micanovic, S; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Finger, M; Finger, M; Carrera Jarrin, E; Abdelalim, A A; El-Khateeb, E; Elkafrawy, T; Mahmoud, M A; Calpas, B; Kadastik, M; Murumaa, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Peltola, T; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; de Monchenault, G Hamel; Jarry, P; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Abdulsalam, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Granier de Cassagnac, R; Jo, M; Lisniak, S; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Bihan, A-C Le; Merlin, J A; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; Mamouni, H El; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Ruiz Alvarez, J D; Sabes, D; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Lomidze, D; Autermann, C; Beranek, S; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schulte, J F; Verlage, T; Weber, H; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Papacz, P; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Hoehle, F; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Nehrkorn, A; Nowack, A; Nugent, I M; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Asin, I; Beernaert, K; Behnke, O; Behrens, U; Borras, K; Burgmeier, A; Campbell, A; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Dooling, S; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Gunnellini, P; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Korol, I; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Nayak, A; Ntomari, E; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Seitz, C; Spannagel, S; Stefaniuk, N; Trippkewitz, K D; Van Onsem, G P; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Dreyer, T; Erfle, J; Garutti, E; Goebel, K; Gonzalez, D; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Ott, J; Pantaleo, F; Peiffer, T; Perieanu, A; Pietsch, N; Poehlsen, J; Sander, C; Scharf, C; Schleper, P; Schlieckau, E; Schmidt, A; Schumann, S; Schwandt, J; Stadie, H; Steinbrück, G; Stober, F M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; Colombo, F; De Boer, W; Descroix, A; Dierlamm, A; Fink, S; Frensch, F; Friese, R; Giffels, M; Gilbert, A; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kornmayer, A; Lobelle Pardo, P; Maier, B; Mildner, H; Mozer, M U; Müller, T; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Sieber, G; Simonis, H J; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Psallidas, A; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Filipovic, N; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Szillasi, Z; Bartók, M; Makovec, A; Raics, P; Trocsanyi, Z L; Ujvari, B; Choudhury, S; Mal, P; Mandal, K; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Gupta, R; U Bhawandeep; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Keshri, S; Kumar, A; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, R; Bhattacharya, S; Chatterjee, K; Dey, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Jain, Sa; Kole, G; Kumar, S; Mahakud, B; Maity, M; Majumder, G; Mazumdar, K; Mitra, S; Mohanty, G B; Parida, B; Sarkar, T; Sur, N; Sutar, B; Wickramage, N; Chauhan, S; Dube, S; Kapoor, A; Kothekar, K; Rane, A; Sharma, S; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Cappello, G; Chiorboli, M; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Malvezzi, S; Manzoni, R A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Pigazzini, S; Ragazzi, S; Redaelli, N; de Fatis, T Tabarelli; Buontempo, S; Cavallo, N; Di Guida, S; Esposito, M; Fabozzi, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Merola, M; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Branca, A; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gonella, F; Gozzelino, A; Kanishchev, K; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Zanetti, M; Zotto, P; Zucchetta, A; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Gelli, S; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Sola, V; Solano, A; Staiano, A; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; Licata, C La; Schizzi, A; Zanetti, A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kong, D J; Lee, S; Lee, S W; Oh, Y D; Sakharov, A; Son, D C; Brochero Cifuentes, J A; Kim, H; Kim, T J; Song, S; Cho, S; Choi, S; Go, Y; Gyun, D; Hong, B; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Yoo, H D; Choi, M; Kim, H; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Kim, D; Kwon, E; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Ali, M A B Md; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Casimiro Linares, E; Castilla-Valdez, H; Cruz-Burelo, E De La; Cruz, I Heredia-De La; Hernandez-Almada, A; Lopez-Fernandez, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Qazi, S; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Traczyk, P; Zalewski, P; Brona, G; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Di Francesco, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Golutvin, I; Kamenev, A; Karjavin, V; Korenkov, V; Kozlov, G; Lanev, A; Malakhov, A; Matveev, V; Mitsyn, V V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Tikhonenko, E; Voytishin, N; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Toms, M; Vlasov, E; Zhokin, A; Chadeeva, M; Chistov, R; Danilov, M; Markin, O; Tarkovskii, E; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Baskakov, A; Belyaev, A; Boos, E; Bunichev, V; Dubinin, M; Dudko, L; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; Cruz, B De La; Delgado Peris, A; Del Valle, A Escalante; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; De Martino, E Navarro; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Palencia Cortezon, E; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; De Saa, J R Castiñeiras; Curras, E; Castro Manzano, P De; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Benhabib, L; Berruti, G M; Bloch, P; Bocci, A; Bonato, A; Botta, C; Breuker, H; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Guio, F; De Roeck, A; Di Marco, E; Dobson, M; Dordevic, M; Dorney, B; Pree, T du; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kirschenmann, H; Knünz, V; Kortelainen, M J; Kousouris, K; Lecoq, P; Lourenço, C; Lucchini, M T; Magini, N; Malgeri, L; Mannelli, M; Martelli, A; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Piparo, D; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Sauvan, J B; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Simon, M; Sphicas, P; Steggemann, J; Stoye, M; Takahashi, Y; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Veres, G I; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Eller, P; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lecomte, P; Lustermann, W; Mangano, B; Marionneau, M; Arbol, P Martinez Ruiz Del; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Takahashi, M; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; Chiochia, V; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Yang, Y; Chen, K H; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Grundler, U; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Petrakou, E; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Kovitanggoon, K; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Tali, B; Topakli, H; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Senkin, S; Smith, D; Smith, V J; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Dunne, P; Elwood, A; Futyan, D; Haddad, Y; Hall, G; Iles, G; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Nash, J; Nikitenko, A; Pela, J; Penning, B; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Seez, C; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Alimena, J; Benelli, G; Berry, E; Cutts, D; Ferapontov, A; Garabedian, A; Hakala, J; Heintz, U; Jesus, O; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Syarif, R; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Cousins, R; Everaerts, P; Florent, A; Hauser, J; Ignatenko, M; Saltzberg, D; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Paneva, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Malberti, M; Olmedo Negrete, M; Shrinivas, A; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Derdzinski, M; Holzner, A; Kelley, R; Klein, D; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Würthwein, F; Yagil, A; Zevi Della Porta, G; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Gran, J; Incandela, J; Mccoll, N; Mullin, S D; Richman, J; Stuart, D; Suarez, I; West, C; Yoo, J; Anderson, D; Apresyan, A; Bendavid, J; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Nauenberg, U; Stenson, K; Wagner, S R; Alexander, J; Chatterjee, A; Chaves, J; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Sun, W; Tan, S M; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Wittich, P; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Lewis, J; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Kotov, K; Ma, P; Matchev, K; Mei, H; Milenovic, P; Mitselmakher, G; Rank, D; Rossin, R; Shchutska, L; Snowball, M; Sperka, D; Terentyev, N; Thomas, L; Wang, J; Wang, S; Yelton, J; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, J R; Adams, T; Askew, A; Bein, S; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Weinberg, M; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Kalakhety, H; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Kurt, P; O'Brien, C; Sandoval Gonzalez, I D; Turner, P; Varelas, N; Wu, Z; Zakaria, M; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Barnett, B A; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Osherson, M; Roskes, J; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Baringer, P; Bean, A; Bruner, C; Castle, J; Kenny Iii, R P; Kropivnitskaya, A; Majumder, D; Malek, M; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Wang, Q; Ivanov, A; Kaadze, K; Khalil, S; Makouski, M; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Lange, D; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Baty, A; Bi, R; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Krajczar, K; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Tatar, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Benvenuti, A C; Dahmes, B; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Klapoetke, K; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bartek, R; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Knowlton, D; Kravchenko, I; Meier, F; Monroy, J; Ratnikov, F; Siado, J E; Snow, G R; Stieger, B; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; De Lima, R Teixeira; Trocino, D; Wang, R-J; Wood, D; Zhang, J; Bhattacharya, S; Hahn, K A; Kubik, A; Low, J F; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Rupprecht, N; Smith, G; Taroni, S; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hart, A; Hill, C; Hughes, R; Ji, W; Ling, T Y; Liu, B; Luo, W; Puigh, D; Rodenburg, M; Winer, B L; Wulsin, H W; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Tully, C; Zuranski, A; Malik, S; Barker, A; Barnes, V E; Benedetti, D; Bortoletto, D; Gutay, L; Jha, M K; Jones, M; Jung, A W; Jung, K; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Sun, J; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Chou, J P; Contreras-Campana, E; Ferencek, D; Gershtein, Y; Halkiadakis, E; Heindl, M; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Lath, A; Nash, K; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Kamon, T; Krutelyov, V; Mueller, R; Osipenkov, I; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Undleeb, S; Volobouev, I; Wang, Z; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Mao, Y; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Wood, J; Xia, F; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Sarangi, T; Savin, A; Sharma, A; Smith, N; Smith, W H; Taylor, D; Verwilligen, P; Woods, N; Collaboration, Authorinst The Cms

    2016-01-01

    The differential cross section and charge asymmetry for inclusive [Formula: see text] production at [Formula: see text] are measured as a function of muon pseudorapidity. The data sample corresponds to an integrated luminosity of 18.8[Formula: see text] recorded with the CMS detector at the LHC. These results provide important constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from [Formula: see text] to [Formula: see text].

  18. Optimal vaccination strategies and rational behaviour in seasonal epidemics.

    PubMed

    Doutor, Paulo; Rodrigues, Paula; Soares, Maria do Céu; Chalub, Fabio A C C

    2016-12-01

    We consider a SIRS model with time dependent transmission rate. We assume time dependent vaccination which confers the same immunity as natural infection. We study two types of vaccination strategies: (i) optimal vaccination, in the sense that it minimizes the effort of vaccination in the set of vaccination strategies for which, for any sufficiently small perturbation of the disease free state, the number of infectious individuals is monotonically decreasing; (ii) Nash-equilibria strategies where all individuals simultaneously minimize the joint risk of vaccination versus the risk of the disease. The former case corresponds to an optimal solution for mandatory vaccinations, while the second corresponds to the equilibrium to be expected if vaccination is fully voluntary. We are able to show the existence of both optimal and Nash strategies in a general setting. In general, these strategies will not be functions but Radon measures. For specific forms of the transmission rate, we provide explicit formulas for the optimal and the Nash vaccination strategies.

  19. Nonlinearity in bacterial population dynamics: Proposal for experiments for the observation of abrupt transitions in patches

    PubMed Central

    Kenkre, V. M.; Kumar, Niraj

    2008-01-01

    An explicit proposal for experiments leading to abrupt transitions in spatially extended bacterial populations in a Petri dish is presented on the basis of an exact formula obtained through an analytic theory. The theory provides accurately the transition expressions despite the fact that the actual solutions, which involve strong nonlinearity, are inaccessible to it. The analytic expressions are verified through numerical solutions of the relevant nonlinear equation. The experimental setup suggested uses opaque masks in a Petri dish bathed in ultraviolet radiation [Lin A-L, et al. (2004) Biophys J 87:75–80 and Perry N (2005) J R Soc Interface 2:379–387], but is based on the interplay of two distances the bacteria must traverse, one of them favorable and the other adverse. As a result of this interplay feature, the experiments proposed introduce highly enhanced reliability in interpretation of observations and in the potential for extraction of system parameters. PMID:19033185

  20. Self-consistent approach for neutral community models with speciation

    NASA Astrophysics Data System (ADS)

    Haegeman, Bart; Etienne, Rampal S.

    2010-03-01

    Hubbell’s neutral model provides a rich theoretical framework to study ecological communities. By incorporating both ecological and evolutionary time scales, it allows us to investigate how communities are shaped by speciation processes. The speciation model in the basic neutral model is particularly simple, describing speciation as a point-mutation event in a birth of a single individual. The stationary species abundance distribution of the basic model, which can be solved exactly, fits empirical data of distributions of species’ abundances surprisingly well. More realistic speciation models have been proposed such as the random-fission model in which new species appear by splitting up existing species. However, no analytical solution is available for these models, impeding quantitative comparison with data. Here, we present a self-consistent approximation method for neutral community models with various speciation modes, including random fission. We derive explicit formulas for the stationary species abundance distribution, which agree very well with simulations. We expect that our approximation method will be useful to study other speciation processes in neutral community models as well.

  1. Density-functional calculations of transport properties in the nondegenerate limit and the role of electron-electron scattering

    DOE PAGES

    Desjarlais, Michael P.; Scullard, Christian R.; Benedict, Lorin X.; ...

    2017-03-13

    We compute electrical and thermal conductivities of hydrogen plasmas in the non-degenerate regime using Kohn-Sham Density Functional Theory (DFT) and an application of the Kubo- Greenwood response formula, and demonstrate that for thermal conductivity, the mean-field treatment of the electron-electron (e-e) interaction therein is insufficient to reproduce the weak-coupling limit obtained by plasma kinetic theories. An explicit e-e scattering correction to the DFT is posited by appealing to Matthiessen's Rule and the results of our computations of conductivities with the quantum Lenard-Balescu (QLB) equation. Further motivation of our correction is provided by an argument arising from the Zubarev quantum kineticmore » theory approach. Significant emphasis is placed on our efforts to produce properly converged results for plasma transport using Kohn-Sham DFT, so that an accurate assessment of the importance and efficacy of our e-e scattering corrections to the thermal conductivity can be made.« less

  2. Density functional perturbational orbital theory of spin polarization in electronic systems. II. Transition metal dimer complexes.

    PubMed

    Seo, Dong-Kyun

    2007-11-14

    We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.

  3. On the impact of relatedness on SNP association analysis.

    PubMed

    Gross, Arnd; Tönjes, Anke; Scholz, Markus

    2017-12-06

    When testing for SNP (single nucleotide polymorphism) associations in related individuals, observations are not independent. Simple linear regression assuming independent normally distributed residuals results in an increased type I error and the power of the test is also affected in a more complicate manner. Inflation of type I error is often successfully corrected by genomic control. However, this reduces the power of the test when relatedness is of concern. In the present paper, we derive explicit formulae to investigate how heritability and strength of relatedness contribute to variance inflation of the effect estimate of the linear model. Further, we study the consequences of variance inflation on hypothesis testing and compare the results with those of genomic control correction. We apply the developed theory to the publicly available HapMap trio data (N=129), the Sorbs (a self-contained population with N=977 characterised by a cryptic relatedness structure) and synthetic family studies with different sample sizes (ranging from N=129 to N=999) and different degrees of relatedness. We derive explicit and easily to apply approximation formulae to estimate the impact of relatedness on the variance of the effect estimate of the linear regression model. Variance inflation increases with increasing heritability. Relatedness structure also impacts the degree of variance inflation as shown for example family structures. Variance inflation is smallest for HapMap trios, followed by a synthetic family study corresponding to the trio data but with larger sample size than HapMap. Next strongest inflation is observed for the Sorbs, and finally, for a synthetic family study with a more extreme relatedness structure but with similar sample size as the Sorbs. Type I error increases rapidly with increasing inflation. However, for smaller significance levels, power increases with increasing inflation while the opposite holds for larger significance levels. When genomic control is applied, type I error is preserved while power decreases rapidly with increasing variance inflation. Stronger relatedness as well as higher heritability result in increased variance of the effect estimate of simple linear regression analysis. While type I error rates are generally inflated, the behaviour of power is more complex since power can be increased or reduced in dependence on relatedness and the heritability of the phenotype. Genomic control cannot be recommended to deal with inflation due to relatedness. Although it preserves type I error, the loss in power can be considerable. We provide a simple formula for estimating variance inflation given the relatedness structure and the heritability of a trait of interest. As a rule of thumb, variance inflation below 1.05 does not require correction and simple linear regression analysis is still appropriate.

  4. Splash flow from a metal plate hit by an electron beam pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, M., LLNL

    1997-09-01

    When a pulsed electron beam hits a metal plate with sufficient energy a volume of the metal becomes hot fluid that subsequently sprays out of the plate. A second pulse of electrons traveling toward the plate would scatter and degrade before impacting the solid plate because of its encounter with the diffuse material of the initial splash. People designing electron beam machines for use as pulsed radiation sources wish to eliminate the interaction between the electrons and the splash because they want sharp radiation pulses emitted from the solid plate. This report presents a compressible fluid model of this splashmore » flow and compares specific cases with experiments and comprehensive calculations performed by B. DeVolder and others at the Los Alamos National Laboratory, see reference (1). My aim was to develop as simple a theory as possible to calculate the speed and density of the splash flow. I have used both simplifying assumptions and mathematical approximations to develop convenient formulas. As I wished to make a clear and interesting presentation of this work to a diverse audience that includes people outside the specialty of fluid dynamics, some of my descriptions may seem wordier than necessary. The plan of the report is as follows. In the section called ``energy deposition`` I describe how an electron beam deposits energy in a solid plate, converting some of the material into a hot fluid. The initial temperature of this fluid is the key parameter in determining the nature of the subsequent flow; an explicit formula is shown. Flow occurs in two regions: along a streamtube within the metal plate and as an expanding plume outside the metal plate. Flow within the plate is described in the section called ``isentropic flow.`` This flow occurs as expansion waves move at the speed of sound through the streamtube. The analysis of this flow provides a formula for the mass flow over time from the plate into the external splash. The section called ``centered expansion`` elaborates on the nature of certain approximations I have made in treating the wave phenomena in both the streamtube and splash flows. The section called ``splash flow`` presents a formula to describe the material density as a function of space and time outside the plate. This formula depends on the time- dependent material density at the plate, which was found during the streamtube analysis. The section called ``examples`` shows the results of specific calculations and a comparison to computational and experimental results described in reference (1). The final section, ``possible future work,`` poses new questions.« less

  5. Exponential-fitted methods for integrating stiff systems of ordinary differential equations: Applications to homogeneous gas-phase chemical kinetics

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.

    1984-01-01

    Conventional algorithms for the numerical integration of ordinary differential equations (ODEs) are based on the use of polynomial functions as interpolants. However, the exact solutions of stiff ODEs behave like decaying exponential functions, which are poorly approximated by polynomials. An obvious choice of interpolant are the exponential functions themselves, or their low-order diagonal Pade (rational function) approximants. A number of explicit, A-stable, integration algorithms were derived from the use of a three-parameter exponential function as interpolant, and their relationship to low-order, polynomial-based and rational-function-based implicit and explicit methods were shown by examining their low-order diagonal Pade approximants. A robust implicit formula was derived by exponential fitting the trapezoidal rule. Application of these algorithms to integration of the ODEs governing homogenous, gas-phase chemical kinetics was demonstrated in a developmental code CREK1D, which compares favorably with the Gear-Hindmarsh code LSODE in spite of the use of a primitive stepsize control strategy.

  6. Photon-number statistics in resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Lenstra, D.

    1982-12-01

    The theory of photon-number statistics in resonance fluorescence is treated, starting with the general formula for the emission probability of n photons during a given time interval T. The results fully confirm formerly obtained results by Cook that were based on the theory of atomic motion in a traveling wave. General expressions for the factorial moments are derived and explicit results for the mean and the variance are given. It is explicitly shown that the distribution function tends to a Gaussian when T becomes much larger than the natural lifetime of the excited atom. The speed of convergence towards the Gaussian is found to be typically slow, that is, the third normalized central moment (or the skewness) is proportional to T-12. However, numerical results illustrate that the overall features of the distribution function are already well represented by a Gaussian when T is larger than a few natural lifetimes only, at least if the intensity of the exciting field is not too small and its detuning is not too large.

  7. Uncertainty Analysis of Thermal Comfort Parameters

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. Silva; Alves e Sousa, J.; Cox, Maurice G.; Forbes, Alistair B.; Matias, L. Cordeiro; Martins, L. Lages

    2015-08-01

    International Standard ISO 7730:2005 defines thermal comfort as that condition of mind that expresses the degree of satisfaction with the thermal environment. Although this definition is inevitably subjective, the Standard gives formulae for two thermal comfort indices, predicted mean vote ( PMV) and predicted percentage dissatisfied ( PPD). The PMV formula is based on principles of heat balance and experimental data collected in a controlled climate chamber under steady-state conditions. The PPD formula depends only on PMV. Although these formulae are widely recognized and adopted, little has been done to establish measurement uncertainties associated with their use, bearing in mind that the formulae depend on measured values and tabulated values given to limited numerical accuracy. Knowledge of these uncertainties are invaluable when values provided by the formulae are used in making decisions in various health and civil engineering situations. This paper examines these formulae, giving a general mechanism for evaluating the uncertainties associated with values of the quantities on which the formulae depend. Further, consideration is given to the propagation of these uncertainties through the formulae to provide uncertainties associated with the values obtained for the indices. Current international guidance on uncertainty evaluation is utilized.

  8. A framework for analyzing contagion in assortative banking networks

    PubMed Central

    Hurd, Thomas R.; Gleeson, James P.; Melnik, Sergey

    2017-01-01

    We introduce a probabilistic framework that represents stylized banking networks with the aim of predicting the size of contagion events. Most previous work on random financial networks assumes independent connections between banks, whereas our framework explicitly allows for (dis)assortative edge probabilities (i.e., a tendency for small banks to link to large banks). We analyze default cascades triggered by shocking the network and find that the cascade can be understood as an explicit iterated mapping on a set of edge probabilities that converges to a fixed point. We derive a cascade condition, analogous to the basic reproduction number R0 in epidemic modelling, that characterizes whether or not a single initially defaulted bank can trigger a cascade that extends to a finite fraction of the infinite network. This cascade condition is an easily computed measure of the systemic risk inherent in a given banking network topology. We use percolation theory for random networks to derive a formula for the frequency of global cascades. These analytical results are shown to provide limited quantitative agreement with Monte Carlo simulation studies of finite-sized networks. We show that edge-assortativity, the propensity of nodes to connect to similar nodes, can have a strong effect on the level of systemic risk as measured by the cascade condition. However, the effect of assortativity on systemic risk is subtle, and we propose a simple graph theoretic quantity, which we call the graph-assortativity coefficient, that can be used to assess systemic risk. PMID:28231324

  9. A framework for analyzing contagion in assortative banking networks.

    PubMed

    Hurd, Thomas R; Gleeson, James P; Melnik, Sergey

    2017-01-01

    We introduce a probabilistic framework that represents stylized banking networks with the aim of predicting the size of contagion events. Most previous work on random financial networks assumes independent connections between banks, whereas our framework explicitly allows for (dis)assortative edge probabilities (i.e., a tendency for small banks to link to large banks). We analyze default cascades triggered by shocking the network and find that the cascade can be understood as an explicit iterated mapping on a set of edge probabilities that converges to a fixed point. We derive a cascade condition, analogous to the basic reproduction number R0 in epidemic modelling, that characterizes whether or not a single initially defaulted bank can trigger a cascade that extends to a finite fraction of the infinite network. This cascade condition is an easily computed measure of the systemic risk inherent in a given banking network topology. We use percolation theory for random networks to derive a formula for the frequency of global cascades. These analytical results are shown to provide limited quantitative agreement with Monte Carlo simulation studies of finite-sized networks. We show that edge-assortativity, the propensity of nodes to connect to similar nodes, can have a strong effect on the level of systemic risk as measured by the cascade condition. However, the effect of assortativity on systemic risk is subtle, and we propose a simple graph theoretic quantity, which we call the graph-assortativity coefficient, that can be used to assess systemic risk.

  10. Time irreversibility in reversible shell models of turbulence.

    PubMed

    De Pietro, Massimo; Biferale, Luca; Boffetta, Guido; Cencini, Massimo

    2018-04-06

    Turbulent flows governed by the Navier-Stokes equations (NSE) generate an out-of-equilibrium time irreversible energy cascade from large to small scales. In the NSE, the energy transfer is due to the nonlinear terms that are formally symmetric under time reversal. As for the dissipative term: first, it explicitly breaks time reversibility; second, it produces a small-scale sink for the energy transfer that remains effective even in the limit of vanishing viscosity. As a result, it is not clear how to disentangle the time irreversibility originating from the non-equilibrium energy cascade from the explicit time-reversal symmetry breaking due to the viscous term. To this aim, in this paper we investigate the properties of the energy transfer in turbulent shell models by using a reversible viscous mechanism, avoiding any explicit breaking of the [Formula: see text] symmetry. We probe time irreversibility by studying the statistics of Lagrangian power, which is found to be asymmetric under time reversal also in the time-reversible model. This suggests that the turbulent dynamics converges to a strange attractor where time reversibility is spontaneously broken and whose properties are robust for what concerns purely inertial degrees of freedoms, as verified by the anomalous scaling behavior of the velocity structure functions.

  11. 27 CFR 17.121 - Product formulas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Product formulas. 17.121 Section 17.121 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... PRODUCTS Formulas and Samples § 17.121 Product formulas. (a) General. Except as provided in §§ 17.132 and...

  12. Emergency preparedness for those who care for infants in developed country contexts

    PubMed Central

    2011-01-01

    Emergency management organisations recognise the vulnerability of infants in emergencies, even in developed countries. However, thus far, those who care for infants have not been provided with detailed information on what emergency preparedness entails. Emergency management authorities should provide those who care for infants with accurate and detailed information on the supplies necessary to care for them in an emergency, distinguishing between the needs of breastfed infants and the needs of formula fed infants. Those who care for formula fed infants should be provided with detailed information on the supplies necessary for an emergency preparedness kit and with information on how to prepare formula feeds in an emergency. An emergency preparedness kit for exclusively breastfed infants should include 100 nappies and 200 nappy wipes. The contents of an emergency preparedness for formula fed infants will vary depending upon whether ready-to-use liquid infant formula or powdered infant formula is used. If ready-to-use liquid infant formula is used, an emergency kit should include: 56 serves of ready-to-use liquid infant formula, 84 L water, storage container, metal knife, small bowl, 56 feeding bottles and teats/cups, 56 zip-lock plastic bags, 220 paper towels, detergent, 120 antiseptic wipes, 100 nappies and 200 nappy wipes. If powdered infant formula is used, an emergency preparedness kit should include: two 900 g tins powdered infant formula, 170 L drinking water, storage container, large cooking pot with lid, kettle, gas stove, box of matches/lighter, 14 kg liquid petroleum gas, measuring container, metal knife, metal tongs, feeding cup, 300 large sheets paper towel, detergent, 100 nappies and 200 nappy wipes. Great care with regards hygiene should be taken in the preparation of formula feeds. Child protection organisations should ensure that foster carers responsible for infants have the resources necessary to formula feed in the event of an emergency. Exclusive and continued breastfeeding should be promoted as an emergency preparedness activity by emergency management organisations as well as health authorities. The greater the proportion of infants exclusively breastfed when an emergency occurs, the more resilient the community, and the easier it will be to provide effective aid to the caregivers of formula fed infants. PMID:22059481

  13. Tripartite-to-Bipartite Entanglement Transformation by Stochastic Local Operations and Classical Communication and the Structure of Matrix Spaces

    NASA Astrophysics Data System (ADS)

    Li, Yinan; Qiao, Youming; Wang, Xin; Duan, Runyao

    2018-03-01

    We study the problem of transforming a tripartite pure state to a bipartite one using stochastic local operations and classical communication (SLOCC). It is known that the tripartite-to-bipartite SLOCC convertibility is characterized by the maximal Schmidt rank of the given tripartite state, i.e. the largest Schmidt rank over those bipartite states lying in the support of the reduced density operator. In this paper, we further study this problem and exhibit novel results in both multi-copy and asymptotic settings, utilizing powerful results from the structure of matrix spaces. In the multi-copy regime, we observe that the maximal Schmidt rank is strictly super-multiplicative, i.e. the maximal Schmidt rank of the tensor product of two tripartite pure states can be strictly larger than the product of their maximal Schmidt ranks. We then provide a full characterization of those tripartite states whose maximal Schmidt rank is strictly super-multiplicative when taking tensor product with itself. Notice that such tripartite states admit strict advantages in tripartite-to-bipartite SLOCC transformation when multiple copies are provided. In the asymptotic setting, we focus on determining the tripartite-to-bipartite SLOCC entanglement transformation rate. Computing this rate turns out to be equivalent to computing the asymptotic maximal Schmidt rank of the tripartite state, defined as the regularization of its maximal Schmidt rank. Despite the difficulty caused by the super-multiplicative property, we provide explicit formulas for evaluating the asymptotic maximal Schmidt ranks of two important families of tripartite pure states by resorting to certain results of the structure of matrix spaces, including the study of matrix semi-invariants. These formulas turn out to be powerful enough to give a sufficient and necessary condition to determine whether a given tripartite pure state can be transformed to the bipartite maximally entangled state under SLOCC, in the asymptotic setting. Applying the recent progress on the non-commutative rank problem, we can verify this condition in deterministic polynomial time.

  14. Q-controlled amplitude modulation atomic force microscopy in liquids: An analysis

    NASA Astrophysics Data System (ADS)

    Hölscher, H.; Schwarz, U. D.

    2006-08-01

    An analysis of amplitude modulation atomic force microscopy in liquids is presented with respect to the application of the Q-Control technique. The equation of motion is solved by numerical and analytic methods with and without Q-Control in the presence of a simple model interaction force adequate for many liquid environments. In addition, the authors give an explicit analytical formula for the tip-sample indentation showing that higher Q factors reduce the tip-sample force. It is found that Q-Control suppresses unwanted deformations of the sample surface, leading to the enhanced image quality reported in several experimental studies.

  15. Quantum mechanics on Laakso spaces

    NASA Astrophysics Data System (ADS)

    Kauffman, Christopher J.; Kesler, Robert M.; Parshall, Amanda G.; Stamey, Evelyn A.; Steinhurst, Benjamin A.

    2012-04-01

    We first review the spectrum of the Laplacian operator on a general Laakso space before considering modified Hamiltonians for the infinite square well, parabola, and Coulomb potentials. Additionally, we compute the spectrum for the Laplacian and its multiplicities when certain regions of a Laakso space are compressed or stretched and calculate the Casimir force experienced by two uncharged conducting plates by imposing physically relevant boundary conditions and then analytically regularizing the resulting zeta function. Lastly, we derive a general formula for the spectral zeta function and its derivative for Laakso spaces with strict self-similar structure before listing explicit spectral values for some special cases

  16. Refraction at a curved dielectric interface - Geometrical optics solution

    NASA Technical Reports Server (NTRS)

    Lee, S.-W.; Sheshadri, M. S.; Mittra, R.; Jamnejad, V.

    1982-01-01

    The transmission of a spherical or plane wave through an arbitrarily curved dielectric interface is solved by the geometrical optics theory. The transmitted field is proportional to the product of the conventional Fresnel's transmission coefficient and a divergence factor (DF), which describes the cross-sectional variation (convergence or divergence) of a ray pencil as the latter propagates in the transmitted region. The factor DF depends on the incident wavefront, the curvatures of the interface, and the relative indices of the two media. Explicit matrix formulas for calculating DF are given, and its physical significance is illustrated via examples.

  17. Prediction of the Critical Curvature for LX-17 with the Time of Arrival Data from DNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jin; Fried, Laurence E.; Moss, William C.

    2017-01-10

    We extract the detonation shock front velocity, curvature and acceleration from time of arrival data measured at grid points from direct numerical simulations of a 50mm rate-stick lit by a disk-source, with the ignition and growth reaction model and a JWL equation of state calibrated for LX-17. We compute the quasi-steady (D, κ) relation based on the extracted properties and predicted the critical curvatures of LX-17. We also proposed an explicit formula that contains the failure turning point, obtained from optimization for the (D, κ) relation of LX-17.

  18. Painlevé equations, topological type property and reconstruction by the topological recursion

    NASA Astrophysics Data System (ADS)

    Iwaki, K.; Marchal, O.; Saenz, A.

    2018-01-01

    In this article we prove that Lax pairs associated with ħ-dependent six Painlevé equations satisfy the topological type property proposed by Bergère, Borot and Eynard for any generic choice of the monodromy parameters. Consequently we show that one can reconstruct the formal ħ-expansion of the isomonodromic τ-function and of the determinantal formulas by applying the so-called topological recursion to the spectral curve attached to the Lax pair in all six Painlevé cases. Finally we illustrate the former results with the explicit computations of the first orders of the six τ-functions.

  19. Relativistic Newtonian Dynamics under a central force

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov

    2016-10-01

    Planck's formula and General Relativity indicate that potential energy influences spacetime. Using Einstein's Equivalence Principle and an extension of his Clock Hypothesis, an explicit description of this influence is derived. We present a new relativity model by incorporating the influence of the potential energy on spacetime in Newton's dynamics for motion under a central force. This model extends the model used by Friedman and Steiner (EPL, 113 (2016) 39001) to obtain the exact precession of Mercury without curving spacetime. We also present a solution of this model for a hydrogen-like atom, which explains the reason for a probabilistic description.

  20. The pricing of European options on two underlying assets with delays

    NASA Astrophysics Data System (ADS)

    Lin, Lisha; Li, Yaqiong; Wu, Jing

    2018-04-01

    In the paper, the pricing of European options on two underlying assets with delays is discussed. By using the approach of equivalent martingale measure transformation, the market is proved to be complete. With exchange option as a particular example, we obtain the explicit pricing formula in a subinterval of option period. The robust Euler-Maruyama method is combined with the Monte Carlo simulation to compute exchange option prices within the whole option period. Numerical experiments indicate that there is an increasing possibility of the difference between the delayed and Black-Scholes option prices with the increase of delay.

  1. Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul

    1993-01-01

    We present a systematic method for constructing boundary conditions (numerical and physical) of the required accuracy, for compact (Pade-like) high-order finite-difference schemes for hyperbolic systems. First, a roper summation-by-parts formula is found for the approximate derivative. A 'simultaneous approximation term' (SAT) is then introduced to treat the boundary conditions. This procedure leads to time-stable schemes even in the system case. An explicit construction of the fourth-order compact case is given. Numerical studies are presented to verify the efficacy of the approach.

  2. Effective diffusion of confined active Brownian swimmers

    NASA Astrophysics Data System (ADS)

    Sandoval, Mario; Dagdug, Leonardo

    2014-11-01

    We find theoretically the effect of confinement and thermal fluctuations, on the diffusivity of a spherical active swimmer moving inside a two-dimensional narrow cavity of general shape. The explicit formulas for the effective diffusion coefficient of a swimmer moving inside two particular cavities are presented. We also compare our analytical results with Brownian Dynamics simulations and we obtain excellent agreement. L.D. thanks Consejo Nacional de Ciencia y Tecnologia (CONACyT) Mexico, for partial support by Grant No. 176452. M. S. thanks CONACyT and Programa de Mejoramiento de Profesorado (PROMEP) for partially funding this work under Grant No. 103.5/13/6732.

  3. Zipf exponent of trajectory distribution in the hidden Markov model

    NASA Astrophysics Data System (ADS)

    Bochkarev, V. V.; Lerner, E. Yu

    2014-03-01

    This paper is the first step of generalization of the previously obtained full classification of the asymptotic behavior of the probability for Markov chain trajectories for the case of hidden Markov models. The main goal is to study the power (Zipf) and nonpower asymptotics of the frequency list of trajectories of hidden Markov frequencys and to obtain explicit formulae for the exponent of the power asymptotics. We consider several simple classes of hidden Markov models. We prove that the asymptotics for a hidden Markov model and for the corresponding Markov chain can be essentially different.

  4. Stability and bifurcation analysis for the Kaldor-Kalecki model with a discrete delay and a distributed delay

    NASA Astrophysics Data System (ADS)

    Yu, Jinchen; Peng, Mingshu

    2016-10-01

    In this paper, a Kaldor-Kalecki model of business cycle with both discrete and distributed delays is considered. With the corresponding characteristic equation analyzed, the local stability of the positive equilibrium is investigated. It is found that there exist Hopf bifurcations when the discrete time delay passes a sequence of critical values. By applying the method of multiple scales, the explicit formulae which determine the direction of Hopf bifurcation and the stability of bifurcating periodic solutions are derived. Finally, numerical simulations are carried out to illustrate our main results.

  5. Atmospheric guidance law for planar skip trajectories

    NASA Technical Reports Server (NTRS)

    Mease, K. D.; Mccreary, F. A.

    1985-01-01

    The applicability of an approximate, closed-form, analytical solution to the equations of motion, as a basis for a deterministic guidance law for controlling the in-plane motion during a skip trajectory, is investigated. The derivation of the solution by the method of matched asymptotic expansions is discussed. Specific issues that arise in the application of the solution to skip trajectories are addressed. Based on the solution, an explicit formula for the approximate energy loss due to an atmospheric pass is derived. A guidance strategy is proposed that illustrates the use of the approximate solution. A numerical example shows encouraging performance.

  6. Parametric decay of plasma waves near the upper-hybrid resonance

    DOE PAGES

    Dodin, I. Y.; Arefiev, A. V.

    2017-03-28

    An intense X wave propagating perpendicularly to dc magnetic field is unstable with respect to a parametric decay into an electron Bernstein wave and a lower-hybrid wave. A modified theory of this effect is proposed that extends to the high-intensity regime, where the instability rate γ ceases to be a linear function of the incident-wave amplitude. An explicit formula for γ is derived and expressed in terms of cold-plasma parameters. Here, theory predictions are in reasonable agreement with the results of the particle-in-cell simulations presented in a separate publication.

  7. Staggered solution procedures for multibody dynamics simulation

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Chiou, J. C.; Downer, J. D.

    1990-01-01

    The numerical solution procedure for multibody dynamics (MBD) systems is termed a staggered MBD solution procedure that solves the generalized coordinates in a separate module from that for the constraint force. This requires a reformulation of the constraint conditions so that the constraint forces can also be integrated in time. A major advantage of such a partitioned solution procedure is that additional analysis capabilities such as active controller and design optimization modules can be easily interfaced without embedding them into a monolithic program. After introducing the basic equations of motion for MBD system in the second section, Section 3 briefly reviews some constraint handling techniques and introduces the staggered stabilized technique for the solution of the constraint forces as independent variables. The numerical direct time integration of the equations of motion is described in Section 4. As accurate damping treatment is important for the dynamics of space structures, we have employed the central difference method and the mid-point form of the trapezoidal rule since they engender no numerical damping. This is in contrast to the current practice in dynamic simulations of ground vehicles by employing a set of backward difference formulas. First, the equations of motion are partitioned according to the translational and the rotational coordinates. This sets the stage for an efficient treatment of the rotational motions via the singularity-free Euler parameters. The resulting partitioned equations of motion are then integrated via a two-stage explicit stabilized algorithm for updating both the translational coordinates and angular velocities. Once the angular velocities are obtained, the angular orientations are updated via the mid-point implicit formula employing the Euler parameters. When the two algorithms, namely, the two-stage explicit algorithm for the generalized coordinates and the implicit staggered procedure for the constraint Lagrange multipliers, are brought together in a staggered manner, they constitute a staggered explicit-implicit procedure which is summarized in Section 5. Section 6 presents some example problems and discussions concerning several salient features of the staggered MBD solution procedure are offered in Section 7.

  8. Measurement of prompt and nonprompt [Formula: see text] production in [Formula: see text] and [Formula: see text] collisions at [Formula: see text].

    PubMed

    Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; König, A; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Strauss, J; Waltenberger, W; Wulz, C-E; Dvornikov, O; Makarenko, V; Mossolov, V; Suarez Gonzalez, J; Zykunov, V; Shumeiko, N; Alderweireldt, S; De Wolf, E A; Janssen, X; Lauwers, J; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Lowette, S; Moortgat, S; Moreels, L; Olbrechts, A; Python, Q; Skovpen, K; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Brun, H; Clerbaux, B; De Lentdecker, G; Delannoy, H; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Luetic, J; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Vannerom, D; Yonamine, R; Zenoni, F; Zhang, F; Cimmino, A; Cornelis, T; Dobur, D; Fagot, A; Gul, M; Khvastunov, I; Poyraz, D; Salva, S; Schöfbeck, R; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Bakhshiansohi, H; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; De Visscher, S; Delaere, C; Delcourt, M; Francois, B; Giammanco, A; Jafari, A; Komm, M; Krintiras, G; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Piotrzkowski, K; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Wertz, S; Beliy, N; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Torres Da Silva De Araujo, F; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Cheng, T; Jiang, C H; Leggat, D; Liu, Z; Romeo, F; Ruan, M; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Zhao, J; Ban, Y; Chen, G; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; González Hernández, C F; Ruiz Alvarez, J D; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Sculac, T; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Mesic, B; Susa, T; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Tsiakkouri, D; Finger, M; Finger, M; Carrera Jarrin, E; Assran, Y; Elkafrawy, T; Mahrous, A; Kadastik, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Järvinen, T; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Kucher, I; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Abdulsalam, A; Antropov, I; Arleo, F; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Granier de Cassagnac, R; Jo, M; Lisniak, S; Miné, P; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Zghiche, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Le Bihan, A-C; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sabes, D; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Khvedelidze, A; Tsamalaidze, Z; Autermann, C; Beranek, S; Feld, L; Kiesel, M K; Klein, K; Lipinski, M; Preuten, M; Schomakers, C; Schulz, J; Verlage, T; Albert, A; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hamer, M; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Flügge, G; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Müller, T; Nehrkorn, A; Nowack, A; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Arndt, T; Asawatangtrakuldee, C; Beernaert, K; Behnke, O; Behrens, U; Bin Anuar, A A; Borras, K; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Grados Luyando, J M; Grohsjean, A; Gunnellini, P; Harb, A; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Keaveney, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Lelek, A; Lenz, T; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Spannagel, S; Stefaniuk, N; Van Onsem, G P; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Dreyer, T; Garutti, E; Gonzalez, D; Haller, J; Hoffmann, M; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Pantaleo, F; Peiffer, T; Perieanu, A; Poehlsen, J; Scharf, C; Schleper, P; Schmidt, A; Schumann, S; Schwandt, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Akbiyik, M; Barth, C; Baur, S; Baus, C; Berger, J; Butz, E; Caspart, R; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Fink, S; Freund, B; Friese, R; Giffels, M; Gilbert, A; Goldenzweig, P; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kudella, S; Mildner, H; Mozer, M U; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Shvetsov, I; Sieber, G; Simonis, H J; Ulrich, R; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Filipovic, N; Pasztor, G; Bencze, G; Hajdu, C; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Makovec, A; Molnar, J; Szillasi, Z; Bartók, M; Raics, P; Trocsanyi, Z L; Ujvari, B; Komaragiri, J R; Bahinipati, S; Bhowmik, S; Choudhury, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Kumari, P; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Keshri, S; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, R; Bhattacharya, S; Chatterjee, K; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Dugad, S; Kole, G; Mahakud, B; Mitra, S; Mohanty, G B; Parida, B; Sur, N; Sutar, B; Banerjee, S; Dewanjee, R K; Ganguly, S; Guchait, M; Jain, Sa; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Sarkar, T; Wickramage, N; Chauhan, S; Dube, S; Hegde, V; Kapoor, A; Kothekar, K; Pandey, S; Rane, A; Sharma, S; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Sharma, A; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Lenzi, P; Meschini, M; Paoletti, S; Russo, L; Sguazzoni, G; Strom, D; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Brivio, F; Ciriolo, V; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Manzoni, R A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Pigazzini, S; Ragazzi, S; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; De Nardo, G; Di Guida, S; Esposito, M; Fabozzi, F; Fienga, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Boletti, A; Carlin, R; Checchia, P; Dall'Osso, M; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pegoraro, M; Pozzobon, N; Ronchese, P; Sgaravatto, M; Simonetto, F; Torassa, E; Ventura, S; Zanetti, M; Zotto, P; Braghieri, A; Fallavollita, F; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; Del Re, D; Diemoz, M; Gelli, S; Longo, E; Margaroli, F; Marzocchi, B; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Cenna, F; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Monteno, M; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Shchelina, K; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Casarsa, M; Cossutti, F; Della Ricca, G; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, S; Lee, S W; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Lee, A; Kim, H; Brochero Cifuentes, J A; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Lee, H; Oh, S B; Radburn-Smith, B C; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Hwang, C; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Magaña Villalba, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Oropeza Barrera, C; Vazquez Valencia, F; Carpinteyro, S; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Saddique, A; Shah, M A; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Calpas, B; Di Francesco, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Chtchipounov, L; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Murzin, V; Oreshkin, V; Sulimov, V; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Toms, M; Vlasov, E; Zhokin, A; Aushev, T; Bylinkin, A; Chadeeva, M; Chistov, R; Polikarpov, S; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Ershov, A; Gribushin, A; Kaminskiy, A; Kodolova, O; Korotkikh, V; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Vardanyan, I; Blinov, V; Skovpen, Y; Shtol, D; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Dordevic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Barrio Luna, M; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; González Fernández, J R; Palencia Cortezon, E; Sanchez Cruz, S; Suárez Andrés, I; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Curras, E; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Baillon, P; Ball, A H; Barney, D; Bloch, P; Bocci, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; Chen, Y; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Roeck, A; Di Marco, E; Dobson, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Everaerts, P; Fartoukh, S; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Girone, M; Glege, F; Gulhan, D; Gundacker, S; Guthoff, M; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kieseler, J; Kirschenmann, H; Knünz, V; Kornmayer, A; Kortelainen, M J; Kousouris, K; Krammer, M; Lange, C; Lecoq, P; Lourenço, C; Lucchini, M T; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Merlin, J A; Mersi, S; Meschi, E; Milenovic, P; Moortgat, F; Morovic, S; Mulders, M; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Racz, A; Reis, T; Rolandi, G; Rovere, M; Sakulin, H; Sauvan, J B; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Sphicas, P; Steggemann, J; Stoye, M; Takahashi, Y; Tosi, M; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Veres, G I; Verweij, M; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Wiederkehr, S A; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Seitz, C; Yang, Y; Zucchetta, A; Candelise, V; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chao, Y; Chen, K F; Chen, P H; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Paganis, E; Psallidas, A; Tsai, J F; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Hos, I; Kangal, E E; Kara, O; Kayis Topaksu, A; Kiminsu, U; Oglakci, M; Onengut, G; Ozdemir, K; Sunar Cerci, D; Topakli, H; Turkcapar, S; Zorbakir, I S; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Smith, D; Smith, V J; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Di Maria, R; Dunne, P; Elwood, A; Futyan, D; Haddad, Y; Hall, G; Iles, G; James, T; Lane, R; Laner, C; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Nash, J; Nikitenko, A; Pela, J; Penning, B; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Scott, E; Seez, C; Summers, S; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Wright, J; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Bartek, R; Dominguez, A; Buccilli, A; Cooper, S I; Henderson, C; Rumerio, P; West, C; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Cutts, D; Garabedian, A; Hakala, J; Heintz, U; Hogan, J M; Jesus, O; Kwok, K H M; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Spencer, E; Syarif, R; Breedon, R; Burns, D; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Shalhout, S; Shi, M; Smith, J; Squires, M; Stolp, D; Tos, K; Tripathi, M; Bachtis, M; Bravo, C; Cousins, R; Dasgupta, A; Florent, A; Hauser, J; Ignatenko, M; Mccoll, N; Saltzberg, D; Schnaible, C; Valuev, V; Weber, M; Bouvier, E; Burt, K; Clare, R; Ellison, J; Gary, J W; Ghiasi Shirazi, S M A; Hanson, G; Heilman, J; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Olmedo Negrete, M; Paneva, M I; Shrinivas, A; Si, W; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; Derdzinski, M; Gerosa, R; Holzner, A; Klein, D; Krutelyov, V; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Amin, N; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Franco Sevilla, M; George, C; Golf, F; Gouskos, L; Gran, J; Heller, R; Incandela, J; Mullin, S D; Ovcharova, A; Qu, H; Richman, J; Stuart, D; Suarez, I; Yoo, J; Anderson, D; Bendavid, J; Bornheim, A; Bunn, J; Duarte, J; Lawhorn, J M; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Weinberg, M; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Leontsinis, S; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chaves, J; Chu, J; Dittmer, S; Mcdermott, K; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Tan, S M; Tao, Z; Thom, J; Tucker, J; Wittich, P; Zientek, M; Winn, D; Abdullin, S; Albrow, M; Apollinari, G; Apresyan, A; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Cremonesi, M; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, M; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Magini, N; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strait, J; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Wu, Y; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Low, J F; Ma, P; Matchev, K; Mei, H; Mitselmakher, G; Rank, D; Shchutska, L; Sperka, D; Thomas, L; Wang, J; Wang, S; Yelton, J; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, T; Askew, A; Bein, S; Hagopian, S; Hagopian, V; Johnson, K F; Prosper, H; Santra, A; Yohay, R; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Jung, K; Sandoval Gonzalez, I D; Varelas, N; Wang, H; Wu, Z; Zakaria, M; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Roskes, J; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Boren, S; Bowen, J; Castle, J; Forthomme, L; Kenny, R P; Khalil, S; Kropivnitskaya, A; Majumder, D; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Tapia Takaki, J D; Wang, Q; Ivanov, A; Kaadze, K; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Jeng, G Y; Kellogg, R G; Kolberg, T; Kunkle, J; Mignerey, A C; Ricci-Tam, F; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Abercrombie, D; Allen, B; Apyan, A; Azzolini, V; Barbieri, R; Baty, A; Bi, R; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; D'Alfonso, M; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Hsu, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Krajczar, K; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Maier, B; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Tatar, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Benvenuti, A C; Chatterjee, R M; Evans, A; Hansen, P; Kalafut, S; Kao, S C; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Claes, D R; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Kravchenko, I; Malta Rodrigues, A; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Alyari, M; Dolen, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Nguyen, D; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Bhattacharya, S; Charaf, O; Hahn, K A; Kumar, A; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Rupprecht, N; Smith, G; Taroni, S; Wayne, M; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Hughes, R; Ji, W; Liu, B; Luo, W; Puigh, D; Winer, B L; Wulsin, H W; Cooperstein, S; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Lange, D; Luo, J; Marlow, D; Medvedeva, T; Mei, K; Ojalvo, I; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Svyatkovskiy, A; Tully, C; Malik, S; Barker, A; Barnes, V E; Folgueras, S; Gutay, L; Jha, M K; Jones, M; Jung, A W; Khatiwada, A; Miller, D H; Neumeister, N; Schulte, J F; Shi, X; Sun, J; Wang, F; Xie, W; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Agapitos, A; Chou, J P; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Nash, K; Osherson, M; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Delannoy, A G; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Juska, E; Kamon, T; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; De Guio, F; Dragoiu, C; Dudero, P R; Faulkner, J; Gurpinar, E; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Peltola, T; Undleeb, S; Volobouev, I; Wang, Z; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Xia, F; Clarke, C; Harr, R; Karchin, P E; Sturdy, J; Belknap, D A; Buchanan, J; Caillol, C; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Savin, A; Smith, N; Smith, W H; Taylor, D; Woods, N

    2017-01-01

    This paper reports the measurement of [Formula: see text] meson production in proton-proton ([Formula: see text]) and proton-lead ([Formula: see text]) collisions at a center-of-mass energy per nucleon pair of [Formula: see text] by the CMS experiment at the LHC. The data samples used in the analysis correspond to integrated luminosities of 28[Formula: see text] and 35[Formula: see text] for [Formula: see text] and [Formula: see text] collisions, respectively. Prompt and nonprompt [Formula: see text] mesons, the latter produced in the decay of [Formula: see text] hadrons, are measured in their dimuon decay channels. Differential cross sections are measured in the transverse momentum range of [Formula: see text], and center-of-mass rapidity ranges of [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]). The nuclear modification factor, [Formula: see text], is measured as a function of both [Formula: see text] and [Formula: see text]. Small modifications to the [Formula: see text] cross sections are observed in [Formula: see text] relative to [Formula: see text] collisions. The ratio of [Formula: see text] production cross sections in [Formula: see text]-going and Pb-going directions, [Formula: see text], studied as functions of [Formula: see text] and [Formula: see text], shows a significant decrease for increasing transverse energy deposited at large pseudorapidities. These results, which cover a wide kinematic range, provide new insight on the role of cold nuclear matter effects on prompt and nonprompt [Formula: see text] production.

  9. The U.S. infant formula industry: is direct-to-consumer advertising unethical or inevitable?

    PubMed

    Cutler, Bob D; Wright, Robert F

    2002-01-01

    Throughout their history, U.S. based infant formula companies have promoted their products as though they required a prescription. This form of marketing is called "ethical" promotion, which focuses on gaining a physician to parent recommendation for a brand of infant formula. Until Nestle's entry into the U.S. infant formula market in 1988, there was little direct-to-consumer promotion of infant formula. This article provides a background on the history of infant formula practices in the United States and then focuses on a descriptive model to explain how mothers' make their infant formula selection. Finally, we offer suggestions for the "ethical" marketers of infant formula.

  10. Formulaic Language and Collocations in German Essays: From Corpus-Driven Data to Corpus-Based Materials

    ERIC Educational Resources Information Center

    Krummes, Cedric; Ensslin, Astrid

    2015-01-01

    Whereas there exists a plethora of research on collocations and formulaic language in English, this article contributes towards a somewhat less developed area: the understanding and teaching of formulaic language in German as a foreign language. It analyses formulaic sequences and collocations in German writing (corpus-driven) and provides modern…

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrock, Richard Royce; Autenrieth, Benjamin

    The present invention, among other things, provides highly syndiotactic poly(dicyclopentadiene) and/or hydrogenated poly(dicyclopentadiene), compositions thereof, and compounds and methods for preparing the same. In some embodiments, a provided compound is a compound of formula I, II or III. In some embodiments, a provided method comprises providing a compound of formula I, II or III.

  12. Exploring CP violation in the MSSM.

    PubMed

    Arbey, Alexandre; Ellis, John; Godbole, Rohini M; Mahmoudi, Farvah

    We explore the prospects for observing CP violation in the minimal supersymmetric extension of the Standard Model (MSSM) with six CP-violating parameters, three gaugino mass phases and three phases in trilinear soft supersymmetry-breaking parameters, using the CPsuperH code combined with a geometric approach to maximise CP-violating observables subject to the experimental upper bounds on electric dipole moments. We also implement CP-conserving constraints from Higgs physics, flavour physics and the upper limits on the cosmological dark matter density and spin-independent scattering. We study possible values of observables within the constrained MSSM (CMSSM), the non-universal Higgs model (NUHM), the CPX scenario and a variant of the phenomenological MSSM (pMSSM). We find values of the CP-violating asymmetry [Formula: see text] in [Formula: see text] decay that may be as large as 3 %, so future measurements of [Formula: see text] may provide independent information about CP violation in the MSSM. We find that CP-violating MSSM contributions to the [Formula: see text] meson mass mixing term [Formula: see text] are in general below the present upper limit, which is dominated by theoretical uncertainties. If these could be reduced, [Formula: see text] could also provide an interesting and complementary constraint on the six CP-violating MSSM phases, enabling them all to be determined experimentally, in principle. We also find that CP violation in the [Formula: see text] and [Formula: see text] couplings can be quite large, and so may offer interesting prospects for future [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] colliders.

  13. A study of density effects in plasmas using analytical approximations for the self-consistent potential

    NASA Astrophysics Data System (ADS)

    Poirier, M.

    2015-06-01

    Density effects in ionized matter require particular attention since they modify energies, wavefunctions and transition rates with respect to the isolated-ion situation. The approach chosen in this paper is based on the ion-sphere model involving a Thomas-Fermi-like description for free electrons, the bound electrons being described by a full quantum mechanical formalism. This permits to deal with plasmas out of thermal local equilibrium, assuming only a Maxwell distribution for free electrons. For H-like ions, such a theory provides simple and rather accurate analytical approximations for the potential created by free electrons. Emphasis is put on the plasma potential rather than on the electron density, since the energies and wavefunctions depend directly on this potential. Beyond the uniform electron gas model, temperature effects may be analyzed. In the case of H-like ions, this formalism provides analytical perturbative expressions for the energies, wavefunctions and transition rates. Explicit expressions are given in the case of maximum orbital quantum number, and compare satisfactorily with results from a direct integration of the radial Schrödinger equation. Some formulas for lower orbital quantum numbers are also proposed.

  14. Time-reversal-based SU(2) x Sn scalar invariants as (Lie Algebraic) group measures: a structured overview of generalised democratic-recoupled, uniform non-Abelian [AX]n NMR spin systems, as abstract [Formula: see text] chain networks.

    PubMed

    Temme, F P

    2004-03-01

    The physics of dual group scalar invariants (SIs) as (Lie algebraic) group measures (L-GMs) and its significance to non-Abelian NMR spin systems motivates this overview of uniform general-2n [AX](2n) spin evolution, which represents an extensive addendum to Corio's earlier (essentially restricted) view of Abelian spin system SU(2)-based SI-cardinalities. The [Formula: see text] values in [J. Magn. Reson., 134 (1998) 131] arise from strictly linear recoupled time-reversal invariance (TRI) models. In contrast, here we discuss the physical significance of an alternative polyhedral combinatorics approach to democratic recoupling (DR), a property inherent in both the TRI and statistical sampling. Recognition of spin ensemble SIs as being L-GMs over isomorphic algebras is invaluable in many DR-based NMR problems. Various [AX]n model spin systems, including the [AX]3 bis odd-odd parity spin system, are examined as direct applications of these L-GM- and combinatorial-based SI ideas. Hence in place of /SI/=15 (implied by Corio's [Formula: see text] approach), the bis 3-fold spin system cardinality is seen now as constrained to a single invariant on an isomorphic product algebra under L-GMs, in accord with the subspectral analysis of Jones et al. [Canad. J. Chem., 43 (1965) 683]. The group projective ideas cited here for DR (as cf. to graph theoretic views) apply to highly degenerate non-Abelian problems. Over dual tensorial bases, they define models of spin dynamical evolution whose (SR) quasiparticle superboson carrier (sub)spaces are characterised by SIs acting as explicit auxiliary labels [Physica, A198 (1993) 245; J. Math. Chem., 31 (2002) 281]. A deeper [Formula: see text] network-based view of spin-alone space developed in Balasubramanian's work [J. Chem. Phys., 78 (1983) 6358] is especially important, (e.g.) in the study of spin waves [J. Math. Chem., 31 (2002) 363]. Beyond the specific NMR SIs derived here, there are DR applications where a sporadic, still higher, 2n-fold regular uniform spin ensemble exhibits a topological FG duality to some known modest /SI/(2i<2n) cardinality--in principle providing for the (sparce) existence of other /SI/(2n) DR-based values.

  15. Modification of the nuclear landscape in the inverse problem framework using the generalized Bethe-Weizsäcker mass formula

    NASA Astrophysics Data System (ADS)

    Mavrodiev, S. Cht.; Deliyergiyev, M. A.

    We formalized the nuclear mass problem in the inverse problem framework. This approach allows us to infer the underlying model parameters from experimental observation, rather than to predict the observations from the model parameters. The inverse problem was formulated for the numerically generalized semi-empirical mass formula of Bethe and von Weizsäcker. It was solved in a step-by-step way based on the AME2012 nuclear database. The established parametrization describes the measured nuclear masses of 2564 isotopes with a maximum deviation less than 2.6MeV, starting from the number of protons and number of neutrons equal to 1. The explicit form of unknown functions in the generalized mass formula was discovered in a step-by-step way using the modified least χ2 procedure, that realized in the algorithms which were developed by Lubomir Aleksandrov to solve the nonlinear systems of equations via the Gauss-Newton method, lets us to choose the better one between two functions with same χ2. In the obtained generalized model, the corrections to the binding energy depend on nine proton (2, 8, 14, 20, 28, 50, 82, 108, 124) and ten neutron (2, 8, 14, 20, 28, 50, 82, 124, 152, 202) magic numbers as well on the asymptotic boundaries of their influence. The obtained results were compared with the predictions of other models.

  16. Assessing readability formula differences with written health information materials: application, results, and recommendations.

    PubMed

    Wang, Lih-Wern; Miller, Michael J; Schmitt, Michael R; Wen, Frances K

    2013-01-01

    Readability formulas are often used to guide the development and evaluation of literacy-sensitive written health information. However, readability formula results may vary considerably as a result of differences in software processing algorithms and how each formula is applied. These variations complicate interpretations of reading grade level estimates, particularly without a uniform guideline for applying and interpreting readability formulas. This research sought to (1) identify commonly used readability formulas reported in the health care literature, (2) demonstrate the use of the most commonly used readability formulas on written health information, (3) compare and contrast the differences when applying common readability formulas to identical selections of written health information, and (4) provide recommendations for choosing an appropriate readability formula for written health-related materials to optimize their use. A literature search was conducted to identify the most commonly used readability formulas in health care literature. Each of the identified formulas was subsequently applied to word samples from 15 unique examples of written health information about the topic of depression and its treatment. Readability estimates from common readability formulas were compared based on text sample size, selection, formatting, software type, and/or hand calculations. Recommendations for their use were provided. The Flesch-Kincaid formula was most commonly used (57.42%). Readability formulas demonstrated variability up to 5 reading grade levels on the same text. The Simple Measure of Gobbledygook (SMOG) readability formula performed most consistently. Depending on the text sample size, selection, formatting, software, and/or hand calculations, the individual readability formula estimated up to 6 reading grade levels of variability. The SMOG formula appears best suited for health care applications because of its consistency of results, higher level of expected comprehension, use of more recent validation criteria for determining reading grade level estimates, and simplicity of use. To improve interpretation of readability results, reporting reading grade level estimates from any formula should be accompanied with information about word sample size, location of word sampling in the text, formatting, and method of calculation. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. A study of snake-like locomotion through the analysis of a flexible robot model

    PubMed Central

    Cicconofri, Giancarlo; DeSimone, Antonio

    2015-01-01

    We examine the problem of snake-like locomotion by studying a system consisting of a planar inextensible elastic rod with adjustable spontaneous curvature, which provides an internal actuation mechanism that mimics muscular action in a snake. Using a Cosserat model, we derive the equations of motion in two special cases: one in which the rod can only move along a prescribed curve, and one in which the rod is constrained to slide longitudinally without slipping laterally, but the path is not fixed a priori (free-path case). The second setting is inspired by undulatory locomotion of snakes on flat surfaces. The presence of constraints leads in both cases to non-standard boundary conditions that allow us to close and solve the equations of motion. The kinematics and dynamics of the system can be recovered from a one-dimensional equation, without any restrictive assumption on the followed trajectory or the actuation. We derive explicit formulae highlighting the role of spontaneous curvature in providing the driving force (and the steering, in the free-path case) needed for locomotion. We also provide analytical solutions for a special class of serpentine motions, which enable us to discuss the connection between observed trajectories, internal actuation and forces exchanged with the environment. PMID:26807040

  18. 12 CFR 324.135 - Guarantees and credit derivatives: Double default treatment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to the following formula: KDD = Ko × (0.15 + 160 × PDg), where: (1) er10se13.039 (2) PDg equals PD of... appropriate formula for (R) provided in Table 1 in § 324.131, with PD equal to PDo. (6) b (maturity adjustment coefficient) is calculated according to the formula for b provided in Table 1 in § 324.131, with PD equal to...

  19. School Funding Formulas: Review of Main Characteristics and Impacts. OECD Education Working Papers, No. 74

    ERIC Educational Resources Information Center

    Fazekas, Mihaly

    2012-01-01

    This study provides a literature review on school funding formulas across OECD countries. It looks at three salient questions from a comparative perspective: i) What kind of school formula funding schemes exist and how are they used, particularly for promoting the needs of socially disadvantaged pupils?; ii) How do school formula funding regimes…

  20. High accuracy navigation information estimation for inertial system using the multi-model EKF fusing adams explicit formula applied to underwater gliders.

    PubMed

    Huang, Haoqian; Chen, Xiyuan; Zhang, Bo; Wang, Jian

    2017-01-01

    The underwater navigation system, mainly consisting of MEMS inertial sensors, is a key technology for the wide application of underwater gliders and plays an important role in achieving high accuracy navigation and positioning for a long time of period. However, the navigation errors will accumulate over time because of the inherent errors of inertial sensors, especially for MEMS grade IMU (Inertial Measurement Unit) generally used in gliders. The dead reckoning module is added to compensate the errors. In the complicated underwater environment, the performance of MEMS sensors is degraded sharply and the errors will become much larger. It is difficult to establish the accurate and fixed error model for the inertial sensor. Therefore, it is very hard to improve the accuracy of navigation information calculated by sensors. In order to solve the problem mentioned, the more suitable filter which integrates the multi-model method with an EKF approach can be designed according to different error models to give the optimal estimation for the state. The key parameters of error models can be used to determine the corresponding filter. The Adams explicit formula which has an advantage of high precision prediction is simultaneously fused into the above filter to achieve the much more improvement in attitudes estimation accuracy. The proposed algorithm has been proved through theory analyses and has been tested by both vehicle experiments and lake trials. Results show that the proposed method has better accuracy and effectiveness in terms of attitudes estimation compared with other methods mentioned in the paper for inertial navigation applied to underwater gliders. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Monte Carlo explicitly correlated second-order many-body perturbation theory

    NASA Astrophysics Data System (ADS)

    Johnson, Cole M.; Doran, Alexander E.; Zhang, Jinmei; Valeev, Edward F.; Hirata, So

    2016-10-01

    A stochastic algorithm is proposed and implemented that computes a basis-set-incompleteness (F12) correction to an ab initio second-order many-body perturbation energy as a short sum of 6- to 15-dimensional integrals of Gaussian-type orbitals, an explicit function of the electron-electron distance (geminal), and its associated excitation amplitudes held fixed at the values suggested by Ten-no. The integrals are directly evaluated (without a resolution-of-the-identity approximation or an auxiliary basis set) by the Metropolis Monte Carlo method. Applications of this method to 17 molecular correlation energies and 12 gas-phase reaction energies reveal that both the nonvariational and variational formulas for the correction give reliable correlation energies (98% or higher) and reaction energies (within 2 kJ mol-1 with a smaller statistical uncertainty) near the complete-basis-set limits by using just the aug-cc-pVDZ basis set. The nonvariational formula is found to be 2-10 times less expensive to evaluate than the variational one, though the latter yields energies that are bounded from below and is, therefore, slightly but systematically more accurate for energy differences. Being capable of using virtually any geminal form, the method confirms the best overall performance of the Slater-type geminal among 6 forms satisfying the same cusp conditions. Not having to precompute lower-dimensional integrals analytically, to store them on disk, or to transform them in a nonscalable dense-matrix-multiplication algorithm, the method scales favorably with both system size and computer size; the cost increases only as O(n4) with the number of orbitals (n), and its parallel efficiency reaches 99.9% of the ideal case on going from 16 to 4096 computer processors.

  2. Note: On the relation between Lifson-Jackson and Derrida formulas for effective diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Kalnin, Juris R.; Berezhkovskii, Alexander M.

    2013-11-01

    The Lifson-Jackson formula provides the effective free diffusion coefficient for a particle diffusing in an arbitrary one-dimensional periodic potential. Its counterpart, when the underlying dynamics is described in terms of an unbiased nearest-neighbor Markovian random walk on a one-dimensional periodic lattice is given by the formula obtained by Derrida. It is shown that the latter formula can be considered as a discretized version of the Lifson-Jackson formula with correctly chosen position-dependent diffusion coefficient.

  3. Viscous decay of nonlinear oscillations of a spherical bubble at large Reynolds number

    NASA Astrophysics Data System (ADS)

    Smith, W. R.; Wang, Q. X.

    2017-08-01

    The long-time viscous decay of large-amplitude bubble oscillations is considered in an incompressible Newtonian fluid, based on the Rayleigh-Plesset equation. At large Reynolds numbers, this is a multi-scaled problem with a short time scale associated with inertial oscillation and a long time scale associated with viscous damping. A multi-scaled perturbation method is thus employed to solve the problem. The leading-order analytical solution of the bubble radius history is obtained to the Rayleigh-Plesset equation in a closed form including both viscous and surface tension effects. Some important formulae are derived including the following: the average energy loss rate of the bubble system during each cycle of oscillation, an explicit formula for the dependence of the oscillation frequency on the energy, and an implicit formula for the amplitude envelope of the bubble radius as a function of the energy. Our theory shows that the energy of the bubble system and the frequency of oscillation do not change on the inertial time scale at leading order, the energy loss rate on the long viscous time scale being inversely proportional to the Reynolds number. These asymptotic predictions remain valid during each cycle of oscillation whether or not compressibility effects are significant. A systematic parametric analysis is carried out using the above formula for the energy of the bubble system, frequency of oscillation, and minimum/maximum bubble radii in terms of the Reynolds number, the dimensionless initial pressure of the bubble gases, and the Weber number. Our results show that the frequency and the decay rate have substantial variations over the lifetime of a decaying oscillation. The results also reveal that large-amplitude bubble oscillations are very sensitive to small changes in the initial conditions through large changes in the phase shift.

  4. Accurate electrostatic and van der Waals pull-in prediction for fully clamped nano/micro-beams using linear universal graphs of pull-in instability

    NASA Astrophysics Data System (ADS)

    Tahani, Masoud; Askari, Amir R.

    2014-09-01

    In spite of the fact that pull-in instability of electrically actuated nano/micro-beams has been investigated by many researchers to date, no explicit formula has been presented yet which can predict pull-in voltage based on a geometrically non-linear and distributed parameter model. The objective of present paper is to introduce a simple and accurate formula to predict this value for a fully clamped electrostatically actuated nano/micro-beam. To this end, a non-linear Euler-Bernoulli beam model is employed, which accounts for the axial residual stress, geometric non-linearity of mid-plane stretching, distributed electrostatic force and the van der Waals (vdW) attraction. The non-linear boundary value governing equation of equilibrium is non-dimensionalized and solved iteratively through single-term Galerkin based reduced order model (ROM). The solutions are validated thorough direct comparison with experimental and other existing results reported in previous studies. Pull-in instability under electrical and vdW loads are also investigated using universal graphs. Based on the results of these graphs, non-dimensional pull-in and vdW parameters, which are defined in the text, vary linearly versus the other dimensionless parameters of the problem. Using this fact, some linear equations are presented to predict pull-in voltage, the maximum allowable length, the so-called detachment length, and the minimum allowable gap for a nano/micro-system. These linear equations are also reduced to a couple of universal pull-in formulas for systems with small initial gap. The accuracy of the universal pull-in formulas are also validated by comparing its results with available experimental and some previous geometric linear and closed-form findings published in the literature.

  5. The chemical formula of a magnetotactic bacterium.

    PubMed

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life. Copyright © 2011 Wiley Periodicals, Inc.

  6. Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton-proton collision data.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Almond, J; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Araque, J P; Arce, A T H; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Azuelos, G; Azuma, Y; Baak, M A; Baas, A; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batley, J R; Battaglia, M; Battistin, M; Bauer, F; Bawa, H S; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernat, P; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Bessner, M; Besana, M I; Besjes, G J; Bessidskaia, O; Besson, N; Betancourt, C; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boddy, C R; Boehler, M; Boek, T T; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Brendlinger, K; Brennan, A J; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bundock, A C; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuciuc, C-M; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; Cunha Sargedas De Sousa, M J Da; Via, C Da; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Daniells, A C; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J A; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dimitrievska, A; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobos, D; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Dwuznik, M; Dyndal, M; Ebke, J; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franconi, L; Franklin, M; Franz, S; Fraternali, M; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giorgi, F M; Giraud, P F; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godfrey, J; Godlewski, J; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Grebenyuk, O G; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Groth-Jensen, J; Grout, Z J; Guan, L; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Gunther, J; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböeck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hann, R; Hansen, J B; Hansen, J D; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Heng, Y; Henderson, R C W; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hoffman, J; Hoffmann, D; Hofmann, J I; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Horii, Y; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, K E; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jungst, R M; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karastathis, N; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; La Rosa, A; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leone, S; Leonhardt, K; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Lester, C M; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, B A; Long, J D; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lou, X; Lounis, A; Love, J; Love, P A; Lowe, A J; Lu, F; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Maiani, C; Maidantchik, C; Maier, A A; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marques, C N; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Mitsui, S; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Narayan, R; Nattermann, T; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Przysiezniak, H; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Qureshi, A; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Randle-Conde, A S; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Ridel, M; Rieck, P; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, M; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sacerdoti, S; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sartisohn, G; Sasaki, O; Sasaki, Y; Sauvage, G; Sauvan, E; Savard, P; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skottowe, H P; Skovpen, K Yu; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; Spurlock, B; Denis, R D St; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Struebig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weigell, P; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; White, A; White, M J; White, R; White, S; Whiteson, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilkens, H G; Will, J Z; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wright, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wyatt, T R; Wynne, B M; Xella, S; Xiao, M; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yanush, S; Yao, L; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zutshi, V; Zwalinski, L

    This paper presents the performance of the ATLAS muon reconstruction during the LHC run with [Formula: see text] collisions at [Formula: see text]-8 TeV in 2011-2012, focusing mainly on data collected in 2012. Measurements of the reconstruction efficiency and of the momentum scale and resolution, based on large reference samples of [Formula: see text], [Formula: see text] and [Formula: see text] decays, are presented and compared to Monte Carlo simulations. Corrections to the simulation, to be used in physics analysis, are provided. Over most of the covered phase space (muon [Formula: see text] and [Formula: see text] GeV) the efficiency is above [Formula: see text] and is measured with per-mille precision. The momentum resolution ranges from [Formula: see text] at central rapidity and for transverse momentum [Formula: see text] GeV, to [Formula: see text] at large rapidity and [Formula: see text] GeV. The momentum scale is known with an uncertainty of [Formula: see text] to [Formula: see text] depending on rapidity. A method for the recovery of final state radiation from the muons is also presented.

  7. 26 CFR 1.401(a)(4)-2 - Nondiscrimination in amount of employer contributions under a defined contribution plan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... greater of the allocations under two or more formulas, one of which is a top-heavy formula, the top-heavy... is the greater of the allocations under two or more formulas, and one or more of those formulas is... provide uniform allocations are permitted to satisfy this requirement by meeting one of the safe harbors...

  8. 26 CFR 1.401(a)(4)-2 - Nondiscrimination in amount of employer contributions under a defined contribution plan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... greater of the allocations under two or more formulas, one of which is a top-heavy formula, the top-heavy... is the greater of the allocations under two or more formulas, and one or more of those formulas is... provide uniform allocations are permitted to satisfy this requirement by meeting one of the safe harbors...

  9. How reliable is computerized assessment of readability?

    PubMed

    Mailloux, S L; Johnson, M E; Fisher, D G; Pettibone, T J

    1995-01-01

    To assess the consistency and comparability of readability software programs, four software programs (Corporate Voice, Grammatix IV, Microsoft Word for Windows, and RightWriter) were compared. Standard materials included 28 pieces of printed educational materials on human immunodeficiency virus/acquired immunodeficiency syndrome distributed nationally and the Gettysburg Address. Statistical analyses for the educational materials revealed that each of the three formulas assessed (Flesch-Kincaid, Flesch Reading Ease, and Gunning Fog Index) provided significantly different grade equivalent scores and that the Microsoft Word program provided significantly lower grade levels and was more inconsistent in the scores provided. For the Gettysburg Address, considerable variation was revealed among formulas, with the discrepancy being up to two grade levels. When averaging across formulas, there was a variation of 1.3 grade levels between the four software programs. Given the variation between formulas and programs, implications for decisions based on results of these software programs are provided.

  10. Fundamental Design based on Current Distribution in Coaxial Multi-Layer Cable-in-Conduit Conductor

    NASA Astrophysics Data System (ADS)

    Hamajima, Takataro; Tsuda, Makoto; Yagai, Tsuyoshi; Takahata, Kazuya; Imagawa, Shinsaku

    An imbalanced current distribution is often observed in cable-in-conduit (CIC) superconductors which are composed of multi-staged, triplet type sub-cables, and hence deteriorates the performance of the coils. Therefore, since it is very important to obtain a homogeneous current distribution in the superconducting strands, we propose a coaxial multi-layer type CIC conductor. We use a circuit model for all layers in the coaxial multi-layer CIC conductor, and derive a generalized formula governing the current distribution as explicit functions of the superconductor construction parameters, such as twist pitch, twist direction, radius of each layer, and number of superconducting (SC) strands and copper (Cu) strands. We apply the formula to design the coaxial multi-layer CIC which has the same number of SC strands and Cu strands of the CIC for Central Solenoid of ITER. We can design three kinds of the coaxial multi-layer CIC depending on distribution of SC and Cu strands on all layers. It is shown that the SC strand volume should be optimized as a function of SC and Cu strand distribution on the layers.

  11. Two-Point Resistance of a Non-Regular Cylindrical Network with a Zero Resistor Axis and Two Arbitrary Boundaries

    NASA Astrophysics Data System (ADS)

    Tan, Zhi-Zhong

    2017-03-01

    We study a problem of two-point resistance in a non-regular m × n cylindrical network with a zero resistor axis and two arbitrary boundaries by means of the Recursion-Transform method. This is a new problem never solved before, the Green’s function technique and the Laplacian matrix approach are invalid in this case. A disordered network with arbitrary boundaries is a basic model in many physical systems or real world systems, however looking for the exact calculation of the resistance of a binary resistor network is important but difficult in the case of the arbitrary boundaries, the boundary is like a wall or trap which affects the behavior of finite network. In this paper we obtain a general resistance formula of a non-regular m × n cylindrical network, which is composed of a single summation. Further, the current distribution is given explicitly as a byproduct of the method. As applications, several interesting results are derived by making special cases from the general formula. Supported by the Natural Science Foundation of Jiangsu Province under Grant No. BK20161278

  12. The structure factor of primes

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Martelli, F.; Torquato, S.

    2018-03-01

    Although the prime numbers are deterministic, they can be viewed, by some measures, as pseudo-random numbers. In this article, we numerically study the pair statistics of the primes using statistical-mechanical methods, particularly the structure factor S(k) in an interval M ≤slant p ≤slant M + L with M large, and L/M smaller than unity. We show that the structure factor of the prime-number configurations in such intervals exhibits well-defined Bragg-like peaks along with a small ‘diffuse’ contribution. This indicates that primes are appreciably more correlated and ordered than previously thought. Our numerical results definitively suggest an explicit formula for the locations and heights of the peaks. This formula predicts infinitely many peaks in any non-zero interval, similar to the behavior of quasicrystals. However, primes differ from quasicrystals in that the ratio between the location of any two predicted peaks is rational. We also show numerically that the diffuse part decays slowly as M and L increases. This suggests that the diffuse part vanishes in an appropriate infinite-system-size limit.

  13. Dynamics analysis of epidemic and information spreading in overlay networks.

    PubMed

    Liu, Guirong; Liu, Zhimei; Jin, Zhen

    2018-05-07

    We establish an SIS-UAU model to present the dynamics of epidemic and information spreading in overlay networks. The overlay network is represented by two layers: one where the dynamics of the epidemic evolves and another where the information spreads. We theoretically derive the explicit formulas for the basic reproduction number of awareness R 0 a by analyzing the self-consistent equation and the basic reproduction number of disease R 0 d by using the next generation matrix. The formula of R 0 d shows that the effect of awareness can reduce the basic reproduction number of disease. In particular, when awareness does not affect epidemic spreading, R 0 d is shown to match the existing theoretical results. Furthermore, we demonstrate that the disease-free equilibrium is globally asymptotically stable if R 0 d <1; and the endemic equilibrium is globally asymptotically stable if R 0 d >1. Finally, numerical simulations show that information plays a vital role in preventing and controlling disease and effectively reduces the final disease scale. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Gas Near a Wall: Shortened Mean Free Path, Reduced Viscosity, and the Manifestation of the Knudsen Layer in the Navier-Stokes Solution of a Shear Flow

    NASA Astrophysics Data System (ADS)

    Abramov, Rafail V.

    2018-06-01

    For the gas near a solid planar wall, we propose a scaling formula for the mean free path of a molecule as a function of the distance from the wall, under the assumption of a uniform distribution of the incident directions of the molecular free flight. We subsequently impose the same scaling onto the viscosity of the gas near the wall and compute the Navier-Stokes solution of the velocity of a shear flow parallel to the wall. Under the simplifying assumption of constant temperature of the gas, the velocity profile becomes an explicit nonlinear function of the distance from the wall and exhibits a Knudsen boundary layer near the wall. To verify the validity of the obtained formula, we perform the Direct Simulation Monte Carlo computations for the shear flow of argon and nitrogen at normal density and temperature. We find excellent agreement between our velocity approximation and the computed DSMC velocity profiles both within the Knudsen boundary layer and away from it.

  15. On the conservation of the Jacobi integral in the post-Newtonian circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Dubeibe, F. L.; Lora-Clavijo, F. D.; González, Guillermo A.

    2017-05-01

    In the present paper, using the first-order approximation of the n-body Lagrangian (derived on the basis of the post-Newtonian gravitational theory of Einstein, Infeld, and Hoffman), we explicitly write down the equations of motion for the planar circular restricted three-body problem in the Solar system. Additionally, with some simplified assumptions, we obtain two formulas for estimating the values of the mass-distance and velocity-speed of light ratios appropriate for a given post-Newtonian approximation. We show that the formulas derived in the present study, lead to good numerical accuracy in the conservation of the Jacobi constant and almost allow for an equivalence between the Lagrangian and Hamiltonian approaches at the same post-Newtonian order. Accordingly, the dynamics of the system is analyzed in terms of the Poincaré sections method and Lyapunov exponents, finding that for specific values of the Jacobi constant the dynamics can be either chaotic or regular. Our results suggest that the chaoticity of the post-Newtonian system is slightly increased in comparison with its Newtonian counterpart.

  16. Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography.

    PubMed

    Espigares, Jorge; Sadr, Alireza; Hamba, Hidenori; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori

    2015-01-01

    A technology to characterize early enamel lesions is needed in dentistry. Optical coherence tomography (OCT) is a noninvasive method that provides high-resolution cross-sectional images. The aim of this study is to compare OCT with microfocus x-ray computed tomography ([Formula: see text]) for assessment of natural enamel lesions in vitro. Ten human teeth with visible white spot-like changes on the enamel smooth surface and no cavitation (ICDAS code 2) were subjected to imaging by μCT (SMX-100CT, Shimadzu) and 1300-nm swept-source OCT (Dental SS-OCT, Panasonic Health Care). In [Formula: see text], the lesions appeared as radiolucent dark areas, while in SS-OCT, they appeared as areas of increased signal intensity beneath the surface. An SS-OCT attenuation coefficient based on Beer-Lambert law could discriminate lesions from sound enamel. Lesion depth ranged from 175 to [Formula: see text] in SS-OCT. A correlation between [Formula: see text] and SS-OCT was found regarding lesion depth ([Formula: see text], [Formula: see text]) and also surface layer thickness ([Formula: see text], [Formula: see text]). The images obtained clinically in real time using the dental SS-OCT system are suitable for the assessment of natural subsurface lesions and their surface layer, providing comparable images to a laboratory high-resolution [Formula: see text] without the use of x-ray.

  17. A Simple Approach to the Landau-Zener Formula

    ERIC Educational Resources Information Center

    Vutha, Amar C.

    2010-01-01

    The Landau-Zener formula provides the probability of non-adiabatic transitions occurring when two energy levels are swept through an avoided crossing. The formula is derived here in a simple calculation that emphasizes the physics responsible for non-adiabatic population transfer. (Contains 2 figures.)

  18. Direct estimation and correction of bias from temporally variable non-stationary noise in a channelized Hotelling model observer.

    PubMed

    Fetterly, Kenneth A; Favazza, Christopher P

    2016-08-07

    Channelized Hotelling model observer (CHO) methods were developed to assess performance of an x-ray angiography system. The analytical methods included correction for known bias error due to finite sampling. Detectability indices ([Formula: see text]) corresponding to disk-shaped objects with diameters in the range 0.5-4 mm were calculated. Application of the CHO for variable detector target dose (DTD) in the range 6-240 nGy frame(-1) resulted in [Formula: see text] estimates which were as much as 2.9×  greater than expected of a quantum limited system. Over-estimation of [Formula: see text] was presumed to be a result of bias error due to temporally variable non-stationary noise. Statistical theory which allows for independent contributions of 'signal' from a test object (o) and temporally variable non-stationary noise (ns) was developed. The theory demonstrates that the biased [Formula: see text] is the sum of the detectability indices associated with the test object [Formula: see text] and non-stationary noise ([Formula: see text]). Given the nature of the imaging system and the experimental methods, [Formula: see text] cannot be directly determined independent of [Formula: see text]. However, methods to estimate [Formula: see text] independent of [Formula: see text] were developed. In accordance with the theory, [Formula: see text] was subtracted from experimental estimates of [Formula: see text], providing an unbiased estimate of [Formula: see text]. Estimates of [Formula: see text] exhibited trends consistent with expectations of an angiography system that is quantum limited for high DTD and compromised by detector electronic readout noise for low DTD conditions. Results suggest that these methods provide [Formula: see text] estimates which are accurate and precise for [Formula: see text]. Further, results demonstrated that the source of bias was detector electronic readout noise. In summary, this work presents theory and methods to test for the presence of bias in Hotelling model observers due to temporally variable non-stationary noise and correct this bias when the temporally variable non-stationary noise is independent and additive with respect to the test object signal.

  19. Fluoride content of infant formulas prepared with deionized, bottled mineral and fluoridated drinking water.

    PubMed

    Buzalaf, M A; Granjeiro, J M; Damante, C A; de Ornelas, F

    2001-01-01

    Usually infant milk formula is the major source of fluoride in infancy. Fluoride concentrations in ten samples of powdered milk formulas, prepared with deionized, bottled mineral, and fluoridated drinking water were determined after HMDS-facilitated diffusion, using a fluoride ion specific electrode(Orion 9609). Fluoride concentrations ranged from 0.01 to 0.75 ppm; from 0.02 to 1.37 ppm and from 0.91 to 1.65 ppm for formulas prepared with deionized, bottled mineral (0.02 to 0.69 ppm F) and fluorinated drinking water (0.9 ppm F), respectively. Possible fluoride ingestion per Kg body mass ws estimated. With deionized water, only the soy-based- formulas should provide a daily fluoride intake of above the suggested threshold for fluorosis. With water containing 0.9 ppm F, however, all of them would provide it. Hence, to limit fluoride intakes to amounts <0.1 mg/kg/day, it is necessary to avoid use fo fluoridated water (around 1 ppm) to dilute powdered infant formulas.

  20. Three applications of a bonus relation for gravity amplitudes

    NASA Astrophysics Data System (ADS)

    Spradlin, Marcus; Volovich, Anastasia; Wen, Congkao

    2009-04-01

    Arkani-Hamed et al. have recently shown that all tree-level scattering amplitudes in maximal supergravity exhibit exceptionally soft behavior when two supermomenta are taken to infinity in a particular complex direction, and that this behavior implies new non-trivial relations amongst amplitudes in addition to the well-known on-shell recursion relations. We consider the application of these new 'bonus relations' to MHV amplitudes, showing that they can be used quite generally to relate (n - 2) !-term formulas typically obtained from recursion relations to (n - 3) !-term formulas related to the original BGK conjecture. Specifically we provide (1) a direct proof of a formula presented by Elvang and Freedman, (2) a new formula based on one due to Bedford et al., and (3) an alternate proof of a formula recently obtained by Mason and Skinner. Our results also provide the first direct proof that the conjectured BGK formula, only very recently proven via completely different methods, satisfies the on-shell recursion.

  1. Early Benefits of a Starter Formula Enriched in Prebiotics and Probiotics on the Gut Microbiota of Healthy Infants Born to HIV+ Mothers: A Randomized Double-Blind Controlled Trial

    PubMed Central

    Cooper, Peter; Bolton, Keith D.; Velaphi, Sithembiso; de Groot, Nanda; Emady-Azar, Shahram; Pecquet, Sophie; Steenhout, Philippe

    2016-01-01

    The gut microbiota of infants is shaped by both the mode of delivery and the type of feeding. The gut of vaginally and cesarean-delivered infants is colonized at different rates and with different bacterial species, leading to differences in the gut microbial composition, which may persist up to 6 months. In a multicenter, randomized, controlled, double-blind trial conducted in South Africa, we tested the effect of a formula supplemented with a prebiotic (a mixture of bovine milk-derived oligosaccharides [BMOS] generated from whey permeate and containing galactooligosaccharides and milk oligosaccharides such as 3′- and 6′-sialyllactose) and the probiotic Bifidobacterium animalis subsp. lactis (B. lactis) strain CNCM I-3446 on the bifidobacteria levels in the gut of infants born vaginally or via cesarean section in early life. Additionally, the safety of the new formulation was evaluated. A total of 430 healthy, full-term infants born to HIV-positive mothers who had elected to feed their child beginning from birth (≤3 days old) exclusively with formula were randomized into this multicenter trial of four parallel groups. A total of 421 infants who had any study formula intake were included in the full analysis set (FAS). The first two groups consisted of cesarean-delivered infants assigned to the Test formula (n = 92) (a starter infant formula [IF] containing BMOS at a total oligosaccharide concentration of 5.8 ± 1.0 g/100 g of powder formula [8 g/L in the reconstituted formula] + B. lactis [1 × 107 colony-forming units {cfu}/g]) or a Control IF (n = 101); the second two groups consisted of vaginally delivered infants randomized to the same Test (n = 115) or Control (n = 113) formulas from the time of enrollment to 6 months. The primary efficacy outcome was fecal bifidobacteria count at 10 days, and the primary safety outcome was daily weight gain (g/d) between 10 days and 4 months. At 10 days, fecal bifidobacteria counts were significantly higher in the Test formula than in the Control formula group among infants with cesarean birth (median [range] log: 9.41 [6.30–10.94] cfu/g versus 6.30 [6.30–10.51] cfu/g; P = 0.002) but not among those with vaginal birth (median [range] log: 10.06 [5.93–10.77] cfu/g versus 9.85 [6.15–10.79] cfu/g; P = 0.126). The lower bound of the two-sided 95% confidence interval of the difference in the mean daily weight gain between the Test and Control formula groups was more than –3 g/d in both the vaginally and cesarean-delivered infants, indicating that growth in the Test formula-fed infants was not inferior to that of Control formula-fed infants. At 10 days and 4 weeks, the fecal pH of infants fed the Test formula was significantly lower than in those fed the Control formula, irrespective of mode of delivery: for vaginal delivery: 4.93 versus 5.59; P < 0.001 (10 days) and 5.01 versus 5.71; P < 0.001 (4 weeks); for cesarean delivery: 5.14 versus 5.65, P = 0.009 (10 days) and 5.06 versus 5.75, P < 0.001 (4 weeks). At 3 months, this acidification effect only persisted among cesarean-born infants. IF supplemented with the prebiotic BMOS and probiotic B. lactis induced a strong bifidogenic effect in both delivering modes, but more explicitly correcting the low bifidobacteria level found in cesarean-born infants from birth. The supplemented IF lowered the fecal pH and improved the fecal microbiota in both normal and cesarean-delivered infants. The use of bifidobacteria as a probiotic even in infants who are immunologically at risk is safe and well tolerated. PMID:28096702

  2. Catalysts and methods for ring opening metathesis polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrock, Richard Royce; Autenrieth, Benjamin

    The present invention, among other things, provides highly syndiotactic poly(dicyclopentadiene) and/or hydrogenated poly(dicyclopentadiene), compositions thereof, and compounds and methods for preparing the same. In some embodiments, a provided compound is a compound of formula I, II or III. In some embodiments, a provided method comprises providing a compound of formula I, II or III.

  3. Energy dependence of forward-rapidity [Formula: see text] and [Formula: see text] production in pp collisions at the LHC.

    PubMed

    Acharya, S; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, N; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alexandre, D; Alfaro Molina, R; Alici, A; Alkin, A; Alme, J; Alt, T; Altsybeev, I; Alves Garcia Prado, C; An, M; Andrei, C; Andrews, H A; Andronic, A; Anguelov, V; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Anwar, R; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Ball, M; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barioglio, L; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartke, J; Bartsch, E; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batista Camejo, A; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Beltran, L G E; Belyaev, V; Bencedi, G; Beole, S; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biro, G; Biswas, R; Biswas, S; Blair, J T; Blau, D; Blume, C; Boca, G; Bock, F; Bogdanov, A; Boldizsár, L; Bombara, M; Bonomi, G; Bonora, M; Book, J; Borel, H; Borissov, A; Borri, M; Botta, E; Bourjau, C; Braun-Munzinger, P; Bregant, M; Broker, T A; Browning, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buhler, P; Buitron, S A I; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Cabala, J; Caffarri, D; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Capon, A A; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Cerello, P; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chauvin, A; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Concas, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Costanza, S; Crkovská, J; Crochet, P; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danisch, M C; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Souza, R D; Degenhardt, H F; Deisting, A; Deloff, A; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Di Ruzza, B; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Drozhzhova, T; Dubey, A K; Dubla, A; Ducroux, L; Duggal, A K; Dupieux, P; Ehlers, R J; Elia, D; Endress, E; Engel, H; Epple, E; Erazmus, B; Erhardt, F; Espagnon, B; Esumi, S; Eulisse, G; Eum, J; Evans, D; Evdokimov, S; Fabbietti, L; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Ferencei, J; Téllez, A Fernández; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Francisco, A; Frankenfeld, U; Fronze, G G; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gajdosova, K; Gallio, M; Galvan, C D; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Garg, K; Garg, P; Gargiulo, C; Gasik, P; Gauger, E F; Gay Ducati, M B; Germain, M; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, A S; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Graczykowski, L K; Graham, K L; Greiner, L; Grelli, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grion, N; Gronefeld, J M; Grosa, F; Grosse-Oetringhaus, J F; Grosso, R; Gruber, L; Grull, F R; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Guzman, I B; Haake, R; Hadjidakis, C; Hamagaki, H; Hamar, G; Hamon, J C; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Hellbär, E; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, F; Hess, B A; Hetland, K F; Hillemanns, H; Hippolyte, B; Hladky, J; Hohlweger, B; Horak, D; Hosokawa, R; Hristov, P; Hughes, C; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Ilkaev, R; Inaba, M; Ippolitov, M; Irfan, M; Isakov, V; Islam, M S; Ivanov, M; Ivanov, V; Izucheev, V; Jacak, B; Jacazio, N; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jaelani, S; Jahnke, C; Jakubowska, M J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jercic, M; Jimenez Bustamante, R T; Jones, P G; Jusko, A; Kalinak, P; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Ketzer, B; Mohisin Khan, M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Khatun, A; Khuntia, A; Kielbowicz, M M; Kileng, B; Kim, D; Kim, D W; Kim, D J; Kim, H; Kim, J S; Kim, J; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kundu, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lapidus, K; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lavicka, R; Lazaridis, L; Lea, R; Leardini, L; Lee, S; Lehas, F; Lehner, S; Lehrbach, J; Lemmon, R C; Lenti, V; Leogrande, E; León Monzón, I; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Litichevskyi, V; Ljunggren, H M; Llope, W J; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Loncar, P; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Lunardon, M; Luparello, G; Lupi, M; Lutz, T H; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martinengo, P; Martinez, J A L; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Mastroserio, A; Mathis, A M; Matyja, A; Mayer, C; Mazer, J; Mazzilli, M; Mazzoni, M A; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Mhlanga, S; Miake, Y; Mieskolainen, M M; Mihaylov, D L; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Münning, K; Munzer, R H; Murakami, H; Murray, S; Musa, L; Musinsky, J; Myers, C J; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Naru, M U; Natal da Luz, H; Nattrass, C; Navarro, S R; Nayak, K; Nayak, R; Nayak, T K; Nazarenko, S; Nedosekin, A; Negrao De Oliveira, R A; Nellen, L; Nesbo, S V; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Ohlson, A; Okubo, T; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Oravec, M; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pacik, V; Pagano, D; Pagano, P; Paić, G; Palni, P; Pan, J; Pandey, A K; Panebianco, S; Papikyan, V; Pappalardo, G S; Pareek, P; Park, J; Park, W J; Parmar, S; Passfeld, A; Pathak, S P; Paticchio, V; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Peng, X; Pereira, L G; Pereira Da Costa, H; Peresunko, D; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Pezzi, R P; Piano, S; Pikna, M; Pillot, P; Pimentel, L O D L; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Poppenborg, H; Porteboeuf-Houssais, S; Porter, J; Pospisil, J; Pozdniakov, V; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Rana, D B; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Ratza, V; Ravasenga, I; Read, K F; Redlich, K; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rodríguez Cahuantzi, M; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Rokita, P S; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Rotondi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rueda, O V; Rui, R; Russo, R; Rustamov, A; Ryabinkin, E; Ryabov, Y; Rybicki, A; Saarinen, S; Sadhu, S; Sadovsky, S; Šafařík, K; Saha, S K; Sahlmuller, B; Sahoo, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Sandoval, A; Sarkar, D; Sarkar, N; Sarma, P; Sas, M H P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Scheid, H S; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schmidt, M O; Schmidt, M; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sett, P; Sevcenco, A; Shabanov, A; Shabetai, A; Shadura, O; Shahoyan, R; Shangaraev, A; Sharma, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Sheikh, A I; Shigaki, K; Shou, Q; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Song, J; Song, M; Soramel, F; Sorensen, S; Sozzi, F; Spiriti, E; Sputowska, I; Srivastava, B K; Stachel, J; Stan, I; Stankus, P; Stenlund, E; Stiller, J H; Stocco, D; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Sumowidagdo, S; Suzuki, K; Swain, S; Szabo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thakur, D; Thakur, S; Thomas, D; Tieulent, R; Tikhonov, A; Timmins, A R; Toia, A; Tripathy, S; Trogolo, S; Trombetta, G; Trubnikov, V; Trzaska, W H; Trzeciak, B A; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Umaka, E N; Uras, A; Usai, G L; Utrobicic, A; Vala, M; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vázquez Doce, O; Vechernin, V; Veen, A M; Velure, A; Vercellin, E; Vergara Limón, S; Vernet, R; Vértesi, R; Vickovic, L; Vigolo, S; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Virgili, T; Vislavicius, V; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Voscek, D; Vranic, D; Vrláková, J; Wagner, B; Wagner, J; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilk, G; Wilkinson, J; Willems, G A; Williams, M C S; Windelband, B; Witt, W E; Yalcin, S; Yang, P; Yano, S; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yurchenko, V; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zimmermann, S; Zinovjev, G; Zmeskal, J

    2017-01-01

    We present results on transverse momentum ([Formula: see text]) and rapidity ([Formula: see text]) differential production cross sections, mean transverse momentum and mean transverse momentum square of inclusive [Formula: see text] and [Formula: see text] at forward rapidity ([Formula: see text]) as well as [Formula: see text]-to-[Formula: see text] cross section ratios. These quantities are measured in pp collisions at center of mass energies [Formula: see text] and 13 TeV with the ALICE detector. Both charmonium states are reconstructed in the dimuon decay channel, using the muon spectrometer. A comprehensive comparison to inclusive charmonium cross sections measured at [Formula: see text], 7 and 8 TeV is performed. A comparison to non-relativistic quantum chromodynamics and fixed-order next-to-leading logarithm calculations, which describe prompt and non-prompt charmonium production respectively, is also presented. A good description of the data is obtained over the full [Formula: see text] range, provided that both contributions are summed. In particular, it is found that for [Formula: see text] GeV/ c the non-prompt contribution reaches up to 50% of the total charmonium yield.

  4. Sound Generation in the Presence of Moving Surfaces with Application to Internally Generated Aircraft Engine Noise

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Envia, E.

    2002-01-01

    In many cases of technological interest solid boundaries play a direct role in the aerodynamic sound generation process and their presence often results in a large increase in the acoustic radiation. A generalized treatment of the emission of sound from moving boundaries is presented. The approach is similar to that of Ffowcs Williams and Hawkings (1969) but the effect of the surrounding mean flow is explicitly accounted for. The results are used to develop a rational framework for the prediction of internally generated aero-engine noise. The final formulas suggest some new noise sources that may be of practical significance.

  5. A complete second-order theory for the unsteady flow about an airfoil due to a periodic gust

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Atassi, H.

    1976-01-01

    A uniformly valid second-order theory is developed for calculating the unsteady incompressible flow that occurs when an airfoil is subjected to a convected sinusoidal gust. Explicit formulas for the airfoil response functions (i.e., fluctuating lift) are given. The theory accounts for the effect of the distortion of the gust by the steady-state potential flow around the airfoil, and this effect is found to have an important influence on the response functions. A number of results relevant to the general theory of the scattering of vorticity waves by solid objects are also presented.

  6. Thermodynamical Limit for Correlated Gaussian Random Energy Models

    NASA Astrophysics Data System (ADS)

    Contucci, P.; Esposti, M. Degli; Giardinà, C.; Graffi, S.

    Let {EΣ(N)}ΣΣN be a family of |ΣN|=2N centered unit Gaussian random variables defined by the covariance matrix CN of elements cN(Σ,τ):=Av(EΣ(N)Eτ(N)) and the corresponding random Hamiltonian. Then the quenched thermodynamical limit exists if, for every decomposition N=N1+N2, and all pairs (Σ,τ)ΣN×ΣN: where πk(Σ),k=1,2 are the projections of ΣΣN into ΣNk. The condition is explicitly verified for the Sherrington-Kirkpatrick, the even p-spin, the Derrida REM and the Derrida-Gardner GREM models.

  7. Functors of White Noise Associated to Characters of the Infinite Symmetric Group

    NASA Astrophysics Data System (ADS)

    Bożejko, Marek; Guţă, Mădălin

    The characters of the infinite symmetric group are extended to multiplicative positive definite functions on pair partitions by using an explicit representation due to Veršik and Kerov. The von Neumann algebra generated by the fields with f in an infinite dimensional real Hilbert space is infinite and the vacuum vector is not separating. For a family depending on an integer N< - 1 an ``exclusion principle'' is found allowing at most ``identical particles'' on the same state: The algebras are type factors. Functors of white noise are constructed and proved to be non-equivalent for different values of N.

  8. Connecting the Kontsevich-Witten and Hodge Tau-functions by the {widehat{GL(∞)}} Operators

    NASA Astrophysics Data System (ADS)

    Liu, Xiaobo; Wang, Gehao

    2016-08-01

    In this paper, we present an explicit formula that connects the Kontsevich-Witten tau-function and the Hodge tau-function by differential operators belonging to the {widehat{GL(∞)}} group. Indeed, we show that the two tau-functions can be connected using Virasoro operators. This proves a conjecture posted by Alexandrov in (From Hurwitz numbers to Kontsevich-Witten tau-function: a connection by Virasoro operators, Letters in Mathematical physics, doi: 10.1007/s11005-013-0655-0 , 2014).

  9. A time-domain method for prediction of noise radiated from supersonic rotating sources in a moving medium

    NASA Astrophysics Data System (ADS)

    Huang, Zhongjie; Siozos-Rousoulis, Leonidas; De Troyer, Tim; Ghorbaniasl, Ghader

    2018-02-01

    This paper presents a time-domain method for noise prediction of supersonic rotating sources in a moving medium. The proposed approach can be interpreted as an extensive time-domain solution for the convected permeable Ffowcs Williams and Hawkings equation, which is capable of avoiding the Doppler singularity. The solution requires special treatment for construction of the emission surface. The derived formula can explicitly and efficiently account for subsonic uniform constant flow effects on radiated noise. Implementation of the methodology is realized through the Isom thickness noise case and high-speed impulsive noise prediction from helicopter rotors.

  10. Statistical foundations of liquid-crystal theory: II: Macroscopic balance laws.

    PubMed

    Seguin, Brian; Fried, Eliot

    2013-01-01

    Working on a state space determined by considering a discrete system of rigid rods, we use nonequilibrium statistical mechanics to derive macroscopic balance laws for liquid crystals. A probability function that satisfies the Liouville equation serves as the starting point for deriving each macroscopic balance. The terms appearing in the derived balances are interpreted as expected values and explicit formulas for these terms are obtained. Among the list of derived balances appear two, the tensor moment of inertia balance and the mesofluctuation balance, that are not standard in previously proposed macroscopic theories for liquid crystals but which have precedents in other theories for structured media.

  11. On the theory of Brownian motion with the Alder-Wainwright effect

    NASA Astrophysics Data System (ADS)

    Okabe, Yasunori

    1986-12-01

    The Stokes-Boussinesq-Langevin equation, which describes the time evolution of Brownian motion with the Alder-Wainwright effect, can be treated in the framework of the theory of KMO-Langevin equations which describe the time evolution of a real, stationary Gaussian process with T-positivity (reflection positivity) originating in axiomatic quantum field theory. After proving the fluctuation-dissipation theorems for KMO-Langevin equations, we obtain an explicit formula for the deviation from the classical Einstein relation that occurs in the Stokes-Boussinesq-Langevin equation with a white noise as its random force. We are interested in whether or not it can be measured experimentally.

  12. Statistical foundations of liquid-crystal theory

    PubMed Central

    Seguin, Brian; Fried, Eliot

    2013-01-01

    Working on a state space determined by considering a discrete system of rigid rods, we use nonequilibrium statistical mechanics to derive macroscopic balance laws for liquid crystals. A probability function that satisfies the Liouville equation serves as the starting point for deriving each macroscopic balance. The terms appearing in the derived balances are interpreted as expected values and explicit formulas for these terms are obtained. Among the list of derived balances appear two, the tensor moment of inertia balance and the mesofluctuation balance, that are not standard in previously proposed macroscopic theories for liquid crystals but which have precedents in other theories for structured media. PMID:23554513

  13. A closed expression for the UV-divergent parts of one-loop tensor integrals in dimensional regularization

    NASA Astrophysics Data System (ADS)

    Sulyok, G.

    2017-07-01

    Starting from the general definition of a one-loop tensor N-point function, we use its Feynman parametrization to calculate the ultraviolet (UV-)divergent part of an arbitrary tensor coefficient in the framework of dimensional regularization. In contrast to existing recursion schemes, we are able to present a general analytic result in closed form that enables direct determination of the UV-divergent part of any one-loop tensor N-point coefficient independent from UV-divergent parts of other one-loop tensor N-point coefficients. Simplified formulas and explicit expressions are presented for A-, B-, C-, D-, E-, and F-functions.

  14. Surface plasmons for doped graphene

    NASA Astrophysics Data System (ADS)

    Bordag, M.; Pirozhenko, I. G.

    2015-04-01

    Within the Dirac model for the electronic excitations of graphene, we calculate the full polarization tensor with finite mass and chemical potential. It has, besides the (00)-component, a second form factor, which must be accounted for. We obtain explicit formulas for both form factors and for the reflection coefficients. Using these, we discuss the regions in the momentum-frequency plane where plasmons may exist and give numeric solutions for the plasmon dispersion relations. It turns out that plasmons exist for both, transverse electric and transverse magnetic polarizations over the whole range of the ratio of mass to chemical potential, except for zero chemical potential, where only a TE plasmon exists.

  15. Quantization and fractional quantization of currents in periodically driven stochastic systems. I. Average currents

    NASA Astrophysics Data System (ADS)

    Chernyak, Vladimir Y.; Klein, John R.; Sinitsyn, Nikolai A.

    2012-04-01

    This article studies Markovian stochastic motion of a particle on a graph with finite number of nodes and periodically time-dependent transition rates that satisfy the detailed balance condition at any time. We show that under general conditions, the currents in the system on average become quantized or fractionally quantized for adiabatic driving at sufficiently low temperature. We develop the quantitative theory of this quantization and interpret it in terms of topological invariants. By implementing the celebrated Kirchhoff theorem we derive a general and explicit formula for the average generated current that plays a role of an efficient tool for treating the current quantization effects.

  16. Sur la vitesse d'extinction d'une population dans un environnement aléatoire.

    PubMed

    Bacaër, Nicolas

    2017-05-01

    This study focuses on the speed of extinction of a population living in a random environment that follows a continuous-time Markov chain. Each individual dies or reproduces at a rate that depends on the environment. The number of offspring during reproduction follows a given probability law that also depends on the environment. In the so-called subcritical case where the population goes for sure to extinction, there is an explicit formula for the speed of extinction. In some sense, environmental stochasticity slows down population extinction. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  17. Generation-recombination noise in extrinsic photoconductive detectors

    NASA Technical Reports Server (NTRS)

    Brukilacchio, T. J.; Skeldon, M. D.; Boyd, R. W.

    1984-01-01

    A theory of generation-recombination noise is presented and applied to the analysis of the performance limitations of extrinsic photoconductive detectors. The theory takes account both of the photoinduced generation of carriers and of thermal generation that is due to the finite temperature of the detector. Explicit formulas are derived that relate the detector response time, responsivity, and noise equivalent power to the material properties of the photoconductor (such as the presence of compensating impurities) and to the detector's operating conditions, such as its temperature and the presence of background radiation. The detector's performance is shown to degrade at high background levels because of saturation effects.

  18. Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium

    PubMed Central

    Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying

    2015-01-01

    A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066

  19. Some fast elliptic solvers on parallel architectures and their complexities

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Y.

    1989-01-01

    The discretization of separable elliptic partial differential equations leads to linear systems with special block tridiagonal matrices. Several methods are known to solve these systems, the most general of which is the Block Cyclic Reduction (BCR) algorithm which handles equations with nonconstant coefficients. A method was recently proposed to parallelize and vectorize BCR. In this paper, the mapping of BCR on distributed memory architectures is discussed, and its complexity is compared with that of other approaches including the Alternating-Direction method. A fast parallel solver is also described, based on an explicit formula for the solution, which has parallel computational compelxity lower than that of parallel BCR.

  20. Some fast elliptic solvers on parallel architectures and their complexities

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Youcef

    1989-01-01

    The discretization of separable elliptic partial differential equations leads to linear systems with special block triangular matrices. Several methods are known to solve these systems, the most general of which is the Block Cyclic Reduction (BCR) algorithm which handles equations with nonconsistant coefficients. A method was recently proposed to parallelize and vectorize BCR. Here, the mapping of BCR on distributed memory architectures is discussed, and its complexity is compared with that of other approaches, including the Alternating-Direction method. A fast parallel solver is also described, based on an explicit formula for the solution, which has parallel computational complexity lower than that of parallel BCR.

  1. Distillation of multipartite entanglement by complementary stabilizer measurements.

    PubMed

    Miyake, Akimasa; Briegel, Hans J

    2005-11-25

    We propose a scheme of multipartite entanglement distillation driven by a complementary pair of stabilizer measurements to distill directly a wider range of states beyond the stabilizer code states (such as the Greenberger-Horne-Zeilinger states). We make our idea explicit by constructing a recurrence protocol for the 3-qubit state [formula: see text]. Noisy states resulting from typical decoherence can be directly purified in a few steps, if their initial fidelity is larger than a threshold. For general input mixed states, we observe distillations to hierarchical fixed points, i.e., not only to the state but also to the 2-qubit Bell pair, depending on their initial entanglement.

  2. Instantons re-examined: dynamical tunneling and resonant tunneling.

    PubMed

    Le Deunff, Jérémy; Mouchet, Amaury

    2010-04-01

    Starting from trace formulas for the tunneling splittings (or decay rates) analytically continued in the complex time domain, we obtain explicit semiclassical expansions in terms of complex trajectories that are selected with appropriate complex-time paths. We show how this instantonlike approach, which takes advantage of an incomplete Wick rotation, accurately reproduces tunneling effects not only in the usual double-well potential but also in situations where a pure Wick rotation is insufficient, for instance dynamical tunneling or resonant tunneling. Even though only one-dimensional autonomous Hamiltonian systems are quantitatively studied, we discuss the relevance of our method for multidimensional and/or chaotic tunneling.

  3. Generalized clustering conditions of Jack polynomials at negative Jack parameter {alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernevig, B. Andrei; Department of Physics, Princeton University, Princeton, New Jersey 08544; Haldane, F. D. M.

    We present several conjectures on the behavior and clustering properties of Jack polynomials at a negative parameter {alpha}=-(k+1/r-1), with partitions that violate the (k,r,N)- admissibility rule of [Feigin et al. [Int. Math. Res. Notices 23, 1223 (2002)]. We find that the ''highest weight'' Jack polynomials of specific partitions represent the minimum degree polynomials in N variables that vanish when s distinct clusters of k+1 particles are formed, where s and k are positive integers. Explicit counting formulas are conjectured. The generalized clustering conditions are useful in a forthcoming description of fractional quantum Hall quasiparticles.

  4. The theory of Enceladus and Dione - An application of computerized algebra in dynamical astronomy

    NASA Technical Reports Server (NTRS)

    Jefferys, W. H.; Ries, L. M.

    1975-01-01

    The orbits of the satellites of the outer planets are poorly known, due to lack of attention over the past half century. We have been developing a new theory of Saturn's satellites Enceladus and Dione which is literal (all constants of integration appear explicitly), canonically invariant (the Hori-Lie method is used), and which correctly handles the eccentricity-type resonance between the two satellites. The algebraic manipulations are being performed using the TRIGMAN formula manipulation language, and the programs have been developed so that with minor modifications they can be used on the Mimas-Tethys and Titan-Hyperion systems.

  5. Analysis of random point images with the use of symbolic computation codes and generalized Catalan numbers

    NASA Astrophysics Data System (ADS)

    Reznik, A. L.; Tuzikov, A. V.; Solov'ev, A. A.; Torgov, A. V.

    2016-11-01

    Original codes and combinatorial-geometrical computational schemes are presented, which are developed and applied for finding exact analytical formulas that describe the probability of errorless readout of random point images recorded by a scanning aperture with a limited number of threshold levels. Combinatorial problems encountered in the course of the study and associated with the new generalization of Catalan numbers are formulated and solved. An attempt is made to find the explicit analytical form of these numbers, which is, on the one hand, a necessary stage of solving the basic research problem and, on the other hand, an independent self-consistent problem.

  6. The Lorentzian distance formula in noncommutative geometry

    NASA Astrophysics Data System (ADS)

    Franco, Nicolas

    2018-02-01

    For almost twenty years, a search for a Lorentzian version of the well-known Connes’ distance formula has been undertaken. Several authors have contributed to this search, providing important milestones, and the time has now come to put those elements together in order to get a valid and functional formula. This paper presents a historical review of the construction and the proof of a Lorentzian distance formula suitable for noncommutative geometry.

  7. A structured population model with diffusion in structure space.

    PubMed

    Pugliese, Andrea; Milner, Fabio

    2018-05-09

    A structured population model is described and analyzed, in which individual dynamics is stochastic. The model consists of a PDE of advection-diffusion type in the structure variable. The population may represent, for example, the density of infected individuals structured by pathogen density x, [Formula: see text]. The individuals with density [Formula: see text] are not infected, but rather susceptible or recovered. Their dynamics is described by an ODE with a source term that is the exact flux from the diffusion and advection as [Formula: see text]. Infection/reinfection is then modeled moving a fraction of these individuals into the infected class by distributing them in the structure variable through a probability density function. Existence of a global-in-time solution is proven, as well as a classical bifurcation result about equilibrium solutions: a net reproduction number [Formula: see text] is defined that separates the case of only the trivial equilibrium existing when [Formula: see text] from the existence of another-nontrivial-equilibrium when [Formula: see text]. Numerical simulation results are provided to show the stabilization towards the positive equilibrium when [Formula: see text] and towards the trivial one when [Formula: see text], result that is not proven analytically. Simulations are also provided to show the Allee effect that helps boost population sizes at low densities.

  8. Running with rugby balls: bulk renormalization of codimension-2 branes

    NASA Astrophysics Data System (ADS)

    Williams, M.; Burgess, C. P.; van Nierop, L.; Salvio, A.

    2013-01-01

    We compute how one-loop bulk effects renormalize both bulk and brane effective interactions for geometries sourced by codimension-two branes. We do so by explicitly integrating out spin-zero, -half and -one particles in 6-dimensional Einstein-Maxwell-Scalar theories compactified to 4 dimensions on a flux-stabilized 2D geometry. (Our methods apply equally well for D dimensions compactified to D - 2 dimensions, although our explicit formulae do not capture all divergences when D > 6.) The renormalization of bulk interactions are independent of the boundary conditions assumed at the brane locations, and reproduce standard heat-kernel calculations. Boundary conditions at any particular brane do affect how bulk loops renormalize this brane's effective action, but not the renormalization of other distant branes. Although we explicitly compute our loops using a rugby ball geometry, because we follow only UV effects our results apply more generally to any geometry containing codimension-two sources with conical singularities. Our results have a variety of uses, including calculating the UV sensitivity of one-loop vacuum energy seen by observers localized on the brane. We show how these one-loop effects combine in a surprising way with bulk back-reaction to give the complete low-energy effective cosmological constant, and comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.

  9. GPGPU-based explicit finite element computations for applications in biomechanics: the performance of material models, element technologies, and hardware generations.

    PubMed

    Strbac, V; Pierce, D M; Vander Sloten, J; Famaey, N

    2017-12-01

    Finite element (FE) simulations are increasingly valuable in assessing and improving the performance of biomedical devices and procedures. Due to high computational demands such simulations may become difficult or even infeasible, especially when considering nearly incompressible and anisotropic material models prevalent in analyses of soft tissues. Implementations of GPGPU-based explicit FEs predominantly cover isotropic materials, e.g. the neo-Hookean model. To elucidate the computational expense of anisotropic materials, we implement the Gasser-Ogden-Holzapfel dispersed, fiber-reinforced model and compare solution times against the neo-Hookean model. Implementations of GPGPU-based explicit FEs conventionally rely on single-point (under) integration. To elucidate the expense of full and selective-reduced integration (more reliable) we implement both and compare corresponding solution times against those generated using underintegration. To better understand the advancement of hardware, we compare results generated using representative Nvidia GPGPUs from three recent generations: Fermi (C2075), Kepler (K20c), and Maxwell (GTX980). We explore scaling by solving the same boundary value problem (an extension-inflation test on a segment of human aorta) with progressively larger FE meshes. Our results demonstrate substantial improvements in simulation speeds relative to two benchmark FE codes (up to 300[Formula: see text] while maintaining accuracy), and thus open many avenues to novel applications in biomechanics and medicine.

  10. Graphical representation of QT rate correction formulae: an aid facilitating the use of a given formula and providing a visual comparison of the impact of different formulae.

    PubMed

    Rowlands, Derek J

    2012-01-01

    The QT interval on the electrocardiogram is an increasingly important measurement, especially in relation to drug action and interaction. The QT interval varies inversely as the heart rate and numerous rate correction formulae have been proposed. It is difficult to compare the effect of applying different formulae at different heart rates and for different measured QT intervals. A simple graphical display of the results from different formulae is proposed. This display is dependent on the concept of the absolute correction factor. This graphical presentation is useful (a) in comparing the effect of the application of different formulae and (b) in directly reading the correction produced by any individual formula. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. 21 CFR 106.20 - Ingredient control.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONSUMPTION INFANT FORMULA QUALITY CONTROL PROCEDURES Quality Control Procedures for Assuring Nutrient Content of Infant Formulas § 106.20 Ingredient control. (a) Except as provided in § 106.20(b), no analysis... prepared by the infant formula manufacturer shall be sampled and analyzed for each relied-upon nutrient...

  12. Searches for scalar leptoquarks in pp collisions at [Formula: see text] = 8 TeV with the ATLAS detector.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansil, H S; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bieniek, S P; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bruscino, N; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; CabreraUrbán, S; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Cleland, W; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Colasurdo, L; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cúth, J; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; DaVia, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; FernandezMartinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; FerrettoParodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Fitzgerald, E A; Flaschel, N; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; French, S T; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; GarayWalls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Grabas, H M X; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henkelmann, S; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooft van Huysduynen, L; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; LaRosa, A; La RosaNavarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeBlanc, M; Le Compte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, X; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de AndradeFilho, L; Manjarres Ramos, J; Mann, A; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mazzaferro, L; McGoldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Monden, R; Mönig, K; Monini, C; Monk, J; Monnier, E; MontejoBerlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; MorenoLlácer, M; Morettini, P; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; PachecoPages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; PérezGarcía-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Relich, M; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; SalazarLoyola, J E; Saleem, M; Salek, D; Sales DeBruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; SanchezMartinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; SantoyoCastillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Spearman, W R; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; Denis, R D St; Stabile, A; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; TicseTorres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloce, L M; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; VickeyBoeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zwalinski, L

    Searches for pair-produced scalar leptoquarks are performed using 20 fb[Formula: see text] of proton-proton collision data provided by the LHC and recorded by the ATLAS detector at [Formula: see text] TeV. Events with two electrons (muons) and two or more jets in the final state are used to search for first (second)-generation leptoquarks. The results from two previously published ATLAS analyses are interpreted in terms of third-generation leptoquarks decaying to [Formula: see text] and [Formula: see text] final states. No statistically significant excess above the Standard Model expectation is observed in any channel and scalar leptoquarks are excluded at 95 % CL with masses up to [Formula: see text] 1050 GeV for first-generation leptoquarks, [Formula: see text] 1000 GeV for second-generation leptoquarks, [Formula: see text] 625 GeV for third-generation leptoquarks in the [Formula: see text] channel, and 200 [Formula: see text] 640 GeV in the [Formula: see text] channel.

  13. Nutritional adequacy of goat milk infant formulas for term infants: a double-blind randomised controlled trial.

    PubMed

    Zhou, Shao J; Sullivan, Thomas; Gibson, Robert A; Lönnerdal, Bo; Prosser, Colin G; Lowry, Dianne J; Makrides, Maria

    2014-05-01

    The safety and nutritional adequacy of goat milk infant formulas have been questioned. The primary aim of the present study was to compare the growth and nutritional status of infants fed a goat milk infant formula with those of infants fed a typical whey-based cow milk infant formula. The secondary aim was to examine a range of health- and allergy-related outcomes. A double-blind, randomised controlled trial with 200 formula-fed term infants randomly assigned to receive either goat or cow milk formula from 2 weeks to at least 4 months of age was conducted. A cohort of 101 breast-fed infants was included for comparison. Weight, length and head circumference were measured at 2 weeks and 1, 2, 3, 4, 6 and 12 months of age. Nutritional status was assessed from serum albumin, urea, creatinine, Hb, ferritin, and folate and plasma amino acid concentrations at 4 months. Z-scores for weight, length, head circumference and weight for length were not different between the two formula-fed groups. There were differences in the values of some amino acids and blood biomarkers between the formula-fed groups, but the mean values for biomarkers were within the normal reference range. There were no differences in the occurrence of serious adverse events, general health, and incidence of dermatitis or medically diagnosed food allergy. The incidence of parentally reported blood-stained stools was higher in the goat milk formula-fed group, although this was a secondary outcome and its importance is unclear. Goat milk formula provided growth and nutritional outcomes in infants that did not differ from those provided by a standard whey-based cow milk formula.

  14. A Preliminary Analysis of California's New Local Control Funding Formula

    ERIC Educational Resources Information Center

    Wolf, Rebecca; Sands, Janelle

    2016-01-01

    California recently overhauled its K-12 public education finance system. Enacted in 2013, the Local Control Funding Formula (LCFF) replaced California's 40-year-old funding formula. The LCFF increases district officials' fiscal flexibility; provides more resources to districts serving larger proportions of low-income, English learner (EL), and…

  15. The physics of an academic career.

    PubMed

    Lindsey, Merry L; de Castro Brás, Lisandra E

    2017-12-01

    We adopted well-known physics equations to illustrate concepts for developing a successful academic career plan. Formulas for distance, force, momentum, and power are used to explain how to define goals and set a pace that maximizes success potential. Formulas for synergy, balance, and stress are used to highlight common obstacles encountered by both junior (untenured and early career) and established faculty and provide ways to circumvent or limit damage from setbacks. Combined, these formulas provide tips for thriving in an academic environment.

  16. The equivalent thermal properties of a single fracture

    NASA Astrophysics Data System (ADS)

    Sangaré, D.; Thovert, J.-F.; Adler, P. M.

    2008-10-01

    The normal resistance and the tangential conductivity of a single fracture with Gaussian or self-affine surfaces are systematically studied as functions of the nature of the materials in contact and of the geometrical parameters. Analytical formulas are provided in the lubrication limit for fractures with sinusoidal apertures; these formulas are used to substantiate empirical formulas for resistance and conductivity. Other approximations based on the combination of series and parallel formulas are tested.

  17. Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik

    Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less

  18. Explicit expressions of quantum mechanical rotation operators for spins 1 to 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocakoç, Mehpeyker, E-mail: mkocakoc@cu.edu.tr; Tapramaz, Recep, E-mail: recept@omu.edu.tr

    2016-03-25

    Quantum mechanical rotation operators are the subject of quantum mechanics, mathematics and pulsed magnetic resonance spectroscopies, namely NMR, EPR and ENDOR. They are also necessary for spin based quantum information systems. The rotation operators of spin 1/2 are well known and can be found in related textbooks. But rotation operators of other spins greater than 1/2 can be found numerically by evaluating the series expansions of exponential operator obtained from Schrödinger equation, or by evaluating Wigner-d formula or by evaluating recently established expressions in polynomial forms discussed in the text. In this work, explicit symbolic expressions of x, y andmore » z components of rotation operators for spins 1 to 2 are worked out by evaluating series expansion of exponential operator for each element of operators and utilizing linear curve fitting process. The procedures gave out exact expressions of each element of the rotation operators. The operators of spins greater than 2 are under study and will be published in a separate paper.« less

  19. Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy

    DOE PAGES

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; ...

    2017-07-03

    Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less

  20. Calibration of piezoelectric RL shunts with explicit residual mode correction

    NASA Astrophysics Data System (ADS)

    Høgsberg, Jan; Krenk, Steen

    2017-01-01

    Piezoelectric RL (resistive-inductive) shunts are passive resonant devices used for damping of dominant vibration modes of a flexible structure and their efficiency relies on the precise calibration of the shunt components. In the present paper improved calibration accuracy is attained by an extension of the local piezoelectric transducer displacement by two additional terms, representing the flexibility and inertia contributions from the residual vibration modes not directly addressed by the shunt damping. This results in an augmented dynamic model for the targeted resonant vibration mode, in which the residual contributions, represented by two correction factors, modify both the apparent transducer capacitance and the shunt circuit impedance. Explicit expressions for the correction of the shunt circuit inductance and resistance are presented in a form that is generally applicable to calibration formulae derived on the basis of an assumed single-mode structure, where modal interaction has been neglected. A design procedure is devised and subsequently verified by a numerical example, which demonstrates that effective mitigation can be obtained for an arbitrary vibration mode when the residual mode correction is included in the calibration of the RL shunt.

  1. Following a trend with an exponential moving average: Analytical results for a Gaussian model

    NASA Astrophysics Data System (ADS)

    Grebenkov, Denis S.; Serror, Jeremy

    2014-01-01

    We investigate how price variations of a stock are transformed into profits and losses (P&Ls) of a trend following strategy. In the frame of a Gaussian model, we derive the probability distribution of P&Ls and analyze its moments (mean, variance, skewness and kurtosis) and asymptotic behavior (quantiles). We show that the asymmetry of the distribution (with often small losses and less frequent but significant profits) is reminiscent to trend following strategies and less dependent on peculiarities of price variations. At short times, trend following strategies admit larger losses than one may anticipate from standard Gaussian estimates, while smaller losses are ensured at longer times. Simple explicit formulas characterizing the distribution of P&Ls illustrate the basic mechanisms of momentum trading, while general matrix representations can be applied to arbitrary Gaussian models. We also compute explicitly annualized risk adjusted P&L and strategy turnover to account for transaction costs. We deduce the trend following optimal timescale and its dependence on both auto-correlation level and transaction costs. Theoretical results are illustrated on the Dow Jones index.

  2. Bimodule structure of the mixed tensor product over Uq sℓ (2 | 1) and quantum walled Brauer algebra

    NASA Astrophysics Data System (ADS)

    Bulgakova, D. V.; Kiselev, A. M.; Tipunin, I. Yu.

    2018-03-01

    We study a mixed tensor product 3⊗m ⊗3 ‾ ⊗ n of the three-dimensional fundamental representations of the Hopf algebra Uq sℓ (2 | 1), whenever q is not a root of unity. Formulas for the decomposition of tensor products of any simple and projective Uq sℓ (2 | 1)-module with the generating modules 3 and 3 ‾ are obtained. The centralizer of Uq sℓ (2 | 1) on the mixed tensor product is calculated. It is shown to be the quotient Xm,n of the quantum walled Brauer algebra qw Bm,n. The structure of projective modules over Xm,n is written down explicitly. It is known that the walled Brauer algebras form an infinite tower. We have calculated the corresponding restriction functors on simple and projective modules over Xm,n. This result forms a crucial step in decomposition of the mixed tensor product as a bimodule over Xm,n ⊠Uq sℓ (2 | 1). We give an explicit bimodule structure for all m , n.

  3. Neutron coincidence measurements when nuclear parameters vary during the multiplication process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ming-Shih; Teichmann, T.

    1995-07-01

    In a recent paper, a physical/mathematical model was developed for neutron coincidence counting, taking explicit account of neutron absorption and leakage, and using dual probability generating function to derive explicit formulae for the single and multiple count-rates in terms of the physical parameters of the system. The results of this modeling proved very successful in a number of cases in which the system parameters (neutron reaction cross-sections, detection probabilities, etc.) remained the same at the various stages of the process (i.e. from collision to collision). However, there are practical circumstances in which such system parameters change from collision to collision,more » and it is necessary to accommodate these, too, in a general theory, applicable to such situations. For instance, in the case of the neutron coincidence collar (NCC), the parameters for the initial, spontaneous fission neutrons, are not the same as those for the succeeding induced fission neutrons, and similar situations can be envisaged for certain other experimental configurations. This present document shows how the previous considerations can be elaborated to embrace these more general requirements.« less

  4. Renormalized Energy Concentration in Random Matrices

    NASA Astrophysics Data System (ADS)

    Borodin, Alexei; Serfaty, Sylvia

    2013-05-01

    We define a "renormalized energy" as an explicit functional on arbitrary point configurations of constant average density in the plane and on the real line. The definition is inspired by ideas of Sandier and Serfaty (From the Ginzburg-Landau model to vortex lattice problems, 2012; 1D log-gases and the renormalized energy, 2013). Roughly speaking, it is obtained by subtracting two leading terms from the Coulomb potential on a growing number of charges. The functional is expected to be a good measure of disorder of a configuration of points. We give certain formulas for its expectation for general stationary random point processes. For the random matrix β-sine processes on the real line ( β = 1,2,4), and Ginibre point process and zeros of Gaussian analytic functions process in the plane, we compute the expectation explicitly. Moreover, we prove that for these processes the variance of the renormalized energy vanishes, which shows concentration near the expected value. We also prove that the β = 2 sine process minimizes the renormalized energy in the class of determinantal point processes with translation invariant correlation kernels.

  5. Spin Nernst effect and intrinsic magnetization in two-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Gusynin, V. P.; Sharapov, S. G.; Varlamov, A. A.

    2015-05-01

    We begin with a brief description of the role of the Nernst-Ettingshausen effect in the studies of the high-temperature superconductors and Dirac materials such as graphene. The theoretical analysis of the NE effect is involved because the standard Kubo formalism has to be modified by the presence of magnetization currents in order to satisfy the third law of thermodynamics. A new generation of the low-buckled Dirac materials is expected to have a strong spin Nernst effect that represents the spintronics analog of the NE effect. These Dirac materials can be considered as made of two independent electron subsystems of the two-component gapped Dirac fermions. For each subsystem the gap breaks a time-reversal symmetry and thus plays a role of an effective magnetic field. We explicitly demonstrate how the correct thermoelectric coefficient emerges both by the explicit calculation of the magnetization and by a formal cancelation in the modified Kubo formula. We conclude by showing that the nontrivial dependences of the spin Nersnt signal on the carrier concentration and electric field applied are expected in silicene and other low-buckled Dirac materials.

  6. Using age on clothes size label to estimate weight in emergency paediatric patients.

    PubMed

    Elgie, Laura D; Williams, Andrew R

    2012-10-01

    To study formulae that estimate children's weight using their actual age. To determine whether using the age on their clothes size label in these formulae can estimate weight when their actual age is unknown. The actual age and age on the clothes labels of 188 children were inserted into formulae that estimate children's weight. These estimates were compared with their actual weight. Bland-Altman plots calculated the precision and accuracy of each of these estimates. In all formulae, using age on the clothes sizes label provided a more precise estimate than the child's actual age. In emergencies where a child's age is unknown, use of the age on their clothes label in weight-estimating formulae yields acceptable weight estimates. Even in situations where a child's age is known, the age on their clothes label may provide a more accurate and precise weight estimate than the actual age.

  7. [Research and development strategies in classical herbal formulae].

    PubMed

    Chen, Chang; Cheng, Jin-Tang; Liu, An

    2017-05-01

    As an outstanding representative of traditional Chinese medicine prescription, classical herbal formulae are the essence of traditional Chinese medicine great treasure. To support the development of classical herbal formulae, the state and relevant administrative departments have successively promulgated the relevant encouraged policies.But some key issues of classic herbal formulae in the development process have not reached a unified consensus and standard, and these problems were discussed in depth here.The authors discussed the registration requirements of classical herbal formulae, proposed the screening specific indicators of classical herbal formulae, determination basis of prescription and dosage,screening method of production process, and the basic principle of clinical localization, in order to bring out valuable opinions and provide a reference for classical herbal formulae development and policy formulation. Copyright© by the Chinese Pharmaceutical Association.

  8. Differences in direct pharmacologic effects and antioxidative properties of mature breast milk and infant formulas.

    PubMed

    Lugonja, Nikoleta; Spasić, Snežana D; Laugier, Olga; Nikolić-Kokić, Aleksandra; Spasojević, Ivan; Oreščanin-Dušić, Zorana; Vrvić, Miroslav M

    2013-02-01

    Early-onset and exclusive breast-feeding provides a significant health benefit to infants compared with infant formulas. The aim of this study was to compare mature breast milk with standard infant formulas by examining their effects on non-vascular smooth muscle contraction and their antioxidative properties. The pharmacologic effects of breast milk and formulas were examined using a model system of the rat uterine smooth muscle contraction. Electron paramagnetic resonance spin-trapping spectroscopy was used to compare the antioxidative capacities of breast milk (obtained in the ninth week of lactation) with commercial infant formulas against hydroxyl radical production in the Fenton reaction. The activities of superoxide dismutase, glutathione peroxidase, and the sulfhydryl group were determined in the breast milk and infant formulas. In contrast to the infant formulas, breast milk exerted a relaxing effect on isolated non-vascular smooth muscle. In general, breast milk showed higher antioxidative activity compared with the infant formulas. In all samples, the generation of hydroxyl radicals led to the formation of carbon-centered and ascorbyl radicals. Human milk exerts direct pharmacologic relaxation effects and provides better antioxidant protection compared with infant formulas because of the presence of specific enzymatic components, such as human superoxide dismutase. We propose that these effects should be advantageous to an infant's gastrointestinal tract by supporting the normal work of the smooth musculature and maintaining redox homeostasis and may represent one of the mechanisms by which breast-feeding benefits health. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Band head spin assignment of superdeformed bands in 133Pr using two-parameter formulae

    NASA Astrophysics Data System (ADS)

    Sharma, Honey; Mittal, H. M.

    2018-03-01

    The two-parameter formulae viz. the power index formula, the nuclear softness formula and the VMI model are adopted to accredit the band head spin (I0) of four superdeformed rotational bands in 133Pr. The technique of least square fitting is used to accredit the band head spin for four superdeformed rotational bands in 133Pr. The root mean deviation among the computed transition energies and well-known experimental transition energies are attained by extracting the model parameters from the two-parameter formulae. The determined transition energies are in excellent agreement with the experimental transition energies, whenever exact spins are accredited. The power index formula coincides well with the experimental data and provides minimum root mean deviation. So, the power index formula is more efficient tool than the nuclear softness formula and the VMI model. The deviation of dynamic moment of inertia J(2) against the rotational frequency is also examined.

  10. Measurement of the production and lepton charge asymmetry of [Formula: see text] bosons in Pb+Pb collisions at [Formula: see text] with the ATLAS detector.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Almond, J; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Araque, J P; Arce, A T H; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Azuelos, G; Azuma, Y; Baak, M A; Baas, A; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balestri, T; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batley, J R; Battaglia, M; Battistin, M; Bauer, F; Bawa, H S; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernat, P; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boddy, C R; Boehler, M; Boek, T T; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Brendlinger, K; Brennan, A J; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bundock, A C; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuciuc, C-M; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; Cunha Sargedas De Sousa, M J Da; Via, C Da; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Daniells, A C; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J A; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dimitrievska, A; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobos, D; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Dwuznik, M; Dyndal, M; Ebke, J; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franconi, L; Franklin, M; Franz, S; Fraternali, M; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gandrajula, R P; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giorgi, F M; Giraud, P F; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godfrey, J; Godlewski, J; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Grebenyuk, O G; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Groth-Jensen, J; Grout, Z J; Guan, L; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Gunther, J; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböeck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hoffman, J; Hoffmann, D; Hofmann, J I; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, K E; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jungst, R M; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karastathis, N; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; La Rosa, A; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leone, S; Leonhardt, K; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Lester, C M; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, B A; Long, J D; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lou, X; Lounis, A; Love, J; Love, P A; Lowe, A J; Lu, F; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Maiani, C; Maidantchik, C; Maier, A A; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marques, C N; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Mitsui, S; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Moraes, A; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Narayan, R; Nattermann, T; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Przysiezniak, H; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Qureshi, A; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Randle-Conde, A S; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Ridel, M; Rieck, P; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, M; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sacerdoti, S; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sartisohn, G; Sasaki, O; Sasaki, Y; Sauvage, G; Sauvan, E; Savard, P; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skottowe, H P; Skovpen, K Yu; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; Spurlock, B; Denis, R D St; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weigell, P; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; White, A; White, M J; White, R; White, S; Whiteson, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilkens, H G; Will, J Z; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wright, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wyatt, T R; Wynne, B M; Xella, S; Xiao, M; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yanush, S; Yao, L; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zutshi, V; Zwalinski, L

    A measurement of [Formula: see text] boson production in lead-lead collisions at [Formula: see text] is presented. It is based on the analysis of data collected with the ATLAS detector at the LHC in 2011 corresponding to an integrated luminosity of 0.14 [Formula: see text] and 0.15 [Formula: see text] in the muon and electron decay channels, respectively. The differential production yields and lepton charge asymmetry are each measured as a function of the average number of participating nucleons [Formula: see text] and absolute pseudorapidity of the charged lepton. The results are compared to predictions based on next-to-leading-order QCD calculations. These measurements are, in principle, sensitive to possible nuclear modifications to the parton distribution functions and also provide information on scaling of [Formula: see text] boson production in multi-nucleon systems.

  11. Back in the saddle: large-deviation statistics of the cosmic log-density field

    NASA Astrophysics Data System (ADS)

    Uhlemann, C.; Codis, S.; Pichon, C.; Bernardeau, F.; Reimberg, P.

    2016-08-01

    We present a first principle approach to obtain analytical predictions for spherically averaged cosmic densities in the mildly non-linear regime that go well beyond what is usually achieved by standard perturbation theory. A large deviation principle allows us to compute the leading order cumulants of average densities in concentric cells. In this symmetry, the spherical collapse model leads to cumulant generating functions that are robust for finite variances and free of critical points when logarithmic density transformations are implemented. They yield in turn accurate density probability distribution functions (PDFs) from a straightforward saddle-point approximation valid for all density values. Based on this easy-to-implement modification, explicit analytic formulas for the evaluation of the one- and two-cell PDF are provided. The theoretical predictions obtained for the PDFs are accurate to a few per cent compared to the numerical integration, regardless of the density under consideration and in excellent agreement with N-body simulations for a wide range of densities. This formalism should prove valuable for accurately probing the quasi-linear scales of low-redshift surveys for arbitrary primordial power spectra.

  12. Investigation on magnetoacoustic signal generation with magnetic induction and its application to electrical conductivity reconstruction.

    PubMed

    Ma, Qingyu; He, Bin

    2007-08-21

    A theoretical study on the magnetoacoustic signal generation with magnetic induction and its applications to electrical conductivity reconstruction is conducted. An object with a concentric cylindrical geometry is located in a static magnetic field and a pulsed magnetic field. Driven by Lorentz force generated by the static magnetic field, the magnetically induced eddy current produces acoustic vibration and the propagated sound wave is received by a transducer around the object to reconstruct the corresponding electrical conductivity distribution of the object. A theory on the magnetoacoustic waveform generation for a circular symmetric model is provided as a forward problem. The explicit formulae and quantitative algorithm for the electrical conductivity reconstruction are then presented as an inverse problem. Computer simulations were conducted to test the proposed theory and assess the performance of the inverse algorithms for a multi-layer cylindrical model. The present simulation results confirm the validity of the proposed theory and suggest the feasibility of reconstructing electrical conductivity distribution based on the proposed theory on the magnetoacoustic signal generation with magnetic induction.

  13. Triple grouping and period-three oscillations in minority-game dynamics.

    PubMed

    Dong, Jia-Qi; Huang, Zi-Gang; Huang, Liang; Lai, Ying-Cheng

    2014-12-01

    Dynamical systems based on the minority game (MG) have been a paradigm for gaining significant insights into a variety of social and biological behaviors. Recently, a grouping phenomenon has been unveiled in MG systems of multiple resources (strategies) in which the strategies spontaneously break into an even number of groups, each exhibiting an identical oscillation pattern in the attendance of game players. Here we report our finding of spontaneous breakup of resources into three groups, each exhibiting period-three oscillations. An analysis is developed to understand the emergence of the striking phenomenon of triple grouping and period-three oscillations. In the presence of random disturbances, the triple-group/period-three state becomes transient, and we obtain explicit formula for the average transient lifetime using two methods of approximation. Our finding indicates that, period-three oscillation, regarded as one of the most fundamental behaviors in smooth nonlinear dynamical systems, can also occur in much more complex, evolutionary-game dynamical systems. Our result also provides a plausible insight for the occurrence of triple grouping observed, for example, in the U.S. housing market.

  14. The Multiple Resonance Probe: A Novel Device for Industry Compatible Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf Peter; Storch, Robert; Lapke, Martin; Oberrath, Jens; Schulz, Christian; Styrnoll, Tim; Zietz, Christian; Awakowicz, Peter; Musch, Thomas; Mussenbrock, Thomas; Rolfes, Ilona

    2012-10-01

    To be useful for the supervision or control of technical plasmas, a diagnostic method must be i) robust and stable, ii) insensitive to perturbation by the process, iii) itself not perturbing the process, iv) clearly and easily interpretable without the need for calibration, v) compliant with the requirements of process integration, and, last but not least, vi) economical in terms of investment, footprint, and maintenance. Plasma resonance spectroscopy, exploiting the natural ability of plasmas to resonate on or near the electron plasma frequency, provides a good basis for such an ``industry compatible'' plasma diagnostics. The contribution will describe the general idea of active plasma resonance spectroscopy and introduce a mathematical formalism for its analysis. It will then focus on the novel multipole resonance probe (MRP), where the excited resonances can be classified explicitly and the connection between the probe response and the desired electron density can be cast as a simple formula. The current state of the MRP project will be described, including the experimental characterization of a prototype in comparison with Langmuir probes, and the development of a specialized measurement circuit.

  15. Second-order hydrodynamics and universality in non-conformal holographic fluids

    NASA Astrophysics Data System (ADS)

    Kleinert, Philipp; Probst, Jonas

    2016-12-01

    We study second-order hydrodynamic transport in strongly coupled non-conformal field theories with holographic gravity duals in asymptotically anti-de Sitter space. We first derive new Kubo formulae for five second-order transport coefficients in non-conformal fluids in (3 + 1) dimensions. We then apply them to holographic RG flows induced by scalar operators of dimension Δ = 3. For general background solutions of the dual bulk geometry, we find explicit expressions for the five transport coefficients at infinite coupling and show that a specific combination, tilde{H}=2η {τ}_{π }-2(κ -{κ}^{ast})-{λ}_2 , always vanishes. We prove analytically that the Haack-Yarom identity H = 2 ητ π - 4λ1 - λ2 = 0, which is known to be true for conformal holographic fluids at infinite coupling, also holds when taking into account leading non-conformal corrections. The numerical results we obtain for two specific families of RG flows suggest that H vanishes regardless of conformal symmetry. Our work provides further evidence that the Haack-Yarom identity H = 0 may be universally satisfied by strongly coupled fluids.

  16. Modeling of Non-isothermal Austenite Formation in Spring Steel

    NASA Astrophysics Data System (ADS)

    Huang, He; Wang, Baoyu; Tang, Xuefeng; Li, Junling

    2017-12-01

    The austenitization kinetics description of spring steel 60Si2CrA plays an important role in providing guidelines for industrial production. The dilatometric curves of 60Si2CrA steel were measured using a dilatometer DIL805A at heating rates of 0.3 K to 50 K/s (0.3 °C/s to 50 °C/s). Based on the dilatometric curves, a unified kinetics model using the internal state variable (ISV) method was derived to describe the non-isothermal austenitization kinetics of 60Si2CrA, and the abovementioned model models the incubation and transition periods. The material constants in the model were determined using a genetic algorithm-based optimization technique. Additionally, good agreement between predicted and experimental volume fractions of transformed austenite was obtained, indicating that the model is effective for describing the austenitization kinetics of 60Si2CrA steel. Compared with other modeling methods of austenitization kinetics, this model, which uses the ISV method, has some advantages, such as a simple formula and explicit physics meaning, and can be probably used in engineering practice.

  17. Saddlepoint approximation to the distribution of the total distance of the continuous time random walk

    NASA Astrophysics Data System (ADS)

    Gatto, Riccardo

    2017-12-01

    This article considers the random walk over Rp, with p ≥ 2, where a given particle starts at the origin and moves stepwise with uniformly distributed step directions and step lengths following a common distribution. Step directions and step lengths are independent. The case where the number of steps of the particle is fixed and the more general case where it follows an independent continuous time inhomogeneous counting process are considered. Saddlepoint approximations to the distribution of the distance from the position of the particle to the origin are provided. Despite the p-dimensional nature of the random walk, the computations of the saddlepoint approximations are one-dimensional and thus simple. Explicit formulae are derived with dimension p = 3: for uniformly and exponentially distributed step lengths, for fixed and for Poisson distributed number of steps. In these situations, the high accuracy of the saddlepoint approximations is illustrated by numerical comparisons with Monte Carlo simulation. Contribution to the "Topical Issue: Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  18. Decoupling thermal, chemical, and mechanical strain components in thin films

    NASA Astrophysics Data System (ADS)

    Silberstein, Meredith; Crumlin, Ethan; Shao-Horn, Yang; Boyce, Mary

    2011-03-01

    Many electrochemical systems have performance which is affected by internal strains due to thermal and/or chemical stimuli. The bi-material curvature method is a means to quantify these thermal and chemical strains and their coupling with mechanical stress. In this method, a thin layer of the material of interest is deposited on a substrate of intermediate thickness. The composite assumes a curvature that depends on the mismatch strains between the substrate and film. The Stoney formula provides an explicit expression for the film stress as a function of the elastic substrate properties, film and substrate thickness, and curvature. Here we study two distinct materials systems: Nafion used as the polymer electrolyte in low temperature fuel cells, and epitaxial perovskite thin films used as a catalyst for the oxygen reduction reaction in solid oxide fuel cells. The thermal, chemical, and mechanical strains are quantitatively determined as functions of temperature and atmospheric conditions by monitoring the curvature evolution with changes in these parameters. The extent of coupling of the thermal and chemical strains with mechanical stress is evaluated by conducting the experiment at multiple substrate thicknesses.

  19. A Verification-Driven Approach to Traceability and Documentation for Auto-Generated Mathematical Software

    NASA Technical Reports Server (NTRS)

    Denney, Ewen W.; Fischer, Bernd

    2009-01-01

    Model-based development and automated code generation are increasingly used for production code in safety-critical applications, but since code generators are typically not qualified, the generated code must still be fully tested, reviewed, and certified. This is particularly arduous for mathematical and control engineering software which requires reviewers to trace subtle details of textbook formulas and algorithms to the code, and to match requirements (e.g., physical units or coordinate frames) not represented explicitly in models or code. Both tasks are complicated by the often opaque nature of auto-generated code. We address these problems by developing a verification-driven approach to traceability and documentation. We apply the AUTOCERT verification system to identify and then verify mathematical concepts in the code, based on a mathematical domain theory, and then use these verified traceability links between concepts, code, and verification conditions to construct a natural language report that provides a high-level structured argument explaining why and how the code uses the assumptions and complies with the requirements. We have applied our approach to generate review documents for several sub-systems of NASA s Project Constellation.

  20. Variance of the Quantum Dwell Time for a Nonrelativistic Particle

    NASA Technical Reports Server (NTRS)

    Hahne, Gerhard

    2012-01-01

    Munoz, Seidel, and Muga [Phys. Rev. A 79, 012108 (2009)], following an earlier proposal by Pollak and Miller [Phys. Rev. Lett. 53, 115 (1984)] in the context of a theory of a collinear chemical reaction, showed that suitable moments of a two-flux correlation function could be manipulated to yield expressions for the mean quantum dwell time and mean square quantum dwell time for a structureless particle scattering from a time-independent potential energy field between two parallel lines in a two-dimensional spacetime. The present work proposes a generalization to a charged, nonrelativistic particle scattering from a transient, spatially confined electromagnetic vector potential in four-dimensional spacetime. The geometry of the spacetime domain is that of the slab between a pair of parallel planes, in particular those defined by constant values of the third (z) spatial coordinate. The mean Nth power, N = 1, 2, 3, . . ., of the quantum dwell time in the slab is given by an expression involving an N-flux-correlation function. All these means are shown to be nonnegative. The N = 1 formula reduces to an S-matrix result published previously [G. E. Hahne, J. Phys. A 36, 7149 (2003)]; an explicit formula for N = 2, and of the variance of the dwell time in terms of the S-matrix, is worked out. A formula representing an incommensurability principle between variances of the output-minus-input flux of a pair of dynamical variables (such as the particle s time flux and others) is derived.

  1. A Nonlinear Least Squares Approach to Time of Death Estimation Via Body Cooling.

    PubMed

    Rodrigo, Marianito R

    2016-01-01

    The problem of time of death (TOD) estimation by body cooling is revisited by proposing a nonlinear least squares approach that takes as input a series of temperature readings only. Using a reformulation of the Marshall-Hoare double exponential formula and a technique for reducing the dimension of the state space, an error function that depends on the two cooling rates is constructed, with the aim of minimizing this function. Standard nonlinear optimization methods that are used to minimize the bivariate error function require an initial guess for these unknown rates. Hence, a systematic procedure based on the given temperature data is also proposed to determine an initial estimate for the rates. Then, an explicit formula for the TOD is given. Results of numerical simulations using both theoretical and experimental data are presented, both yielding reasonable estimates. The proposed procedure does not require knowledge of the temperature at death nor the body mass. In fact, the method allows the estimation of the temperature at death once the cooling rates and the TOD have been calculated. The procedure requires at least three temperature readings, although more measured readings could improve the estimates. With the aid of computerized recording and thermocouple detectors, temperature readings spaced 10-15 min apart, for example, can be taken. The formulas can be straightforwardly programmed and installed on a hand-held device for field use. © 2015 American Academy of Forensic Sciences.

  2. Interpreting comprehensive two-dimensional gas chromatography using peak topography maps with application to petroleum forensics.

    PubMed

    Ghasemi Damavandi, Hamidreza; Sen Gupta, Ananya; Nelson, Robert K; Reddy, Christopher M

    2016-01-01

    Comprehensive two-dimensional gas chromatography [Formula: see text] provides high-resolution separations across hundreds of compounds in a complex mixture, thus unlocking unprecedented information for intricate quantitative interpretation. We exploit this compound diversity across the [Formula: see text] topography to provide quantitative compound-cognizant interpretation beyond target compound analysis with petroleum forensics as a practical application. We focus on the [Formula: see text] topography of biomarker hydrocarbons, hopanes and steranes, as they are generally recalcitrant to weathering. We introduce peak topography maps (PTM) and topography partitioning techniques that consider a notably broader and more diverse range of target and non-target biomarker compounds compared to traditional approaches that consider approximately 20 biomarker ratios. Specifically, we consider a range of 33-154 target and non-target biomarkers with highest-to-lowest peak ratio within an injection ranging from 4.86 to 19.6 (precise numbers depend on biomarker diversity of individual injections). We also provide a robust quantitative measure for directly determining "match" between samples, without necessitating training data sets. We validate our methods across 34 [Formula: see text] injections from a diverse portfolio of petroleum sources, and provide quantitative comparison of performance against established statistical methods such as principal components analysis (PCA). Our data set includes a wide range of samples collected following the 2010 Deepwater Horizon disaster that released approximately 160 million gallons of crude oil from the Macondo well (MW). Samples that were clearly collected following this disaster exhibit statistically significant match [Formula: see text] using PTM-based interpretation against other closely related sources. PTM-based interpretation also provides higher differentiation between closely correlated but distinct sources than obtained using PCA-based statistical comparisons. In addition to results based on this experimental field data, we also provide extentive perturbation analysis of the PTM method over numerical simulations that introduce random variability of peak locations over the [Formula: see text] biomarker ROI image of the MW pre-spill sample (sample [Formula: see text] in Additional file 4: Table S1). We compare the robustness of the cross-PTM score against peak location variability in both dimensions and compare the results against PCA analysis over the same set of simulated images. Detailed description of the simulation experiment and discussion of results are provided in Additional file 1: Section S8. We provide a peak-cognizant informational framework for quantitative interpretation of [Formula: see text] topography. Proposed topographic analysis enables [Formula: see text] forensic interpretation across target petroleum biomarkers, while including the nuances of lesser-known non-target biomarkers clustered around the target peaks. This allows potential discovery of hitherto unknown connections between target and non-target biomarkers.

  3. Reliabilities of Intraindividual Variability Indicators with Autocorrelated Longitudinal Data: Implications for Longitudinal Study Designs.

    PubMed

    Du, Han; Wang, Lijuan

    2018-04-23

    Intraindividual variability can be measured by the intraindividual standard deviation ([Formula: see text]), intraindividual variance ([Formula: see text]), estimated hth-order autocorrelation coefficient ([Formula: see text]), and mean square successive difference ([Formula: see text]). Unresolved issues exist in the research on reliabilities of intraindividual variability indicators: (1) previous research only studied conditions with 0 autocorrelations in the longitudinal responses; (2) the reliabilities of [Formula: see text] and [Formula: see text] have not been studied. The current study investigates reliabilities of [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and the intraindividual mean, with autocorrelated longitudinal data. Reliability estimates of the indicators were obtained through Monte Carlo simulations. The impact of influential factors on reliabilities of the intraindividual variability indicators is summarized, and the reliabilities are compared across the indicators. Generally, all the studied indicators of intraindividual variability were more reliable with a more reliable measurement scale and more assessments. The reliabilities of [Formula: see text] were generally lower than those of [Formula: see text] and [Formula: see text], the reliabilities of [Formula: see text] were usually between those of [Formula: see text] and [Formula: see text] unless the scale reliability was large and/or the interindividual standard deviation in autocorrelation coefficients was large, and the reliabilities of the intraindividual mean were generally the highest. An R function is provided for planning longitudinal studies to ensure sufficient reliabilities of the intraindividual indicators are achieved.

  4. Option pricing: Stock price, stock velocity and the acceleration Lagrangian

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Du, Xin; Bhanap, Jitendra

    2014-12-01

    The industry standard Black-Scholes option pricing formula is based on the current value of the underlying security and other fixed parameters of the model. The Black-Scholes formula, with a fixed volatility, cannot match the market's option price; instead, it has come to be used as a formula for generating the option price, once the so called implied volatility of the option is provided as additional input. The implied volatility not only is an entire surface, depending on the strike price and maturity of the option, but also depends on calendar time, changing from day to day. The point of view adopted in this paper is that the instantaneous rate of return of the security carries part of the information that is provided by implied volatility, and with a few (time-independent) parameters required for a complete pricing formula. An option pricing formula is developed that is based on knowing the value of both the current price and rate of return of the underlying security which in physics is called velocity. Using an acceleration Lagrangian model based on the formalism of quantum mathematics, we derive the pricing formula for European call options. The implied volatility of the market can be generated by our pricing formula. Our option price is applied to foreign exchange rates and equities and the accuracy is compared with Black-Scholes pricing formula and with the market price.

  5. An Examination of Alternative Poverty Measures for the Wisconsin Equalization Aid Formula.

    ERIC Educational Resources Information Center

    Cibulka, James G.

    1986-01-01

    Wisconsin's guaranteed tax base equalization formula has no direct adjustment for the additional costs of educating poverty level pupils. This paper establishes the need for an adjustment and examines three measures (based on varying poverty definitions) to determine which provides the most equitable funding formula for educating poor children. (9…

  6. Generalized and efficient algorithm for computing multipole energies and gradients based on Cartesian tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Dejun, E-mail: dejun.lin@gmail.com

    2015-09-21

    Accurate representation of intermolecular forces has been the central task of classical atomic simulations, known as molecular mechanics. Recent advancements in molecular mechanics models have put forward the explicit representation of permanent and/or induced electric multipole (EMP) moments. The formulas developed so far to calculate EMP interactions tend to have complicated expressions, especially in Cartesian coordinates, which can only be applied to a specific kernel potential function. For example, one needs to develop a new formula each time a new kernel function is encountered. The complication of these formalisms arises from an intriguing and yet obscured mathematical relation between themore » kernel functions and the gradient operators. Here, I uncover this relation via rigorous derivation and find that the formula to calculate EMP interactions is basically invariant to the potential kernel functions as long as they are of the form f(r), i.e., any Green’s function that depends on inter-particle distance. I provide an algorithm for efficient evaluation of EMP interaction energies, forces, and torques for any kernel f(r) up to any arbitrary rank of EMP moments in Cartesian coordinates. The working equations of this algorithm are essentially the same for any kernel f(r). Recently, a few recursive algorithms were proposed to calculate EMP interactions. Depending on the kernel functions, the algorithm here is about 4–16 times faster than these algorithms in terms of the required number of floating point operations and is much more memory efficient. I show that it is even faster than a theoretically ideal recursion scheme, i.e., one that requires 1 floating point multiplication and 1 addition per recursion step. This algorithm has a compact vector-based expression that is optimal for computer programming. The Cartesian nature of this algorithm makes it fit easily into modern molecular simulation packages as compared with spherical coordinate-based algorithms. A software library based on this algorithm has been implemented in C++11 and has been released.« less

  7. Selective advantage of implementing optimal contributions selection and timescales for the convergence of long-term genetic contributions.

    PubMed

    Howard, David M; Pong-Wong, Ricardo; Knap, Pieter W; Kremer, Valentin D; Woolliams, John A

    2018-05-10

    Optimal contributions selection (OCS) provides animal breeders with a framework for maximising genetic gain for a predefined rate of inbreeding. Simulation studies have indicated that the source of the selective advantage of OCS is derived from breeding decisions being more closely aligned with estimates of Mendelian sampling terms ([Formula: see text]) of selection candidates, rather than estimated breeding values (EBV). This study represents the first attempt to assess the source of the selective advantage provided by OCS using a commercial pig population and by testing three hypotheses: (1) OCS places more emphasis on [Formula: see text] compared to EBV for determining which animals were selected as parents, (2) OCS places more emphasis on [Formula: see text] compared to EBV for determining which of those parents were selected to make a long-term genetic contribution (r), and (3) OCS places more emphasis on [Formula: see text] compared to EBV for determining the magnitude of r. The population studied also provided an opportunity to investigate the convergence of r over time. Selection intensity limited the number of males available for analysis, but females provided some evidence that the selective advantage derived from applying an OCS algorithm resulted from greater weighting being placed on [Formula: see text] during the process of decision-making. Male r were found to converge initially at a faster rate than female r, with approximately 90% convergence achieved within seven generations across both sexes. This study of commercial data provides some support to results from theoretical and simulation studies that the source of selective advantage from OCS comes from [Formula: see text]. The implication that genomic selection (GS) improves estimation of [Formula: see text] should allow for even greater genetic gains for a predefined rate of inbreeding, once the synergistic benefits of combining OCS and GS are realised.

  8. Use of a reduced-carbohydrate, modified-fat enteral formula for improving metabolic control and clinical outcomes in long-term care residents with type 2 diabetes: results of a pilot trial.

    PubMed

    Craig, L D; Nicholson, S; SilVerstone, F A; Kennedy, R D

    1998-06-01

    Physiologic responses of 30 enterally-fed long-term care residents with type 2 diabetes receiving total nutrition support via either a disease-specific (reduced-carbohydrate, modified-fat) formula or a standard high-carbohydrate formula for 3 mo were compared. Objectives of the study included evaluating metabolic response (glycemic control and lipids) and clinical outcomes. Thirty-four subjects requiring total enteral nutrition support by tube were enrolled in this prospectively randomized, double-blind, controlled, parallel group 3-mo pilot trial. Thirty were evaluable in that they completed 4 wk. Twenty-seven completed all 12 wk. The groups were well-matched for physiologic and demographic parameters at baseline. Fasting serum glucose and capillary (fingerstick) glucose values demonstrated better control in the disease-specific formula-fed group. Serum lipid profiles of this group were similar to or better than those of the standard formula-fed group. The amount of insulin administered to insulin-using subjects in the disease-specific formula-fed group was consistently less than before initiation of the formula, whereas the amount administered was consistently higher in the group fed the standard formula. Overall, subjects randomized to the disease-specific formula experienced better numerical biochemical control and better clinical outcomes when expressed on a numerical and percentage basis. These included surrogate markers of diabetes control such as serum glucose and glycohemoglobin, as well as clinical outcomes such as incidence of infections and pressure ulcers. These findings confirm that the disease-specific formula provides better glycemic control, poses no risk to lipoprotein metabolism, and provides for better clinical outcomes.

  9. Understanding women's interpretations of infant formula advertising.

    PubMed

    Parry, Kathleen; Taylor, Emily; Hall-Dardess, Pam; Walker, Marsha; Labbok, Miriam

    2013-06-01

    Exclusive breastfeeding for 6 months and continued breastfeeding for at least 1 year is recommended by all major health organizations. Whereas 74.6 percent of mothers initiate breastfeeding at birth, exclusivity and duration remain significantly lower than national goals. Empirical evidence suggests that exposure to infant formula marketing contributes to supplementation and premature cessation. The objective of this study was to explore how women interpret infant formula advertising to aid in an understanding of this association. Four focus groups were structured to include women with similar childbearing experience divided according to reproductive status: preconceptional, pregnant, exclusive breastfeeders, and formula feeders. Facilitators used a prepared protocol to guide discussion of infant formula advertisements. Authors conducted a thematic content analysis with special attention to women's statements about what they believed the advertisements said about how the products related to human milk (superior, inferior, similar) and how they reported reacting to these interpretations. Participants reported that the advertisements conveyed an expectation of failure with breastfeeding, and that formula is a solution to fussiness, spitting up, and other normal infant behaviors. Participants reported that the advertisements were confusing in terms of how formula-feeding is superior, inferior or the same as breastfeeding. This confusion was exacerbated by an awareness of distribution by health care practitioners and institutions, suggesting provider endorsement of infant formula. Formula marketing appears to decrease mothers' confidence in their ability to breastfeed, especially when provided by health care practitioners and institutions. Therefore, to be supportive of breastfeeding, perinatal educators and practitioners could be more effective if they did not offer infant formula advertising to mothers. © 2013, Copyright the Authors, Journal compilation © 2013, Wiley Periodicals, Inc.

  10. Approximate sample size formulas for the two-sample trimmed mean test with unequal variances.

    PubMed

    Luh, Wei-Ming; Guo, Jiin-Huarng

    2007-05-01

    Yuen's two-sample trimmed mean test statistic is one of the most robust methods to apply when variances are heterogeneous. The present study develops formulas for the sample size required for the test. The formulas are applicable for the cases of unequal variances, non-normality and unequal sample sizes. Given the specified alpha and the power (1-beta), the minimum sample size needed by the proposed formulas under various conditions is less than is given by the conventional formulas. Moreover, given a specified size of sample calculated by the proposed formulas, simulation results show that Yuen's test can achieve statistical power which is generally superior to that of the approximate t test. A numerical example is provided.

  11. Deep learning-based artificial vision for grasp classification in myoelectric hands.

    PubMed

    Ghazaei, Ghazal; Alameer, Ali; Degenaar, Patrick; Morgan, Graham; Nazarpour, Kianoush

    2017-06-01

    Computer vision-based assistive technology solutions can revolutionise the quality of care for people with sensorimotor disorders. The goal of this work was to enable trans-radial amputees to use a simple, yet efficient, computer vision system to grasp and move common household objects with a two-channel myoelectric prosthetic hand. We developed a deep learning-based artificial vision system to augment the grasp functionality of a commercial prosthesis. Our main conceptual novelty is that we classify objects with regards to the grasp pattern without explicitly identifying them or measuring their dimensions. A convolutional neural network (CNN) structure was trained with images of over 500 graspable objects. For each object, 72 images, at [Formula: see text] intervals, were available. Objects were categorised into four grasp classes, namely: pinch, tripod, palmar wrist neutral and palmar wrist pronated. The CNN setting was first tuned and tested offline and then in realtime with objects or object views that were not included in the training set. The classification accuracy in the offline tests reached [Formula: see text] for the seen and [Formula: see text] for the novel objects; reflecting the generalisability of grasp classification. We then implemented the proposed framework in realtime on a standard laptop computer and achieved an overall score of [Formula: see text] in classifying a set of novel as well as seen but randomly-rotated objects. Finally, the system was tested with two trans-radial amputee volunteers controlling an i-limb Ultra TM prosthetic hand and a motion control TM prosthetic wrist; augmented with a webcam. After training, subjects successfully picked up and moved the target objects with an overall success of up to [Formula: see text]. In addition, we show that with training, subjects' performance improved in terms of time required to accomplish a block of 24 trials despite a decreasing level of visual feedback. The proposed design constitutes a substantial conceptual improvement for the control of multi-functional prosthetic hands. We show for the first time that deep-learning based computer vision systems can enhance the grip functionality of myoelectric hands considerably.

  12. Parametrizing growth in dark energy and modified gravity models

    NASA Astrophysics Data System (ADS)

    Resco, Miguel Aparicio; Maroto, Antonio L.

    2018-02-01

    It is well known that an extremely accurate parametrization of the growth function of matter density perturbations in Λ CDM cosmology, with errors below 0.25%, is given by f (a )=Ωmγ(a ) with γ ≃0.55 . In this work, we show that a simple modification of this expression also provides a good description of growth in modified gravity theories. We consider the model-independent approach to modified gravity in terms of an effective Newton constant written as μ (a ,k )=Geff/G and show that f (a )=β (a )Ωmγ(a ) provides fits to the numerical solutions with similar accuracy to that of Λ CDM . In the time-independent case with μ =μ (k ), simple analytic expressions for β (μ ) and γ (μ ) are presented. In the time-dependent (but scale-independent) case μ =μ (a ), we show that β (a ) has the same time dependence as μ (a ). As an example, explicit formulas are provided in the Dvali-Gabadadze-Porrati (DGP) model. In the general case, for theories with μ (a ,k ), we obtain a perturbative expansion for β (μ ) around the general relativity case μ =1 which, for f (R ) theories, reaches an accuracy below 1%. Finally, as an example we apply the obtained fitting functions in order to forecast the precision with which future galaxy surveys will be able to measure the μ parameter.

  13. Chapter 2 Formula, 1989-90: Major Points. Publication No. 89.32.

    ERIC Educational Resources Information Center

    Baenen, Nancy R.

    Programs implemented in 1989-90 by the Austin (Texas) Independent School District (AISD) using Chapter 2 Formula federal funds are described. Chapter 2 Formula provides federal funds to the states through the Elementary and Secondary Education Act of 1965 as amended in 1988. Chapter 2 funds can support programs that meet the educational needs of…

  14. 20 CFR 668.296 - How are WIA funds allocated to INA grantees?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of the funds calculated under the following formula: (1) One-quarter of the funds available will be... the United States. (3) The data and definitions used to implement these formulas is provided by the U.S. Bureau of the Census. (c) In years immediately following the use of new data in the formula...

  15. 20 CFR 668.296 - How are WIA funds allocated to INA grantees?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the following formula: (1) One-quarter of the funds available will be allocated on the basis of the...) The data and definitions used to implement these formulas is provided by the U.S. Bureau of the Census. (c) In years immediately following the use of new data in the formula described in paragraph (b) of...

  16. 20 CFR 668.296 - How are WIA funds allocated to INA grantees?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... of the funds calculated under the following formula: (1) One-quarter of the funds available will be... the United States. (3) The data and definitions used to implement these formulas is provided by the U.S. Bureau of the Census. (c) In years immediately following the use of new data in the formula...

  17. Mothers Who Formula Feed: Their Practices, Support Needs and Factors Influencing Their Infant Feeding Decision

    ERIC Educational Resources Information Center

    Tarrant, Roslyn C.; Sheridan-Pereira, Margaret; McCarthy, Roberta A.; Younger, Katherine M.; Kearney, John M.

    2013-01-01

    The majority of mothers in Ireland provide formula milk to their infants during the initial weeks postpartum; however, data are lacking on their formula feeding practices and support needs. This prospective Dublin-based observational study, which included 450 eligible mother-term infant pairs recruited and followed up to six months postpartum,…

  18. Uncertainties on [Formula: see text] in the MMHT2014 global PDF analysis and implications for SM predictions.

    PubMed

    Harland-Lang, L A; Martin, A D; Motylinski, P; Thorne, R S

    We investigate the uncertainty in the strong coupling [Formula: see text] when allowing it to be a free parameter in the recent MMHT global analyses of deep-inelastic and related hard scattering data that was undertaken to determine the parton distribution functions (PDFs) of the proton. The analysis uses the standard framework of leading twist fixed-order collinear factorisation in the [Formula: see text] scheme. We study the constraints on [Formula: see text] coming from individual data sets by repeating the NNLO and NLO fits spanning the range 0.108 to 0.128 in units of 0.001, making all PDFs sets available. The inclusion of the cross section for inclusive [Formula: see text] production allows us to explore the correlation between the mass [Formula: see text] of the top quark and [Formula: see text]. We find that the best-fit values are [Formula: see text] and [Formula: see text] at NLO and NNLO, respectively, with the central values changing to [Formula: see text] and 0.1178 when the world average of [Formula: see text] is used as a data point. We investigate the interplay between the uncertainties on [Formula: see text] and on the PDFs. In particular we calculate the cross sections for key processes at the LHC and show how the uncertainties from the PDFs and from [Formula: see text] can be provided independently and be combined.

  19. Prion protein β2-α2 loop conformational landscape.

    PubMed

    Caldarulo, Enrico; Barducci, Alessandro; Wüthrich, Kurt; Parrinello, Michele

    2017-09-05

    In transmissible spongiform encephalopathies (TSEs), which are lethal neurodegenerative diseases that affect humans and a wide range of other mammalian species, the normal "cellular" prion protein ([Formula: see text]) is transformed into amyloid aggregates representing the "scrapie form" of the protein ([Formula: see text]). Continued research on this system is of keen interest, since new information on the physiological function of [Formula: see text] in healthy organisms is emerging, as well as new data on the mechanism of the transformation of [Formula: see text] to [Formula: see text] In this paper we used two different approaches: a combination of the well-tempered ensemble (WTE) and parallel tempering (PT) schemes and metadynamics (MetaD) to characterize the conformational free-energy surface of [Formula: see text] The focus of the data analysis was on an 11-residue polypeptide segment in mouse [Formula: see text](121-231) that includes the [Formula: see text]2-[Formula: see text]2 loop of residues 167-170, for which a correlation between structure and susceptibility to prion disease has previously been described. This study includes wild-type mouse [Formula: see text] and a variant with the single-residue replacement Y169A. The resulting detailed conformational landscapes complement in an integrative manner the available experimental data on [Formula: see text], providing quantitative insights into the nature of the structural transition-related function of the [Formula: see text]2-[Formula: see text]2 loop.

  20. Magnetoacoustic tomography with magnetic induction (MAT-MI)

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; He, Bin

    2005-11-01

    We report our theoretical and experimental investigations on a new imaging modality, magnetoacoustic tomography with magnetic induction (MAT-MI). In MAT-MI, the sample is located in a static magnetic field and a time-varying (µs) magnetic field. The time-varying magnetic field induces an eddy current in the sample. Consequently, the sample will emit ultrasonic waves by the Lorentz force. The ultrasonic signals are collected around the object to reconstruct images related to the electrical impedance distribution in the sample. MAT-MI combines the good contrast of electrical impedance tomography with the good spatial resolution of sonography. MAT-MI has two unique features due to the solenoid nature of the induced electrical field. Firstly, MAT-MI could provide an explicit or simple quantitative reconstruction algorithm for the electrical impedance distribution. Secondly, it promises to eliminate the shielding effects of other imaging modalities in which the current is applied directly with electrodes. In the theoretical part, we provide formulae for both the forward and inverse problems of MAT-MI and estimate the signal amplitude in biological tissues. In the experimental part, the experimental setup and methods are introduced and the signals and the image of a metal object by means of MAT-MI are presented. The promising pilot experimental results suggest the feasibility of the proposed MAT-MI approach.

  1. Effects of finite pulse width on two-dimensional Fourier transform electron spin resonance.

    PubMed

    Liang, Zhichun; Crepeau, Richard H; Freed, Jack H

    2005-12-01

    Two-dimensional (2D) Fourier transform ESR techniques, such as 2D-ELDOR, have considerably improved the resolution of ESR in studies of molecular dynamics in complex fluids such as liquid crystals and membrane vesicles and in spin labeled polymers and peptides. A well-developed theory based on the stochastic Liouville equation (SLE) has been successfully employed to analyze these experiments. However, one fundamental assumption has been utilized to simplify the complex analysis, viz. the pulses have been treated as ideal non-selective ones, which therefore provide uniform irradiation of the whole spectrum. In actual experiments, the pulses are of finite width causing deviations from the theoretical predictions, a problem that is exacerbated by experiments performed at higher frequencies. In the present paper we provide a method to deal with the full SLE including the explicit role of the molecular dynamics, the spin Hamiltonian and the radiation field during the pulse. The computations are rendered more manageable by utilizing the Trotter formula, which is adapted to handle this SLE in what we call a "Split Super-Operator" method. Examples are given for different motional regimes, which show how 2D-ELDOR spectra are affected by the finite pulse widths. The theory shows good agreement with 2D-ELDOR experiments performed as a function of pulse width.

  2. Well-conditioned fractional collocation methods using fractional Birkhoff interpolation basis

    NASA Astrophysics Data System (ADS)

    Jiao, Yujian; Wang, Li-Lian; Huang, Can

    2016-01-01

    The purpose of this paper is twofold. Firstly, we provide explicit and compact formulas for computing both Caputo and (modified) Riemann-Liouville (RL) fractional pseudospectral differentiation matrices (F-PSDMs) of any order at general Jacobi-Gauss-Lobatto (JGL) points. We show that in the Caputo case, it suffices to compute F-PSDM of order μ ∈ (0 , 1) to compute that of any order k + μ with integer k ≥ 0, while in the modified RL case, it is only necessary to evaluate a fractional integral matrix of order μ ∈ (0 , 1). Secondly, we introduce suitable fractional JGL Birkhoff interpolation problems leading to new interpolation polynomial basis functions with remarkable properties: (i) the matrix generated from the new basis yields the exact inverse of F-PSDM at "interior" JGL points; (ii) the matrix of the highest fractional derivative in a collocation scheme under the new basis is diagonal; and (iii) the resulted linear system is well-conditioned in the Caputo case, while in the modified RL case, the eigenvalues of the coefficient matrix are highly concentrated. In both cases, the linear systems of the collocation schemes using the new basis can be solved by an iterative solver within a few iterations. Notably, the inverse can be computed in a very stable manner, so this offers optimal preconditioners for usual fractional collocation methods for fractional differential equations (FDEs). It is also noteworthy that the choice of certain special JGL points with parameters related to the order of the equations can ease the implementation. We highlight that the use of the Bateman's fractional integral formulas and fast transforms between Jacobi polynomials with different parameters, is essential for our algorithm development.

  3. Comparing alchemical and physical pathway methods for computing the absolute binding free energy of charged ligands.

    PubMed

    Deng, Nanjie; Cui, Di; Zhang, Bin W; Xia, Junchao; Cruz, Jeffrey; Levy, Ronald

    2018-06-13

    Accurately predicting absolute binding free energies of protein-ligand complexes is important as a fundamental problem in both computational biophysics and pharmaceutical discovery. Calculating binding free energies for charged ligands is generally considered to be challenging because of the strong electrostatic interactions between the ligand and its environment in aqueous solution. In this work, we compare the performance of the potential of mean force (PMF) method and the double decoupling method (DDM) for computing absolute binding free energies for charged ligands. We first clarify an unresolved issue concerning the explicit use of the binding site volume to define the complexed state in DDM together with the use of harmonic restraints. We also provide an alternative derivation for the formula for absolute binding free energy using the PMF approach. We use these formulas to compute the binding free energy of charged ligands at an allosteric site of HIV-1 integrase, which has emerged in recent years as a promising target for developing antiviral therapy. As compared with the experimental results, the absolute binding free energies obtained by using the PMF approach show unsigned errors of 1.5-3.4 kcal mol-1, which are somewhat better than the results from DDM (unsigned errors of 1.6-4.3 kcal mol-1) using the same amount of CPU time. According to the DDM decomposition of the binding free energy, the ligand binding appears to be dominated by nonpolar interactions despite the presence of very large and favorable intermolecular ligand-receptor electrostatic interactions, which are almost completely cancelled out by the equally large free energy cost of desolvation of the charged moiety of the ligands in solution. We discuss the relative strengths of computing absolute binding free energies using the alchemical and physical pathway methods.

  4. Designing deep sequencing experiments: detecting structural variation and estimating transcript abundance.

    PubMed

    Bashir, Ali; Bansal, Vikas; Bafna, Vineet

    2010-06-18

    Massively parallel DNA sequencing technologies have enabled the sequencing of several individual human genomes. These technologies are also being used in novel ways for mRNA expression profiling, genome-wide discovery of transcription-factor binding sites, small RNA discovery, etc. The multitude of sequencing platforms, each with their unique characteristics, pose a number of design challenges, regarding the technology to be used and the depth of sequencing required for a particular sequencing application. Here we describe a number of analytical and empirical results to address design questions for two applications: detection of structural variations from paired-end sequencing and estimating mRNA transcript abundance. For structural variation, our results provide explicit trade-offs between the detection and resolution of rearrangement breakpoints, and the optimal mix of paired-read insert lengths. Specifically, we prove that optimal detection and resolution of breakpoints is achieved using a mix of exactly two insert library lengths. Furthermore, we derive explicit formulae to determine these insert length combinations, enabling a 15% improvement in breakpoint detection at the same experimental cost. On empirical short read data, these predictions show good concordance with Illumina 200 bp and 2 Kbp insert length libraries. For transcriptome sequencing, we determine the sequencing depth needed to detect rare transcripts from a small pilot study. With only 1 Million reads, we derive corrections that enable almost perfect prediction of the underlying expression probability distribution, and use this to predict the sequencing depth required to detect low expressed genes with greater than 95% probability. Together, our results form a generic framework for many design considerations related to high-throughput sequencing. We provide software tools http://bix.ucsd.edu/projects/NGS-DesignTools to derive platform independent guidelines for designing sequencing experiments (amount of sequencing, choice of insert length, mix of libraries) for novel applications of next generation sequencing.

  5. Event generator tunes obtained from underlying event and multiparton scattering measurements.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Knünz, V; König, A; Krammer, M; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schieck, J; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Heracleous, N; Keaveney, J; Lowette, S; Moreels, L; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Van Parijs, I; Barria, P; Brun, H; Caillol, C; Clerbaux, B; De Lentdecker, G; Fasanella, G; Favart, L; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Maerschalk, T; Marinov, A; Perniè, L; Randle-Conde, A; Seva, T; Vander Velde, C; Yonamine, R; Vanlaer, P; Yonamine, R; Zenoni, F; Zhang, F; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Crucy, S; Dobur, D; Fagot, A; Garcia, G; Gul, M; Mccartin, J; Ocampo Rios, A A; Poyraz, D; Ryckbosch, D; Salva, S; Sigamani, M; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Mertens, A; Musich, M; Nuttens, C; Perrini, L; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Beliy, N; Hammad, G H; Júnior, W L Aldá; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hamer, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; De Souza Santos, A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Cheng, T; Du, R; Jiang, C H; Plestina, R; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Micanovic, S; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Bodlak, M; Finger, M; Finger, M; Abdelalim, A A; Awad, A; Mahrous, A; Mohammed, Y; Radi, A; Calpas, B; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Dahms, T; Davignon, O; Filipovic, N; Granier de Cassagnac, R; Jo, M; Lisniak, S; Mastrolorenzo, L; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Merlin, J A; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Lomidze, D; Autermann, C; Beranek, S; Edelhoff, M; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schulte, J F; Verlage, T; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Millet, P; Olschewski, M; Padeken, K; Papacz, P; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Künsken, A; Lingemann, J; Nehrkorn, A; Nowack, A; Nugent, I M; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Asin, I; Bartosik, N; Behnke, O; Behrens, U; Bell, A J; Borras, K; Burgmeier, A; Campbell, A; Choudhury, S; Costanza, F; Diez Pardos, C; Dolinska, G; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Gallo, E; Garcia, J Garay; Geiser, A; Gizhko, A; Gunnellini, P; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Korol, I; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Naumann-Emme, S; Nayak, A; Ntomari, E; Perrey, H; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Schröder, M; Seitz, C; Spannagel, S; Trippkewitz, K D; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Erfle, J; Garutti, E; Goebel, K; Gonzalez, D; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Nowatschin, D; Ott, J; Pantaleo, F; Peiffer, T; Perieanu, A; Pietsch, N; Poehlsen, J; Rathjens, D; Sander, C; Scharf, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Schwandt, J; Sola, V; Stadie, H; Steinbrück, G; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; Colombo, F; De Boer, W; Descroix, A; Dierlamm, A; Fink, S; Frensch, F; Friese, R; Giffels, M; Gilbert, A; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kornmayer, A; Lobelle Pardo, P; Maier, B; Mildner, H; Mozer, M U; Müller, T; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Sieber, G; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Psallidas, A; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Bencze, G; Hajdu, C; Hazi, A; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Szillasi, Z; Bartók, M; Makovec, A; Raics, P; Trocsanyi, Z L; Ujvari, B; Mal, P; Mandal, K; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Kumar, A; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, S; Chatterjee, K; Dey, S; Dutta, S; Jain, Sa; Majumdar, N; Modak, A; Mondal, K; Mukherjee, S; Mukhopadhyay, S; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Abdulsalam, A; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Mahakud, B; Maity, M; Majumder, G; Mazumdar, K; Mitra, S; Mohanty, G B; Parida, B; Sarkar, T; Sur, N; Sutar, B; Wickramage, N; Chauhan, S; Dube, S; Kapoor, A; Kothekar, K; Sharma, S; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Goldouzian, R; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Miniello, G; Maggi, M; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Primavera, F; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Cappello, G; Chiorboli, M; Costa, S; Mattia, A Di; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gonzi, S; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Malvezzi, S; Manzoni, R A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Esposito, M; Fabozzi, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Merola, M; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Branca, A; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Dosselli, U; Fantinel, S; Fanzago, F; Gasparini, F; Gasparini, U; Gozzelino, A; Kanishchev, K; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Zanetti, M; Zotto, P; Zucchetta, A; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Fiori, F; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Gelli, S; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Schizzi, A; Zanetti, A; Kropivnitskaya, T A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Sakharov, A; Son, D C; Brochero Cifuentes, J A; Kim, H; Kim, T J; Song, S; Choi, S; Go, Y; Gyun, D; Hong, B; Kim, H; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lee, S; Park, S K; Roh, Y; Yoo, H D; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Kim, D; Kwon, E; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Wan Abdullah, W A T; Casimiro Linares, E; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Shoaib, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Brona, G; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Da Cruz E Silva, C Beir Ao; Di Francesco, A; Faccioli, P; Parracho, P G Ferreira; Gallinaro, M; Leonardo, N; Lloret Iglesias, L; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Konoplyanikov, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Savina, M; Shmatov, S; Shulha, S; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, L; Safronov, G; Spiridonov, A; Vlasov, E; Zhokin, A; Bylinkin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Baskakov, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Myagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Ramos, J P Fernández; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Yzquierdo, A Pérez-Calero; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Albajar, C; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Palencia Cortezon, E; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Castiñeiras De Saa, J R; De Castro Manzano, P; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Benitez, J F; Berruti, G M; Bloch, P; Bocci, A; Bonato, A; Botta, C; Breuker, H; Camporesi, T; Castello, R; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Guio, F; De Roeck, A; De Visscher, S; Di Marco, E; Dobson, M; Dordevic, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Giordano, D; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kirschenmann, H; Kortelainen, M J; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Lucchini, M T; Magini, N; Malgeri, L; Mannelli, M; Martelli, A; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Nemallapudi, M V; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Piparo, D; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Simon, M; Sphicas, P; Steggemann, J; Stieger, B; Stoye, M; Takahashi, Y; Treille, D; Triossi, A; Tsirou, A; Veres, G I; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Eller, P; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrozzi, L; Quittnat, M; Rossini, M; Starodumov, A; Takahashi, M; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; Chiochia, V; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Ngadiuba, J; Pinna, D; Robmann, P; Ronga, F J; Salerno, D; Yang, Y; Cardaci, M; Chen, K H; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Yu, S S; Kumar, Arun; Bartek, R; Chang, P; Chang, Y H; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Grundler, U; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Petrakou, E; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Kovitanggoon, K; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Cerci, S; Demiroglu, Z S; Dozen, C; Eskut, E; Gecit, F H; Girgis, S; Gokbulut, G; Guler, Y; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Onengut, G; Ozcan, M; Ozdemir, K; Polatoz, A; Sunar Cerci, D; Topakli, H; Vergili, M; Zorbilmez, C; Akin, I V; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Vardarlı, F I; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Senkin, S; Smith, D; Smith, V J; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Cripps, N; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Dunne, P; Elwood, A; Elwood, A; Ferguson, W; Futyan, D; Hall, G; Iles, G; Kenzie, M; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Raymond, D M; Richards, A; Rose, A; Seez, C; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Scarborough, T; Wu, Z; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Arcaro, D; Avetisyan, A; Bose, T; Fantasia, C; Gastler, D; Lawson, P; Rankin, D; Richardson, C; Rohlf, J; St John, J; Sulak, L; Zou, D; Alimena, J; Berry, E; Bhattacharya, S; Cutts, D; Dhingra, N; Ferapontov, A; Garabedian, A; Hakala, J; Heintz, U; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Syarif, R; Breedon, R; Breto, G; De La Barca Sanchez, M Calderon; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Funk, G; Gardner, M; Ko, W; Lander, R; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Bravo, C; Cousins, R; Everaerts, P; Farrell, C; Florent, A; Hauser, J; Ignatenko, M; Saltzberg, D; Schnaible, C; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Paneva, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Luthra, A; Malberti, M; Negrete, M Olmedo; Shrinivas, A; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Derdzinski, M; Holzner, A; Kelley, R; Klein, D; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Welke, C; Würthwein, F; Yagil, A; Zevi Della Porta, G; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Gran, J; Incandela, J; Mccoll, N; Mullin, S D; Mullin, S D; Richman, J; Stuart, D; Suarez, I; West, C; Yoo, J; Anderson, D; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Pierini, M; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Nauenberg, U; Stenson, K; Wagner, S R; Alexander, J; Chatterjee, A; Chaves, J; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Sun, W; Tan, S M; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Wittich, P; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Jung, A W; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Marraffino, J M; Martinez Outschoorn, V I; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mishra, K; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Gleyzer, S V; Hugon, J; Konigsberg, J; Korytov, A; Kotov, K; Low, J F; Ma, P; Matchev, K; Mei, H; Milenovic, P; Mitselmakher, G; Rank, D; Rossin, R; Shchutska, L; Snowball, M; Sperka, D; Terentyev, N; Thomas, L; Wang, J; Wang, S; Yelton, J; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, J R; Ackert, A; Adams, T; Askew, A; Bein, S; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Weinberg, M; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Kalakhety, H; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Kurt, P; O'Brien, C; Sandoval Gonzalez, L D; Silkworth, C; Turner, P; Varelas, N; Wu, Z; Zakaria, M; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Anderson, I; Barnett, B A; Blumenfeld, B; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Martin, C; Osherson, M; Roskes, J; Sady, A; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Xiao, M; Baringer, P; Bean, A; Benelli, G; Bruner, C; Kenny, R P; Majumder, D; Majumder, D; Malek, M; Murray, M; Sanders, S; Stringer, R; Wang, Q; Ivanov, A; Kaadze, K; Khalil, S; Makouski, M; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Lange, D; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Baty, A; Bierwagen, K; Brandt, S; Bierwagen, K; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Ralph, D; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Dahmes, B; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Klapoetke, K; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Keller, J; Knowlton, D; Kravchenko, I; Meier, F; Monroy, J; Ratnikov, F; Siado, J E; Snow, G R; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Zhang, J; Hahn, K A; Kubik, A; Mucia, N; Odell, N; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Sung, K; Trovato, M; Velasco, M; Brinkerhoff, A; Dev, N; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hart, A; Hill, C; Hughes, R; Ji, W; Ling, T Y; Liu, B; Luo, W; Puigh, D; Rodenburg, M; Winer, B L; Wulsin, H W; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Saka, H; Stickland, D; Tully, C; Zuranski, A; Malik, S; Barnes, V E; Benedetti, D; Bortoletto, D; Gutay, L; Jha, M K; Jones, M; Jung, K; Miller, D H; Neumeister, N; Primavera, F; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Sun, J; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Galanti, M; Galanti, M; Garcia-Bellido, A; Han, J; Harel, A; Hindrichs, O; Hindrichs, O; Khukhunaishvili, A; Petrillo, G; Tan, P; Verzetti, M; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Lath, A; Nash, K; Panwalkar, S; Park, M; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Foerster, M; Riley, G; Rose, K; Spanier, S; York, A; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Kamon, T; Krutelyov, V; Krutelyov, V; Mueller, R; Osipenkov, I; Pakhotin, Y; Patel, R; Patel, R; Perloff, A; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Undleeb, S; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Mao, Y; Melo, A; Ni, H; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Wood, J; Xia, F; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Cepeda, M; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Sarangi, T; Savin, A; Sharma, A; Smith, N; Smith, W H; Taylor, D; Woods, N

    New sets of parameters ("tunes") for the underlying-event (UE) modelling of the pythia8, pythia6 and herwig++ Monte Carlo event generators are constructed using different parton distribution functions. Combined fits to CMS UE proton-proton ([Formula: see text]) data at [Formula: see text] and to UE proton-antiproton ([Formula: see text]) data from the CDF experiment at lower [Formula: see text], are used to study the UE models and constrain their parameters, providing thereby improved predictions for proton-proton collisions at 13[Formula: see text]. In addition, it is investigated whether the values of the parameters obtained from fits to UE observables are consistent with the values determined from fitting observables sensitive to double-parton scattering processes. Finally, comparisons are presented of the UE tunes to "minimum bias" (MB) events, multijet, and Drell-Yan ([Formula: see text] lepton-antilepton+jets) observables at 7 and 8[Formula: see text], as well as predictions for MB and UE observables at 13[Formula: see text].

  6. [Application progress of proteomic in pharmacological study of Chinese medicinal formulae].

    PubMed

    Liu, Yu-Qian; Zhan, Shu-Yu; Ruan, Yu-Er; Zuo, Zhi-Yan; Ji, Xiao-Ming; Wang, Shuai-Jie; Ding, Bao-Yue

    2017-10-01

    Chinese medicinal formulae are the important means of clinical treatment in traditional Chinese medicine. It is urgent to use modern advanced scientific and technological means to reveal the complicated mechanism of Chinese medicinal formulae because they have the function characteristics of multiple components, multiple targets and integrated regulation. The systematic and comprehensive research model of proteomic is in line with the function characteristics of Chinese medicinal formulae, and proteomic has been widely used in the study of pharmacological mechanism of Chinese medicinal formulae. The recent applications of proteomic in pharmacological study of Chinese medicinal formulae in anti-cardiovascular and cerebrovascular diseases, anti-liver disease, antidiabetic, anticancer, anti-rheumatoid arthritis and other diseases were reviewed in this paper, and then the future development direction of proteomic in pharmacological study of Chinese medicinal formulae was put forward. This review is to provide the ideas and method for proteomic research on function mechanism of Chinese medicinal formulae. Copyright© by the Chinese Pharmaceutical Association.

  7. Embedded-explicit emergent literacy intervention I: Background and description of approach.

    PubMed

    Justice, Laura M; Kaderavek, Joan N

    2004-07-01

    This article, the first of a two-part series, provides background information and a general description of an emergent literacy intervention model for at-risk preschoolers and kindergartners. The embedded-explicit intervention model emphasizes the dual importance of providing young children with socially embedded opportunities for meaningful, naturalistic literacy experiences throughout the day, in addition to regular structured therapeutic interactions that explicitly target critical emergent literacy goals. The role of the speech-language pathologist (SLP) in the embedded-explicit model encompasses both indirect and direct service delivery: The SLP consults and collaborates with teachers and parents to ensure the highest quality and quantity of socially embedded literacy-focused experiences and serves as a direct provider of explicit interventions using structured curricula and/or lesson plans. The goal of this integrated model is to provide comprehensive emergent literacy interventions across a spectrum of early literacy skills to ensure the successful transition of at-risk children from prereaders to readers.

  8. Wick Product for Commutation Relations Connected with Yang-Baxter Operators and New Constructions of Factors

    NASA Astrophysics Data System (ADS)

    Krsolarlak, Ilona

    We analyze a certain class of von Neumann algebras generated by selfadjoint elements , for satisfying the general commutation relations: Such algebras can be continuously embedded into some closure of the set of finite linear combinations of vectors , where is an orthonormal basis of a Hilbert space . The operator which represents the vector is denoted by and called the ``Wick product'' of the operators . We describe explicitly the form of this product. Also, we estimate the operator norm of for . Finally we apply these two results and prove that under the assumption all the von Neumann algebras considered are II1 factors.

  9. Cumulants of heat transfer across nonlinear quantum systems

    NASA Astrophysics Data System (ADS)

    Li, Huanan; Agarwalla, Bijay Kumar; Li, Baowen; Wang, Jian-Sheng

    2013-12-01

    We consider thermal conduction across a general nonlinear phononic junction. Based on two-time observation protocol and the nonequilibrium Green's function method, heat transfer in steady-state regimes is studied, and practical formulas for the calculation of the cumulant generating function are obtained. As an application, the general formalism is used to study anharmonic effects on fluctuation of steady-state heat transfer across a single-site junction with a quartic nonlinear on-site pinning potential. An explicit nonlinear modification to the cumulant generating function exact up to the first order is given, in which the Gallavotti-Cohen fluctuation symmetry is found still valid. Numerically a self-consistent procedure is introduced, which works well for strong nonlinearity.

  10. On accuracy of the wave finite element predictions of wavenumbers and power flow: A benchmark problem

    NASA Astrophysics Data System (ADS)

    Søe-Knudsen, Alf; Sorokin, Sergey

    2011-06-01

    This rapid communication is concerned with justification of the 'rule of thumb', which is well known to the community of users of the finite element (FE) method in dynamics, for the accuracy assessment of the wave finite element (WFE) method. An explicit formula linking the size of a window in the dispersion diagram, where the WFE method is trustworthy, with the coarseness of a FE mesh employed is derived. It is obtained by the comparison of the exact Pochhammer-Chree solution for an elastic rod having the circular cross-section with its WFE approximations. It is shown that the WFE power flow predictions are also valid within this window.

  11. (d -2 ) -Dimensional Edge States of Rotation Symmetry Protected Topological States

    NASA Astrophysics Data System (ADS)

    Song, Zhida; Fang, Zhong; Fang, Chen

    2017-12-01

    We study fourfold rotation-invariant gapped topological systems with time-reversal symmetry in two and three dimensions (d =2 , 3). We show that in both cases nontrivial topology is manifested by the presence of the (d -2 )-dimensional edge states, existing at a point in 2D or along a line in 3D. For fermion systems without interaction, the bulk topological invariants are given in terms of the Wannier centers of filled bands and can be readily calculated using a Fu-Kane-like formula when inversion symmetry is also present. The theory is extended to strongly interacting systems through the explicit construction of microscopic models having robust (d -2 )-dimensional edge states.

  12. Quantitative force measurements using frequency modulation atomic force microscopy—theoretical foundations

    NASA Astrophysics Data System (ADS)

    Sader, John E.; Uchihashi, Takayuki; Higgins, Michael J.; Farrell, Alan; Nakayama, Yoshikazu; Jarvis, Suzanne P.

    2005-03-01

    Use of the atomic force microscope (AFM) in quantitative force measurements inherently requires a theoretical framework enabling conversion of the observed deflection properties of the cantilever to an interaction force. In this paper, the theoretical foundations of using frequency modulation atomic force microscopy (FM-AFM) in quantitative force measurements are examined and rigorously elucidated, with consideration being given to both 'conservative' and 'dissipative' interactions. This includes a detailed discussion of the underlying assumptions involved in such quantitative force measurements, the presentation of globally valid explicit formulae for evaluation of so-called 'conservative' and 'dissipative' forces, discussion of the origin of these forces, and analysis of the applicability of FM-AFM to quantitative force measurements in liquid.

  13. SL(2, C) group action on cohomological field theories

    NASA Astrophysics Data System (ADS)

    Basalaev, Alexey

    2018-01-01

    We introduce the S} (2,C) group action on a partition function of a cohomological field theory via a certain Givental's action. Restricted to the small phase space we describe the action via the explicit formulae on a CohFT genus g potential. We prove that applied to the total ancestor potential of a simple-elliptic singularity the action introduced coincides with the transformation of Milanov-Ruan changing the primitive form (cf. Milanov and Ruan in Gromov-Witten theory of elliptic orbifold P1 and quasi-modular forms, arXiv:1106.2321 , 2011).

  14. Third-order optical conductivity of an electron fluid

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyuan; Basov, D. N.; Fogler, M. M.

    2018-02-01

    We derive the nonlinear optical conductivity of an isotropic electron fluid at frequencies below the interparticle collision rate. In this regime, governed by hydrodynamics, the conductivity acquires a universal form at any temperature, chemical potential, and spatial dimension. We show that the nonlinear response of the fluid to a uniform field is dominated by the third-order conductivity tensor σ(3 ) whose magnitude and temperature dependence differ qualitatively from those in the conventional kinetic regime of higher frequencies. We obtain explicit formulas for σ(3 ) for Dirac materials such as graphene and Weyl semimetals. We make predictions for the third-harmonic generation, renormalization of the collective-mode spectrum, and the third-order circular magnetic birefringence experiments.

  15. A modified Lorentz theory as a test theory of special relativity

    NASA Technical Reports Server (NTRS)

    Chang, T.; Torr, D. G.; Gagnon, D. R.

    1988-01-01

    Attention has been given recently to a modified Lorentz theory (MLT) that is based on the generalized Galilean transformation. Some explicit formulas within the framework of MLT, dealing with the one-way velocity of light, slow-clock transport, and the Doppler effect are derived. A number of typical experiments are analyzed on this basis. Results indicate that the empirical equivalence between MLT and special relativity is still maintained to second order terms. The results of previous works that predict that the MLT might be distinguished from special relativity at the third order by Doppler centrifuge tests capable of a fractional frequency detection threshold of 10 to the -15th are confirmed.

  16. On the regularization of impact without collision: the Painlevé paradox and compliance

    NASA Astrophysics Data System (ADS)

    Hogan, S. J.; Kristiansen, K. Uldall

    2017-06-01

    We consider the problem of a rigid body, subject to a unilateral constraint, in the presence of Coulomb friction. We regularize the problem by assuming compliance (with both stiffness and damping) at the point of contact, for a general class of normal reaction forces. Using a rigorous mathematical approach, we recover impact without collision (IWC) in both the inconsistent and the indeterminate Painlevé paradoxes, in the latter case giving an exact formula for conditions that separate IWC and lift-off. We solve the problem for arbitrary values of the compliance damping and give explicit asymptotic expressions in the limiting cases of small and large damping, all for a large class of rigid bodies.

  17. On E-discretization of tori of compact simple Lie groups. II

    NASA Astrophysics Data System (ADS)

    Hrivnák, Jiří; Juránek, Michal

    2017-10-01

    Ten types of discrete Fourier transforms of Weyl orbit functions are developed. Generalizing one-dimensional cosine, sine, and exponential, each type of the Weyl orbit function represents an exponential symmetrized with respect to a subgroup of the Weyl group. Fundamental domains of even affine and dual even affine Weyl groups, governing the argument and label symmetries of the even orbit functions, are determined. The discrete orthogonality relations are formulated on finite sets of points from the refinements of the dual weight lattices. Explicit counting formulas for the number of points of the discrete transforms are deduced. Real-valued Hartley orbit functions are introduced, and all ten types of the corresponding discrete Hartley transforms are detailed.

  18. The scale of the Fourier transform: a point of view of the fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Jimenez, C. J.; Vilardy, J. M.; Salinas, S.; Mattos, L.; Torres, C. O.

    2017-01-01

    In this paper using the Fourier transform of order fractional, the ray transfer matrix for the symmetrical optical systems type ABCD and the formulae by Collins for the diffraction, we obtain explicitly the expression for scaled Fourier transform conventional; this result is the great importance in optical signal processing because it offers the possibility of scaling the size of output the Fourier distribution of the system, only by manipulating the distance of the diffraction object toward the thin lens, this research also emphasizes on practical limits when a finite spherical converging lens aperture is used. Digital simulation was carried out using the numerical platform of Matlab 7.1.

  19. A superparticle on the super Riemann surface

    NASA Astrophysics Data System (ADS)

    Matsumoto, Shuji; Uehara, Shozo; Yasui, Yukinori

    1990-02-01

    The free motion of a nonrelativistic superparticle on the super Riemann surface (SRS) of genus h≥2 is investigated. Geodesics or classical paths are given explicitly on the super Poincaré upper half-plane SH, a universal covering space of the SRS, and the paths with some suitable initial conditions yield periodic orbits on the SRS. The periodic orbits are unstable and the system is chaotic. Quantum mechanics is solved on the universal covering space SH and the heat kernel is given on the SRS. This leads to a superanalog of the Selberg trace formula. The Selberg super zeta function is introduced whose zero points and poles determine the energy spectrum on the SRS.

  20. Probability density and exceedance rate functions of locally Gaussian turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1989-01-01

    A locally Gaussian model of turbulence velocities is postulated which consists of the superposition of a slowly varying strictly Gaussian component representing slow temporal changes in the mean wind speed and a more rapidly varying locally Gaussian turbulence component possessing a temporally fluctuating local variance. Series expansions of the probability density and exceedance rate functions of the turbulence velocity model, based on Taylor's series, are derived. Comparisons of the resulting two-term approximations with measured probability density and exceedance rate functions of atmospheric turbulence velocity records show encouraging agreement, thereby confirming the consistency of the measured records with the locally Gaussian model. Explicit formulas are derived for computing all required expansion coefficients from measured turbulence records.

Top