Sample records for provide high throughput

  1. High Throughput Screening For Hazard and Risk of Environmental Contaminants

    EPA Science Inventory

    High throughput toxicity testing provides detailed mechanistic information on the concentration response of environmental contaminants in numerous potential toxicity pathways. High throughput screening (HTS) has several key advantages: (1) expense orders of magnitude less than an...

  2. High-throughput RAD-SNP genotyping for characterization of sugar beet genotypes

    USDA-ARS?s Scientific Manuscript database

    High-throughput SNP genotyping provides a rapid way of developing resourceful set of markers for delineating the genetic architecture and for effective species discrimination. In the presented research, we demonstrate a set of 192 SNPs for effective genotyping in sugar beet using high-throughput mar...

  3. Enhancing high throughput toxicology - development of putative adverse outcome pathways linking US EPA ToxCast screening targets to relevant apical hazards.

    EPA Science Inventory

    High throughput toxicology programs, such as ToxCast and Tox21, have provided biological effects data for thousands of chemicals at multiple concentrations. Compared to traditional, whole-organism approaches, high throughput assays are rapid and cost-effective, yet they generall...

  4. Evaluation of High-Throughput Chemical Exposure Models via Analysis of Matched Environmental and Biological Media Measurements

    EPA Science Inventory

    The U.S. EPA, under its ExpoCast program, is developing high-throughput near-field modeling methods to estimate human chemical exposure and to provide real-world context to high-throughput screening (HTS) hazard data. These novel modeling methods include reverse methods to infer ...

  5. TCP Throughput Profiles Using Measurements over Dedicated Connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Liu, Qiang; Sen, Satyabrata

    Wide-area data transfers in high-performance computing infrastructures are increasingly being carried over dynamically provisioned dedicated network connections that provide high capacities with no competing traffic. We present extensive TCP throughput measurements and time traces over a suite of physical and emulated 10 Gbps connections with 0-366 ms round-trip times (RTTs). Contrary to the general expectation, they show significant statistical and temporal variations, in addition to the overall dependencies on the congestion control mechanism, buffer size, and the number of parallel streams. We analyze several throughput profiles that have highly desirable concave regions wherein the throughput decreases slowly with RTTs, inmore » stark contrast to the convex profiles predicted by various TCP analytical models. We present a generic throughput model that abstracts the ramp-up and sustainment phases of TCP flows, which provides insights into qualitative trends observed in measurements across TCP variants: (i) slow-start followed by well-sustained throughput leads to concave regions; (ii) large buffers and multiple parallel streams expand the concave regions in addition to improving the throughput; and (iii) stable throughput dynamics, indicated by a smoother Poincare map and smaller Lyapunov exponents, lead to wider concave regions. These measurements and analytical results together enable us to select a TCP variant and its parameters for a given connection to achieve high throughput with statistical guarantees.« less

  6. Carbohydrate Microarray Technology Applied to High-Throughput Mapping of Plant Cell Wall Glycans Using Comprehensive Microarray Polymer Profiling (CoMPP).

    PubMed

    Kračun, Stjepan Krešimir; Fangel, Jonatan Ulrik; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Vidal-Melgosa, Silvia; Willats, William George Tycho

    2017-01-01

    Cell walls are an important feature of plant cells and a major component of the plant glycome. They have both structural and physiological functions and are critical for plant growth and development. The diversity and complexity of these structures demand advanced high-throughput techniques to answer questions about their structure, functions and roles in both fundamental and applied scientific fields. Microarray technology provides both the high-throughput and the feasibility aspects required to meet that demand. In this chapter, some of the most recent microarray-based techniques relating to plant cell walls are described together with an overview of related contemporary techniques applied to carbohydrate microarrays and their general potential in glycoscience. A detailed experimental procedure for high-throughput mapping of plant cell wall glycans using the comprehensive microarray polymer profiling (CoMPP) technique is included in the chapter and provides a good example of both the robust and high-throughput nature of microarrays as well as their applicability to plant glycomics.

  7. High-throughput quantification of hydroxyproline for determination of collagen.

    PubMed

    Hofman, Kathleen; Hall, Bronwyn; Cleaver, Helen; Marshall, Susan

    2011-10-15

    An accurate and high-throughput assay for collagen is essential for collagen research and development of collagen products. Hydroxyproline is routinely assayed to provide a measurement for collagen quantification. The time required for sample preparation using acid hydrolysis and neutralization prior to assay is what limits the current method for determining hydroxyproline. This work describes the conditions of alkali hydrolysis that, when combined with the colorimetric assay defined by Woessner, provide a high-throughput, accurate method for the measurement of hydroxyproline. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice

    PubMed Central

    Yang, Wanneng; Guo, Zilong; Huang, Chenglong; Duan, Lingfeng; Chen, Guoxing; Jiang, Ni; Fang, Wei; Feng, Hui; Xie, Weibo; Lian, Xingming; Wang, Gongwei; Luo, Qingming; Zhang, Qifa; Liu, Qian; Xiong, Lizhong

    2014-01-01

    Even as the study of plant genomics rapidly develops through the use of high-throughput sequencing techniques, traditional plant phenotyping lags far behind. Here we develop a high-throughput rice phenotyping facility (HRPF) to monitor 13 traditional agronomic traits and 2 newly defined traits during the rice growth period. Using genome-wide association studies (GWAS) of the 15 traits, we identify 141 associated loci, 25 of which contain known genes such as the Green Revolution semi-dwarf gene, SD1. Based on a performance evaluation of the HRPF and GWAS results, we demonstrate that high-throughput phenotyping has the potential to replace traditional phenotyping techniques and can provide valuable gene identification information. The combination of the multifunctional phenotyping tools HRPF and GWAS provides deep insights into the genetic architecture of important traits. PMID:25295980

  9. High-throughput sequencing methods to study neuronal RNA-protein interactions.

    PubMed

    Ule, Jernej

    2009-12-01

    UV-cross-linking and RNase protection, combined with high-throughput sequencing, have provided global maps of RNA sites bound by individual proteins or ribosomes. Using a stringent purification protocol, UV-CLIP (UV-cross-linking and immunoprecipitation) was able to identify intronic and exonic sites bound by splicing regulators in mouse brain tissue. Ribosome profiling has been used to quantify ribosome density on budding yeast mRNAs under different environmental conditions. Post-transcriptional regulation in neurons requires high spatial and temporal precision, as is evident from the role of localized translational control in synaptic plasticity. It remains to be seen if the high-throughput methods can be applied quantitatively to study the dynamics of RNP (ribonucleoprotein) remodelling in specific neuronal populations during the neurodegenerative process. It is certain, however, that applications of new biochemical techniques followed by high-throughput sequencing will continue to provide important insights into the mechanisms of neuronal post-transcriptional regulation.

  10. Workshop Background and Summary of Webinars (IVIVE workshop)

    EPA Science Inventory

    Toxicokinetics (TK) provides a bridge between hazard and exposure by predicting tissue concentrations due to exposure. Higher throughput toxicokinetics (HTTK) appears to provide essential data to established context for in vitro bioactivity data obtained through high throughput ...

  11. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations

    NASA Astrophysics Data System (ADS)

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-12-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  12. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations.

    PubMed

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-01-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  13. The combination of gas-phase fluorophore technology and automation to enable high-throughput analysis of plant respiration.

    PubMed

    Scafaro, Andrew P; Negrini, A Clarissa A; O'Leary, Brendan; Rashid, F Azzahra Ahmad; Hayes, Lucy; Fan, Yuzhen; Zhang, You; Chochois, Vincent; Badger, Murray R; Millar, A Harvey; Atkin, Owen K

    2017-01-01

    Mitochondrial respiration in the dark ( R dark ) is a critical plant physiological process, and hence a reliable, efficient and high-throughput method of measuring variation in rates of R dark is essential for agronomic and ecological studies. However, currently methods used to measure R dark in plant tissues are typically low throughput. We assessed a high-throughput automated fluorophore system of detecting multiple O 2 consumption rates. The fluorophore technique was compared with O 2 -electrodes, infrared gas analysers (IRGA), and membrane inlet mass spectrometry, to determine accuracy and speed of detecting respiratory fluxes. The high-throughput fluorophore system provided stable measurements of R dark in detached leaf and root tissues over many hours. High-throughput potential was evident in that the fluorophore system was 10 to 26-fold faster per sample measurement than other conventional methods. The versatility of the technique was evident in its enabling: (1) rapid screening of R dark in 138 genotypes of wheat; and, (2) quantification of rarely-assessed whole-plant R dark through dissection and simultaneous measurements of above- and below-ground organs. Variation in absolute R dark was observed between techniques, likely due to variation in sample conditions (i.e. liquid vs. gas-phase, open vs. closed systems), indicating that comparisons between studies using different measuring apparatus may not be feasible. However, the high-throughput protocol we present provided similar values of R dark to the most commonly used IRGA instrument currently employed by plant scientists. Together with the greater than tenfold increase in sample processing speed, we conclude that the high-throughput protocol enables reliable, stable and reproducible measurements of R dark on multiple samples simultaneously, irrespective of plant or tissue type.

  14. The high throughput biomedicine unit at the institute for molecular medicine Finland: high throughput screening meets precision medicine.

    PubMed

    Pietiainen, Vilja; Saarela, Jani; von Schantz, Carina; Turunen, Laura; Ostling, Paivi; Wennerberg, Krister

    2014-05-01

    The High Throughput Biomedicine (HTB) unit at the Institute for Molecular Medicine Finland FIMM was established in 2010 to serve as a national and international academic screening unit providing access to state of the art instrumentation for chemical and RNAi-based high throughput screening. The initial focus of the unit was multiwell plate based chemical screening and high content microarray-based siRNA screening. However, over the first four years of operation, the unit has moved to a more flexible service platform where both chemical and siRNA screening is performed at different scales primarily in multiwell plate-based assays with a wide range of readout possibilities with a focus on ultraminiaturization to allow for affordable screening for the academic users. In addition to high throughput screening, the equipment of the unit is also used to support miniaturized, multiplexed and high throughput applications for other types of research such as genomics, sequencing and biobanking operations. Importantly, with the translational research goals at FIMM, an increasing part of the operations at the HTB unit is being focused on high throughput systems biological platforms for functional profiling of patient cells in personalized and precision medicine projects.

  15. Evaluating Rapid Models for High-Throughput Exposure Forecasting (SOT)

    EPA Science Inventory

    High throughput exposure screening models can provide quantitative predictions for thousands of chemicals; however these predictions must be systematically evaluated for predictive ability. Without the capability to make quantitative, albeit uncertain, forecasts of exposure, the ...

  16. [Current applications of high-throughput DNA sequencing technology in antibody drug research].

    PubMed

    Yu, Xin; Liu, Qi-Gang; Wang, Ming-Rong

    2012-03-01

    Since the publication of a high-throughput DNA sequencing technology based on PCR reaction was carried out in oil emulsions in 2005, high-throughput DNA sequencing platforms have been evolved to a robust technology in sequencing genomes and diverse DNA libraries. Antibody libraries with vast numbers of members currently serve as a foundation of discovering novel antibody drugs, and high-throughput DNA sequencing technology makes it possible to rapidly identify functional antibody variants with desired properties. Herein we present a review of current applications of high-throughput DNA sequencing technology in the analysis of antibody library diversity, sequencing of CDR3 regions, identification of potent antibodies based on sequence frequency, discovery of functional genes, and combination with various display technologies, so as to provide an alternative approach of discovery and development of antibody drugs.

  17. High Throughput Transcriptomics @ USEPA (Toxicology ...

    EPA Pesticide Factsheets

    The ideal chemical testing approach will provide complete coverage of all relevant toxicological responses. It should be sensitive and specific It should identify the mechanism/mode-of-action (with dose-dependence). It should identify responses relevant to the species of interest. Responses should ideally be translated into tissue-, organ-, and organism-level effects. It must be economical and scalable. Using a High Throughput Transcriptomics platform within US EPA provides broader coverage of biological activity space and toxicological MOAs and helps fill the toxicological data gap. Slide presentation at the 2016 ToxForum on using High Throughput Transcriptomics at US EPA for broader coverage biological activity space and toxicological MOAs.

  18. Expedient Caution: Approximating Exposure and Dosimetry to Understand Chemical Risk (OSU EMT Research Day keynote presentation)

    EPA Science Inventory

    I describe research on high throughput exposure and toxicokinetics. These tools provide context for data generated by high throughput toxicity screening to allow risk-based prioritization of thousands of chemicals.

  19. Characterization of matrix effects in developing rugged high-throughput LC-MS/MS methods for bioanalysis.

    PubMed

    Li, Fumin; Wang, Jun; Jenkins, Rand

    2016-05-01

    There is an ever-increasing demand for high-throughput LC-MS/MS bioanalytical assays to support drug discovery and development. Matrix effects of sofosbuvir (protonated) and paclitaxel (sodiated) were thoroughly evaluated using high-throughput chromatography (defined as having a run time ≤1 min) under 14 elution conditions with extracts from protein precipitation, liquid-liquid extraction and solid-phase extraction. A slight separation, in terms of retention time, between underlying matrix components and sofosbuvir/paclitaxel can greatly alleviate matrix effects. High-throughput chromatography, with proper optimization, can provide rapid and effective chromatographic separation under 1 min to alleviate matrix effects and enhance assay ruggedness for regulated bioanalysis.

  20. Fully Bayesian Analysis of High-throughput Targeted Metabolomics Assays

    EPA Science Inventory

    High-throughput metabolomic assays that allow simultaneous targeted screening of hundreds of metabolites have recently become available in kit form. Such assays provide a window into understanding changes to biochemical pathways due to chemical exposure or disease, and are usefu...

  1. Repurposing a Benchtop Centrifuge for High-Throughput Single-Molecule Force Spectroscopy.

    PubMed

    Yang, Darren; Wong, Wesley P

    2018-01-01

    We present high-throughput single-molecule manipulation using a benchtop centrifuge, overcoming limitations common in other single-molecule approaches such as high cost, low throughput, technical difficulty, and strict infrastructure requirements. An inexpensive and compact Centrifuge Force Microscope (CFM) adapted to a commercial centrifuge enables use by nonspecialists, and integration with DNA nanoswitches facilitates both reliable measurements and repeated molecular interrogation. Here, we provide detailed protocols for constructing the CFM, creating DNA nanoswitch samples, and carrying out single-molecule force measurements.

  2. High throughput single cell counting in droplet-based microfluidics.

    PubMed

    Lu, Heng; Caen, Ouriel; Vrignon, Jeremy; Zonta, Eleonora; El Harrak, Zakaria; Nizard, Philippe; Baret, Jean-Christophe; Taly, Valérie

    2017-05-02

    Droplet-based microfluidics is extensively and increasingly used for high-throughput single-cell studies. However, the accuracy of the cell counting method directly impacts the robustness of such studies. We describe here a simple and precise method to accurately count a large number of adherent and non-adherent human cells as well as bacteria. Our microfluidic hemocytometer provides statistically relevant data on large populations of cells at a high-throughput, used to characterize cell encapsulation and cell viability during incubation in droplets.

  3. Quantitative description on structure–property relationships of Li-ion battery materials for high-throughput computations

    PubMed Central

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-01-01

    Abstract Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure–property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure–property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure–property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials. PMID:28458737

  4. EMBRYONIC VASCULAR DISRUPTION ADVERSE OUTCOMES: LINKING HIGH THROUGHPUT SIGNALING SIGNATURES WITH FUNCTIONAL CONSEQUENCES

    EPA Science Inventory

    Embryonic vascular disruption is an important adverse outcome pathway (AOP) given the knowledge that chemical disruption of early cardiovascular system development leads to broad prenatal defects. High throughput screening (HTS) assays provide potential building blocks for AOP d...

  5. High-throughput screening, predictive modeling and computational embryology - Abstract

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to chemical profiling to address sensitivity and specificity of molecular targets, biological pathways, cellular and developmental processes. EPA’s ToxCast project is testing 960 uniq...

  6. Environmental Impact on Vascular Development Predicted by High Throughput Screening

    EPA Science Inventory

    Understanding health risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. High throughput screening (HTS) in EPA’s ToxCastTM project provides vast d...

  7. tcpl: The ToxCast Pipeline for High-Throughput Screening Data

    EPA Science Inventory

    Motivation: The large and diverse high-throughput chemical screening efforts carried out by the US EPAToxCast program requires an efficient, transparent, and reproducible data pipeline.Summary: The tcpl R package and its associated MySQL database provide a generalized platform fo...

  8. High-throughput screening, predictive modeling and computational embryology

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to profile thousands of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition to projects worldwide,...

  9. Integration of Dosimetry, Exposure and High-Throughput Screening Data in Chemical Toxicity Assessment

    EPA Science Inventory

    High-throughput in vitro toxicity screening can provide an efficient way to identify potential biological targets for chemicals. However, relying on nominal assay concentrations may misrepresent potential in vivo effects of these chemicals due to differences in bioavailability, c...

  10. High-Throughput Toxicokinetics (HTTK) R package (CompTox CoP presentation)

    EPA Science Inventory

    Toxicokinetics (TK) provides a bridge between HTS and HTE by predicting tissue concentrations due to exposure, but traditional TK methods are resource intensive. Relatively high throughput TK (HTTK) methods have been used by the pharmaceutical industry to determine range of effic...

  11. Optimization of High-Throughput Sequencing Kinetics for determining enzymatic rate constants of thousands of RNA substrates

    PubMed Central

    Niland, Courtney N.; Jankowsky, Eckhard; Harris, Michael E.

    2016-01-01

    Quantification of the specificity of RNA binding proteins and RNA processing enzymes is essential to understanding their fundamental roles in biological processes. High Throughput Sequencing Kinetics (HTS-Kin) uses high throughput sequencing and internal competition kinetics to simultaneously monitor the processing rate constants of thousands of substrates by RNA processing enzymes. This technique has provided unprecedented insight into the substrate specificity of the tRNA processing endonuclease ribonuclease P. Here, we investigate the accuracy and robustness of measurements associated with each step of the HTS-Kin procedure. We examine the effect of substrate concentration on the observed rate constant, determine the optimal kinetic parameters, and provide guidelines for reducing error in amplification of the substrate population. Importantly, we find that high-throughput sequencing, and experimental reproducibility contribute their own sources of error, and these are the main sources of imprecision in the quantified results when otherwise optimized guidelines are followed. PMID:27296633

  12. Advanced Virus Detection Technologies Interest Group (AVDTIG): Efforts on High Throughput Sequencing (HTS) for Virus Detection.

    PubMed

    Khan, Arifa S; Vacante, Dominick A; Cassart, Jean-Pol; Ng, Siemon H S; Lambert, Christophe; Charlebois, Robert L; King, Kathryn E

    Several nucleic-acid based technologies have recently emerged with capabilities for broad virus detection. One of these, high throughput sequencing, has the potential for novel virus detection because this method does not depend upon prior viral sequence knowledge. However, the use of high throughput sequencing for testing biologicals poses greater challenges as compared to other newly introduced tests due to its technical complexities and big data bioinformatics. Thus, the Advanced Virus Detection Technologies Users Group was formed as a joint effort by regulatory and industry scientists to facilitate discussions and provide a forum for sharing data and experiences using advanced new virus detection technologies, with a focus on high throughput sequencing technologies. The group was initiated as a task force that was coordinated by the Parenteral Drug Association and subsequently became the Advanced Virus Detection Technologies Interest Group to continue efforts for using new technologies for detection of adventitious viruses with broader participation, including international government agencies, academia, and technology service providers. © PDA, Inc. 2016.

  13. High throughput light absorber discovery, Part 1: An algorithm for automated tauc analysis

    DOE PAGES

    Suram, Santosh K.; Newhouse, Paul F.; Gregoire, John M.

    2016-09-23

    High-throughput experimentation provides efficient mapping of composition-property relationships, and its implementation for the discovery of optical materials enables advancements in solar energy and other technologies. In a high throughput pipeline, automated data processing algorithms are often required to match experimental throughput, and we present an automated Tauc analysis algorithm for estimating band gap energies from optical spectroscopy data. The algorithm mimics the judgment of an expert scientist, which is demonstrated through its application to a variety of high throughput spectroscopy data, including the identification of indirect or direct band gaps in Fe 2O 3, Cu 2V 2O 7, and BiVOmore » 4. Here, the applicability of the algorithm to estimate a range of band gap energies for various materials is demonstrated by a comparison of direct-allowed band gaps estimated by expert scientists and by automated algorithm for 60 optical spectra.« less

  14. Ultra-High Throughput Synthesis of Nanoparticles with Homogeneous Size Distribution Using a Coaxial Turbulent Jet Mixer

    PubMed Central

    2015-01-01

    High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production. PMID:24824296

  15. An Automated High-Throughput System to Fractionate Plant Natural Products for Drug Discovery

    PubMed Central

    Tu, Ying; Jeffries, Cynthia; Ruan, Hong; Nelson, Cynthia; Smithson, David; Shelat, Anang A.; Brown, Kristin M.; Li, Xing-Cong; Hester, John P.; Smillie, Troy; Khan, Ikhlas A.; Walker, Larry; Guy, Kip; Yan, Bing

    2010-01-01

    The development of an automated, high-throughput fractionation procedure to prepare and analyze natural product libraries for drug discovery screening is described. Natural products obtained from plant materials worldwide were extracted and first prefractionated on polyamide solid-phase extraction cartridges to remove polyphenols, followed by high-throughput automated fractionation, drying, weighing, and reformatting for screening and storage. The analysis of fractions with UPLC coupled with MS, PDA and ELSD detectors provides information that facilitates characterization of compounds in active fractions. Screening of a portion of fractions yielded multiple assay-specific hits in several high-throughput cellular screening assays. This procedure modernizes the traditional natural product fractionation paradigm by seamlessly integrating automation, informatics, and multimodal analytical interrogation capabilities. PMID:20232897

  16. Simultaneous Measurements of Auto-Immune and Infectious Disease Specific Antibodies Using a High Throughput Multiplexing Tool

    PubMed Central

    Asati, Atul; Kachurina, Olga; Kachurin, Anatoly

    2012-01-01

    Considering importance of ganglioside antibodies as biomarkers in various immune-mediated neuropathies and neurological disorders, we developed a high throughput multiplexing tool for the assessment of gangliosides-specific antibodies based on Biolpex/Luminex platform. In this report, we demonstrate that the ganglioside high throughput multiplexing tool is robust, highly specific and demonstrating ∼100-fold higher concentration sensitivity for IgG detection than ELISA. In addition to the ganglioside-coated array, the high throughput multiplexing tool contains beads coated with influenza hemagglutinins derived from H1N1 A/Brisbane/59/07 and H1N1 A/California/07/09 strains. Influenza beads provided an added advantage of simultaneous detection of ganglioside- and influenza-specific antibodies, a capacity important for the assay of both infectious antigen-specific and autoimmune antibodies following vaccination or disease. Taken together, these results support the potential adoption of the ganglioside high throughput multiplexing tool for measuring ganglioside antibodies in various neuropathic and neurological disorders. PMID:22952605

  17. 20171015 - Capabilities and Evaluation of the US EPA’s HTTK (High Throughput Toxicokinetics) R package (ISES)

    EPA Science Inventory

    Toxicokinetics (TK) provides a bridge between toxicity and exposure assessment by predicting tissue concentrations due to exposure, however traditional TK methods are resource intensive. Relatively high throughput TK (HTTK) methods have been used by the pharmaceutical industry to...

  18. 20180311 - Differential Gene Expression and Concentration-Response Modeling Workflow for High-Throughput Transcriptomic (HTTr) Data: Results From MCF7 Cells (SOT)

    EPA Science Inventory

    Increasing efficiency and declining cost of generating whole transcriptome profiles has made high-throughput transcriptomics a practical option for chemical bioactivity screening. The resulting data output provides information on the expression of thousands of genes and is amenab...

  19. 20171024 - Capabilities and Evaluation of the US EPA’s HTTK (High Throughput Toxicokinetics) R package (Webinar Presentation to European Chemical Agency

    EPA Science Inventory

    Toxicokinetics (TK) provides a bridge between toxicity and exposure assessment by predicting tissue concentrations due to exposure. However traditional TK methods are resource intensive. Relatively high throughput TK (HTTK) methods have been used by the pharmaceutical industry to...

  20. Differential Gene Expression and Concentration-Response Modeling Workflow for High-Throughput Transcriptomic (HTTr) Data: Results From MCF7 Cells

    EPA Science Inventory

    Increasing efficiency and declining cost of generating whole transcriptome profiles has made high-throughput transcriptomics a practical option for chemical bioactivity screening. The resulting data output provides information on the expression of thousands of genes and is amenab...

  1. High-throughput protein concentration and buffer exchange: comparison of ultrafiltration and ammonium sulfate precipitation.

    PubMed

    Moore, Priscilla A; Kery, Vladimir

    2009-01-01

    High-throughput protein purification is a complex, multi-step process. There are several technical challenges in the course of this process that are not experienced when purifying a single protein. Among the most challenging are the high-throughput protein concentration and buffer exchange, which are not only labor-intensive but can also result in significant losses of purified proteins. We describe two methods of high-throughput protein concentration and buffer exchange: one using ammonium sulfate precipitation and one using micro-concentrating devices based on membrane ultrafiltration. We evaluated the efficiency of both methods on a set of 18 randomly selected purified proteins from Shewanella oneidensis. While both methods provide similar yield and efficiency, the ammonium sulfate precipitation is much less labor intensive and time consuming than the ultrafiltration.

  2. Lessons from high-throughput protein crystallization screening: 10 years of practical experience

    PubMed Central

    JR, Luft; EH, Snell; GT, DeTitta

    2011-01-01

    Introduction X-ray crystallography provides the majority of our structural biological knowledge at a molecular level and in terms of pharmaceutical design is a valuable tool to accelerate discovery. It is the premier technique in the field, but its usefulness is significantly limited by the need to grow well-diffracting crystals. It is for this reason that high-throughput crystallization has become a key technology that has matured over the past 10 years through the field of structural genomics. Areas covered The authors describe their experiences in high-throughput crystallization screening in the context of structural genomics and the general biomedical community. They focus on the lessons learnt from the operation of a high-throughput crystallization screening laboratory, which to date has screened over 12,500 biological macromolecules. They also describe the approaches taken to maximize the success while minimizing the effort. Through this, the authors hope that the reader will gain an insight into the efficient design of a laboratory and protocols to accomplish high-throughput crystallization on a single-, multiuser-laboratory or industrial scale. Expert Opinion High-throughput crystallization screening is readily available but, despite the power of the crystallographic technique, getting crystals is still not a solved problem. High-throughput approaches can help when used skillfully; however, they still require human input in the detailed analysis and interpretation of results to be more successful. PMID:22646073

  3. Biases in the Experimental Annotations of Protein Function and Their Effect on Our Understanding of Protein Function Space

    PubMed Central

    Schnoes, Alexandra M.; Ream, David C.; Thorman, Alexander W.; Babbitt, Patricia C.; Friedberg, Iddo

    2013-01-01

    The ongoing functional annotation of proteins relies upon the work of curators to capture experimental findings from scientific literature and apply them to protein sequence and structure data. However, with the increasing use of high-throughput experimental assays, a small number of experimental studies dominate the functional protein annotations collected in databases. Here, we investigate just how prevalent is the “few articles - many proteins” phenomenon. We examine the experimentally validated annotation of proteins provided by several groups in the GO Consortium, and show that the distribution of proteins per published study is exponential, with 0.14% of articles providing the source of annotations for 25% of the proteins in the UniProt-GOA compilation. Since each of the dominant articles describes the use of an assay that can find only one function or a small group of functions, this leads to substantial biases in what we know about the function of many proteins. Mass-spectrometry, microscopy and RNAi experiments dominate high throughput experiments. Consequently, the functional information derived from these experiments is mostly of the subcellular location of proteins, and of the participation of proteins in embryonic developmental pathways. For some organisms, the information provided by different studies overlap by a large amount. We also show that the information provided by high throughput experiments is less specific than those provided by low throughput experiments. Given the experimental techniques available, certain biases in protein function annotation due to high-throughput experiments are unavoidable. Knowing that these biases exist and understanding their characteristics and extent is important for database curators, developers of function annotation programs, and anyone who uses protein function annotation data to plan experiments. PMID:23737737

  4. Development and Application of a High Throughput Protein Unfolding Kinetic Assay

    PubMed Central

    Wang, Qiang; Waterhouse, Nicklas; Feyijinmi, Olusegun; Dominguez, Matthew J.; Martinez, Lisa M.; Sharp, Zoey; Service, Rachel; Bothe, Jameson R.; Stollar, Elliott J.

    2016-01-01

    The kinetics of folding and unfolding underlie protein stability and quantification of these rates provides important insights into the folding process. Here, we present a simple high throughput protein unfolding kinetic assay using a plate reader that is applicable to the studies of the majority of 2-state folding proteins. We validate the assay by measuring kinetic unfolding data for the SH3 (Src Homology 3) domain from Actin Binding Protein 1 (AbpSH3) and its stabilized mutants. The results of our approach are in excellent agreement with published values. We further combine our kinetic assay with a plate reader equilibrium assay, to obtain indirect estimates of folding rates and use these approaches to characterize an AbpSH3-peptide hybrid. Our high throughput protein unfolding kinetic assays allow accurate screening of libraries of mutants by providing both kinetic and equilibrium measurements and provide a means for in-depth ϕ-value analyses. PMID:26745729

  5. High throughput integrated thermal characterization with non-contact optical calorimetry

    NASA Astrophysics Data System (ADS)

    Hou, Sichao; Huo, Ruiqing; Su, Ming

    2017-10-01

    Commonly used thermal analysis tools such as calorimeter and thermal conductivity meter are separated instruments and limited by low throughput, where only one sample is examined each time. This work reports an infrared based optical calorimetry with its theoretical foundation, which is able to provide an integrated solution to characterize thermal properties of materials with high throughput. By taking time domain temperature information of spatially distributed samples, this method allows a single device (infrared camera) to determine the thermal properties of both phase change systems (melting temperature and latent heat of fusion) and non-phase change systems (thermal conductivity and heat capacity). This method further allows these thermal properties of multiple samples to be determined rapidly, remotely, and simultaneously. In this proof-of-concept experiment, the thermal properties of a panel of 16 samples including melting temperatures, latent heats of fusion, heat capacities, and thermal conductivities have been determined in 2 min with high accuracy. Given the high thermal, spatial, and temporal resolutions of the advanced infrared camera, this method has the potential to revolutionize the thermal characterization of materials by providing an integrated solution with high throughput, high sensitivity, and short analysis time.

  6. An industrial engineering approach to laboratory automation for high throughput screening

    PubMed Central

    Menke, Karl C.

    2000-01-01

    Across the pharmaceutical industry, there are a variety of approaches to laboratory automation for high throughput screening. At Sphinx Pharmaceuticals, the principles of industrial engineering have been applied to systematically identify and develop those automated solutions that provide the greatest value to the scientists engaged in lead generation. PMID:18924701

  7. High-throughput Titration of Luciferase-expressing Recombinant Viruses

    PubMed Central

    Garcia, Vanessa; Krishnan, Ramya; Davis, Colin; Batenchuk, Cory; Le Boeuf, Fabrice; Abdelbary, Hesham; Diallo, Jean-Simon

    2014-01-01

    Standard plaque assays to determine infectious viral titers can be time consuming, are not amenable to a high volume of samples, and cannot be done with viruses that do not form plaques. As an alternative to plaque assays, we have developed a high-throughput titration method that allows for the simultaneous titration of a high volume of samples in a single day. This approach involves infection of the samples with a Firefly luciferase tagged virus, transfer of the infected samples onto an appropriate permissive cell line, subsequent addition of luciferin, reading of plates in order to obtain luminescence readings, and finally the conversion from luminescence to viral titers. The assessment of cytotoxicity using a metabolic viability dye can be easily incorporated in the workflow in parallel and provide valuable information in the context of a drug screen. This technique provides a reliable, high-throughput method to determine viral titers as an alternative to a standard plaque assay. PMID:25285536

  8. Micro-patterned agarose gel devices for single-cell high-throughput microscopy of E. coli cells.

    PubMed

    Priest, David G; Tanaka, Nobuyuki; Tanaka, Yo; Taniguchi, Yuichi

    2017-12-21

    High-throughput microscopy of bacterial cells elucidated fundamental cellular processes including cellular heterogeneity and cell division homeostasis. Polydimethylsiloxane (PDMS)-based microfluidic devices provide advantages including precise positioning of cells and throughput, however device fabrication is time-consuming and requires specialised skills. Agarose pads are a popular alternative, however cells often clump together, which hinders single cell quantitation. Here, we imprint agarose pads with micro-patterned 'capsules', to trap individual cells and 'lines', to direct cellular growth outwards in a straight line. We implement this micro-patterning into multi-pad devices called CapsuleHotel and LineHotel for high-throughput imaging. CapsuleHotel provides ~65,000 capsule structures per mm 2 that isolate individual Escherichia coli cells. In contrast, LineHotel provides ~300 line structures per mm that direct growth of micro-colonies. With CapsuleHotel, a quantitative single cell dataset of ~10,000 cells across 24 samples can be acquired and analysed in under 1 hour. LineHotel allows tracking growth of > 10 micro-colonies across 24 samples simultaneously for up to 4 generations. These easy-to-use devices can be provided in kit format, and will accelerate discoveries in diverse fields ranging from microbiology to systems and synthetic biology.

  9. Theory and implementation of a very high throughput true random number generator in field programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yonggang, E-mail: wangyg@ustc.edu.cn; Hui, Cong; Liu, Chong

    The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving,more » so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.« less

  10. Theory and implementation of a very high throughput true random number generator in field programmable gate array.

    PubMed

    Wang, Yonggang; Hui, Cong; Liu, Chong; Xu, Chao

    2016-04-01

    The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving, so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.

  11. High-Throughput Cancer Cell Sphere Formation for 3D Cell Culture.

    PubMed

    Chen, Yu-Chih; Yoon, Euisik

    2017-01-01

    Three-dimensional (3D) cell culture is critical in studying cancer pathology and drug response. Though 3D cancer sphere culture can be performed in low-adherent dishes or well plates, the unregulated cell aggregation may skew the results. On contrary, microfluidic 3D culture can allow precise control of cell microenvironments, and provide higher throughput by orders of magnitude. In this chapter, we will look into engineering innovations in a microfluidic platform for high-throughput cancer cell sphere formation and review the implementation methods in detail.

  12. Comparative aerial- and ground-based high-throughput phenotyping for the genetic dissection of NDVI as a proxy for drought-adaptive traits in durum wheat

    USDA-ARS?s Scientific Manuscript database

    High-throughput phenotyping platforms (HTPPs) provide novel opportunities to more effectively dissect the genetic basis of drought-adaptive traits. This genome-wide association study (GWAS) compares the results obtained with two Unmanned Aerial Vehicles (UAVs) and a ground-based platform used to mea...

  13. Computational Toxicology as Implemented by the U.S. EPA: Providing High Throughput Decision Support Tools for Screening and Assessing Chemical Exposure, Hazard and Risk

    EPA Science Inventory

    Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, the U.S. Environ...

  14. High-throughput automatic defect review for 300mm blank wafers with atomic force microscope

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2015-03-01

    While feature size in lithography process continuously becomes smaller, defect sizes on blank wafers become more comparable to device sizes. Defects with nm-scale characteristic size could be misclassified by automated optical inspection (AOI) and require post-processing for proper classification. Atomic force microscope (AFM) is known to provide high lateral and the highest vertical resolution by mechanical probing among all techniques. However, its low throughput and tip life in addition to the laborious efforts for finding the defects have been the major limitations of this technique. In this paper we introduce automatic defect review (ADR) AFM as a post-inspection metrology tool for defect study and classification for 300 mm blank wafers and to overcome the limitations stated above. The ADR AFM provides high throughput, high resolution, and non-destructive means for obtaining 3D information for nm-scale defect review and classification.

  15. SwellGel: an affinity chromatography technology for high-capacity and high-throughput purification of recombinant-tagged proteins.

    PubMed

    Draveling, C; Ren, L; Haney, P; Zeisse, D; Qoronfleh, M W

    2001-07-01

    The revolution in genomics and proteomics is having a profound impact on drug discovery. Today's protein scientist demands a faster, easier, more reliable way to purify proteins. A high capacity, high-throughput new technology has been developed in Perbio Sciences for affinity protein purification. This technology utilizes selected chromatography media that are dehydrated to form uniform aggregates. The SwellGel aggregates will instantly rehydrate upon addition of the protein sample, allowing purification and direct performance of multiple assays in a variety of formats. SwellGel technology has greater stability and is easier to handle than standard wet chromatography resins. The microplate format of this technology provides high-capacity, high-throughput features, recovering milligram quantities of protein suitable for high-throughput screening or biophysical/structural studies. Data will be presented applying SwellGel technology to recombinant 6x His-tagged protein and glutathione-S-transferase (GST) fusion protein purification. Copyright 2001 Academic Press.

  16. Large-scale microfluidics providing high-resolution and high-throughput screening of Caenorhabditis elegans poly-glutamine aggregation model

    NASA Astrophysics Data System (ADS)

    Mondal, Sudip; Hegarty, Evan; Martin, Chris; Gökçe, Sertan Kutal; Ghorashian, Navid; Ben-Yakar, Adela

    2016-10-01

    Next generation drug screening could benefit greatly from in vivo studies, using small animal models such as Caenorhabditis elegans for hit identification and lead optimization. Current in vivo assays can operate either at low throughput with high resolution or with low resolution at high throughput. To enable both high-throughput and high-resolution imaging of C. elegans, we developed an automated microfluidic platform. This platform can image 15 z-stacks of ~4,000 C. elegans from 96 different populations using a large-scale chip with a micron resolution in 16 min. Using this platform, we screened ~100,000 animals of the poly-glutamine aggregation model on 25 chips. We tested the efficacy of ~1,000 FDA-approved drugs in improving the aggregation phenotype of the model and identified four confirmed hits. This robust platform now enables high-content screening of various C. elegans disease models at the speed and cost of in vitro cell-based assays.

  17. BiQ Analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing

    PubMed Central

    Lutsik, Pavlo; Feuerbach, Lars; Arand, Julia; Lengauer, Thomas; Walter, Jörn; Bock, Christoph

    2011-01-01

    Bisulfite sequencing is a widely used method for measuring DNA methylation in eukaryotic genomes. The assay provides single-base pair resolution and, given sufficient sequencing depth, its quantitative accuracy is excellent. High-throughput sequencing of bisulfite-converted DNA can be applied either genome wide or targeted to a defined set of genomic loci (e.g. using locus-specific PCR primers or DNA capture probes). Here, we describe BiQ Analyzer HT (http://biq-analyzer-ht.bioinf.mpi-inf.mpg.de/), a user-friendly software tool that supports locus-specific analysis and visualization of high-throughput bisulfite sequencing data. The software facilitates the shift from time-consuming clonal bisulfite sequencing to the more quantitative and cost-efficient use of high-throughput sequencing for studying locus-specific DNA methylation patterns. In addition, it is useful for locus-specific visualization of genome-wide bisulfite sequencing data. PMID:21565797

  18. High-throughput measurements of the optical redox ratio using a commercial microplate reader.

    PubMed

    Cannon, Taylor M; Shah, Amy T; Walsh, Alex J; Skala, Melissa C

    2015-01-01

    There is a need for accurate, high-throughput, functional measures to gauge the efficacy of potential drugs in living cells. As an early marker of drug response in cells, cellular metabolism provides an attractive platform for high-throughput drug testing. Optical techniques can noninvasively monitor NADH and FAD, two autofluorescent metabolic coenzymes. The autofluorescent redox ratio, defined as the autofluorescence intensity of NADH divided by that of FAD, quantifies relative rates of cellular glycolysis and oxidative phosphorylation. However, current microscopy methods for redox ratio quantification are time-intensive and low-throughput, limiting their practicality in drug screening. Alternatively, high-throughput commercial microplate readers quickly measure fluorescence intensities for hundreds of wells. This study found that a commercial microplate reader can differentiate the receptor status of breast cancer cell lines (p < 0.05) based on redox ratio measurements without extrinsic contrast agents. Furthermore, microplate reader redox ratio measurements resolve response (p < 0.05) and lack of response (p > 0.05) in cell lines that are responsive and nonresponsive, respectively, to the breast cancer drug trastuzumab. These studies indicate that the microplate readers can be used to measure the redox ratio in a high-throughput manner and are sensitive enough to detect differences in cellular metabolism that are consistent with microscopy results.

  19. HTP-OligoDesigner: An Online Primer Design Tool for High-Throughput Gene Cloning and Site-Directed Mutagenesis.

    PubMed

    Camilo, Cesar M; Lima, Gustavo M A; Maluf, Fernando V; Guido, Rafael V C; Polikarpov, Igor

    2016-01-01

    Following burgeoning genomic and transcriptomic sequencing data, biochemical and molecular biology groups worldwide are implementing high-throughput cloning and mutagenesis facilities in order to obtain a large number of soluble proteins for structural and functional characterization. Since manual primer design can be a time-consuming and error-generating step, particularly when working with hundreds of targets, the automation of primer design process becomes highly desirable. HTP-OligoDesigner was created to provide the scientific community with a simple and intuitive online primer design tool for both laboratory-scale and high-throughput projects of sequence-independent gene cloning and site-directed mutagenesis and a Tm calculator for quick queries.

  20. Compound Transfer by Acoustic Droplet Ejection Promotes Quality and Efficiency in Ultra-High-Throughput Screening Campaigns.

    PubMed

    Dawes, Timothy D; Turincio, Rebecca; Jones, Steven W; Rodriguez, Richard A; Gadiagellan, Dhireshan; Thana, Peter; Clark, Kevin R; Gustafson, Amy E; Orren, Linda; Liimatta, Marya; Gross, Daniel P; Maurer, Till; Beresini, Maureen H

    2016-02-01

    Acoustic droplet ejection (ADE) as a means of transferring library compounds has had a dramatic impact on the way in which high-throughput screening campaigns are conducted in many laboratories. Two Labcyte Echo ADE liquid handlers form the core of the compound transfer operation in our 1536-well based ultra-high-throughput screening (uHTS) system. Use of these instruments has promoted flexibility in compound formatting in addition to minimizing waste and eliminating compound carryover. We describe the use of ADE for the generation of assay-ready plates for primary screening as well as for follow-up dose-response evaluations. Custom software has enabled us to harness the information generated by the ADE instrumentation. Compound transfer via ADE also contributes to the screening process outside of the uHTS system. A second fully automated ADE-based system has been used to augment the capacity of the uHTS system as well as to permit efficient use of previously picked compound aliquots for secondary assay evaluations. Essential to the utility of ADE in the high-throughput screening process is the high quality of the resulting data. Examples of data generated at various stages of high-throughput screening campaigns are provided. Advantages and disadvantages of the use of ADE in high-throughput screening are discussed. © 2015 Society for Laboratory Automation and Screening.

  1. LOCATE: a mouse protein subcellular localization database

    PubMed Central

    Fink, J. Lynn; Aturaliya, Rajith N.; Davis, Melissa J.; Zhang, Fasheng; Hanson, Kelly; Teasdale, Melvena S.; Kai, Chikatoshi; Kawai, Jun; Carninci, Piero; Hayashizaki, Yoshihide; Teasdale, Rohan D.

    2006-01-01

    We present here LOCATE, a curated, web-accessible database that houses data describing the membrane organization and subcellular localization of proteins from the FANTOM3 Isoform Protein Sequence set. Membrane organization is predicted by the high-throughput, computational pipeline MemO. The subcellular locations of selected proteins from this set were determined by a high-throughput, immunofluorescence-based assay and by manually reviewing >1700 peer-reviewed publications. LOCATE represents the first effort to catalogue the experimentally verified subcellular location and membrane organization of mammalian proteins using a high-throughput approach and provides localization data for ∼40% of the mouse proteome. It is available at . PMID:16381849

  2. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform

    PubMed Central

    Rizvi, Imran; Moon, Sangjun; Hasan, Tayyaba; Demirci, Utkan

    2013-01-01

    In vitro 3D cancer models that provide a more accurate representation of disease in vivo are urgently needed to improve our understanding of cancer pathology and to develop better cancer therapies. However, development of 3D models that are based on manual ejection of cells from micropipettes suffer from inherent limitations such as poor control over cell density, limited repeatability, low throughput, and, in the case of coculture models, lack of reproducible control over spatial distance between cell types (e.g., cancer and stromal cells). In this study, we build on a recently introduced 3D model in which human ovarian cancer (OVCAR-5) cells overlaid on Matrigel™ spontaneously form multicellular acini. We introduce a high-throughput automated cell printing system to bioprint a 3D coculture model using cancer cells and normal fibroblasts micropatterned on Matrigel™. Two cell types were patterned within a spatially controlled microenvironment (e.g., cell density, cell-cell distance) in a high-throughput and reproducible manner; both cell types remained viable during printing and continued to proliferate following patterning. This approach enables the miniaturization of an established macro-scale 3D culture model and would allow systematic investigation into the multiple unknown regulatory feedback mechanisms between tumor and stromal cells and provide a tool for high-throughput drug screening. PMID:21298805

  3. Leveraging the Power of High Performance Computing for Next Generation Sequencing Data Analysis: Tricks and Twists from a High Throughput Exome Workflow

    PubMed Central

    Wonczak, Stephan; Thiele, Holger; Nieroda, Lech; Jabbari, Kamel; Borowski, Stefan; Sinha, Vishal; Gunia, Wilfried; Lang, Ulrich; Achter, Viktor; Nürnberg, Peter

    2015-01-01

    Next generation sequencing (NGS) has been a great success and is now a standard method of research in the life sciences. With this technology, dozens of whole genomes or hundreds of exomes can be sequenced in rather short time, producing huge amounts of data. Complex bioinformatics analyses are required to turn these data into scientific findings. In order to run these analyses fast, automated workflows implemented on high performance computers are state of the art. While providing sufficient compute power and storage to meet the NGS data challenge, high performance computing (HPC) systems require special care when utilized for high throughput processing. This is especially true if the HPC system is shared by different users. Here, stability, robustness and maintainability are as important for automated workflows as speed and throughput. To achieve all of these aims, dedicated solutions have to be developed. In this paper, we present the tricks and twists that we utilized in the implementation of our exome data processing workflow. It may serve as a guideline for other high throughput data analysis projects using a similar infrastructure. The code implementing our solutions is provided in the supporting information files. PMID:25942438

  4. Development of New Sensing Materials Using Combinatorial and High-Throughput Experimentation

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Mirsky, Vladimir M.

    New sensors with improved performance characteristics are needed for applications as diverse as bedside continuous monitoring, tracking of environmental pollutants, monitoring of food and water quality, monitoring of chemical processes, and safety in industrial, consumer, and automotive settings. Typical requirements in sensor improvement are selectivity, long-term stability, sensitivity, response time, reversibility, and reproducibility. Design of new sensing materials is the important cornerstone in the effort to develop new sensors. Often, sensing materials are too complex to predict their performance quantitatively in the design stage. Thus, combinatorial and high-throughput experimentation methodologies provide an opportunity to generate new required data to discover new sensing materials and/or to optimize existing material compositions. The goal of this chapter is to provide an overview of the key concepts of experimental development of sensing materials using combinatorial and high-throughput experimentation tools, and to promote additional fruitful interactions between computational scientists and experimentalists.

  5. A high-throughput colorimetric assay for glucose detection based on glucose oxidase-catalyzed enlargement of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Xiong, Yanmei; Zhang, Yuyan; Rong, Pengfei; Yang, Jie; Wang, Wei; Liu, Dingbin

    2015-09-01

    We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose.We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose. Electronic supplementary information (ESI) available: Experimental section and additional figures. See DOI: 10.1039/c5nr03758a

  6. Condor-COPASI: high-throughput computing for biochemical networks

    PubMed Central

    2012-01-01

    Background Mathematical modelling has become a standard technique to improve our understanding of complex biological systems. As models become larger and more complex, simulations and analyses require increasing amounts of computational power. Clusters of computers in a high-throughput computing environment can help to provide the resources required for computationally expensive model analysis. However, exploiting such a system can be difficult for users without the necessary expertise. Results We present Condor-COPASI, a server-based software tool that integrates COPASI, a biological pathway simulation tool, with Condor, a high-throughput computing environment. Condor-COPASI provides a web-based interface, which makes it extremely easy for a user to run a number of model simulation and analysis tasks in parallel. Tasks are transparently split into smaller parts, and submitted for execution on a Condor pool. Result output is presented to the user in a number of formats, including tables and interactive graphical displays. Conclusions Condor-COPASI can effectively use a Condor high-throughput computing environment to provide significant gains in performance for a number of model simulation and analysis tasks. Condor-COPASI is free, open source software, released under the Artistic License 2.0, and is suitable for use by any institution with access to a Condor pool. Source code is freely available for download at http://code.google.com/p/condor-copasi/, along with full instructions on deployment and usage. PMID:22834945

  7. RIPiT-Seq: A high-throughput approach for footprinting RNA:protein complexes

    PubMed Central

    Singh, Guramrit; Ricci, Emiliano P.; Moore, Melissa J.

    2013-01-01

    Development of high-throughput approaches to map the RNA interaction sites of individual RNA binding proteins (RBPs) transcriptome-wide is rapidly transforming our understanding of post-transcriptional gene regulatory mechanisms. Here we describe a ribonucleoprotein (RNP) footprinting approach we recently developed for identifying occupancy sites of both individual RBPs and multi-subunit RNP complexes. RNA:protein immunoprecipitation in tandem (RIPiT) yields highly specific RNA footprints of cellular RNPs isolated via two sequential purifications; the resulting RNA footprints can then be identified by high-throughput sequencing (Seq). RIPiT-Seq is broadly applicable to all RBPs regardless of their RNA binding mode and thus provides a means to map the RNA binding sites of RBPs with poor inherent ultraviolet (UV) crosslinkability. Further, among current high-throughput approaches, RIPiT has the unique capacity to differentiate binding sites of RNPs with overlapping protein composition. It is therefore particularly suited for studying dynamic RNP assemblages whose composition evolves as gene expression proceeds. PMID:24096052

  8. High performance hybrid magnetic structure for biotechnology applications

    DOEpatents

    Humphries, David E; Pollard, Martin J; Elkin, Christopher J

    2005-10-11

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  9. High performance hybrid magnetic structure for biotechnology applications

    DOEpatents

    Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.

    2006-12-12

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  10. High throughput light absorber discovery, Part 2: Establishing structure–band gap energy relationships

    DOE PAGES

    Suram, Santosh K.; Newhouse, Paul F.; Zhou, Lan; ...

    2016-09-23

    Combinatorial materials science strategies have accelerated materials development in a variety of fields, and we extend these strategies to enable structure-property mapping for light absorber materials, particularly in high order composition spaces. High throughput optical spectroscopy and synchrotron X-ray diffraction are combined to identify the optical properties of Bi-V-Fe oxides, leading to the identification of Bi 4V 1.5Fe 0.5O 10.5 as a light absorber with direct band gap near 2.7 eV. Here, the strategic combination of experimental and data analysis techniques includes automated Tauc analysis to estimate band gap energies from the high throughput spectroscopy data, providing an automated platformmore » for identifying new optical materials.« less

  11. High throughput light absorber discovery, Part 2: Establishing structure–band gap energy relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suram, Santosh K.; Newhouse, Paul F.; Zhou, Lan

    Combinatorial materials science strategies have accelerated materials development in a variety of fields, and we extend these strategies to enable structure-property mapping for light absorber materials, particularly in high order composition spaces. High throughput optical spectroscopy and synchrotron X-ray diffraction are combined to identify the optical properties of Bi-V-Fe oxides, leading to the identification of Bi 4V 1.5Fe 0.5O 10.5 as a light absorber with direct band gap near 2.7 eV. Here, the strategic combination of experimental and data analysis techniques includes automated Tauc analysis to estimate band gap energies from the high throughput spectroscopy data, providing an automated platformmore » for identifying new optical materials.« less

  12. High Throughput Light Absorber Discovery, Part 2: Establishing Structure-Band Gap Energy Relationships.

    PubMed

    Suram, Santosh K; Newhouse, Paul F; Zhou, Lan; Van Campen, Douglas G; Mehta, Apurva; Gregoire, John M

    2016-11-14

    Combinatorial materials science strategies have accelerated materials development in a variety of fields, and we extend these strategies to enable structure-property mapping for light absorber materials, particularly in high order composition spaces. High throughput optical spectroscopy and synchrotron X-ray diffraction are combined to identify the optical properties of Bi-V-Fe oxides, leading to the identification of Bi 4 V 1.5 Fe 0.5 O 10.5 as a light absorber with direct band gap near 2.7 eV. The strategic combination of experimental and data analysis techniques includes automated Tauc analysis to estimate band gap energies from the high throughput spectroscopy data, providing an automated platform for identifying new optical materials.

  13. A review of the theory, methods and recent applications of high-throughput single-cell droplet microfluidics

    NASA Astrophysics Data System (ADS)

    Lagus, Todd P.; Edd, Jon F.

    2013-03-01

    Most cell biology experiments are performed in bulk cell suspensions where cell secretions become diluted and mixed in a contiguous sample. Confinement of single cells to small, picoliter-sized droplets within a continuous phase of oil provides chemical isolation of each cell, creating individual microreactors where rare cell qualities are highlighted and otherwise undetectable signals can be concentrated to measurable levels. Recent work in microfluidics has yielded methods for the encapsulation of cells in aqueous droplets and hydrogels at kilohertz rates, creating the potential for millions of parallel single-cell experiments. However, commercial applications of high-throughput microdroplet generation and downstream sensing and actuation methods are still emerging for cells. Using fluorescence-activated cell sorting (FACS) as a benchmark for commercially available high-throughput screening, this focused review discusses the fluid physics of droplet formation, methods for cell encapsulation in liquids and hydrogels, sensors and actuators and notable biological applications of high-throughput single-cell droplet microfluidics.

  14. High-Throughput Cloning and Expression Library Creation for Functional Proteomics

    PubMed Central

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-01-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particular important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single gene experiments, creating the need for fast, flexible and reliable cloning systems. These collections of open reading frame (ORF) clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator™ DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP12). Details can be found at http://www.proteomicstutorials.org. PMID:23457047

  15. Next-generation sequencing coupled with a cell-free display technology for high-throughput production of reliable interactome data

    PubMed Central

    Fujimori, Shigeo; Hirai, Naoya; Ohashi, Hiroyuki; Masuoka, Kazuyo; Nishikimi, Akihiko; Fukui, Yoshinori; Washio, Takanori; Oshikubo, Tomohiro; Yamashita, Tatsuhiro; Miyamoto-Sato, Etsuko

    2012-01-01

    Next-generation sequencing (NGS) has been applied to various kinds of omics studies, resulting in many biological and medical discoveries. However, high-throughput protein-protein interactome datasets derived from detection by sequencing are scarce, because protein-protein interaction analysis requires many cell manipulations to examine the interactions. The low reliability of the high-throughput data is also a problem. Here, we describe a cell-free display technology combined with NGS that can improve both the coverage and reliability of interactome datasets. The completely cell-free method gives a high-throughput and a large detection space, testing the interactions without using clones. The quantitative information provided by NGS reduces the number of false positives. The method is suitable for the in vitro detection of proteins that interact not only with the bait protein, but also with DNA, RNA and chemical compounds. Thus, it could become a universal approach for exploring the large space of protein sequences and interactome networks. PMID:23056904

  16. The application of the high throughput sequencing technology in the transposable elements.

    PubMed

    Liu, Zhen; Xu, Jian-hong

    2015-09-01

    High throughput sequencing technology has dramatically improved the efficiency of DNA sequencing, and decreased the costs to a great extent. Meanwhile, this technology usually has advantages of better specificity, higher sensitivity and accuracy. Therefore, it has been applied to the research on genetic variations, transcriptomics and epigenomics. Recently, this technology has been widely employed in the studies of transposable elements and has achieved fruitful results. In this review, we summarize the application of high throughput sequencing technology in the fields of transposable elements, including the estimation of transposon content, preference of target sites and distribution, insertion polymorphism and population frequency, identification of rare copies, transposon horizontal transfers as well as transposon tagging. We also briefly introduce the major common sequencing strategies and algorithms, their advantages and disadvantages, and the corresponding solutions. Finally, we envision the developing trends of high throughput sequencing technology, especially the third generation sequencing technology, and its application in transposon studies in the future, hopefully providing a comprehensive understanding and reference for related scientific researchers.

  17. An improved high-throughput lipid extraction method for the analysis of human brain lipids.

    PubMed

    Abbott, Sarah K; Jenner, Andrew M; Mitchell, Todd W; Brown, Simon H J; Halliday, Glenda M; Garner, Brett

    2013-03-01

    We have developed a protocol suitable for high-throughput lipidomic analysis of human brain samples. The traditional Folch extraction (using chloroform and glass-glass homogenization) was compared to a high-throughput method combining methyl-tert-butyl ether (MTBE) extraction with mechanical homogenization utilizing ceramic beads. This high-throughput method significantly reduced sample handling time and increased efficiency compared to glass-glass homogenizing. Furthermore, replacing chloroform with MTBE is safer (less carcinogenic/toxic), with lipids dissolving in the upper phase, allowing for easier pipetting and the potential for automation (i.e., robotics). Both methods were applied to the analysis of human occipital cortex. Lipid species (including ceramides, sphingomyelins, choline glycerophospholipids, ethanolamine glycerophospholipids and phosphatidylserines) were analyzed via electrospray ionization mass spectrometry and sterol species were analyzed using gas chromatography mass spectrometry. No differences in lipid species composition were evident when the lipid extraction protocols were compared, indicating that MTBE extraction with mechanical bead homogenization provides an improved method for the lipidomic profiling of human brain tissue.

  18. High-throughput cloning and expression library creation for functional proteomics.

    PubMed

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-05-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single-gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator(TM) DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High-throughput determination of structural phase diagram and constituent phases using GRENDEL

    NASA Astrophysics Data System (ADS)

    Kusne, A. G.; Keller, D.; Anderson, A.; Zaban, A.; Takeuchi, I.

    2015-11-01

    Advances in high-throughput materials fabrication and characterization techniques have resulted in faster rates of data collection and rapidly growing volumes of experimental data. To convert this mass of information into actionable knowledge of material process-structure-property relationships requires high-throughput data analysis techniques. This work explores the use of the Graph-based endmember extraction and labeling (GRENDEL) algorithm as a high-throughput method for analyzing structural data from combinatorial libraries, specifically, to determine phase diagrams and constituent phases from both x-ray diffraction and Raman spectral data. The GRENDEL algorithm utilizes a set of physical constraints to optimize results and provides a framework by which additional physics-based constraints can be easily incorporated. GRENDEL also permits the integration of database data as shown by the use of critically evaluated data from the Inorganic Crystal Structure Database in the x-ray diffraction data analysis. Also the Sunburst radial tree map is demonstrated as a tool to visualize material structure-property relationships found through graph based analysis.

  20. A rapid enzymatic assay for high-throughput screening of adenosine-producing strains

    PubMed Central

    Dong, Huina; Zu, Xin; Zheng, Ping; Zhang, Dawei

    2015-01-01

    Adenosine is a major local regulator of tissue function and industrially useful as precursor for the production of medicinal nucleoside substances. High-throughput screening of adenosine overproducers is important for industrial microorganism breeding. An enzymatic assay of adenosine was developed by combined adenosine deaminase (ADA) with indophenol method. The ADA catalyzes the cleavage of adenosine to inosine and NH3, the latter can be accurately determined by indophenol method. The assay system was optimized to deliver a good performance and could tolerate the addition of inorganic salts and many nutrition components to the assay mixtures. Adenosine could be accurately determined by this assay using 96-well microplates. Spike and recovery tests showed that this assay can accurately and reproducibly determine increases in adenosine in fermentation broth without any pretreatment to remove proteins and potentially interfering low-molecular-weight molecules. This assay was also applied to high-throughput screening for high adenosine-producing strains. The high selectivity and accuracy of the ADA assay provides rapid and high-throughput analysis of adenosine in large numbers of samples. PMID:25580842

  1. High Throughput Determination of Tetramine in Drinking ...

    EPA Pesticide Factsheets

    Report The sampling and analytical procedure (SAP) presented herein, describes a method for the high throughput determination of tetramethylene disulfotetramine in drinking water by solid phase extraction and isotope dilution gas chromatography/mass spectrometry. This method, which will be included in the SAM, is expected to provide the Water Laboratory Alliance, as part of EPA’s Environmental Response Laboratory Network, with a more reliable and faster means of analyte collection and measurement.

  2. Integrative data mining of high-throughput in vitro screens, in vivo data, and disease information to identify Adverse Outcome Pathway (AOP) signatures:ToxCast high-throughput screening data and Comparative Toxicogenomics Database (CTD) as a case study.

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework provides a systematic way to describe linkages between molecular and cellular processes and organism or population level effects. The current AOP assembly methods however, are inefficient. Our goal is to generate computationally-pr...

  3. Quantitative Assessment of RNA-Protein Interactions with High Throughput Sequencing - RNA Affinity Profiling (HiTS-RAP)

    PubMed Central

    Ozer, Abdullah; Tome, Jacob M.; Friedman, Robin C.; Gheba, Dan; Schroth, Gary P.; Lis, John T.

    2016-01-01

    Because RNA-protein interactions play a central role in a wide-array of biological processes, methods that enable a quantitative assessment of these interactions in a high-throughput manner are in great demand. Recently, we developed the High Throughput Sequencing-RNA Affinity Profiling (HiTS-RAP) assay, which couples sequencing on an Illumina GAIIx with the quantitative assessment of one or several proteins’ interactions with millions of different RNAs in a single experiment. We have successfully used HiTS-RAP to analyze interactions of EGFP and NELF-E proteins with their corresponding canonical and mutant RNA aptamers. Here, we provide a detailed protocol for HiTS-RAP, which can be completed in about a month (8 days hands-on time) including the preparation and testing of recombinant proteins and DNA templates, clustering DNA templates on a flowcell, high-throughput sequencing and protein binding with GAIIx, and finally data analysis. We also highlight aspects of HiTS-RAP that can be further improved and points of comparison between HiTS-RAP and two other recently developed methods, RNA-MaP and RBNS. A successful HiTS-RAP experiment provides the sequence and binding curves for approximately 200 million RNAs in a single experiment. PMID:26182240

  4. Ethoscopes: An open platform for high-throughput ethomics.

    PubMed

    Geissmann, Quentin; Garcia Rodriguez, Luis; Beckwith, Esteban J; French, Alice S; Jamasb, Arian R; Gilestro, Giorgio F

    2017-10-01

    Here, we present the use of ethoscopes, which are machines for high-throughput analysis of behavior in Drosophila and other animals. Ethoscopes provide a software and hardware solution that is reproducible and easily scalable. They perform, in real-time, tracking and profiling of behavior by using a supervised machine learning algorithm, are able to deliver behaviorally triggered stimuli to flies in a feedback-loop mode, and are highly customizable and open source. Ethoscopes can be built easily by using 3D printing technology and rely on Raspberry Pi microcomputers and Arduino boards to provide affordable and flexible hardware. All software and construction specifications are available at http://lab.gilest.ro/ethoscope.

  5. High-throughput method for optimum solubility screening for homogeneity and crystallization of proteins

    DOEpatents

    Kim, Sung-Hou [Moraga, CA; Kim, Rosalind [Moraga, CA; Jancarik, Jamila [Walnut Creek, CA

    2012-01-31

    An optimum solubility screen in which a panel of buffers and many additives are provided in order to obtain the most homogeneous and monodisperse protein condition for protein crystallization. The present methods are useful for proteins that aggregate and cannot be concentrated prior to setting up crystallization screens. A high-throughput method using the hanging-drop method and vapor diffusion equilibrium and a panel of twenty-four buffers is further provided. Using the present methods, 14 poorly behaving proteins have been screened, resulting in 11 of the proteins having highly improved dynamic light scattering results allowing concentration of the proteins, and 9 were crystallized.

  6. A Study of the IEEE 802.16 MAC Layer and its Utility in Augmenting the ADNS Architecture to Provide Adaptable Intra-Strike Group High-Speed Packet Switched Data, Imagery, and Voice Communications

    DTIC Science & Technology

    2005-09-01

    This research explores the need for a high throughput, high speed network for use in a network centric wartime environment and how commercial...Automated Digital Network System (ADNS). This research explores the need for a high-throughput, high-speed network for use in a network centric ...1 C. DEPARTMENT OF DEFENSE (DOD) DESIRED END STATE ..............2 1. DOD Transformation to Network Centric Warfare (NCW) Operations

  7. High-throughput method for the quantitation of metabolites and co-factors from homocysteine-methionine cycle for nutritional status assessment.

    PubMed

    Da Silva, Laeticia; Collino, Sebastiano; Cominetti, Ornella; Martin, Francois-Pierre; Montoliu, Ivan; Moreno, Sergio Oller; Corthesy, John; Kaput, Jim; Kussmann, Martin; Monteiro, Jacqueline Pontes; Guiraud, Seu Ping

    2016-09-01

    There is increasing interest in the profiling and quantitation of methionine pathway metabolites for health management research. Currently, several analytical approaches are required to cover metabolites and co-factors. We report the development and the validation of a method for the simultaneous detection and quantitation of 13 metabolites in red blood cells. The method, validated in a cohort of healthy human volunteers, shows a high level of accuracy and reproducibility. This high-throughput protocol provides a robust coverage of central metabolites and co-factors in one single analysis and in a high-throughput fashion. In large-scale clinical settings, the use of such an approach will significantly advance the field of nutritional research in health and disease.

  8. Protein Sequence Annotation Tool (PSAT): A centralized web-based meta-server for high-throughput sequence annotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Elo; Huang, Amy; Cadag, Eithon

    In this study, we introduce the Protein Sequence Annotation Tool (PSAT), a web-based, sequence annotation meta-server for performing integrated, high-throughput, genome-wide sequence analyses. Our goals in building PSAT were to (1) create an extensible platform for integration of multiple sequence-based bioinformatics tools, (2) enable functional annotations and enzyme predictions over large input protein fasta data sets, and (3) provide a web interface for convenient execution of the tools. In this paper, we demonstrate the utility of PSAT by annotating the predicted peptide gene products of Herbaspirillum sp. strain RV1423, importing the results of PSAT into EC2KEGG, and using the resultingmore » functional comparisons to identify a putative catabolic pathway, thereby distinguishing RV1423 from a well annotated Herbaspirillum species. This analysis demonstrates that high-throughput enzyme predictions, provided by PSAT processing, can be used to identify metabolic potential in an otherwise poorly annotated genome. Lastly, PSAT is a meta server that combines the results from several sequence-based annotation and function prediction codes, and is available at http://psat.llnl.gov/psat/. PSAT stands apart from other sequencebased genome annotation systems in providing a high-throughput platform for rapid de novo enzyme predictions and sequence annotations over large input protein sequence data sets in FASTA. PSAT is most appropriately applied in annotation of large protein FASTA sets that may or may not be associated with a single genome.« less

  9. Protein Sequence Annotation Tool (PSAT): A centralized web-based meta-server for high-throughput sequence annotations

    DOE PAGES

    Leung, Elo; Huang, Amy; Cadag, Eithon; ...

    2016-01-20

    In this study, we introduce the Protein Sequence Annotation Tool (PSAT), a web-based, sequence annotation meta-server for performing integrated, high-throughput, genome-wide sequence analyses. Our goals in building PSAT were to (1) create an extensible platform for integration of multiple sequence-based bioinformatics tools, (2) enable functional annotations and enzyme predictions over large input protein fasta data sets, and (3) provide a web interface for convenient execution of the tools. In this paper, we demonstrate the utility of PSAT by annotating the predicted peptide gene products of Herbaspirillum sp. strain RV1423, importing the results of PSAT into EC2KEGG, and using the resultingmore » functional comparisons to identify a putative catabolic pathway, thereby distinguishing RV1423 from a well annotated Herbaspirillum species. This analysis demonstrates that high-throughput enzyme predictions, provided by PSAT processing, can be used to identify metabolic potential in an otherwise poorly annotated genome. Lastly, PSAT is a meta server that combines the results from several sequence-based annotation and function prediction codes, and is available at http://psat.llnl.gov/psat/. PSAT stands apart from other sequencebased genome annotation systems in providing a high-throughput platform for rapid de novo enzyme predictions and sequence annotations over large input protein sequence data sets in FASTA. PSAT is most appropriately applied in annotation of large protein FASTA sets that may or may not be associated with a single genome.« less

  10. 40 CFR 65.151 - Condensers used as control devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the design evaluation for storage vessels and low-throughput transfer rack controls. As provided in... control device on a Group 1 process vent or a high-throughput transfer rack with a condenser used as a... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Condensers used as control devices. 65...

  11. 40 CFR 65.151 - Condensers used as control devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the design evaluation for storage vessels and low-throughput transfer rack controls. As provided in... control device on a Group 1 process vent or a high-throughput transfer rack with a condenser used as a... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Condensers used as control devices. 65...

  12. 40 CFR 65.151 - Condensers used as control devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the design evaluation for storage vessels and low-throughput transfer rack controls. As provided in... control device on a Group 1 process vent or a high-throughput transfer rack with a condenser used as a... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Condensers used as control devices. 65...

  13. From cancer genomes to cancer models: bridging the gaps

    PubMed Central

    Baudot, Anaïs; Real, Francisco X.; Izarzugaza, José M. G.; Valencia, Alfonso

    2009-01-01

    Cancer genome projects are now being expanded in an attempt to provide complete landscapes of the mutations that exist in tumours. Although the importance of cataloguing genome variations is well recognized, there are obvious difficulties in bridging the gaps between high-throughput resequencing information and the molecular mechanisms of cancer evolution. Here, we describe the current status of the high-throughput genomic technologies, and the current limitations of the associated computational analysis and experimental validation of cancer genetic variants. We emphasize how the current cancer-evolution models will be influenced by the high-throughput approaches, in particular through efforts devoted to monitoring tumour progression, and how, in turn, the integration of data and models will be translated into mechanistic knowledge and clinical applications. PMID:19305388

  14. The French press: a repeatable and high-throughput approach to exercising zebrafish (Danio rerio).

    PubMed

    Usui, Takuji; Noble, Daniel W A; O'Dea, Rose E; Fangmeier, Melissa L; Lagisz, Malgorzata; Hesselson, Daniel; Nakagawa, Shinichi

    2018-01-01

    Zebrafish are increasingly used as a vertebrate model organism for various traits including swimming performance, obesity and metabolism, necessitating high-throughput protocols to generate standardized phenotypic information. Here, we propose a novel and cost-effective method for exercising zebrafish, using a coffee plunger and magnetic stirrer. To demonstrate the use of this method, we conducted a pilot experiment to show that this simple system provides repeatable estimates of maximal swim performance (intra-class correlation [ICC] = 0.34-0.41) and observe that exercise training of zebrafish on this system significantly increases their maximum swimming speed. We propose this high-throughput and reproducible system as an alternative to traditional linear chamber systems for exercising zebrafish and similarly sized fishes.

  15. Loeffler 4.0: Diagnostic Metagenomics.

    PubMed

    Höper, Dirk; Wylezich, Claudia; Beer, Martin

    2017-01-01

    A new world of possibilities for "virus discovery" was opened up with high-throughput sequencing becoming available in the last decade. While scientifically metagenomic analysis was established before the start of the era of high-throughput sequencing, the availability of the first second-generation sequencers was the kick-off for diagnosticians to use sequencing for the detection of novel pathogens. Today, diagnostic metagenomics is becoming the standard procedure for the detection and genetic characterization of new viruses or novel virus variants. Here, we provide an overview about technical considerations of high-throughput sequencing-based diagnostic metagenomics together with selected examples of "virus discovery" for animal diseases or zoonoses and metagenomics for food safety or basic veterinary research. © 2017 Elsevier Inc. All rights reserved.

  16. The French press: a repeatable and high-throughput approach to exercising zebrafish (Danio rerio)

    PubMed Central

    Usui, Takuji; Noble, Daniel W.A.; O’Dea, Rose E.; Fangmeier, Melissa L.; Lagisz, Malgorzata; Hesselson, Daniel

    2018-01-01

    Zebrafish are increasingly used as a vertebrate model organism for various traits including swimming performance, obesity and metabolism, necessitating high-throughput protocols to generate standardized phenotypic information. Here, we propose a novel and cost-effective method for exercising zebrafish, using a coffee plunger and magnetic stirrer. To demonstrate the use of this method, we conducted a pilot experiment to show that this simple system provides repeatable estimates of maximal swim performance (intra-class correlation [ICC] = 0.34–0.41) and observe that exercise training of zebrafish on this system significantly increases their maximum swimming speed. We propose this high-throughput and reproducible system as an alternative to traditional linear chamber systems for exercising zebrafish and similarly sized fishes. PMID:29372124

  17. Microscale High-Throughput Experimentation as an Enabling Technology in Drug Discovery: Application in the Discovery of (Piperidinyl)pyridinyl-1H-benzimidazole Diacylglycerol Acyltransferase 1 Inhibitors.

    PubMed

    Cernak, Tim; Gesmundo, Nathan J; Dykstra, Kevin; Yu, Yang; Wu, Zhicai; Shi, Zhi-Cai; Vachal, Petr; Sperbeck, Donald; He, Shuwen; Murphy, Beth Ann; Sonatore, Lisa; Williams, Steven; Madeira, Maria; Verras, Andreas; Reiter, Maud; Lee, Claire Heechoon; Cuff, James; Sherer, Edward C; Kuethe, Jeffrey; Goble, Stephen; Perrotto, Nicholas; Pinto, Shirly; Shen, Dong-Ming; Nargund, Ravi; Balkovec, James; DeVita, Robert J; Dreher, Spencer D

    2017-05-11

    Miniaturization and parallel processing play an important role in the evolution of many technologies. We demonstrate the application of miniaturized high-throughput experimentation methods to resolve synthetic chemistry challenges on the frontlines of a lead optimization effort to develop diacylglycerol acyltransferase (DGAT1) inhibitors. Reactions were performed on ∼1 mg scale using glass microvials providing a miniaturized high-throughput experimentation capability that was used to study a challenging S N Ar reaction. The availability of robust synthetic chemistry conditions discovered in these miniaturized investigations enabled the development of structure-activity relationships that ultimately led to the discovery of soluble, selective, and potent inhibitors of DGAT1.

  18. High Throughput Determination of Critical Human Dosing ...

    EPA Pesticide Factsheets

    High throughput toxicokinetics (HTTK) is a rapid approach that uses in vitro data to estimate TK for hundreds of environmental chemicals. Reverse dosimetry (i.e., reverse toxicokinetics or RTK) based on HTTK data converts high throughput in vitro toxicity screening (HTS) data into predicted human equivalent doses that can be linked with biologically relevant exposure scenarios. Thus, HTTK provides essential data for risk prioritization for thousands of chemicals that lack TK data. One critical HTTK parameter that can be measured in vitro is the unbound fraction of a chemical in plasma (Fub). However, for chemicals that bind strongly to plasma, Fub is below the limits of detection (LOD) for high throughput analytical chemistry, and therefore cannot be quantified. A novel method for quantifying Fub was implemented for 85 strategically selected chemicals: measurement of Fub was attempted at 10%, 30%, and 100% of physiological plasma concentrations using rapid equilibrium dialysis assays. Varying plasma concentrations instead of chemical concentrations makes high throughput analytical methodology more likely to be successful. Assays at 100% plasma concentration were unsuccessful for 34 chemicals. For 12 of these 34 chemicals, Fub could be quantified at 10% and/or 30% plasma concentrations; these results imply that the assay failure at 100% plasma concentration was caused by plasma protein binding for these chemicals. Assay failure for the remaining 22 chemicals may

  19. High-throughput transformation of Saccharomyces cerevisiae using liquid handling robots.

    PubMed

    Liu, Guangbo; Lanham, Clayton; Buchan, J Ross; Kaplan, Matthew E

    2017-01-01

    Saccharomyces cerevisiae (budding yeast) is a powerful eukaryotic model organism ideally suited to high-throughput genetic analyses, which time and again has yielded insights that further our understanding of cell biology processes conserved in humans. Lithium Acetate (LiAc) transformation of yeast with DNA for the purposes of exogenous protein expression (e.g., plasmids) or genome mutation (e.g., gene mutation, deletion, epitope tagging) is a useful and long established method. However, a reliable and optimized high throughput transformation protocol that runs almost no risk of human error has not been described in the literature. Here, we describe such a method that is broadly transferable to most liquid handling high-throughput robotic platforms, which are now commonplace in academic and industry settings. Using our optimized method, we are able to comfortably transform approximately 1200 individual strains per day, allowing complete transformation of typical genomic yeast libraries within 6 days. In addition, use of our protocol for gene knockout purposes also provides a potentially quicker, easier and more cost-effective approach to generating collections of double mutants than the popular and elegant synthetic genetic array methodology. In summary, our methodology will be of significant use to anyone interested in high throughput molecular and/or genetic analysis of yeast.

  20. Integrated Analysis Platform: An Open-Source Information System for High-Throughput Plant Phenotyping1[C][W][OPEN

    PubMed Central

    Klukas, Christian; Chen, Dijun; Pape, Jean-Michel

    2014-01-01

    High-throughput phenotyping is emerging as an important technology to dissect phenotypic components in plants. Efficient image processing and feature extraction are prerequisites to quantify plant growth and performance based on phenotypic traits. Issues include data management, image analysis, and result visualization of large-scale phenotypic data sets. Here, we present Integrated Analysis Platform (IAP), an open-source framework for high-throughput plant phenotyping. IAP provides user-friendly interfaces, and its core functions are highly adaptable. Our system supports image data transfer from different acquisition environments and large-scale image analysis for different plant species based on real-time imaging data obtained from different spectra. Due to the huge amount of data to manage, we utilized a common data structure for efficient storage and organization of data for both input data and result data. We implemented a block-based method for automated image processing to extract a representative list of plant phenotypic traits. We also provide tools for build-in data plotting and result export. For validation of IAP, we performed an example experiment that contains 33 maize (Zea mays ‘Fernandez’) plants, which were grown for 9 weeks in an automated greenhouse with nondestructive imaging. Subsequently, the image data were subjected to automated analysis with the maize pipeline implemented in our system. We found that the computed digital volume and number of leaves correlate with our manually measured data in high accuracy up to 0.98 and 0.95, respectively. In summary, IAP provides a multiple set of functionalities for import/export, management, and automated analysis of high-throughput plant phenotyping data, and its analysis results are highly reliable. PMID:24760818

  1. web cellHTS2: a web-application for the analysis of high-throughput screening data.

    PubMed

    Pelz, Oliver; Gilsdorf, Moritz; Boutros, Michael

    2010-04-12

    The analysis of high-throughput screening data sets is an expanding field in bioinformatics. High-throughput screens by RNAi generate large primary data sets which need to be analyzed and annotated to identify relevant phenotypic hits. Large-scale RNAi screens are frequently used to identify novel factors that influence a broad range of cellular processes, including signaling pathway activity, cell proliferation, and host cell infection. Here, we present a web-based application utility for the end-to-end analysis of large cell-based screening experiments by cellHTS2. The software guides the user through the configuration steps that are required for the analysis of single or multi-channel experiments. The web-application provides options for various standardization and normalization methods, annotation of data sets and a comprehensive HTML report of the screening data analysis, including a ranked hit list. Sessions can be saved and restored for later re-analysis. The web frontend for the cellHTS2 R/Bioconductor package interacts with it through an R-server implementation that enables highly parallel analysis of screening data sets. web cellHTS2 further provides a file import and configuration module for common file formats. The implemented web-application facilitates the analysis of high-throughput data sets and provides a user-friendly interface. web cellHTS2 is accessible online at http://web-cellHTS2.dkfz.de. A standalone version as a virtual appliance and source code for platforms supporting Java 1.5.0 can be downloaded from the web cellHTS2 page. web cellHTS2 is freely distributed under GPL.

  2. Extended length microchannels for high density high throughput electrophoresis systems

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    2000-01-01

    High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.

  3. SEQADAPT: an adaptable system for the tracking, storage and analysis of high throughput sequencing experiments.

    PubMed

    Burdick, David B; Cavnor, Chris C; Handcock, Jeremy; Killcoyne, Sarah; Lin, Jake; Marzolf, Bruz; Ramsey, Stephen A; Rovira, Hector; Bressler, Ryan; Shmulevich, Ilya; Boyle, John

    2010-07-14

    High throughput sequencing has become an increasingly important tool for biological research. However, the existing software systems for managing and processing these data have not provided the flexible infrastructure that research requires. Existing software solutions provide static and well-established algorithms in a restrictive package. However as high throughput sequencing is a rapidly evolving field, such static approaches lack the ability to readily adopt the latest advances and techniques which are often required by researchers. We have used a loosely coupled, service-oriented infrastructure to develop SeqAdapt. This system streamlines data management and allows for rapid integration of novel algorithms. Our approach also allows computational biologists to focus on developing and applying new methods instead of writing boilerplate infrastructure code. The system is based around the Addama service architecture and is available at our website as a demonstration web application, an installable single download and as a collection of individual customizable services.

  4. SEQADAPT: an adaptable system for the tracking, storage and analysis of high throughput sequencing experiments

    PubMed Central

    2010-01-01

    Background High throughput sequencing has become an increasingly important tool for biological research. However, the existing software systems for managing and processing these data have not provided the flexible infrastructure that research requires. Results Existing software solutions provide static and well-established algorithms in a restrictive package. However as high throughput sequencing is a rapidly evolving field, such static approaches lack the ability to readily adopt the latest advances and techniques which are often required by researchers. We have used a loosely coupled, service-oriented infrastructure to develop SeqAdapt. This system streamlines data management and allows for rapid integration of novel algorithms. Our approach also allows computational biologists to focus on developing and applying new methods instead of writing boilerplate infrastructure code. Conclusion The system is based around the Addama service architecture and is available at our website as a demonstration web application, an installable single download and as a collection of individual customizable services. PMID:20630057

  5. Web-based visual analysis for high-throughput genomics

    PubMed Central

    2013-01-01

    Background Visualization plays an essential role in genomics research by making it possible to observe correlations and trends in large datasets as well as communicate findings to others. Visual analysis, which combines visualization with analysis tools to enable seamless use of both approaches for scientific investigation, offers a powerful method for performing complex genomic analyses. However, there are numerous challenges that arise when creating rich, interactive Web-based visualizations/visual analysis applications for high-throughput genomics. These challenges include managing data flow from Web server to Web browser, integrating analysis tools and visualizations, and sharing visualizations with colleagues. Results We have created a platform simplifies the creation of Web-based visualization/visual analysis applications for high-throughput genomics. This platform provides components that make it simple to efficiently query very large datasets, draw common representations of genomic data, integrate with analysis tools, and share or publish fully interactive visualizations. Using this platform, we have created a Circos-style genome-wide viewer, a generic scatter plot for correlation analysis, an interactive phylogenetic tree, a scalable genome browser for next-generation sequencing data, and an application for systematically exploring tool parameter spaces to find good parameter values. All visualizations are interactive and fully customizable. The platform is integrated with the Galaxy (http://galaxyproject.org) genomics workbench, making it easy to integrate new visual applications into Galaxy. Conclusions Visualization and visual analysis play an important role in high-throughput genomics experiments, and approaches are needed to make it easier to create applications for these activities. Our framework provides a foundation for creating Web-based visualizations and integrating them into Galaxy. Finally, the visualizations we have created using the framework are useful tools for high-throughput genomics experiments. PMID:23758618

  6. Quantifying protein-protein interactions in high throughput using protein domain microarrays.

    PubMed

    Kaushansky, Alexis; Allen, John E; Gordus, Andrew; Stiffler, Michael A; Karp, Ethan S; Chang, Bryan H; MacBeath, Gavin

    2010-04-01

    Protein microarrays provide an efficient way to identify and quantify protein-protein interactions in high throughput. One drawback of this technique is that proteins show a broad range of physicochemical properties and are often difficult to produce recombinantly. To circumvent these problems, we have focused on families of protein interaction domains. Here we provide protocols for constructing microarrays of protein interaction domains in individual wells of 96-well microtiter plates, and for quantifying domain-peptide interactions in high throughput using fluorescently labeled synthetic peptides. As specific examples, we will describe the construction of microarrays of virtually every human Src homology 2 (SH2) and phosphotyrosine binding (PTB) domain, as well as microarrays of mouse PDZ domains, all produced recombinantly in Escherichia coli. For domains that mediate high-affinity interactions, such as SH2 and PTB domains, equilibrium dissociation constants (K(D)s) for their peptide ligands can be measured directly on arrays by obtaining saturation binding curves. For weaker binding domains, such as PDZ domains, arrays are best used to identify candidate interactions, which are then retested and quantified by fluorescence polarization. Overall, protein domain microarrays provide the ability to rapidly identify and quantify protein-ligand interactions with minimal sample consumption. Because entire domain families can be interrogated simultaneously, they provide a powerful way to assess binding selectivity on a proteome-wide scale and provide an unbiased perspective on the connectivity of protein-protein interaction networks.

  7. OptoDyCE: Automated system for high-throughput all-optical dynamic cardiac electrophysiology

    NASA Astrophysics Data System (ADS)

    Klimas, Aleksandra; Yu, Jinzhu; Ambrosi, Christina M.; Williams, John C.; Bien, Harold; Entcheva, Emilia

    2016-02-01

    In the last two decades, <30% of drugs withdrawals from the market were due to cardiac toxicity, where unintended interactions with ion channels disrupt the heart's normal electrical function. Consequently, all new drugs must undergo preclinical testing for cardiac liability, adding to an already expensive and lengthy process. Recognition that proarrhythmic effects often result from drug action on multiple ion channels demonstrates a need for integrative and comprehensive measurements. Additionally, patient-specific therapies relying on emerging technologies employing stem-cell derived cardiomyocytes (e.g. induced pluripotent stem-cell-derived cardiomyocytes, iPSC-CMs) require better screening methods to become practical. However, a high-throughput, cost-effective approach for cellular cardiac electrophysiology has not been feasible. Optical techniques for manipulation and recording provide a contactless means of dynamic, high-throughput testing of cells and tissues. Here, we consider the requirements for all-optical electrophysiology for drug testing, and we implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We demonstrate the high-throughput capabilities using multicellular samples in 96-well format by combining optogenetic actuation with simultaneous fast high-resolution optical sensing of voltage or intracellular calcium. The system can also be implemented using iPSC-CMs and other cell-types by delivery of optogenetic drivers, or through the modular use of dedicated light-sensitive somatic cells in conjunction with non-modified cells. OptoDyCE provides a truly modular and dynamic screening system, capable of fully-automated acquisition of high-content information integral for improved discovery and development of new drugs and biologics, as well as providing a means of better understanding of electrical disturbances in the heart.

  8. Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies.

    PubMed

    Boozer, Christina; Kim, Gibum; Cong, Shuxin; Guan, Hannwen; Londergan, Timothy

    2006-08-01

    Surface plasmon resonance (SPR) biosensors have enabled a wide range of applications in which researchers can monitor biomolecular interactions in real time. Owing to the fact that SPR can provide affinity and kinetic data, unique features in applications ranging from protein-peptide interaction analysis to cellular ligation experiments have been demonstrated. Although SPR has historically been limited by its throughput, new methods are emerging that allow for the simultaneous analysis of many thousands of interactions. When coupled with new protein array technologies, high-throughput SPR methods give users new and improved methods to analyze pathways, screen drug candidates and monitor protein-protein interactions.

  9. XML-based data model and architecture for a knowledge-based grid-enabled problem-solving environment for high-throughput biological imaging.

    PubMed

    Ahmed, Wamiq M; Lenz, Dominik; Liu, Jia; Paul Robinson, J; Ghafoor, Arif

    2008-03-01

    High-throughput biological imaging uses automated imaging devices to collect a large number of microscopic images for analysis of biological systems and validation of scientific hypotheses. Efficient manipulation of these datasets for knowledge discovery requires high-performance computational resources, efficient storage, and automated tools for extracting and sharing such knowledge among different research sites. Newly emerging grid technologies provide powerful means for exploiting the full potential of these imaging techniques. Efficient utilization of grid resources requires the development of knowledge-based tools and services that combine domain knowledge with analysis algorithms. In this paper, we first investigate how grid infrastructure can facilitate high-throughput biological imaging research, and present an architecture for providing knowledge-based grid services for this field. We identify two levels of knowledge-based services. The first level provides tools for extracting spatiotemporal knowledge from image sets and the second level provides high-level knowledge management and reasoning services. We then present cellular imaging markup language, an extensible markup language-based language for modeling of biological images and representation of spatiotemporal knowledge. This scheme can be used for spatiotemporal event composition, matching, and automated knowledge extraction and representation for large biological imaging datasets. We demonstrate the expressive power of this formalism by means of different examples and extensive experimental results.

  10. tcpl: the ToxCast pipeline for high-throughput screening data.

    PubMed

    Filer, Dayne L; Kothiya, Parth; Setzer, R Woodrow; Judson, Richard S; Martin, Matthew T

    2017-02-15

    Large high-throughput screening (HTS) efforts are widely used in drug development and chemical toxicity screening. Wide use and integration of these data can benefit from an efficient, transparent and reproducible data pipeline. Summary: The tcpl R package and its associated MySQL database provide a generalized platform for efficiently storing, normalizing and dose-response modeling of large high-throughput and high-content chemical screening data. The novel dose-response modeling algorithm has been tested against millions of diverse dose-response series, and robustly fits data with outliers and cytotoxicity-related signal loss. tcpl is freely available on the Comprehensive R Archive Network under the GPL-2 license. martin.matt@epa.gov. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  11. Ethoscopes: An open platform for high-throughput ethomics

    PubMed Central

    Geissmann, Quentin; Garcia Rodriguez, Luis; Beckwith, Esteban J.; French, Alice S.; Jamasb, Arian R.

    2017-01-01

    Here, we present the use of ethoscopes, which are machines for high-throughput analysis of behavior in Drosophila and other animals. Ethoscopes provide a software and hardware solution that is reproducible and easily scalable. They perform, in real-time, tracking and profiling of behavior by using a supervised machine learning algorithm, are able to deliver behaviorally triggered stimuli to flies in a feedback-loop mode, and are highly customizable and open source. Ethoscopes can be built easily by using 3D printing technology and rely on Raspberry Pi microcomputers and Arduino boards to provide affordable and flexible hardware. All software and construction specifications are available at http://lab.gilest.ro/ethoscope. PMID:29049280

  12. Gold-coated polydimethylsiloxane microwells for high-throughput electrochemiluminescence analysis of intracellular glucose at single cells.

    PubMed

    Xia, Juan; Zhou, Junyu; Zhang, Ronggui; Jiang, Dechen; Jiang, Depeng

    2018-06-04

    In this communication, a gold-coated polydimethylsiloxane (PDMS) chip with cell-sized microwells was prepared through a stamping and spraying process that was applied directly for high-throughput electrochemiluminescence (ECL) analysis of intracellular glucose at single cells. As compared with the previous multiple-step fabrication of photoresist-based microwells on the electrode, the preparation process is simple and offers fresh electrode surface for higher luminescence intensity. More luminescence intensity was recorded from cell-retained microwells than that at the planar region among the microwells that was correlated with the content of intracellular glucose. The successful monitoring of intracellular glucose at single cells using this PDMS chip will provide an alternative strategy for high-throughput single-cell analysis. Graphical abstract ᅟ.

  13. Image Harvest: an open-source platform for high-throughput plant image processing and analysis

    PubMed Central

    Knecht, Avi C.; Campbell, Malachy T.; Caprez, Adam; Swanson, David R.; Walia, Harkamal

    2016-01-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. PMID:27141917

  14. Handheld Fluorescence Microscopy based Flow Analyzer.

    PubMed

    Saxena, Manish; Jayakumar, Nitin; Gorthi, Sai Siva

    2016-03-01

    Fluorescence microscopy has the intrinsic advantages of favourable contrast characteristics and high degree of specificity. Consequently, it has been a mainstay in modern biological inquiry and clinical diagnostics. Despite its reliable nature, fluorescence based clinical microscopy and diagnostics is a manual, labour intensive and time consuming procedure. The article outlines a cost-effective, high throughput alternative to conventional fluorescence imaging techniques. With system level integration of custom-designed microfluidics and optics, we demonstrate fluorescence microscopy based imaging flow analyzer. Using this system we have imaged more than 2900 FITC labeled fluorescent beads per minute. This demonstrates high-throughput characteristics of our flow analyzer in comparison to conventional fluorescence microscopy. The issue of motion blur at high flow rates limits the achievable throughput in image based flow analyzers. Here we address the issue by computationally deblurring the images and show that this restores the morphological features otherwise affected by motion blur. By further optimizing concentration of the sample solution and flow speeds, along with imaging multiple channels simultaneously, the system is capable of providing throughput of about 480 beads per second.

  15. High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila.

    PubMed

    Chiaraviglio, Lucius; Kirby, James E

    2015-12-01

    Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila

    PubMed Central

    Chiaraviglio, Lucius

    2015-01-01

    Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. PMID:26392509

  17. Windows .NET Network Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST)

    PubMed Central

    Dowd, Scot E; Zaragoza, Joaquin; Rodriguez, Javier R; Oliver, Melvin J; Payton, Paxton R

    2005-01-01

    Background BLAST is one of the most common and useful tools for Genetic Research. This paper describes a software application we have termed Windows .NET Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST), which enhances the BLAST utility by improving usability, fault recovery, and scalability in a Windows desktop environment. Our goal was to develop an easy to use, fault tolerant, high-throughput BLAST solution that incorporates a comprehensive BLAST result viewer with curation and annotation functionality. Results W.ND-BLAST is a comprehensive Windows-based software toolkit that targets researchers, including those with minimal computer skills, and provides the ability increase the performance of BLAST by distributing BLAST queries to any number of Windows based machines across local area networks (LAN). W.ND-BLAST provides intuitive Graphic User Interfaces (GUI) for BLAST database creation, BLAST execution, BLAST output evaluation and BLAST result exportation. This software also provides several layers of fault tolerance and fault recovery to prevent loss of data if nodes or master machines fail. This paper lays out the functionality of W.ND-BLAST. W.ND-BLAST displays close to 100% performance efficiency when distributing tasks to 12 remote computers of the same performance class. A high throughput BLAST job which took 662.68 minutes (11 hours) on one average machine was completed in 44.97 minutes when distributed to 17 nodes, which included lower performance class machines. Finally, there is a comprehensive high-throughput BLAST Output Viewer (BOV) and Annotation Engine components, which provides comprehensive exportation of BLAST hits to text files, annotated fasta files, tables, or association files. Conclusion W.ND-BLAST provides an interactive tool that allows scientists to easily utilizing their available computing resources for high throughput and comprehensive sequence analyses. The install package for W.ND-BLAST is freely downloadable from . With registration the software is free, installation, networking, and usage instructions are provided as well as a support forum. PMID:15819992

  18. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment.

    PubMed

    Yoshii, Yukie; Furukawa, Takako; Waki, Atsuo; Okuyama, Hiroaki; Inoue, Masahiro; Itoh, Manabu; Zhang, Ming-Rong; Wakizaka, Hidekatsu; Sogawa, Chizuru; Kiyono, Yasushi; Yoshii, Hiroshi; Fujibayashi, Yasuhisa; Saga, Tsuneo

    2015-05-01

    Anti-cancer drug development typically utilizes high-throughput screening with two-dimensional (2D) cell culture. However, 2D culture induces cellular characteristics different from tumors in vivo, resulting in inefficient drug development. Here, we report an innovative high-throughput screening system using nanoimprinting 3D culture to simulate in vivo conditions, thereby facilitating efficient drug development. We demonstrated that cell line-based nanoimprinting 3D screening can more efficiently select drugs that effectively inhibit cancer growth in vivo as compared to 2D culture. Metabolic responses after treatment were assessed using positron emission tomography (PET) probes, and revealed similar characteristics between the 3D spheroids and in vivo tumors. Further, we developed an advanced method to adopt cancer cells from patient tumor tissues for high-throughput drug screening with nanoimprinting 3D culture, which we termed Cancer tissue-Originated Uniformed Spheroid Assay (COUSA). This system identified drugs that were effective in xenografts of the original patient tumors. Nanoimprinting 3D spheroids showed low permeability and formation of hypoxic regions inside, similar to in vivo tumors. Collectively, the nanoimprinting 3D culture provides easy-handling high-throughput drug screening system, which allows for efficient drug development by mimicking the tumor environment. The COUSA system could be a useful platform for drug development with patient cancer cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A versatile toolkit for high throughput functional genomics with Trichoderma reesei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuster, Andre; Bruno, Kenneth S.; Collett, James R.

    2012-01-02

    The ascomycete fungus, Trichoderma reesei (anamorph of Hypocrea jecorina), represents a biotechnological workhorse and is currently one of the most proficient cellulase producers. While strain improvement was traditionally accomplished by random mutagenesis, a detailed understanding of cellulase regulation can only be gained using recombinant technologies. RESULTS: Aiming at high efficiency and high throughput methods, we present here a construction kit for gene knock out in T. reesei. We provide a primer database for gene deletion using the pyr4, amdS and hph selection markers. For high throughput generation of gene knock outs, we constructed vectors using yeast mediated recombination and thenmore » transformed a T. reesei strain deficient in non-homologous end joining (NHEJ) by spore electroporation. This NHEJ-defect was subsequently removed by crossing of mutants with a sexually competent strain derived from the parental strain, QM9414.CONCLUSIONS:Using this strategy and the materials provided, high throughput gene deletion in T. reesei becomes feasible. Moreover, with the application of sexual development, the NHEJ-defect can be removed efficiently and without the need for additional selection markers. The same advantages apply for the construction of multiple mutants by crossing of strains with different gene deletions, which is now possible with considerably less hands-on time and minimal screening effort compared to a transformation approach. Consequently this toolkit can considerably boost research towards efficient exploitation of the resources of T. reesei for cellulase expression and hence second generation biofuel production.« less

  20. Analysis of High-Throughput ELISA Microarray Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Amanda M.; Daly, Don S.; Zangar, Richard C.

    Our research group develops analytical methods and software for the high-throughput analysis of quantitative enzyme-linked immunosorbent assay (ELISA) microarrays. ELISA microarrays differ from DNA microarrays in several fundamental aspects and most algorithms for analysis of DNA microarray data are not applicable to ELISA microarrays. In this review, we provide an overview of the steps involved in ELISA microarray data analysis and how the statistically sound algorithms we have developed provide an integrated software suite to address the needs of each data-processing step. The algorithms discussed are available in a set of open-source software tools (http://www.pnl.gov/statistics/ProMAT).

  1. Toxicokinetic and Dosimetry Modeling Tools for Exposure ...

    EPA Pesticide Factsheets

    New technologies and in vitro testing approaches have been valuable additions to risk assessments that have historically relied solely on in vivo test results. Compared to in vivo methods, in vitro high throughput screening (HTS) assays are less expensive, faster and can provide mechanistic insights on chemical action. However, extrapolating from in vitro chemical concentrations to target tissue or blood concentrations in vivo is fraught with uncertainties, and modeling is dependent upon pharmacokinetic variables not measured in in vitro assays. To address this need, new tools have been created for characterizing, simulating, and evaluating chemical toxicokinetics. Physiologically-based pharmacokinetic (PBPK) models provide estimates of chemical exposures that produce potentially hazardous tissue concentrations, while tissue microdosimetry PK models relate whole-body chemical exposures to cell-scale concentrations. These tools rely on high-throughput in vitro measurements, and successful methods exist for pharmaceutical compounds that determine PK from limited in vitro measurements and chemical structure-derived property predictions. These high throughput (HT) methods provide a more rapid and less resource–intensive alternative to traditional PK model development. We have augmented these in vitro data with chemical structure-based descriptors and mechanistic tissue partitioning models to construct HTPBPK models for over three hundred environmental and pharmace

  2. Optima MDxt: A high throughput 335 keV mid-dose implanter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisner, Edward; David, Jonathan; Justesen, Perry

    2012-11-06

    The continuing demand for both energy purity and implant angle control along with high wafer throughput drove the development of the Axcelis Optima MDxt mid-dose ion implanter. The system utilizes electrostatic scanning, an electrostatic parallelizing lens and an electrostatic energy filter to produce energetically pure beams with high angular integrity. Based on field proven components, the Optima MDxt beamline architecture offers the high beam currents possible with singly charged species including arsenic at energies up to 335 keV as well as large currents from multiply charged species at energies extending over 1 MeV. Conversely, the excellent energy filtering capability allowsmore » high currents at low beam energies, since it is safe to utilize large deceleration ratios. This beamline is coupled with the >500 WPH capable endstation technology used on the Axcelis Optima XEx high energy ion implanter. The endstation includes in-situ angle measurements of the beam in order to maintain excellent beam-to-wafer implant angle control in both the horizontal and vertical directions. The Optima platform control system provides new generation dose control system that assures excellent dosimetry and charge control. This paper will describe the features and technologies that allow the Optima MDxt to provide superior process performance at the highest wafer throughput, and will provide examples of the process performance achievable.« less

  3. Forecasting Ecological Genomics: High-Tech Animal Instrumentation Meets High-Throughput Sequencing

    PubMed Central

    Shafer, Aaron B. A.; Northrup, Joseph M.; Wikelski, Martin; Wittemyer, George; Wolf, Jochen B. W.

    2016-01-01

    Recent advancements in animal tracking technology and high-throughput sequencing are rapidly changing the questions and scope of research in the biological sciences. The integration of genomic data with high-tech animal instrumentation comes as a natural progression of traditional work in ecological genetics, and we provide a framework for linking the separate data streams from these technologies. Such a merger will elucidate the genetic basis of adaptive behaviors like migration and hibernation and advance our understanding of fundamental ecological and evolutionary processes such as pathogen transmission, population responses to environmental change, and communication in natural populations. PMID:26745372

  4. A green fluorescent protein-based assay for high-throughput ligand-binding studies of a mycobacterial biotin protein ligase.

    PubMed

    Bond, Thomas E H; Sorenson, Alanna E; Schaeffer, Patrick M

    2017-12-01

    Biotin protein ligase (BirA) has been identified as an emerging drug target in Mycobacterium tuberculosis due to its essential metabolic role. Indeed, it is the only enzyme capable of covalently attaching biotin onto the biotin carboxyl carrier protein subunit of the acetyl-CoA carboxylase. Despite recent interest in this protein, there is still a gap in cost-effective high-throughput screening assays for rapid identification of mycobacterial BirA-targeting inhibitors. We present for the first time the cloning, expression, purification of mycobacterial GFP-tagged BirA and its application for the development of a high-throughput assay building on the principle of differential scanning fluorimetry of GFP-tagged proteins. The data obtained in this study reveal how biotin and ATP significantly increase the thermal stability (ΔT m =+16.5°C) of M. tuberculosis BirA and lead to formation of a high affinity holoenzyme complex (K obs =7.7nM). The new findings and mycobacterial BirA high-throughput assay presented in this work could provide an efficient platform for future anti-tubercular drug discovery campaigns. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. An Automated Method for High-Throughput Screening of Arabidopsis Rosette Growth in Multi-Well Plates and Its Validation in Stress Conditions.

    PubMed

    De Diego, Nuria; Fürst, Tomáš; Humplík, Jan F; Ugena, Lydia; Podlešáková, Kateřina; Spíchal, Lukáš

    2017-01-01

    High-throughput plant phenotyping platforms provide new possibilities for automated, fast scoring of several plant growth and development traits, followed over time using non-invasive sensors. Using Arabidops is as a model offers important advantages for high-throughput screening with the opportunity to extrapolate the results obtained to other crops of commercial interest. In this study we describe the development of a highly reproducible high-throughput Arabidopsis in vitro bioassay established using our OloPhen platform, suitable for analysis of rosette growth in multi-well plates. This method was successfully validated on example of multivariate analysis of Arabidopsis rosette growth in different salt concentrations and the interaction with varying nutritional composition of the growth medium. Several traits such as changes in the rosette area, relative growth rate, survival rate and homogeneity of the population are scored using fully automated RGB imaging and subsequent image analysis. The assay can be used for fast screening of the biological activity of chemical libraries, phenotypes of transgenic or recombinant inbred lines, or to search for potential quantitative trait loci. It is especially valuable for selecting genotypes or growth conditions that improve plant stress tolerance.

  6. Baculovirus expression system and method for high throughput expression of genetic material

    DOEpatents

    Clark, Robin; Davies, Anthony

    2001-01-01

    The present invention provides novel recombinant baculovirus expression systems for expressing foreign genetic material in a host cell. Such expression systems are readily adapted to an automated method for expression foreign genetic material in a high throughput manner. In other aspects, the present invention features a novel automated method for determining the function of foreign genetic material by transfecting the same into a host by way of the recombinant baculovirus expression systems according to the present invention.

  7. High throughput protein production screening

    DOEpatents

    Beernink, Peter T [Walnut Creek, CA; Coleman, Matthew A [Oakland, CA; Segelke, Brent W [San Ramon, CA

    2009-09-08

    Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.

  8. ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data

    PubMed Central

    Morgan, Martin; Anders, Simon; Lawrence, Michael; Aboyoun, Patrick; Pagès, Hervé; Gentleman, Robert

    2009-01-01

    Summary: ShortRead is a package for input, quality assessment, manipulation and output of high-throughput sequencing data. ShortRead is provided in the R and Bioconductor environments, allowing ready access to additional facilities for advanced statistical analysis, data transformation, visualization and integration with diverse genomic resources. Availability and Implementation: This package is implemented in R and available at the Bioconductor web site; the package contains a ‘vignette’ outlining typical work flows. Contact: mtmorgan@fhcrc.org PMID:19654119

  9. Microarray Detection of Duplex and Triplex DNA Binders with DNA-Modified Gold Nanoparticles

    PubMed Central

    Lytton-Jean, Abigail K. R.; Han, Min Su; Mirkin, Chad A.

    2008-01-01

    We have designed a chip-based assay, using microarray technology, for determining the relative binding affinities of duplex and triplex DNA binders. This assay combines the high discrimination capabilities afforded by DNA-modified Au nanoparticles with the high-throughput capabilities of DNA microarrays. The detection and screening of duplex DNA binders are important because these molecules, in many cases, are potential anticancer agents as well as toxins. Triplex DNA binders are also promising drug candidates. These molecules, in conjunction with triplex forming oligonucleotides, could potentially be used to achieve control of gene expression by interfering with transcription factors that bind to DNA. Therefore, the ability to screen for these molecules in a high-throughput fashion could dramatically improve the drug screening process. The assay reported here provides excellent discrimination between strong, intermediate, and weak duplex and triplex DNA binders in a high-throughput fashion. PMID:17614366

  10. Advancements in zebrafish applications for 21st century toxicology.

    PubMed

    Garcia, Gloria R; Noyes, Pamela D; Tanguay, Robert L

    2016-05-01

    The zebrafish model is the only available high-throughput vertebrate assessment system, and it is uniquely suited for studies of in vivo cell biology. A sequenced and annotated genome has revealed a large degree of evolutionary conservation in comparison to the human genome. Due to our shared evolutionary history, the anatomical and physiological features of fish are highly homologous to humans, which facilitates studies relevant to human health. In addition, zebrafish provide a very unique vertebrate data stream that allows researchers to anchor hypotheses at the biochemical, genetic, and cellular levels to observations at the structural, functional, and behavioral level in a high-throughput format. In this review, we will draw heavily from toxicological studies to highlight advances in zebrafish high-throughput systems. Breakthroughs in transgenic/reporter lines and methods for genetic manipulation, such as the CRISPR-Cas9 system, will be comprised of reports across diverse disciplines. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Advancements in zebrafish applications for 21st century toxicology

    PubMed Central

    Garcia, Gloria R.; Noyes, Pamela D.; Tanguay, Robert L.

    2016-01-01

    The zebrafish model is the only available high-throughput vertebrate assessment system, and it is uniquely suited for studies of in vivo cell biology. A sequenced and annotated genome has revealed a large degree of evolutionary conservation in comparison to the human genome. Due to our shared evolutionary history, the anatomical and physiological features of fish are highly homologous to humans, which facilitates studies relevant to human health. In addition, zebrafish provide a very unique vertebrate data stream that allows researchers to anchor hypotheses at the biochemical, genetic, and cellular levels to observations at the structural, functional, and behavioral level in a high-throughput format. In this review, we will draw heavily from toxicological studies to highlight advances in zebrafish high-throughput systems. Breakthroughs in transgenic/reporter lines and methods for genetic manipulation, such as the CRISPR-Cas9 system, will be comprised of reports across diverse disciplines. PMID:27016469

  12. [Weighted gene co-expression network analysis in biomedicine research].

    PubMed

    Liu, Wei; Li, Li; Ye, Hua; Tu, Wei

    2017-11-25

    High-throughput biological technologies are now widely applied in biology and medicine, allowing scientists to monitor thousands of parameters simultaneously in a specific sample. However, it is still an enormous challenge to mine useful information from high-throughput data. The emergence of network biology provides deeper insights into complex bio-system and reveals the modularity in tissue/cellular networks. Correlation networks are increasingly used in bioinformatics applications. Weighted gene co-expression network analysis (WGCNA) tool can detect clusters of highly correlated genes. Therefore, we systematically reviewed the application of WGCNA in the study of disease diagnosis, pathogenesis and other related fields. First, we introduced principle, workflow, advantages and disadvantages of WGCNA. Second, we presented the application of WGCNA in disease, physiology, drug, evolution and genome annotation. Then, we indicated the application of WGCNA in newly developed high-throughput methods. We hope this review will help to promote the application of WGCNA in biomedicine research.

  13. High-Throughput Sequencing for Detection of Subpopulations of Bacteria Not Previously Associated with Artisanal Cheeses

    PubMed Central

    Quigley, Lisa; O'Sullivan, Orla; Beresford, Tom P.; Ross, R. Paul; Fitzgerald, Gerald F.

    2012-01-01

    Here, high-throughput sequencing was employed to reveal the highly diverse bacterial populations present in 62 Irish artisanal cheeses and, in some cases, associated cheese rinds. Using this approach, we revealed the presence of several genera not previously associated with cheese, including Faecalibacterium, Prevotella, and Helcococcus and, for the first time, detected the presence of Arthrobacter and Brachybacterium in goats' milk cheese. Our analysis confirmed many previously observed patterns, such as the dominance of typical cheese bacteria, the fact that the microbiota of raw and pasteurized milk cheeses differ, and that the level of cheese maturation has a significant influence on Lactobacillus populations. It was also noted that cheeses containing adjunct ingredients had lower proportions of Lactococcus species. It is thus apparent that high-throughput sequencing-based investigations can provide valuable insights into the microbial populations of artisanal foods. PMID:22685131

  14. High-throughput sequencing for detection of subpopulations of bacteria not previously associated with artisanal cheeses.

    PubMed

    Quigley, Lisa; O'Sullivan, Orla; Beresford, Tom P; Ross, R Paul; Fitzgerald, Gerald F; Cotter, Paul D

    2012-08-01

    Here, high-throughput sequencing was employed to reveal the highly diverse bacterial populations present in 62 Irish artisanal cheeses and, in some cases, associated cheese rinds. Using this approach, we revealed the presence of several genera not previously associated with cheese, including Faecalibacterium, Prevotella, and Helcococcus and, for the first time, detected the presence of Arthrobacter and Brachybacterium in goats' milk cheese. Our analysis confirmed many previously observed patterns, such as the dominance of typical cheese bacteria, the fact that the microbiota of raw and pasteurized milk cheeses differ, and that the level of cheese maturation has a significant influence on Lactobacillus populations. It was also noted that cheeses containing adjunct ingredients had lower proportions of Lactococcus species. It is thus apparent that high-throughput sequencing-based investigations can provide valuable insights into the microbial populations of artisanal foods.

  15. High-Throughput Tabular Data Processor - Platform independent graphical tool for processing large data sets.

    PubMed

    Madanecki, Piotr; Bałut, Magdalena; Buckley, Patrick G; Ochocka, J Renata; Bartoszewski, Rafał; Crossman, David K; Messiaen, Ludwine M; Piotrowski, Arkadiusz

    2018-01-01

    High-throughput technologies generate considerable amount of data which often requires bioinformatic expertise to analyze. Here we present High-Throughput Tabular Data Processor (HTDP), a platform independent Java program. HTDP works on any character-delimited column data (e.g. BED, GFF, GTF, PSL, WIG, VCF) from multiple text files and supports merging, filtering and converting of data that is produced in the course of high-throughput experiments. HTDP can also utilize itemized sets of conditions from external files for complex or repetitive filtering/merging tasks. The program is intended to aid global, real-time processing of large data sets using a graphical user interface (GUI). Therefore, no prior expertise in programming, regular expression, or command line usage is required of the user. Additionally, no a priori assumptions are imposed on the internal file composition. We demonstrate the flexibility and potential of HTDP in real-life research tasks including microarray and massively parallel sequencing, i.e. identification of disease predisposing variants in the next generation sequencing data as well as comprehensive concurrent analysis of microarray and sequencing results. We also show the utility of HTDP in technical tasks including data merge, reduction and filtering with external criteria files. HTDP was developed to address functionality that is missing or rudimentary in other GUI software for processing character-delimited column data from high-throughput technologies. Flexibility, in terms of input file handling, provides long term potential functionality in high-throughput analysis pipelines, as the program is not limited by the currently existing applications and data formats. HTDP is available as the Open Source software (https://github.com/pmadanecki/htdp).

  16. High-Throughput Tabular Data Processor – Platform independent graphical tool for processing large data sets

    PubMed Central

    Bałut, Magdalena; Buckley, Patrick G.; Ochocka, J. Renata; Bartoszewski, Rafał; Crossman, David K.; Messiaen, Ludwine M.; Piotrowski, Arkadiusz

    2018-01-01

    High-throughput technologies generate considerable amount of data which often requires bioinformatic expertise to analyze. Here we present High-Throughput Tabular Data Processor (HTDP), a platform independent Java program. HTDP works on any character-delimited column data (e.g. BED, GFF, GTF, PSL, WIG, VCF) from multiple text files and supports merging, filtering and converting of data that is produced in the course of high-throughput experiments. HTDP can also utilize itemized sets of conditions from external files for complex or repetitive filtering/merging tasks. The program is intended to aid global, real-time processing of large data sets using a graphical user interface (GUI). Therefore, no prior expertise in programming, regular expression, or command line usage is required of the user. Additionally, no a priori assumptions are imposed on the internal file composition. We demonstrate the flexibility and potential of HTDP in real-life research tasks including microarray and massively parallel sequencing, i.e. identification of disease predisposing variants in the next generation sequencing data as well as comprehensive concurrent analysis of microarray and sequencing results. We also show the utility of HTDP in technical tasks including data merge, reduction and filtering with external criteria files. HTDP was developed to address functionality that is missing or rudimentary in other GUI software for processing character-delimited column data from high-throughput technologies. Flexibility, in terms of input file handling, provides long term potential functionality in high-throughput analysis pipelines, as the program is not limited by the currently existing applications and data formats. HTDP is available as the Open Source software (https://github.com/pmadanecki/htdp). PMID:29432475

  17. High-throughput electrophysiological assays for voltage gated ion channels using SyncroPatch 768PE.

    PubMed

    Li, Tianbo; Lu, Gang; Chiang, Eugene Y; Chernov-Rogan, Tania; Grogan, Jane L; Chen, Jun

    2017-01-01

    Ion channels regulate a variety of physiological processes and represent an important class of drug target. Among the many methods of studying ion channel function, patch clamp electrophysiology is considered the gold standard by providing the ultimate precision and flexibility. However, its utility in ion channel drug discovery is impeded by low throughput. Additionally, characterization of endogenous ion channels in primary cells remains technical challenging. In recent years, many automated patch clamp (APC) platforms have been developed to overcome these challenges, albeit with varying throughput, data quality and success rate. In this study, we utilized SyncroPatch 768PE, one of the latest generation APC platforms which conducts parallel recording from two-384 modules with giga-seal data quality, to push these 2 boundaries. By optimizing various cell patching parameters and a two-step voltage protocol, we developed a high throughput APC assay for the voltage-gated sodium channel Nav1.7. By testing a group of Nav1.7 reference compounds' IC50, this assay was proved to be highly consistent with manual patch clamp (R > 0.9). In a pilot screening of 10,000 compounds, the success rate, defined by > 500 MΩ seal resistance and >500 pA peak current, was 79%. The assay was robust with daily throughput ~ 6,000 data points and Z' factor 0.72. Using the same platform, we also successfully recorded endogenous voltage-gated potassium channel Kv1.3 in primary T cells. Together, our data suggest that SyncroPatch 768PE provides a powerful platform for ion channel research and drug discovery.

  18. The iPlant collaborative: cyberinfrastructure for enabling data to discovery for the life sciences

    USDA-ARS?s Scientific Manuscript database

    The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identify management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning m...

  19. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    DOEpatents

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  20. A catalog of putative adverse outcome pathways (AOPs) that ...

    EPA Pesticide Factsheets

    A number of putative AOPs for several distinct MIEs of thyroid disruption have been formulated for amphibian metamorphosis and fish swim bladder inflation. These have been entered into the AOP knowledgebase on the OECD WIKI. The EDSP has been actively advancing high-throughput screening for chemical activity toward estrogen, androgen and thyroid targets. However, it has been recently identified that coverage for thyroid-related targets is lagging behind estrogen and androgen assay coverage. As thyroid-related medium-high throughput assays are actively being developed for inclusion in the ToxCast chemical screening program, a parallel effort is underway to characterize putative adverse outcome pathways (AOPs) specific to these thyroid-related targets. This effort is intended to provide biological and ecological context that will enhance the utility of ToxCast high throughput screening data for hazard identification.

  1. A high-throughput assay for DNA topoisomerases and other enzymes, based on DNA triplex formation.

    PubMed

    Burrell, Matthew R; Burton, Nicolas P; Maxwell, Anthony

    2010-01-01

    We have developed a rapid, high-throughput assay for measuring the catalytic activity (DNA supercoiling or relaxation) of topoisomerase enzymes that is also capable of monitoring the activity of other enzymes that alter the topology of DNA. The assay utilises intermolecular triplex formation to resolve supercoiled and relaxed forms of DNA, the principle being the greater efficiency of a negatively supercoiled plasmid to form an intermolecular triplex with an immobilised oligonucleotide than the relaxed form. The assay provides a number of advantages over the standard gel-based methods, including greater speed of analysis, reduced sample handling, better quantitation and improved reliability and accuracy of output data. The assay is performed in microtitre plates and can be adapted to high-throughput screening of libraries of potential inhibitors of topoisomerases including bacterial DNA gyrase.

  2. High-throughput ultraviolet photoacoustic microscopy with multifocal excitation

    NASA Astrophysics Data System (ADS)

    Imai, Toru; Shi, Junhui; Wong, Terence T. W.; Li, Lei; Zhu, Liren; Wang, Lihong V.

    2018-03-01

    Ultraviolet photoacoustic microscopy (UV-PAM) is a promising intraoperative tool for surgical margin assessment (SMA), one that can provide label-free histology-like images with high resolution. In this study, using a microlens array and a one-dimensional (1-D) array ultrasonic transducer, we developed a high-throughput multifocal UV-PAM (MF-UV-PAM). Our new system achieved a 1.6 ± 0.2 μm lateral resolution and produced images 40 times faster than the previously developed point-by-point scanning UV-PAM. MF-UV-PAM provided a readily comprehensible photoacoustic image of a mouse brain slice with specific absorption contrast in ˜16 min, highlighting cell nuclei. Individual cell nuclei could be clearly resolved, showing its practical potential for intraoperative SMA.

  3. High-throughput and reliable protocols for animal microRNA library cloning.

    PubMed

    Xiao, Caide

    2011-01-01

    MicroRNAs are short single-stranded RNA molecules (18-25 nucleotides). Because of their ability to silence gene expressions, they can be used to diagnose and treat tumors. Experimental construction of microRNA libraries was the most important step to identify microRNAs from animal tissues. Although there are many commercial kits with special protocols to construct microRNA libraries, this chapter provides the most reliable, high-throughput, and affordable protocols for microRNA library construction. The high-throughput capability of our protocols came from a double concentration (3 and 15%, thickness 1.5 mm) polyacrylamide gel electrophoresis (PAGE), which could directly extract microRNA-size RNAs from up to 400 μg total RNA (enough for two microRNA libraries). The reliability of our protocols was assured by a third PAGE, which selected PCR products of microRNA-size RNAs ligated with 5' and 3' linkers by a miRCat™ kit. Also, a MathCAD program was provided to automatically search short RNAs inserted between 5' and 3' linkers from thousands of sequencing text files.

  4. Experimental and Study Design Considerations for Uncovering Oncometabolites.

    PubMed

    Haznadar, Majda; Mathé, Ewy A

    2017-01-01

    Metabolomics as a field has gained attention due to its potential for biomarker discovery, namely because it directly reflects disease phenotype and is the downstream effect of posttranslational modifications. The field provides a "top-down," integrated view of biochemistry in complex organisms, as opposed to the traditional "bottom-up" approach that aims to analyze networks of interactions between genes, proteins and metabolites. It also allows for the detection of thousands of endogenous metabolites in various clinical biospecimens in a high-throughput manner, including tissue and biofluids such as blood and urine. Of note, because biological fluid samples can be collected relatively easily, the time-dependent fluctuations of metabolites can be readily studied in detail.In this chapter, we aim to provide an overview of (1) analytical methods that are currently employed in the field, and (2) study design concepts that should be considered prior to conducting high-throughput metabolomics studies. While widely applicable, the concepts presented here are namely applicable to high-throughput untargeted studies that aim to search for metabolite biomarkers that are associated with a particular human disease.

  5. Arrays of High-Aspect Ratio Microchannels for High-Throughput Isolation of Circulating Tumor Cells (CTCs).

    PubMed

    Hupert, Mateusz L; Jackson, Joshua M; Wang, Hong; Witek, Małgorzata A; Kamande, Joyce; Milowsky, Matthew I; Whang, Young E; Soper, Steven A

    2014-10-01

    Microsystem-based technologies are providing new opportunities in the area of in vitro diagnostics due to their ability to provide process automation enabling point-of-care operation. As an example, microsystems used for the isolation and analysis of circulating tumor cells (CTCs) from complex, heterogeneous samples in an automated fashion with improved recoveries and selectivity are providing new opportunities for this important biomarker. Unfortunately, many of the existing microfluidic systems lack the throughput capabilities and/or are too expensive to manufacture to warrant their widespread use in clinical testing scenarios. Here, we describe a disposable, all-polymer, microfluidic system for the high-throughput (HT) isolation of CTCs directly from whole blood inputs. The device employs an array of high aspect ratio (HAR), parallel, sinusoidal microchannels (25 µm × 150 µm; W × D; AR = 6.0) with walls covalently decorated with anti-EpCAM antibodies to provide affinity-based isolation of CTCs. Channel width, which is similar to an average CTC diameter (12-25 µm), plays a critical role in maximizing the probability of cell/wall interactions and allows for achieving high CTC recovery. The extended channel depth allows for increased throughput at the optimized flow velocity (2 mm/s in a microchannel); maximizes cell recovery, and prevents clogging of the microfluidic channels during blood processing. Fluidic addressing of the microchannel array with a minimal device footprint is provided by large cross-sectional area feed and exit channels poised orthogonal to the network of the sinusoidal capillary channels (so-called Z-geometry). Computational modeling was used to confirm uniform addressing of the channels in the isolation bed. Devices with various numbers of parallel microchannels ranging from 50 to 320 have been successfully constructed. Cyclic olefin copolymer (COC) was chosen as the substrate material due to its superior properties during UV-activation of the HAR microchannels surfaces prior to antibody attachment. Operation of the HT-CTC device has been validated by isolation of CTCs directly from blood secured from patients with metastatic prostate cancer. High CTC sample purities (low number of contaminating white blood cells, WBCs) allowed for direct lysis and molecular profiling of isolated CTCs.

  6. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.

    PubMed

    Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal

    2016-05-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. eRNA: a graphic user interface-based tool optimized for large data analysis from high-throughput RNA sequencing

    PubMed Central

    2014-01-01

    Background RNA sequencing (RNA-seq) is emerging as a critical approach in biological research. However, its high-throughput advantage is significantly limited by the capacity of bioinformatics tools. The research community urgently needs user-friendly tools to efficiently analyze the complicated data generated by high throughput sequencers. Results We developed a standalone tool with graphic user interface (GUI)-based analytic modules, known as eRNA. The capacity of performing parallel processing and sample management facilitates large data analyses by maximizing hardware usage and freeing users from tediously handling sequencing data. The module miRNA identification” includes GUIs for raw data reading, adapter removal, sequence alignment, and read counting. The module “mRNA identification” includes GUIs for reference sequences, genome mapping, transcript assembling, and differential expression. The module “Target screening” provides expression profiling analyses and graphic visualization. The module “Self-testing” offers the directory setups, sample management, and a check for third-party package dependency. Integration of other GUIs including Bowtie, miRDeep2, and miRspring extend the program’s functionality. Conclusions eRNA focuses on the common tools required for the mapping and quantification analysis of miRNA-seq and mRNA-seq data. The software package provides an additional choice for scientists who require a user-friendly computing environment and high-throughput capacity for large data analysis. eRNA is available for free download at https://sourceforge.net/projects/erna/?source=directory. PMID:24593312

  8. eRNA: a graphic user interface-based tool optimized for large data analysis from high-throughput RNA sequencing.

    PubMed

    Yuan, Tiezheng; Huang, Xiaoyi; Dittmar, Rachel L; Du, Meijun; Kohli, Manish; Boardman, Lisa; Thibodeau, Stephen N; Wang, Liang

    2014-03-05

    RNA sequencing (RNA-seq) is emerging as a critical approach in biological research. However, its high-throughput advantage is significantly limited by the capacity of bioinformatics tools. The research community urgently needs user-friendly tools to efficiently analyze the complicated data generated by high throughput sequencers. We developed a standalone tool with graphic user interface (GUI)-based analytic modules, known as eRNA. The capacity of performing parallel processing and sample management facilitates large data analyses by maximizing hardware usage and freeing users from tediously handling sequencing data. The module miRNA identification" includes GUIs for raw data reading, adapter removal, sequence alignment, and read counting. The module "mRNA identification" includes GUIs for reference sequences, genome mapping, transcript assembling, and differential expression. The module "Target screening" provides expression profiling analyses and graphic visualization. The module "Self-testing" offers the directory setups, sample management, and a check for third-party package dependency. Integration of other GUIs including Bowtie, miRDeep2, and miRspring extend the program's functionality. eRNA focuses on the common tools required for the mapping and quantification analysis of miRNA-seq and mRNA-seq data. The software package provides an additional choice for scientists who require a user-friendly computing environment and high-throughput capacity for large data analysis. eRNA is available for free download at https://sourceforge.net/projects/erna/?source=directory.

  9. toxoMine: an integrated omics data warehouse for Toxoplasma gondii systems biology research

    PubMed Central

    Rhee, David B.; Croken, Matthew McKnight; Shieh, Kevin R.; Sullivan, Julie; Micklem, Gos; Kim, Kami; Golden, Aaron

    2015-01-01

    Toxoplasma gondii (T. gondii) is an obligate intracellular parasite that must monitor for changes in the host environment and respond accordingly; however, it is still not fully known which genetic or epigenetic factors are involved in regulating virulence traits of T. gondii. There are on-going efforts to elucidate the mechanisms regulating the stage transition process via the application of high-throughput epigenomics, genomics and proteomics techniques. Given the range of experimental conditions and the typical yield from such high-throughput techniques, a new challenge arises: how to effectively collect, organize and disseminate the generated data for subsequent data analysis. Here, we describe toxoMine, which provides a powerful interface to support sophisticated integrative exploration of high-throughput experimental data and metadata, providing researchers with a more tractable means toward understanding how genetic and/or epigenetic factors play a coordinated role in determining pathogenicity of T. gondii. As a data warehouse, toxoMine allows integration of high-throughput data sets with public T. gondii data. toxoMine is also able to execute complex queries involving multiple data sets with straightforward user interaction. Furthermore, toxoMine allows users to define their own parameters during the search process that gives users near-limitless search and query capabilities. The interoperability feature also allows users to query and examine data available in other InterMine systems, which would effectively augment the search scope beyond what is available to toxoMine. toxoMine complements the major community database ToxoDB by providing a data warehouse that enables more extensive integrative studies for T. gondii. Given all these factors, we believe it will become an indispensable resource to the greater infectious disease research community. Database URL: http://toxomine.org PMID:26130662

  10. Automated Purification of Recombinant Proteins: Combining High-throughput with High Yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chiann Tso; Moore, Priscilla A.; Auberry, Deanna L.

    2006-05-01

    Protein crystallography, mapping protein interactions and other approaches of current functional genomics require not only purifying large numbers of proteins but also obtaining sufficient yield and homogeneity for downstream high-throughput applications. There is a need for the development of robust automated high-throughput protein expression and purification processes to meet these requirements. We developed and compared two alternative workflows for automated purification of recombinant proteins based on expression of bacterial genes in Escherichia coli: First - a filtration separation protocol based on expression of 800 ml E. coli cultures followed by filtration purification using Ni2+-NTATM Agarose (Qiagen). Second - a smallermore » scale magnetic separation method based on expression in 25 ml cultures of E.coli followed by 96-well purification on MagneHisTM Ni2+ Agarose (Promega). Both workflows provided comparable average yields of proteins about 8 ug of purified protein per unit of OD at 600 nm of bacterial culture. We discuss advantages and limitations of the automated workflows that can provide proteins more than 90 % pure in the range of 100 ug – 45 mg per purification run as well as strategies for optimization of these protocols.« less

  11. High Resolution Melting (HRM) for High-Throughput Genotyping-Limitations and Caveats in Practical Case Studies.

    PubMed

    Słomka, Marcin; Sobalska-Kwapis, Marta; Wachulec, Monika; Bartosz, Grzegorz; Strapagiel, Dominik

    2017-11-03

    High resolution melting (HRM) is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs). This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup.

  12. High Resolution Melting (HRM) for High-Throughput Genotyping—Limitations and Caveats in Practical Case Studies

    PubMed Central

    Słomka, Marcin; Sobalska-Kwapis, Marta; Wachulec, Monika; Bartosz, Grzegorz

    2017-01-01

    High resolution melting (HRM) is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs). This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup. PMID:29099791

  13. A high-throughput, multi-channel photon-counting detector with picosecond timing

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-06-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  14. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures.

    PubMed

    Wu, Zhenlong; Chen, Yu; Wang, Moran; Chung, Aram J

    2016-02-07

    Fluid inertia which has conventionally been neglected in microfluidics has been gaining much attention for particle and cell manipulation because inertia-based methods inherently provide simple, passive, precise and high-throughput characteristics. Particularly, the inertial approach has been applied to blood separation for various biomedical research studies mainly using spiral microchannels. For higher throughput, parallelization is essential; however, it is difficult to realize using spiral channels because of their large two dimensional layouts. In this work, we present a novel inertial platform for continuous sheathless particle and blood cell separation in straight microchannels containing microstructures. Microstructures within straight channels exert secondary flows to manipulate particle positions similar to Dean flow in curved channels but with higher controllability. Through a balance between inertial lift force and microstructure-induced secondary flow, we deterministically position microspheres and cells based on their sizes to be separated downstream. Using our inertial platform, we successfully sorted microparticles and fractionized blood cells with high separation efficiencies, high purities and high throughputs. The inertial separation platform developed here can be operated to process diluted blood with a throughput of 10.8 mL min(-1)via radially arrayed single channels with one inlet and two rings of outlets.

  15. Lens-free shadow image based high-throughput continuous cell monitoring technique.

    PubMed

    Jin, Geonsoo; Yoo, In-Hwa; Pack, Seung Pil; Yang, Ji-Woon; Ha, Un-Hwan; Paek, Se-Hwan; Seo, Sungkyu

    2012-01-01

    A high-throughput continuous cell monitoring technique which does not require any labeling reagents or destruction of the specimen is demonstrated. More than 6000 human alveolar epithelial A549 cells are monitored for up to 72 h simultaneously and continuously with a single digital image within a cost and space effective lens-free shadow imaging platform. In an experiment performed within a custom built incubator integrated with the lens-free shadow imaging platform, the cell nucleus division process could be successfully characterized by calculating the signal-to-noise ratios (SNRs) and the shadow diameters (SDs) of the cell shadow patterns. The versatile nature of this platform also enabled a single cell viability test followed by live cell counting. This study firstly shows that the lens-free shadow imaging technique can provide a continuous cell monitoring without any staining/labeling reagent and destruction of the specimen. This high-throughput continuous cell monitoring technique based on lens-free shadow imaging may be widely utilized as a compact, low-cost, and high-throughput cell monitoring tool in the fields of drug and food screening or cell proliferation and viability testing. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications

    PubMed Central

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, SangHyeon; Choi, Won Jun

    2016-01-01

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called “Si photonics”). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates. PMID:26864968

  17. Strategic and Operational Plan for Integrating Transcriptomics ...

    EPA Pesticide Factsheets

    Plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT; the details are in the attached slide presentation presentation on plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT, given at the OECD meeting on June 23, 2016

  18. High-Throughput Experimental Approach Capabilities | Materials Science |

    Science.gov Websites

    NREL High-Throughput Experimental Approach Capabilities High-Throughput Experimental Approach by yellow and is for materials in the upper right sector. NREL's high-throughput experimental ,Te) and oxysulfide sputtering Combi-5: Nitrides and oxynitride sputtering We also have several non

  19. Diamond Turned High Precision PIAA Optics and Four Mirror PIAA System for High Contrast Imaging of Exo-planets

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatham; Cady, Eric; Pueyo, Laurent; Ana, Xin; Shaklan, Stuart; Guyon, Olivier; Belikov, Ruslan

    2011-01-01

    Off-axis, high-sag PIAA optics for high contrast imaging present challenges in manufacturing and testing. With smaller form factors and consequently smaller surface deformations (< 80 microns), diamond turned fabrication of these mirrors becomes feasible. Though such a design reduces the system throughput, it still provides 2(lambda)D inner working angle. We report on the design, fabrication, measurements, and initial assessment of the novel PIAA optics in a coronagraph testbed. We also describe, for the first time, a four mirror PIAA coronagraph that relaxes apodizer requirements and significantly improves throughput while preserving the low-cost benefits.

  20. Increasing the coverage area through relay node deployment in long term evolution advanced cellular networks

    NASA Astrophysics Data System (ADS)

    Aldhaibani, Jaafar A.; Ahmad, R. B.; Yahya, A.; Azeez, Suzan A.

    2015-05-01

    Wireless multi-hop relay networks have become very important technologies in mobile communications. These networks ensure high throughput and coverage extension with a low cost. The poor capacity at cell edges is not enough to meet with growing demand of high capacity and throughput irrespective of user's placement in the cellular network. In this paper we propose optimal placement of relay node that provides maximum achievable rate at users and enhances the throughput and coverage at cell edge region. The proposed scheme is based on the outage probability at users and taken on account the interference between nodes. Numerical analyses along with simulation results indicated there are an improvement in capacity for users at the cell edge is 40% increment from all cell capacity.

  1. Optimisation Issues of High Throughput Medical Data and Video Streaming Traffic in 3G Wireless Environments.

    PubMed

    Istepanian, R S H; Philip, N

    2005-01-01

    In this paper we describe some of the optimisation issues relevant to the requirements of high throughput of medical data and video streaming traffic in 3G wireless environments. In particular we present a challenging 3G mobile health care application that requires a demanding 3G medical data throughput. We also describe the 3G QoS requirement of mObile Tele-Echography ultra-Light rObot system (OTELO that is designed to provide seamless 3G connectivity for real-time ultrasound medical video streams and diagnosis from a remote site (robotic and patient station) manipulated by an expert side (specialists) that is controlling the robotic scanning operation and presenting a real-time feedback diagnosis using 3G wireless communication links.

  2. High-throughput image analysis of tumor spheroids: a user-friendly software application to measure the size of spheroids automatically and accurately.

    PubMed

    Chen, Wenjin; Wong, Chung; Vosburgh, Evan; Levine, Arnold J; Foran, David J; Xu, Eugenia Y

    2014-07-08

    The increasing number of applications of three-dimensional (3D) tumor spheroids as an in vitro model for drug discovery requires their adaptation to large-scale screening formats in every step of a drug screen, including large-scale image analysis. Currently there is no ready-to-use and free image analysis software to meet this large-scale format. Most existing methods involve manually drawing the length and width of the imaged 3D spheroids, which is a tedious and time-consuming process. This study presents a high-throughput image analysis software application - SpheroidSizer, which measures the major and minor axial length of the imaged 3D tumor spheroids automatically and accurately; calculates the volume of each individual 3D tumor spheroid; then outputs the results in two different forms in spreadsheets for easy manipulations in the subsequent data analysis. The main advantage of this software is its powerful image analysis application that is adapted for large numbers of images. It provides high-throughput computation and quality-control workflow. The estimated time to process 1,000 images is about 15 min on a minimally configured laptop, or around 1 min on a multi-core performance workstation. The graphical user interface (GUI) is also designed for easy quality control, and users can manually override the computer results. The key method used in this software is adapted from the active contour algorithm, also known as Snakes, which is especially suitable for images with uneven illumination and noisy background that often plagues automated imaging processing in high-throughput screens. The complimentary "Manual Initialize" and "Hand Draw" tools provide the flexibility to SpheroidSizer in dealing with various types of spheroids and diverse quality images. This high-throughput image analysis software remarkably reduces labor and speeds up the analysis process. Implementing this software is beneficial for 3D tumor spheroids to become a routine in vitro model for drug screens in industry and academia.

  3. Conceptual dissonance: evaluating the efficacy of natural language processing techniques for validating translational knowledge constructs.

    PubMed

    Payne, Philip R O; Kwok, Alan; Dhaval, Rakesh; Borlawsky, Tara B

    2009-03-01

    The conduct of large-scale translational studies presents significant challenges related to the storage, management and analysis of integrative data sets. Ideally, the application of methodologies such as conceptual knowledge discovery in databases (CKDD) provides a means for moving beyond intuitive hypothesis discovery and testing in such data sets, and towards the high-throughput generation and evaluation of knowledge-anchored relationships between complex bio-molecular and phenotypic variables. However, the induction of such high-throughput hypotheses is non-trivial, and requires correspondingly high-throughput validation methodologies. In this manuscript, we describe an evaluation of the efficacy of a natural language processing-based approach to validating such hypotheses. As part of this evaluation, we will examine a phenomenon that we have labeled as "Conceptual Dissonance" in which conceptual knowledge derived from two or more sources of comparable scope and granularity cannot be readily integrated or compared using conventional methods and automated tools.

  4. A high-throughput exploration of magnetic materials by using structure predicting methods

    NASA Astrophysics Data System (ADS)

    Arapan, S.; Nieves, P.; Cuesta-López, S.

    2018-02-01

    We study the capability of a structure predicting method based on genetic/evolutionary algorithm for a high-throughput exploration of magnetic materials. We use the USPEX and VASP codes to predict stable and generate low-energy meta-stable structures for a set of representative magnetic structures comprising intermetallic alloys, oxides, interstitial compounds, and systems containing rare-earths elements, and for both types of ferromagnetic and antiferromagnetic ordering. We have modified the interface between USPEX and VASP codes to improve the performance of structural optimization as well as to perform calculations in a high-throughput manner. We show that exploring the structure phase space with a structure predicting technique reveals large sets of low-energy metastable structures, which not only improve currently exiting databases, but also may provide understanding and solutions to stabilize and synthesize magnetic materials suitable for permanent magnet applications.

  5. High-speed zero-copy data transfer for DAQ applications

    NASA Astrophysics Data System (ADS)

    Pisani, Flavio; Cámpora Pérez, Daniel Hugo; Neufeld, Niko

    2015-05-01

    The LHCb Data Acquisition (DAQ) will be upgraded in 2020 to a trigger-free readout. In order to achieve this goal we will need to connect around 500 nodes with a total network capacity of 32 Tb/s. To get such an high network capacity we are testing zero-copy technology in order to maximize the theoretical link throughput without adding excessive CPU and memory bandwidth overhead, leaving free resources for data processing resulting in less power, space and money used for the same result. We develop a modular test application which can be used with different transport layers. For the zero-copy implementation we choose the OFED IBVerbs API because it can provide low level access and high throughput. We present throughput and CPU usage measurements of 40 GbE solutions using Remote Direct Memory Access (RDMA), for several network configurations to test the scalability of the system.

  6. Alternative to the soft-agar assay that permits high-throughput drug and genetic screens for cellular transformation

    PubMed Central

    Rotem, Asaf; Janzer, Andreas; Izar, Benjamin; Ji, Zhe; Doench, John G.; Garraway, Levi A.; Struhl, Kevin

    2015-01-01

    Colony formation in soft agar is the gold-standard assay for cellular transformation in vitro, but it is unsuited for high-throughput screening. Here, we describe an assay for cellular transformation that involves growth in low attachment (GILA) conditions and is strongly correlated with the soft-agar assay. Using GILA, we describe high-throughput screens for drugs and genes that selectively inhibit or increase transformation, but not proliferation. Such molecules are unlikely to be found through conventional drug screening, and they include kinase inhibitors and drugs for noncancer diseases. In addition to known oncogenes, the genetic screen identifies genes that contribute to cellular transformation. Lastly, we demonstrate the ability of Food and Drug Administration-approved noncancer drugs to selectively kill ovarian cancer cells derived from patients with chemotherapy-resistant disease, suggesting this approach may provide useful information for personalized cancer treatment. PMID:25902495

  7. Alternative to the soft-agar assay that permits high-throughput drug and genetic screens for cellular transformation.

    PubMed

    Rotem, Asaf; Janzer, Andreas; Izar, Benjamin; Ji, Zhe; Doench, John G; Garraway, Levi A; Struhl, Kevin

    2015-05-05

    Colony formation in soft agar is the gold-standard assay for cellular transformation in vitro, but it is unsuited for high-throughput screening. Here, we describe an assay for cellular transformation that involves growth in low attachment (GILA) conditions and is strongly correlated with the soft-agar assay. Using GILA, we describe high-throughput screens for drugs and genes that selectively inhibit or increase transformation, but not proliferation. Such molecules are unlikely to be found through conventional drug screening, and they include kinase inhibitors and drugs for noncancer diseases. In addition to known oncogenes, the genetic screen identifies genes that contribute to cellular transformation. Lastly, we demonstrate the ability of Food and Drug Administration-approved noncancer drugs to selectively kill ovarian cancer cells derived from patients with chemotherapy-resistant disease, suggesting this approach may provide useful information for personalized cancer treatment.

  8. Spotsizer: High-throughput quantitative analysis of microbial growth.

    PubMed

    Bischof, Leanne; Převorovský, Martin; Rallis, Charalampos; Jeffares, Daniel C; Arzhaeva, Yulia; Bähler, Jürg

    2016-10-01

    Microbial colony growth can serve as a useful readout in assays for studying complex genetic interactions or the effects of chemical compounds. Although computational tools for acquiring quantitative measurements of microbial colonies have been developed, their utility can be compromised by inflexible input image requirements, non-trivial installation procedures, or complicated operation. Here, we present the Spotsizer software tool for automated colony size measurements in images of robotically arrayed microbial colonies. Spotsizer features a convenient graphical user interface (GUI), has both single-image and batch-processing capabilities, and works with multiple input image formats and different colony grid types. We demonstrate how Spotsizer can be used for high-throughput quantitative analysis of fission yeast growth. The user-friendly Spotsizer tool provides rapid, accurate, and robust quantitative analyses of microbial growth in a high-throughput format. Spotsizer is freely available at https://data.csiro.au/dap/landingpage?pid=csiro:15330 under a proprietary CSIRO license.

  9. Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data.

    PubMed

    Ching, Travers; Zhu, Xun; Garmire, Lana X

    2018-04-01

    Artificial neural networks (ANN) are computing architectures with many interconnections of simple neural-inspired computing elements, and have been applied to biomedical fields such as imaging analysis and diagnosis. We have developed a new ANN framework called Cox-nnet to predict patient prognosis from high throughput transcriptomics data. In 10 TCGA RNA-Seq data sets, Cox-nnet achieves the same or better predictive accuracy compared to other methods, including Cox-proportional hazards regression (with LASSO, ridge, and mimimax concave penalty), Random Forests Survival and CoxBoost. Cox-nnet also reveals richer biological information, at both the pathway and gene levels. The outputs from the hidden layer node provide an alternative approach for survival-sensitive dimension reduction. In summary, we have developed a new method for accurate and efficient prognosis prediction on high throughput data, with functional biological insights. The source code is freely available at https://github.com/lanagarmire/cox-nnet.

  10. Image-based computational quantification and visualization of genetic alterations and tumour heterogeneity

    PubMed Central

    Zhong, Qing; Rüschoff, Jan H.; Guo, Tiannan; Gabrani, Maria; Schüffler, Peter J.; Rechsteiner, Markus; Liu, Yansheng; Fuchs, Thomas J.; Rupp, Niels J.; Fankhauser, Christian; Buhmann, Joachim M.; Perner, Sven; Poyet, Cédric; Blattner, Miriam; Soldini, Davide; Moch, Holger; Rubin, Mark A.; Noske, Aurelia; Rüschoff, Josef; Haffner, Michael C.; Jochum, Wolfram; Wild, Peter J.

    2016-01-01

    Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility. PMID:27052161

  11. Image-based computational quantification and visualization of genetic alterations and tumour heterogeneity.

    PubMed

    Zhong, Qing; Rüschoff, Jan H; Guo, Tiannan; Gabrani, Maria; Schüffler, Peter J; Rechsteiner, Markus; Liu, Yansheng; Fuchs, Thomas J; Rupp, Niels J; Fankhauser, Christian; Buhmann, Joachim M; Perner, Sven; Poyet, Cédric; Blattner, Miriam; Soldini, Davide; Moch, Holger; Rubin, Mark A; Noske, Aurelia; Rüschoff, Josef; Haffner, Michael C; Jochum, Wolfram; Wild, Peter J

    2016-04-07

    Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility.

  12. Predicting Novel Bulk Metallic Glasses via High- Throughput Calculations

    NASA Astrophysics Data System (ADS)

    Perim, E.; Lee, D.; Liu, Y.; Toher, C.; Gong, P.; Li, Y.; Simmons, W. N.; Levy, O.; Vlassak, J.; Schroers, J.; Curtarolo, S.

    Bulk metallic glasses (BMGs) are materials which may combine key properties from crystalline metals, such as high hardness, with others typically presented by plastics, such as easy processability. However, the cost of the known BMGs poses a significant obstacle for the development of applications, which has lead to a long search for novel, economically viable, BMGs. The emergence of high-throughput DFT calculations, such as the library provided by the AFLOWLIB consortium, has provided new tools for materials discovery. We have used this data to develop a new glass forming descriptor combining structural factors with thermodynamics in order to quickly screen through a large number of alloy systems in the AFLOWLIB database, identifying the most promising systems and the optimal compositions for glass formation. National Science Foundation (DMR-1436151, DMR-1435820, DMR-1436268).

  13. High-throughput selection for cellulase catalysts using chemical complementation.

    PubMed

    Peralta-Yahya, Pamela; Carter, Brian T; Lin, Hening; Tao, Haiyan; Cornish, Virginia W

    2008-12-24

    Efficient enzymatic hydrolysis of lignocellulosic material remains one of the major bottlenecks to cost-effective conversion of biomass to ethanol. Improvement of glycosylhydrolases, however, is limited by existing medium-throughput screening technologies. Here, we report the first high-throughput selection for cellulase catalysts. This selection was developed by adapting chemical complementation to provide a growth assay for bond cleavage reactions. First, a URA3 counter selection was adapted to link chemical dimerizer activated gene transcription to cell death. Next, the URA3 counter selection was shown to detect cellulase activity based on cleavage of a tetrasaccharide chemical dimerizer substrate and decrease in expression of the toxic URA3 reporter. Finally, the utility of the cellulase selection was assessed by isolating cellulases with improved activity from a cellulase library created by family DNA shuffling. This application provides further evidence that chemical complementation can be readily adapted to detect different enzymatic activities for important chemical transformations for which no natural selection exists. Because of the large number of enzyme variants that selections can now test as compared to existing medium-throughput screens for cellulases, this assay has the potential to impact the discovery of improved cellulases and other glycosylhydrolases for biomass conversion from libraries of cellulases created by mutagenesis or obtained from natural biodiversity.

  14. A High-throughput Selection for Cellulase Catalysts Using Chemical Complementation

    PubMed Central

    Peralta-Yahya, Pamela; Carter, Brian T.; Lin, Hening; Tao, Haiyan; Cornish, Virginia W.

    2010-01-01

    Efficient enzymatic hydrolysis of lignocellulosic material remains one of the major bottlenecks to cost-effective conversion of biomass to ethanol. Improvement of glycosylhydrolases however is limited by existing medium-throughput screening technologies. Here, we report the first high-throughput selection for cellulase catalysts. This selection was developed by adapting chemical complementation to provide a growth assay for bond cleavage reactions. First, a URA3 counter selection was adapted to link chemical dimerizer activated gene transcription to cell death. Next, the URA3 counter selection was shown to detect cellulase activity based on cleavage of a tetrasaccharide chemical dimerizer substrate and decrease in expression of the toxic URA3 reporter. Finally, the utility of the cellulase selection was assessed by isolating cellulases with improved activity from a cellulase library created by family DNA shuffling. This application provides further evidence that chemical complementation can be readily adapted to detect different enzymatic activities for important chemical transformations for which no natural selection exists. Due to the large number of enzyme variants selections can test compared to existing medium-throughput screens for cellulases, this assay has the potential to impact the discovery of improved cellulases and other glycosylhydrolases for biomass conversion from libraries of cellulases created by mutagenesis or obtained from natural biodiversity. PMID:19053460

  15. PCR cycles above routine numbers do not compromise high-throughput DNA barcoding results.

    PubMed

    Vierna, J; Doña, J; Vizcaíno, A; Serrano, D; Jovani, R

    2017-10-01

    High-throughput DNA barcoding has become essential in ecology and evolution, but some technical questions still remain. Increasing the number of PCR cycles above the routine 20-30 cycles is a common practice when working with old-type specimens, which provide little amounts of DNA, or when facing annealing issues with the primers. However, increasing the number of cycles can raise the number of artificial mutations due to polymerase errors. In this work, we sequenced 20 COI libraries in the Illumina MiSeq platform. Libraries were prepared with 40, 45, 50, 55, and 60 PCR cycles from four individuals belonging to four species of four genera of cephalopods. We found no relationship between the number of PCR cycles and the number of mutations despite using a nonproofreading polymerase. Moreover, even when using a high number of PCR cycles, the resulting number of mutations was low enough not to be an issue in the context of high-throughput DNA barcoding (but may still remain an issue in DNA metabarcoding due to chimera formation). We conclude that the common practice of increasing the number of PCR cycles should not negatively impact the outcome of a high-throughput DNA barcoding study in terms of the occurrence of point mutations.

  16. Knowledge-based analysis of microarrays for the discovery of transcriptional regulation relationships

    PubMed Central

    2010-01-01

    Background The large amount of high-throughput genomic data has facilitated the discovery of the regulatory relationships between transcription factors and their target genes. While early methods for discovery of transcriptional regulation relationships from microarray data often focused on the high-throughput experimental data alone, more recent approaches have explored the integration of external knowledge bases of gene interactions. Results In this work, we develop an algorithm that provides improved performance in the prediction of transcriptional regulatory relationships by supplementing the analysis of microarray data with a new method of integrating information from an existing knowledge base. Using a well-known dataset of yeast microarrays and the Yeast Proteome Database, a comprehensive collection of known information of yeast genes, we show that knowledge-based predictions demonstrate better sensitivity and specificity in inferring new transcriptional interactions than predictions from microarray data alone. We also show that comprehensive, direct and high-quality knowledge bases provide better prediction performance. Comparison of our results with ChIP-chip data and growth fitness data suggests that our predicted genome-wide regulatory pairs in yeast are reasonable candidates for follow-up biological verification. Conclusion High quality, comprehensive, and direct knowledge bases, when combined with appropriate bioinformatic algorithms, can significantly improve the discovery of gene regulatory relationships from high throughput gene expression data. PMID:20122245

  17. Knowledge-based analysis of microarrays for the discovery of transcriptional regulation relationships.

    PubMed

    Seok, Junhee; Kaushal, Amit; Davis, Ronald W; Xiao, Wenzhong

    2010-01-18

    The large amount of high-throughput genomic data has facilitated the discovery of the regulatory relationships between transcription factors and their target genes. While early methods for discovery of transcriptional regulation relationships from microarray data often focused on the high-throughput experimental data alone, more recent approaches have explored the integration of external knowledge bases of gene interactions. In this work, we develop an algorithm that provides improved performance in the prediction of transcriptional regulatory relationships by supplementing the analysis of microarray data with a new method of integrating information from an existing knowledge base. Using a well-known dataset of yeast microarrays and the Yeast Proteome Database, a comprehensive collection of known information of yeast genes, we show that knowledge-based predictions demonstrate better sensitivity and specificity in inferring new transcriptional interactions than predictions from microarray data alone. We also show that comprehensive, direct and high-quality knowledge bases provide better prediction performance. Comparison of our results with ChIP-chip data and growth fitness data suggests that our predicted genome-wide regulatory pairs in yeast are reasonable candidates for follow-up biological verification. High quality, comprehensive, and direct knowledge bases, when combined with appropriate bioinformatic algorithms, can significantly improve the discovery of gene regulatory relationships from high throughput gene expression data.

  18. Molecular classification of fatty liver by high-throughput profiling of protein post-translational modifications.

    PubMed

    Urasaki, Yasuyo; Fiscus, Ronald R; Le, Thuc T

    2016-04-01

    We describe an alternative approach to classifying fatty liver by profiling protein post-translational modifications (PTMs) with high-throughput capillary isoelectric focusing (cIEF) immunoassays. Four strains of mice were studied, with fatty livers induced by different causes, such as ageing, genetic mutation, acute drug usage, and high-fat diet. Nutrient-sensitive PTMs of a panel of 12 liver metabolic and signalling proteins were simultaneously evaluated with cIEF immunoassays, using nanograms of total cellular protein per assay. Changes to liver protein acetylation, phosphorylation, and O-N-acetylglucosamine glycosylation were quantified and compared between normal and diseased states. Fatty liver tissues could be distinguished from one another by distinctive protein PTM profiles. Fatty liver is currently classified by morphological assessment of lipid droplets, without identifying the underlying molecular causes. In contrast, high-throughput profiling of protein PTMs has the potential to provide molecular classification of fatty liver. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats.

    PubMed

    Zhou, Jizhong; He, Zhili; Yang, Yunfeng; Deng, Ye; Tringe, Susannah G; Alvarez-Cohen, Lisa

    2015-01-27

    Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied "open-format" and "closed-format" detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications and focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions. Copyright © 2015 Zhou et al.

  20. High-Throughput Metagenomic Technologies for Complex Microbial Community Analysis: Open and Closed Formats

    PubMed Central

    He, Zhili; Yang, Yunfeng; Deng, Ye; Tringe, Susannah G.; Alvarez-Cohen, Lisa

    2015-01-01

    ABSTRACT   Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied “open-format” and “closed-format” detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications and focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions. PMID:25626903

  1. High-throughput metagenomic technologies for complex microbial community analysis. Open and closed formats

    DOE PAGES

    Zhou, Jizhong; He, Zhili; Yang, Yunfeng; ...

    2015-01-27

    Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied “open-format” and “closed-format” detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications andmore » focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions.« less

  2. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators

    PubMed Central

    Bodenmiller, Bernd; Zunder, Eli R.; Finck, Rachel; Chen, Tiffany J.; Savig, Erica S.; Bruggner, Robert V.; Simonds, Erin F.; Bendall, Sean C.; Sachs, Karen; Krutzik, Peter O.; Nolan, Garry P.

    2013-01-01

    The ability to comprehensively explore the impact of bio-active molecules on human samples at the single-cell level can provide great insight for biomedical research. Mass cytometry enables quantitative single-cell analysis with deep dimensionality, but currently lacks high-throughput capability. Here we report a method termed mass-tag cellular barcoding (MCB) that increases mass cytometry throughput by sample multiplexing. 96-well format MCB was used to characterize human peripheral blood mononuclear cell (PBMC) signaling dynamics, cell-to-cell communication, the signaling variability between 8 donors, and to define the impact of 27 inhibitors on this system. For each compound, 14 phosphorylation sites were measured in 14 PBMC types, resulting in 18,816 quantified phosphorylation levels from each multiplexed sample. This high-dimensional systems-level inquiry allowed analysis across cell-type and signaling space, reclassified inhibitors, and revealed off-target effects. MCB enables high-content, high-throughput screening, with potential applications for drug discovery, pre-clinical testing, and mechanistic investigation of human disease. PMID:22902532

  3. High throughput DNA damage quantification of human tissue with home-based collection device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costes, Sylvain V.; Tang, Jonathan; Yannone, Steven M.

    Kits, methods and systems for providing a service to provide a subject with information regarding the state of a subject's DNA damage. Collection, processing and analysis of samples are also described.

  4. Xi-CAM v1.2.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PANDOLFI, RONALD; KUMAR, DINESH; VENKATAKRISHNAN, SINGANALLUR

    Xi-CAM aims to provide a community driven platform for multimodal analysis in synchrotron science. The platform core provides a robust plugin infrastructure for extensibility, allowing continuing development to simply add further functionality. Current modules include tools for characterization with (GI)SAXS, Tomography, and XAS. This will continue to serve as a development base as algorithms for multimodal analysis develop. Seamless remote data access, visualization and analysis are key elements of Xi-CAM, and will become critical to synchrotron data infrastructure as expectations for future data volume and acquisition rates rise with continuously increasing throughputs. The highly interactive design elements of Xi-cam willmore » similarly support a generation of users which depend on immediate data quality feedback during high-throughput or burst acquisition modes.« less

  5. High-Throughput Sequencing Reveals Principles of Adeno-Associated Virus Serotype 2 Integration

    PubMed Central

    Janovitz, Tyler; Klein, Isaac A.; Oliveira, Thiago; Mukherjee, Piali; Nussenzweig, Michel C.; Sadelain, Michel

    2013-01-01

    Viral integrations are important in human biology, yet genome-wide integration profiles have not been determined for many viruses. Adeno-associated virus (AAV) infects most of the human population and is a prevalent gene therapy vector. AAV integrates into the human genome with preference for a single locus, termed AAVS1. However, the genome-wide integration of AAV has not been defined, and the principles underlying this recombination remain unclear. Using a novel high-throughput approach, integrant capture sequencing, nearly 12 million AAV junctions were recovered from a human cell line, providing five orders of magnitude more data than were previously available. Forty-five percent of integrations occurred near AAVS1, and several thousand novel integration hotspots were identified computationally. Most of these occurred in genes, with dozens of hotspots targeting known oncogenes. Viral replication protein binding sites (RBS) and transcriptional activity were major factors favoring integration. In a first for eukaryotic viruses, the data reveal a unique asymmetric integration profile with distinctive directional orientation of viral genomes. These studies provide a new understanding of AAV integration biology through the use of unbiased high-throughput data acquisition and bioinformatics. PMID:23720718

  6. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays

    PubMed Central

    Aryee, Martin J.; Jaffe, Andrew E.; Corrada-Bravo, Hector; Ladd-Acosta, Christine; Feinberg, Andrew P.; Hansen, Kasper D.; Irizarry, Rafael A.

    2014-01-01

    Motivation: The recently released Infinium HumanMethylation450 array (the ‘450k’ array) provides a high-throughput assay to quantify DNA methylation (DNAm) at ∼450 000 loci across a range of genomic features. Although less comprehensive than high-throughput sequencing-based techniques, this product is more cost-effective and promises to be the most widely used DNAm high-throughput measurement technology over the next several years. Results: Here we describe a suite of computational tools that incorporate state-of-the-art statistical techniques for the analysis of DNAm data. The software is structured to easily adapt to future versions of the technology. We include methods for preprocessing, quality assessment and detection of differentially methylated regions from the kilobase to the megabase scale. We show how our software provides a powerful and flexible development platform for future methods. We also illustrate how our methods empower the technology to make discoveries previously thought to be possible only with sequencing-based methods. Availability and implementation: http://bioconductor.org/packages/release/bioc/html/minfi.html. Contact: khansen@jhsph.edu; rafa@jimmy.harvard.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24478339

  7. High-Throughput Light Sheet Microscopy for the Automated Live Imaging of Larval Zebrafish

    NASA Astrophysics Data System (ADS)

    Baker, Ryan; Logan, Savannah; Dudley, Christopher; Parthasarathy, Raghuveer

    The zebrafish is a model organism with a variety of useful properties; it is small and optically transparent, it reproduces quickly, it is a vertebrate, and there are a large variety of transgenic animals available. Because of these properties, the zebrafish is well suited to study using a variety of optical technologies including light sheet fluorescence microscopy (LSFM), which provides high-resolution three-dimensional imaging over large fields of view. Research progress, however, is often not limited by optical techniques but instead by the number of samples one can examine over the course of an experiment, which in the case of light sheet imaging has so far been severely limited. Here we present an integrated fluidic circuit and microscope which provides rapid, automated imaging of zebrafish using several imaging modes, including LSFM, Hyperspectral Imaging, and Differential Interference Contrast Microscopy. Using this system, we show that we can increase our imaging throughput by a factor of 10 compared to previous techniques. We also show preliminary results visualizing zebrafish immune response, which is sensitive to gut microbiota composition, and which shows a strong variability between individuals that highlights the utility of high throughput imaging. National Science Foundation, Award No. DBI-1427957.

  8. Accounting Artifacts in High-Throughput Toxicity Assays.

    PubMed

    Hsieh, Jui-Hua

    2016-01-01

    Compound activity identification is the primary goal in high-throughput screening (HTS) assays. However, assay artifacts including both systematic (e.g., compound auto-fluorescence) and nonsystematic (e.g., noise) complicate activity interpretation. In addition, other than the traditional potency parameter, half-maximal effect concentration (EC50), additional activity parameters (e.g., point-of-departure, POD) could be derived from HTS data for activity profiling. A data analysis pipeline has been developed to handle the artifacts and to provide compound activity characterization with either binary or continuous metrics. This chapter outlines the steps in the pipeline using Tox21 glucocorticoid receptor (GR) β-lactamase assays, including the formats to identify either agonists or antagonists, as well as the counter-screen assays for identifying artifacts as examples. The steps can be applied to other lower-throughput assays with concentration-response data.

  9. Short-read, high-throughput sequencing technology for STR genotyping

    PubMed Central

    Bornman, Daniel M.; Hester, Mark E.; Schuetter, Jared M.; Kasoji, Manjula D.; Minard-Smith, Angela; Barden, Curt A.; Nelson, Scott C.; Godbold, Gene D.; Baker, Christine H.; Yang, Boyu; Walther, Jacquelyn E.; Tornes, Ivan E.; Yan, Pearlly S.; Rodriguez, Benjamin; Bundschuh, Ralf; Dickens, Michael L.; Young, Brian A.; Faith, Seth A.

    2013-01-01

    DNA-based methods for human identification principally rely upon genotyping of short tandem repeat (STR) loci. Electrophoretic-based techniques for variable-length classification of STRs are universally utilized, but are limited in that they have relatively low throughput and do not yield nucleotide sequence information. High-throughput sequencing technology may provide a more powerful instrument for human identification, but is not currently validated for forensic casework. Here, we present a systematic method to perform high-throughput genotyping analysis of the Combined DNA Index System (CODIS) STR loci using short-read (150 bp) massively parallel sequencing technology. Open source reference alignment tools were optimized to evaluate PCR-amplified STR loci using a custom designed STR genome reference. Evaluation of this approach demonstrated that the 13 CODIS STR loci and amelogenin (AMEL) locus could be accurately called from individual and mixture samples. Sensitivity analysis showed that as few as 18,500 reads, aligned to an in silico referenced genome, were required to genotype an individual (>99% confidence) for the CODIS loci. The power of this technology was further demonstrated by identification of variant alleles containing single nucleotide polymorphisms (SNPs) and the development of quantitative measurements (reads) for resolving mixed samples. PMID:25621315

  10. Projection Reduction Exposure with Variable Axis Immersion Lenses (PREVAIL)-A High Throughput E-Beam Projection Approach for Next Generation Lithography

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Hans

    1999-12-01

    Projection reduction exposure with variable axis immersion lenses (PREVAIL) represents the high throughput e-beam projection approach to next generation lithography (NGL), which IBM is pursuing in cooperation with Nikon Corporation as an alliance partner. This paper discusses the challenges and accomplishments of the PREVAIL project. The supreme challenge facing all e-beam lithography approaches has been and still is throughput. Since the throughput of e-beam projection systems is severely limited by the available optical field size, the key to success is the ability to overcome this limitation. The PREVAIL technique overcomes field-limiting off-axis aberrations through the use of variable axis lenses, which electronically shift the optical axis simultaneously with the deflected beam, so that the beam effectively remains on axis. The resist images obtained with the proof-of-concept (POC) system demonstrate that PREVAIL effectively eliminates off-axis aberrations affecting both the resolution and placement accuracy of pixels. As part of the POC system a high emittance gun has been developed to provide uniform illumination of the patterned subfield, and to fill the large numerical aperture projection optics designed to significantly reduce beam blur caused by Coulombinteraction.

  11. Differential Mobility Spectrometry-Mass Spectrometry (DMS-MS) in Radiation Biodosimetry: Rapid and High-Throughput Quantitation of Multiple Radiation Biomarkers in Nonhuman Primate Urine.

    PubMed

    Chen, Zhidan; Coy, Stephen L; Pannkuk, Evan L; Laiakis, Evagelia C; Fornace, Albert J; Vouros, Paul

    2018-05-07

    High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. Graphical Abstract.

  12. Differential Mobility Spectrometry-Mass Spectrometry (DMS-MS) in Radiation Biodosimetry: Rapid and High-Throughput Quantitation of Multiple Radiation Biomarkers in Nonhuman Primate Urine

    NASA Astrophysics Data System (ADS)

    Chen, Zhidan; Coy, Stephen L.; Pannkuk, Evan L.; Laiakis, Evagelia C.; Fornace, Albert J.; Vouros, Paul

    2018-05-01

    High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. [Figure not available: see fulltext.

  13. Xi-cam: a versatile interface for data visualization and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandolfi, Ronald J.; Allan, Daniel B.; Arenholz, Elke

    Xi-cam is an extensible platform for data management, analysis and visualization.Xi-camaims to provide a flexible and extensible approach to synchrotron data treatment as a solution to rising demands for high-volume/high-throughput processing pipelines. The core ofXi-camis an extensible plugin-based graphical user interface platform which provides users with an interactive interface to processing algorithms. Plugins are available for SAXS/WAXS/GISAXS/GIWAXS, tomography and NEXAFS data. WithXi-cam's `advanced' mode, data processing steps are designed as a graph-based workflow, which can be executed live, locally or remotely. Remote execution utilizes high-performance computing or de-localized resources, allowing for the effective reduction of high-throughput data.Xi-cam's plugin-based architecture targetsmore » cross-facility and cross-technique collaborative development, in support of multi-modal analysis.Xi-camis open-source and cross-platform, and available for download on GitHub.« less

  14. Xi-cam: a versatile interface for data visualization and analysis

    DOE PAGES

    Pandolfi, Ronald J.; Allan, Daniel B.; Arenholz, Elke; ...

    2018-05-31

    Xi-cam is an extensible platform for data management, analysis and visualization.Xi-camaims to provide a flexible and extensible approach to synchrotron data treatment as a solution to rising demands for high-volume/high-throughput processing pipelines. The core ofXi-camis an extensible plugin-based graphical user interface platform which provides users with an interactive interface to processing algorithms. Plugins are available for SAXS/WAXS/GISAXS/GIWAXS, tomography and NEXAFS data. WithXi-cam's `advanced' mode, data processing steps are designed as a graph-based workflow, which can be executed live, locally or remotely. Remote execution utilizes high-performance computing or de-localized resources, allowing for the effective reduction of high-throughput data.Xi-cam's plugin-based architecture targetsmore » cross-facility and cross-technique collaborative development, in support of multi-modal analysis.Xi-camis open-source and cross-platform, and available for download on GitHub.« less

  15. Optical tools for high-throughput screening of abrasion resistance of combinatorial libraries of organic coatings

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Chisholm, Bret J.; Olson, Daniel R.; Brennan, Michael J.; Molaison, Chris A.

    2002-02-01

    Design, validation, and implementation of an optical spectroscopic system for high-throughput analysis of combinatorially developed protective organic coatings are reported. Our approach replaces labor-intensive coating evaluation steps with an automated system that rapidly analyzes 8x6 arrays of coating elements that are deposited on a plastic substrate. Each coating element of the library is 10 mm in diameter and 2 to 5 micrometers thick. Performance of coatings is evaluated with respect to their resistance to wear abrasion because this parameter is one of the primary considerations in end-use applications. Upon testing, the organic coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Coatings are abraded using industry-accepted abrasion test methods at single-or multiple-abrasion conditions, followed by high- throughput analysis of abrasion-induced light scatter. The developed automated system is optimized for the analysis of diffusively scattered light that corresponds to 0 to 30% haze. System precision of 0.1 to 2.5% relative standard deviation provides capability for the reliable ranking of coatings performance. While the system was implemented for high-throughput screening of combinatorially developed organic protective coatings for automotive applications, it can be applied to a variety of other applications where materials ranking can be achieved using optical spectroscopic tools.

  16. Re-engineering adenovirus vector systems to enable high-throughput analyses of gene function.

    PubMed

    Stanton, Richard J; McSharry, Brian P; Armstrong, Melanie; Tomasec, Peter; Wilkinson, Gavin W G

    2008-12-01

    With the enhanced capacity of bioinformatics to interrogate extensive banks of sequence data, more efficient technologies are needed to test gene function predictions. Replication-deficient recombinant adenovirus (Ad) vectors are widely used in expression analysis since they provide for extremely efficient expression of transgenes in a wide range of cell types. To facilitate rapid, high-throughput generation of recombinant viruses, we have re-engineered an adenovirus vector (designated AdZ) to allow single-step, directional gene insertion using recombineering technology. Recombineering allows for direct insertion into the Ad vector of PCR products, synthesized sequences, or oligonucleotides encoding shRNAs without requirement for a transfer vector Vectors were optimized for high-throughput applications by making them "self-excising" through incorporating the I-SceI homing endonuclease into the vector removing the need to linearize vectors prior to transfection into packaging cells. AdZ vectors allow genes to be expressed in their native form or with strep, V5, or GFP tags. Insertion of tetracycline operators downstream of the human cytomegalovirus major immediate early (HCMV MIE) promoter permits silencing of transgenes in helper cells expressing the tet repressor thus making the vector compatible with the cloning of toxic gene products. The AdZ vector system is robust, straightforward, and suited to both sporadic and high-throughput applications.

  17. Evaluation of High-Throughput Chemical Exposure Models ...

    EPA Pesticide Factsheets

    The U.S. EPA, under its ExpoCast program, is developing high-throughput near-field modeling methods to estimate human chemical exposure and to provide real-world context to high-throughput screening (HTS) hazard data. These novel modeling methods include reverse methods to infer parent chemical exposures from biomonitoring measurements and forward models to predict multi-pathway exposures from chemical use information and/or residential media concentrations. Here, both forward and reverse modeling methods are used to characterize the relationship between matched near-field environmental (air and dust) and biomarker measurements. Indoor air, house dust, and urine samples from a sample of 120 females (aged 60 to 80 years) were analyzed. In the measured data, 78% of the residential media measurements (across 80 chemicals) and 54% of the urine measurements (across 21 chemicals) were censored, i.e. below the limit of quantification (LOQ). Because of the degree of censoring, we applied a Bayesian approach to impute censored values for 69 chemicals having at least 15% of measurements above LOQ. This resulted in 10 chemicals (5 phthalates, 5 pesticides) with matched air, dust, and urine metabolite measurements. The population medians of indoor air and dust concentrations were compared to population median exposures inferred from urine metabolites concentrations using a high-throughput reverse-dosimetry approach. Median air and dust concentrations were found to be correl

  18. A high-throughput screen of the GTPase activity of Escherichia coli EngA to find an inhibitor of bacterial ribosome biogenesis

    PubMed Central

    Bharat, Amrita; Blanchard, Jan E.; Brown, Eric D.

    2014-01-01

    The synthesis of ribosomes is an essential process, which is aided by a variety of transacting factors in bacteria. Among these is a group of GTPases essential for bacterial viability and emerging as promising targets for new antibacterial agents. Herein, we describe a robust high-throughput screening process for inhibitors of one such GTPase, the Escherichia coli EngA protein. The primary screen employed an assay of phosphate production in 384-well density. Reaction conditions were chosen to maximize sensitivity for the discovery of competitive inhibitors while maintaining a strong signal amplitude and low noise. In a pilot screen of 31,800 chemical compounds, 44 active compounds were identified. Further, we describe the elimination of non-specific inhibitors that were detergent-sensitive or reactive as well as those that interfered with the high-throughput phosphate assay. Four inhibitors survived these common counter-screens for non-specificity but these chemicals were also inhibitors of the unrelated enzyme dihydrofolate reductase, suggesting that they too were promiscuously active. The high-throughput screen of the EngA protein described here provides a meticulous pilot study in the search for specific inhibitors of GTPases involved in ribosome biogenesis. PMID:23606650

  19. A Formal Messaging Notation for Alaskan Aviation Data

    NASA Technical Reports Server (NTRS)

    Rios, Joseph L.

    2015-01-01

    Data exchange is an increasingly important aspect of the National Airspace System. While many data communication channels have become more capable of sending and receiving data at higher throughput rates, there is still a need to use communication channels efficiently with limited throughput. The limitation can be based on technological issues, financial considerations, or both. This paper provides a complete description of several important aviation weather data in Abstract Syntax Notation format. By doing so, data providers can take advantage of Abstract Syntax Notation's ability to encode data in a highly compressed format. When data such as pilot weather reports, surface weather observations, and various weather predictions are compressed in such a manner, it allows for the efficient use of throughput-limited communication channels. This paper provides details on the Abstract Syntax Notation One (ASN.1) implementation for Alaskan aviation data, and demonstrates its use on real-world aviation weather data samples as Alaska has sparse terrestrial data infrastructure and data are often sent via relatively costly satellite channels.

  20. Heat*seq: an interactive web tool for high-throughput sequencing experiment comparison with public data.

    PubMed

    Devailly, Guillaume; Mantsoki, Anna; Joshi, Anagha

    2016-11-01

    Better protocols and decreasing costs have made high-throughput sequencing experiments now accessible even to small experimental laboratories. However, comparing one or few experiments generated by an individual lab to the vast amount of relevant data freely available in the public domain might be limited due to lack of bioinformatics expertise. Though several tools, including genome browsers, allow such comparison at a single gene level, they do not provide a genome-wide view. We developed Heat*seq, a web-tool that allows genome scale comparison of high throughput experiments chromatin immuno-precipitation followed by sequencing, RNA-sequencing and Cap Analysis of Gene Expression) provided by a user, to the data in the public domain. Heat*seq currently contains over 12 000 experiments across diverse tissues and cell types in human, mouse and drosophila. Heat*seq displays interactive correlation heatmaps, with an ability to dynamically subset datasets to contextualize user experiments. High quality figures and tables are produced and can be downloaded in multiple formats. Web application: http://www.heatstarseq.roslin.ed.ac.uk/ Source code: https://github.com/gdevailly CONTACT: Guillaume.Devailly@roslin.ed.ac.uk or Anagha.Joshi@roslin.ed.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  1. Mass spectrometry-driven drug discovery for development of herbal medicine.

    PubMed

    Zhang, Aihua; Sun, Hui; Wang, Xijun

    2018-05-01

    Herbal medicine (HM) has made a major contribution to the drug discovery process with regard to identifying products compounds. Currently, more attention has been focused on drug discovery from natural compounds of HM. Despite the rapid advancement of modern analytical techniques, drug discovery is still a difficult and lengthy process. Fortunately, mass spectrometry (MS) can provide us with useful structural information for drug discovery, has been recognized as a sensitive, rapid, and high-throughput technology for advancing drug discovery from HM in the post-genomic era. It is essential to develop an efficient, high-quality, high-throughput screening method integrated with an MS platform for early screening of candidate drug molecules from natural products. We have developed a new chinmedomics strategy reliant on MS that is capable of capturing the candidate molecules, facilitating their identification of novel chemical structures in the early phase; chinmedomics-guided natural product discovery based on MS may provide an effective tool that addresses challenges in early screening of effective constituents of herbs against disease. This critical review covers the use of MS with related techniques and methodologies for natural product discovery, biomarker identification, and determination of mechanisms of action. It also highlights high-throughput chinmedomics screening methods suitable for lead compound discovery illustrated by recent successes. © 2016 Wiley Periodicals, Inc.

  2. High Throughput PBTK: Open-Source Data and Tools for ...

    EPA Pesticide Factsheets

    Presentation on High Throughput PBTK at the PBK Modelling in Risk Assessment meeting in Ispra, Italy Presentation on High Throughput PBTK at the PBK Modelling in Risk Assessment meeting in Ispra, Italy

  3. HiTC: exploration of high-throughput ‘C’ experiments

    PubMed Central

    Servant, Nicolas; Lajoie, Bryan R.; Nora, Elphège P.; Giorgetti, Luca; Chen, Chong-Jian; Heard, Edith; Dekker, Job; Barillot, Emmanuel

    2012-01-01

    Summary: The R/Bioconductor package HiTC facilitates the exploration of high-throughput 3C-based data. It allows users to import and export ‘C’ data, to transform, normalize, annotate and visualize interaction maps. The package operates within the Bioconductor framework and thus offers new opportunities for future development in this field. Availability and implementation: The R package HiTC is available from the Bioconductor website. A detailed vignette provides additional documentation and help for using the package. Contact: nicolas.servant@curie.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22923296

  4. High-throughput telomere length quantification by FISH and its application to human population studies.

    PubMed

    Canela, Andrés; Vera, Elsa; Klatt, Peter; Blasco, María A

    2007-03-27

    A major limitation of studies of the relevance of telomere length to cancer and age-related diseases in human populations and to the development of telomere-based therapies has been the lack of suitable high-throughput (HT) assays to measure telomere length. We have developed an automated HT quantitative telomere FISH platform, HT quantitative FISH (Q-FISH), which allows the quantification of telomere length as well as percentage of short telomeres in large human sample sets. We show here that this technique provides the accuracy and sensitivity to uncover associations between telomere length and human disease.

  5. High throughput two-step ultrasonic spray deposited CH3NH3PbI3 thin film layer for solar cell application

    NASA Astrophysics Data System (ADS)

    Lan, Ding-Hung; Hong, Shao-Huan; Chou, Li-Hui; Wang, Xiao-Feng; Liu, Cheng-Liang

    2018-06-01

    Organometal halide perovskite materials have demonstrated tremendous advances in the photovoltaic field recently because of their advantageous features of simple fabrication and high power conversion efficiency. To meet the high demand for high throughput and cost-effective, we present a wet process method that enables the probing of the parameters for perovskite layer deposition through two-step sequential ultrasonic spray-coating. This paper describes a detailed investigation on the effects of modification of spray precursor solution (PbI2 and CH3NH3I precursor concentration and solvents used) and post-annealing condition (temperature and time), which can be performed to create optimal film quality as well as improve device efficiency. Through the systematic optimization, the inverted planar perovskite solar cells show the reproducible photovoltaic properties with best power conversion efficiency (PCE) of 10.40% and average PCE of 9.70 ± 0.40%. A continuous spray-coating technique for rapid fabrication of total 16 pieces of perovskite films was demonstrated for providing a viable alternative for the high throughput production of the perovskite solar cells.

  6. High content screening of ToxCast compounds using Vala Sciences’ complex cell culturing systems (SOT)

    EPA Science Inventory

    US EPA’s ToxCast research program evaluates bioactivity for thousands of chemicals utilizing high-throughput screening assays to inform chemical testing decisions. Vala Sciences provides high content, multiplexed assays that utilize quantitative cell-based digital image analysis....

  7. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Wei; Shabbir, Faizan; Gong, Chao

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processingmore » units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.« less

  8. Microarray-Based Gene Expression Analysis for Veterinary Pathologists: A Review.

    PubMed

    Raddatz, Barbara B; Spitzbarth, Ingo; Matheis, Katja A; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang; Ulrich, Reiner

    2017-09-01

    High-throughput, genome-wide transcriptome analysis is now commonly used in all fields of life science research and is on the cusp of medical and veterinary diagnostic application. Transcriptomic methods such as microarrays and next-generation sequencing generate enormous amounts of data. The pathogenetic expertise acquired from understanding of general pathology provides veterinary pathologists with a profound background, which is essential in translating transcriptomic data into meaningful biological knowledge, thereby leading to a better understanding of underlying disease mechanisms. The scientific literature concerning high-throughput data-mining techniques usually addresses mathematicians or computer scientists as the target audience. In contrast, the present review provides the reader with a clear and systematic basis from a veterinary pathologist's perspective. Therefore, the aims are (1) to introduce the reader to the necessary methodological background; (2) to introduce the sequential steps commonly performed in a microarray analysis including quality control, annotation, normalization, selection of differentially expressed genes, clustering, gene ontology and pathway analysis, analysis of manually selected genes, and biomarker discovery; and (3) to provide references to publically available and user-friendly software suites. In summary, the data analysis methods presented within this review will enable veterinary pathologists to analyze high-throughput transcriptome data obtained from their own experiments, supplemental data that accompany scientific publications, or public repositories in order to obtain a more in-depth insight into underlying disease mechanisms.

  9. Bioconductor | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    Bioconductor provides tools for the analysis and comprehension of high-throughput genomic data. R/Bioconductor will be enhanced to meet the increasing complexity of multiassay cancer genomics experiments.

  10. High-throughput genotyping for species identification and diversity assessment in germplasm collections.

    PubMed

    Mason, Annaliese S; Zhang, Jing; Tollenaere, Reece; Vasquez Teuber, Paula; Dalton-Morgan, Jessica; Hu, Liyong; Yan, Guijun; Edwards, David; Redden, Robert; Batley, Jacqueline

    2015-09-01

    Germplasm collections provide an extremely valuable resource for breeders and researchers. However, misclassification of accessions by species often hinders the effective use of these collections. We propose that use of high-throughput genotyping tools can provide a fast, efficient and cost-effective way of confirming species in germplasm collections, as well as providing valuable genetic diversity data. We genotyped 180 Brassicaceae samples sourced from the Australian Grains Genebank across the recently released Illumina Infinium Brassica 60K SNP array. Of these, 76 were provided on the basis of suspected misclassification and another 104 were sourced independently from the germplasm collection. Presence of the A- and C-genomes combined with principle components analysis clearly separated Brassica rapa, B. oleracea, B. napus, B. carinata and B. juncea samples into distinct species groups. Several lines were further validated using chromosome counts. Overall, 18% of samples (32/180) were misclassified on the basis of species. Within these 180 samples, 23/76 (30%) supplied on the basis of suspected misclassification were misclassified, and 9/105 (9%) of the samples randomly sourced from the Australian Grains Genebank were misclassified. Surprisingly, several individuals were also found to be the product of interspecific hybridization events. The SNP (single nucleotide polymorphism) array proved effective at confirming species, and provided useful information related to genetic diversity. As similar genomic resources become available for different crops, high-throughput molecular genotyping will offer an efficient and cost-effective method to screen germplasm collections worldwide, facilitating more effective use of these valuable resources by breeders and researchers. © 2015 John Wiley & Sons Ltd.

  11. Crystal Symmetry Algorithms in a High-Throughput Framework for Materials

    NASA Astrophysics Data System (ADS)

    Taylor, Richard

    The high-throughput framework AFLOW that has been developed and used successfully over the last decade is improved to include fully-integrated software for crystallographic symmetry characterization. The standards used in the symmetry algorithms conform with the conventions and prescriptions given in the International Tables of Crystallography (ITC). A standard cell choice with standard origin is selected, and the space group, point group, Bravais lattice, crystal system, lattice system, and representative symmetry operations are determined. Following the conventions of the ITC, the Wyckoff sites are also determined and their labels and site symmetry are provided. The symmetry code makes no assumptions on the input cell orientation, origin, or reduction and has been integrated in the AFLOW high-throughput framework for materials discovery by adding to the existing code base and making use of existing classes and functions. The software is written in object-oriented C++ for flexibility and reuse. A performance analysis and examination of the algorithms scaling with cell size and symmetry is also reported.

  12. Mathematical and Computational Modeling in Complex Biological Systems

    PubMed Central

    Li, Wenyang; Zhu, Xiaoliang

    2017-01-01

    The biological process and molecular functions involved in the cancer progression remain difficult to understand for biologists and clinical doctors. Recent developments in high-throughput technologies urge the systems biology to achieve more precise models for complex diseases. Computational and mathematical models are gradually being used to help us understand the omics data produced by high-throughput experimental techniques. The use of computational models in systems biology allows us to explore the pathogenesis of complex diseases, improve our understanding of the latent molecular mechanisms, and promote treatment strategy optimization and new drug discovery. Currently, it is urgent to bridge the gap between the developments of high-throughput technologies and systemic modeling of the biological process in cancer research. In this review, we firstly studied several typical mathematical modeling approaches of biological systems in different scales and deeply analyzed their characteristics, advantages, applications, and limitations. Next, three potential research directions in systems modeling were summarized. To conclude, this review provides an update of important solutions using computational modeling approaches in systems biology. PMID:28386558

  13. High-throughput gene mapping in Caenorhabditis elegans.

    PubMed

    Swan, Kathryn A; Curtis, Damian E; McKusick, Kathleen B; Voinov, Alexander V; Mapa, Felipa A; Cancilla, Michael R

    2002-07-01

    Positional cloning of mutations in model genetic systems is a powerful method for the identification of targets of medical and agricultural importance. To facilitate the high-throughput mapping of mutations in Caenorhabditis elegans, we have identified a further 9602 putative new single nucleotide polymorphisms (SNPs) between two C. elegans strains, Bristol N2 and the Hawaiian mapping strain CB4856, by sequencing inserts from a CB4856 genomic DNA library and using an informatics pipeline to compare sequences with the canonical N2 genomic sequence. When combined with data from other laboratories, our marker set of 17,189 SNPs provides even coverage of the complete worm genome. To date, we have confirmed >1099 evenly spaced SNPs (one every 91 +/- 56 kb) across the six chromosomes and validated the utility of our SNP marker set and new fluorescence polarization-based genotyping methods for systematic and high-throughput identification of genes in C. elegans by cloning several proprietary genes. We illustrate our approach by recombination mapping and confirmation of the mutation in the cloned gene, dpy-18.

  14. Multiplex High-Throughput Targeted Proteomic Assay To Identify Induced Pluripotent Stem Cells.

    PubMed

    Baud, Anna; Wessely, Frank; Mazzacuva, Francesca; McCormick, James; Camuzeaux, Stephane; Heywood, Wendy E; Little, Daniel; Vowles, Jane; Tuefferd, Marianne; Mosaku, Olukunbi; Lako, Majlinda; Armstrong, Lyle; Webber, Caleb; Cader, M Zameel; Peeters, Pieter; Gissen, Paul; Cowley, Sally A; Mills, Kevin

    2017-02-21

    Induced pluripotent stem cells have great potential as a human model system in regenerative medicine, disease modeling, and drug screening. However, their use in medical research is hampered by laborious reprogramming procedures that yield low numbers of induced pluripotent stem cells. For further applications in research, only the best, competent clones should be used. The standard assays for pluripotency are based on genomic approaches, which take up to 1 week to perform and incur significant cost. Therefore, there is a need for a rapid and cost-effective assay able to distinguish between pluripotent and nonpluripotent cells. Here, we describe a novel multiplexed, high-throughput, and sensitive peptide-based multiple reaction monitoring mass spectrometry assay, allowing for the identification and absolute quantitation of multiple core transcription factors and pluripotency markers. This assay provides simpler and high-throughput classification into either pluripotent or nonpluripotent cells in 7 min analysis while being more cost-effective than conventional genomic tests.

  15. Mathematical and Computational Modeling in Complex Biological Systems.

    PubMed

    Ji, Zhiwei; Yan, Ke; Li, Wenyang; Hu, Haigen; Zhu, Xiaoliang

    2017-01-01

    The biological process and molecular functions involved in the cancer progression remain difficult to understand for biologists and clinical doctors. Recent developments in high-throughput technologies urge the systems biology to achieve more precise models for complex diseases. Computational and mathematical models are gradually being used to help us understand the omics data produced by high-throughput experimental techniques. The use of computational models in systems biology allows us to explore the pathogenesis of complex diseases, improve our understanding of the latent molecular mechanisms, and promote treatment strategy optimization and new drug discovery. Currently, it is urgent to bridge the gap between the developments of high-throughput technologies and systemic modeling of the biological process in cancer research. In this review, we firstly studied several typical mathematical modeling approaches of biological systems in different scales and deeply analyzed their characteristics, advantages, applications, and limitations. Next, three potential research directions in systems modeling were summarized. To conclude, this review provides an update of important solutions using computational modeling approaches in systems biology.

  16. A Method of High Throughput Monitoring Crop Physiology Using Chlorophyll Fluorescence and Multispectral Imaging.

    PubMed

    Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu

    2018-01-01

    We present a high throughput crop physiology condition monitoring system and corresponding monitoring method. The monitoring system can perform large-area chlorophyll fluorescence imaging and multispectral imaging. The monitoring method can determine the crop current condition continuously and non-destructively. We choose chlorophyll fluorescence parameters and relative reflectance of multispectral as the indicators of crop physiological status. Using tomato as experiment subject, the typical crop physiological stress, such as drought, nutrition deficiency and plant disease can be distinguished by the monitoring method. Furthermore, we have studied the correlation between the physiological indicators and the degree of stress. Besides realizing the continuous monitoring of crop physiology, the monitoring system and method provide the possibility of machine automatic diagnosis of the plant physiology. Highlights: A newly designed high throughput crop physiology monitoring system and the corresponding monitoring method are described in this study. Different types of stress can induce distinct fluorescence and spectral characteristics, which can be used to evaluate the physiological status of plants.

  17. High-throughput characterization for solar fuels materials discovery

    NASA Astrophysics Data System (ADS)

    Mitrovic, Slobodan; Becerra, Natalie; Cornell, Earl; Guevarra, Dan; Haber, Joel; Jin, Jian; Jones, Ryan; Kan, Kevin; Marcin, Martin; Newhouse, Paul; Soedarmadji, Edwin; Suram, Santosh; Xiang, Chengxiang; Gregoire, John; High-Throughput Experimentation Team

    2014-03-01

    In this talk I will present the status of the High-Throughput Experimentation (HTE) project of the Joint Center for Artificial Photosynthesis (JCAP). JCAP is an Energy Innovation Hub of the U.S. Department of Energy with a mandate to deliver a solar fuel generator based on an integrated photoelectrochemical cell (PEC). However, efficient and commercially viable catalysts or light absorbers for the PEC do not exist. The mission of HTE is to provide the accelerated discovery through combinatorial synthesis and rapid screening of material properties. The HTE pipeline also features high-throughput material characterization using x-ray diffraction and x-ray photoemission spectroscopy (XPS). In this talk I present the currently operating pipeline and focus on our combinatorial XPS efforts to build the largest free database of spectra from mixed-metal oxides, nitrides, sulfides and alloys. This work was performed at Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993.

  18. Materials Databases Infrastructure Constructed by First Principles Calculations: A Review

    DOE PAGES

    Lin, Lianshan

    2015-10-13

    The First Principles calculations, especially the calculation based on High-Throughput Density Functional Theory, have been widely accepted as the major tools in atom scale materials design. The emerging super computers, along with the powerful First Principles calculations, have accumulated hundreds of thousands of crystal and compound records. The exponential growing of computational materials information urges the development of the materials databases, which not only provide unlimited storage for the daily increasing data, but still keep the efficiency in data storage, management, query, presentation and manipulation. This review covers the most cutting edge materials databases in materials design, and their hotmore » applications such as in fuel cells. By comparing the advantages and drawbacks of these high-throughput First Principles materials databases, the optimized computational framework can be identified to fit the needs of fuel cell applications. The further development of high-throughput DFT materials database, which in essence accelerates the materials innovation, is discussed in the summary as well.« less

  19. Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data

    PubMed Central

    Ching, Travers; Zhu, Xun

    2018-01-01

    Artificial neural networks (ANN) are computing architectures with many interconnections of simple neural-inspired computing elements, and have been applied to biomedical fields such as imaging analysis and diagnosis. We have developed a new ANN framework called Cox-nnet to predict patient prognosis from high throughput transcriptomics data. In 10 TCGA RNA-Seq data sets, Cox-nnet achieves the same or better predictive accuracy compared to other methods, including Cox-proportional hazards regression (with LASSO, ridge, and mimimax concave penalty), Random Forests Survival and CoxBoost. Cox-nnet also reveals richer biological information, at both the pathway and gene levels. The outputs from the hidden layer node provide an alternative approach for survival-sensitive dimension reduction. In summary, we have developed a new method for accurate and efficient prognosis prediction on high throughput data, with functional biological insights. The source code is freely available at https://github.com/lanagarmire/cox-nnet. PMID:29634719

  20. An automated high throughput tribometer for adhesion, wear, and friction measurements

    NASA Astrophysics Data System (ADS)

    Kalihari, Vivek; Timpe, Shannon J.; McCarty, Lyle; Ninke, Matthew; Whitehead, Jim

    2013-03-01

    Understanding the origin and correlation of different surface properties under a multitude of operating conditions is critical in tribology. Diverse tribological properties and a lack of a single instrument to measure all make it difficult to compare and correlate properties, particularly in light of the wide range of interfaces commonly investigated. In the current work, a novel automated tribometer has been designed and validated, providing a unique experimental platform capable of high throughput adhesion, wear, kinetic friction, and static friction measurements. The innovative design aspects are discussed that allow for a variety of probes, sample surfaces, and testing conditions. Critical components of the instrument and their design criteria are described along with examples of data collection schemes. A case study is presented with multiple surface measurements performed on a set of characteristic substrates. Adhesion, wear, kinetic friction, and static friction are analyzed and compared across surfaces, highlighting the comprehensive nature of the surface data that can be generated using the automated high throughput tribometer.

  1. Application of ToxCast High-Throughput Screening and ...

    EPA Pesticide Factsheets

    Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenesis Distruptors Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenssis Distruptors

  2. Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules

    PubMed Central

    Panzeri, Francesco

    2017-01-01

    We describe an 8-spot confocal setup for high-throughput smFRET assays and illustrate its performance with two characteristic experiments. First, measurements on a series of freely diffusing doubly-labeled dsDNA samples allow us to demonstrate that data acquired in multiple spots in parallel can be properly corrected and result in measured sample characteristics consistent with those obtained with a standard single-spot setup. We then take advantage of the higher throughput provided by parallel acquisition to address an outstanding question about the kinetics of the initial steps of bacterial RNA transcription. Our real-time kinetic analysis of promoter escape by bacterial RNA polymerase confirms results obtained by a more indirect route, shedding additional light on the initial steps of transcription. Finally, we discuss the advantages of our multispot setup, while pointing potential limitations of the current single laser excitation design, as well as analysis challenges and their solutions. PMID:28419142

  3. High throughput ion-channel pharmacology: planar-array-based voltage clamp.

    PubMed

    Kiss, Laszlo; Bennett, Paul B; Uebele, Victor N; Koblan, Kenneth S; Kane, Stefanie A; Neagle, Brad; Schroeder, Kirk

    2003-02-01

    Technological advances often drive major breakthroughs in biology. Examples include PCR, automated DNA sequencing, confocal/single photon microscopy, AFM, and voltage/patch-clamp methods. The patch-clamp method, first described nearly 30 years ago, was a major technical achievement that permitted voltage-clamp analysis (membrane potential control) of ion channels in most cells and revealed a role for channels in unimagined areas. Because of the high information content, voltage clamp is the best way to study ion-channel function; however, throughput is too low for drug screening. Here we describe a novel breakthrough planar-array-based HT patch-clamp technology developed by Essen Instruments capable of voltage-clamping thousands of cells per day. This technology provides greater than two orders of magnitude increase in throughput compared with the traditional voltage-clamp techniques. We have applied this method to study the hERG K(+) channel and to determine the pharmacological profile of QT prolonging drugs.

  4. History, applications, and challenges of immune repertoire research.

    PubMed

    Liu, Xiao; Wu, Jinghua

    2018-02-27

    The diversity of T and B cells in terms of their receptor sequences is huge in the vertebrate's immune system and provides broad protection against the vast diversity of pathogens. Immune repertoire is defined as the sum of T cell receptors and B cell receptors (also named immunoglobulin) that makes the organism's adaptive immune system. Before the emergence of high-throughput sequencing, the studies on immune repertoire were limited by the underdeveloped methodologies, since it was impossible to capture the whole picture by the low-throughput tools. The massive paralleled sequencing technology suits perfectly the researches on immune repertoire. In this article, we review the history of immune repertoire studies, in terms of technologies and research applications. Particularly, we discuss several aspects of challenges in this field and highlight the efforts to develop potential solutions, in the era of high-throughput sequencing of the immune repertoire.

  5. Cellular resolution functional imaging in behaving rats using voluntary head restraint

    PubMed Central

    Scott, Benjamin B.; Brody, Carlos D.; Tank, David W.

    2013-01-01

    SUMMARY High-throughput operant conditioning systems for rodents provide efficient training on sophisticated behavioral tasks. Combining these systems with technologies for cellular resolution functional imaging would provide a powerful approach to study neural dynamics during behavior. Here we describe an integrated two-photon microscope and behavioral apparatus that allows cellular resolution functional imaging of cortical regions during epochs of voluntary head restraint. Rats were trained to initiate periods of restraint up to 8 seconds in duration, which provided the mechanical stability necessary for in vivo imaging while allowing free movement between behavioral trials. A mechanical registration system repositioned the head to within a few microns, allowing the same neuronal populations to be imaged on each trial. In proof-of-principle experiments, calcium dependent fluorescence transients were recorded from GCaMP-labeled cortical neurons. In contrast to previous methods for head restraint, this system can also be incorporated into high-throughput operant conditioning systems. PMID:24055015

  6. Microfluidic cell chips for high-throughput drug screening

    PubMed Central

    Chi, Chun-Wei; Ahmed, AH Rezwanuddin; Dereli-Korkut, Zeynep; Wang, Sihong

    2016-01-01

    The current state of screening methods for drug discovery is still riddled with several inefficiencies. Although some widely used high-throughput screening platforms may enhance the drug screening process, their cost and oversimplification of cell–drug interactions pose a translational difficulty. Microfluidic cell-chips resolve many issues found in conventional HTS technology, providing benefits such as reduced sample quantity and integration of 3D cell culture physically more representative of the physiological/pathological microenvironment. In this review, we introduce the advantages of microfluidic devices in drug screening, and outline the critical factors which influence device design, highlighting recent innovations and advances in the field including a summary of commercialization efforts on microfluidic cell chips. Future perspectives of microfluidic cell devices are also provided based on considerations of present technological limitations and translational barriers. PMID:27071838

  7. Scaling and automation of a high-throughput single-cell-derived tumor sphere assay chip.

    PubMed

    Cheng, Yu-Heng; Chen, Yu-Chih; Brien, Riley; Yoon, Euisik

    2016-10-07

    Recent research suggests that cancer stem-like cells (CSCs) are the key subpopulation for tumor relapse and metastasis. Due to cancer plasticity in surface antigen and enzymatic activity markers, functional tumorsphere assays are promising alternatives for CSC identification. To reliably quantify rare CSCs (1-5%), thousands of single-cell suspension cultures are required. While microfluidics is a powerful tool in handling single cells, previous works provide limited throughput and lack automatic data analysis capability required for high-throughput studies. In this study, we present the scaling and automation of high-throughput single-cell-derived tumor sphere assay chips, facilitating the tracking of up to ∼10 000 cells on a chip with ∼76.5% capture rate. The presented cell capture scheme guarantees sampling a representative population from the bulk cells. To analyze thousands of single-cells with a variety of fluorescent intensities, a highly adaptable analysis program was developed for cell/sphere counting and size measurement. Using a Pluronic® F108 (poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)) coating on polydimethylsiloxane (PDMS), a suspension culture environment was created to test a controversial hypothesis: whether larger or smaller cells are more stem-like defined by the capability to form single-cell-derived spheres. Different cell lines showed different correlations between sphere formation rate and initial cell size, suggesting heterogeneity in pathway regulation among breast cancer cell lines. More interestingly, by monitoring hundreds of spheres, we identified heterogeneity in sphere growth dynamics, indicating the cellular heterogeneity even within CSCs. These preliminary results highlight the power of unprecedented high-throughput and automation in CSC studies.

  8. A high throughput mechanical screening device for cartilage tissue engineering.

    PubMed

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L

    2014-06-27

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput. © 2013 Published by Elsevier Ltd.

  9. Remote detection of human toxicants in real time using a human-optimized, bioluminescent bacterial luciferase gene cassette bioreporter

    NASA Astrophysics Data System (ADS)

    Close, Dan; Webb, James; Ripp, Steven; Patterson, Stacey; Sayler, Gary

    2012-06-01

    Traditionally, human toxicant bioavailability screening has been forced to proceed in either a high throughput fashion using prokaryotic or lower eukaryotic targets with minimal applicability to humans, or in a more expensive, lower throughput manner that uses fluorescent or bioluminescent human cells to directly provide human bioavailability data. While these efforts are often sufficient for basic scientific research, they prevent the rapid and remote identification of potentially toxic chemicals required for modern biosecurity applications. To merge the advantages of high throughput, low cost screening regimens with the direct bioavailability assessment of human cell line use, we re-engineered the bioluminescent bacterial luciferase gene cassette to function autonomously (without exogenous stimulation) within human cells. Optimized cassette expression provides for fully endogenous bioluminescent production, allowing continuous, real time monitoring of the bioavailability and toxicology of various compounds in an automated fashion. To access the functionality of this system, two sets of bioluminescent human cells were developed. The first was programed to suspend bioluminescent production upon toxicological challenge to mimic the non-specific detection of a toxicant. The second induced bioluminescence upon detection of a specific compound to demonstrate autonomous remote target identification. These cells were capable of responding to μM concentrations of the toxicant n-decanal, and allowed for continuous monitoring of cellular health throughout the treatment process. Induced bioluminescence was generated through treatment with doxycycline and was detectable upon dosage at a 100 ng/ml concentration. These results demonstrate that leveraging autonomous bioluminescence allows for low-cost, high throughput direct assessment of toxicant bioavailability.

  10. High Throughput Transcriptomics: From screening to pathways

    EPA Science Inventory

    The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...

  11. Nanosurveyor: a framework for real-time data processing

    DOE PAGES

    Daurer, Benedikt J.; Krishnan, Hari; Perciano, Talita; ...

    2017-01-31

    Background: The ever improving brightness of accelerator based sources is enabling novel observations and discoveries with faster frame rates, larger fields of view, higher resolution, and higher dimensionality. Results: Here we present an integrated software/algorithmic framework designed to capitalize on high-throughput experiments through efficient kernels, load-balanced workflows, which are scalable in design. We describe the streamlined processing pipeline of ptychography data analysis. Conclusions: The pipeline provides throughput, compression, and resolution as well as rapid feedback to the microscope operators.

  12. Mosquitoes meet microfluidics: High-throughput microfluidic tools for insect-parasite ecology in field conditions

    NASA Astrophysics Data System (ADS)

    Prakash, Manu; Mukundarajan, Haripriya

    2013-11-01

    A simple bite from an insect is the transmission mechanism for many deadly diseases worldwide--including malaria, yellow fever, west nile and dengue. Very little is known about how populations of numerous insect species and disease-causing parasites interact in their natural habitats due to a lack of measurement techniques. At present, vector surveillance techniques involve manual capture by using humans as live bait, which is hard to justify on ethical grounds. Individual mosquitoes are manually dissected to isolate salivary glands to detect sporozites. With typical vector infection rates being very low even in endemic areas, it is almost impossible to get an accurate picture of disease distribution, in both space and time. Here we present novel high-throughput microfluidic tools for vector surveillance, specifically mosquitoes. A two-dimensional high density array with baits provide an integrated platform for multiplex PCR for detection of both vector and parasite species. Combining techniques from engineering and field ecology, methods and tools developed here will enable high-throughput measurement of infection rates for a number of diseases in mosquito populations in field conditions. Pew Foundation.

  13. Human Papillomavirus Biology, Pathogenesis, and Potential for Drug Discovery: A Literature Review for HIV Nurse Clinical Scientists.

    PubMed

    Walhart, Tara

    2015-01-01

    Persistent oncogenic human papillomavirus (HPV) infection increases the probability that precancerous anal high-grade squamous intraepithelial lesions will progress to invasive anal cancer. Anal neoplasia associated with HPV disproportionately affects HIV-infected individuals, especially men who have sex with men. Prevention is limited to HPV vaccine recommendations, highlighting the need for new treatments. The purpose of this review is to provide HIV information to nurse clinical scientists about HPV-related cancer to highlight the connection between: (a) HPV biology and pathogenesis and (b) the development of drugs and novel therapeutic methods using high-throughput screening. PubMed and CINAHL were used to search the literature to determine HPV-related epidemiology, biology, and use of high-throughput screening for drug discovery. Several events in the HPV life cycle have the potential to be developed into biologic targets for drug discovery using the high-throughput screening technique, which has been successfully used to identify compounds to inhibit HPV infections. Copyright © 2015 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.

  14. High Throughput Experimental Materials Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakutayev, Andriy; Perkins, John; Schwarting, Marcus

    The mission of the High Throughput Experimental Materials Database (HTEM DB) is to enable discovery of new materials with useful properties by releasing large amounts of high-quality experimental data to public. The HTEM DB contains information about materials obtained from high-throughput experiments at the National Renewable Energy Laboratory (NREL).

  15. Turbulent flow chromatography TFC-tandem mass spectrometry supporting in vitro/vivo studies of NCEs in high throughput fashion.

    PubMed

    Verdirame, Maria; Veneziano, Maria; Alfieri, Anna; Di Marco, Annalise; Monteagudo, Edith; Bonelli, Fabio

    2010-03-11

    Turbulent Flow Chromatography (TFC) is a powerful approach for on-line extraction in bioanalytical studies. It improves sensitivity and reduces sample preparation time, two factors that are of primary importance in drug discovery. In this paper the application of the ARIA system to the analytical support of in vivo pharmacokinetics (PK) and in vitro drug metabolism studies is described, with an emphasis in high throughput optimization. For PK studies, a comparison between acetonitrile plasma protein precipitation (APPP) and TFC was carried out. Our optimized TFC methodology gave better S/N ratios and lower limit of quantification (LOQ) than conventional procedures. A robust and high throughput analytical method to support hepatocyte metabolic stability screening of new chemical entities was developed by hyphenation of TFC with mass spectrometry. An in-loop dilution injection procedure was implemented to overcome one of the main issues when using TFC, that is the early elution of hydrophilic compounds that renders low recoveries. A comparison between off-line solid phase extraction (SPE) and TFC was also carried out, and recovery, sensitivity (LOQ), matrix effect and robustness were evaluated. The use of two parallel columns in the configuration of the system provided a further increase of the throughput. Copyright 2009 Elsevier B.V. All rights reserved.

  16. Application of High-Throughput In Vitro Assays for Risk-Based ...

    EPA Pesticide Factsheets

    Multiple drivers shape the types of human-health assessments performed on chemicals by U.S. EPA resulting in chemical assessments are “fit-for-purpose” ranging from prioritization for further testing to full risk assessments. Layered on top of the diverse assessment needs are the resource intensive nature of traditional toxicological studies used to test chemicals and the lack of toxicity information on many chemicals. To address these challenges, the Agency initiated the ToxCast program to screen thousands of chemicals across hundreds of high-throughput screening assays in concentrations-response format. One of the findings of the project has been that the majority of chemicals interact with multiple biological targets within a narrow concentration range and the extent of interactions increases rapidly near the concentration causing cytotoxicity. This means that application of high-throughput in vitro assays to chemical assessments will need to identify both the relative selectivity at chemicals interact with biological targets and the concentration at which these interactions perturb signaling pathways. The integrated analyses will be used to both define a point-of-departure for comparison with human exposure estimates and identify which chemicals may benefit from further studies in a mode-of-action or adverse outcome pathway framework. The application of new technologies in a risk-based, tiered manner provides flexibility in matching throughput and cos

  17. 20150325 - Application of High-Throughput In Vitro Assays for ...

    EPA Pesticide Factsheets

    Multiple drivers shape the types of human-health assessments performed on chemicals by U.S. EPA resulting in chemical assessments are “fit-for-purpose” ranging from prioritization for further testing to full risk assessments. Layered on top of the diverse assessment needs are the resource intensive nature of traditional toxicological studies used to test chemicals and the lack of toxicity information on many chemicals. To address these challenges, the Agency initiated the ToxCast program to screen thousands of chemicals across hundreds of high-throughput screening assays in concentrations-response format. One of the findings of the project has been that the majority of chemicals interact with multiple biological targets within a narrow concentration range and the extent of interactions increases rapidly near the concentration causing cytotoxicity. This means that application of high-throughput in vitro assays to chemical assessments will need to identify both the relative selectivity at chemicals interact with biological targets and the concentration at which these interactions perturb signaling pathways. The integrated analyses will be used to both define a point-of-departure for comparison with human exposure estimates and identify which chemicals may benefit from further studies in a mode-of-action or adverse outcome pathway framework. The application of new technologies in a risk-based, tiered manner provides flexibility in matching throughput and cos

  18. Molecular Pathways: Extracting Medical Knowledge from High Throughput Genomic Data

    PubMed Central

    Goldstein, Theodore; Paull, Evan O.; Ellis, Matthew J.; Stuart, Joshua M.

    2013-01-01

    High-throughput genomic data that measures RNA expression, DNA copy number, mutation status and protein levels provide us with insights into the molecular pathway structure of cancer. Genomic lesions (amplifications, deletions, mutations) and epigenetic modifications disrupt biochemical cellular pathways. While the number of possible lesions is vast, different genomic alterations may result in concordant expression and pathway activities, producing common tumor subtypes that share similar phenotypic outcomes. How can these data be translated into medical knowledge that provides prognostic and predictive information? First generation mRNA expression signatures such as Genomic Health's Oncotype DX already provide prognostic information, but do not provide therapeutic guidance beyond the current standard of care – which is often inadequate in high-risk patients. Rather than building molecular signatures based on gene expression levels, evidence is growing that signatures based on higher-level quantities such as from genetic pathways may provide important prognostic and diagnostic cues. We provide examples of how activities for molecular entities can be predicted from pathway analysis and how the composite of all such activities, referred to here as the “activitome,” help connect genomic events to clinical factors in order to predict the drivers of poor outcome. PMID:23430023

  19. Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation

    USDA-ARS?s Scientific Manuscript database

    Rapid development of highly saturated genetic maps aids molecular breeding, which can accelerate gain per breeding cycle in woody perennial plants such as Rubus idaeus (red raspberry). Recently, robust genotyping methods based on high-throughput sequencing were developed, which provide high marker d...

  20. Incorporating High-Throughput Exposure Predictions with ...

    EPA Pesticide Factsheets

    We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast™ HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compared against regulatory exposure estimates, providing an activity-to-exposure ratio (AER) useful for a risk-based ranking strategy. As ToxCast™ efforts expand (i.e., Phase II) beyond food-use pesticides towards a wider chemical domain that lacks exposure and toxicity information, prediction tools become increasingly important. In this study, in vitro hepatic clearance and plasma protein binding were measured to estimate OEDs for a subset of Phase II chemicals. OEDs were compared against high-throughput (HT) exposure predictions generated using probabilistic modeling and Bayesian approaches generated by the U.S. EPA ExpoCast™ program. This approach incorporated chemical-specific use and national production volume data with biomonitoring data to inform the exposure predictions. This HT exposure modeling approach provided predictions for all Phase II chemicals assessed in this study whereas estimates from regulatory sources were available for only 7% of chemicals. Of the 163 chemicals assessed in this study, three or 13 chemicals possessed AERs <1 or <100, respectively. Diverse bioactivities y across a range of assays and concentrations was also noted across the wider chemical space su

  1. Pathway Profiling and Tissue Modeling Using ToxCast HTS Data

    EPA Science Inventory

    High-throughput screening (HTS) and high-content screening (HCS) assays are providing data-rich studies to probe and profile the direct cellular effects of thousands of chemical compounds in commerce or potentially entering the environment. In vitro profiling may compare unknown ...

  2. Efficient Identification of Murine M2 Macrophage Peptide Targeting Ligands by Phage Display and Next-Generation Sequencing.

    PubMed

    Liu, Gary W; Livesay, Brynn R; Kacherovsky, Nataly A; Cieslewicz, Maryelise; Lutz, Emi; Waalkes, Adam; Jensen, Michael C; Salipante, Stephen J; Pun, Suzie H

    2015-08-19

    Peptide ligands are used to increase the specificity of drug carriers to their target cells and to facilitate intracellular delivery. One method to identify such peptide ligands, phage display, enables high-throughput screening of peptide libraries for ligands binding to therapeutic targets of interest. However, conventional methods for identifying target binders in a library by Sanger sequencing are low-throughput, labor-intensive, and provide a limited perspective (<0.01%) of the complete sequence space. Moreover, the small sample space can be dominated by nonspecific, preferentially amplifying "parasitic sequences" and plastic-binding sequences, which may lead to the identification of false positives or exclude the identification of target-binding sequences. To overcome these challenges, we employed next-generation Illumina sequencing to couple high-throughput screening and high-throughput sequencing, enabling more comprehensive access to the phage display library sequence space. In this work, we define the hallmarks of binding sequences in next-generation sequencing data, and develop a method that identifies several target-binding phage clones for murine, alternatively activated M2 macrophages with a high (100%) success rate: sequences and binding motifs were reproducibly present across biological replicates; binding motifs were identified across multiple unique sequences; and an unselected, amplified library accurately filtered out parasitic sequences. In addition, we validate the Multiple Em for Motif Elicitation tool as an efficient and principled means of discovering binding sequences.

  3. High Throughput Assays for Exposure Science (NIEHS OHAT ...

    EPA Pesticide Factsheets

    High throughput screening (HTS) data that characterize chemically induced biological activity have been generated for thousands of chemicals by the US interagency Tox21 and the US EPA ToxCast programs. In many cases there are no data available for comparing bioactivity from HTS with relevant human exposures. The EPA’s ExpoCast program is developing high-throughput approaches to generate the needed exposure estimates using existing databases and new, high-throughput measurements. The exposure pathway (i.e., the route of chemical from manufacture to human intake) significantly impacts the level of exposure. The presence, concentration, and formulation of chemicals in consumer products and articles of commerce (e.g., clothing) can therefore provide critical information for estimating risk. We have found that there are only limited data available on the chemical constituents (e.g., flame retardants, plasticizers) within most articles of commerce. Furthermore, the presence of some chemicals in otherwise well characterized products may be due to product packaging. We are analyzing sample consumer products using 2D gas chromatograph (GC) x GC Time of Flight Mass Spectrometry (GCxGCTOF/MS), which is suited for forensic investigation of chemicals in complex matrices (including toys, cleaners, and food). In parallel, we are working to create a reference library of retention times and spectral information for the entire Tox21 chemical library. In an examination of five p

  4. A new fungal large subunit ribosomal RNA primer for high throughput sequencing surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Rebecca C.; Gallegos-Graves, La Verne; Kuske, Cheryl R.

    The inclusion of phylogenetic metrics in community ecology has provided insights into important ecological processes, particularly when combined with high-throughput sequencing methods; however, these approaches have not been widely used in studies of fungal communities relative to other microbial groups. Two obstacles have been considered: (1) the internal transcribed spacer (ITS) region has limited utility for constructing phylogenies and (2) most PCR primers that target the large subunit (LSU) ribosomal unit generate amplicons that exceed current limits of high-throughput sequencing platforms. We designed and tested a PCR primer (LR22R) to target approximately 300–400 bp region of the D2 hypervariable regionmore » of the fungal LSU for use with the Illumina MiSeq platform. Both in silico and empirical analyses showed that the LR22R–LR3 pair captured a broad range of fungal taxonomic groups with a small fraction of non-fungal groups. Phylogenetic placement of publically available LSU D2 sequences showed broad agreement with taxonomic classification. Comparisons of the LSU D2 and the ITS2 ribosomal regions from environmental samples and known communities showed similar discriminatory abilities of the two primer sets. Altogether, these findings show that the LR22R–LR3 primer pair has utility for phylogenetic analyses of fungal communities using high-throughput sequencing methods.« less

  5. Identifying apicoplast-targeting antimalarials using high-throughput compatible approaches

    PubMed Central

    Ekland, Eric H.; Schneider, Jessica; Fidock, David A.

    2011-01-01

    Malarial parasites have evolved resistance to all previously used therapies, and recent evidence suggests emerging resistance to the first-line artemisinins. To identify antimalarials with novel mechanisms of action, we have developed a high-throughput screen targeting the apicoplast organelle of Plasmodium falciparum. Antibiotics known to interfere with this organelle, such as azithromycin, exhibit an unusual phenotype whereby the progeny of drug-treated parasites die. Our screen exploits this phenomenon by assaying for “delayed death” compounds that exhibit a higher potency after two cycles of intraerythrocytic development compared to one. We report a primary assay employing parasites with an integrated copy of a firefly luciferase reporter gene and a secondary flow cytometry-based assay using a nucleic acid stain paired with a mitochondrial vital dye. Screening of the U.S. National Institutes of Health Clinical Collection identified known and novel antimalarials including kitasamycin. This inexpensive macrolide, used for agricultural applications, exhibited an in vitro IC50 in the 50 nM range, comparable to the 30 nM activity of our control drug, azithromycin. Imaging and pharmacologic studies confirmed kitasamycin action against the apicoplast, and in vivo activity was observed in a murine malaria model. These assays provide the foundation for high-throughput campaigns to identify novel chemotypes for combination therapies to treat multidrug-resistant malaria.—Ekland, E. H., Schneider, J., Fidock, D. A. Identifying apicoplast-targeting antimalarials using high-throughput compatible approaches. PMID:21746861

  6. High throughput workflow for coacervate formation and characterization in shampoo systems.

    PubMed

    Kalantar, T H; Tucker, C J; Zalusky, A S; Boomgaard, T A; Wilson, B E; Ladika, M; Jordan, S L; Li, W K; Zhang, X; Goh, C G

    2007-01-01

    Cationic cellulosic polymers find wide utility as benefit agents in shampoo. Deposition of these polymers onto hair has been shown to mend split-ends, improve appearance and wet combing, as well as provide controlled delivery of insoluble actives. The deposition is thought to be enhanced by the formation of a polymer/surfactant complex that phase-separates from the bulk solution upon dilution. A standard characterization method has been developed to characterize the coacervate formation upon dilution, but the test is time and material prohibitive. We have developed a semi-automated high throughput workflow to characterize the coacervate-forming behavior of different shampoo formulations. A procedure that allows testing of real use shampoo dilutions without first formulating a complete shampoo was identified. This procedure was adapted to a Tecan liquid handler by optimizing the parameters for liquid dispensing as well as for mixing. The high throughput workflow enabled preparation and testing of hundreds of formulations with different types and levels of cationic cellulosic polymers and surfactants, and for each formulation a haze diagram was constructed. Optimal formulations and their dilutions that give substantial coacervate formation (determined by haze measurements) were identified. Results from this high throughput workflow were shown to reproduce standard haze and bench-top turbidity measurements, and this workflow has the advantages of using less material and allowing more variables to be tested with significant time savings.

  7. A new fungal large subunit ribosomal RNA primer for high throughput sequencing surveys

    DOE PAGES

    Mueller, Rebecca C.; Gallegos-Graves, La Verne; Kuske, Cheryl R.

    2015-12-09

    The inclusion of phylogenetic metrics in community ecology has provided insights into important ecological processes, particularly when combined with high-throughput sequencing methods; however, these approaches have not been widely used in studies of fungal communities relative to other microbial groups. Two obstacles have been considered: (1) the internal transcribed spacer (ITS) region has limited utility for constructing phylogenies and (2) most PCR primers that target the large subunit (LSU) ribosomal unit generate amplicons that exceed current limits of high-throughput sequencing platforms. We designed and tested a PCR primer (LR22R) to target approximately 300–400 bp region of the D2 hypervariable regionmore » of the fungal LSU for use with the Illumina MiSeq platform. Both in silico and empirical analyses showed that the LR22R–LR3 pair captured a broad range of fungal taxonomic groups with a small fraction of non-fungal groups. Phylogenetic placement of publically available LSU D2 sequences showed broad agreement with taxonomic classification. Comparisons of the LSU D2 and the ITS2 ribosomal regions from environmental samples and known communities showed similar discriminatory abilities of the two primer sets. Altogether, these findings show that the LR22R–LR3 primer pair has utility for phylogenetic analyses of fungal communities using high-throughput sequencing methods.« less

  8. 20180311 - High Throughput Transcriptomics: From screening to pathways (SOT 2018)

    EPA Science Inventory

    The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...

  9. Evaluation of Sequencing Approaches for High-Throughput Transcriptomics - (BOSC)

    EPA Science Inventory

    Whole-genome in vitro transcriptomics has shown the capability to identify mechanisms of action and estimates of potency for chemical-mediated effects in a toxicological framework, but with limited throughput and high cost. The generation of high-throughput global gene expression...

  10. PLAN: a web platform for automating high-throughput BLAST searches and for managing and mining results.

    PubMed

    He, Ji; Dai, Xinbin; Zhao, Xuechun

    2007-02-09

    BLAST searches are widely used for sequence alignment. The search results are commonly adopted for various functional and comparative genomics tasks such as annotating unknown sequences, investigating gene models and comparing two sequence sets. Advances in sequencing technologies pose challenges for high-throughput analysis of large-scale sequence data. A number of programs and hardware solutions exist for efficient BLAST searching, but there is a lack of generic software solutions for mining and personalized management of the results. Systematically reviewing the results and identifying information of interest remains tedious and time-consuming. Personal BLAST Navigator (PLAN) is a versatile web platform that helps users to carry out various personalized pre- and post-BLAST tasks, including: (1) query and target sequence database management, (2) automated high-throughput BLAST searching, (3) indexing and searching of results, (4) filtering results online, (5) managing results of personal interest in favorite categories, (6) automated sequence annotation (such as NCBI NR and ontology-based annotation). PLAN integrates, by default, the Decypher hardware-based BLAST solution provided by Active Motif Inc. with a greatly improved efficiency over conventional BLAST software. BLAST results are visualized by spreadsheets and graphs and are full-text searchable. BLAST results and sequence annotations can be exported, in part or in full, in various formats including Microsoft Excel and FASTA. Sequences and BLAST results are organized in projects, the data publication levels of which are controlled by the registered project owners. In addition, all analytical functions are provided to public users without registration. PLAN has proved a valuable addition to the community for automated high-throughput BLAST searches, and, more importantly, for knowledge discovery, management and sharing based on sequence alignment results. The PLAN web interface is platform-independent, easily configurable and capable of comprehensive expansion, and user-intuitive. PLAN is freely available to academic users at http://bioinfo.noble.org/plan/. The source code for local deployment is provided under free license. Full support on system utilization, installation, configuration and customization are provided to academic users.

  11. PLAN: a web platform for automating high-throughput BLAST searches and for managing and mining results

    PubMed Central

    He, Ji; Dai, Xinbin; Zhao, Xuechun

    2007-01-01

    Background BLAST searches are widely used for sequence alignment. The search results are commonly adopted for various functional and comparative genomics tasks such as annotating unknown sequences, investigating gene models and comparing two sequence sets. Advances in sequencing technologies pose challenges for high-throughput analysis of large-scale sequence data. A number of programs and hardware solutions exist for efficient BLAST searching, but there is a lack of generic software solutions for mining and personalized management of the results. Systematically reviewing the results and identifying information of interest remains tedious and time-consuming. Results Personal BLAST Navigator (PLAN) is a versatile web platform that helps users to carry out various personalized pre- and post-BLAST tasks, including: (1) query and target sequence database management, (2) automated high-throughput BLAST searching, (3) indexing and searching of results, (4) filtering results online, (5) managing results of personal interest in favorite categories, (6) automated sequence annotation (such as NCBI NR and ontology-based annotation). PLAN integrates, by default, the Decypher hardware-based BLAST solution provided by Active Motif Inc. with a greatly improved efficiency over conventional BLAST software. BLAST results are visualized by spreadsheets and graphs and are full-text searchable. BLAST results and sequence annotations can be exported, in part or in full, in various formats including Microsoft Excel and FASTA. Sequences and BLAST results are organized in projects, the data publication levels of which are controlled by the registered project owners. In addition, all analytical functions are provided to public users without registration. Conclusion PLAN has proved a valuable addition to the community for automated high-throughput BLAST searches, and, more importantly, for knowledge discovery, management and sharing based on sequence alignment results. The PLAN web interface is platform-independent, easily configurable and capable of comprehensive expansion, and user-intuitive. PLAN is freely available to academic users at . The source code for local deployment is provided under free license. Full support on system utilization, installation, configuration and customization are provided to academic users. PMID:17291345

  12. High-throughput synchronization of mammalian cell cultures by spiral microfluidics.

    PubMed

    Lee, Wong Cheng; Bhagat, Ali Asgar S; Lim, Chwee Teck

    2014-01-01

    The development of mammalian cell cycle synchronization techniques has greatly advanced our understanding of many cellular regulatory events and mechanisms specific to different phases of the cell cycle. In this chapter, we describe a high-throughput microfluidic-based approach for cell cycle synchronization. By exploiting the relationship between cell size and its phase in the cell cycle, large numbers of synchronized cells can be obtained by size fractionation in a spiral microfluidic channel. Protocols for the synchronization of primary cells such as mesenchymal stem cells, and immortal cell lines such as Chinese hamster ovarian cells (CHO-CD36) and HeLa cells are provided as examples.

  13. High Throughput Determination of Critical Human Dosing Parameters (SOT)

    EPA Science Inventory

    High throughput toxicokinetics (HTTK) is a rapid approach that uses in vitro data to estimate TK for hundreds of environmental chemicals. Reverse dosimetry (i.e., reverse toxicokinetics or RTK) based on HTTK data converts high throughput in vitro toxicity screening (HTS) data int...

  14. High Throughput Determinations of Critical Dosing Parameters (IVIVE workshop)

    EPA Science Inventory

    High throughput toxicokinetics (HTTK) is an approach that allows for rapid estimations of TK for hundreds of environmental chemicals. HTTK-based reverse dosimetry (i.e, reverse toxicokinetics or RTK) is used in order to convert high throughput in vitro toxicity screening (HTS) da...

  15. Optimization of high-throughput nanomaterial developmental toxicity testing in zebrafish embryos

    EPA Science Inventory

    Nanomaterial (NM) developmental toxicities are largely unknown. With an extensive variety of NMs available, high-throughput screening methods may be of value for initial characterization of potential hazard. We optimized a zebrafish embryo test as an in vivo high-throughput assay...

  16. Chlorophyll fluorescence is a rigorous, high throughput tool to analyze the impacts of genotype, species, and stress on plant and ecosystem productivity

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Pleban, J. R.; Aston, T.; Beverly, D.; Speckman, H. N.; Hosseini, A.; Bretfeld, M.; Edwards, C.; Yarkhunova, Y.; Weinig, C.; Mackay, D. S.

    2017-12-01

    Abiotic and biotic stresses reduce plant productivity, yet high-throughput characterization of plant responses across genotypes, species and stress conditions are limited by both instrumentation and data analysis techniques. Recent developments in chlorophyll a fluorescence measurement at leaf to landscape scales could improve our predictive understanding of plants response to stressors. We analyzed the interaction of species and stress across two crop types, five gymnosperm and two angiosperm tree species from boreal and montane forests, grasses, forbs and shrubs from sagebrush steppe, and 30 tree species from seasonally wet tropical forest. We also analyzed chlorophyll fluorescence and gas exchange data from twelve Brassica rapa crop accessions and 120 recombinant inbred lines to investigate phenotypic responses to drought. These data represent more than 10,000 measurements of fluorescence and allow us to answer two questions 1) are the measurements from high-throughput, hand held and drone-mounted instruments quantitatively similar to lower throughput camera and gas exchange mounted instruments and 2) do the measurements find differences in genotypic, species and environmental stress on plants? We found through regression that the high and low throughput instruments agreed across both individual chlorophyll fluorescence components and calculated ratios and were not different from a 1:1 relationship with correlation greater than 0.9. We used hierarchical Bayesian modeling to test the second question. We found a linear relationship between the fluorescence-derived quantum yield of PSII and the quantum yield of CO2 assimilation from gas-exchange, with a slope of ca. 0.1 indicating that the efficiency of the entire photosynthetic process was about 10% of PSII across genotypes, species and drought stress. Posterior estimates of quantum yield revealed that drought-treatment, genotype and species differences were preserved when accounting for measurement uncertainty. High throughput handheld or drone-based measurements of chlorophyll fluorescence provide high quality, quantitative data that can be used to not only connect genotype to phenotype but also quantify how vastly different plant species and genotypes respond to stress and change ecosystem productivity.

  17. High-throughput olfactory conditioning and memory retention test show variation in Nasonia parasitic wasps

    PubMed Central

    Hoedjes, K M; Steidle, J L M; Werren, J H; Vet, L E M; Smid, H M

    2012-01-01

    Most of our knowledge on learning and memory formation results from extensive studies on a small number of animal species. Although features and cellular pathways of learning and memory are highly similar in this diverse group of species, there are also subtle differences. Closely related species of parasitic wasps display substantial variation in memory dynamics and can be instrumental to understanding both the adaptive benefit of and mechanisms underlying this variation. Parasitic wasps of the genus Nasonia offer excellent opportunities for multidisciplinary research on this topic. Genetic and genomic resources available for Nasonia are unrivaled among parasitic wasps, providing tools for genetic dissection of mechanisms that cause differences in learning. This study presents a robust, high-throughput method for olfactory conditioning of Nasonia using a host encounter as reward. A T-maze olfactometer facilitates high-throughput memory retention testing and employs standardized odors of equal detectability, as quantified by electroantennogram recordings. Using this setup, differences in memory retention between Nasonia species were shown. In both Nasonia vitripennis and Nasonia longicornis, memory was observed up to at least 5 days after a single conditioning trial, whereas Nasonia giraulti lost its memory after 2 days. This difference in learning may be an adaptation to species-specific differences in ecological factors, for example, host preference. The high-throughput methods for conditioning and memory retention testing are essential tools to study both ultimate and proximate factors that cause variation in learning and memory formation in Nasonia and other parasitic wasp species. PMID:22804968

  18. Polymer-Based Dense Fluidic Networks for High Throughput Screening with Ultrasensitive Fluorescence Detection

    PubMed Central

    Okagbare, Paul I.; Soper, Steven A.

    2011-01-01

    Microfluidics represents a viable platform for performing High Throughput Screening (HTS) due to its ability to automate fluid handling and generate fluidic networks with high number densities over small footprints appropriate for the simultaneous optical interrogation of many screening assays. While most HTS campaigns depend on fluorescence, readers typically use point detection and serially address the assay results significantly lowering throughput or detection sensitivity due to a low duty cycle. To address this challenge, we present here the fabrication of a high density microfluidic network packed into the imaging area of a large field-of-view (FoV) ultrasensitive fluorescence detection system. The fluidic channels were 1, 5 or 10 μm (width), 1 μm (depth) with a pitch of 1–10 μm and each fluidic processor was individually addressable. The fluidic chip was produced from a molding tool using hot embossing and thermal fusion bonding to enclose the fluidic channels. A 40X microscope objective (numerical aperture = 0.75) created a FoV of 200 μm, providing the ability to interrogate ~25 channels using the current fluidic configuration. An ultrasensitive fluorescence detection system with a large FoV was used to transduce fluorescence signals simultaneously from each fluidic processor onto the active area of an electron multiplying charge-coupled device (EMCCD). The utility of these multichannel networks for HTS was demonstrated by carrying out the high throughput monitoring of the activity of an enzyme, APE1, used as a model screening assay. PMID:20872611

  19. High throughput screening of CO2-tolerating microalgae using GasPak bags

    PubMed Central

    2013-01-01

    Background Microalgae are diverse in terms of their speciation and function. More than 35,000 algal strains have been described, and thousands of algal cultures are maintained in different culture collection centers. The ability of CO2 uptake by microalgae varies dramatically among algal species. It becomes challenging to select suitable algal candidates that can proliferate under high CO2 concentration from a large collection of algal cultures. Results Here, we described a high throughput screening method to rapidly identify high CO2 affinity microalgae. The system integrates a CO2 mixer, GasPak bags and microplates. Microalgae on the microplates will be cultivated in GasPak bags charged with different CO2 concentrations. Using this method, we identified 17 algal strains whose growth rates were not influenced when the concentration of CO2 was increased from 2 to 20% (v/v). Most CO2 tolerant strains identified in this study were closely related to the species Scenedesmus and Chlorococcum. One of Scenedesmus strains (E7A) has been successfully tested in in the scale up photo bioreactors (500 L) bubbled with flue gas which contains 10-12% CO2. Conclusion Our high throughput CO2 testing system provides a rapid and reliable way for identifying microalgal candidate strains that can grow under high CO2 condition from a large pool of culture collection species. This high throughput system can also be modified for selecting algal strains that can tolerate other gases, such as NOx, SOx, or flue gas. PMID:24341988

  20. Evaluating chemical safety: ToxCast, Tipping Points and Virtual Tissues (Tamburro Symposium)

    EPA Science Inventory

    This presentation provides an overview of high-throughput toxicology at the NCCT using high-content imaging and computational models for analyzing chemical safety. In In particular, this work outlines the derivation of toxicological "tipping points" from in vitro concentration- a...

  1. Vivaldi: A Domain-Specific Language for Volume Processing and Visualization on Distributed Heterogeneous Systems.

    PubMed

    Choi, Hyungsuk; Choi, Woohyuk; Quan, Tran Minh; Hildebrand, David G C; Pfister, Hanspeter; Jeong, Won-Ki

    2014-12-01

    As the size of image data from microscopes and telescopes increases, the need for high-throughput processing and visualization of large volumetric data has become more pressing. At the same time, many-core processors and GPU accelerators are commonplace, making high-performance distributed heterogeneous computing systems affordable. However, effectively utilizing GPU clusters is difficult for novice programmers, and even experienced programmers often fail to fully leverage the computing power of new parallel architectures due to their steep learning curve and programming complexity. In this paper, we propose Vivaldi, a new domain-specific language for volume processing and visualization on distributed heterogeneous computing systems. Vivaldi's Python-like grammar and parallel processing abstractions provide flexible programming tools for non-experts to easily write high-performance parallel computing code. Vivaldi provides commonly used functions and numerical operators for customized visualization and high-throughput image processing applications. We demonstrate the performance and usability of Vivaldi on several examples ranging from volume rendering to image segmentation.

  2. Improved Breast Cancer Detection Using a Novel In Situ Method to Visualize Clonality.

    DTIC Science & Technology

    1998-07-01

    photosensitivity and laser driven systems are encouraging, and suggest the possibility of high-throughput systems. Biolithography may thus provide new opportunities for molecular diagnostics of solid tumors.

  3. A conifer-friendly high-throughput α-cellulose extraction method for δ13C and δ18O stable isotope ratio analysis

    NASA Astrophysics Data System (ADS)

    Lin, W.; Noormets, A.; domec, J.; King, J. S.; Sun, G.; McNulty, S.

    2012-12-01

    Wood stable isotope ratios (δ13C and δ18O) offer insight to water source and plant water use efficiency (WUE), which in turn provide a glimpse to potential plant responses to changing climate, particularly rainfall patterns. The synthetic pathways of cell wall deposition in wood rings differ in their discrimination ratios between the light and heavy isotopes, and α-cellulose is broadly seen as the best indicator of plant water status due to its local and temporal fixation and to its high abundance within the wood. To use the effects of recent severe droughts on the WUE of loblolly pine (Pinus taeda) throughout Southeastern USA as a harbinger of future changes, an effort has been undertaken to sample the entire range of the species and to sample the isotopic composition in a consistent manner. To be able to accommodate the large number of samples required by this analysis, we have developed a new high-throughput method for α-cellulose extraction, which is the rate-limiting step in such an endeavor. Although an entire family of methods has been developed and perform well, their throughput in a typical research lab setting is limited to 16-75 samples per week with intensive labor input. The resin exclusion step in conifersis is particularly time-consuming. We have combined the recent advances of α-cellulose extraction in plant ecology and wood science, including a high-throughput extraction device developed in the Potsdam Dendro Lab and a simple chemical-based resin exclusion method. By transferring the entire extraction process to a multiport-based system allows throughputs of up to several hundred samples in two weeks, while minimizing labor requirements to 2-3 days per batch of samples.

  4. Tools Fit for Chemical Risk Prioritization (EC JRC presentation)

    EPA Science Inventory

    We would like to know more about the risk posed by thousands of chemicals in the environment – which are most worthy of further study? High throughput screening (HTS) provides a path forward for identifying potential hazard. Exposure and dosimetry provide real world context to ha...

  5. Quantitative, multiplexed workflow for deep analysis of human blood plasma and biomarker discovery by mass spectrometry.

    PubMed

    Keshishian, Hasmik; Burgess, Michael W; Specht, Harrison; Wallace, Luke; Clauser, Karl R; Gillette, Michael A; Carr, Steven A

    2017-08-01

    Proteomic characterization of blood plasma is of central importance to clinical proteomics and particularly to biomarker discovery studies. The vast dynamic range and high complexity of the plasma proteome have, however, proven to be serious challenges and have often led to unacceptable tradeoffs between depth of coverage and sample throughput. We present an optimized sample-processing pipeline for analysis of the human plasma proteome that provides greatly increased depth of detection, improved quantitative precision and much higher sample analysis throughput as compared with prior methods. The process includes abundant protein depletion, isobaric labeling at the peptide level for multiplexed relative quantification and ultra-high-performance liquid chromatography coupled to accurate-mass, high-resolution tandem mass spectrometry analysis of peptides fractionated off-line by basic pH reversed-phase (bRP) chromatography. The overall reproducibility of the process, including immunoaffinity depletion, is high, with a process replicate coefficient of variation (CV) of <12%. Using isobaric tags for relative and absolute quantitation (iTRAQ) 4-plex, >4,500 proteins are detected and quantified per patient sample on average, with two or more peptides per protein and starting from as little as 200 μl of plasma. The approach can be multiplexed up to 10-plex using tandem mass tags (TMT) reagents, further increasing throughput, albeit with some decrease in the number of proteins quantified. In addition, we provide a rapid protocol for analysis of nonfractionated depleted plasma samples analyzed in 10-plex. This provides ∼600 quantified proteins for each of the ten samples in ∼5 h of instrument time.

  6. Spatial tuning of acoustofluidic pressure nodes by altering net sonic velocity enables high-throughput, efficient cell sorting

    DOE PAGES

    Jung, Seung-Yong; Notton, Timothy; Fong, Erika; ...

    2015-01-07

    Particle sorting using acoustofluidics has enormous potential but widespread adoption has been limited by complex device designs and low throughput. Here, we report high-throughput separation of particles and T lymphocytes (600 μL min -1) by altering the net sonic velocity to reposition acoustic pressure nodes in a simple two-channel device. Finally, the approach is generalizable to other microfluidic platforms for rapid, high-throughput analysis.

  7. High-throughput screening (HTS) and modeling of the retinoid ...

    EPA Pesticide Factsheets

    Presentation at the Retinoids Review 2nd workshop in Brussels, Belgium on the application of high throughput screening and model to the retinoid system Presentation at the Retinoids Review 2nd workshop in Brussels, Belgium on the application of high throughput screening and model to the retinoid system

  8. Evaluating High Throughput Toxicokinetics and Toxicodynamics for IVIVE (WC10)

    EPA Science Inventory

    High-throughput screening (HTS) generates in vitro data for characterizing potential chemical hazard. TK models are needed to allow in vitro to in vivo extrapolation (IVIVE) to real world situations. The U.S. EPA has created a public tool (R package “httk” for high throughput tox...

  9. Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays (SOT)

    EPA Science Inventory

    Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput s...

  10. A quantitative literature-curated gold standard for kinase-substrate pairs

    PubMed Central

    2011-01-01

    We describe the Yeast Kinase Interaction Database (KID, http://www.moseslab.csb.utoronto.ca/KID/), which contains high- and low-throughput data relevant to phosphorylation events. KID includes 6,225 low-throughput and 21,990 high-throughput interactions, from greater than 35,000 experiments. By quantitatively integrating these data, we identified 517 high-confidence kinase-substrate pairs that we consider a gold standard. We show that this gold standard can be used to assess published high-throughput datasets, suggesting that it will enable similar rigorous assessments in the future. PMID:21492431

  11. High-Throughput Industrial Coatings Research at The Dow Chemical Company.

    PubMed

    Kuo, Tzu-Chi; Malvadkar, Niranjan A; Drumright, Ray; Cesaretti, Richard; Bishop, Matthew T

    2016-09-12

    At The Dow Chemical Company, high-throughput research is an active area for developing new industrial coatings products. Using the principles of automation (i.e., using robotic instruments), parallel processing (i.e., prepare, process, and evaluate samples in parallel), and miniaturization (i.e., reduce sample size), high-throughput tools for synthesizing, formulating, and applying coating compositions have been developed at Dow. In addition, high-throughput workflows for measuring various coating properties, such as cure speed, hardness development, scratch resistance, impact toughness, resin compatibility, pot-life, surface defects, among others have also been developed in-house. These workflows correlate well with the traditional coatings tests, but they do not necessarily mimic those tests. The use of such high-throughput workflows in combination with smart experimental designs allows accelerated discovery and commercialization.

  12. Outlook for Development of High-throughput Cryopreservation for Small-bodied Biomedical Model Fishes★

    PubMed Central

    Tiersch, Terrence R.; Yang, Huiping; Hu, E.

    2011-01-01

    With the development of genomic research technologies, comparative genome studies among vertebrate species are becoming commonplace for human biomedical research. Fish offer unlimited versatility for biomedical research. Extensive studies are done using these fish models, yielding tens of thousands of specific strains and lines, and the number is increasing every day. Thus, high-throughput sperm cryopreservation is urgently needed to preserve these genetic resources. Although high-throughput processing has been widely applied for sperm cryopreservation in livestock for decades, application in biomedical model fishes is still in the concept-development stage because of the limited sample volumes and the biological characteristics of fish sperm. High-throughput processing in livestock was developed based on advances made in the laboratory and was scaled up for increased processing speed, capability for mass production, and uniformity and quality assurance. Cryopreserved germplasm combined with high-throughput processing constitutes an independent industry encompassing animal breeding, preservation of genetic diversity, and medical research. Currently, there is no specifically engineered system available for high-throughput of cryopreserved germplasm for aquatic species. This review is to discuss the concepts and needs for high-throughput technology for model fishes, propose approaches for technical development, and overview future directions of this approach. PMID:21440666

  13. Development and operation of a high-throughput accurate-wavelength lens-based spectrometer a)

    DOE PAGES

    Bell, Ronald E.

    2014-07-11

    A high-throughput spectrometer for the 400-820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm -1 grating is matched with fast f /1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy ≤ 0.075 arc seconds. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount behind the entrance slit. The computer-controlled hardware allows automated control of wavelength, timing, f-number, automated datamore » collection, and wavelength calibration.« less

  14. A bioinformatics roadmap for the human vaccines project.

    PubMed

    Scheuermann, Richard H; Sinkovits, Robert S; Schenkelberg, Theodore; Koff, Wayne C

    2017-06-01

    Biomedical research has become a data intensive science in which high throughput experimentation is producing comprehensive data about biological systems at an ever-increasing pace. The Human Vaccines Project is a new public-private partnership, with the goal of accelerating development of improved vaccines and immunotherapies for global infectious diseases and cancers by decoding the human immune system. To achieve its mission, the Project is developing a Bioinformatics Hub as an open-source, multidisciplinary effort with the overarching goal of providing an enabling infrastructure to support the data processing, analysis and knowledge extraction procedures required to translate high throughput, high complexity human immunology research data into biomedical knowledge, to determine the core principles driving specific and durable protective immune responses.

  15. Chiral Amine Synthesis Using ω-Transaminases: An Amine Donor that Displaces Equilibria and Enables High-Throughput Screening**

    PubMed Central

    Green, Anthony P; Turner, Nicholas J; O'Reilly, Elaine

    2014-01-01

    The widespread application of ω-transaminases as biocatalysts for chiral amine synthesis has been hampered by fundamental challenges, including unfavorable equilibrium positions and product inhibition. Herein, an efficient process that allows reactions to proceed in high conversion in the absence of by-product removal using only one equivalent of a diamine donor (ortho-xylylenediamine) is reported. This operationally simple method is compatible with the most widely used (R)- and (S)-selective ω-TAs and is particularly suitable for the conversion of substrates with unfavorable equilibrium positions (e.g., 1-indanone). Significantly, spontaneous polymerization of the isoindole by-product generates colored derivatives, providing a high-throughput screening platform to identify desired ω-TA activity. PMID:25138082

  16. Microscale Laminar Vortices for High-Purity Extraction and Release of Circulating Tumor Cells.

    PubMed

    Hur, Soojung Claire; Che, James; Di Carlo, Dino

    2017-01-01

    Circulating tumor cells (CTCs) are disseminated tumor cells that reflect the tumors of origin and can provide a liquid biopsy that would potentially enable noninvasive tumor profiling, treatment monitoring, and identification of targeted treatments. Accurate and rapid purification of CTCs holds great potential to improve cancer care but the task remains technically challenging. Microfluidic isolation of CTCs within microscale vortices enables high-throughput and size-based purification of rare CTCs from bodily fluids. Collected cells are highly pure, viable, and easily accessible, allowing seamless integration with various downstream applications. Here, we describe how to fabricate the High-Throughput Vortex Chip (Vortex-HT) and to process diluted whole blood for CTC collection. Lastly, immunostaining and imaging protocols for CTC classification and corresponding CTC image galleries are reported.

  17. High-throughput measurements of biochemical responses using the plate::vision multimode 96 minilens array reader.

    PubMed

    Huang, Kuo-Sen; Mark, David; Gandenberger, Frank Ulrich

    2006-01-01

    The plate::vision is a high-throughput multimode reader capable of reading absorbance, fluorescence, fluorescence polarization, time-resolved fluorescence, and luminescence. Its performance has been shown to be quite comparable with other readers. When the reader is integrated into the plate::explorer, an ultrahigh-throughput screening system with event-driven software and parallel plate-handling devices, it becomes possible to run complicated assays with kinetic readouts in high-density microtiter plate formats for high-throughput screening. For the past 5 years, we have used the plate::vision and the plate::explorer to run screens and have generated more than 30 million data points. Their throughput, performance, and robustness have speeded up our drug discovery process greatly.

  18. EPAs DSSTox Chemical Database: A Resource for the Non-Targeted Testing Community (EPA NTA workshop)

    EPA Science Inventory

    EPA’s DSSTox database project, which includes coverage of the ToxCast and Tox21 high-throughput testing inventories, provides high-quality chemical-structure files for inventories of toxicological and environmental relevance. A feature of the DSSTox project, which differentiates ...

  19. Pathway Profiling and Tissue Modeling of Developmental Toxicity

    EPA Science Inventory

    High-throughput and high-content screening (HTS-HCS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition t...

  20. Virtual Embryo: Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    High-throughput and high-content screening (HTS-HCS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition t...

  1. High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing

    NASA Astrophysics Data System (ADS)

    Shi, Meng; Ling, Kai; Yong, Kar Wey; Li, Yuhui; Feng, Shangsheng; Zhang, Xiaohui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng

    2015-12-01

    Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems.

  2. High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing

    PubMed Central

    Shi, Meng; Ling, Kai; Yong, Kar Wey; Li, Yuhui; Feng, Shangsheng; Zhang, Xiaohui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng

    2015-01-01

    Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems. PMID:26655688

  3. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system.

    PubMed

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  4. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system

    NASA Astrophysics Data System (ADS)

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.

  5. Research progress of plant population genomics based on high-throughput sequencing.

    PubMed

    Wang, Yun-sheng

    2016-08-01

    Population genomics, a new paradigm for population genetics, combine the concepts and techniques of genomics with the theoretical system of population genetics and improve our understanding of microevolution through identification of site-specific effect and genome-wide effects using genome-wide polymorphic sites genotypeing. With the appearance and improvement of the next generation high-throughput sequencing technology, the numbers of plant species with complete genome sequences increased rapidly and large scale resequencing has also been carried out in recent years. Parallel sequencing has also been done in some plant species without complete genome sequences. These studies have greatly promoted the development of population genomics and deepened our understanding of the genetic diversity, level of linking disequilibium, selection effect, demographical history and molecular mechanism of complex traits of relevant plant population at a genomic level. In this review, I briely introduced the concept and research methods of population genomics and summarized the research progress of plant population genomics based on high-throughput sequencing. I also discussed the prospect as well as existing problems of plant population genomics in order to provide references for related studies.

  6. High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope

    PubMed Central

    Blackburn, Jessica S; Liu, Sali; Raimondi, Aubrey R; Ignatius, Myron S; Salthouse, Christopher D; Langenau, David M

    2011-01-01

    Zebrafish are a useful vertebrate model for the study of development, behavior, disease and cancer. A major advantage of zebrafish is that large numbers of animals can be economically used for experimentation; however, high-throughput methods for imaging live adult zebrafish had not been developed. Here, we describe protocols for building a light-emitting diode (LED) fluorescence macroscope and for using it to simultaneously image up to 30 adult animals that transgenically express a fluorescent protein, are transplanted with fluorescently labeled tumor cells or are tagged with fluorescent elastomers. These protocols show that the LED fluorescence macroscope is capable of distinguishing five fluorescent proteins and can image unanesthetized swimming adult zebrafish in multiple fluorescent channels simultaneously. The macroscope can be built and used for imaging within 1 day, whereas creating fluorescently labeled adult zebrafish requires 1 hour to several months, depending on the method chosen. The LED fluorescence macroscope provides a low-cost, high-throughput method to rapidly screen adult fluorescent zebrafish and it will be useful for imaging transgenic animals, screening for tumor engraftment, and tagging individual fish for long-term analysis. PMID:21293462

  7. Fast multiclonal clusterization of V(D)J recombinations from high-throughput sequencing.

    PubMed

    Giraud, Mathieu; Salson, Mikaël; Duez, Marc; Villenet, Céline; Quief, Sabine; Caillault, Aurélie; Grardel, Nathalie; Roumier, Christophe; Preudhomme, Claude; Figeac, Martin

    2014-05-28

    V(D)J recombinations in lymphocytes are essential for immunological diversity. They are also useful markers of pathologies. In leukemia, they are used to quantify the minimal residual disease during patient follow-up. However, the full breadth of lymphocyte diversity is not fully understood. We propose new algorithms that process high-throughput sequencing (HTS) data to extract unnamed V(D)J junctions and gather them into clones for quantification. This analysis is based on a seed heuristic and is fast and scalable because in the first phase, no alignment is performed with germline database sequences. The algorithms were applied to TR γ HTS data from a patient with acute lymphoblastic leukemia, and also on data simulating hypermutations. Our methods identified the main clone, as well as additional clones that were not identified with standard protocols. The proposed algorithms provide new insight into the analysis of high-throughput sequencing data for leukemia, and also to the quantitative assessment of any immunological profile. The methods described here are implemented in a C++ open-source program called Vidjil.

  8. Projection Exposure with Variable Axis Immersion Lenses: A High-Throughput Electron Beam Approach to “Suboptical” Lithography

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Hans

    1995-12-01

    IBM's high-throughput e-beam stepper approach PRojection Exposure with Variable Axis Immersion Lenses (PREVAIL) is reviewed. The PREVAIL concept combines technology building blocks of our probe-forming EL-3 and EL-4 systems with the exposure efficiency of pattern projection. The technology represents an extension of the shaped-beam approach toward massively parallel pixel projection. As demonstrated, the use of variable-axis lenses can provide large field coverage through reduction of off-axis aberrations which limit the performance of conventional projection systems. Subfield pattern sections containing 107 or more pixels can be electronically selected (mask plane), projected and positioned (wafer plane) at high speed. To generate the entire chip pattern subfields must be stitched together sequentially in a combination of electronic and mechanical positioning of mask and wafer. The PREVAIL technology promises throughput levels competitive with those of optical steppers at superior resolution. The PREVAIL project is being pursued to demonstrate the viability of the technology and to develop an e-beam alternative to “suboptical” lithography.

  9. High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide

    PubMed Central

    Bae, Hyeonhu; Park, Minwoo; Jang, Byungryul; Kang, Yura; Park, Jinwoo; Lee, Hosik; Chung, Haegeun; Chung, ChiHye; Hong, Suklyun; Kwon, Yongkyung; Yakobson, Boris I.; Lee, Hoonkyung

    2016-01-01

    Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (~10−3 bar) at 300 K and release it at ~450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 π orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc– or V–porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materials. PMID:26902156

  10. High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide.

    PubMed

    Bae, Hyeonhu; Park, Minwoo; Jang, Byungryul; Kang, Yura; Park, Jinwoo; Lee, Hosik; Chung, Haegeun; Chung, ChiHye; Hong, Suklyun; Kwon, Yongkyung; Yakobson, Boris I; Lee, Hoonkyung

    2016-02-23

    Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (~10(-3) bar) at 300 K and release it at ~450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 π orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc- or V-porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materials.

  11. High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Bae, Hyeonhu; Park, Minwoo; Jang, Byungryul; Kang, Yura; Park, Jinwoo; Lee, Hosik; Chung, Haegeun; Chung, Chihye; Hong, Suklyun; Kwon, Yongkyung; Yakobson, Boris I.; Lee, Hoonkyung

    2016-02-01

    Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (~10-3 bar) at 300 K and release it at ~450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 π orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc- or V-porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materials.

  12. Epigenetics and Epigenomics of Plants.

    PubMed

    Yadav, Chandra Bhan; Pandey, Garima; Muthamilarasan, Mehanathan; Prasad, Manoj

    2018-01-23

    The genetic material DNA in association with histone proteins forms the complex structure called chromatin, which is prone to undergo modification through certain epigenetic mechanisms including cytosine DNA methylation, histone modifications, and small RNA-mediated methylation. Alterations in chromatin structure lead to inaccessibility of genomic DNA to various regulatory proteins such as transcription factors, which eventually modulates gene expression. Advancements in high-throughput sequencing technologies have provided the opportunity to study the epigenetic mechanisms at genome-wide levels. Epigenomic studies using high-throughput technologies will widen the understanding of mechanisms as well as functions of regulatory pathways in plant genomes, which will further help in manipulating these pathways using genetic and biochemical approaches. This technology could be a potential research tool for displaying the systematic associations of genetic and epigenetic variations, especially in terms of cytosine methylation onto the genomic region in a specific cell or tissue. A comprehensive study of plant populations to correlate genotype to epigenotype and to phenotype, and also the study of methyl quantitative trait loci (QTL) or epiGWAS, is possible by using high-throughput sequencing methods, which will further accelerate molecular breeding programs for crop improvement. Graphical Abstract.

  13. A multilayer microdevice for cell-based high-throughput drug screening

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Wang, Lei; Xu, Zheng; Li, Jingmin; Ding, Xiping; Wang, Qi; Chunyu, Li

    2012-06-01

    A multilayer polydimethylsiloxane microdevice for cell-based high-throughput drug screening is described in this paper. This established microdevice was based on a modularization method and it integrated a drug/medium concentration gradient generator (CGG), pneumatic microvalves and a cell culture microchamber array. The CGG was able to generate five steps of linear concentrations with the same outlet flow rate. The medium/drug flowed through CGG and then into the pear-shaped cell culture microchambers vertically. This vertical perfusion mode was used to reduce the impact of the shear stress on the physiology of cells induced by the fluid flow in the microchambers. Pear-shaped microchambers with two arrays of miropillars at each outlet were adopted in this microdevice, which were beneficial to cell distribution. The chemotherapeutics Cisplatin (DDP)-induced Cisplatin-resistant cell line A549/DDP apoptotic experiments were performed well on this platform. The results showed that this novel microdevice could not only provide well-defined and stable conditions for cell culture, but was also useful for cell-based high-throughput drug screening with less reagents and time consumption.

  14. A high-throughput headspace gas chromatographic technique for the determination of nitrite content in water samples.

    PubMed

    Zhang, Shu-Xin; Peng, Rong; Jiang, Ran; Chai, Xin-Sheng; Barnes, Donald G

    2018-02-23

    This paper reports on a high-throughput headspace gas chromatographic method (HS-GC) for the determination of nitrite content in water sample, based on GC measurement of cyclohexene produced from the reaction between nitrite and cyclamate in a closed vial. The method has a relative standard deviation of <3.5%; The differences between the results of the nitrite measurements obtained by this method and those of a reference method were less than 5.8% and the recoveries of the method were in the range of 94.8-102% (for a spiked nitrite content range from 0.002 to 0.03 mg/L). The limit of detection of the method was 0.46 μg L -1 . Due to an overlapping mode in the headspace auto-sampler system, the method can provide an automated and high-throughput nitrite analysis for the surface water samples. In short, the present HS-GC method is simple, accurate, and sensitive, and it is very suitable to be used in the batch sample testing. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. High-throughput and targeted in-depth mass spectrometry-based approaches for biofluid profiling and biomarker discovery.

    PubMed

    Jimenez, Connie R; Piersma, Sander; Pham, Thang V

    2007-12-01

    Proteomics aims to create a link between genomic information, biological function and disease through global studies of protein expression, modification and protein-protein interactions. Recent advances in key proteomics tools, such as mass spectrometry (MS) and (bio)informatics, provide tremendous opportunities for biomarker-related clinical applications. In this review, we focus on two complementary MS-based approaches with high potential for the discovery of biomarker patterns and low-abundant candidate biomarkers in biofluids: high-throughput matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy-based methods for peptidome profiling and label-free liquid chromatography-based methods coupled to MS for in-depth profiling of biofluids with a focus on subproteomes, including the low-molecular-weight proteome, carrier-bound proteome and N-linked glycoproteome. The two approaches differ in their aims, throughput and sensitivity. We discuss recent progress and challenges in the analysis of plasma/serum and proximal fluids using these strategies and highlight the potential of liquid chromatography-MS-based proteomics of cancer cell and tumor secretomes for the discovery of candidate blood-based biomarkers. Strategies for candidate validation are also described.

  16. Development and use of molecular markers: past and present.

    PubMed

    Grover, Atul; Sharma, P C

    2016-01-01

    Molecular markers, due to their stability, cost-effectiveness and ease of use provide an immensely popular tool for a variety of applications including genome mapping, gene tagging, genetic diversity diversity, phylogenetic analysis and forensic investigations. In the last three decades, a number of molecular marker techniques have been developed and exploited worldwide in different systems. However, only a handful of these techniques, namely RFLPs, RAPDs, AFLPs, ISSRs, SSRs and SNPs have received global acceptance. A recent revolution in DNA sequencing techniques has taken the discovery and application of molecular markers to high-throughput and ultrahigh-throughput levels. Although, the choice of marker will obviously depend on the targeted use, microsatellites, SNPs and genotyping by sequencing (GBS) largely fulfill most of the user requirements. Further, modern transcriptomic and functional markers will lead the ventures onto high-density genetic map construction, identification of QTLs, breeding and conservation strategies in times to come in combination with other high throughput techniques. This review presents an overview of different marker technologies and their variants with a comparative account of their characteristic features and applications.

  17. Use of high-throughput mass spectrometry to elucidate host pathogen interactions in Salmonella

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodland, Karin D.; Adkins, Joshua N.; Ansong, Charles

    Capabilities in mass spectrometry are evolving rapidly, with recent improvements in sensitivity, data analysis, and most important, from the standpoint of this review, much higher throughput allowing analysis of many samples in a single day. This short review describes how these improvements in mass spectrometry can be used to dissect host-pathogen interactions using Salmonella as a model system. This approach enabled direct identification of the majority of annotated Salmonella proteins, quantitation of expression changes under various in vitro growth conditions, and new insights into virulence and expression of Salmonella proteins within host cell cells. One of the most significant findingsmore » is that a very high percentage of the all annotated genes (>20%) in Salmonella are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions, suggesting additional functions of these regulators in coordinating virulence expression. Overall high throughput mass spectrometry provides a new view of pathogen-host interactions emphasizing the protein products and defining how protein interactions determine the outcome of infection.« less

  18. Essential attributes identified in the design of a Laboratory Information Management System for a high throughput siRNA screening laboratory.

    PubMed

    Grandjean, Geoffrey; Graham, Ryan; Bartholomeusz, Geoffrey

    2011-11-01

    In recent years high throughput screening operations have become a critical application in functional and translational research. Although a seemingly unmanageable amount of data is generated by these high-throughput, large-scale techniques, through careful planning, an effective Laboratory Information Management System (LIMS) can be developed and implemented in order to streamline all phases of a workflow. Just as important as data mining and analysis procedures at the end of complex processes is the tracking of individual steps of applications that generate such data. Ultimately, the use of a customized LIMS will enable users to extract meaningful results from large datasets while trusting the robustness of their assays. To illustrate the design of a custom LIMS, this practical example is provided to highlight the important aspects of the design of a LIMS to effectively modulate all aspects of an siRNA screening service. This system incorporates inventory management, control of workflow, data handling and interaction with investigators, statisticians and administrators. All these modules are regulated in a synchronous manner within the LIMS. © 2011 Bentham Science Publishers

  19. The development of a general purpose ARM-based processing unit for the ATLAS TileCal sROD

    NASA Astrophysics Data System (ADS)

    Cox, M. A.; Reed, R.; Mellado, B.

    2015-01-01

    After Phase-II upgrades in 2022, the data output from the LHC ATLAS Tile Calorimeter will increase significantly. ARM processors are common in mobile devices due to their low cost, low energy consumption and high performance. It is proposed that a cost-effective, high data throughput Processing Unit (PU) can be developed by using several consumer ARM processors in a cluster configuration to allow aggregated processing performance and data throughput while maintaining minimal software design difficulty for the end-user. This PU could be used for a variety of high-level functions on the high-throughput raw data such as spectral analysis and histograms to detect possible issues in the detector at a low level. High-throughput I/O interfaces are not typical in consumer ARM System on Chips but high data throughput capabilities are feasible via the novel use of PCI-Express as the I/O interface to the ARM processors. An overview of the PU is given and the results for performance and throughput testing of four different ARM Cortex System on Chips are presented.

  20. Space Link Extension Protocol Emulation for High-Throughput, High-Latency Network Connections

    NASA Technical Reports Server (NTRS)

    Tchorowski, Nicole; Murawski, Robert

    2014-01-01

    New space missions require higher data rates and new protocols to meet these requirements. These high data rate space communication links push the limitations of not only the space communication links, but of the ground communication networks and protocols which forward user data to remote ground stations (GS) for transmission. The Consultative Committee for Space Data Systems, (CCSDS) Space Link Extension (SLE) standard protocol is one protocol that has been proposed for use by the NASA Space Network (SN) Ground Segment Sustainment (SGSS) program. New protocol implementations must be carefully tested to ensure that they provide the required functionality, especially because of the remote nature of spacecraft. The SLE protocol standard has been tested in the NASA Glenn Research Center's SCENIC Emulation Lab in order to observe its operation under realistic network delay conditions. More specifically, the delay between then NASA Integrated Services Network (NISN) and spacecraft has been emulated. The round trip time (RTT) delay for the continental NISN network has been shown to be up to 120ms; as such the SLE protocol was tested with network delays ranging from 0ms to 200ms. Both a base network condition and an SLE connection were tested with these RTT delays, and the reaction of both network tests to the delay conditions were recorded. Throughput for both of these links was set at 1.2Gbps. The results will show that, in the presence of realistic network delay, the SLE link throughput is significantly reduced while the base network throughput however remained at the 1.2Gbps specification. The decrease in SLE throughput has been attributed to the implementation's use of blocking calls. The decrease in throughput is not acceptable for high data rate links, as the link requires constant data a flow in order for spacecraft and ground radios to stay synchronized, unless significant data is queued a the ground station. In cases where queuing the data is not an option, such as during real time transmissions, the SLE implementation cannot support high data rate communication.

  1. Opportunistic data locality for end user data analysis

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Heidecker, C.; Kuehn, E.; Quast, G.; Giffels, M.; Schnepf, M.; Heiss, A.; Petzold, A.

    2017-10-01

    With the increasing data volume of LHC Run2, user analyses are evolving towards increasing data throughput. This evolution translates to higher requirements for efficiency and scalability of the underlying analysis infrastructure. We approach this issue with a new middleware to optimise data access: a layer of coordinated caches transparently provides data locality for high-throughput analyses. We demonstrated the feasibility of this approach with a prototype used for analyses of the CMS working groups at KIT. In this paper, we present our experience both with the approach in general, and our prototype in specific.

  2. Three applications of backscatter x-ray imaging technology to homeland defense

    NASA Astrophysics Data System (ADS)

    Chalmers, Alex

    2005-05-01

    A brief review of backscatter x-ray imaging and a description of three systems currently applying it to homeland defense missions (BodySearch, ZBV and ZBP). These missions include detection of concealed weapons, explosives and contraband on personnel, in vehicles and large cargo containers. An overview of the x-ray imaging subsystems is provided as well as sample images from each system. Key features such as x-ray safety, throughput and detection are discussed. Recent trends in operational modes are described that facilitate 100% inspection at high throughput chokepoints.

  3. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission

    PubMed Central

    Plouffe, David M.; Wree, Melanie; Du, Alan Y.; Meister, Stephan; Li, Fengwu; Patra, Kailash; Lubar, Aristea; Okitsu, Shinji L.; Flannery, Erika L.; Kato, Nobutaka; Tanaseichuk, Olga; Comer, Eamon; Zhou, Bin; Kuhen, Kelli; Zhou, Yingyao; Leroy, Didier; Schreiber, Stuart L.; Scherer, Christina A.; Vinetz, Joseph; Winzeler, Elizabeth A.

    2016-01-01

    Summary Preventing transmission is an important element of malaria control. However, most of the current available methods to assay for malaria transmission blocking are relatively low throughput and cannot be applied to large chemical libraries. We have developed a high-throughput and cost-effective assay, the Saponin-lysis Sexual Stage Assay (SaLSSA), for identifying small molecules with transmission-blocking capacity. SaLSSA analysis of 13,983 unique compounds uncovered that >90% of well-characterized antimalarials, including endoperoxides and 4-aminoquinolines, as well as compounds active against asexual blood stages, lost most of their killing activity when parasites developed into metabolically quiescent stage V gametocytes. On the other hand, we identified compounds with consistent low nanomolar transmission-blocking activity, some of which showed cross-reactivity against asexual blood and liver stages. The data clearly emphasize substantial physiological differences between sexual and asexual parasites and provide a tool and starting points for the discovery and development of transmission-blocking drugs. PMID:26749441

  4. High-throughput optofluidic profiling of Euglena gracilis with morphological and chemical specificity

    NASA Astrophysics Data System (ADS)

    Guo, Baoshan; Lei, Cheng; Ito, Takuro; Jiang, Yiyue; Ozeki, Yasuyuki; Goda, Keisuke

    2016-11-01

    The world is faced with environmental problems and the energy crisis due to the combustion and depletion of fossil fuels. The development of reliable, sustainable, and economical sources of alternative fuels is an important, but challenging goal for the world. As an alternative to liquid fossil fuels, algal biofuel is expected to play a key role in alleviating global warming since algae absorb atmospheric CO2 via photosynthesis. Among various algae for fuel production, Euglena gracilis is an attractive microalgal species as it is known to produce wax ester (good for biodiesel and aviation fuel) within lipid droplets. To date, while there exist many techniques for inducing microalgal cells to produce and accumulate lipid with high efficiency, few analytical methods are available for characterizing a population of such lipid-accumulated microalgae including E. gracilis with high throughout, high accuracy, and single-cell resolution simultaneously. Here we demonstrate a high-throughput optofluidic Euglena gracilis profiler which consists of an optical time-stretch microscope and a fluorescence analyzer on top of an inertial-focusing microfluidic device that can detect fluorescence from lipid droplets in their cell body and provide images of E. gracilis cells simultaneously at a high throughput of 10,000 cells/s. With the multi-dimensional information acquired by the system, we classify nitrogen-sufficient (ordinary) and nitrogen-deficient (lipid-accumulated) E. gracilis cells with a low false positive rate of 1.0%. This method provides a promise for evaluating the efficiency of lipid-inducing techniques for biofuel production, which is also applicable for identifying biomedical samples such as blood cells and cancer cells.

  5. The US EPA ToxCast Program: Moving from Data Generation ...

    EPA Pesticide Factsheets

    The U.S. EPA ToxCast program is entering its tenth year. Significant learning and progress have occurred towards collection, analysis, and interpretation of the data. The library of ~1,800 chemicals has been subject to ongoing characterization (e.g., identity, purity, stability) and is unique in its scope, structural diversity, and use scenarios making it ideally suited to investigate the underlying molecular mechanisms of toxicity. The ~700 high-throughput in vitro assay endpoints cover 327 genes and 293 pathways as well as other integrated cellular processes and responses. The integrated analysis of high-throughput screening data has shown that most environmental and industrial chemicals are very non-selective in the biological targets they perturb, while a small subset of chemicals are relatively selective for specific biological targets. The selectivity of a chemical informs interpretation of the screening results while also guiding future mode-of-action or adverse outcome pathway approaches. Coupling the high-throughput in vitro assays with medium-throughput pharmacokinetic assays and reverse dosimetry allows conversion of the potency estimates to an administered dose. Comparison of the administered dose to human exposure provides a risk-based context. The lessons learned from this effort will be presented and discussed towards application to chemical safety decision making and the future of the computational toxicology program at the U.S. EPA. SOT pr

  6. A Protocol for Functional Assessment of Whole-Protein Saturation Mutagenesis Libraries Utilizing High-Throughput Sequencing.

    PubMed

    Stiffler, Michael A; Subramanian, Subu K; Salinas, Victor H; Ranganathan, Rama

    2016-07-03

    Site-directed mutagenesis has long been used as a method to interrogate protein structure, function and evolution. Recent advances in massively-parallel sequencing technology have opened up the possibility of assessing the functional or fitness effects of large numbers of mutations simultaneously. Here, we present a protocol for experimentally determining the effects of all possible single amino acid mutations in a protein of interest utilizing high-throughput sequencing technology, using the 263 amino acid antibiotic resistance enzyme TEM-1 β-lactamase as an example. In this approach, a whole-protein saturation mutagenesis library is constructed by site-directed mutagenic PCR, randomizing each position individually to all possible amino acids. The library is then transformed into bacteria, and selected for the ability to confer resistance to β-lactam antibiotics. The fitness effect of each mutation is then determined by deep sequencing of the library before and after selection. Importantly, this protocol introduces methods which maximize sequencing read depth and permit the simultaneous selection of the entire mutation library, by mixing adjacent positions into groups of length accommodated by high-throughput sequencing read length and utilizing orthogonal primers to barcode each group. Representative results using this protocol are provided by assessing the fitness effects of all single amino acid mutations in TEM-1 at a clinically relevant dosage of ampicillin. The method should be easily extendable to other proteins for which a high-throughput selection assay is in place.

  7. Microplate-Based Method for High-Throughput Screening (HTS) of Chromatographic Conditions Studies for Recombinant Protein Purification.

    PubMed

    Carvalho, Rimenys J; Cruz, Thayana A

    2018-01-01

    High-throughput screening (HTS) systems have emerged as important tools to provide fast and low cost evaluation of several conditions at once since it requires small quantities of material and sample volumes. These characteristics are extremely valuable for experiments with large number of variables enabling the application of design of experiments (DoE) strategies or simple experimental planning approaches. Once, the capacity of HTS systems to mimic chromatographic purification steps was established, several studies were performed successfully including scale down purification. Here, we propose a method for studying different purification conditions that can be used for any recombinant protein, including complex and glycosylated proteins, using low binding filter microplates.

  8. Computational Tools for Stem Cell Biology

    PubMed Central

    Bian, Qin; Cahan, Patrick

    2016-01-01

    For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the last several years, a new sub-discipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single-cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate. PMID:27318512

  9. Computational Tools for Stem Cell Biology.

    PubMed

    Bian, Qin; Cahan, Patrick

    2016-12-01

    For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Gene cassette knock-in in mammalian cells and zygotes by enhanced MMEJ.

    PubMed

    Aida, Tomomi; Nakade, Shota; Sakuma, Tetsushi; Izu, Yayoi; Oishi, Ayu; Mochida, Keiji; Ishikubo, Harumi; Usami, Takako; Aizawa, Hidenori; Yamamoto, Takashi; Tanaka, Kohichi

    2016-11-28

    Although CRISPR/Cas enables one-step gene cassette knock-in, assembling targeting vectors containing long homology arms is a laborious process for high-throughput knock-in. We recently developed the CRISPR/Cas-based precise integration into the target chromosome (PITCh) system for a gene cassette knock-in without long homology arms mediated by microhomology-mediated end-joining. Here, we identified exonuclease 1 (Exo1) as an enhancer for PITCh in human cells. By combining the Exo1 and PITCh-directed donor vectors, we achieved convenient one-step knock-in of gene cassettes and floxed allele both in human cells and mouse zygotes. Our results provide a technical platform for high-throughput knock-in.

  11. The University of Kansas High-Throughput Screening Laboratory. Part II: enabling collaborative drug-discovery partnerships through cutting-edge screening technology.

    PubMed

    McDonald, Peter R; Roy, Anuradha; Chaguturu, Rathnam

    2011-07-01

    The University of Kansas High-Throughput Screening (KU HTS) core is a state-of-the-art drug-discovery facility with an entrepreneurial open-service policy, which provides centralized resources supporting public- and private-sector research initiatives. The KU HTS core was established in 2002 at the University of Kansas with support from an NIH grant and the state of Kansas. It collaborates with investigators from national and international academic, nonprofit and pharmaceutical organizations in executing HTS-ready assay development and screening of chemical libraries for target validation, probe selection, hit identification and lead optimization. This is part two of a contribution from the KU HTS laboratory.

  12. The USC Epigenome Center.

    PubMed

    Laird, Peter W

    2009-10-01

    The University of Southern California (USC, CA, USA) has a long tradition of excellence in epigenetics. With the recent explosive growth and technological maturation of the field of epigenetics, it became clear that a dedicated high-throughput epigenomic data production facility would be needed to remain at the forefront of epigenetic research. To address this need, USC launched the USC Epigenome Center as the first large-scale center in academics dedicated to epigenomic research. The Center is providing high-throughput data production for large-scale genomic and epigenomic studies, and developing novel analysis tools for epigenomic research. This unique facility promises to be a valuable resource for multidisciplinary research, education and training in genomics, epigenomics, bioinformatics, and translational medicine.

  13. HIGH-DIMENSIONAL PROFILING OF TRANSCRIPTION FACTOR ACTIVITY DIFFERENTIATES TOXCAST CHEMICAL GROUPS

    EPA Science Inventory

    The ToxCast™ project at the U.S. EPA uses a diverse battery of high throughput screening assays and informatics models to rapidly characterize the activity of chemicals. A central goal of the project is to provide empirical evidence to aid in the prioritization of chemicals for a...

  14. Gene Ontology annotations at SGD: new data sources and annotation methods

    PubMed Central

    Hong, Eurie L.; Balakrishnan, Rama; Dong, Qing; Christie, Karen R.; Park, Julie; Binkley, Gail; Costanzo, Maria C.; Dwight, Selina S.; Engel, Stacia R.; Fisk, Dianna G.; Hirschman, Jodi E.; Hitz, Benjamin C.; Krieger, Cynthia J.; Livstone, Michael S.; Miyasato, Stuart R.; Nash, Robert S.; Oughtred, Rose; Skrzypek, Marek S.; Weng, Shuai; Wong, Edith D.; Zhu, Kathy K.; Dolinski, Kara; Botstein, David; Cherry, J. Michael

    2008-01-01

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) collects and organizes biological information about the chromosomal features and gene products of the budding yeast Saccharomyces cerevisiae. Although published data from traditional experimental methods are the primary sources of evidence supporting Gene Ontology (GO) annotations for a gene product, high-throughput experiments and computational predictions can also provide valuable insights in the absence of an extensive body of literature. Therefore, GO annotations available at SGD now include high-throughput data as well as computational predictions provided by the GO Annotation Project (GOA UniProt; http://www.ebi.ac.uk/GOA/). Because the annotation method used to assign GO annotations varies by data source, GO resources at SGD have been modified to distinguish data sources and annotation methods. In addition to providing information for genes that have not been experimentally characterized, GO annotations from independent sources can be compared to those made by SGD to help keep the literature-based GO annotations current. PMID:17982175

  15. High-throughput screening based on label-free detection of small molecule microarrays

    NASA Astrophysics Data System (ADS)

    Zhu, Chenggang; Fei, Yiyan; Zhu, Xiangdong

    2017-02-01

    Based on small-molecule microarrays (SMMs) and oblique-incidence reflectivity difference (OI-RD) scanner, we have developed a novel high-throughput drug preliminary screening platform based on label-free monitoring of direct interactions between target proteins and immobilized small molecules. The screening platform is especially attractive for screening compounds against targets of unknown function and/or structure that are not compatible with functional assay development. In this screening platform, OI-RD scanner serves as a label-free detection instrument which is able to monitor about 15,000 biomolecular interactions in a single experiment without the need to label any biomolecule. Besides, SMMs serves as a novel format for high-throughput screening by immobilization of tens of thousands of different compounds on a single phenyl-isocyanate functionalized glass slide. Based on the high-throughput screening platform, we sequentially screened five target proteins (purified target proteins or cell lysate containing target protein) in high-throughput and label-free mode. We found hits for respective target protein and the inhibition effects for some hits were confirmed by following functional assays. Compared to traditional high-throughput screening assay, the novel high-throughput screening platform has many advantages, including minimal sample consumption, minimal distortion of interactions through label-free detection, multi-target screening analysis, which has a great potential to be a complementary screening platform in the field of drug discovery.

  16. A high-throughput media design approach for high performance mammalian fed-batch cultures

    PubMed Central

    Rouiller, Yolande; Périlleux, Arnaud; Collet, Natacha; Jordan, Martin; Stettler, Matthieu; Broly, Hervé

    2013-01-01

    An innovative high-throughput medium development method based on media blending was successfully used to improve the performance of a Chinese hamster ovary fed-batch medium in shaking 96-deepwell plates. Starting from a proprietary chemically-defined medium, 16 formulations testing 43 of 47 components at 3 different levels were designed. Media blending was performed following a custom-made mixture design of experiments considering binary blends, resulting in 376 different blends that were tested during both cell expansion and fed-batch production phases in one single experiment. Three approaches were chosen to provide the best output of the large amount of data obtained. A simple ranking of conditions was first used as a quick approach to select new formulations with promising features. Then, prediction of the best mixes was done to maximize both growth and titer using the Design Expert software. Finally, a multivariate analysis enabled identification of individual potential critical components for further optimization. Applying this high-throughput method on a fed-batch, rather than on a simple batch, process opens new perspectives for medium and feed development that enables identification of an optimized process in a short time frame. PMID:23563583

  17. Developing a novel fiber optic fluorescence device for multiplexed high-throughput cytotoxic screening.

    PubMed

    Lee, Dennis; Barnes, Stephen

    2010-01-01

    The need for new pharmacological agents is unending. Yet the drug discovery process has changed substantially over the past decade and continues to evolve in response to new technologies. There is presently a high demand to reduce discovery time by improving specific lab disciplines and developing new technology platforms in the area of cell-based assay screening. Here we present the developmental concept and early stage testing of the Ab-Sniffer, a novel fiber optic fluorescence device for high-throughput cytotoxicity screening using an immobilized whole cell approach. The fused silica fibers are chemically functionalized with biotin to provide interaction with fluorescently labeled, streptavidin functionalized alginate-chitosan microspheres. The microspheres are also functionalized with Concanavalin A to facilitate binding to living cells. By using lymphoma cells and rituximab in an adaptation of a well-known cytotoxicity protocol we demonstrate the utility of the Ab-Sniffer for functional screening of potential drug compounds rather than indirect, non-functional screening via binding assay. The platform can be extended to any assay capable of being tied to a fluorescence response including multiple target cells in each well of a multi-well plate for high-throughput screening.

  18. The Stanford Automated Mounter: Enabling High-Throughput Protein Crystal Screening at SSRL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C.A.; Cohen, A.E.

    2009-05-26

    The macromolecular crystallography experiment lends itself perfectly to high-throughput technologies. The initial steps including the expression, purification, and crystallization of protein crystals, along with some of the later steps involving data processing and structure determination have all been automated to the point where some of the last remaining bottlenecks in the process have been crystal mounting, crystal screening, and data collection. At the Stanford Synchrotron Radiation Laboratory, a National User Facility that provides extremely brilliant X-ray photon beams for use in materials science, environmental science, and structural biology research, the incorporation of advanced robotics has enabled crystals to be screenedmore » in a true high-throughput fashion, thus dramatically accelerating the final steps. Up to 288 frozen crystals can be mounted by the beamline robot (the Stanford Auto-Mounting System) and screened for diffraction quality in a matter of hours without intervention. The best quality crystals can then be remounted for the collection of complete X-ray diffraction data sets. Furthermore, the entire screening and data collection experiment can be controlled from the experimenter's home laboratory by means of advanced software tools that enable network-based control of the highly automated beamlines.« less

  19. High-throughput label-free microcontact printing graphene-based biosensor for valley fever.

    PubMed

    Tsai, Shih-Ming; Goshia, Tyler; Chen, Yen-Chang; Kagiri, Agnes; Sibal, Angelo; Chiu, Meng-Hsuen; Gadre, Anand; Tung, Vincent; Chin, Wei-Chun

    2018-06-18

    The highly prevalent and virulent disease in the Western Hemisphere Coccidioidomycosis, also known as Valley Fever, can cause serious illness such as severe pneumonia with respiratory failure. It can also take on a disseminated form where the infection spreads throughout the body. Thus, a serious impetus exists to develop effective detection of the disease that can also operate in a rapid and high-throughput fashion. Here, we report the assembly of a highly sensitive biosensor using reduced graphene oxide (rGO) with Coccidioides(cocci) antibodies as the target analytes. The facile design made possible by the scalable microcontact printing (μCP) surface patterning technique which enables rapid, ultrasensitive detection. It provides a wide linear range and sub picomolar (2.5 pg/ml) detection, while also delivering high selectivity and reproducibility. This work demonstrates an important advancement in the development of a sensitive label-free rGO biosensor for Coccidioidomycosis detection. This result also provides the potential application of direct pathogen diagnosis for the future biosensor development. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. High-throughput label-free screening of euglena gracilis with optofluidic time-stretch quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Guo, Baoshan; Lei, Cheng; Ito, Takuro; Yaxiaer, Yalikun; Kobayashi, Hirofumi; Jiang, Yiyue; Tanaka, Yo; Ozeki, Yasuyuki; Goda, Keisuke

    2017-02-01

    The development of reliable, sustainable, and economical sources of alternative fuels is an important, but challenging goal for the world. As an alternative to liquid fossil fuels, microalgal biofuel is expected to play a key role in reducing the detrimental effects of global warming since microalgae absorb atmospheric CO2 via photosynthesis. Unfortunately, conventional analytical methods only provide population-averaged lipid contents and fail to characterize a diverse population of microalgal cells with single-cell resolution in a noninvasive and interference-free manner. Here we demonstrate high-throughput label-free single-cell screening of lipid-producing microalgal cells with optofluidic time-stretch quantitative phase microscopy. In particular, we use Euglena gracilis - an attractive microalgal species that produces wax esters (suitable for biodiesel and aviation fuel after refinement) within lipid droplets. Our optofluidic time-stretch quantitative phase microscope is based on an integration of a hydrodynamic-focusing microfluidic chip, an optical time-stretch phase-contrast microscope, and a digital image processor equipped with machine learning. As a result, it provides both the opacity and phase contents of every single cell at a high throughput of 10,000 cells/s. We characterize heterogeneous populations of E. gracilis cells under two different culture conditions to evaluate their lipid production efficiency. Our method holds promise as an effective analytical tool for microalgaebased biofuel production.

  1. Use of high-throughput and in vivo data to support read ...

    EPA Pesticide Factsheets

    Disrupting normal function of mitochondria can culminate in a variety of organ-level toxicities. A number of mechanisms - such as uncoupling of oxidative phosphorylation and inhibition of the electron transport chain - have been implicated in mitochondrial toxicity. The presence of mitochondrial toxicity has led to a number of drugs being withdrawn from the market highlighting the need to identify potential mitochondrial toxicants within the environment. High-throughput screening (HTS) assays provide a means of rapidly gathering toxicity data for a large number of chemicals; however, information as to the associated in vivo effect is typically unknown. The Adverse Outcome Pathway (AOP) concept provides a valuable scaffold onto which mechanistic data from different levels of biological organisation can be arranged.Information pertaining to mitochondrial toxicity from the U.S. EPA’s ToxCast program were integrated with rodent in vivo data from U.S. EPA’s ToxRefDB to connect the high throughput ToxCast assay results with potential adverse outcome data. Previously developed structural alerts were utilized to profile the chemicals with both in vitro mitochondrial toxicity and in vivo rodent data. Structural similarity guided by the toxicity profile as measured in the ToxCast assay battery was then used to group those chemicals which either were not tested in a mitochondrial toxicity assay or were not considered a “hit” and read-across was performed. Subsequen

  2. High-throughput analysis of yeast replicative aging using a microfluidic system

    PubMed Central

    Jo, Myeong Chan; Liu, Wei; Gu, Liang; Dang, Weiwei; Qin, Lidong

    2015-01-01

    Saccharomyces cerevisiae has been an important model for studying the molecular mechanisms of aging in eukaryotic cells. However, the laborious and low-throughput methods of current yeast replicative lifespan assays limit their usefulness as a broad genetic screening platform for research on aging. We address this limitation by developing an efficient, high-throughput microfluidic single-cell analysis chip in combination with high-resolution time-lapse microscopy. This innovative design enables, to our knowledge for the first time, the determination of the yeast replicative lifespan in a high-throughput manner. Morphological and phenotypical changes during aging can also be monitored automatically with a much higher throughput than previous microfluidic designs. We demonstrate highly efficient trapping and retention of mother cells, determination of the replicative lifespan, and tracking of yeast cells throughout their entire lifespan. Using the high-resolution and large-scale data generated from the high-throughput yeast aging analysis (HYAA) chips, we investigated particular longevity-related changes in cell morphology and characteristics, including critical cell size, terminal morphology, and protein subcellular localization. In addition, because of the significantly improved retention rate of yeast mother cell, the HYAA-Chip was capable of demonstrating replicative lifespan extension by calorie restriction. PMID:26170317

  3. Computationally-Predicted AOPs and Systems Toxicology

    EPA Science Inventory

    The Adverse Outcome Pathway has emerged as an internationally harmonized mechanism for organizing biological information in a chemical agnostic manner. This construct is valuable for interpreting the results from high-throughput toxicity (HTT) assessment by providing a mechanisti...

  4. EPA CHEMICAL PRIORITIZATION COMMUNITY OF PRACTICE.

    EPA Science Inventory

    IN 2005 THE NATIONAL CENTER FOR COMPUTATIONAL TOXICOLOGY (NCCT) ORGANIZED EPA CHEMICAL PRIORITIATION COMMUNITY OF PRACTICE (CPCP) TO PROVIDE A FORUM FOR DISCUSSING THE UTILITY OF COMPUTATIONAL CHEMISTRY, HIGH-THROUGHPUT SCREENIG (HTS) AND VARIOUS TOXICOGENOMIC TECHNOLOGIES FOR CH...

  5. A Review of Recent Advancement in Integrating Omics Data with Literature Mining towards Biomedical Discoveries

    PubMed Central

    Raja, Kalpana; Patrick, Matthew; Gao, Yilin; Madu, Desmond; Yang, Yuyang

    2017-01-01

    In the past decade, the volume of “omics” data generated by the different high-throughput technologies has expanded exponentially. The managing, storing, and analyzing of this big data have been a great challenge for the researchers, especially when moving towards the goal of generating testable data-driven hypotheses, which has been the promise of the high-throughput experimental techniques. Different bioinformatics approaches have been developed to streamline the downstream analyzes by providing independent information to interpret and provide biological inference. Text mining (also known as literature mining) is one of the commonly used approaches for automated generation of biological knowledge from the huge number of published articles. In this review paper, we discuss the recent advancement in approaches that integrate results from omics data and information generated from text mining approaches to uncover novel biomedical information. PMID:28331849

  6. High-throughput real-time quantitative reverse transcription PCR.

    PubMed

    Bookout, Angie L; Cummins, Carolyn L; Mangelsdorf, David J; Pesola, Jean M; Kramer, Martha F

    2006-02-01

    Extensive detail on the application of the real-time quantitative polymerase chain reaction (QPCR) for the analysis of gene expression is provided in this unit. The protocols are designed for high-throughput, 384-well-format instruments, such as the Applied Biosystems 7900HT, but may be modified to suit any real-time PCR instrument. QPCR primer and probe design and validation are discussed, and three relative quantitation methods are described: the standard curve method, the efficiency-corrected DeltaCt method, and the comparative cycle time, or DeltaDeltaCt method. In addition, a method is provided for absolute quantification of RNA in unknown samples. RNA standards are subjected to RT-PCR in the same manner as the experimental samples, thus accounting for the reaction efficiencies of both procedures. This protocol describes the production and quantitation of synthetic RNA molecules for real-time and non-real-time RT-PCR applications.

  7. The University of Kansas High-Throughput Screening laboratory. Part I: meeting drug-discovery needs in the heartland of America with entrepreneurial flair.

    PubMed

    McDonald, Peter R; Roy, Anuradha; Chaguturu, Rathnam

    2011-05-01

    The University of Kansas High-Throughput Screening (KU HTS) core is a state-of-the-art drug-discovery facility with an entrepreneurial open-service policy, which provides centralized resources supporting public- and private-sector research initiatives. The KU HTS core applies pharmaceutical industry project-management principles in an academic setting by bringing together multidisciplinary teams to fill critical scientific and technology gaps, using an experienced team of industry-trained researchers and project managers. The KU HTS proactively engages in supporting grant applications for extramural funding, intellectual-property management and technology transfer. The KU HTS staff further provides educational opportunities for the KU faculty and students to learn cutting-edge technologies in drug-discovery platforms through seminars, workshops, internships and course teaching. This is the first instalment of a two-part contribution from the KU HTS laboratory.

  8. Chiral amine synthesis using ω-transaminases: an amine donor that displaces equilibria and enables high-throughput screening.

    PubMed

    Green, Anthony P; Turner, Nicholas J; O'Reilly, Elaine

    2014-09-26

    The widespread application of ω-transaminases as biocatalysts for chiral amine synthesis has been hampered by fundamental challenges, including unfavorable equilibrium positions and product inhibition. Herein, an efficient process that allows reactions to proceed in high conversion in the absence of by-product removal using only one equivalent of a diamine donor (ortho-xylylenediamine) is reported. This operationally simple method is compatible with the most widely used (R)- and (S)-selective ω-TAs and is particularly suitable for the conversion of substrates with unfavorable equilibrium positions (e.g., 1-indanone). Significantly, spontaneous polymerization of the isoindole by-product generates colored derivatives, providing a high-throughput screening platform to identify desired ω-TA activity. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  9. Development of a 63K SNP array for Gossypium and high-density mapping of intra- and inter-specific populations of cotton (G. hirsutum L.)

    USDA-ARS?s Scientific Manuscript database

    High-throughput genotyping arrays provide a standardized resource for crop research communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), candidate marker and quantitative trait loci (QTL) ide...

  10. Ultra-Reliable Digital Avionics (URDA) processor

    NASA Astrophysics Data System (ADS)

    Branstetter, Reagan; Ruszczyk, William; Miville, Frank

    1994-10-01

    Texas Instruments Incorporated (TI) developed the URDA processor design under contract with the U.S. Air Force Wright Laboratory and the U.S. Army Night Vision and Electro-Sensors Directorate. TI's approach couples advanced packaging solutions with advanced integrated circuit (IC) technology to provide a high-performance (200 MIPS/800 MFLOPS) modular avionics processor module for a wide range of avionics applications. TI's processor design integrates two Ada-programmable, URDA basic processor modules (BPM's) with a JIAWG-compatible PiBus and TMBus on a single F-22 common integrated processor-compatible form-factor SEM-E avionics card. A separate, high-speed (25-MWord/second 32-bit word) input/output bus is provided for sensor data. Each BPM provides a peak throughput of 100 MIPS scalar concurrent with 400-MFLOPS vector processing in a removable multichip module (MCM) mounted to a liquid-flowthrough (LFT) core and interfacing to a processor interface module printed wiring board (PWB). Commercial RISC technology coupled with TI's advanced bipolar complementary metal oxide semiconductor (BiCMOS) application specific integrated circuit (ASIC) and silicon-on-silicon packaging technologies are used to achieve the high performance in a miniaturized package. A Mips R4000-family reduced instruction set computer (RISC) processor and a TI 100-MHz BiCMOS vector coprocessor (VCP) ASIC provide, respectively, the 100 MIPS of a scalar processor throughput and 400 MFLOPS of vector processing throughput for each BPM. The TI Aladdim ASIC chipset was developed on the TI Aladdin Program under contract with the U.S. Army Communications and Electronics Command and was sponsored by the Advanced Research Projects Agency with technical direction from the U.S. Army Night Vision and Electro-Sensors Directorate.

  11. Measuring molecular biomarkers in epidemiologic studies: laboratory techniques and biospecimen considerations.

    PubMed

    Erickson, Heidi S

    2012-09-28

    The future of personalized medicine depends on the ability to efficiently and rapidly elucidate a reliable set of disease-specific molecular biomarkers. High-throughput molecular biomarker analysis methods have been developed to identify disease risk, diagnostic, prognostic, and therapeutic targets in human clinical samples. Currently, high throughput screening allows us to analyze thousands of markers from one sample or one marker from thousands of samples and will eventually allow us to analyze thousands of markers from thousands of samples. Unfortunately, the inherent nature of current high throughput methodologies, clinical specimens, and cost of analysis is often prohibitive for extensive high throughput biomarker analysis. This review summarizes the current state of high throughput biomarker screening of clinical specimens applicable to genetic epidemiology and longitudinal population-based studies with a focus on considerations related to biospecimens, laboratory techniques, and sample pooling. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Review of microfluidic microbioreactor technology for high-throughput submerged microbiological cultivation

    PubMed Central

    Hegab, Hanaa M.; ElMekawy, Ahmed; Stakenborg, Tim

    2013-01-01

    Microbial fermentation process development is pursuing a high production yield. This requires a high throughput screening and optimization of the microbial strains, which is nowadays commonly achieved by applying slow and labor-intensive submerged cultivation in shake flasks or microtiter plates. These methods are also limited towards end-point measurements, low analytical data output, and control over the fermentation process. These drawbacks could be overcome by means of scaled-down microfluidic microbioreactors (μBR) that allow for online control over cultivation data and automation, hence reducing cost and time. This review goes beyond previous work not only by providing a detailed update on the current μBR fabrication techniques but also the operation and control of μBRs is compared to large scale fermentation reactors. PMID:24404006

  13. A Fully Automated Drosophila Olfactory Classical Conditioning and Testing System for Behavioral Learning and Memory Assessment

    PubMed Central

    Jiang, Hui; Hanna, Eriny; Gatto, Cheryl L.; Page, Terry L.; Bhuva, Bharat; Broadie, Kendal

    2016-01-01

    Background Aversive olfactory classical conditioning has been the standard method to assess Drosophila learning and memory behavior for decades, yet training and testing are conducted manually under exceedingly labor-intensive conditions. To overcome this severe limitation, a fully automated, inexpensive system has been developed, which allows accurate and efficient Pavlovian associative learning/memory analyses for high-throughput pharmacological and genetic studies. New Method The automated system employs a linear actuator coupled to an odorant T-maze with airflow-mediated transfer of animals between training and testing stages. Odorant, airflow and electrical shock delivery are automatically administered and monitored during training trials. Control software allows operator-input variables to define parameters of Drosophila learning, short-term memory and long-term memory assays. Results The approach allows accurate learning/memory determinations with operational fail-safes. Automated learning indices (immediately post-training) and memory indices (after 24 hours) are comparable to traditional manual experiments, while minimizing experimenter involvement. Comparison with Existing Methods The automated system provides vast improvements over labor-intensive manual approaches with no experimenter involvement required during either training or testing phases. It provides quality control tracking of airflow rates, odorant delivery and electrical shock treatments, and an expanded platform for high-throughput studies of combinational drug tests and genetic screens. The design uses inexpensive hardware and software for a total cost of ~$500US, making it affordable to a wide range of investigators. Conclusions This study demonstrates the design, construction and testing of a fully automated Drosophila olfactory classical association apparatus to provide low-labor, high-fidelity, quality-monitored, high-throughput and inexpensive learning and memory behavioral assays. PMID:26703418

  14. A fully automated Drosophila olfactory classical conditioning and testing system for behavioral learning and memory assessment.

    PubMed

    Jiang, Hui; Hanna, Eriny; Gatto, Cheryl L; Page, Terry L; Bhuva, Bharat; Broadie, Kendal

    2016-03-01

    Aversive olfactory classical conditioning has been the standard method to assess Drosophila learning and memory behavior for decades, yet training and testing are conducted manually under exceedingly labor-intensive conditions. To overcome this severe limitation, a fully automated, inexpensive system has been developed, which allows accurate and efficient Pavlovian associative learning/memory analyses for high-throughput pharmacological and genetic studies. The automated system employs a linear actuator coupled to an odorant T-maze with airflow-mediated transfer of animals between training and testing stages. Odorant, airflow and electrical shock delivery are automatically administered and monitored during training trials. Control software allows operator-input variables to define parameters of Drosophila learning, short-term memory and long-term memory assays. The approach allows accurate learning/memory determinations with operational fail-safes. Automated learning indices (immediately post-training) and memory indices (after 24h) are comparable to traditional manual experiments, while minimizing experimenter involvement. The automated system provides vast improvements over labor-intensive manual approaches with no experimenter involvement required during either training or testing phases. It provides quality control tracking of airflow rates, odorant delivery and electrical shock treatments, and an expanded platform for high-throughput studies of combinational drug tests and genetic screens. The design uses inexpensive hardware and software for a total cost of ∼$500US, making it affordable to a wide range of investigators. This study demonstrates the design, construction and testing of a fully automated Drosophila olfactory classical association apparatus to provide low-labor, high-fidelity, quality-monitored, high-throughput and inexpensive learning and memory behavioral assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Incorporating High-Throughput Exposure Predictions With Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing

    PubMed Central

    Wetmore, Barbara A.; Wambaugh, John F.; Allen, Brittany; Ferguson, Stephen S.; Sochaski, Mark A.; Setzer, R. Woodrow; Houck, Keith A.; Strope, Cory L.; Cantwell, Katherine; Judson, Richard S.; LeCluyse, Edward; Clewell, Harvey J.; Thomas, Russell S.; Andersen, Melvin E.

    2015-01-01

    We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compared against regulatory exposure estimates, providing an activity-to-exposure ratio (AER) useful for a risk-based ranking strategy. As ToxCast efforts expand (ie, Phase II) beyond food-use pesticides toward a wider chemical domain that lacks exposure and toxicity information, prediction tools become increasingly important. In this study, in vitro hepatic clearance and plasma protein binding were measured to estimate OEDs for a subset of Phase II chemicals. OEDs were compared against high-throughput (HT) exposure predictions generated using probabilistic modeling and Bayesian approaches generated by the U.S. Environmental Protection Agency (EPA) ExpoCast program. This approach incorporated chemical-specific use and national production volume data with biomonitoring data to inform the exposure predictions. This HT exposure modeling approach provided predictions for all Phase II chemicals assessed in this study whereas estimates from regulatory sources were available for only 7% of chemicals. Of the 163 chemicals assessed in this study, 3 or 13 chemicals possessed AERs < 1 or < 100, respectively. Diverse bioactivities across a range of assays and concentrations were also noted across the wider chemical space surveyed. The availability of HT exposure estimation and bioactivity screening tools provides an opportunity to incorporate a risk-based strategy for use in testing prioritization. PMID:26251325

  16. High-throughput DNA extraction of forensic adhesive tapes.

    PubMed

    Forsberg, Christina; Jansson, Linda; Ansell, Ricky; Hedman, Johannes

    2016-09-01

    Tape-lifting has since its introduction in the early 2000's become a well-established sampling method in forensic DNA analysis. Sampling is quick and straightforward while the following DNA extraction is more challenging due to the "stickiness", rigidity and size of the tape. We have developed, validated and implemented a simple and efficient direct lysis DNA extraction protocol for adhesive tapes that requires limited manual labour. The method uses Chelex beads and is applied with SceneSafe FAST tape. This direct lysis protocol provided higher mean DNA yields than PrepFiler Express BTA on Automate Express, although the differences were not significant when using clothes worn in a controlled fashion as reference material (p=0.13 and p=0.34 for T-shirts and button-down shirts, respectively). Through in-house validation we show that the method is fit-for-purpose for application in casework, as it provides high DNA yields and amplifiability, as well as good reproducibility and DNA extract stability. After implementation in casework, the proportion of extracts with DNA concentrations above 0.01ng/μL increased from 71% to 76%. Apart from providing higher DNA yields compared with the previous method, the introduction of the developed direct lysis protocol also reduced the amount of manual labour by half and doubled the potential throughput for tapes at the laboratory. Generally, simplified manual protocols can serve as a cost-effective alternative to sophisticated automation solutions when the aim is to enable high-throughput DNA extraction of complex crime scene samples. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. 40 CFR Table 9 to Subpart Eeee of... - Continuous Compliance With Operating Limits-High Throughput Transfer Racks

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Compliance With Operating Limits-High Throughput Transfer Racks 9 Table 9 to Subpart EEEE of Part 63 Protection of Environment...—Continuous Compliance With Operating Limits—High Throughput Transfer Racks As stated in §§ 63.2378(a) and (b...

  18. Diffraction efficiency of radially-profiled off-plane reflection gratings

    NASA Astrophysics Data System (ADS)

    Miles, Drew M.; Tutt, James H.; DeRoo, Casey T.; Marlowe, Hannah; Peterson, Thomas J.; McEntaffer, Randall L.; Menz, Benedikt; Burwitz, Vadim; Hartner, Gisela; Laubis, Christian; Scholze, Frank

    2015-09-01

    Future X-ray missions will require gratings with high throughput and high spectral resolution. Blazed off-plane reflection gratings are capable of meeting these demands. A blazed grating profile optimizes grating efficiency, providing higher throughput to one side of zero-order on the arc of diffraction. This paper presents efficiency measurements made in the 0.3 - 1.5 keV energy band at the Physikalisch-Technische Bundesanstalt (PTB) BESSY II facility for three holographically-ruled gratings, two of which are blazed. Each blazed grating was tested in both the Littrow configuration and anti-Littrow configuration in order to test the alignment sensitivity of these gratings with regard to throughput. This paper outlines the procedure of the grating experiment performed at BESSY II and discuss the resulting efficiency measurements across various energies. Experimental results are generally consistent with theory and demonstrate that the blaze does increase throughput to one side of zero-order. However, the total efficiency of the non-blazed, sinusoidal grating is greater than that of the blazed gratings, which suggests that the method of manufacturing these blazed profiles fails to produce facets with the desired level of precision. Finally, evidence of a successful blaze implementation from first diffraction results of prototype blazed gratings produce via a new fabrication technique at the University of Iowa are presented.

  19. Towards High-throughput Immunomics for Infectious Diseases: Use of Next-generation Peptide Microarrays for Rapid Discovery and Mapping of Antigenic Determinants*

    PubMed Central

    Carmona, Santiago J.; Nielsen, Morten; Schafer-Nielsen, Claus; Mucci, Juan; Altcheh, Jaime; Balouz, Virginia; Tekiel, Valeria; Frasch, Alberto C.; Campetella, Oscar; Buscaglia, Carlos A.; Agüero, Fernán

    2015-01-01

    Complete characterization of antibody specificities associated to natural infections is expected to provide a rich source of serologic biomarkers with potential applications in molecular diagnosis, follow-up of chemotherapeutic treatments, and prioritization of targets for vaccine development. Here, we developed a highly-multiplexed platform based on next-generation high-density peptide microarrays to map these specificities in Chagas Disease, an exemplar of a human infectious disease caused by the protozoan Trypanosoma cruzi. We designed a high-density peptide microarray containing more than 175,000 overlapping 15mer peptides derived from T. cruzi proteins. Peptides were synthesized in situ on microarray slides, spanning the complete length of 457 parasite proteins with fully overlapped 15mers (1 residue shift). Screening of these slides with antibodies purified from infected patients and healthy donors demonstrated both a high technical reproducibility as well as epitope mapping consistency when compared with earlier low-throughput technologies. Using a conservative signal threshold to classify positive (reactive) peptides we identified 2,031 disease-specific peptides and 97 novel parasite antigens, effectively doubling the number of known antigens and providing a 10-fold increase in the number of fine mapped antigenic determinants for this disease. Finally, further analysis of the chip data showed that optimizing the amount of sequence overlap of displayed peptides can increase the protein space covered in a single chip by at least ∼threefold without sacrificing sensitivity. In conclusion, we show the power of high-density peptide chips for the discovery of pathogen-specific linear B-cell epitopes from clinical samples, thus setting the stage for high-throughput biomarker discovery screenings and proteome-wide studies of immune responses against pathogens. PMID:25922409

  20. Towards High-throughput Immunomics for Infectious Diseases: Use of Next-generation Peptide Microarrays for Rapid Discovery and Mapping of Antigenic Determinants.

    PubMed

    Carmona, Santiago J; Nielsen, Morten; Schafer-Nielsen, Claus; Mucci, Juan; Altcheh, Jaime; Balouz, Virginia; Tekiel, Valeria; Frasch, Alberto C; Campetella, Oscar; Buscaglia, Carlos A; Agüero, Fernán

    2015-07-01

    Complete characterization of antibody specificities associated to natural infections is expected to provide a rich source of serologic biomarkers with potential applications in molecular diagnosis, follow-up of chemotherapeutic treatments, and prioritization of targets for vaccine development. Here, we developed a highly-multiplexed platform based on next-generation high-density peptide microarrays to map these specificities in Chagas Disease, an exemplar of a human infectious disease caused by the protozoan Trypanosoma cruzi. We designed a high-density peptide microarray containing more than 175,000 overlapping 15 mer peptides derived from T. cruzi proteins. Peptides were synthesized in situ on microarray slides, spanning the complete length of 457 parasite proteins with fully overlapped 15 mers (1 residue shift). Screening of these slides with antibodies purified from infected patients and healthy donors demonstrated both a high technical reproducibility as well as epitope mapping consistency when compared with earlier low-throughput technologies. Using a conservative signal threshold to classify positive (reactive) peptides we identified 2,031 disease-specific peptides and 97 novel parasite antigens, effectively doubling the number of known antigens and providing a 10-fold increase in the number of fine mapped antigenic determinants for this disease. Finally, further analysis of the chip data showed that optimizing the amount of sequence overlap of displayed peptides can increase the protein space covered in a single chip by at least ∼ threefold without sacrificing sensitivity. In conclusion, we show the power of high-density peptide chips for the discovery of pathogen-specific linear B-cell epitopes from clinical samples, thus setting the stage for high-throughput biomarker discovery screenings and proteome-wide studies of immune responses against pathogens. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.

    PubMed

    Kavlock, Robert; Dix, David

    2010-02-01

    Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, the U.S. Environmental Protection Agency EPA is developing robust and flexible computational tools that can be applied to the thousands of chemicals in commerce, and contaminant mixtures found in air, water, and hazardous-waste sites. The Office of Research and Development (ORD) Computational Toxicology Research Program (CTRP) is composed of three main elements. The largest component is the National Center for Computational Toxicology (NCCT), which was established in 2005 to coordinate research on chemical screening and prioritization, informatics, and systems modeling. The second element consists of related activities in the National Health and Environmental Effects Research Laboratory (NHEERL) and the National Exposure Research Laboratory (NERL). The third and final component consists of academic centers working on various aspects of computational toxicology and funded by the U.S. EPA Science to Achieve Results (STAR) program. Together these elements form the key components in the implementation of both the initial strategy, A Framework for a Computational Toxicology Research Program (U.S. EPA, 2003), and the newly released The U.S. Environmental Protection Agency's Strategic Plan for Evaluating the Toxicity of Chemicals (U.S. EPA, 2009a). Key intramural projects of the CTRP include digitizing legacy toxicity testing information toxicity reference database (ToxRefDB), predicting toxicity (ToxCast) and exposure (ExpoCast), and creating virtual liver (v-Liver) and virtual embryo (v-Embryo) systems models. U.S. EPA-funded STAR centers are also providing bioinformatics, computational toxicology data and models, and developmental toxicity data and models. The models and underlying data are being made publicly available through the Aggregated Computational Toxicology Resource (ACToR), the Distributed Structure-Searchable Toxicity (DSSTox) Database Network, and other U.S. EPA websites. While initially focused on improving the hazard identification process, the CTRP is placing increasing emphasis on using high-throughput bioactivity profiling data in systems modeling to support quantitative risk assessments, and in developing complementary higher throughput exposure models. This integrated approach will enable analysis of life-stage susceptibility, and understanding of the exposures, pathways, and key events by which chemicals exert their toxicity in developing systems (e.g., endocrine-related pathways). The CTRP will be a critical component in next-generation risk assessments utilizing quantitative high-throughput data and providing a much higher capacity for assessing chemical toxicity than is currently available.

  2. QoS-aware integrated fiber-wireless standard compliant architecture based on XGPON and EDCA

    NASA Astrophysics Data System (ADS)

    Kaur, Ravneet; Srivastava, Anand

    2018-01-01

    Converged Fiber-Wireless (FiWi) broadband access network proves to be a promising candidate that is reliable, robust, cost efficient, ubiquitous and capable of providing huge amount of bandwidth. To meet the ever-increasing bandwidth requirements, it has become very crucial to investigate the performance issues that arise with the deployment of next-generation Passive Optical Network (PON) and its integration with various wireless technologies. Apart from providing high speed internet access for mass use, this combined architecture aims to enable delivery of high quality and effective e-services in different categories including health, education, finance, banking, agriculture and e-government. In this work, we present an integrated architecture of 10-Gigabit-capable PON (XG-PON) and Enhanced Distributed Channel Access (EDCA) that combines the benefits of both technologies to meet the QoS demands of subscribers. Performance evaluation of the standards-compliant hybrid network is done using discrete-event Network Simulator-3 (NS-3) and results are reported in terms of throughput, average delay, average packet loss rate and fairness index. Per-class throughput signifies effectiveness of QoS distribution whereas aggregate throughput indicates effective utilization of wireless channel. This work has not been reported so far to the best of our knowledge.

  3. High-Throughput In Vivo Genotoxicity Testing: An Automated Readout System for the Somatic Mutation and Recombination Test (SMART)

    PubMed Central

    Kwak, Jihoon; Genovesio, Auguste; Kang, Myungjoo; Hansen, Michael Adsett Edberg; Han, Sung-Jun

    2015-01-01

    Genotoxicity testing is an important component of toxicity assessment. As illustrated by the European registration, evaluation, authorization, and restriction of chemicals (REACH) directive, it concerns all the chemicals used in industry. The commonly used in vivo mammalian tests appear to be ill adapted to tackle the large compound sets involved, due to throughput, cost, and ethical issues. The somatic mutation and recombination test (SMART) represents a more scalable alternative, since it uses Drosophila, which develops faster and requires less infrastructure. Despite these advantages, the manual scoring of the hairs on Drosophila wings required for the SMART limits its usage. To overcome this limitation, we have developed an automated SMART readout. It consists of automated imaging, followed by an image analysis pipeline that measures individual wing genotoxicity scores. Finally, we have developed a wing score-based dose-dependency approach that can provide genotoxicity profiles. We have validated our method using 6 compounds, obtaining profiles almost identical to those obtained from manual measures, even for low-genotoxicity compounds such as urethane. The automated SMART, with its faster and more reliable readout, fulfills the need for a high-throughput in vivo test. The flexible imaging strategy we describe and the analysis tools we provide should facilitate the optimization and dissemination of our methods. PMID:25830368

  4. Extruder system for high-throughput/steady-state hydrogen ice supply and application for pellet fueling of reactor-scale fusion experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combs, S.K.; Foust, C.R.; Qualls, A.L.

    Pellet injection systems for the next-generation fusion devices, such as the proposed International Thermonuclear Experimental Reactor (ITER), will require feed systems capable of providing a continuous supply of hydrogen ice at high throughputs. A straightforward concept in which multiple extruder units operate in tandem has been under development at the Oak Ridge National Laboratory. A prototype with three large-volume extruder units has been fabricated and tested in the laboratory. In experiments, it was found that each extruder could provide volumetric ice flow rates of up to {approximately}1.3 cm{sup 3}/s (for {approximately}10 s), which is sufficient for fueling fusion reactors atmore » the gigawatt power level. With the three extruders of the prototype operating in sequence, a steady rate of {approximately}0.33 cm{sup 3}/s was maintained for a duration of 1 h. Even steady-state rates approaching the full ITER design value ({approximately}1 cm{sup 3}/s) may be feasible with the prototype. However, additional extruder units (1{endash}3) would facilitate operations at the higher throughputs and reduce the duty cycle of each unit. The prototype can easily accommodate steady-state pellet fueling of present large tokamaks or other near-term plasma experiments.« less

  5. Accelerating the design of solar thermal fuel materials through high throughput simulations.

    PubMed

    Liu, Yun; Grossman, Jeffrey C

    2014-12-10

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastable structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.

  6. Accelerating Adverse Outcome Pathway Development via Systems Approaches

    EPA Science Inventory

    The Adverse Outcome Pathway has emerged as an internationally harmonized mechanism for organizing biological information in a chemical agnostic manner. This construct is valuable for interpreting the results from high-throughput toxicity (HTT) assessment by providing a mechanisti...

  7. High Throughput Transcriptomics @ USEPA (Toxicology Forum)

    EPA Science Inventory

    The ideal chemical testing approach will provide complete coverage of all relevant toxicological responses. It should be sensitive and specific It should identify the mechanism/mode-of-action (with dose-dependence). It should identify responses relevant to the species of interest...

  8. High-throughput sample adaptive offset hardware architecture for high-efficiency video coding

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Yan, Chang; Zhang, Jingzhi; Zhou, Xin

    2018-03-01

    A high-throughput hardware architecture for a sample adaptive offset (SAO) filter in the high-efficiency video coding video coding standard is presented. First, an implementation-friendly and simplified bitrate estimation method of rate-distortion cost calculation is proposed to reduce the computational complexity in the mode decision of SAO. Then, a high-throughput VLSI architecture for SAO is presented based on the proposed bitrate estimation method. Furthermore, multiparallel VLSI architecture for in-loop filters, which integrates both deblocking filter and SAO filter, is proposed. Six parallel strategies are applied in the proposed in-loop filters architecture to improve the system throughput and filtering speed. Experimental results show that the proposed in-loop filters architecture can achieve up to 48% higher throughput in comparison with prior work. The proposed architecture can reach a high-operating clock frequency of 297 MHz with TSMC 65-nm library and meet the real-time requirement of the in-loop filters for 8 K × 4 K video format at 132 fps.

  9. Development of Multiwell-Plate Methods Using Pure Cultures of Methanogens To Identify New Inhibitors for Suppressing Ruminant Methane Emissions.

    PubMed

    Weimar, M R; Cheung, J; Dey, D; McSweeney, C; Morrison, M; Kobayashi, Y; Whitman, W B; Carbone, V; Schofield, L R; Ronimus, R S; Cook, G M

    2017-08-01

    Hydrogenotrophic methanogens typically require strictly anaerobic culturing conditions in glass tubes with overpressures of H 2 and CO 2 that are both time-consuming and costly. To increase the throughput for screening chemical compound libraries, 96-well microtiter plate methods for the growth of a marine (environmental) methanogen Methanococcus maripaludis strain S2 and the rumen methanogen Methanobrevibacter species AbM4 were developed. A number of key parameters (inoculum size, reducing agents for medium preparation, assay duration, inhibitor solvents, and culture volume) were optimized to achieve robust and reproducible growth in a high-throughput microtiter plate format. The method was validated using published methanogen inhibitors and statistically assessed for sensitivity and reproducibility. The Sigma-Aldrich LOPAC library containing 1,280 pharmacologically active compounds and an in-house natural product library (120 compounds) were screened against M. maripaludis as a proof of utility. This screen identified a number of bioactive compounds, and MIC values were confirmed for some of them against M. maripaludis and M. AbM4. The developed method provides a significant increase in throughput for screening compound libraries and can now be used to screen larger compound libraries to discover novel methanogen-specific inhibitors for the mitigation of ruminant methane emissions. IMPORTANCE Methane emissions from ruminants are a significant contributor to global greenhouse gas emissions, and new technologies are required to control emissions in the agriculture technology (agritech) sector. The discovery of small-molecule inhibitors of methanogens using high-throughput phenotypic (growth) screening against compound libraries (synthetic and natural products) is an attractive avenue. However, phenotypic inhibitor screening is currently hindered by our inability to grow methanogens in a high-throughput format. We have developed, optimized, and validated a high-throughput 96-well microtiter plate assay for growing environmental and rumen methanogens. Using this platform, we identified several new inhibitors of methanogen growth, demonstrating the utility of this approach to fast track the development of methanogen-specific inhibitors for controlling ruminant methane emissions. Copyright © 2017 American Society for Microbiology.

  10. Evaluation of high throughput gene expression platforms using a genomic biomarker signature for prediction of skin sensitization.

    PubMed

    Forreryd, Andy; Johansson, Henrik; Albrekt, Ann-Sofie; Lindstedt, Malin

    2014-05-16

    Allergic contact dermatitis (ACD) develops upon exposure to certain chemical compounds termed skin sensitizers. To reduce the occurrence of skin sensitizers, chemicals are regularly screened for their capacity to induce sensitization. The recently developed Genomic Allergen Rapid Detection (GARD) assay is an in vitro alternative to animal testing for identification of skin sensitizers, classifying chemicals by evaluating transcriptional levels of a genomic biomarker signature. During assay development and biomarker identification, genome-wide expression analysis was applied using microarrays covering approximately 30,000 transcripts. However, the microarray platform suffers from drawbacks in terms of low sample throughput, high cost per sample and time consuming protocols and is a limiting factor for adaption of GARD into a routine assay for screening of potential sensitizers. With the purpose to simplify assay procedures, improve technical parameters and increase sample throughput, we assessed the performance of three high throughput gene expression platforms--nCounter®, BioMark HD™ and OpenArray®--and correlated their performance metrics against our previously generated microarray data. We measured the levels of 30 transcripts from the GARD biomarker signature across 48 samples. Detection sensitivity, reproducibility, correlations and overall structure of gene expression measurements were compared across platforms. Gene expression data from all of the evaluated platforms could be used to classify most of the sensitizers from non-sensitizers in the GARD assay. Results also showed high data quality and acceptable reproducibility for all platforms but only medium to poor correlations of expression measurements across platforms. In addition, evaluated platforms were superior to the microarray platform in terms of cost efficiency, simplicity of protocols and sample throughput. We evaluated the performance of three non-array based platforms using a limited set of transcripts from the GARD biomarker signature. We demonstrated that it was possible to achieve acceptable discriminatory power in terms of separation between sensitizers and non-sensitizers in the GARD assay while reducing assay costs, simplify assay procedures and increase sample throughput by using an alternative platform, providing a first step towards the goal to prepare GARD for formal validation and adaption of the assay for industrial screening of potential sensitizers.

  11. Assessment of in vitro high throughput pharmacokinetic data to predict in vivo pharmacokinetic data of environmental chemicals

    EPA Science Inventory

    Assessing the health risks of the thousands of chemicals in use requires both toxicology and pharmacokinetic (PK) data that can be generated more quickly. For PK, in vitro clearance assays with hepatocytes and serum protein binding assays provide a means to generate high throughp...

  12. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs

    PubMed Central

    Shigematsu, Megumi; Honda, Shozo; Loher, Phillipe; Telonis, Aristeidis G.; Rigoutsos, Isidore

    2017-01-01

    Abstract Besides translation, transfer RNAs (tRNAs) play many non-canonical roles in various biological pathways and exhibit highly variable expression profiles. To unravel the emerging complexities of tRNA biology and molecular mechanisms underlying them, an efficient tRNA sequencing method is required. However, the rigid structure of tRNA has been presenting a challenge to the development of such methods. We report the development of Y-shaped Adapter-ligated MAture TRNA sequencing (YAMAT-seq), an efficient and convenient method for high-throughput sequencing of mature tRNAs. YAMAT-seq circumvents the issue of inefficient adapter ligation, a characteristic of conventional RNA sequencing methods for mature tRNAs, by employing the efficient and specific ligation of Y-shaped adapter to mature tRNAs using T4 RNA Ligase 2. Subsequent cDNA amplification and next-generation sequencing successfully yield numerous mature tRNA sequences. YAMAT-seq has high specificity for mature tRNAs and high sensitivity to detect most isoacceptors from minute amount of total RNA. Moreover, YAMAT-seq shows quantitative capability to estimate expression levels of mature tRNAs, and has high reproducibility and broad applicability for various cell lines. YAMAT-seq thus provides high-throughput technique for identifying tRNA profiles and their regulations in various transcriptomes, which could play important regulatory roles in translation and other biological processes. PMID:28108659

  13. Integrative Systems Biology for Data Driven Knowledge Discovery

    PubMed Central

    Greene, Casey S.; Troyanskaya, Olga G.

    2015-01-01

    Integrative systems biology is an approach that brings together diverse high throughput experiments and databases to gain new insights into biological processes or systems at molecular through physiological levels. These approaches rely on diverse high-throughput experimental techniques that generate heterogeneous data by assaying varying aspects of complex biological processes. Computational approaches are necessary to provide an integrative view of these experimental results and enable data-driven knowledge discovery. Hypotheses generated from these approaches can direct definitive molecular experiments in a cost effective manner. Using integrative systems biology approaches, we can leverage existing biological knowledge and large-scale data to improve our understanding of yet unknown components of a system of interest and how its malfunction leads to disease. PMID:21044756

  14. The University of Kansas High-Throughput Screening Laboratory. Part II: enabling collaborative drug-discovery partnerships through cutting-edge screening technology

    PubMed Central

    McDonald, Peter R; Roy, Anuradha; Chaguturu, Rathnam

    2011-01-01

    The University of Kansas High-Throughput Screening (KU HTS) core is a state-of-the-art drug-discovery facility with an entrepreneurial open-service policy, which provides centralized resources supporting public- and private-sector research initiatives. The KU HTS core was established in 2002 at the University of Kansas with support from an NIH grant and the state of Kansas. It collaborates with investigators from national and international academic, nonprofit and pharmaceutical organizations in executing HTS-ready assay development and screening of chemical libraries for target validation, probe selection, hit identification and lead optimization. This is part two of a contribution from the KU HTS laboratory. PMID:21806374

  15. Fast liquid chromatography combined with mass spectrometry for the analysis of metabolites and proteins in human body fluids.

    PubMed

    Kortz, Linda; Helmschrodt, Christin; Ceglarek, Uta

    2011-03-01

    In the last decade various analytical strategies have been established to enhance separation speed and efficiency in high performance liquid chromatography applications. Chromatographic supports based on monolithic material, small porous particles, and porous layer beads have been developed and commercialized to improve throughput and separation efficiency. This paper provides an overview of current developments in fast chromatography combined with mass spectrometry for the analysis of metabolites and proteins in clinical applications. Advances and limitations of fast chromatography for the combination with mass spectrometry are discussed. Practical aspects of, recent developments in, and the present status of high-throughput analysis of human body fluids for therapeutic drug monitoring, toxicology, clinical metabolomics, and proteomics are presented.

  16. High-throughput optofluidic system for the laser microsurgery of oocytes

    NASA Astrophysics Data System (ADS)

    Chandsawangbhuwana, Charlie; Shi, Linda Z.; Zhu, Qingyuan; Alliegro, Mark C.; Berns, Michael W.

    2012-01-01

    This study combines microfluidics with optical microablation in a microscopy system that allows for high-throughput manipulation of oocytes, automated media exchange, and long-term oocyte observation. The microfluidic component of the system transports oocytes from an inlet port into multiple flow channels. Within each channel, oocytes are confined against a microfluidic barrier using a steady fluid flow provided by an external computer-controlled syringe pump. This allows for easy media replacement without disturbing the oocyte location. The microfluidic and optical-laser microbeam ablation capabilities of the system were validated using surf clam (Spisula solidissima) oocytes that were immobilized in order to permit ablation of the 5 μm diameter nucleolinus within the oocyte nucleolus. Oocytes were the followed and assayed for polar body ejection.

  17. A catalogue of polymorphisms related to xenobiotic metabolism and cancer susceptibility.

    PubMed

    Gemignani, Federica; Landi, Stefano; Vivant, Franck; Zienolddiny, Shanbeh; Brennan, Paul; Canzian, Federico

    2002-08-01

    High-throughput genotyping technology of multiple genes based on large samples of cases and controls are likely to be important in identifying common genes which have a moderate effect on the development of specific diseases. We present here a comprehensive list of 313 known experimentally confirmed polymorphisms in 54 genes which are particularly relevant for metabolism of drugs, alcohol, tobacco, and other potential carcinogens. We have compiled a catalog with a standardized format that summarizes the genetic and biochemical properties of the selected polymorphisms. We have also confirmed or redesigned experimental conditions for simplex or multiplex PCR amplification of a subset of 168 SNPs of particular interest, which will provide the basis for the design of assays compatible with high-throughput genotyping.

  18. High performance hybrid magnetic structure for biotechnology applications

    DOEpatents

    Humphries, David E [El Cerrito, CA; Pollard, Martin J [El Cerrito, CA; Elkin, Christopher J [San Ramon, CA

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  19. Ex Priori: Exposure-based Prioritization across Chemical Space

    EPA Science Inventory

    EPA's Exposure Prioritization (Ex Priori) is a simplified, quantitative visual dashboard that makes use of data from various inputs to provide rank-ordered internalized dose metric. This complements other high throughput screening by viewing exposures within all chemical space si...

  20. Deadpool: A how-to-build guide

    USDA-ARS?s Scientific Manuscript database

    An easy-to-customize, low-cost, low disturbance proximal sensing cart for field-based high-throughput phenotyping is described. General dimensions and build guidelines are provided. The cart, named Deadpool, supports mounting multiple proximal sensors and cameras for characterizing plant traits grow...

  1. NR and High-Throughput Screening: Putting the Pieces Together Chemicals

    EPA Science Inventory

    Nuclear receptors (NR) are one of the most abundant classes of transcriptional regulators in animals and function as ligand-activated transcription factors. They provide a direct link between signaling molecules and transcriptional responses that impact diverse functions includin...

  2. Adverse Outcome Pathway (AOP) Network Development for Fatty Liver

    EPA Science Inventory

    Adverse outcome pathways (AOPs) are descriptive biological sequences that start from a molecular initiating event (MIE) and end with an adverse health outcome. AOPs provide biological context for high throughput chemical testing and further prioritize environmental health risk re...

  3. Virtual Embryo: Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to chemical profiling to address sensitivity and specificity of molecular targets, biological pathways, cellular and developmental processes. EPA’s ToxCast project is testing 960 uniq...

  4. Diffusion pump modification promotes self-cleansing and high efficiency

    NASA Technical Reports Server (NTRS)

    Buggele, A. E.

    1975-01-01

    Modifications eliminate contaminant substances from pump fluid during operation, which are principal causes of torpidity on evaporative surface. Diffusion pump is also acting as still. Resulting 100 percent vigorous working surface provides much greater molecular throughput and greatly improved efficiency.

  5. Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival.

    PubMed

    Nicolau, Monica; Levine, Arnold J; Carlsson, Gunnar

    2011-04-26

    High-throughput biological data, whether generated as sequencing, transcriptional microarrays, proteomic, or other means, continues to require analytic methods that address its high dimensional aspects. Because the computational part of data analysis ultimately identifies shape characteristics in the organization of data sets, the mathematics of shape recognition in high dimensions continues to be a crucial part of data analysis. This article introduces a method that extracts information from high-throughput microarray data and, by using topology, provides greater depth of information than current analytic techniques. The method, termed Progression Analysis of Disease (PAD), first identifies robust aspects of cluster analysis, then goes deeper to find a multitude of biologically meaningful shape characteristics in these data. Additionally, because PAD incorporates a visualization tool, it provides a simple picture or graph that can be used to further explore these data. Although PAD can be applied to a wide range of high-throughput data types, it is used here as an example to analyze breast cancer transcriptional data. This identified a unique subgroup of Estrogen Receptor-positive (ER(+)) breast cancers that express high levels of c-MYB and low levels of innate inflammatory genes. These patients exhibit 100% survival and no metastasis. No supervised step beyond distinction between tumor and healthy patients was used to identify this subtype. The group has a clear and distinct, statistically significant molecular signature, it highlights coherent biology but is invisible to cluster methods, and does not fit into the accepted classification of Luminal A/B, Normal-like subtypes of ER(+) breast cancers. We denote the group as c-MYB(+) breast cancer.

  6. Towards roll-to-roll manufacturing of polymer photonic devices

    NASA Astrophysics Data System (ADS)

    Subbaraman, Harish; Lin, Xiaohui; Ling, Tao; Guo, L. Jay; Chen, Ray T.

    2014-03-01

    Traditionally, polymer photonic devices are fabricated using clean-room processes such as photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which leads to long fabrication time, low throughput and high cost. We have utilized a novel process for fabricating polymer photonic devices using a combination of imprinting and ink jet printing methods, which provides high throughput on a variety of rigid and flexible substrates with low cost. We discuss the manufacturing challenges that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. Several metrology and instrumentation challenges involved such as availability of particulate-free high quality substrate, development and implementation of high-speed in-line and off-line inspection and diagnostic tools with adaptive control for patterned and unpatterned material films, development of reliable hardware, etc need to be addressed and overcome in order to realize a successful manufacturing process. Due to extreme resolution requirements compared to print media, the burden of software and hardware tools on the throughput also needs to be carefully determined. Moreover, the effect of web wander and variations in web speed need to accurately be determined in the design of the system hardware and software. In this paper, we show the realization of solutions for few challenges, and utilizing these solutions for developing a high-rate R2R dual stage ink-jet printer that can provide alignment accuracy of <10μm at a web speed of 5m/min. The development of a roll-to-roll manufacturing system for polymer photonic systems opens limitless possibilities for the deployment of high performance components in a variety of applications including communication, sensing, medicine, agriculture, energy, lighting etc.

  7. A High Throughput Method for Measuring Polycyclic Aromatic Hydrocarbons in Seafood Using QuEChERS Extraction and SBSE.

    PubMed

    Pfannkoch, Edward A; Stuff, John R; Whitecavage, Jacqueline A; Blevins, John M; Seely, Kathryn A; Moran, Jeffery H

    2015-01-01

    National Oceanic and Atmospheric Administration (NOAA) Method NMFS-NWFSC-59 2004 is currently used to quantitatively analyze seafood for polycyclic aromatic hydrocarbon (PAH) contamination, especially following events such as the Deepwater Horizon oil rig explosion that released millions of barrels of crude oil into the Gulf of Mexico. This method has limited throughput capacity; hence, alternative methods are necessary to meet analytical demands after such events. Stir bar sorptive extraction (SBSE) is an effective technique to extract trace PAHs in water and the quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction strategy effectively extracts PAHs from complex food matrices. This study uses SBSE to concentrate PAHs and eliminate matrix interference from QuEChERS extracts of seafood, specifically oysters, fish, and shrimp. This method provides acceptable recovery (65-138%) linear calibrations and is sensitive (LOD = 0.02 ppb, LOQ = 0.06 ppb) while providing higher throughput and maintaining equivalency between NOAA 2004 as determined by analysis of NIST SRM 1974b mussel tissue.

  8. Assessing Morphological and Physiological Properties of Forest Species Using High Throughput Plant Phenotyping and Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Mazis, A.; Hiller, J.; Morgan, P.; Awada, T.; Stoerger, V.

    2017-12-01

    High throughput plant phenotyping is increasingly being used to assess morphological and biophysical traits of economically important crops in agriculture. In this study, the potential application of this technique in natural resources management, through the characterization of woody plants regeneration, establishment, growth, and responses to water and nutrient manipulations was assessed. Two woody species were selected for this study, Quercus prinoides and Quercus bicolor. Seeds were collected from trees growing at the edge of their natural distribution in Nebraska and Missouri, USA. Seeds were germinated in the greenhouse and transferred to the Nebraska Innovation Campus Lemnatec3D High Throughput facility at the University of Nebraska-Lincoln. Seedlings subjected to water and N manipulations, were imaged twice or three times a week using four cameras (Visible, Fluorescence, Infrared and Hyperspectral), throughout the growing season. Traditional leaf to plant levels ecophysiological measurements were concurrently acquired to assess the relationship between these two techniques. These include gas exchange (LI 6400 and LI 6800, LICOR Inc., Lincoln NE), chlorophyll content, optical characteristics (Ocean Optics USB200), water and osmotic potentials, leaf area and weight and carbon isotope ratio. In the presentation, we highlight results on the potential use of high throughput plant phenotyping techniques to assess the morphology and physiology of woody species including responses to water availability and nutrient manipulation, and its broader application under field conditions and natural resources management. Also, we explore the different capabilities imaging provides us for modeling the plant physiological and morphological growth and how it can complement the current techniques

  9. Towards High-Throughput, Simultaneous Characterization of Thermal and Thermoelectric Properties

    NASA Astrophysics Data System (ADS)

    Miers, Collier Stephen

    The extension of thermoelectric generators to more general markets requires that the devices be affordable and practical (low $/Watt) to implement. A key challenge in this pursuit is the quick and accurate characterization of thermoelectric materials, which will allow researchers to tune and modify the material properties quickly. The goal of this thesis is to design and fabricate a high-throughput characterization system for the simultaneous characterization of thermal, electrical, and thermoelectric properties for device scale material samples. The measurement methodology presented in this thesis combines a custom designed measurement system created specifically for high-throughput testing with a novel device structure that permits simultaneous characterization of the material properties. The measurement system is based upon the 3o method for thermal conductivity measurements, with the addition of electrodes and voltage probes to measure the electrical conductivity and Seebeck coefficient. A device designed and optimized to permit the rapid characterization of thermoelectric materials is also presented. This structure is optimized to ensure 1D heat transfer within the sample, thus permitting rapid data analysis and fitting using a MATLAB script. Verification of the thermal portion of the system is presented using fused silica and sapphire materials for benchmarking. The fused silica samples yielded a thermal conductivity of 1.21 W/(m K), while a thermal conductivity of 31.2 W/(m K) was measured for the sapphire samples. The device and measurement system designed and developed in this thesis provide insight and serve as a foundation for the development of high throughput, simultaneous measurement platforms.

  10. High throughput research and evaporation rate modeling for solvent screening for ethylcellulose barrier membranes in pharmaceutical applications.

    PubMed

    Schoener, Cody A; Curtis-Fisk, Jaime L; Rogers, True L; Tate, Michael P

    2016-10-01

    Ethylcellulose is commonly dissolved in a solvent or formed into an aqueous dispersion and sprayed onto various dosage forms to form a barrier membrane to provide controlled release in pharmaceutical formulations. Due to the variety of solvents utilized in the pharmaceutical industry and the importance solvent can play on film formation and film strength it is critical to understand how solvent can influence these parameters. To systematically study a variety of solvent blends and how these solvent blends influence ethylcellulose film formation, physical and mechanical film properties and solution properties such as clarity and viscosity. Using high throughput capabilities and evaporation rate modeling, thirty-one different solvent blends composed of ethanol, isopropanol, acetone, methanol, and/or water were formulated, analyzed for viscosity and clarity, and narrowed down to four solvent blends. Brookfield viscosity, film casting, mechanical film testing and water permeation were also completed. High throughput analysis identified isopropanol/water, ethanol, ethanol/water and methanol/acetone/water as solvent blends with unique clarity and viscosity values. Evaporation rate modeling further rank ordered these candidates from excellent to poor interaction with ethylcellulose. Isopropanol/water was identified as the most suitable solvent blend for ethylcellulose due to azeotrope formation during evaporation, which resulted in a solvent-rich phase allowing the ethylcellulose polymer chains to remain maximally extended during film formation. Consequently, the highest clarity and most ductile films were formed. Employing high throughput capabilities paired with evaporation rate modeling allowed strong predictions between solvent interaction with ethylcellulose and mechanical film properties.

  11. High-throughput measurement of rice tillers using a conveyor equipped with x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Yang, Wanneng; Xu, Xiaochun; Duan, Lingfeng; Luo, Qingming; Chen, Shangbin; Zeng, Shaoqun; Liu, Qian

    2011-02-01

    Tillering is one of the most important agronomic traits because the number of shoots per plant determines panicle number, a key component of grain yield. The conventional method of counting tillers is still manual. Under the condition of mass measurement, the accuracy and efficiency could be gradually degraded along with fatigue of experienced staff. Thus, manual measurement, including counting and recording, is not only time consuming but also lack objectivity. To automate this process, we developed a high-throughput facility, dubbed high-throughput system for measuring automatically rice tillers (H-SMART), for measuring rice tillers based on a conventional x-ray computed tomography (CT) system and industrial conveyor. Each pot-grown rice plant was delivered into the CT system for scanning via the conveyor equipment. A filtered back-projection algorithm was used to reconstruct the transverse section image of the rice culms. The number of tillers was then automatically extracted by image segmentation. To evaluate the accuracy of this system, three batches of rice at different growth stages (tillering, heading, or filling) were tested, yielding absolute mean absolute errors of 0.22, 0.36, and 0.36, respectively. Subsequently, the complete machine was used under industry conditions to estimate its efficiency, which was 4320 pots per continuous 24 h workday. Thus, the H-SMART could determine the number of tillers of pot-grown rice plants, providing three advantages over the manual tillering method: absence of human disturbance, automation, and high throughput. This facility expands the application of agricultural photonics in plant phenomics.

  12. High-throughput measurement of rice tillers using a conveyor equipped with x-ray computed tomography.

    PubMed

    Yang, Wanneng; Xu, Xiaochun; Duan, Lingfeng; Luo, Qingming; Chen, Shangbin; Zeng, Shaoqun; Liu, Qian

    2011-02-01

    Tillering is one of the most important agronomic traits because the number of shoots per plant determines panicle number, a key component of grain yield. The conventional method of counting tillers is still manual. Under the condition of mass measurement, the accuracy and efficiency could be gradually degraded along with fatigue of experienced staff. Thus, manual measurement, including counting and recording, is not only time consuming but also lack objectivity. To automate this process, we developed a high-throughput facility, dubbed high-throughput system for measuring automatically rice tillers (H-SMART), for measuring rice tillers based on a conventional x-ray computed tomography (CT) system and industrial conveyor. Each pot-grown rice plant was delivered into the CT system for scanning via the conveyor equipment. A filtered back-projection algorithm was used to reconstruct the transverse section image of the rice culms. The number of tillers was then automatically extracted by image segmentation. To evaluate the accuracy of this system, three batches of rice at different growth stages (tillering, heading, or filling) were tested, yielding absolute mean absolute errors of 0.22, 0.36, and 0.36, respectively. Subsequently, the complete machine was used under industry conditions to estimate its efficiency, which was 4320 pots per continuous 24 h workday. Thus, the H-SMART could determine the number of tillers of pot-grown rice plants, providing three advantages over the manual tillering method: absence of human disturbance, automation, and high throughput. This facility expands the application of agricultural photonics in plant phenomics.

  13. Genecentric: a package to uncover graph-theoretic structure in high-throughput epistasis data.

    PubMed

    Gallant, Andrew; Leiserson, Mark D M; Kachalov, Maxim; Cowen, Lenore J; Hescott, Benjamin J

    2013-01-18

    New technology has resulted in high-throughput screens for pairwise genetic interactions in yeast and other model organisms. For each pair in a collection of non-essential genes, an epistasis score is obtained, representing how much sicker (or healthier) the double-knockout organism will be compared to what would be expected from the sickness of the component single knockouts. Recent algorithmic work has identified graph-theoretic patterns in this data that can indicate functional modules, and even sets of genes that may occur in compensatory pathways, such as a BPM-type schema first introduced by Kelley and Ideker. However, to date, any algorithms for finding such patterns in the data were implemented internally, with no software being made publically available. Genecentric is a new package that implements a parallelized version of the Leiserson et al. algorithm (J Comput Biol 18:1399-1409, 2011) for generating generalized BPMs from high-throughput genetic interaction data. Given a matrix of weighted epistasis values for a set of double knock-outs, Genecentric returns a list of generalized BPMs that may represent compensatory pathways. Genecentric also has an extension, GenecentricGO, to query FuncAssociate (Bioinformatics 25:3043-3044, 2009) to retrieve GO enrichment statistics on generated BPMs. Python is the only dependency, and our web site provides working examples and documentation. We find that Genecentric can be used to find coherent functional and perhaps compensatory gene sets from high throughput genetic interaction data. Genecentric is made freely available for download under the GPLv2 from http://bcb.cs.tufts.edu/genecentric.

  14. Genecentric: a package to uncover graph-theoretic structure in high-throughput epistasis data

    PubMed Central

    2013-01-01

    Background New technology has resulted in high-throughput screens for pairwise genetic interactions in yeast and other model organisms. For each pair in a collection of non-essential genes, an epistasis score is obtained, representing how much sicker (or healthier) the double-knockout organism will be compared to what would be expected from the sickness of the component single knockouts. Recent algorithmic work has identified graph-theoretic patterns in this data that can indicate functional modules, and even sets of genes that may occur in compensatory pathways, such as a BPM-type schema first introduced by Kelley and Ideker. However, to date, any algorithms for finding such patterns in the data were implemented internally, with no software being made publically available. Results Genecentric is a new package that implements a parallelized version of the Leiserson et al. algorithm (J Comput Biol 18:1399-1409, 2011) for generating generalized BPMs from high-throughput genetic interaction data. Given a matrix of weighted epistasis values for a set of double knock-outs, Genecentric returns a list of generalized BPMs that may represent compensatory pathways. Genecentric also has an extension, GenecentricGO, to query FuncAssociate (Bioinformatics 25:3043-3044, 2009) to retrieve GO enrichment statistics on generated BPMs. Python is the only dependency, and our web site provides working examples and documentation. Conclusion We find that Genecentric can be used to find coherent functional and perhaps compensatory gene sets from high throughput genetic interaction data. Genecentric is made freely available for download under the GPLv2 from http://bcb.cs.tufts.edu/genecentric. PMID:23331614

  15. Neutron reflecting supermirror structure

    DOEpatents

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  16. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  17. Robo-Lector - a novel platform for automated high-throughput cultivations in microtiter plates with high information content.

    PubMed

    Huber, Robert; Ritter, Daniel; Hering, Till; Hillmer, Anne-Kathrin; Kensy, Frank; Müller, Carsten; Wang, Le; Büchs, Jochen

    2009-08-01

    In industry and academic research, there is an increasing demand for flexible automated microfermentation platforms with advanced sensing technology. However, up to now, conventional platforms cannot generate continuous data in high-throughput cultivations, in particular for monitoring biomass and fluorescent proteins. Furthermore, microfermentation platforms are needed that can easily combine cost-effective, disposable microbioreactors with downstream processing and analytical assays. To meet this demand, a novel automated microfermentation platform consisting of a BioLector and a liquid-handling robot (Robo-Lector) was sucessfully built and tested. The BioLector provides a cultivation system that is able to permanently monitor microbial growth and the fluorescence of reporter proteins under defined conditions in microtiter plates. Three examplary methods were programed on the Robo-Lector platform to study in detail high-throughput cultivation processes and especially recombinant protein expression. The host/vector system E. coli BL21(DE3) pRhotHi-2-EcFbFP, expressing the fluorescence protein EcFbFP, was hereby investigated. With the method 'induction profiling' it was possible to conduct 96 different induction experiments (varying inducer concentrations from 0 to 1.5 mM IPTG at 8 different induction times) simultaneously in an automated way. The method 'biomass-specific induction' allowed to automatically induce cultures with different growth kinetics in a microtiter plate at the same biomass concentration, which resulted in a relative standard deviation of the EcFbFP production of only +/- 7%. The third method 'biomass-specific replication' enabled to generate equal initial biomass concentrations in main cultures from precultures with different growth kinetics. This was realized by automatically transferring an appropiate inoculum volume from the different preculture microtiter wells to respective wells of the main culture plate, where subsequently similar growth kinetics could be obtained. The Robo-Lector generates extensive kinetic data in high-throughput cultivations, particularly for biomass and fluorescence protein formation. Based on the non-invasive on-line-monitoring signals, actions of the liquid-handling robot can easily be triggered. This interaction between the robot and the BioLector (Robo-Lector) combines high-content data generation with systematic high-throughput experimentation in an automated fashion, offering new possibilities to study biological production systems. The presented platform uses a standard liquid-handling workstation with widespread automation possibilities. Thus, high-throughput cultivations can now be combined with small-scale downstream processing techniques and analytical assays. Ultimately, this novel versatile platform can accelerate and intensify research and development in the field of systems biology as well as modelling and bioprocess optimization.

  18. Analytical Validation of a Portable Mass Spectrometer Featuring Interchangeable, Ambient Ionization Sources for High Throughput Forensic Evidence Screening

    NASA Astrophysics Data System (ADS)

    Lawton, Zachary E.; Traub, Angelica; Fatigante, William L.; Mancias, Jose; O'Leary, Adam E.; Hall, Seth E.; Wieland, Jamie R.; Oberacher, Herbert; Gizzi, Michael C.; Mulligan, Christopher C.

    2017-06-01

    Forensic evidentiary backlogs are indicative of the growing need for cost-effective, high-throughput instrumental methods. One such emerging technology that shows high promise in meeting this demand while also allowing on-site forensic investigation is portable mass spectrometric (MS) instrumentation, particularly that which enables the coupling to ambient ionization techniques. While the benefits of rapid, on-site screening of contraband can be anticipated, the inherent legal implications of field-collected data necessitates that the analytical performance of technology employed be commensurate with accepted techniques. To this end, comprehensive analytical validation studies are required before broad incorporation by forensic practitioners can be considered, and are the focus of this work. Pertinent performance characteristics such as throughput, selectivity, accuracy/precision, method robustness, and ruggedness have been investigated. Reliability in the form of false positive/negative response rates is also assessed, examining the effect of variables such as user training and experience level. To provide flexibility toward broad chemical evidence analysis, a suite of rapidly-interchangeable ion sources has been developed and characterized through the analysis of common illicit chemicals and emerging threats like substituted phenethylamines. [Figure not available: see fulltext.

  19. Proteomic Analysis of Metabolic Responses to Biofuels and Chemicals in Photosynthetic Cyanobacteria.

    PubMed

    Sun, T; Chen, L; Zhang, W

    2017-01-01

    Recent progresses in various "omics" technologies have enabled quantitative measurements of biological molecules in a high-throughput manner. Among them, high-throughput proteomics is a rapidly advancing field that offers a new means to quantify metabolic changes at protein level, which has significantly facilitated our understanding of cellular process, such as protein synthesis, posttranslational modifications, and degradation in responding to environmental perturbations. Cyanobacteria are autotrophic prokaryotes that can perform oxygenic photosynthesis and have recently attracted significant attentions as one promising alternative to traditionally biomass-based "microbial cell factories" to produce green fuels and chemicals. However, early studies have shown that the low tolerance to toxic biofuels and chemicals represented one major hurdle for further improving productivity of the cyanobacterial production systems. To address the issue, metabolic responses and their regulation of cyanobacterial cells to toxic end-products need to be defined. In this chapter, we discuss recent progresses in interpreting cyanobacterial responses to biofuels and chemicals using high-throughput proteomics approach, aiming to provide insights and guidelines on how to enhance tolerance and productivity of biofuels or chemicals in the renewable cyanobacteria systems in the future. © 2017 Elsevier Inc. All rights reserved.

  20. Cytopathological image analysis using deep-learning networks in microfluidic microscopy.

    PubMed

    Gopakumar, G; Hari Babu, K; Mishra, Deepak; Gorthi, Sai Siva; Sai Subrahmanyam, Gorthi R K

    2017-01-01

    Cytopathologic testing is one of the most critical steps in the diagnosis of diseases, including cancer. However, the task is laborious and demands skill. Associated high cost and low throughput drew considerable interest in automating the testing process. Several neural network architectures were designed to provide human expertise to machines. In this paper, we explore and propose the feasibility of using deep-learning networks for cytopathologic analysis by performing the classification of three important unlabeled, unstained leukemia cell lines (K562, MOLT, and HL60). The cell images used in the classification are captured using a low-cost, high-throughput cell imaging technique: microfluidics-based imaging flow cytometry. We demonstrate that without any conventional fine segmentation followed by explicit feature extraction, the proposed deep-learning algorithms effectively classify the coarsely localized cell lines. We show that the designed deep belief network as well as the deeply pretrained convolutional neural network outperform the conventionally used decision systems and are important in the medical domain, where the availability of labeled data is limited for training. We hope that our work enables the development of a clinically significant high-throughput microfluidic microscopy-based tool for disease screening/triaging, especially in resource-limited settings.

  1. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    PubMed

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  2. Detecting and overcoming systematic bias in high-throughput screening technologies: a comprehensive review of practical issues and methodological solutions.

    PubMed

    Caraus, Iurie; Alsuwailem, Abdulaziz A; Nadon, Robert; Makarenkov, Vladimir

    2015-11-01

    Significant efforts have been made recently to improve data throughput and data quality in screening technologies related to drug design. The modern pharmaceutical industry relies heavily on high-throughput screening (HTS) and high-content screening (HCS) technologies, which include small molecule, complementary DNA (cDNA) and RNA interference (RNAi) types of screening. Data generated by these screening technologies are subject to several environmental and procedural systematic biases, which introduce errors into the hit identification process. We first review systematic biases typical of HTS and HCS screens. We highlight that study design issues and the way in which data are generated are crucial for providing unbiased screening results. Considering various data sets, including the publicly available ChemBank data, we assess the rates of systematic bias in experimental HTS by using plate-specific and assay-specific error detection tests. We describe main data normalization and correction techniques and introduce a general data preprocessing protocol. This protocol can be recommended for academic and industrial researchers involved in the analysis of current or next-generation HTS data. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Towards high-throughput automated targeted femtosecond laser-based transfection of adherent cells

    NASA Astrophysics Data System (ADS)

    Antkowiak, Maciej; Torres-Mapa, Maria Leilani; Gunn-Moore, Frank; Dholakia, Kishan

    2011-03-01

    Femtosecond laser induced cell membrane poration has proven to be an attractive alternative to the classical methods of drug and gene delivery. It is a selective, sterile, non-contact technique that offers a highly localized operation, low toxicity and consistent performance. However, its broader application still requires the development of robust, high-throughput and user-friendly systems. We present a system capable of unassisted enhanced targeted optoinjection and phototransfection of adherent mammalian cells with a femtosecond laser. We demonstrate the advantages of a dynamic diffractive optical element, namely a spatial light modulator (SLM) for precise three dimensional positioning of the beam. It enables the implementation of a "point-and-shoot" system in which using the software interface a user simply points at the cell and a predefined sequence of precisely positioned doses can be applied. We show that irradiation in three axial positions alleviates the problem of exact beam positioning on the cell membrane and doubles the number of viably optoinjected cells when compared with a single dose. The presented system enables untargeted raster scan irradiation which provides transfection of adherent cells at the throughput of 1 cell per second.

  4. An enzyme-mediated protein-fragment complementation assay for substrate screening of sortase A.

    PubMed

    Li, Ning; Yu, Zheng; Ji, Qun; Sun, Jingying; Liu, Xiao; Du, Mingjuan; Zhang, Wei

    2017-04-29

    Enzyme-mediated protein conjugation has gained great attention recently due to the remarkable site-selectivity and mild reaction condition affected by the nature of enzyme. Among all sorts of enzymes reported, sortase A from Staphylococcus aureus (SaSrtA) is the most popular enzyme due to its selectivity and well-demonstrated applications. Position scanning has been widely applied to understand enzyme substrate specificity, but the low throughput of chemical synthesis of peptide substrates and analytical methods (HPLC, LC-ESI-MS) have been the major hurdle to fully decode enzyme substrate profile. We have developed a simple high-throughput substrate profiling method to reveal novel substrates of SaSrtA 7M, a widely used hyperactive peptide ligase, by modified protein-fragment complementation assay (PCA). A small library targeting the LPATG motif recognized by SaSrtA 7M was generated and screened against proteins carrying N-terminal glycine. Using this method, we have confirmed all currently known substrates of the enzyme, and moreover identified some previously unknown substrates with varying activities. The method provides an easy, fast and highly-sensitive way to determine substrate profile of a peptide ligase in a high-throughput manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies

    PubMed Central

    Zhang, Bing; Schmoyer, Denise; Kirov, Stefan; Snoddy, Jay

    2004-01-01

    Background Microarray and other high-throughput technologies are producing large sets of interesting genes that are difficult to analyze directly. Bioinformatics tools are needed to interpret the functional information in the gene sets. Results We have created a web-based tool for data analysis and data visualization for sets of genes called GOTree Machine (GOTM). This tool was originally intended to analyze sets of co-regulated genes identified from microarray analysis but is adaptable for use with other gene sets from other high-throughput analyses. GOTree Machine generates a GOTree, a tree-like structure to navigate the Gene Ontology Directed Acyclic Graph for input gene sets. This system provides user friendly data navigation and visualization. Statistical analysis helps users to identify the most important Gene Ontology categories for the input gene sets and suggests biological areas that warrant further study. GOTree Machine is available online at . Conclusion GOTree Machine has a broad application in functional genomic, proteomic and other high-throughput methods that generate large sets of interesting genes; its primary purpose is to help users sort for interesting patterns in gene sets. PMID:14975175

  6. High throughput system for magnetic manipulation of cells, polymers, and biomaterials

    PubMed Central

    Spero, Richard Chasen; Vicci, Leandra; Cribb, Jeremy; Bober, David; Swaminathan, Vinay; O’Brien, E. Timothy; Rogers, Stephen L.; Superfine, R.

    2008-01-01

    In the past decade, high throughput screening (HTS) has changed the way biochemical assays are performed, but manipulation and mechanical measurement of micro- and nanoscale systems have not benefited from this trend. Techniques using microbeads (particles ∼0.1–10 μm) show promise for enabling high throughput mechanical measurements of microscopic systems. We demonstrate instrumentation to magnetically drive microbeads in a biocompatible, multiwell magnetic force system. It is based on commercial HTS standards and is scalable to 96 wells. Cells can be cultured in this magnetic high throughput system (MHTS). The MHTS can apply independently controlled forces to 16 specimen wells. Force calibrations demonstrate forces in excess of 1 nN, predicted force saturation as a function of pole material, and powerlaw dependence of F∼r−2.7±0.1. We employ this system to measure the stiffness of SR2+ Drosophila cells. MHTS technology is a key step toward a high throughput screening system for micro- and nanoscale biophysical experiments. PMID:19044357

  7. Identification of functional modules using network topology and high-throughput data.

    PubMed

    Ulitsky, Igor; Shamir, Ron

    2007-01-26

    With the advent of systems biology, biological knowledge is often represented today by networks. These include regulatory and metabolic networks, protein-protein interaction networks, and many others. At the same time, high-throughput genomics and proteomics techniques generate very large data sets, which require sophisticated computational analysis. Usually, separate and different analysis methodologies are applied to each of the two data types. An integrated investigation of network and high-throughput information together can improve the quality of the analysis by accounting simultaneously for topological network properties alongside intrinsic features of the high-throughput data. We describe a novel algorithmic framework for this challenge. We first transform the high-throughput data into similarity values, (e.g., by computing pairwise similarity of gene expression patterns from microarray data). Then, given a network of genes or proteins and similarity values between some of them, we seek connected sub-networks (or modules) that manifest high similarity. We develop algorithms for this problem and evaluate their performance on the osmotic shock response network in S. cerevisiae and on the human cell cycle network. We demonstrate that focused, biologically meaningful and relevant functional modules are obtained. In comparison with extant algorithms, our approach has higher sensitivity and higher specificity. We have demonstrated that our method can accurately identify functional modules. Hence, it carries the promise to be highly useful in analysis of high throughput data.

  8. Advantages and application of label-free detection assays in drug screening.

    PubMed

    Cunningham, Brian T; Laing, Lance G

    2008-08-01

    Adoption is accelerating for a new family of label-free optical biosensors incorporated into standard format microplates owing to their ability to enable highly sensitive detection of small molecules, proteins and cells for high-throughput drug discovery applications. Label-free approaches are displacing other detection technologies owing to their ability to provide simple assay procedures for hit finding/validation, accessing difficult target classes, screening the interaction of cells with drugs and analyzing the affinity of small molecule inhibitors to target proteins. This review describes several new drug discovery applications that are under development for microplate-based photonic crystal optical biosensors and the key issues that will drive adoption of the technology. Microplate-based optical biosensors are enabling a variety of cell-based assays, inhibition assays, protein-protein binding assays and protein-small molecule binding assays to be performed with high-throughput and high sensitivity.

  9. Rapid, Automated Determination of Elemental Compositions of Ions in Mass Spectra Obtained with an Open-Air Ion Source (2 of 2)

    EPA Science Inventory

    An inexpensive autosampler for a DART/TOFMS provides mass spectra from analytes absorbed on 76 cotton swab, wipe samples in 7.5 min. A field sample carrier simplifies sample collection and provides swabs nearly ready for analysis to the lab. Applications of the high throughput pr...

  10. Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering.

    PubMed

    Groen, Nathalie; Guvendiren, Murat; Rabitz, Herschel; Welsh, William J; Kohn, Joachim; de Boer, Jan

    2016-04-01

    The research paradigm in biomaterials science and engineering is evolving from using low-throughput and iterative experimental designs towards high-throughput experimental designs for materials optimization and the evaluation of materials properties. Computational science plays an important role in this transition. With the emergence of the omics approach in the biomaterials field, referred to as materiomics, high-throughput approaches hold the promise of tackling the complexity of materials and understanding correlations between material properties and their effects on complex biological systems. The intrinsic complexity of biological systems is an important factor that is often oversimplified when characterizing biological responses to materials and establishing property-activity relationships. Indeed, in vitro tests designed to predict in vivo performance of a given biomaterial are largely lacking as we are not able to capture the biological complexity of whole tissues in an in vitro model. In this opinion paper, we explain how we reached our opinion that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. In this opinion paper, we postulate that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. Copyright © 2016. Published by Elsevier Ltd.

  11. A high-throughput AO/PI-based cell concentration and viability detection method using the Celigo image cytometry.

    PubMed

    Chan, Leo Li-Ying; Smith, Tim; Kumph, Kendra A; Kuksin, Dmitry; Kessel, Sarah; Déry, Olivier; Cribbes, Scott; Lai, Ning; Qiu, Jean

    2016-10-01

    To ensure cell-based assays are performed properly, both cell concentration and viability have to be determined so that the data can be normalized to generate meaningful and comparable results. Cell-based assays performed in immuno-oncology, toxicology, or bioprocessing research often require measuring of multiple samples and conditions, thus the current automated cell counter that uses single disposable counting slides is not practical for high-throughput screening assays. In the recent years, a plate-based image cytometry system has been developed for high-throughput biomolecular screening assays. In this work, we demonstrate a high-throughput AO/PI-based cell concentration and viability method using the Celigo image cytometer. First, we validate the method by comparing directly to Cellometer automated cell counter. Next, cell concentration dynamic range, viability dynamic range, and consistency are determined. The high-throughput AO/PI method described here allows for 96-well to 384-well plate samples to be analyzed in less than 7 min, which greatly reduces the time required for the single sample-based automated cell counter. In addition, this method can improve the efficiency for high-throughput screening assays, where multiple cell counts and viability measurements are needed prior to performing assays such as flow cytometry, ELISA, or simply plating cells for cell culture.

  12. Precise, High-throughput Analysis of Bacterial Growth.

    PubMed

    Kurokawa, Masaomi; Ying, Bei-Wen

    2017-09-19

    Bacterial growth is a central concept in the development of modern microbial physiology, as well as in the investigation of cellular dynamics at the systems level. Recent studies have reported correlations between bacterial growth and genome-wide events, such as genome reduction and transcriptome reorganization. Correctly analyzing bacterial growth is crucial for understanding the growth-dependent coordination of gene functions and cellular components. Accordingly, the precise quantitative evaluation of bacterial growth in a high-throughput manner is required. Emerging technological developments offer new experimental tools that allow updates of the methods used for studying bacterial growth. The protocol introduced here employs a microplate reader with a highly optimized experimental procedure for the reproducible and precise evaluation of bacterial growth. This protocol was used to evaluate the growth of several previously described Escherichia coli strains. The main steps of the protocol are as follows: the preparation of a large number of cell stocks in small vials for repeated tests with reproducible results, the use of 96-well plates for high-throughput growth evaluation, and the manual calculation of two major parameters (i.e., maximal growth rate and population density) representing the growth dynamics. In comparison to the traditional colony-forming unit (CFU) assay, which counts the cells that are cultured in glass tubes over time on agar plates, the present method is more efficient and provides more detailed temporal records of growth changes, but has a stricter detection limit at low population densities. In summary, the described method is advantageous for the precise and reproducible high-throughput analysis of bacterial growth, which can be used to draw conceptual conclusions or to make theoretical observations.

  13. Passive and Active Monitoring on a High Performance Research Network.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Warren

    2001-05-01

    The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10{sup 12}). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge hasmore » arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not!) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data.« less

  14. Accelerating the Design of Solar Thermal Fuel Materials through High Throughput Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Grossman, JC

    2014-12-01

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastablemore » structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.« less

  15. A high-throughput screening system for barley/powdery mildew interactions based on automated analysis of light micrographs.

    PubMed

    Ihlow, Alexander; Schweizer, Patrick; Seiffert, Udo

    2008-01-23

    To find candidate genes that potentially influence the susceptibility or resistance of crop plants to powdery mildew fungi, an assay system based on transient-induced gene silencing (TIGS) as well as transient over-expression in single epidermal cells of barley has been developed. However, this system relies on quantitative microscopic analysis of the barley/powdery mildew interaction and will only become a high-throughput tool of phenomics upon automation of the most time-consuming steps. We have developed a high-throughput screening system based on a motorized microscope which evaluates the specimens fully automatically. A large-scale double-blind verification of the system showed an excellent agreement of manual and automated analysis and proved the system to work dependably. Furthermore, in a series of bombardment experiments an RNAi construct targeting the Mlo gene was included, which is expected to phenocopy resistance mediated by recessive loss-of-function alleles such as mlo5. In most cases, the automated analysis system recorded a shift towards resistance upon RNAi of Mlo, thus providing proof of concept for its usefulness in detecting gene-target effects. Besides saving labor and enabling a screening of thousands of candidate genes, this system offers continuous operation of expensive laboratory equipment and provides a less subjective analysis as well as a complete and enduring documentation of the experimental raw data in terms of digital images. In general, it proves the concept of enabling available microscope hardware to handle challenging screening tasks fully automatically.

  16. High-Throughput Gene Mapping in Caenorhabditis elegans

    PubMed Central

    Swan, Kathryn A.; Curtis, Damian E.; McKusick, Kathleen B.; Voinov, Alexander V.; Mapa, Felipa A.; Cancilla, Michael R.

    2002-01-01

    Positional cloning of mutations in model genetic systems is a powerful method for the identification of targets of medical and agricultural importance. To facilitate the high-throughput mapping of mutations in Caenorhabditis elegans, we have identified a further 9602 putative new single nucleotide polymorphisms (SNPs) between two C. elegans strains, Bristol N2 and the Hawaiian mapping strain CB4856, by sequencing inserts from a CB4856 genomic DNA library and using an informatics pipeline to compare sequences with the canonical N2 genomic sequence. When combined with data from other laboratories, our marker set of 17,189 SNPs provides even coverage of the complete worm genome. To date, we have confirmed >1099 evenly spaced SNPs (one every 91 ± 56 kb) across the six chromosomes and validated the utility of our SNP marker set and new fluorescence polarization-based genotyping methods for systematic and high-throughput identification of genes in C. elegans by cloning several proprietary genes. We illustrate our approach by recombination mapping and confirmation of the mutation in the cloned gene, dpy-18. [The sequence data described in this paper have been submitted to the NCBI dbSNP data library under accession nos. 4388625–4389689 and GenBank dbSTS under accession nos. 973810–974874. The following individuals and institutions kindly provided reagents, samples, or unpublished information as indicated in the paper: The C. elegans Sequencing Consortium and The Caenorhabditis Genetics Center.] PMID:12097347

  17. High-Throughput Silencing Using the CRISPR-Cas9 System: A Review of the Benefits and Challenges.

    PubMed

    Wade, Mark

    2015-09-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has been seized upon with a fervor enjoyed previously by small interfering RNA (siRNA) and short hairpin RNA (shRNA) technologies and has enormous potential for high-throughput functional genomics studies. The decision to use this approach must be balanced with respect to adoption of existing platforms versus awaiting the development of more "mature" next-generation systems. Here, experience from siRNA and shRNA screening plays an important role, as issues such as targeting efficiency, pooling strategies, and off-target effects with those technologies are already framing debates in the CRISPR field. CRISPR/Cas can be exploited not only to knockout genes but also to up- or down-regulate gene transcription-in some cases in a multiplex fashion. This provides a powerful tool for studying the interaction among multiple signaling cascades in the same genetic background. Furthermore, the documented success of CRISPR/Cas-mediated gene correction (or the corollary, introduction of disease-specific mutations) provides proof of concept for the rapid generation of isogenic cell lines for high-throughput screening. In this review, the advantages and limitations of CRISPR/Cas are discussed and current and future applications are highlighted. It is envisaged that complementarities between CRISPR, siRNA, and shRNA will ensure that all three technologies remain critical to the success of future functional genomics projects. © 2015 Society for Laboratory Automation and Screening.

  18. CA resist with high sensitivity and sub-100-nm resolution for advanced mask making

    NASA Astrophysics Data System (ADS)

    Huang, Wu-Song; Kwong, Ranee W.; Hartley, John G.; Moreau, Wayne M.; Angelopoulos, Marie; Magg, Christopher; Lawliss, Mark

    2000-07-01

    Recently, there is significant interest in using CA resist for electron beam (E-beam) applications including mask making, direct write, and projection printing. CA resists provide superior lithographic performance in comparison to traditional non-CA E-beam resist in particular high contrast, resolution, and sensitivity. However, most of the commercially available CA resist have the concern of airborne base contaminants and sensitivity to PAB and/or PEB temperatures. In this presentation, we will discuss a new improved ketal resists system referred to as KRS-XE which exhibits excellent lithography, is robust toward airborne base, compatible with 0.263N TMAH aqueous developer and exhibits excellent lithography, is robust toward airborne base, compatible with 0.263N TMAH aqueous developer and exhibits a large PAB/PEB latitude. With the combination of a high performance mask making E-beam exposure tool, high kV shaped beam system EL4+ and the KRS-XE resist, we have printed 75nm lines/space feature with excellent profile control at a dose of 13(mu) C/cm2 at 75kV. The shaped beam vector scan system used here provides a unique property in resolving small features in lithography and throughput. Overhead in EL4+$ limits the systems ability to fully exploit the sensitivity of the new resist for throughput. The EL5 system has sufficiently low overhead that it is projected to print a 4X, 16G DRAM mask with OPC in under 3 hours with the CA resist. We will discuss the throughput advantages of the next generation EL5 system over the existing EL4+.

  19. Sorting Out Antibiotics' Mechanisms of Action: a Double Fluorescent Protein Reporter for High-Throughput Screening of Ribosome and DNA Biosynthesis Inhibitors

    PubMed Central

    Osterman, Ilya A.; Komarova, Ekaterina S.; Shiryaev, Dmitry I.; Korniltsev, Ilya A.; Khven, Irina M.; Lukyanov, Dmitry A.; Tashlitsky, Vadim N.; Serebryakova, Marina V.; Efremenkova, Olga V.; Ivanenkov, Yan A.; Bogdanov, Alexey A.; Dontsova, Olga A.

    2016-01-01

    In order to accelerate drug discovery, a simple, reliable, and cost-effective system for high-throughput identification of a potential antibiotic mechanism of action is required. To facilitate such screening of new antibiotics, we created a double-reporter system for not only antimicrobial activity detection but also simultaneous sorting of potential antimicrobials into those that cause ribosome stalling and those that induce the SOS response due to DNA damage. In this reporter system, the red fluorescent protein gene rfp was placed under the control of the SOS-inducible sulA promoter. The gene of the far-red fluorescent protein, katushka2S, was inserted downstream of the tryptophan attenuator in which two tryptophan codons were replaced by alanine codons, with simultaneous replacement of the complementary part of the attenuator to preserve the ability to form secondary structures that influence transcription termination. This genetically modified attenuator makes possible Katushka2S expression only upon exposure to ribosome-stalling compounds. The application of red and far-red fluorescent proteins provides a high signal-to-background ratio without any need of enzymatic substrates for detection of the reporter activity. This reporter was shown to be efficient in high-throughput screening of both synthetic and natural chemicals. PMID:27736765

  20. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications.

    PubMed

    Xu, Feng; Wu, JinHui; Wang, ShuQi; Durmus, Naside Gozde; Gurkan, Umut Atakan; Demirci, Utkan

    2011-09-01

    Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.

  1. Probabilistic Assessment of High-Throughput Wireless Sensor Networks

    PubMed Central

    Kim, Robin E.; Mechitov, Kirill; Sim, Sung-Han; Spencer, Billie F.; Song, Junho

    2016-01-01

    Structural health monitoring (SHM) using wireless smart sensors (WSS) has the potential to provide rich information on the state of a structure. However, because of their distributed nature, maintaining highly robust and reliable networks can be challenging. Assessing WSS network communication quality before and after finalizing a deployment is critical to achieve a successful WSS network for SHM purposes. Early studies on WSS network reliability mostly used temporal signal indicators, composed of a smaller number of packets, to assess the network reliability. However, because the WSS networks for SHM purpose often require high data throughput, i.e., a larger number of packets are delivered within the communication, such an approach is not sufficient. Instead, in this study, a model that can assess, probabilistically, the long-term performance of the network is proposed. The proposed model is based on readily-available measured data sets that represent communication quality during high-throughput data transfer. Then, an empirical limit-state function is determined, which is further used to estimate the probability of network communication failure. Monte Carlo simulation is adopted in this paper and applied to a small and a full-bridge wireless networks. By performing the proposed analysis in complex sensor networks, an optimized sensor topology can be achieved. PMID:27258270

  2. Quantitative Live-Cell Confocal Imaging of 3D Spheroids in a High-Throughput Format.

    PubMed

    Leary, Elizabeth; Rhee, Claire; Wilks, Benjamin T; Morgan, Jeffrey R

    2018-06-01

    Accurately predicting the human response to new compounds is critical to a wide variety of industries. Standard screening pipelines (including both in vitro and in vivo models) often lack predictive power. Three-dimensional (3D) culture systems of human cells, a more physiologically relevant platform, could provide a high-throughput, automated means to test the efficacy and/or toxicity of novel substances. However, the challenge of obtaining high-magnification, confocal z stacks of 3D spheroids and understanding their respective quantitative limitations must be overcome first. To address this challenge, we developed a method to form spheroids of reproducible size at precise spatial locations across a 96-well plate. Spheroids of variable radii were labeled with four different fluorescent dyes and imaged with a high-throughput confocal microscope. 3D renderings of the spheroid had a complex bowl-like appearance. We systematically analyzed these confocal z stacks to determine the depth of imaging and the effect of spheroid size and dyes on quantitation. Furthermore, we have shown that this loss of fluorescence can be addressed through the use of ratio imaging. Overall, understanding both the limitations of confocal imaging and the tools to correct for these limits is critical for developing accurate quantitative assays using 3D spheroids.

  3. Microengineering Methods for Cell Based Microarrays and High-Throughput Drug Screening Applications

    PubMed Central

    Xu, Feng; Wu, JinHui; Wang, ShuQi; Durmus, Naside Gozde; Gurkan, Umut Atakan; Demirci, Utkan

    2011-01-01

    Screening for effective therapeutic agents from millions of drug candidates is costly, time-consuming and often face ethical concerns due to extensive use of animals. To improve cost-effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems have facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell based drug-screening models, which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell based drug screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds a great potential to provide repeatable 3D cell based constructs with high temporal, spatial control and versatility. PMID:21725152

  4. Engineering a vitamin B12 high-throughput screening system by riboswitch sensor in Sinorhizobium meliloti.

    PubMed

    Cai, Yingying; Xia, Miaomiao; Dong, Huina; Qian, Yuan; Zhang, Tongcun; Zhu, Beiwei; Wu, Jinchuan; Zhang, Dawei

    2018-05-11

    As a very important coenzyme in the cell metabolism, Vitamin B 12 (cobalamin, VB 12 ) has been widely used in food and medicine fields. The complete biosynthesis of VB 12 requires approximately 30 genes, but overexpression of these genes did not result in expected increase of VB 12 production. High-yield VB 12 -producing strains are usually obtained by mutagenesis treatments, thus developing an efficient screening approach is urgently needed. By the help of engineered strains with varied capacities of VB 12 production, a riboswitch library was constructed and screened, and the btuB element from Salmonella typhimurium was identified as the best regulatory device. A flow cytometry high-throughput screening system was developed based on the btuB riboswitch with high efficiency to identify positive mutants. Mutation of Sinorhizobium meliloti (S. meliloti) was optimized using the novel mutation technique of atmospheric and room temperature plasma (ARTP). Finally, the mutant S. meliloti MC5-2 was obtained and considered as a candidate for industrial applications. After 7 d's cultivation on a rotary shaker at 30 °C, the VB 12 titer of S. meliloti MC5-2 reached 156 ± 4.2 mg/L, which was 21.9% higher than that of the wild type strain S. meliloti 320 (128 ± 3.2 mg/L). The genome of S. meliloti MC5-2 was sequenced, and gene mutations were identified and analyzed. To our knowledge, it is the first time that a riboswitch element was used in S. meliloti. The flow cytometry high-throughput screening system was successfully developed and a high-yield VB 12 producing strain was obtained. The identified and analyzed gene mutations gave useful information for developing high-yield strains by metabolic engineering. Overall, this work provides a useful high-throughput screening method for developing high VB 12 -yield strains.

  5. 40 CFR Table 3 to Subpart Eeee of... - Operating Limits-High Throughput Transfer Racks

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Operating Limits-High Throughput Transfer Racks 3 Table 3 to Subpart EEEE of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Throughput Transfer Racks As stated in § 63.2346(e), you must comply with the operating limits for existing...

  6. Design space exploration of high throughput finite field multipliers for channel coding on Xilinx FPGAs

    NASA Astrophysics Data System (ADS)

    de Schryver, C.; Weithoffer, S.; Wasenmüller, U.; Wehn, N.

    2012-09-01

    Channel coding is a standard technique in all wireless communication systems. In addition to the typically employed methods like convolutional coding, turbo coding or low density parity check (LDPC) coding, algebraic codes are used in many cases. For example, outer BCH coding is applied in the DVB-S2 standard for satellite TV broadcasting. A key operation for BCH and the related Reed-Solomon codes are multiplications in finite fields (Galois Fields), where extension fields of prime fields are used. A lot of architectures for multiplications in finite fields have been published over the last decades. This paper examines four different multiplier architectures in detail that offer the potential for very high throughputs. We investigate the implementation performance of these multipliers on FPGA technology in the context of channel coding. We study the efficiency of the multipliers with respect to area, frequency and throughput, as well as configurability and scalability. The implementation data of the fully verified circuits are provided for a Xilinx Virtex-4 device after place and route.

  7. PREVAIL: IBM's e-beam technology for next generation lithography

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Hans C.

    2000-07-01

    PREVAIL - Projection Reduction Exposure with Variable Axis Immersion Lenses represents the high throughput e-beam projection approach to NGL which IBM is pursuing in cooperation with Nikon Corporation as alliance partner. This paper discusses the challenges and accomplishments of the PREVAIL project. The supreme challenge facing all e-beam lithography approaches has been and still is throughput. Since the throughput of e-beam projection systems is severely limited by the available optical field size, the key to success is the ability to overcome this limitation. The PREVAIL technique overcomes field-limiting off-axis aberrations through the use of variable axis lenses, which electronically shift the optical axis simultaneously with the deflected beam so that the beam effectively remains on axis. The resist images obtained with the Proof-of-Concept (POC) system demonstrate that PREVAIL effectively eliminates off- axis aberrations affecting both resolution and placement accuracy of pixels. As part of the POC system a high emittance gun has been developed to provide uniform illumination of the patterned subfield and to fill the large numerical aperture projection optics designed to significantly reduce beam blur caused by Coulomb interaction.

  8. Efficient mouse genome engineering by CRISPR-EZ technology.

    PubMed

    Modzelewski, Andrew J; Chen, Sean; Willis, Brandon J; Lloyd, K C Kent; Wood, Joshua A; He, Lin

    2018-06-01

    CRISPR/Cas9 technology has transformed mouse genome editing with unprecedented precision, efficiency, and ease; however, the current practice of microinjecting CRISPR reagents into pronuclear-stage embryos remains rate-limiting. We thus developed CRISPR ribonucleoprotein (RNP) electroporation of zygotes (CRISPR-EZ), an electroporation-based technology that outperforms pronuclear and cytoplasmic microinjection in efficiency, simplicity, cost, and throughput. In C57BL/6J and C57BL/6N mouse strains, CRISPR-EZ achieves 100% delivery of Cas9/single-guide RNA (sgRNA) RNPs, facilitating indel mutations (insertions or deletions), exon deletions, point mutations, and small insertions. In a side-by-side comparison in the high-throughput KnockOut Mouse Project (KOMP) pipeline, CRISPR-EZ consistently outperformed microinjection. Here, we provide an optimized protocol covering sgRNA synthesis, embryo collection, RNP electroporation, mouse generation, and genotyping strategies. Using CRISPR-EZ, a graduate-level researcher with basic embryo-manipulation skills can obtain genetically modified mice in 6 weeks. Altogether, CRISPR-EZ is a simple, economic, efficient, and high-throughput technology that is potentially applicable to other mammalian species.

  9. Precision production: enabling deterministic throughput for precision aspheres with MRF

    NASA Astrophysics Data System (ADS)

    Maloney, Chris; Entezarian, Navid; Dumas, Paul

    2017-10-01

    Aspherical lenses offer advantages over spherical optics by improving image quality or reducing the number of elements necessary in an optical system. Aspheres are no longer being used exclusively by high-end optical systems but are now replacing spherical optics in many applications. The need for a method of production-manufacturing of precision aspheres has emerged and is part of the reason that the optics industry is shifting away from artisan-based techniques towards more deterministic methods. Not only does Magnetorheological Finishing (MRF) empower deterministic figure correction for the most demanding aspheres but it also enables deterministic and efficient throughput for series production of aspheres. The Q-flex MRF platform is designed to support batch production in a simple and user friendly manner. Thorlabs routinely utilizes the advancements of this platform and has provided results from using MRF to finish a batch of aspheres as a case study. We have developed an analysis notebook to evaluate necessary specifications for implementing quality control metrics. MRF brings confidence to optical manufacturing by ensuring high throughput for batch processing of aspheres.

  10. First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass

    PubMed Central

    Wang, Guangliang; Rajpurohit, Surendra K; Delaspre, Fabien; Walker, Steven L; White, David T; Ceasrine, Alexis; Kuruvilla, Rejji; Li, Ruo-jing; Shim, Joong S; Liu, Jun O; Parsons, Michael J; Mumm, Jeff S

    2015-01-01

    Whole-organism chemical screening can circumvent bottlenecks that impede drug discovery. However, in vivo screens have not attained throughput capacities possible with in vitro assays. We therefore developed a method enabling in vivo high-throughput screening (HTS) in zebrafish, termed automated reporter quantification in vivo (ARQiv). In this study, ARQiv was combined with robotics to fully actualize whole-organism HTS (ARQiv-HTS). In a primary screen, this platform quantified cell-specific fluorescent reporters in >500,000 transgenic zebrafish larvae to identify FDA-approved (Federal Drug Administration) drugs that increased the number of insulin-producing β cells in the pancreas. 24 drugs were confirmed as inducers of endocrine differentiation and/or stimulators of β-cell proliferation. Further, we discovered novel roles for NF-κB signaling in regulating endocrine differentiation and for serotonergic signaling in selectively stimulating β-cell proliferation. These studies demonstrate the power of ARQiv-HTS for drug discovery and provide unique insights into signaling pathways controlling β-cell mass, potential therapeutic targets for treating diabetes. DOI: http://dx.doi.org/10.7554/eLife.08261.001 PMID:26218223

  11. Predicting organ toxicity using in vitro bioactivity data and chemical structure

    EPA Science Inventory

    Animal testing alone cannot practically evaluate the health hazard posed by tens of thousands of environmental chemicals. Computational approaches together with high-throughput experimental data may provide more efficient means to predict chemical toxicity. Here, we use a superv...

  12. Genomics for the identification of novel antimicrobials

    USDA-ARS?s Scientific Manuscript database

    There is a critical need in animal agriculture for developing novel antimicrobials and alternative strategies to reduce the use of antibiotics and address the challenges of antimicrobial resistance. High-throughput gene expression analysis is providing new tools that are enabling the discovery of h...

  13. Development & Use of Adverse Outcome Pathways for 21st Century Decision Support

    EPA Science Inventory

    The Adverse Outcome Pathway has emerged as an internationally harmonized mechanism for organizing biological information in a chemical agnostic manner. This construct is valuable for interpreting the results from high-throughput toxicity (HTT) assessment by providing a mechanisti...

  14. Computational toxicology and in silico modeling of embryogenesis

    EPA Science Inventory

    High-throughput screening (HTS) is providing a rich source of in vitro data for predictive toxicology. ToxCast™ HTS data presently covers 1060 broad-use chemicals and captures >650 in vitro features for diverse biochemical and receptor binding activities, multiplexed reporter gen...

  15. Adverse outcome pathways (AOPs): A framework to support predictive toxicology

    EPA Science Inventory

    High throughput and in silico methods are providing the regulatory toxicology community with capacity to rapidly and cost effectively generate data concerning a chemical’s ability to initiate one or more biological perturbations that may culminate in an adverse ecological o...

  16. An Integrative Data Mining Approach to Identify Adverse Outcome Pathway Signatures

    EPA Science Inventory

    Adverse Outcome Pathways (AOPs) provide a formal framework for describing the mechanisms underlying the toxicity of chemicals in our environment. This process improves our ability to incorporate high-throughput toxicity testing (HTT) results and biomarker information on early key...

  17. Elucidation of Adverse Bioactivity Profiles as Predictors of Toxicity Potential

    EPA Science Inventory

    Toxicity testing in vitro remains a formidable challenge due to lack of understanding of key molecular targets and pathways underlying many pathological events. The combination of genome sequencing and widespread application of high-throughput screening tools have provided the me...

  18. Disruption of Embryonic Vascular Development in Predictive Toxicology

    EPA Science Inventory

    Toxicity testing in the 21st century is moving toward using high-throughput screening assays to rapidly test thousands of chemicals against hundreds of molecular targets and biological pathways, and to provide mechanistic information on chemical effects in human cells and small m...

  19. Editor's Highlight: Genetic Targets of Acute Toluene Inhalation in Drosophila melanogaster

    EPA Science Inventory

    Interpretation and use of data from high-throughput assays for chemical toxicity require links between effects at molecular targets and adverse outcomes in whole animals. The well-characterized genome of Drosophila melanogaster provides a potential model system by which phenotypi...

  20. The Promise of Microelectrode Array Approaches for Toxicity Testing: Examples with Neuroactive Chemicals

    EPA Science Inventory

    While high-throughput patch clamping formats provide rapid characterization of chemical effects on ion channel function and kinetics, the limitations of such systems often include the need for channel by channel characterization, requirements for transfected, rather than primary ...

  1. High Throughput PBPK: Evaluating EPA's Open-Source Data and Tools for Dosimetry and Exposure Reconstruction (SOT)

    EPA Science Inventory

    To address this need, new tools have been created for characterizing, simulating, and evaluating chemical biokinetics. Physiologically-based pharmacokinetic (PBPK) models provide estimates of chemical exposures that produce potentially hazardous tissue concentrations, while tissu...

  2. Analysis, annotation, and profiling of the oat seed transcriptome

    USDA-ARS?s Scientific Manuscript database

    Novel high-throughput next generation sequencing (NGS) technologies are providing opportunities to explore genomes and transcriptomes in a cost-effective manner. To construct a gene expression atlas of developing oat (Avena sativa) seeds, two software packages specifically designed for RNA-seq (Trin...

  3. Customizing the Connectivity Map Approach for Functional Evaluation in Toxicogenomics Studies (SOT)

    EPA Science Inventory

    Evaluating effects on the transcriptome can provide insight on putative chemical-specific mechanisms of action (MOAs). With whole genome transcriptomics technologies becoming more amenable to high-throughput screening, libraries of chemicals can be evaluated in vitro to produce l...

  4. DSSTox ToxCast and Tox21 Chemical Inventories: Laying the Foundation for the U.S. EPA’s Computational Toxicology Research Programs

    EPA Science Inventory

    High quality chemical structure inventories provide the foundation of the U.S. EPA’s ToxCast and Tox21 projects, which are employing high-throughput technologies to screen thousands of chemicals in hundreds of biochemical and cell-based assays, probing a wide diversity of targets...

  5. Nano-LC FTICR tandem mass spectrometry for top-down proteomics: routine baseline unit mass resolution of whole cell lysate proteins up to 72 kDa.

    PubMed

    Tipton, Jeremiah D; Tran, John C; Catherman, Adam D; Ahlf, Dorothy R; Durbin, Kenneth R; Lee, Ji Eun; Kellie, John F; Kelleher, Neil L; Hendrickson, Christopher L; Marshall, Alan G

    2012-03-06

    Current high-throughput top-down proteomic platforms provide routine identification of proteins less than 25 kDa with 4-D separations. This short communication reports the application of technological developments over the past few years that improve protein identification and characterization for masses greater than 25 kDa. Advances in separation science have allowed increased numbers of proteins to be identified, especially by nanoliquid chromatography (nLC) prior to mass spectrometry (MS) analysis. Further, a goal of high-throughput top-down proteomics is to extend the mass range for routine nLC MS analysis up to 80 kDa because gene sequence analysis predicts that ~70% of the human proteome is transcribed to be less than 80 kDa. Normally, large proteins greater than 50 kDa are identified and characterized by top-down proteomics through fraction collection and direct infusion at relatively low throughput. Further, other MS-based techniques provide top-down protein characterization, however at low resolution for intact mass measurement. Here, we present analysis of standard (up to 78 kDa) and whole cell lysate proteins by Fourier transform ion cyclotron resonance mass spectrometry (nLC electrospray ionization (ESI) FTICR MS). The separation platform reduced the complexity of the protein matrix so that, at 14.5 T, proteins from whole cell lysate up to 72 kDa are baseline mass resolved on a nano-LC chromatographic time scale. Further, the results document routine identification of proteins at improved throughput based on accurate mass measurement (less than 10 ppm mass error) of precursor and fragment ions for proteins up to 50 kDa.

  6. Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System

    NASA Technical Reports Server (NTRS)

    Aranki, Nazeeh I.; Keymeulen, Didier; Kimesh, Matthew A.

    2012-01-01

    Modern hyperspectral imaging systems are able to acquire far more data than can be downlinked from a spacecraft. Onboard data compression helps to alleviate this problem, but requires a system capable of power efficiency and high throughput. Software solutions have limited throughput performance and are power-hungry. Dedicated hardware solutions can provide both high throughput and power efficiency, while taking the load off of the main processor. Thus a hardware compression system was developed. The implementation uses a field-programmable gate array (FPGA). The implementation is based on the fast lossless (FL) compression algorithm reported in Fast Lossless Compression of Multispectral-Image Data (NPO-42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which achieves excellent compression performance and has low complexity. This algorithm performs predictive compression using an adaptive filtering method, and uses adaptive Golomb coding. The implementation also packetizes the coded data. The FL algorithm is well suited for implementation in hardware. In the FPGA implementation, one sample is compressed every clock cycle, which makes for a fast and practical realtime solution for space applications. Benefits of this implementation are: 1) The underlying algorithm achieves a combination of low complexity and compression effectiveness that exceeds that of techniques currently in use. 2) The algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. 3) Hardware acceleration provides a throughput improvement of 10 to 100 times vs. the software implementation. A prototype of the compressor is available in software, but it runs at a speed that does not meet spacecraft requirements. The hardware implementation targets the Xilinx Virtex IV FPGAs, and makes the use of this compressor practical for Earth satellites as well as beyond-Earth missions with hyperspectral instruments.

  7. Developing science gateways for drug discovery in a grid environment.

    PubMed

    Pérez-Sánchez, Horacio; Rezaei, Vahid; Mezhuyev, Vitaliy; Man, Duhu; Peña-García, Jorge; den-Haan, Helena; Gesing, Sandra

    2016-01-01

    Methods for in silico screening of large databases of molecules increasingly complement and replace experimental techniques to discover novel compounds to combat diseases. As these techniques become more complex and computationally costly we are faced with an increasing problem to provide the research community of life sciences with a convenient tool for high-throughput virtual screening on distributed computing resources. To this end, we recently integrated the biophysics-based drug-screening program FlexScreen into a service, applicable for large-scale parallel screening and reusable in the context of scientific workflows. Our implementation is based on Pipeline Pilot and Simple Object Access Protocol and provides an easy-to-use graphical user interface to construct complex workflows, which can be executed on distributed computing resources, thus accelerating the throughput by several orders of magnitude.

  8. Emerging technologies for biotherapeutic bioanalysis from a high-throughput and multiplexing perspective: insights from an AAPS emerging technology action program committee.

    PubMed

    Purushothama, Shobha; Dysinger, Mark; Chen, Yao; Österlund, Karolina; Mora, Johanna; Chunyk, Allison Given; Peloquin, Russ

    2018-02-01

    This manuscript aims to provide insights and updates on emerging technologies from a throughput and multiplexing perspective and to update readers on changes in previously reported technologies. The technologies discussed range from nascent (ultrasensitive Cira, Intellicyt ® , Dynaxi and Captsure™) to the more established (Ella and SQIDlite™). For the nascent technologies, there was an emphasis on user interviews and reviews, where available, to help provide an unbiased view to our readers. For the Ella, a review of published user data as well as author and other user experiences are summarized. Due to their emergent nature, all the technologies described are applicable in the early drug development stage, may require an upfront investment of capital and may not perform as expected.

  9. Application of Genomic Technologies to the Breeding of Trees

    PubMed Central

    Badenes, Maria L.; Fernández i Martí, Angel; Ríos, Gabino; Rubio-Cabetas, María J.

    2016-01-01

    The recent introduction of next generation sequencing (NGS) technologies represents a major revolution in providing new tools for identifying the genes and/or genomic intervals controlling important traits for selection in breeding programs. In perennial fruit trees with long generation times and large sizes of adult plants, the impact of these techniques is even more important. High-throughput DNA sequencing technologies have provided complete annotated sequences in many important tree species. Most of the high-throughput genotyping platforms described are being used for studies of genetic diversity and population structure. Dissection of complex traits became possible through the availability of genome sequences along with phenotypic variation data, which allow to elucidate the causative genetic differences that give rise to observed phenotypic variation. Association mapping facilitates the association between genetic markers and phenotype in unstructured and complex populations, identifying molecular markers for assisted selection and breeding. Also, genomic data provide in silico identification and characterization of genes and gene families related to important traits, enabling new tools for molecular marker assisted selection in tree breeding. Deep sequencing of transcriptomes is also a powerful tool for the analysis of precise expression levels of each gene in a sample. It consists in quantifying short cDNA reads, obtained by NGS technologies, in order to compare the entire transcriptomes between genotypes and environmental conditions. The miRNAs are non-coding short RNAs involved in the regulation of different physiological processes, which can be identified by high-throughput sequencing of RNA libraries obtained by reverse transcription of purified short RNAs, and by in silico comparison with known miRNAs from other species. All together, NGS techniques and their applications have increased the resources for plant breeding in tree species, closing the former gap of genetic tools between trees and annual species. PMID:27895664

  10. Application of Genomic Technologies to the Breeding of Trees.

    PubMed

    Badenes, Maria L; Fernández I Martí, Angel; Ríos, Gabino; Rubio-Cabetas, María J

    2016-01-01

    The recent introduction of next generation sequencing (NGS) technologies represents a major revolution in providing new tools for identifying the genes and/or genomic intervals controlling important traits for selection in breeding programs. In perennial fruit trees with long generation times and large sizes of adult plants, the impact of these techniques is even more important. High-throughput DNA sequencing technologies have provided complete annotated sequences in many important tree species. Most of the high-throughput genotyping platforms described are being used for studies of genetic diversity and population structure. Dissection of complex traits became possible through the availability of genome sequences along with phenotypic variation data, which allow to elucidate the causative genetic differences that give rise to observed phenotypic variation. Association mapping facilitates the association between genetic markers and phenotype in unstructured and complex populations, identifying molecular markers for assisted selection and breeding. Also, genomic data provide in silico identification and characterization of genes and gene families related to important traits, enabling new tools for molecular marker assisted selection in tree breeding. Deep sequencing of transcriptomes is also a powerful tool for the analysis of precise expression levels of each gene in a sample. It consists in quantifying short cDNA reads, obtained by NGS technologies, in order to compare the entire transcriptomes between genotypes and environmental conditions. The miRNAs are non-coding short RNAs involved in the regulation of different physiological processes, which can be identified by high-throughput sequencing of RNA libraries obtained by reverse transcription of purified short RNAs, and by in silico comparison with known miRNAs from other species. All together, NGS techniques and their applications have increased the resources for plant breeding in tree species, closing the former gap of genetic tools between trees and annual species.

  11. qFlow Cytometry-Based Receptoromic Screening: A High-Throughput Quantification Approach Informing Biomarker Selection and Nanosensor Development.

    PubMed

    Chen, Si; Weddell, Jared; Gupta, Pavan; Conard, Grace; Parkin, James; Imoukhuede, Princess I

    2017-01-01

    Nanosensor-based detection of biomarkers can improve medical diagnosis; however, a critical factor in nanosensor development is deciding which biomarker to target, as most diseases present several biomarkers. Biomarker-targeting decisions can be informed via an understanding of biomarker expression. Currently, immunohistochemistry (IHC) is the accepted standard for profiling biomarker expression. While IHC provides a relative mapping of biomarker expression, it does not provide cell-by-cell readouts of biomarker expression or absolute biomarker quantification. Flow cytometry overcomes both these IHC challenges by offering biomarker expression on a cell-by-cell basis, and when combined with calibration standards, providing quantitation of biomarker concentrations: this is known as qFlow cytometry. Here, we outline the key components for applying qFlow cytometry to detect biomarkers within the angiogenic vascular endothelial growth factor receptor family. The key aspects of the qFlow cytometry methodology include: antibody specificity testing, immunofluorescent cell labeling, saturation analysis, fluorescent microsphere calibration, and quantitative analysis of both ensemble and cell-by-cell data. Together, these methods enable high-throughput quantification of biomarker expression.

  12. Metabolic enzyme microarray coupled with miniaturized cell-culture array technology for high-throughput toxicity screening.

    PubMed

    Lee, Moo-Yeal; Dordick, Jonathan S; Clark, Douglas S

    2010-01-01

    Due to poor drug candidate safety profiles that are often identified late in the drug development process, the clinical progression of new chemical entities to pharmaceuticals remains hindered, thus resulting in the high cost of drug discovery. To accelerate the identification of safer drug candidates and improve the clinical progression of drug candidates to pharmaceuticals, it is important to develop high-throughput tools that can provide early-stage predictive toxicology data. In particular, in vitro cell-based systems that can accurately mimic the human in vivo response and predict the impact of drug candidates on human toxicology are needed to accelerate the assessment of drug candidate toxicity and human metabolism earlier in the drug development process. The in vitro techniques that provide a high degree of human toxicity prediction will be perhaps more important in cosmetic and chemical industries in Europe, as animal toxicity testing is being phased out entirely in the immediate future.We have developed a metabolic enzyme microarray (the Metabolizing Enzyme Toxicology Assay Chip, or MetaChip) and a miniaturized three-dimensional (3D) cell-culture array (the Data Analysis Toxicology Assay Chip, or DataChip) for high-throughput toxicity screening of target compounds and their metabolic enzyme-generated products. The human or rat MetaChip contains an array of encapsulated metabolic enzymes that is designed to emulate the metabolic reactions in the human or rat liver. The human or rat DataChip contains an array of 3D human or rat cells encapsulated in alginate gels for cell-based toxicity screening. By combining the DataChip with the complementary MetaChip, in vitro toxicity results are obtained that correlate well with in vivo rat data.

  13. Recovering the dynamics of root growth and development using novel image acquisition and analysis methods

    PubMed Central

    Wells, Darren M.; French, Andrew P.; Naeem, Asad; Ishaq, Omer; Traini, Richard; Hijazi, Hussein; Bennett, Malcolm J.; Pridmore, Tony P.

    2012-01-01

    Roots are highly responsive to environmental signals encountered in the rhizosphere, such as nutrients, mechanical resistance and gravity. As a result, root growth and development is very plastic. If this complex and vital process is to be understood, methods and tools are required to capture the dynamics of root responses. Tools are needed which are high-throughput, supporting large-scale experimental work, and provide accurate, high-resolution, quantitative data. We describe and demonstrate the efficacy of the high-throughput and high-resolution root imaging systems recently developed within the Centre for Plant Integrative Biology (CPIB). This toolset includes (i) robotic imaging hardware to generate time-lapse datasets from standard cameras under infrared illumination and (ii) automated image analysis methods and software to extract quantitative information about root growth and development both from these images and via high-resolution light microscopy. These methods are demonstrated using data gathered during an experimental study of the gravitropic response of Arabidopsis thaliana. PMID:22527394

  14. Recovering the dynamics of root growth and development using novel image acquisition and analysis methods.

    PubMed

    Wells, Darren M; French, Andrew P; Naeem, Asad; Ishaq, Omer; Traini, Richard; Hijazi, Hussein I; Hijazi, Hussein; Bennett, Malcolm J; Pridmore, Tony P

    2012-06-05

    Roots are highly responsive to environmental signals encountered in the rhizosphere, such as nutrients, mechanical resistance and gravity. As a result, root growth and development is very plastic. If this complex and vital process is to be understood, methods and tools are required to capture the dynamics of root responses. Tools are needed which are high-throughput, supporting large-scale experimental work, and provide accurate, high-resolution, quantitative data. We describe and demonstrate the efficacy of the high-throughput and high-resolution root imaging systems recently developed within the Centre for Plant Integrative Biology (CPIB). This toolset includes (i) robotic imaging hardware to generate time-lapse datasets from standard cameras under infrared illumination and (ii) automated image analysis methods and software to extract quantitative information about root growth and development both from these images and via high-resolution light microscopy. These methods are demonstrated using data gathered during an experimental study of the gravitropic response of Arabidopsis thaliana.

  15. Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy

    DOE PAGES

    Rames, Matthew; Yu, Yadong; Ren, Gang

    2014-08-15

    Structural determination of proteins is rather challenging for proteins with molecular masses between 40 - 200 kDa. Considering that more than half of natural proteins have a molecular mass between 40 - 200 kDa, a robust and high-throughput method with a nanometer resolution capability is needed. Negative staining (NS) electron microscopy (EM) is an easy, rapid, and qualitative approach which has frequently been used in research laboratories to examine protein structure and protein-protein interactions. Unfortunately, conventional NS protocols often generate structural artifacts on proteins, especially with lipoproteins that usually form presenting rouleaux artifacts. By using images of lipoproteins from cryo-electronmore » microscopy (cryo-EM) as a standard, the key parameters in NS specimen preparation conditions were recently screened and reported as the optimized NS protocol (OpNS), a modified conventional NS protocol. Artifacts like rouleaux can be greatly limited by OpNS, additionally providing high contrast along with reasonably high-resolution (near 1 nm) images of small and asymmetric proteins. These high-resolution and high contrast images are even favorable for an individual protein (a single object, no average) 3D reconstruction, such as a 160 kDa antibody, through the method of electron tomography. Moreover, OpNS can be a high-throughput tool to examine hundreds of samples of small proteins. For example, the previously published mechanism of 53 kDa cholesteryl ester transfer protein (CETP) involved the screening and imaging of hundreds of samples. Considering cryo-EM rarely successfully images proteins less than 200 kDa has yet to publish any study involving screening over one hundred sample conditions, it is fair to call OpNS a high-throughput method for studying small proteins. Hopefully the OpNS protocol presented here can be a useful tool to push the boundaries of EM and accelerate EM studies into small protein structure, dynamics and mechanisms.« less

  16. Next Generation MUT-MAP, a High-Sensitivity High-Throughput Microfluidics Chip-Based Mutation Analysis Panel

    PubMed Central

    Patel, Rajesh; Tsan, Alison; Sumiyoshi, Teiko; Fu, Ling; Desai, Rupal; Schoenbrunner, Nancy; Myers, Thomas W.; Bauer, Keith; Smith, Edward; Raja, Rajiv

    2014-01-01

    Molecular profiling of tumor tissue to detect alterations, such as oncogenic mutations, plays a vital role in determining treatment options in oncology. Hence, there is an increasing need for a robust and high-throughput technology to detect oncogenic hotspot mutations. Although commercial assays are available to detect genetic alterations in single genes, only a limited amount of tissue is often available from patients, requiring multiplexing to allow for simultaneous detection of mutations in many genes using low DNA input. Even though next-generation sequencing (NGS) platforms provide powerful tools for this purpose, they face challenges such as high cost, large DNA input requirement, complex data analysis, and long turnaround times, limiting their use in clinical settings. We report the development of the next generation mutation multi-analyte panel (MUT-MAP), a high-throughput microfluidic, panel for detecting 120 somatic mutations across eleven genes of therapeutic interest (AKT1, BRAF, EGFR, FGFR3, FLT3, HRAS, KIT, KRAS, MET, NRAS, and PIK3CA) using allele-specific PCR (AS-PCR) and Taqman technology. This mutation panel requires as little as 2 ng of high quality DNA from fresh frozen or 100 ng of DNA from formalin-fixed paraffin-embedded (FFPE) tissues. Mutation calls, including an automated data analysis process, have been implemented to run 88 samples per day. Validation of this platform using plasmids showed robust signal and low cross-reactivity in all of the newly added assays and mutation calls in cell line samples were found to be consistent with the Catalogue of Somatic Mutations in Cancer (COSMIC) database allowing for direct comparison of our platform to Sanger sequencing. High correlation with NGS when compared to the SuraSeq500 panel run on the Ion Torrent platform in a FFPE dilution experiment showed assay sensitivity down to 0.45%. This multiplexed mutation panel is a valuable tool for high-throughput biomarker discovery in personalized medicine and cancer drug development. PMID:24658394

  17. Fluorescence-based assay as a new screening tool for toxic chemicals

    PubMed Central

    Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey

    2016-01-01

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients. PMID:27653274

  18. Fluorescence-based assay as a new screening tool for toxic chemicals.

    PubMed

    Moczko, Ewa; Mirkes, Evgeny M; Cáceres, César; Gorban, Alexander N; Piletsky, Sergey

    2016-09-22

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.

  19. Fluorescence-based assay as a new screening tool for toxic chemicals

    NASA Astrophysics Data System (ADS)

    Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey

    2016-09-01

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.

  20. A Customizable Flow Injection System for Automated, High Throughput, and Time Sensitive Ion Mobility Spectrometry and Mass Spectrometry Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orton, Daniel J.; Tfaily, Malak M.; Moore, Ronald J.

    To better understand disease conditions and environmental perturbations, multi-omic studies (i.e. proteomic, lipidomic, metabolomic, etc. analyses) are vastly increasing in popularity. In a multi-omic study, a single sample is typically extracted in multiple ways and numerous analyses are performed using different instruments. Thus, one sample becomes many analyses, making high throughput and reproducible evaluations a necessity. One way to address the numerous samples and varying instrumental conditions is to utilize a flow injection analysis (FIA) system for rapid sample injection. While some FIA systems have been created to address these challenges, many have limitations such as high consumable costs, lowmore » pressure capabilities, limited pressure monitoring and fixed flow rates. To address these limitations, we created an automated, customizable FIA system capable of operating at diverse flow rates (~50 nL/min to 500 µL/min) to accommodate low- and high-flow instrument sources. This system can also operate at varying analytical throughputs from 24 to 1200 samples per day to enable different MS analysis approaches. Applications ranging from native protein analyses to molecular library construction were performed using the FIA system. The results from these studies showed a highly robust platform, providing consistent performance over many days without carryover as long as washing buffers specific to each molecular analysis were utilized.« less

  1. Adverse outcome pathways (AOPs): A framework to support predictive toxicology (presentation)

    EPA Science Inventory

    High throughput and in silico methods are providing the regulatory toxicology community with capacity to rapidly and cost effectively generate data concerning a chemical’s ability to initiate one or more biological perturbations that may culminate in an adverse ecological o...

  2. Identifying Structural Alerts Based on Zebrafish Developmental Morphological Toxicity (TDS)

    EPA Science Inventory

    Zebrafish constitute a powerful alternative animal model for chemical hazard evaluation. To provide an in vivo complement to high-throughput screening data from the ToxCast program, zebrafish developmental toxicity screens were conducted on the ToxCast Phase I (Padilla et al., 20...

  3. Tipping the Balance: Hepatotoxicity and the Four Apical Key Events of Hepatic Steatosis

    EPA Science Inventory

    Adverse outcome pathways (AOPs) are descriptive biological sequences that start from a molecular initiating event (MIE) and end with an adverse health outcome. AOPs provide biological context for high throughput chemical testing and further prioritize environmental health risk r...

  4. How Can We Use Bioinformatics to Predict Which Agents Will Cause Birth Defects?

    EPA Science Inventory

    The availability of genomic sequences from a growing number of human and model organisms has provided an explosion of data, information, and knowledge regarding biological systems and disease processes. High-throughput technologies such as DNA and protein microarray biochips are ...

  5. Human Mitochondrial DNA and Endogenous Bacterial Surrogates for Risk Assessment of Graywater Reuse

    EPA Science Inventory

    Previous graywater risk assessment studies have focused on fecal contamination, yet the low density of fecal indicators may not provide the most useful approach to assess pathogen removal during graywater treatment. In this study, we employed high throughput bacterial sequencing ...

  6. So Many Chemicals, So Little Time... Evolution of Computational Toxicology (NCSU Toxicology Lecture Series)

    EPA Science Inventory

    Current testing is limited by traditional testing models and regulatory systems. An overview is given of high throughput screening approaches to provide broader chemical and biological coverage, toxicokinetics and molecular pathway data and tools to facilitate utilization for reg...

  7. Xi-cam: Flexible High Throughput Data Processing for GISAXS

    NASA Astrophysics Data System (ADS)

    Pandolfi, Ronald; Kumar, Dinesh; Venkatakrishnan, Singanallur; Sarje, Abinav; Krishnan, Hari; Pellouchoud, Lenson; Ren, Fang; Fournier, Amanda; Jiang, Zhang; Tassone, Christopher; Mehta, Apurva; Sethian, James; Hexemer, Alexander

    With increasing capabilities and data demand for GISAXS beamlines, supporting software is under development to handle larger data rates, volumes, and processing needs. We aim to provide a flexible and extensible approach to GISAXS data treatment as a solution to these rising needs. Xi-cam is the CAMERA platform for data management, analysis, and visualization. The core of Xi-cam is an extensible plugin-based GUI platform which provides users an interactive interface to processing algorithms. Plugins are available for SAXS/GISAXS data and data series visualization, as well as forward modeling and simulation through HipGISAXS. With Xi-cam's advanced mode, data processing steps are designed as a graph-based workflow, which can be executed locally or remotely. Remote execution utilizes HPC or de-localized resources, allowing for effective reduction of high-throughput data. Xi-cam is open-source and cross-platform. The processing algorithms in Xi-cam include parallel cpu and gpu processing optimizations, also taking advantage of external processing packages such as pyFAI. Xi-cam is available for download online.

  8. High-throughput Crystallography for Structural Genomics

    PubMed Central

    Joachimiak, Andrzej

    2009-01-01

    Protein X-ray crystallography recently celebrated its 50th anniversary. The structures of myoglobin and hemoglobin determined by Kendrew and Perutz provided the first glimpses into the complex protein architecture and chemistry. Since then, the field of structural molecular biology has experienced extraordinary progress and now over 53,000 proteins structures have been deposited into the Protein Data Bank. In the past decade many advances in macromolecular crystallography have been driven by world-wide structural genomics efforts. This was made possible because of third-generation synchrotron sources, structure phasing approaches using anomalous signal and cryo-crystallography. Complementary progress in molecular biology, proteomics, hardware and software for crystallographic data collection, structure determination and refinement, computer science, databases, robotics and automation improved and accelerated many processes. These advancements provide the robust foundation for structural molecular biology and assure strong contribution to science in the future. In this report we focus mainly on reviewing structural genomics high-throughput X-ray crystallography technologies and their impact. PMID:19765976

  9. Microfluidics-assisted in vitro drug screening and carrier production

    PubMed Central

    Tsui, Jonathan H.; Lee, Woohyuk; Pun, Suzie H.; Kim, Jungkyu; Kim, Deok-Ho

    2013-01-01

    Microfluidic platforms provide several unique advantages for drug development. In the production of drug carriers, physical properties such as size and shape, and chemical properties such as drug composition and pharmacokinetic parameters, can be modified simply and effectively by tuning the flow rate and geometries. Large numbers of carriers can then be fabricated with minimal effort and with little to no batch-to-batch variation. Additionally, cell or tissue culture models in microfluidic systems can be used as in vitro drug screening tools. Compared to in vivo animal models, microfluidic drug screening platforms allow for high-throughput and reproducible screening at a significantly lower cost, and when combined with current advances in tissue engineering, are also capable of mimicking native tissues. In this review, various microfluidic platforms for drug and gene carrier fabrication are reviewed to provide guidelines for designing appropriate carriers. In vitro microfluidic drug screening platforms designed for high-throughput analysis and replication of in vivo conditions are also reviewed to highlight future directions for drug research and development. PMID:23856409

  10. Dissecting enzyme function with microfluidic-based deep mutational scanning.

    PubMed

    Romero, Philip A; Tran, Tuan M; Abate, Adam R

    2015-06-09

    Natural enzymes are incredibly proficient catalysts, but engineering them to have new or improved functions is challenging due to the complexity of how an enzyme's sequence relates to its biochemical properties. Here, we present an ultrahigh-throughput method for mapping enzyme sequence-function relationships that combines droplet microfluidic screening with next-generation DNA sequencing. We apply our method to map the activity of millions of glycosidase sequence variants. Microfluidic-based deep mutational scanning provides a comprehensive and unbiased view of the enzyme function landscape. The mapping displays expected patterns of mutational tolerance and a strong correspondence to sequence variation within the enzyme family, but also reveals previously unreported sites that are crucial for glycosidase function. We modified the screening protocol to include a high-temperature incubation step, and the resulting thermotolerance landscape allowed the discovery of mutations that enhance enzyme thermostability. Droplet microfluidics provides a general platform for enzyme screening that, when combined with DNA-sequencing technologies, enables high-throughput mapping of enzyme sequence space.

  11. Application of multivariate statistical techniques in microbial ecology

    PubMed Central

    Paliy, O.; Shankar, V.

    2016-01-01

    Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large scale ecological datasets. Especially noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions, and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amounts of data, powerful statistical techniques of multivariate analysis are well suited to analyze and interpret these datasets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular dataset. In this review we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive, and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and dataset structure. PMID:26786791

  12. ImmuneDB: a system for the analysis and exploration of high-throughput adaptive immune receptor sequencing data.

    PubMed

    Rosenfeld, Aaron M; Meng, Wenzhao; Luning Prak, Eline T; Hershberg, Uri

    2017-01-15

    As high-throughput sequencing of B cells becomes more common, the need for tools to analyze the large quantity of data also increases. This article introduces ImmuneDB, a system for analyzing vast amounts of heavy chain variable region sequences and exploring the resulting data. It can take as input raw FASTA/FASTQ data, identify genes, determine clones, construct lineages, as well as provide information such as selection pressure and mutation analysis. It uses an industry leading database, MySQL, to provide fast analysis and avoid the complexities of using error prone flat-files. ImmuneDB is freely available at http://immunedb.comA demo of the ImmuneDB web interface is available at: http://immunedb.com/demo CONTACT: Uh25@drexel.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Relax with CouchDB - Into the non-relational DBMS era of Bioinformatics

    PubMed Central

    Manyam, Ganiraju; Payton, Michelle A.; Roth, Jack A.; Abruzzo, Lynne V.; Coombes, Kevin R.

    2012-01-01

    With the proliferation of high-throughput technologies, genome-level data analysis has become common in molecular biology. Bioinformaticians are developing extensive resources to annotate and mine biological features from high-throughput data. The underlying database management systems for most bioinformatics software are based on a relational model. Modern non-relational databases offer an alternative that has flexibility, scalability, and a non-rigid design schema. Moreover, with an accelerated development pace, non-relational databases like CouchDB can be ideal tools to construct bioinformatics utilities. We describe CouchDB by presenting three new bioinformatics resources: (a) geneSmash, which collates data from bioinformatics resources and provides automated gene-centric annotations, (b) drugBase, a database of drug-target interactions with a web interface powered by geneSmash, and (c) HapMap-CN, which provides a web interface to query copy number variations from three SNP-chip HapMap datasets. In addition to the web sites, all three systems can be accessed programmatically via web services. PMID:22609849

  14. Technological advancements and their importance for nematode identification

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammed; Sapp, Melanie; Prior, Thomas; Karssen, Gerrit; Back, Matthew Alan

    2016-06-01

    Nematodes represent a species-rich and morphologically diverse group of metazoans known to inhabit both aquatic and terrestrial environments. Their role as biological indicators and as key players in nutrient cycling has been well documented. Some plant-parasitic species are also known to cause significant losses to crop production. In spite of this, there still exists a huge gap in our knowledge of their diversity due to the enormity of time and expertise often involved in characterising species using phenotypic features. Molecular methodology provides useful means of complementing the limited number of reliable diagnostic characters available for morphology-based identification. We discuss herein some of the limitations of traditional taxonomy and how molecular methodologies, especially the use of high-throughput sequencing, have assisted in carrying out large-scale nematode community studies and characterisation of phytonematodes through rapid identification of multiple taxa. We also provide brief descriptions of some the current and almost-outdated high-throughput sequencing platforms and their applications in both plant nematology and soil ecology.

  15. Evaluation of High Density Air Traffic Operations with Automation for Separation Assurance, Weather Avoidance and Schedule Conformance

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey S.; Martin, Lynne Hazel; Homola, Jeffrey R.; Cabrall, Christopher D.; Brasil, Connie L.

    2011-01-01

    In this paper we discuss the development and evaluation of our prototype technologies and procedures for far-term air traffic control operations with automation for separation assurance, weather avoidance and schedule conformance. Controller-in-the-loop simulations in the Airspace Operations Laboratory at the NASA Ames Research Center in 2010 have shown very promising results. We found the operations to provide high airspace throughput, excellent efficiency and schedule conformance. The simulation also highlighted areas for improvements: Short-term conflict situations sometimes resulted in separation violations, particularly for transitioning aircraft in complex traffic flows. The combination of heavy metering and growing weather resulted in an increased number of aircraft penetrating convective weather cells. To address these shortcomings technologies and procedures have been improved and the operations are being re-evaluated with the same scenarios. In this paper we will first describe the concept and technologies for automating separation assurance, weather avoidance, and schedule conformance. Second, the results from the 2010 simulation will be reviewed. We report human-systems integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. Next, improvements will be discussed that were made to address identified shortcomings. We conclude that, with further refinements, air traffic control operations with ground-based automated separation assurance can routinely provide currently unachievable levels of traffic throughput in the en route airspace.

  16. A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting

    PubMed Central

    Tseng, Hubert; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Shen, Tsaiwei; Hebel, Chris; Barthlow, Herbert G.; Wagoner, Matthew; Souza, Glauco R.

    2016-01-01

    Vasoactive liabilities are typically assayed using wire myography, which is limited by its high cost and low throughput. To meet the demand for higher throughput in vitro alternatives, this study introduces a magnetic 3D bioprinting-based vasoactivity assay. The principle behind this assay is the magnetic printing of vascular smooth muscle cells into 3D rings that functionally represent blood vessel segments, whose contraction can be altered by vasodilators and vasoconstrictors. A cost-effective imaging modality employing a mobile device is used to capture contraction with high throughput. The goal of this study was to validate ring contraction as a measure of vasoactivity, using a small panel of known vasoactive drugs. In vitro responses of the rings matched outcomes predicted by in vivo pharmacology, and were supported by immunohistochemistry. Altogether, this ring assay robustly models vasoactivity, which could meet the need for higher throughput in vitro alternatives. PMID:27477945

  17. Report for the NGFA-5 project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaing, C; Jackson, P; Thissen, J

    The objective of this project is to provide DHS a comprehensive evaluation of the current genomic technologies including genotyping, TaqMan PCR, multiple locus variable tandem repeat analysis (MLVA), microarray and high-throughput DNA sequencing in the analysis of biothreat agents from complex environmental samples. To effectively compare the sensitivity and specificity of the different genomic technologies, we used SNP TaqMan PCR, MLVA, microarray and high-throughput illumine and 454 sequencing to test various strains from B. anthracis, B. thuringiensis, BioWatch aerosol filter extracts or soil samples that were spiked with B. anthracis, and samples that were previously collected during DHS and EPAmore » environmental release exercises that were known to contain B. thuringiensis spores. The results of all the samples against the various assays are discussed in this report.« less

  18. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells

    PubMed Central

    Cole, Russell H.; Tang, Shi-Yang; Siltanen, Christian A.; Shahi, Payam; Zhang, Jesse Q.; Poust, Sean; Gartner, Zev J.; Abate, Adam R.

    2017-01-01

    Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. The core technology is a fluorescence-activated droplet sorter coupled to a specialized substrate that together act as a picoliter droplet and single-cell printer, enabling high-throughput generation of intricate arrays of droplets, cells, and microparticles. Printed droplet microfluidics provides a programmable and robust technology to construct arrays of defined cell and reagent combinations and to integrate multiple measurement modalities together in a single assay. PMID:28760972

  19. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells.

    PubMed

    Cole, Russell H; Tang, Shi-Yang; Siltanen, Christian A; Shahi, Payam; Zhang, Jesse Q; Poust, Sean; Gartner, Zev J; Abate, Adam R

    2017-08-15

    Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. The core technology is a fluorescence-activated droplet sorter coupled to a specialized substrate that together act as a picoliter droplet and single-cell printer, enabling high-throughput generation of intricate arrays of droplets, cells, and microparticles. Printed droplet microfluidics provides a programmable and robust technology to construct arrays of defined cell and reagent combinations and to integrate multiple measurement modalities together in a single assay.

  20. The Emory Chemical Biology Discovery Center: leveraging academic innovation to advance novel targets through HTS and beyond.

    PubMed

    Johns, Margaret A; Meyerkord-Belton, Cheryl L; Du, Yuhong; Fu, Haian

    2014-03-01

    The Emory Chemical Biology Discovery Center (ECBDC) aims to accelerate high throughput biology and translation of biomedical research discoveries into therapeutic targets and future medicines by providing high throughput research platforms to scientific collaborators worldwide. ECBDC research is focused at the interface of chemistry and biology, seeking to fundamentally advance understanding of disease-related biology with its HTS/HCS platforms and chemical tools, ultimately supporting drug discovery. Established HTS/HCS capabilities, university setting, and expertise in diverse assay formats, including protein-protein interaction interrogation, have enabled the ECBDC to contribute to national chemical biology efforts, empower translational research, and serve as a training ground for young scientists. With these resources, the ECBDC is poised to leverage academic innovation to advance biology and therapeutic discovery.

  1. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells

    NASA Astrophysics Data System (ADS)

    Cole, Russell H.; Tang, Shi-Yang; Siltanen, Christian A.; Shahi, Payam; Zhang, Jesse Q.; Poust, Sean; Gartner, Zev J.; Abate, Adam R.

    2017-08-01

    Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. The core technology is a fluorescence-activated droplet sorter coupled to a specialized substrate that together act as a picoliter droplet and single-cell printer, enabling high-throughput generation of intricate arrays of droplets, cells, and microparticles. Printed droplet microfluidics provides a programmable and robust technology to construct arrays of defined cell and reagent combinations and to integrate multiple measurement modalities together in a single assay.

  2. Multiplexed high resolution soft x-ray RIXS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Y.-D.; Voronov, D.; Warwick, T.

    2016-07-27

    High-resolution Resonance Inelastic X-ray Scattering (RIXS) is a technique that allows us to probe the electronic excitations of complex materials with unprecedented precision. However, the RIXS process has a low cross section, compounded by the fact that the optical spectrometers used to analyze the scattered photons can only collect a small solid angle and overall have a small efficiency. Here we present a method to significantly increase the throughput of RIXS systems, by energy multiplexing, so that a complete RIXS map of scattered intensity versus photon energy in and photon energy out can be recorded simultaneously{sup 1}. This parallel acquisitionmore » scheme should provide a gain in throughput of over 100.. A system based on this principle, QERLIN, is under construction at the Advanced Light Source (ALS).« less

  3. Establishment of a Bioenergy-Focused Microalgae Strain Collection Using Rapid, High-Throughput Methodologies: Cooperative Research and Development Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pienkos, Philip T.

    2013-11-01

    This project is part of the overall effort by and among NREL, Colorado State University, University of Colorado, and Colorado School of Mines known as the Colorado Center for Biorefining and Biofuels. This is part of a larger statewide effort provided for in House Bill 06-1322, establishing a Colorado Collaboratory that envisions these four institutions working together as part of the state'senergy plan. This individual project with Colorado School of Mines is the first of many envisioned in this overall effort. The project focuses on development of high throughput procedures aimed at rapidly isolating and purifying novel microalgal strains (specificallymore » green alga and diatoms) from water samples obtained from unique aquatic environments.« less

  4. An image analysis toolbox for high-throughput C. elegans assays

    PubMed Central

    Wählby, Carolina; Kamentsky, Lee; Liu, Zihan H.; Riklin-Raviv, Tammy; Conery, Annie L.; O’Rourke, Eyleen J.; Sokolnicki, Katherine L.; Visvikis, Orane; Ljosa, Vebjorn; Irazoqui, Javier E.; Golland, Polina; Ruvkun, Gary; Ausubel, Frederick M.; Carpenter, Anne E.

    2012-01-01

    We present a toolbox for high-throughput screening of image-based Caenorhabditis elegans phenotypes. The image analysis algorithms measure morphological phenotypes in individual worms and are effective for a variety of assays and imaging systems. This WormToolbox is available via the open-source CellProfiler project and enables objective scoring of whole-animal high-throughput image-based assays of C. elegans for the study of diverse biological pathways relevant to human disease. PMID:22522656

  5. High-throughput, image-based screening of pooled genetic variant libraries

    PubMed Central

    Emanuel, George; Moffitt, Jeffrey R.; Zhuang, Xiaowei

    2018-01-01

    Image-based, high-throughput screening of genetic perturbations will advance both biology and biotechnology. We report a high-throughput screening method that allows diverse genotypes and corresponding phenotypes to be imaged in numerous individual cells. We achieve genotyping by introducing barcoded genetic variants into cells and using massively multiplexed FISH to measure the barcodes. We demonstrated this method by screening mutants of the fluorescent protein YFAST, yielding brighter and more photostable YFAST variants. PMID:29083401

  6. Experimental Design for Combinatorial and High Throughput Materials Development

    NASA Astrophysics Data System (ADS)

    Cawse, James N.

    2002-12-01

    In the past decade, combinatorial and high throughput experimental methods have revolutionized the pharmaceutical industry, allowing researchers to conduct more experiments in a week than was previously possible in a year. Now high throughput experimentation is rapidly spreading from its origins in the pharmaceutical world to larger industrial research establishments such as GE and DuPont, and even to smaller companies and universities. Consequently, researchers need to know the kinds of problems, desired outcomes, and appropriate patterns for these new strategies. Editor James Cawse's far-reaching study identifies and applies, with specific examples, these important new principles and techniques. Experimental Design for Combinatorial and High Throughput Materials Development progresses from methods that are now standard, such as gradient arrays, to mathematical developments that are breaking new ground. The former will be particularly useful to researchers entering the field, while the latter should inspire and challenge advanced practitioners. The book's contents are contributed by leading researchers in their respective fields. Chapters include: -High Throughput Synthetic Approaches for the Investigation of Inorganic Phase Space -Combinatorial Mapping of Polymer Blends Phase Behavior -Split-Plot Designs -Artificial Neural Networks in Catalyst Development -The Monte Carlo Approach to Library Design and Redesign This book also contains over 200 useful charts and drawings. Industrial chemists, chemical engineers, materials scientists, and physicists working in combinatorial and high throughput chemistry will find James Cawse's study to be an invaluable resource.

  7. Deciphering the genomic targets of alkylating polyamide conjugates using high-throughput sequencing

    PubMed Central

    Chandran, Anandhakumar; Syed, Junetha; Taylor, Rhys D.; Kashiwazaki, Gengo; Sato, Shinsuke; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi

    2016-01-01

    Chemically engineered small molecules targeting specific genomic sequences play an important role in drug development research. Pyrrole-imidazole polyamides (PIPs) are a group of molecules that can bind to the DNA minor-groove and can be engineered to target specific sequences. Their biological effects rely primarily on their selective DNA binding. However, the binding mechanism of PIPs at the chromatinized genome level is poorly understood. Herein, we report a method using high-throughput sequencing to identify the DNA-alkylating sites of PIP-indole-seco-CBI conjugates. High-throughput sequencing analysis of conjugate 2 showed highly similar DNA-alkylating sites on synthetic oligos (histone-free DNA) and on human genomes (chromatinized DNA context). To our knowledge, this is the first report identifying alkylation sites across genomic DNA by alkylating PIP conjugates using high-throughput sequencing. PMID:27098039

  8. Development of rapid and sensitive high throughput pharmacologic assays for marine phycotoxins.

    PubMed

    Van Dolah, F M; Finley, E L; Haynes, B L; Doucette, G J; Moeller, P D; Ramsdell, J S

    1994-01-01

    The lack of rapid, high throughput assays is a major obstacle to many aspects of research on marine phycotoxins. Here we describe the application of microplate scintillation technology to develop high throughput assays for several classes of marine phycotoxin based on their differential pharmacologic actions. High throughput "drug discovery" format microplate receptor binding assays developed for brevetoxins/ciguatoxins and for domoic acid are described. Analysis for brevetoxins/ciguatoxins is carried out by binding competition with [3H] PbTx-3 for site 5 on the voltage dependent sodium channel in rat brain synaptosomes. Analysis of domoic acid is based on binding competition with [3H] kainic acid for the kainate/quisqualate glutamate receptor using frog brain synaptosomes. In addition, a high throughput microplate 45Ca flux assay for determination of maitotoxins is described. These microplate assays can be completed within 3 hours, have sensitivities of less than 1 ng, and can analyze dozens of samples simultaneously. The assays have been demonstrated to be useful for assessing algal toxicity and for assay-guided purification of toxins, and are applicable to the detection of biotoxins in seafood.

  9. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs.

    PubMed

    Shigematsu, Megumi; Honda, Shozo; Loher, Phillipe; Telonis, Aristeidis G; Rigoutsos, Isidore; Kirino, Yohei

    2017-05-19

    Besides translation, transfer RNAs (tRNAs) play many non-canonical roles in various biological pathways and exhibit highly variable expression profiles. To unravel the emerging complexities of tRNA biology and molecular mechanisms underlying them, an efficient tRNA sequencing method is required. However, the rigid structure of tRNA has been presenting a challenge to the development of such methods. We report the development of Y-shaped Adapter-ligated MAture TRNA sequencing (YAMAT-seq), an efficient and convenient method for high-throughput sequencing of mature tRNAs. YAMAT-seq circumvents the issue of inefficient adapter ligation, a characteristic of conventional RNA sequencing methods for mature tRNAs, by employing the efficient and specific ligation of Y-shaped adapter to mature tRNAs using T4 RNA Ligase 2. Subsequent cDNA amplification and next-generation sequencing successfully yield numerous mature tRNA sequences. YAMAT-seq has high specificity for mature tRNAs and high sensitivity to detect most isoacceptors from minute amount of total RNA. Moreover, YAMAT-seq shows quantitative capability to estimate expression levels of mature tRNAs, and has high reproducibility and broad applicability for various cell lines. YAMAT-seq thus provides high-throughput technique for identifying tRNA profiles and their regulations in various transcriptomes, which could play important regulatory roles in translation and other biological processes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. A low-power, high-throughput maximum-likelihood convolutional decoder chip for NASA's 30/20 GHz program

    NASA Technical Reports Server (NTRS)

    Mccallister, R. D.; Crawford, J. J.

    1981-01-01

    It is pointed out that the NASA 30/20 GHz program will place in geosynchronous orbit a technically advanced communication satellite which can process time-division multiple access (TDMA) information bursts with a data throughput in excess of 4 GBPS. To guarantee acceptable data quality during periods of signal attenuation it will be necessary to provide a significant forward error correction (FEC) capability. Convolutional decoding (utilizing the maximum-likelihood techniques) was identified as the most attractive FEC strategy. Design trade-offs regarding a maximum-likelihood convolutional decoder (MCD) in a single-chip CMOS implementation are discussed.

  11. High-Throughput/High-Content Screening Assays with Engineered Nanomaterials in ToxCast

    EPA Science Inventory

    High-throughput and high-content screens are attractive approaches for prioritizing nanomaterial hazards and informing targeted testing due to the impracticality of using traditional toxicological testing on the large numbers and varieties of nanomaterials. The ToxCast program a...

  12. High-throughput screening of dye-ligands for chromatography.

    PubMed

    Kumar, Sunil; Punekar, Narayan S

    2014-01-01

    Dye-ligand-based chromatography has become popular after Cibacron Blue, the first reactive textile dye, found application for protein purification. Many other textile dyes have since been successfully used to purify a number of proteins and enzymes. While the exact nature of their interaction with target proteins is often unclear, dye-ligands are thought to mimic the structural features of their corresponding substrates, cofactors, etc. The dye-ligand affinity matrices are therefore considered pseudo-affinity matrices. In addition, dye-ligands may simply bind with proteins due to electrostatic, hydrophobic, and hydrogen-bonding interactions. Because of their low cost, ready availability, and structural stability, dye-ligand affinity matrices have gained much popularity. Choice of a large number of dye structures offers a range of matrices to be prepared and tested. When presented in the high-throughput screening mode, these dye-ligand matrices provide a formidable tool for protein purification. One could pick from the list of dye-ligands already available or build a systematic library of such structures for use. A high-throughput screen may be set up to choose best dye-ligand matrix as well as ideal conditions for binding and elution, for a given protein. The mode of operation could be either manual or automated. The technology is available to test the performance of dye-ligand matrices in small volumes in an automated liquid-handling workstation. Screening a systematic library of dye-ligand structures can help establish a structure-activity relationship. While the origins of dye-ligand chromatography lay in exploiting pseudo-affinity, it is now possible to design very specific biomimetic dye structures. High-throughput screening will be of value in this endeavor as well.

  13. Analysis of high-throughput screening reveals the effect of surface topographies on cellular morphology.

    PubMed

    Hulsman, Marc; Hulshof, Frits; Unadkat, Hemant; Papenburg, Bernke J; Stamatialis, Dimitrios F; Truckenmüller, Roman; van Blitterswijk, Clemens; de Boer, Jan; Reinders, Marcel J T

    2015-03-01

    Surface topographies of materials considerably impact cellular behavior as they have been shown to affect cell growth, provide cell guidance, and even induce cell differentiation. Consequently, for successful application in tissue engineering, the contact interface of biomaterials needs to be optimized to induce the required cell behavior. However, a rational design of biomaterial surfaces is severely hampered because knowledge is lacking on the underlying biological mechanisms. Therefore, we previously developed a high-throughput screening device (TopoChip) that measures cell responses to large libraries of parameterized topographical material surfaces. Here, we introduce a computational analysis of high-throughput materiome data to capture the relationship between the surface topographies of materials and cellular morphology. We apply robust statistical techniques to find surface topographies that best promote a certain specified cellular response. By augmenting surface screening with data-driven modeling, we determine which properties of the surface topographies influence the morphological properties of the cells. With this information, we build models that predict the cellular response to surface topographies that have not yet been measured. We analyze cellular morphology on 2176 surfaces, and find that the surface topography significantly affects various cellular properties, including the roundness and size of the nucleus, as well as the perimeter and orientation of the cells. Our learned models capture and accurately predict these relationships and reveal a spectrum of topographies that induce various levels of cellular morphologies. Taken together, this novel approach of high-throughput screening of materials and subsequent analysis opens up possibilities for a rational design of biomaterial surfaces. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. ElectroTaxis-on-a-Chip (ETC): an integrated quantitative high-throughput screening platform for electrical field-directed cell migration.

    PubMed

    Zhao, Siwei; Zhu, Kan; Zhang, Yan; Zhu, Zijie; Xu, Zhengping; Zhao, Min; Pan, Tingrui

    2014-11-21

    Both endogenous and externally applied electrical stimulation can affect a wide range of cellular functions, including growth, migration, differentiation and division. Among those effects, the electrical field (EF)-directed cell migration, also known as electrotaxis, has received broad attention because it holds great potential in facilitating clinical wound healing. Electrotaxis experiment is conventionally conducted in centimetre-sized flow chambers built in Petri dishes. Despite the recent efforts to adapt microfluidics for electrotaxis studies, the current electrotaxis experimental setup is still cumbersome due to the needs of an external power supply and EF controlling/monitoring systems. There is also a lack of parallel experimental systems for high-throughput electrotaxis studies. In this paper, we present a first independently operable microfluidic platform for high-throughput electrotaxis studies, integrating all functional components for cell migration under EF stimulation (except microscopy) on a compact footprint (the same as a credit card), referred to as ElectroTaxis-on-a-Chip (ETC). Inspired by the R-2R resistor ladder topology in digital signal processing, we develop a systematic approach to design an infinitely expandable microfluidic generator of EF gradients for high-throughput and quantitative studies of EF-directed cell migration. Furthermore, a vacuum-assisted assembly method is utilized to allow direct and reversible attachment of our device to existing cell culture media on biological surfaces, which separates the cell culture and device preparation/fabrication steps. We have demonstrated that our ETC platform is capable of screening human cornea epithelial cell migration under the stimulation of an EF gradient spanning over three orders of magnitude. The screening results lead to the identification of the EF-sensitive range of that cell type, which can provide valuable guidance to the clinical application of EF-facilitated wound healing.

  15. WE-E-BRE-03: Biological Validation of a Novel High-Throughput Irradiator for Predictive Radiation Sensitivity Bioassays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, TL; Martin, JA; Shepard, AJ

    2014-06-15

    Purpose: The large dose-response variation in both tumor and normal cells between individual patients has led to the recent implementation of predictive bioassays of patient-specific radiation sensitivity in order to personalize radiation therapy. This exciting new clinical paradigm has led us to develop a novel high-throughput, variable dose-rate irradiator to accompany these efforts. Here we present the biological validation of this irradiator through the use of human cells as a relative dosimeter assessed by two metrics, DNA double-strand break repair pathway modulation and intercellular reactive oxygen species production. Methods: Immortalized human tonsilar epithelial cells were cultured in 96-well micro titermore » plates and irradiated in groups of eight wells to absorbed doses of 0, 0.5, 1, 2, 4, and 8 Gy. High-throughput immunofluorescent microscopy was used to detect γH2AX, a DNA double-strand break repair mechanism recruiter. The same analysis was performed with the cells stained with CM-H2DCFDA that produces a fluorescent adduct when exposed to reactive oxygen species during the irradiation cycle. Results: Irradiations of the immortalized human tonsilar epithelial cells at absorbed doses of 0, 0.5, 1, 2, 4, and 8 Gy produced excellent linearity in γH2AX and CM-H2DCFDA with R2 values of 0.9939 and 0.9595 respectively. Single cell gel electrophoresis experimentation for the detection of physical DNA double-strand breaks in ongoing. Conclusions: This work indicates significant potential for our high-throughput variable dose rate irradiator for patient-specific predictive radiation sensitivity bioassays. This irradiator provides a powerful tool by increasing the efficiency and number of assay techniques available to help personalize radiation therapy.« less

  16. Deep sequencing in library selection projects: what insight does it bring?

    PubMed

    Glanville, J; D'Angelo, S; Khan, T A; Reddy, S T; Naranjo, L; Ferrara, F; Bradbury, A R M

    2015-08-01

    High throughput sequencing is poised to change all aspects of the way antibodies and other binders are discovered and engineered. Millions of available sequence reads provide an unprecedented sampling depth able to guide the design and construction of effective, high quality naïve libraries containing tens of billions of unique molecules. Furthermore, during selections, high throughput sequencing enables quantitative tracing of enriched clones and position-specific guidance to amino acid variation under positive selection during antibody engineering. Successful application of the technologies relies on specific PCR reagent design, correct sequencing platform selection, and effective use of computational tools and statistical measures to remove error, identify antibodies, estimate diversity, and extract signatures of selection from the clone down to individual structural positions. Here we review these considerations and discuss some of the remaining challenges to the widespread adoption of the technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. An automated high throughput screening-compatible assay to identify regulators of stem cell neural differentiation.

    PubMed

    Casalino, Laura; Magnani, Dario; De Falco, Sandro; Filosa, Stefania; Minchiotti, Gabriella; Patriarca, Eduardo J; De Cesare, Dario

    2012-03-01

    The use of Embryonic Stem Cells (ESCs) holds considerable promise both for drug discovery programs and the treatment of degenerative disorders in regenerative medicine approaches. Nevertheless, the successful use of ESCs is still limited by the lack of efficient control of ESC self-renewal and differentiation capabilities. In this context, the possibility to modulate ESC biological properties and to obtain homogenous populations of correctly specified cells will help developing physiologically relevant screens, designed for the identification of stem cell modulators. Here, we developed a high throughput screening-suitable ESC neural differentiation assay by exploiting the Cell(maker) robotic platform and demonstrated that neural progenies can be generated from ESCs in complete automation, with high standards of accuracy and reliability. Moreover, we performed a pilot screening providing proof of concept that this assay allows the identification of regulators of ESC neural differentiation in full automation.

  18. Deep sequencing in library selection projects: what insight does it bring?

    PubMed Central

    Glanville, J; D’Angelo, S; Khan, T.A.; Reddy, S. T.; Naranjo, L.; Ferrara, F.; Bradbury, A.R.M.

    2015-01-01

    High throughput sequencing is poised to change all aspects of the way antibodies and other binders are discovered and engineered. Millions of available sequence reads provide an unprecedented sampling depth able to guide the design and construction of effective, high quality naïve libraries containing tens of billions of unique molecules. Furthermore, during selections, high throughput sequencing enables quantitative tracing of enriched clones and position-specific guidance to amino acid variation under positive selection during antibody engineering. Successful application of the technologies relies on specific PCR reagent design, correct sequencing platform selection, and effective use of computational tools and statistical measures to remove error, identify antibodies, estimate diversity, and extract signatures of selection from the clone down to individual structural positions. Here we review these considerations and discuss some of the remaining challenges to the widespread adoption of the technology. PMID:26451649

  19. ISRNA: an integrative online toolkit for short reads from high-throughput sequencing data.

    PubMed

    Luo, Guan-Zheng; Yang, Wei; Ma, Ying-Ke; Wang, Xiu-Jie

    2014-02-01

    Integrative Short Reads NAvigator (ISRNA) is an online toolkit for analyzing high-throughput small RNA sequencing data. Besides the high-speed genome mapping function, ISRNA provides statistics for genomic location, length distribution and nucleotide composition bias analysis of sequence reads. Number of reads mapped to known microRNAs and other classes of short non-coding RNAs, coverage of short reads on genes, expression abundance of sequence reads as well as some other analysis functions are also supported. The versatile search functions enable users to select sequence reads according to their sub-sequences, expression abundance, genomic location, relationship to genes, etc. A specialized genome browser is integrated to visualize the genomic distribution of short reads. ISRNA also supports management and comparison among multiple datasets. ISRNA is implemented in Java/C++/Perl/MySQL and can be freely accessed at http://omicslab.genetics.ac.cn/ISRNA/.

  20. Numerical techniques for high-throughput reflectance interference biosensing

    NASA Astrophysics Data System (ADS)

    Sevenler, Derin; Ünlü, M. Selim

    2016-06-01

    We have developed a robust and rapid computational method for processing the raw spectral data collected from thin film optical interference biosensors. We have applied this method to Interference Reflectance Imaging Sensor (IRIS) measurements and observed a 10,000 fold improvement in processing time, unlocking a variety of clinical and scientific applications. Interference biosensors have advantages over similar technologies in certain applications, for example highly multiplexed measurements of molecular kinetics. However, processing raw IRIS data into useful measurements has been prohibitively time consuming for high-throughput studies. Here we describe the implementation of a lookup table (LUT) technique that provides accurate results in far less time than naive methods. We also discuss an additional benefit that the LUT method can be used with a wider range of interference layer thickness and experimental configurations that are incompatible with methods that require fitting the spectral response.

  1. A Rapid Method for the Determination of Fucoxanthin in Diatom

    PubMed Central

    Wang, Li-Juan; Fan, Yong; Parsons, Ronald L.; Hu, Guang-Rong; Zhang, Pei-Yu

    2018-01-01

    Fucoxanthin is a natural pigment found in microalgae, especially diatoms and Chrysophyta. Recently, it has been shown to have anti-inflammatory, anti-tumor, and anti-obesityactivity in humans. Phaeodactylum tricornutum is a diatom with high economic potential due to its high content of fucoxanthin and eicosapentaenoic acid. In order to improve fucoxanthin production, physical and chemical mutagenesis could be applied to generate mutants. An accurate and rapid method to assess the fucoxanthin content is a prerequisite for a high-throughput screen of mutants. In this work, the content of fucoxanthin in P. tricornutum was determined using spectrophotometry instead of high performance liquid chromatography (HPLC). This spectrophotometric method is easier and faster than liquid chromatography and the standard error was less than 5% when compared to the HPLC results. Also, this method can be applied to other diatoms, with standard errors of 3–14.6%. It provides a high throughput screening method for microalgae strains producing fucoxanthin. PMID:29361768

  2. Label-free cell-cycle analysis by high-throughput quantitative phase time-stretch imaging flow cytometry

    NASA Astrophysics Data System (ADS)

    Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2018-02-01

    Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.

  3. YeATS- a tool suite for analyzing RNA-seq derived transcriptome identifies a highly transcribed putative extensin in heartwood/sapwood transition zone in black walnut

    USDA-ARS?s Scientific Manuscript database

    The transcriptome provides a functional footprint of the genome by enumerating the molecular components of cells and tissues. The field of transcript discovery has been revolutionized through high-throughput mRNA sequencing (RNA-seq). Here, we present a methodology that replicates and improves exist...

  4. High-throughput analysis of the protein sequence-stability landscape using a quantitative "yeast surface two-hybrid" system and fragment reconstitution

    PubMed Central

    Dutta, Sanjib; Koide, Akiko; Koide, Shohei

    2008-01-01

    Stability evaluation of many mutants can lead to a better understanding of the sequence determinants of a structural motif and of factors governing protein stability and protein evolution. The traditional biophysical analysis of protein stability is low throughput, limiting our ability to widely explore the sequence space in a quantitative manner. In this study, we have developed a high-throughput library screening method for quantifying stability changes, which is based on protein fragment reconstitution and yeast surface display. Our method exploits the thermodynamic linkage between protein stability and fragment reconstitution and the ability of the yeast surface display technique to quantitatively evaluate protein-protein interactions. The method was applied to a fibronectin type III (FN3) domain. Characterization of fragment reconstitution was facilitated by the co-expression of two FN3 fragments, thus establishing a "yeast surface two-hybrid" method. Importantly, our method does not rely on competition between clones and thus eliminates a common limitation of high-throughput selection methods in which the most stable variants are predominantly recovered. Thus, it allows for the isolation of sequences that exhibits a desired level of stability. We identified over one hundred unique sequences for a β-bulge motif, which was significantly more informative than natural sequences of the FN3 family in revealing the sequence determinants for the β-bulge. Our method provides a powerful means to rapidly assess stability of many variants, to systematically assess contribution of different factors to protein stability and to enhance protein stability. PMID:18674545

  5. Optical designs of reflection and refraction collection optics for a JT-60SA core Thomson scattering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tojo, H.; Hatae, T.; Hamano, T.

    2013-09-15

    Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system ismore » also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ∼0.3 mm and ∼0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (<10%) even at high electron temperatures (<30 keV) can be expected in the refraction system.« less

  6. Optical designs of reflection and refraction collection optics for a JT-60SA core Thomson scattering system.

    PubMed

    Tojo, H; Hatae, T; Hamano, T; Sakuma, T; Itami, K

    2013-09-01

    Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system is also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ~0.3 mm and ~0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (<10%) even at high electron temperatures (<30 keV) can be expected in the refraction system.

  7. High-Throughput Sequencing of Germline and Tumor From Men with Early-Onset Metastatic Prostate Cancer

    DTIC Science & Technology

    2016-12-01

    AWARD NUMBER: W81XWH-13-1-0371 TITLE: High-Throughput Sequencing of Germline and Tumor From Men with Early- Onset Metastatic Prostate Cancer...DATES COVERED 30 Sep 2013 - 29 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER High-Throughput Sequencing of Germline and Tumor From Men with...presenting with metastatic prostate cancer at a young age (before age 60 years). Whole exome sequencing identified a panel of germline variants that have

  8. Reverse Toxicokinetics: From In Vitro Concentration to In Vivo Dose

    EPA Science Inventory

    This talk provided an update to an international audience about the state of the science to relate results from high-throughput bioactivity screening efforts out to an external exposure that would be required to achieve blood concentrations at which these bioactivities may be obs...

  9. Lessons from Cotton: Research Projects Following Development of a Community-based Genotyping Array

    USDA-ARS?s Scientific Manuscript database

    High-throughput, cost-effective genotyping arrays provide a standardized resource for plant breeding communities that can be used for a wide range of applications at a suitable pace for integrating pertinent information into breeding programs. Traditionally, crop research communities will target dev...

  10. High-throughput screening of chemicals as functional substitutes using structure-based classification models

    EPA Science Inventory

    Identifying chemicals that provide a specific function within a product, yet have minimal impact on the human body or environment, is the goal of most formulation chemists and engineers practicing green chemistry. We present a methodology to identify potential chemical functional...

  11. VIRTUAL EMBRYO: SYSTEMS MODELING IN DEVELOPMENTAL TOXICITY - Symposium: SOT 2012

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. Chemical profiling in ToxCast covered 965 drugs-chemicals in over 500 diverse assays testing...

  12. High-throughput methods for characterizing the mechanical properties of coatings

    NASA Astrophysics Data System (ADS)

    Siripirom, Chavanin

    The characterization of mechanical properties in a combinatorial and high-throughput workflow has been a bottleneck that reduced the speed of the materials development process. High-throughput characterization of the mechanical properties was applied in this research in order to reduce the amount of sample handling and to accelerate the output. A puncture tester was designed and built to evaluate the toughness of materials using an innovative template design coupled with automation. The test is in the form of a circular free-film indentation. A single template contains 12 samples which are tested in a rapid serial approach. Next, the operational principles of a novel parallel dynamic mechanical-thermal analysis instrument were analyzed in detail for potential sources of errors. The test uses a model of a circular bilayer fixed-edge plate deformation. A total of 96 samples can be analyzed simultaneously which provides a tremendous increase in efficiency compared with a conventional dynamic test. The modulus values determined by the system had considerable variation. The errors were observed and improvements to the system were made. A finite element analysis was used to analyze the accuracy given by the closed-form solution with respect to testing geometries, such as thicknesses of the samples. A good control of the thickness of the sample was proven to be crucial to the accuracy and precision of the output. Then, the attempt to correlate the high-throughput experiments and conventional coating testing methods was made. Automated nanoindentation in dynamic mode was found to provide information on the near-surface modulus and could potentially correlate with the pendulum hardness test using the loss tangent component. Lastly, surface characterization of stratified siloxane-polyurethane coatings was carried out with X-ray photoelectron spectroscopy, Rutherford backscattering spectroscopy, transmission electron microscopy, and nanoindentation. The siloxane component segregates to the surface during curing. The distribution of siloxane as a function of thickness into the sample showed differences depending on the formulation parameters. The coatings which had higher siloxane content near the surface were those coatings found to perform well in field tests.

  13. Use of genotyping by sequencing data to develop a high-throughput and multifunctional SNP panel for conservation applications in Pacific lamprey.

    PubMed

    Hess, Jon E; Campbell, Nathan R; Docker, Margaret F; Baker, Cyndi; Jackson, Aaron; Lampman, Ralph; McIlraith, Brian; Moser, Mary L; Statler, David P; Young, William P; Wildbill, Andrew J; Narum, Shawn R

    2015-01-01

    Next-generation sequencing data can be mined for highly informative single nucleotide polymorphisms (SNPs) to develop high-throughput genomic assays for nonmodel organisms. However, choosing a set of SNPs to address a variety of objectives can be difficult because SNPs are often not equally informative. We developed an optimal combination of 96 high-throughput SNP assays from a total of 4439 SNPs identified in a previous study of Pacific lamprey (Entosphenus tridentatus) and used them to address four disparate objectives: parentage analysis, species identification and characterization of neutral and adaptive variation. Nine of these SNPs are FST outliers, and five of these outliers are localized within genes and significantly associated with geography, run-timing and dwarf life history. Two of the 96 SNPs were diagnostic for two other lamprey species that were morphologically indistinguishable at early larval stages and were sympatric in the Pacific Northwest. The majority (85) of SNPs in the panel were highly informative for parentage analysis, that is, putatively neutral with high minor allele frequency across the species' range. Results from three case studies are presented to demonstrate the broad utility of this panel of SNP markers in this species. As Pacific lamprey populations are undergoing rapid decline, these SNPs provide an important resource to address critical uncertainties associated with the conservation and recovery of this imperiled species. © 2014 John Wiley & Sons Ltd.

  14. Diversity and distribution of unicellular opisthokonts along the European coast analyzed using high-throughput sequencing

    PubMed Central

    del Campo, Javier; Mallo, Diego; Massana, Ramon; de Vargas, Colomban; Richards, Thomas A.; Ruiz-Trillo, Iñaki

    2015-01-01

    Summary The opisthokonts are one of the major super-groups of eukaryotes. It comprises two major clades: 1) the Metazoa and their unicellular relatives and 2) the Fungi and their unicellular relatives. There is, however, little knowledge of the role of opisthokont microbes in many natural environments, especially among non-metazoan and non-fungal opisthokonts. Here we begin to address this gap by analyzing high throughput 18S rDNA and 18S rRNA sequencing data from different European coastal sites, sampled at different size fractions and depths. In particular, we analyze the diversity and abundance of choanoflagellates, filastereans, ichthyosporeans, nucleariids, corallochytreans and their related lineages. Our results show the great diversity of choanoflagellates in coastal waters as well as a relevant role of the ichthyosporeans and the uncultured marine opisthokonts (MAOP). Furthermore, we describe a new lineage of marine fonticulids (MAFO) that appears to be abundant in sediments. Therefore, our work points to a greater potential ecological role for unicellular opisthokonts than previously appreciated in marine environments, both in water column and sediments, and also provides evidence of novel opisthokont phylogenetic lineages. This study highlights the importance of high throughput sequencing approaches to unravel the diversity and distribution of both known and novel eukaryotic lineages. PMID:25556908

  15. Environmental microbiology through the lens of high-throughput DNA sequencing: synopsis of current platforms and bioinformatics approaches.

    PubMed

    Logares, Ramiro; Haverkamp, Thomas H A; Kumar, Surendra; Lanzén, Anders; Nederbragt, Alexander J; Quince, Christopher; Kauserud, Håvard

    2012-10-01

    The incursion of High-Throughput Sequencing (HTS) in environmental microbiology brings unique opportunities and challenges. HTS now allows a high-resolution exploration of the vast taxonomic and metabolic diversity present in the microbial world, which can provide an exceptional insight on global ecosystem functioning, ecological processes and evolution. This exploration has also economic potential, as we will have access to the evolutionary innovation present in microbial metabolisms, which could be used for biotechnological development. HTS is also challenging the research community, and the current bottleneck is present in the data analysis side. At the moment, researchers are in a sequence data deluge, with sequencing throughput advancing faster than the computer power needed for data analysis. However, new tools and approaches are being developed constantly and the whole process could be depicted as a fast co-evolution between sequencing technology, informatics and microbiologists. In this work, we examine the most popular and recently commercialized HTS platforms as well as bioinformatics methods for data handling and analysis used in microbial metagenomics. This non-exhaustive review is intended to serve as a broad state-of-the-art guide to researchers expanding into this rapidly evolving field. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. High-Throughput Models for Exposure-Based Chemical ...

    EPA Pesticide Factsheets

    The United States Environmental Protection Agency (U.S. EPA) must characterize potential risks to human health and the environment associated with manufacture and use of thousands of chemicals. High-throughput screening (HTS) for biological activity allows the ToxCast research program to prioritize chemical inventories for potential hazard. Similar capabilities for estimating exposure potential would support rapid risk-based prioritization for chemicals with limited information; here, we propose a framework for high-throughput exposure assessment. To demonstrate application, an analysis was conducted that predicts human exposure potential for chemicals and estimates uncertainty in these predictions by comparison to biomonitoring data. We evaluated 1936 chemicals using far-field mass balance human exposure models (USEtox and RAIDAR) and an indicator for indoor and/or consumer use. These predictions were compared to exposures inferred by Bayesian analysis from urine concentrations for 82 chemicals reported in the National Health and Nutrition Examination Survey (NHANES). Joint regression on all factors provided a calibrated consensus prediction, the variance of which serves as an empirical determination of uncertainty for prioritization on absolute exposure potential. Information on use was found to be most predictive; generally, chemicals above the limit of detection in NHANES had consumer/indoor use. Coupled with hazard HTS, exposure HTS can place risk earlie

  17. Marine Invertebrate Xenobiotic-Activated Nuclear Receptors: Their Application as Sensor Elements in High-Throughput Bioassays for Marine Bioactive Compounds

    PubMed Central

    Richter, Ingrid; Fidler, Andrew E.

    2014-01-01

    Developing high-throughput assays to screen marine extracts for bioactive compounds presents both conceptual and technical challenges. One major challenge is to develop assays that have well-grounded ecological and evolutionary rationales. In this review we propose that a specific group of ligand-activated transcription factors are particularly well-suited to act as sensors in such bioassays. More specifically, xenobiotic-activated nuclear receptors (XANRs) regulate transcription of genes involved in xenobiotic detoxification. XANR ligand-binding domains (LBDs) may adaptively evolve to bind those bioactive, and potentially toxic, compounds to which organisms are normally exposed to through their specific diets. A brief overview of the function and taxonomic distribution of both vertebrate and invertebrate XANRs is first provided. Proof-of-concept experiments are then described which confirm that a filter-feeding marine invertebrate XANR LBD is activated by marine bioactive compounds. We speculate that increasing access to marine invertebrate genome sequence data, in combination with the expression of functional recombinant marine invertebrate XANR LBDs, will facilitate the generation of high-throughput bioassays/biosensors of widely differing specificities, but all based on activation of XANR LBDs. Such assays may find application in screening marine extracts for bioactive compounds that could act as drug lead compounds. PMID:25421319

  18. Profiling Cholinesterase Adduction: A High-Throughput Prioritization Method for Organophosphate Exposure Samples

    PubMed Central

    Carter, Melissa D.; Crow, Brian S.; Pantazides, Brooke G.; Watson, Caroline M.; deCastro, B. Rey; Thomas, Jerry D.; Blake, Thomas A.; Johnson, Rudolph C.

    2017-01-01

    A high-throughput prioritization method was developed for use with a validated confirmatory method detecting organophosphorus nerve agent exposure by immunomagnetic separation-HPLC-MS/MS. A ballistic gradient was incorporated into this analytical method in order to profile unadducted butyrylcholinesterase (BChE) in clinical samples. With Zhang, et al. 1999’s Z′-factor of 0.88 ± 0.01 (SD) of control analytes and Z-factor of 0.25 ± 0.06 (SD) of serum samples, the assay is rated an “excellent assay” for the synthetic peptide controls used and a “double assay” when used to prioritize clinical samples. Hits, defined as samples containing BChE Ser-198 adducts or no BChE present, were analyzed in a confirmatory method for identification and quantitation of the BChE adduct, if present. The ability to prioritize samples by highest exposure for confirmatory analysis is of particular importance in an exposure to cholinesterase inhibitors such as organophosphorus nerve agents where a large number of clinical samples may be collected. In an initial blind screen, 67 out of 70 samples were accurately identified giving an assay accuracy of 96% and yielded no false negatives. The method is the first to provide a high-throughput prioritization assay for profiling adduction of Ser-198 BChE in clinical samples. PMID:23954929

  19. Validation of high-throughput single cell analysis methodology.

    PubMed

    Devonshire, Alison S; Baradez, Marc-Olivier; Morley, Gary; Marshall, Damian; Foy, Carole A

    2014-05-01

    High-throughput quantitative polymerase chain reaction (qPCR) approaches enable profiling of multiple genes in single cells, bringing new insights to complex biological processes and offering opportunities for single cell-based monitoring of cancer cells and stem cell-based therapies. However, workflows with well-defined sources of variation are required for clinical diagnostics and testing of tissue-engineered products. In a study of neural stem cell lines, we investigated the performance of lysis, reverse transcription (RT), preamplification (PA), and nanofluidic qPCR steps at the single cell level in terms of efficiency, precision, and limit of detection. We compared protocols using a separate lysis buffer with cell capture directly in RT-PA reagent. The two methods were found to have similar lysis efficiencies, whereas the direct RT-PA approach showed improved precision. Digital PCR was used to relate preamplified template copy numbers to Cq values and reveal where low-quality signals may affect the analysis. We investigated the impact of calibration and data normalization strategies as a means of minimizing the impact of inter-experimental variation on gene expression values and found that both approaches can improve data comparability. This study provides validation and guidance for the application of high-throughput qPCR workflows for gene expression profiling of single cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Supplemental treatment of air in airborne infection isolation rooms using high-throughput in-room air decontamination units.

    PubMed

    Bergeron, Vance; Chalfine, Annie; Misset, Benoît; Moules, Vincent; Laudinet, Nicolas; Carlet, Jean; Lina, Bruno

    2011-05-01

    Evidence has recently emerged indicating that in addition to large airborne droplets, fine aerosol particles can be an important mode of influenza transmission that may have been hitherto underestimated. Furthermore, recent performance studies evaluating airborne infection isolation (AII) rooms designed to house infectious patients have revealed major discrepancies between what is prescribed and what is actually measured. We conducted an experimental study to investigate the use of high-throughput in-room air decontamination units for supplemental protection against airborne contamination in areas that host infectious patients. The study included both intrinsic performance tests of the air-decontamination unit against biological aerosols of particular epidemiologic interest and field tests in a hospital AII room under different ventilation scenarios. The unit tested efficiently eradicated airborne H5N2 influenza and Mycobacterium bovis (a 4- to 5-log single-pass reduction) and, when implemented with a room extractor, reduced the peak contamination levels by a factor of 5, with decontamination rates at least 33% faster than those achieved with the extractor alone. High-throughput in-room air treatment units can provide supplemental control of airborne pathogen levels in patient isolation rooms. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

Top