Sample records for provide numerical examples

  1. Numerical systems on a minicomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Jr., Roy Leonard

    1973-02-01

    This thesis defines the concept of a numerical system for a minicomputer and provides a description of the software and computer system configuration necessary to implement such a system. A procedure for creating a numerical system from a FORTRAN program is developed and an example is presented.

  2. 28 CFR 25.7 - Querying records in the system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Name; (2) Sex; (3) Race; (4) Complete date of birth; and (5) State of residence. (b) A unique numeric identifier may also be provided to search for additional records based on exact matches by the numeric identifier. Examples of unique numeric identifiers for purposes of this system are: Social Security number...

  3. 28 CFR 25.7 - Querying records in the system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Name; (2) Sex; (3) Race; (4) Complete date of birth; and (5) State of residence. (b) A unique numeric identifier may also be provided to search for additional records based on exact matches by the numeric identifier. Examples of unique numeric identifiers for purposes of this system are: Social Security number...

  4. 28 CFR 25.7 - Querying records in the system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Name; (2) Sex; (3) Race; (4) Complete date of birth; and (5) State of residence. (b) A unique numeric identifier may also be provided to search for additional records based on exact matches by the numeric identifier. Examples of unique numeric identifiers for purposes of this system are: Social Security number...

  5. 28 CFR 25.7 - Querying records in the system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Name; (2) Sex; (3) Race; (4) Complete date of birth; and (5) State of residence. (b) A unique numeric identifier may also be provided to search for additional records based on exact matches by the numeric identifier. Examples of unique numeric identifiers for purposes of this system are: Social Security number...

  6. Towards a wave-extraction method for numerical relativity. III. Analytical examples for the Beetle-Burko radiation scalar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burko, Lior M.; Department of Physics, University of Alabama in Huntsville, Huntsville, Alabama 35899; Baumgarte, Thomas W.

    2006-01-15

    Beetle and Burko recently introduced a background-independent scalar curvature invariant for general relativity that carries information about the gravitational radiation in generic spacetimes, in cases where such radiation is incontrovertibly defined. In this paper we adopt a formalism that only uses spatial data as they are used in numerical relativity and compute the Beetle-Burko radiation scalar for a number of analytical examples, specifically linearized Einstein-Rosen cylindrical waves, linearized quadrupole waves, the Kerr spacetime, Bowen-York initial data, and the Kasner spacetime. These examples illustrate how the Beetle-Burko radiation scalar can be used to examine the gravitational wave content of numerically generatedmore » spacetimes, and how it may provide a useful diagnostic for initial data sets.« less

  7. Neural-Network Computer Transforms Coordinates

    NASA Technical Reports Server (NTRS)

    Josin, Gary M.

    1990-01-01

    Numerical simulation demonstrated ability of conceptual neural-network computer to generalize what it has "learned" from few examples. Ability to generalize achieved with even simple neural network (relatively few neurons) and after exposure of network to only few "training" examples. Ability to obtain fairly accurate mappings after only few training examples used to provide solutions to otherwise intractable mapping problems.

  8. A practical introduction to tensor networks: Matrix product states and projected entangled pair states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orús, Román, E-mail: roman.orus@uni-mainz.de

    This is a partly non-technical introduction to selected topics on tensor network methods, based on several lectures and introductory seminars given on the subject. It should be a good place for newcomers to get familiarized with some of the key ideas in the field, specially regarding the numerics. After a very general introduction we motivate the concept of tensor network and provide several examples. We then move on to explain some basics about Matrix Product States (MPS) and Projected Entangled Pair States (PEPS). Selected details on some of the associated numerical methods for 1d and 2d quantum lattice systems aremore » also discussed. - Highlights: • A practical introduction to selected aspects of tensor network methods is presented. • We provide analytical examples of MPS and 2d PEPS. • We provide basic aspects on several numerical methods for MPS and 2d PEPS. • We discuss a number of applications of tensor network methods from a broad perspective.« less

  9. Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle

    PubMed Central

    Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.

    2013-01-01

    We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853

  10. On numerically pluricanonical cyclic coverings

    NASA Astrophysics Data System (ADS)

    Kulikov, V. S.; Kharlamov, V. M.

    2014-10-01

    We investigate some properties of cyclic coverings f\\colon Y\\to X (where X is a complex surface of general type) branched along smooth curves B\\subset X that are numerically equivalent to a multiple of the canonical class of X. Our main results concern coverings of surfaces of general type with p_g=0 and Miyaoka-Yau surfaces. In particular, such coverings provide new examples of multi-component moduli spaces of surfaces with given Chern numbers and new examples of surfaces that are not deformation equivalent to their complex conjugates.

  11. Solving PDEs with Intrepid

    DOE PAGES

    Bochev, P.; Edwards, H. C.; Kirby, R. C.; ...

    2012-01-01

    Intrepid is a Trilinos package for advanced discretizations of Partial Differential Equations (PDEs). The package provides a comprehensive set of tools for local, cell-based construction of a wide range of numerical methods for PDEs. This paper describes the mathematical ideas and software design principles incorporated in the package. We also provide representative examples showcasing the use of Intrepid both in the context of numerical PDEs and the more general context of data analysis.

  12. Boundary acquisition for setup of numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diegert, C.

    1997-12-31

    The author presents a work flow diagram that includes a path that begins with taking experimental measurements, and ends with obtaining insight from results produced by numerical simulation. Two examples illustrate this path: (1) Three-dimensional imaging measurement at micron scale, using X-ray tomography, provides information on the boundaries of irregularly-shaped alumina oxide particles held in an epoxy matrix. A subsequent numerical simulation predicts the electrical field concentrations that would occur in the observed particle configurations. (2) Three-dimensional imaging measurement at meter scale, again using X-ray tomography, provides information on the boundaries fossilized bone fragments in a Parasaurolophus crest recently discoveredmore » in New Mexico. A subsequent numerical simulation predicts acoustic response of the elaborate internal structure of nasal passageways defined by the fossil record. The author must both add value, and must change the format of the three-dimensional imaging measurements before the define the geometric boundary initial conditions for the automatic mesh generation, and subsequent numerical simulation. The author applies a variety of filters and statistical classification algorithms to estimate the extents of the structures relevant to the subsequent numerical simulation, and capture these extents as faceted geometries. The author will describe the particular combination of manual and automatic methods used in the above two examples.« less

  13. Fluid Stochastic Petri Nets: Theory, Applications, and Solution

    NASA Technical Reports Server (NTRS)

    Horton, Graham; Kulkarni, Vidyadhar G.; Nicol, David M.; Trivedi, Kishor S.

    1996-01-01

    In this paper we introduce a new class of stochastic Petri nets in which one or more places can hold fluid rather than discrete tokens. We define a class of fluid stochastic Petri nets in such a way that the discrete and continuous portions may affect each other. Following this definition we provide equations for their transient and steady-state behavior. We present several examples showing the utility of the construct in communication network modeling and reliability analysis, and discuss important special cases. We then discuss numerical methods for computing the transient behavior of such nets. Finally, some numerical examples are presented.

  14. 75 FR 80173 - Further Definition of “Swap Dealer,” “Security-Based Swap Dealer,” “Major Swap Participant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-21

    .... The Commission will post all comments on the Commission's Internet Web site ( http://www.sec.gov/rules..., which are the subject of separate rulemakings. For example, whether the definition of a major... Regarding Dealing Activities Commenters provided numerous examples of conduct they viewed as dealing...

  15. Numerical Simulation of Selecting Model Scale of Cable in Wind Tunnel Test

    NASA Astrophysics Data System (ADS)

    Huang, Yifeng; Yang, Jixin

    The numerical simulation method based on computational Fluid Dynamics (CFD) provides a possible alternative means of physical wind tunnel test. Firstly, the correctness of the numerical simulation method is validated by one certain example. In order to select the minimum length of the cable as to a certain diameter in the numerical wind tunnel tests, the numerical wind tunnel tests based on CFD are carried out on the cables with several different length-diameter ratios (L/D). The results show that, when the L/D reaches to 18, the drag coefficient is stable essentially.

  16. On critical behaviour in generalized Kadomtsev-Petviashvili equations

    NASA Astrophysics Data System (ADS)

    Dubrovin, B.; Grava, T.; Klein, C.

    2016-10-01

    An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev-Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the dispersive shock waves.

  17. Fuzzy multi objective transportation problem – evolutionary algorithm approach

    NASA Astrophysics Data System (ADS)

    Karthy, T.; Ganesan, K.

    2018-04-01

    This paper deals with fuzzy multi objective transportation problem. An fuzzy optimal compromise solution is obtained by using Fuzzy Genetic Algorithm. A numerical example is provided to illustrate the methodology.

  18. On Teaching About Terrorism: A Conceptual Approach.

    ERIC Educational Resources Information Center

    Kleg, Milton

    1986-01-01

    Recommends the use of conceptual mapping, case studies, and springboards to discussion and inquiry as viable approaches to the study of terrorism in secondary classrooms. Provides numerous examples of conceptual maps. (JDH)

  19. Designing Instruction in the Face of Technology Transience

    ERIC Educational Resources Information Center

    Linder-VanBerschot, Jennifer A.; Summers, Laura L.

    2015-01-01

    As we strive to provide quality and sustainable online learning experiences, we must frame instructional design decisions around learners' current needs and interaction with technology. This article explores the implications of technology transience on instructional design. We provide numerous examples of programs assuming a purposeful approach to…

  20. A discontinuous Galerkin method for poroelastic wave propagation: The two-dimensional case

    NASA Astrophysics Data System (ADS)

    Dudley Ward, N. F.; Lähivaara, T.; Eveson, S.

    2017-12-01

    In this paper, we consider a high-order discontinuous Galerkin (DG) method for modelling wave propagation in coupled poroelastic-elastic media. The upwind numerical flux is derived as an exact solution for the Riemann problem including the poroelastic-elastic interface. Attenuation mechanisms in both Biot's low- and high-frequency regimes are considered. The current implementation supports non-uniform basis orders which can be used to control the numerical accuracy element by element. In the numerical examples, we study the convergence properties of the proposed DG scheme and provide experiments where the numerical accuracy of the scheme under consideration is compared to analytic and other numerical solutions.

  1. Complete synchronization of the global coupled dynamical network induced by Poisson noises.

    PubMed

    Guo, Qing; Wan, Fangyi

    2017-01-01

    The different Poisson noise-induced complete synchronization of the global coupled dynamical network is investigated. Based on the stability theory of stochastic differential equations driven by Poisson process, we can prove that Poisson noises can induce synchronization and sufficient conditions are established to achieve complete synchronization with probability 1. Furthermore, numerical examples are provided to show the agreement between theoretical and numerical analysis.

  2. High-Order Methods for Incompressible Fluid Flow

    NASA Astrophysics Data System (ADS)

    Deville, M. O.; Fischer, P. F.; Mund, E. H.

    2002-08-01

    High-order numerical methods provide an efficient approach to simulating many physical problems. This book considers the range of mathematical, engineering, and computer science topics that form the foundation of high-order numerical methods for the simulation of incompressible fluid flows in complex domains. Introductory chapters present high-order spatial and temporal discretizations for one-dimensional problems. These are extended to multiple space dimensions with a detailed discussion of tensor-product forms, multi-domain methods, and preconditioners for iterative solution techniques. Numerous discretizations of the steady and unsteady Stokes and Navier-Stokes equations are presented, with particular sttention given to enforcement of imcompressibility. Advanced discretizations. implementation issues, and parallel and vector performance are considered in the closing sections. Numerous examples are provided throughout to illustrate the capabilities of high-order methods in actual applications.

  3. The NASA Electronic Parts and Packaging (NEPP) Program - NASA Items of Interest

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2017-01-01

    This presentation provides a background summary of the NEPP Program, its origins and operating principles followed by examples of issues and opportunities that NEPP is currently pursuing. These examples include Electrostatic Discharge protection procedures that are not being properly applied, one reason for which is the confusion caused by the numerous, different standards covering this topic. Updates are provided for key activities in radiation hardness assurance, and the evaluation of automotive grade electronic parts for use in space applications. Some recent examples of part problems experienced by NASA are briefly described and the latest trending of incidences of counterfeit electronic parts is shown graphically. Finally some forward actions are identified and the time, place and typical topics is provided for the next NEPP Electronic Technology Workshop (ETW).

  4. Ordinary differential equations.

    PubMed

    Lebl, Jiří

    2013-01-01

    In this chapter we provide an overview of the basic theory of ordinary differential equations (ODE). We give the basics of analytical methods for their solutions and also review numerical methods. The chapter should serve as a primer for the basic application of ODEs and systems of ODEs in practice. As an example, we work out the equations arising in Michaelis-Menten kinetics and give a short introduction to using Matlab for their numerical solution.

  5. Groupies in multitype random graphs.

    PubMed

    Shang, Yilun

    2016-01-01

    A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erdős-Rényi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.

  6. A new approach for the solution of fuzzy games

    NASA Astrophysics Data System (ADS)

    Krishnaveni, G.; Ganesan, K.

    2018-04-01

    In this paper, a new approach is proposed to solve the games with imprecise entries in its payoff matrix. All these imprecise entries are assumed to be trapezoidal fuzzy numbers. Also the proposed approach provides fuzzy optimal solution of the fuzzy valued game without converting to classical version. A numerical example is provided.

  7. Stable Numerical Approach for Fractional Delay Differential Equations

    NASA Astrophysics Data System (ADS)

    Singh, Harendra; Pandey, Rajesh K.; Baleanu, D.

    2017-12-01

    In this paper, we present a new stable numerical approach based on the operational matrix of integration of Jacobi polynomials for solving fractional delay differential equations (FDDEs). The operational matrix approach converts the FDDE into a system of linear equations, and hence the numerical solution is obtained by solving the linear system. The error analysis of the proposed method is also established. Further, a comparative study of the approximate solutions is provided for the test examples of the FDDE by varying the values of the parameters in the Jacobi polynomials. As in special case, the Jacobi polynomials reduce to the well-known polynomials such as (1) Legendre polynomial, (2) Chebyshev polynomial of second kind, (3) Chebyshev polynomial of third and (4) Chebyshev polynomial of fourth kind respectively. Maximum absolute error and root mean square error are calculated for the illustrated examples and presented in form of tables for the comparison purpose. Numerical stability of the presented method with respect to all four kind of polynomials are discussed. Further, the obtained numerical results are compared with some known methods from the literature and it is observed that obtained results from the proposed method is better than these methods.

  8. Biomimicry in textiles: past, present and potential. An overview

    PubMed Central

    Eadie, Leslie; Ghosh, Tushar K.

    2011-01-01

    The natural world around us provides excellent examples of functional systems built with a handful of materials. Throughout the millennia, nature has evolved to adapt and develop highly sophisticated methods to solve problems. There are numerous examples of functional surfaces, fibrous structures, structural colours, self-healing, thermal insulation, etc., which offer important lessons for the textile products of the future. This paper provides a general overview of the potential of bioinspired textile structures by highlighting a few specific examples of pertinent, inherently sustainable biological systems. Biomimetic research is a rapidly growing field and its true potential in the development of new and sustainable textiles can only be realized through interdisciplinary research rooted in a holistic understanding of nature. PMID:21325320

  9. Biomimicry in textiles: past, present and potential. An overview.

    PubMed

    Eadie, Leslie; Ghosh, Tushar K

    2011-06-06

    The natural world around us provides excellent examples of functional systems built with a handful of materials. Throughout the millennia, nature has evolved to adapt and develop highly sophisticated methods to solve problems. There are numerous examples of functional surfaces, fibrous structures, structural colours, self-healing, thermal insulation, etc., which offer important lessons for the textile products of the future. This paper provides a general overview of the potential of bioinspired textile structures by highlighting a few specific examples of pertinent, inherently sustainable biological systems. Biomimetic research is a rapidly growing field and its true potential in the development of new and sustainable textiles can only be realized through interdisciplinary research rooted in a holistic understanding of nature. © 2011 The Royal Society

  10. Plato, Apollonius, and Klein: playing with spheres

    NASA Astrophysics Data System (ADS)

    Mantica, Giorgio; Bullett, Shaun

    We describe the group theoretical background and the numerical techniques which enable us to compute new families of Apollonian circle packings. We provide examples of these constructions and we motivate this research from the physical and the mathematical point of view.

  11. Neural computing for numeric-to-symbolic conversion in control systems

    NASA Technical Reports Server (NTRS)

    Passino, Kevin M.; Sartori, Michael A.; Antsaklis, Panos J.

    1989-01-01

    A type of neural network, the multilayer perceptron, is used to classify numeric data and assign appropriate symbols to various classes. This numeric-to-symbolic conversion results in a type of information extraction, which is similar to what is called data reduction in pattern recognition. The use of the neural network as a numeric-to-symbolic converter is introduced, its application in autonomous control is discussed, and several applications are studied. The perceptron is used as a numeric-to-symbolic converter for a discrete-event system controller supervising a continuous variable dynamic system. It is also shown how the perceptron can implement fault trees, which provide useful information (alarms) in a biological system and information for failure diagnosis and control purposes in an aircraft example.

  12. Using basic statistics on the individual patient's own numeric data.

    PubMed

    Hart, John

    2012-12-01

    This theoretical report gives an example for how coefficient of variation (CV) and quartile analysis (QA) to assess outliers might be able to be used to analyze numeric data in practice for an individual patient. A patient was examined for 8 visits using infrared instrumentation for measurement of mastoid fossa temperature differential (MFTD) readings. The CV and QA were applied to the readings. The participant also completed the Short Form-12 health perception survey on each visit, and these findings were correlated with CV to determine if CV had outcomes support (clinical significance). An outlier MFTD reading was observed on the eighth visit according to QA that coincided with the largest CV value for the MFTDs. Correlations between the Short Form-12 and CV were low to negligible, positive, and statistically nonsignificant. This case provides an example of how basic statistical analyses could possibly be applied to numerical data in chiropractic practice for an individual patient. This might add objectivity to analyzing an individual patient's data in practice, particularly if clinical significance of a clinical numerical finding is unknown.

  13. Paradigms: examples from the bacterium Xylella fastidiosa.

    PubMed

    Purcell, Alexander

    2013-01-01

    The history of advances in research on Xylella fastidiosa provides excellent examples of how paradigms both advance and limit our scientific understanding of plant pathogens and the plant diseases they cause. I describe this from a personal perspective, having been directly involved with many persons who made paradigm-changing discoveries, beginning with the discovery that a bacterium, not a virus, causes Pierce's disease of grape and other plant diseases in numerous plant species, including important crop and forest species.

  14. Class and Home Problems. The Lambert W Function in Ultrafiltration and Diafiltration

    ERIC Educational Resources Information Center

    Foley, Greg

    2016-01-01

    Novel analytical solutions based on the Lambert W function for two problems in ultrafiltration and diafiltration are described. Example problems, suitable for incorporation into an introductory module in unit operations, membrane processing, or numerical methods are provided in each case.

  15. Cuisenaire Rods Go to College.

    ERIC Educational Resources Information Center

    Chinn, Phyllis; And Others

    1992-01-01

    Presents examples of questions and answers arising from a hands-on and exploratory approach to discrete mathematics using cuisenaire rods. Combinatorial questions about trains formed of cuisenaire rods provide the setting for discovering numerical patterns by experimentation and organizing the results using induction and successive differences.…

  16. Finite element method formulation in polar coordinates for transient heat conduction problems

    NASA Astrophysics Data System (ADS)

    Duda, Piotr

    2016-04-01

    The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method (FEM) in polar or cylindrical coordinates for the solution of heat transfer problems. This document shows how to apply the most often used boundary conditions. The global equation system is solved by the Crank-Nicolson method. The proposed algorithm is verified in three numerical tests. In the first example, the obtained transient temperature distribution is compared with the temperature obtained from the presented analytical solution. In the second numerical example, the variable boundary condition is assumed. In the last numerical example the component with the shape different than cylindrical is used. All examples show that the introduction of the polar coordinate system gives better results than in the Cartesian coordinate system. The finite element method formulation in polar coordinates is valuable since it provides a higher accuracy of the calculations without compacting the mesh in cylindrical or similar to tubular components. The proposed method can be applied for circular elements such as boiler drums, outlet headers, flux tubes. This algorithm can be useful during the solution of inverse problems, which do not allow for high density grid. This method can calculate the temperature distribution in the bodies of different properties in the circumferential and the radial direction. The presented algorithm can be developed for other coordinate systems. The examples demonstrate a good accuracy and stability of the proposed method.

  17. Optimal pricing and replenishment policies for instantaneous deteriorating items with backlogging and trade credit under inflation

    NASA Astrophysics Data System (ADS)

    Sundara Rajan, R.; Uthayakumar, R.

    2017-12-01

    In this paper we develop an economic order quantity model to investigate the optimal replenishment policies for instantaneous deteriorating items under inflation and trade credit. Demand rate is a linear function of selling price and decreases negative exponentially with time over a finite planning horizon. Shortages are allowed and partially backlogged. Under these conditions, we model the retailer's inventory system as a profit maximization problem to determine the optimal selling price, optimal order quantity and optimal replenishment time. An easy-to-use algorithm is developed to determine the optimal replenishment policies for the retailer. We also provide optimal present value of profit when shortages are completely backlogged as a special case. Numerical examples are presented to illustrate the algorithm provided to obtain optimal profit. And we also obtain managerial implications from numerical examples to substantiate our model. The results show that there is an improvement in total profit from complete backlogging rather than the items being partially backlogged.

  18. Phase space methods in HMD systems

    NASA Astrophysics Data System (ADS)

    Babington, James

    2017-06-01

    We consider using phase space techniques and methods in analysing optical ray propagation in head mounted display systems. Two examples are considered that illustrate the concepts and methods. Firstly, a shark tooth freeform geometry, and secondly, a waveguide geometry that replicates a pupil in one dimension. Classical optics and imaging in particular provide a natural stage to employ phase space techniques, albeit as a constrained system. We consider how phase space provides a global picture of the physical ray trace data. As such, this gives a complete optical world history of all of the rays propagating through the system. Using this data one can look at, for example, how aberrations arise on a surface by surface basis. These can be extracted numerically from phase space diagrams in the example of a freeform imaging prism. For the waveguide geometry, phase space diagrams provide a way of illustrating how replicated pupils behave and what these imply for design considerations such as tolerances.

  19. BOOK REVIEW: Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3Numerical Recipes in C++: The Art of Scientific Computing (2nd edn) Numerical Recipes Example Book (C++) (2nd edn) Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version

    NASA Astrophysics Data System (ADS)

    Press, William H.; Teukolsky, Saul A.; Vettering, William T.; Flannery, Brian P.

    2003-05-01

    The two Numerical Recipes books are marvellous. The principal book, The Art of Scientific Computing, contains program listings for almost every conceivable requirement, and it also contains a well written discussion of the algorithms and the numerical methods involved. The Example Book provides a complete driving program, with helpful notes, for nearly all the routines in the principal book. The first edition of Numerical Recipes: The Art of Scientific Computing was published in 1986 in two versions, one with programs in Fortran, the other with programs in Pascal. There were subsequent versions with programs in BASIC and in C. The second, enlarged edition was published in 1992, again in two versions, one with programs in Fortran (NR(F)), the other with programs in C (NR(C)). In 1996 the authors produced Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing as a supplement, called Volume 2, with the original (Fortran) version referred to as Volume 1. Numerical Recipes in C++ (NR(C++)) is another version of the 1992 edition. The numerical recipes are also available on a CD ROM: if you want to use any of the recipes, I would strongly advise you to buy the CD ROM. The CD ROM contains the programs in all the languages. When the first edition was published I bought it, and have also bought copies of the other editions as they have appeared. Anyone involved in scientific computing ought to have a copy of at least one version of Numerical Recipes, and there also ought to be copies in every library. If you already have NR(F), should you buy the NR(C++) and, if not, which version should you buy? In the preface to Volume 2 of NR(F), the authors say 'C and C++ programmers have not been far from our minds as we have written this volume, and we think that you will find that time spent in absorbing its principal lessons will be amply repaid in the future as C and C++ eventually develop standard parallel extensions'. In the preface and introduction to NR(C++), the authors point out some of the problems in the use of C++ in scientific computing. I have not found any mention of parallel computing in NR(C++). Fortran has quite a lot going for it. As someone who has used it in most of its versions from Fortran II, I have seen it develop and leave behind other languages promoted by various enthusiasts: who now uses Algol or Pascal? I think it unlikely that C++ will disappear: it was devised as a systems language, and can also be used for other purposes such as scientific computing. It is possible that Fortran will disappear, but Fortran has the strengths that it can develop, that there are extensive Fortran subroutine libraries, and that it has been developed for parallel computing. To argue with programmers as to which is the best language to use is sterile. If you wish to use C++, then buy NR(C++), but you should also look at volume 2 of NR(F). If you are a Fortran programmer, then make sure you have NR(F), volumes 1 and 2. But whichever language you use, make sure you have one version or the other, and the CD ROM. The Example Book provides listings of complete programs to run nearly all the routines in NR, frequently based on cases where an anlytical solution is available. It is helpful when developing a new program incorporating an unfamiliar routine to see that routine actually working, and this is what the programs in the Example Book achieve. I started teaching computational physics before Numerical Recipes was published. If I were starting again, I would make heavy use of both The Art of Scientific Computing and of the Example Book. Every computational physics teaching laboratory should have both volumes: the programs in the Example Book are included on the CD ROM, but the extra commentary in the book itself is of considerable value. P Borcherds

  20. On a Non-Reflecting Boundary Condition for Hyperbolic Conservation Laws

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.

    2003-01-01

    A non-reflecting boundary condition (NRBC) for practical computations in fluid dynamics and aeroacoustics is presented. The technique is based on the hyperbolicity of the Euler equation system and the first principle of plane (simple) wave propagation. The NRBC is simple and effective, provided the numerical scheme maintains locally a C(sup 1) continuous solution at the boundary. Several numerical examples in ID, 2D and 3D space are illustrated to demonstrate its robustness in practical computations.

  1. Numerical Aerodynamic Simulation (NAS)

    NASA Technical Reports Server (NTRS)

    Peterson, V. L.; Ballhaus, W. F., Jr.; Bailey, F. R.

    1983-01-01

    The history of the Numerical Aerodynamic Simulation Program, which is designed to provide a leading-edge capability to computational aerodynamicists, is traced back to its origin in 1975. Factors motivating its development and examples of solutions to successively refined forms of the governing equations are presented. The NAS Processing System Network and each of its eight subsystems are described in terms of function and initial performance goals. A proposed usage allocation policy is discussed and some initial problems being readied for solution on the NAS system are identified.

  2. On a Non-Reflecting Boundary Condition for Hyperbolic Conservation Laws

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.

    2003-01-01

    A non-reflecting boundary condition (NRBC) for practical computations in fluid dynamics and aeroacoustics is presented. The technique is based on the first principle of non-reflecting, plane wave propagation and the hyperbolicity of the Euler equation system. The NRBC is simple and effective, provided the numerical scheme maintains locally a C(sup 1) continuous solution at the boundary. Several numerical examples in 1D, 2D, and 3D space are illustrated to demonstrate its robustness in practical computations.

  3. Numerical modeling tools for chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Jasinski, Thomas J.; Childs, Edward P.

    1992-01-01

    Development of general numerical simulation tools for chemical vapor deposition (CVD) was the objective of this study. Physical models of important CVD phenomena were developed and implemented into the commercial computational fluid dynamics software FLUENT. The resulting software can address general geometries as well as the most important phenomena occurring with CVD reactors: fluid flow patterns, temperature and chemical species distribution, gas phase and surface deposition. The physical models are documented which are available and examples are provided of CVD simulation capabilities.

  4. Numeric stratigraphic modeling: Testing sequence Numeric stratigraphic modeling: Testing sequence stratigraphic concepts using high resolution geologic examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armentrout, J.M.; Smith-Rouch, L.S.; Bowman, S.A.

    1996-08-01

    Numeric simulations based on integrated data sets enhance our understanding of depositional geometry and facilitate quantification of depositional processes. Numeric values tested against well-constrained geologic data sets can then be used in iterations testing each variable, and in predicting lithofacies distributions under various depositional scenarios using the principles of sequence stratigraphic analysis. The stratigraphic modeling software provides a broad spectrum of techniques for modeling and testing elements of the petroleum system. Using well-constrained geologic examples, variations in depositional geometry and lithofacies distributions between different tectonic settings (passive vs. active margin) and climate regimes (hothouse vs. icehouse) can provide insight tomore » potential source rock and reservoir rock distribution, maturation timing, migration pathways, and trap formation. Two data sets are used to illustrate such variations: both include a seismic reflection profile calibrated by multiple wells. The first is a Pennsylvanian mixed carbonate-siliciclastic system in the Paradox basin, and the second a Pliocene-Pleistocene siliciclastic system in the Gulf of Mexico. Numeric simulations result in geometry and facies distributions consistent with those interpreted using the integrated stratigraphic analysis of the calibrated seismic profiles. An exception occurs in the Gulf of Mexico study where the simulated sediment thickness from 3.8 to 1.6 Ma within an upper slope minibasin was less than that mapped using a regional seismic grid. Regional depositional patterns demonstrate that this extra thickness was probably sourced from out of the plane of the modeled transect, illustrating the necessity for three-dimensional constraints on two-dimensional modeling.« less

  5. The Oceanographic Multipurpose Software Environment (OMUSE v1.0)

    NASA Astrophysics Data System (ADS)

    Pelupessy, Inti; van Werkhoven, Ben; van Elteren, Arjen; Viebahn, Jan; Candy, Adam; Portegies Zwart, Simon; Dijkstra, Henk

    2017-08-01

    In this paper we present the Oceanographic Multipurpose Software Environment (OMUSE). OMUSE aims to provide a homogeneous environment for existing or newly developed numerical ocean simulation codes, simplifying their use and deployment. In this way, numerical experiments that combine ocean models representing different physics or spanning different ranges of physical scales can be easily designed. Rapid development of simulation models is made possible through the creation of simple high-level scripts. The low-level core of the abstraction in OMUSE is designed to deploy these simulations efficiently on heterogeneous high-performance computing resources. Cross-verification of simulation models with different codes and numerical methods is facilitated by the unified interface that OMUSE provides. Reproducibility in numerical experiments is fostered by allowing complex numerical experiments to be expressed in portable scripts that conform to a common OMUSE interface. Here, we present the design of OMUSE as well as the modules and model components currently included, which range from a simple conceptual quasi-geostrophic solver to the global circulation model POP (Parallel Ocean Program). The uniform access to the codes' simulation state and the extensive automation of data transfer and conversion operations aids the implementation of model couplings. We discuss the types of couplings that can be implemented using OMUSE. We also present example applications that demonstrate the straightforward model initialization and the concurrent use of data analysis tools on a running model. We give examples of multiscale and multiphysics simulations by embedding a regional ocean model into a global ocean model and by coupling a surface wave propagation model with a coastal circulation model.

  6. Using models to manage systems subject to sustainability indicators

    USGS Publications Warehouse

    Hill, M.C.

    2006-01-01

    Mathematical and numerical models can provide insight into sustainability indicators using relevant simulated quantities, which are referred to here as predictions. To be useful, many concerns need to be considered. Four are discussed here: (a) mathematical and numerical accuracy of the model; (b) the accuracy of the data used in model development, (c) the information observations provide to aspects of the model important to predictions of interest as measured using sensitivity analysis; and (d) the existence of plausible alternative models for a given system. The four issues are illustrated using examples from conservative and transport modelling, and using conceptual arguments. Results suggest that ignoring these issues can produce misleading conclusions.

  7. A progressive gradient moment nulling design technique.

    PubMed

    Pipe, J G; Chenevert, T L

    1991-05-01

    A method is presented for designing motion-compensated gradients in a progressive manner. The method is easily applicable to many types of waveforms, and can compensate for any order of motion. It can be implemented graphically or numerically. Underlying theory and examples of its application are provided.

  8. Elimination of numerical diffusion in 1 - phase and 2 - phase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajamaeki, M.

    1997-07-01

    The new hydraulics solution method PLIM (Piecewise Linear Interpolation Method) is capable of avoiding the excessive errors, numerical diffusion and also numerical dispersion. The hydraulics solver CFDPLIM uses PLIM and solves the time-dependent one-dimensional flow equations in network geometry. An example is given for 1-phase flow in the case when thermal-hydraulics and reactor kinetics are strongly coupled. Another example concerns oscillations in 2-phase flow. Both the example computations are not possible with conventional methods.

  9. Putting the "th" in Tenths: Providing Place-Value Labels Helps Reveal the Structure of Our Base-10 Numeral System

    ERIC Educational Resources Information Center

    Loehr, Abbey M.; Rittle-Johnson, Bethany

    2017-01-01

    Research has demonstrated that providing labels helps children notice key features of examples. Much less is known about how different labels impact children's ability to make inferences about the structure underlying mathematical notation. We tested the impact of labeling decimals such as 0.34 using formal place-value labels ("3 tenths and 4…

  10. Towards more sustainable management of European food waste: Methodological approach and numerical application.

    PubMed

    Manfredi, Simone; Cristobal, Jorge

    2016-09-01

    Trying to respond to the latest policy needs, the work presented in this article aims at developing a life-cycle based framework methodology to quantitatively evaluate the environmental and economic sustainability of European food waste management options. The methodology is structured into six steps aimed at defining boundaries and scope of the evaluation, evaluating environmental and economic impacts and identifying best performing options. The methodology is able to accommodate additional assessment criteria, for example the social dimension of sustainability, thus moving towards a comprehensive sustainability assessment framework. A numerical case study is also developed to provide an example of application of the proposed methodology to an average European context. Different options for food waste treatment are compared, including landfilling, composting, anaerobic digestion and incineration. The environmental dimension is evaluated with the software EASETECH, while the economic assessment is conducted based on different indicators expressing the costs associated with food waste management. Results show that the proposed methodology allows for a straightforward identification of the most sustainable options for food waste, thus can provide factual support to decision/policy making. However, it was also observed that results markedly depend on a number of user-defined assumptions, for example on the choice of the indicators to express the environmental and economic performance. © The Author(s) 2016.

  11. Social and Emotional Learning in the Classroom: Promoting Mental Health and Academic Success

    ERIC Educational Resources Information Center

    Merrell, Kenneth W.; Gueldner, Barbara A.

    2010-01-01

    This highly engaging, eminently practical book provides essential resources for implementing social and emotional learning (SEL) in any K-12 setting. Numerous vivid examples illustrate the nuts and bolts of this increasingly influential approach to supporting students' mental health, behavior, and academic performance. Helpful reproducibles are…

  12. Data Acquisition Using Xbox Kinect Sensor

    ERIC Educational Resources Information Center

    Ballester, Jorge; Pheatt, Charles B.

    2012-01-01

    The study of motion is central in physics education and has taken many forms as technology has provided numerous methods to acquire data. For example, the analysis of still or moving images is particularly effective in discussions of two-dimensional motion. Introductory laboratory measurement methods have progressed through water clocks, spark…

  13. Social Skills Training for Children with Asperger Syndrome and High-Functioning Autism

    ERIC Educational Resources Information Center

    White, Susan Williams

    2011-01-01

    This practical, research-based guide provides a wealth of tools and strategies for implementing social skills training in school or clinical settings. Numerous case examples illustrate common social difficulties experienced by children with Asperger syndrome and high-functioning autism; the impact on peer relationships, school performance, and…

  14. Active Learning Strategies in Face-to-Face Courses. IDEA Paper #53

    ERIC Educational Resources Information Center

    Millis, Barbara J.

    2012-01-01

    As numerous research studies suggest, teachers who desire increased student learning should adopt active learning. This article explores the research, defines active learning, discusses its value, offers suggestions for implementing it, and provides six concrete examples of active learning approaches: Thinking-Aloud Pair Problem-Solving;…

  15. Locker Room Maintenance Made Easy.

    ERIC Educational Resources Information Center

    Theel, James

    1998-01-01

    Provides examples on ways to make locker room maintenance easier and their use more student-friendly. Improvements include use of indoor-outdoor carpeting with numerous floor drains to cut mildew buildup, adequate ventilation to reduce musty smells, better hot water management, ceramic tiles to reduce water-damage repair and painting needs, and…

  16. Triangular Diagrams Teach Steady and Dynamic Behaviour of Catalytic Reactions.

    ERIC Educational Resources Information Center

    Klusacek, K.; And Others

    1989-01-01

    Illustrates how triangular diagrams can aid in presenting some of the rather complex transient interactions that occur among gas and surface species during heterogeneous catalytic reactions. The basic equations and numerical examples are described. Classroom use of the triangular diagram is discussed. Several diagrams and graphs are provided. (YP)

  17. Optimal Information Processing in Biochemical Networks

    NASA Astrophysics Data System (ADS)

    Wiggins, Chris

    2012-02-01

    A variety of experimental results over the past decades provide examples of near-optimal information processing in biological networks, including in biochemical and transcriptional regulatory networks. Computing information-theoretic quantities requires first choosing or computing the joint probability distribution describing multiple nodes in such a network --- for example, representing the probability distribution of finding an integer copy number of each of two interacting reactants or gene products while respecting the `intrinsic' small copy number noise constraining information transmission at the scale of the cell. I'll given an overview of some recent analytic and numerical work facilitating calculation of such joint distributions and the associated information, which in turn makes possible numerical optimization of information flow in models of noisy regulatory and biochemical networks. Illustrating cases include quantification of form-function relations, ideal design of regulatory cascades, and response to oscillatory driving.

  18. Kranc: a Mathematica package to generate numerical codes for tensorial evolution equations

    NASA Astrophysics Data System (ADS)

    Husa, Sascha; Hinder, Ian; Lechner, Christiane

    2006-06-01

    We present a suite of Mathematica-based computer-algebra packages, termed "Kranc", which comprise a toolbox to convert certain (tensorial) systems of partial differential evolution equations to parallelized C or Fortran code for solving initial boundary value problems. Kranc can be used as a "rapid prototyping" system for physicists or mathematicians handling very complicated systems of partial differential equations, but through integration into the Cactus computational toolkit we can also produce efficient parallelized production codes. Our work is motivated by the field of numerical relativity, where Kranc is used as a research tool by the authors. In this paper we describe the design and implementation of both the Mathematica packages and the resulting code, we discuss some example applications, and provide results on the performance of an example numerical code for the Einstein equations. Program summaryTitle of program: Kranc Catalogue identifier: ADXS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXS_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computer for which the program is designed and others on which it has been tested: General computers which run Mathematica (for code generation) and Cactus (for numerical simulations), tested under Linux Programming language used: Mathematica, C, Fortran 90 Memory required to execute with typical data: This depends on the number of variables and gridsize, the included ADM example requires 4308 KB Has the code been vectorized or parallelized: The code is parallelized based on the Cactus framework. Number of bytes in distributed program, including test data, etc.: 1 578 142 Number of lines in distributed program, including test data, etc.: 11 711 Nature of physical problem: Solution of partial differential equations in three space dimensions, which are formulated as an initial value problem. In particular, the program is geared towards handling very complex tensorial equations as they appear, e.g., in numerical relativity. The worked out examples comprise the Klein-Gordon equations, the Maxwell equations, and the ADM formulation of the Einstein equations. Method of solution: The method of numerical solution is finite differencing and method of lines time integration, the numerical code is generated through a high level Mathematica interface. Restrictions on the complexity of the program: Typical numerical relativity applications will contain up to several dozen evolution variables and thousands of source terms, Cactus applications have shown scaling up to several thousand processors and grid sizes exceeding 500 3. Typical running time: This depends on the number of variables and the grid size: the included ADM example takes approximately 100 seconds on a 1600 MHz Intel Pentium M processor. Unusual features of the program: based on Mathematica and Cactus

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wintermeyer, Niklas; Winters, Andrew R., E-mail: awinters@math.uni-koeln.de; Gassner, Gregor J.

    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretization exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving schememore » we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretization of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem.« less

  20. The eighth NASA total quality management accomplishments report, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The eighth annual accomplishments report provides numerous examples of quality strategies that have proven effective and efficient in a time when cost reduction is critical. NASA's continuous improvement efforts can provide insight for others to succeed in their own endeavors. The report covers: top management leadership and support, strategic planning, focus on the customer, employee training and recognition, employee empowerment and teamwork, measurement and analysis, and quality assurance.

  1. Pinning synchronization of delayed complex dynamical networks with nonlinear coupling

    NASA Astrophysics Data System (ADS)

    Cheng, Ranran; Peng, Mingshu; Yu, Weibin

    2014-11-01

    In this paper, we find that complex networks with the Watts-Strogatz or scale-free BA random topological architecture can be synchronized more easily by pin-controlling fewer nodes than regular systems. Theoretical analysis is included by means of Lyapunov functions and linear matrix inequalities (LMI) to make all nodes reach complete synchronization. Numerical examples are also provided to illustrate the importance of our theoretical analysis, which implies that there exists a gap between the theoretical prediction and numerical results about the minimum number of pinning controlled nodes.

  2. High-order ENO schemes applied to two- and three-dimensional compressible flow

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang; Erlebacher, Gordon; Zang, Thomas A.; Whitaker, David; Osher, Stanley

    1991-01-01

    High order essentially non-oscillatory (ENO) finite difference schemes are applied to the 2-D and 3-D compressible Euler and Navier-Stokes equations. Practical issues, such as vectorization, efficiency of coding, cost comparison with other numerical methods, and accuracy degeneracy effects, are discussed. Numerical examples are provided which are representative of computational problems of current interest in transition and turbulence physics. These require both nonoscillatory shock capturing and high resolution for detailed structures in the smooth regions and demonstrate the advantage of ENO schemes.

  3. A dynamical regularization algorithm for solving inverse source problems of elliptic partial differential equations

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten

    2018-06-01

    This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.

  4. Morphing continuum theory for turbulence: Theory, computation, and visualization.

    PubMed

    Chen, James

    2017-10-01

    A high order morphing continuum theory (MCT) is introduced to model highly compressible turbulence. The theory is formulated under the rigorous framework of rational continuum mechanics. A set of linear constitutive equations and balance laws are deduced and presented from the Coleman-Noll procedure and Onsager's reciprocal relations. The governing equations are then arranged in conservation form and solved through the finite volume method with a second-order Lax-Friedrichs scheme for shock preservation. A numerical example of transonic flow over a three-dimensional bump is presented using MCT and the finite volume method. The comparison shows that MCT-based direct numerical simulation (DNS) provides a better prediction than Navier-Stokes (NS)-based DNS with less than 10% of the mesh number when compared with experiments. A MCT-based and frame-indifferent Q criterion is also derived to show the coherent eddy structure of the downstream turbulence in the numerical example. It should be emphasized that unlike the NS-based Q criterion, the MCT-based Q criterion is objective without the limitation of Galilean invariance.

  5. Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrodinger equations

    DOE PAGES

    Liang, Xiao; Khaliq, Abdul Q. M.; Xing, Yulong

    2015-01-23

    In this paper, we study a local discontinuous Galerkin method combined with fourth order exponential time differencing Runge-Kutta time discretization and a fourth order conservative method for solving the nonlinear Schrödinger equations. Based on different choices of numerical fluxes, we propose both energy-conserving and energy-dissipative local discontinuous Galerkin methods, and have proven the error estimates for the semi-discrete methods applied to linear Schrödinger equation. The numerical methods are proven to be highly efficient and stable for long-range soliton computations. Finally, extensive numerical examples are provided to illustrate the accuracy, efficiency and reliability of the proposed methods.

  6. On the numerical treatment of selected oscillatory evolutionary problems

    NASA Astrophysics Data System (ADS)

    Cardone, Angelamaria; Conte, Dajana; D'Ambrosio, Raffaele; Paternoster, Beatrice

    2017-07-01

    We focus on evolutionary problems whose qualitative behaviour is known a-priori and exploited in order to provide efficient and accurate numerical schemes. For classical numerical methods, depending on constant coefficients, the required computational effort could be quite heavy, due to the necessary employ of very small stepsizes needed to accurately reproduce the qualitative behaviour of the solution. In these situations, it may be convenient to use special purpose formulae, i.e. non-polynomially fitted formulae on basis functions adapted to the problem (see [16, 17] and references therein). We show examples of special purpose strategies to solve two families of evolutionary problems exhibiting periodic solutions, i.e. partial differential equations and Volterra integral equations.

  7. SToRM: A numerical model for environmental surface flows

    USGS Publications Warehouse

    Simoes, Francisco J.

    2009-01-01

    SToRM (System for Transport and River Modeling) is a numerical model developed to simulate free surface flows in complex environmental domains. It is based on the depth-averaged St. Venant equations, which are discretized using unstructured upwind finite volume methods, and contains both steady and unsteady solution techniques. This article provides a brief description of the numerical approach selected to discretize the governing equations in space and time, including important aspects of solving natural environmental flows, such as the wetting and drying algorithm. The presentation is illustrated with several application examples, covering both laboratory and natural river flow cases, which show the model’s ability to solve complex flow phenomena.

  8. Survival in a Down Economy: A Budget Reduction Process for Superintendents

    ERIC Educational Resources Information Center

    Davis, E. E.; Coffland, Jack A.

    2010-01-01

    Dramatic reductions in the dollars available for public education require a new and systemic approach to balancing school district budgets. This manual provides numerous examples of successful budget reduction strategies based on a six-step process that has demonstrated its effectiveness in small, medium, and large school districts. Supported by…

  9. AIDS, Empire and the US Politics of Giving

    ERIC Educational Resources Information Center

    Hill, Robert J.

    2004-01-01

    This essay explores the intersection of US Empire on HIV/AIDS policies and the politics of "gifting." It does so from an analysis of several key US initiatives: the Project for a New American Century, the US National Security Strategy, and the President's Emergency Plan for AIDS Relief. History provides numerous examples where US…

  10. Teaching BASIC. A Step by Step Guide.

    ERIC Educational Resources Information Center

    Allen, M. F.

    This three-chapter guide provides simple explanations about BASIC programming for a teacher to use in a classroom situation, and suggests procedures for a "hands-on" course. Numerous examples are presented of the questions, problems, and level of understanding to expect from first-time, adult users (ages 13 and up). The course materials…

  11. From Whitehall Palace to Burger King: Teaching the Humanities

    ERIC Educational Resources Information Center

    Dierking, Kirsten

    2010-01-01

    In this article, the author shares how she designs fun and fascinating western humanities courses at a community college in Minnesota. Using the example provided by many excellent past instructors, and through numerous late-night research sessions, she began to develop techniques and exercises that would help her achieve her goals in the…

  12. Internet Data Analysis for the Undergraduate Statistics Curriculum

    ERIC Educational Resources Information Center

    Sanchez, Juana; He, Yan

    2005-01-01

    Statistics textbooks for undergraduates have not caught up with the enormous amount of analysis of Internet data that is taking place these days. Case studies that use Web server log data or Internet network traffic data are rare in undergraduate Statistics education. And yet these data provide numerous examples of skewed and bimodal…

  13. Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section

    NASA Technical Reports Server (NTRS)

    Taflove, Allen; Umashankar, Korada R.

    1989-01-01

    Applications of the finite-difference time-domain (FD-TD) method for numerical modeling of electromagnetic wave interactions with structures are reviewed, concentrating on scattering and radar cross section (RCS). A number of two- and three-dimensional examples of FD-TD modeling of scattering and penetration are provided. The objects modeled range in nature from simple geometric shapes to extremely complex aerospace and biological systems. Rigorous analytical or experimental validatons are provided for the canonical shapes, and it is shown that FD-TD predictive data for near fields and RCS are in excellent agreement with the benchmark data. It is concluded that with continuing advances in FD-TD modeling theory for target features relevant to the RCS problems and in vector and concurrent supercomputer technology, it is likely that FD-TD numerical modeling will occupy an important place in RCS technology in the 1990s and beyond.

  14. Two-dimensional modelling of internal arc effects in an enclosed MV cell provided with a protection porous filter

    NASA Astrophysics Data System (ADS)

    Rochette, D.; Clain, S.; André, P.; Bussière, W.; Gentils, F.

    2007-05-01

    Medium voltage (MV) cells have to respect standards (for example IEC ones (IEC TC 17C 2003 IEC 62271-200 High Voltage Switchgear and Controlgear—Part 200 1st edn)) that define security levels against internal arc faults such as an accidental electrical arc occurring in the apparatus. New protection filters based on porous materials are developed to provide better energy absorption properties and a higher protection level for people. To study the filter behaviour during a major electrical accident, a two-dimensional model is proposed. The main point is the use of a dedicated numerical scheme for a non-conservative hyperbolic problem. We present a numerical simulation of the process during the first 0.2 s when the safety valve bursts and we compare the numerical results with tests carried out in a high power test laboratory on real electrical apparatus.

  15. An adaptive gridless methodology in one dimension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, N.T.; Hailey, C.E.

    1996-09-01

    Gridless numerical analysis offers great potential for accurately solving for flow about complex geometries or moving boundary problems. Because gridless methods do not require point connection, the mesh cannot twist or distort. The gridless method utilizes a Taylor series about each point to obtain the unknown derivative terms from the current field variable estimates. The governing equation is then numerically integrated to determine the field variables for the next iteration. Effects of point spacing and Taylor series order on accuracy are studied, and they follow similar trends of traditional numerical techniques. Introducing adaption by point movement using a spring analogymore » allows the solution method to track a moving boundary. The adaptive gridless method models linear, nonlinear, steady, and transient problems. Comparison with known analytic solutions is given for these examples. Although point movement adaption does not provide a significant increase in accuracy, it helps capture important features and provides an improved solution.« less

  16. Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations

    NASA Astrophysics Data System (ADS)

    Gómez-Aguilar, J. F.

    2018-03-01

    In this paper, we analyze an alcoholism model which involves the impact of Twitter via Liouville-Caputo and Atangana-Baleanu-Caputo fractional derivatives with constant- and variable-order. Two fractional mathematical models are considered, with and without delay. Special solutions using an iterative scheme via Laplace and Sumudu transform were obtained. We studied the uniqueness and existence of the solutions employing the fixed point postulate. The generalized model with variable-order was solved numerically via the Adams method and the Adams-Bashforth-Moulton scheme. Stability and convergence of the numerical solutions were presented in details. Numerical examples of the approximate solutions are provided to show that the numerical methods are computationally efficient. Therefore, by including both the fractional derivatives and finite time delays in the alcoholism model studied, we believe that we have established a more complete and more realistic indicator of alcoholism model and affect the spread of the drinking.

  17. Runge-Kutta methods combined with compact difference schemes for the unsteady Euler equations

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao

    1992-01-01

    Recent development using compact difference schemes to solve the Navier-Stokes equations show spectral-like accuracy. A study was made of the numerical characteristics of various combinations of the Runge-Kutta (RK) methods and compact difference schemes to calculate the unsteady Euler equations. The accuracy of finite difference schemes is assessed based on the evaluations of dissipative error. The objectives are reducing the numerical damping and, at the same time, preserving numerical stability. While this approach has tremendous success solving steady flows, numerical characteristics of unsteady calculations remain largely unclear. For unsteady flows, in addition to the dissipative errors, phase velocity and harmonic content of the numerical results are of concern. As a result of the discretization procedure, the simulated unsteady flow motions actually propagate in a dispersive numerical medium. Consequently, the dispersion characteristics of the numerical schemes which relate the phase velocity and wave number may greatly impact the numerical accuracy. The aim is to assess the numerical accuracy of the simulated results. To this end, the Fourier analysis is to provide the dispersive correlations of various numerical schemes. First, a detailed investigation of the existing RK methods is carried out. A generalized form of an N-step RK method is derived. With this generalized form, the criteria are derived for the three and four-step RK methods to be third and fourth-order time accurate for the non-linear equations, e.g., flow equations. These criteria are then applied to commonly used RK methods such as Jameson's 3-step and 4-step schemes and Wray's algorithm to identify the accuracy of the methods. For the spatial discretization, compact difference schemes are presented. The schemes are formulated in the operator-type to render themselves suitable for the Fourier analyses. The performance of the numerical methods is shown by numerical examples. These examples are detailed. described. The third case is a two-dimensional simulation of a Lamb vortex in an uniform flow. This calculation provides a realistic assessment of various finite difference schemes in terms of the conservation of the vortex strength and the harmonic content after travelling a substantial distance. The numerical implementation of Giles' non-refelctive equations coupled with the characteristic equations as the boundary condition is discussed in detail. Finally, the single vortex calculation is extended to simulate vortex pairing. For the distance between two vortices less than a threshold value, numerical results show crisp resolution of the vortex merging.

  18. Conceptual study of the damping of large space structures using large-stroke adaptive stiffness cables

    NASA Technical Reports Server (NTRS)

    Thorwald, Gregory; Mikulas, Martin M., Jr.

    1992-01-01

    The concept of a large-stroke adaptive stiffness cable-device for damping control of space structures with large mass is introduced. The cable is used to provide damping in several examples, and its performance is shown through numerical simulation results. Displacement and velocity information of how the structure moves is used to determine when to modify the cable's stiffness in order to provide a damping force.

  19. Spectral multigrid methods for elliptic equations 2

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Wong, Y. S.; Hussaini, M. Y.

    1983-01-01

    A detailed description of spectral multigrid methods is provided. This includes the interpolation and coarse-grid operators for both periodic and Dirichlet problems. The spectral methods for periodic problems use Fourier series and those for Dirichlet problems are based upon Chebyshev polynomials. An improved preconditioning for Dirichlet problems is given. Numerical examples and practical advice are included.

  20. Highly Accurate Beam Torsion Solutions Using the p-Version Finite Element Method

    NASA Technical Reports Server (NTRS)

    Smith, James P.

    1996-01-01

    A new treatment of the classical beam torsion boundary value problem is applied. Using the p-version finite element method with shape functions based on Legendre polynomials, torsion solutions for generic cross-sections comprised of isotropic materials are developed. Element shape functions for quadrilateral and triangular elements are discussed, and numerical examples are provided.

  1. Be a CHANGEMASTER: 12 Coaching Strategies for Leading Professional and Personal Change

    ERIC Educational Resources Information Center

    Reiss, Karla

    2012-01-01

    "Be a CHANGEMASTER" is a practical guide for school and district leaders that provides 12 strategies for overcoming resistance to change. Unlike more theoretical books, this text shows how to adopt a coaching style of leadership as a systemic change strategy. Numerous examples demonstrate how the strategies used in this book have led to…

  2. Data-Intensive Scientific Management, Analysis and Visualization

    NASA Astrophysics Data System (ADS)

    Goranova, Mariana; Shishedjiev, Bogdan; Juliana Georgieva, Juliana

    2012-11-01

    The proposed integrated system provides a suite of services for data-intensive sciences that enables scientists to describe, manage, analyze and visualize data from experiments and numerical simulations in distributed and heterogeneous environment. This paper describes the advisor and the converter services and presents an example from the monitoring of the slant column content of atmospheric minor gases.

  3. 16 CFR 503.4 - Net quantity of contents, numerical count.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... terms of count only, or in terms of count and weight, volume, area, or dimension, the regulations are... provide a net quantity statement to specify weight, volume, area, or dimensions when such are required. For example, the synthetic sponge which is packaged, requires dimensions such as “5 in. × 3 in. × 1 in...

  4. 16 CFR 503.4 - Net quantity of contents, numerical count.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... terms of count only, or in terms of count and weight, volume, area, or dimension, the regulations are... provide a net quantity statement to specify weight, volume, area, or dimensions when such are required. For example, the synthetic sponge which is packaged, requires dimensions such as “5 in. × 3 in. × 1 in...

  5. 16 CFR 503.4 - Net quantity of contents, numerical count.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... terms of count only, or in terms of count and weight, volume, area, or dimension, the regulations are... provide a net quantity statement to specify weight, volume, area, or dimensions when such are required. For example, the synthetic sponge which is packaged, requires dimensions such as “5 in. × 3 in. × 1 in...

  6. 16 CFR 503.4 - Net quantity of contents, numerical count.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... terms of count only, or in terms of count and weight, volume, area, or dimension, the regulations are... provide a net quantity statement to specify weight, volume, area, or dimensions when such are required. For example, the synthetic sponge which is packaged, requires dimensions such as “5 in. × 3 in. × 1 in...

  7. Effect of faulting on ground-water movement in the Death Valley Region, Nevada and California

    USGS Publications Warehouse

    Faunt, Claudia C.

    1997-01-01

    The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional groundwater flow regime. Numerous examples of faultcontrolled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths.

  8. Track Picture Book. Elementary Science Study.

    ERIC Educational Resources Information Center

    Webster, David; And Others

    This picture book was designed to be used with an Elementary Science Study unit that provides opportunities for students in grades 4-6 to study animal tracks. Shown within this book are numerous examples of tracks, including those of tires, human beings, animal tracks, and others in various media, such as snow, sand, mud, dust, and cement. (CS)

  9. Guided Viewing of Film with Gifted Students: Resources for Educators and Counselors

    ERIC Educational Resources Information Center

    Hebert, Thomas P.; Hammond, Daniel R.

    2006-01-01

    Using movies to guide gifted students toward self-understanding provides them with numerous benefits. Movies have the potential to enrich and influence the lives of gifted students in constructive ways. A good movie, for example, can become a meaningful metaphor that explains the essence of a young person's dilemma. When an appropriate movie is…

  10. Solving intuitionistic fuzzy multi-objective nonlinear programming problem

    NASA Astrophysics Data System (ADS)

    Anuradha, D.; Sobana, V. E.

    2017-11-01

    This paper presents intuitionistic fuzzy multi-objective nonlinear programming problem (IFMONLPP). All the coefficients of the multi-objective nonlinear programming problem (MONLPP) and the constraints are taken to be intuitionistic fuzzy numbers (IFN). The IFMONLPP has been transformed into crisp one and solved by using Kuhn-Tucker condition. Numerical example is provided to illustrate the approach.

  11. Some Aspects of Nonlinear Dynamics and CFD

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with examples of spurious behavior observed in CFD computations.

  12. Numerical Modeling and Optimization of Warm-water Heat Sinks

    NASA Astrophysics Data System (ADS)

    Hadad, Yaser; Chiarot, Paul

    2015-11-01

    For cooling in large data-centers and supercomputers, water is increasingly replacing air as the working fluid in heat sinks. Utilizing water provides unique capabilities; for example: higher heat capacity, Prandtl number, and convection heat transfer coefficient. The use of warm, rather than chilled, water has the potential to provide increased energy efficiency. The geometric and operating parameters of the heat sink govern its performance. Numerical modeling is used to examine the influence of geometry and operating conditions on key metrics such as thermal and flow resistance. This model also facilitates studies on cooling of electronic chip hot spots and failure scenarios. We report on the optimal parameters for a warm-water heat sink to achieve maximum cooling performance.

  13. Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography.

    PubMed

    Fercher, A; Hitzenberger, C; Sticker, M; Zawadzki, R; Karamata, B; Lasser, T

    2001-12-03

    Dispersive samples introduce a wavelength dependent phase distortion to the probe beam. This leads to a noticeable loss of depth resolution in high resolution OCT using broadband light sources. The standard technique to avoid this consequence is to balance the dispersion of the sample byarrangingadispersive materialinthereference arm. However, the impact of dispersion is depth dependent. A corresponding depth dependent dispersion balancing technique is diffcult to implement. Here we present a numerical dispersion compensation technique for Partial Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT) based on numerical correlation of the depth scan signal with a depth variant kernel. It can be used a posteriori and provides depth dependent dispersion compensation. Examples of dispersion compensated depth scan signals obtained from microscope cover glasses are presented.

  14. Numerical Investigation of the Performance of a Supersonic Combustion Chamber and Comparison with Experiments

    NASA Astrophysics Data System (ADS)

    Banica, M. C.; Chun, J.; Scheuermann, T.; Weigand, B.; Wolfersdorf, J. v.

    2009-01-01

    Scramjet powered vehicles can decrease costs for access to space but substantial obstacles still exist in their realization. For example, experiments in the relevant Mach number regime are difficult to perform and flight testing is expensive. Therefore, numerical methods are often employed for system layout but they require validation against experimental data. Here, we validate the commercial code CFD++ against experimental results for hydrogen combustion in the supersonic combustion facility of the Institute of Aerospace Thermodynamics (ITLR) at the Universität Stuttgart. Fuel is injected through a lobed a strut injector, which provides rapid mixing. Our numerical data shows reasonable agreement with experiments. We further investigate effects of varying equivalence ratios on several important performance parameters.

  15. A Fourier-based total-field/scattered-field technique for three-dimensional broadband simulations of elastic targets near a water-sand interface.

    PubMed

    Shao, Yu; Wang, Shumin

    2016-12-01

    The numerical simulation of acoustic scattering from elastic objects near a water-sand interface is critical to underwater target identification. Frequency-domain methods are computationally expensive, especially for large-scale broadband problems. A numerical technique is proposed to enable the efficient use of finite-difference time-domain method for broadband simulations. By incorporating a total-field/scattered-field boundary, the simulation domain is restricted inside a tightly bounded region. The incident field is further synthesized by the Fourier transform for both subcritical and supercritical incidences. Finally, the scattered far field is computed using a half-space Green's function. Numerical examples are further provided to demonstrate the accuracy and efficiency of the proposed technique.

  16. GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations

    NASA Astrophysics Data System (ADS)

    Antoine, Xavier; Duboscq, Romain

    2015-08-01

    GPELab is a free Matlab toolbox for modeling and numerically solving large classes of systems of Gross-Pitaevskii equations that arise in the physics of Bose-Einstein condensates. The aim of this second paper, which follows (Antoine and Duboscq, 2014), is to first present the various pseudospectral schemes available in GPELab for computing the deterministic and stochastic nonlinear dynamics of Gross-Pitaevskii equations (Antoine, et al., 2013). Next, the corresponding GPELab functions are explained in detail. Finally, some numerical examples are provided to show how the code works for the complex dynamics of BEC problems.

  17. The Use of Generalized Laguerre Polynomials in Spectral Methods for Solving Fractional Delay Differential Equations.

    PubMed

    Khader, M M

    2013-10-01

    In this paper, an efficient numerical method for solving the fractional delay differential equations (FDDEs) is considered. The fractional derivative is described in the Caputo sense. The proposed method is based on the derived approximate formula of the Laguerre polynomials. The properties of Laguerre polynomials are utilized to reduce FDDEs to a linear or nonlinear system of algebraic equations. Special attention is given to study the error and the convergence analysis of the proposed method. Several numerical examples are provided to confirm that the proposed method is in excellent agreement with the exact solution.

  18. Retailer Stackelberg game in a supply chain with pricing and service decisions and simple price discount contract.

    PubMed

    Sadjadi, Seyed Jafar; Asadi, Hashem; Sadeghian, Ramin; Sahebi, Hadi

    2018-01-01

    This paper studies the Retailer Stackelberg game in a supply chain consisting of two manufacturers and one retailer where they compete simultaneously under three factors including price, service and simple price discount contract. It is assumed that the second manufacturer provides service directly to his customers, and the retailer provides service for the first product's customers, while the retailer buys the first product under price discount from the first manufacturer. The analysis of the optimal equilibrium solutions and the results of the numerical examples show that if a manufacturer chooses the appropriate range of discount rate, he will gain more profit than when there is no discount given to the retailer. This situation can be considered as an effective tool for the coordination of the first manufacturer and the retailer to offer discount by manufacturer and to provide the service by the retailer. We obtain equilibrium solution of Retailer Stackelberg game and analyze the numerical examples under two cases: a) the manufacturers sell their products to the retailer without price discount contract. b) The first manufacturer sells his products to the retailer with the simple price discount contract. The preliminary results show that the service and the price discount contract can improve the performance of supply chain.

  19. Retailer Stackelberg game in a supply chain with pricing and service decisions and simple price discount contract

    PubMed Central

    Sadjadi, Seyed Jafar; Sadeghian, Ramin; Sahebi, Hadi

    2018-01-01

    This paper studies the Retailer Stackelberg game in a supply chain consisting of two manufacturers and one retailer where they compete simultaneously under three factors including price, service and simple price discount contract. It is assumed that the second manufacturer provides service directly to his customers, and the retailer provides service for the first product’s customers, while the retailer buys the first product under price discount from the first manufacturer. The analysis of the optimal equilibrium solutions and the results of the numerical examples show that if a manufacturer chooses the appropriate range of discount rate, he will gain more profit than when there is no discount given to the retailer. This situation can be considered as an effective tool for the coordination of the first manufacturer and the retailer to offer discount by manufacturer and to provide the service by the retailer. We obtain equilibrium solution of Retailer Stackelberg game and analyze the numerical examples under two cases: a) the manufacturers sell their products to the retailer without price discount contract. b) The first manufacturer sells his products to the retailer with the simple price discount contract. The preliminary results show that the service and the price discount contract can improve the performance of supply chain. PMID:29649315

  20. An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry

    NASA Astrophysics Data System (ADS)

    Wintermeyer, Niklas; Winters, Andrew R.; Gassner, Gregor J.; Kopriva, David A.

    2017-07-01

    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretization exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving scheme we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretization of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem.

  1. Characterization and Detection of ϵ-Berge-Zhukovskii Equilibria

    PubMed Central

    Lung, Rodica Ioana; Suciu, Mihai; Gaskó, Noémi; Dumitrescu, D.

    2015-01-01

    The Berge-Zhukovskii equilibrium is an alternate solution concept in non-cooperative game theory that formalizes cooperation in a noncooperative setting. In this paper, the ϵ-Berge-Zhukovskii equilibrium is introduced and characterized by using a generative relation. The generative relation also provides a solution to the problem of computing the ϵ-Berge-Zhukovskii equilibrium for large games, by using evolutionary algorithms. Numerical examples illustrate the approach and provide a possible application for this equilibrium concept. PMID:26177217

  2. Low Variance Couplings for Stochastic Models of Intracellular Processes with Time-Dependent Rate Functions.

    PubMed

    Anderson, David F; Yuan, Chaojie

    2018-04-18

    A number of coupling strategies are presented for stochastically modeled biochemical processes with time-dependent parameters. In particular, the stacked coupling is introduced and is shown via a number of examples to provide an exceptionally low variance between the generated paths. This coupling will be useful in the numerical computation of parametric sensitivities and the fast estimation of expectations via multilevel Monte Carlo methods. We provide the requisite estimators in both cases.

  3. Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach.

    PubMed

    Tanaka, Kazuo; Ohtake, Hiroshi; Wang, Hua O

    2009-04-01

    This paper presents the guaranteed cost control of polynomial fuzzy systems via a sum of squares (SOS) approach. First, we present a polynomial fuzzy model and controller that are more general representations of the well-known Takagi-Sugeno (T-S) fuzzy model and controller, respectively. Second, we derive a guaranteed cost control design condition based on polynomial Lyapunov functions. Hence, the design approach discussed in this paper is more general than the existing LMI approaches (to T-S fuzzy control system designs) based on quadratic Lyapunov functions. The design condition realizes a guaranteed cost control by minimizing the upper bound of a given performance function. In addition, the design condition in the proposed approach can be represented in terms of SOS and is numerically (partially symbolically) solved via the recent developed SOSTOOLS. To illustrate the validity of the design approach, two design examples are provided. The first example deals with a complicated nonlinear system. The second example presents micro helicopter control. Both the examples show that our approach provides more extensive design results for the existing LMI approach.

  4. Considerations for the application of finite element beam modeling to vibration analysis of flight vehicle structures. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.

    1976-01-01

    The manner of representing a flight vehicle structure as an assembly of beam, spring, and rigid-body components for vibration analysis is described. The development is couched in terms of a substructures methodology which is based on the finite-element stiffness method. The particular manner of employing beam, spring, and rigid-body components to model such items as wing structures, external stores, pylons supporting engines or external stores, and sprung masses associated with launch vehicle fuel slosh is described by means of several simple qualitative examples. A detailed numerical example consisting of a tilt-rotor VTOL aircraft is included to provide a unified illustration of the procedure for representing a structure as an equivalent system of beams, springs, and rigid bodies, the manner of forming the substructure mass and stiffness matrices, and the mechanics of writing the equations of constraint which enforce deflection compatibility at the junctions of the substructures. Since many structures, or selected components of structures, can be represented in this manner for vibration analysis, the modeling concepts described and their application in the numerical example shown should prove generally useful to the dynamicist.

  5. Managing and Mobilising Talent in Malaysia: Issues, Challenges and Policy Implications for Malaysian Universities

    ERIC Educational Resources Information Center

    Azman, Norzaini; Sirat, Morshidi; Pang, Vincent

    2016-01-01

    The future of Malaysia as a high-income and competitive nation largely depends on its pool of highly skilled human capital. Hence, the issue of human capital development has taken centre stage in numerous reform agendas of Malaysia. This paper seeks to provide examples of policy initiatives aimed at facilitating the management of highly educated…

  6. Delay Tolerant Networking - Bundle Protocol Simulation

    NASA Technical Reports Server (NTRS)

    SeGui, John; Jenning, Esther

    2006-01-01

    In this paper, we report on the addition of MACHETE models needed to support DTN, namely: the Bundle Protocol (BP) model. To illustrate the useof MACHETE with the additional DTN model, we provide an example simulation to benchmark its performance. We demonstrate the use of the DTN protocol and discuss statistics gathered concerning the total time needed to simulate numerous bundle transmissions.

  7. Geostrophic Vortex Dynamics

    DTIC Science & Technology

    1988-10-01

    Generalized Kirchhoff Vortices 176 B. The 2-Level Rankine Vortex: Critical Points & Stability 181 C. Tripolar Coherent Euler Vortices 186 7...spontaneously in spectral simulations. One such example is provided by the tripolar vortex structureE which will be examined in detail in Chapter 6. It...of the tripolar coherent vortex structures that have recently been observed in very high resolution numerical simulations of two- dimensional

  8. Back to the Future: Implementing a Broad Economic, Inquiry-Based Approach to Accounting Education

    ERIC Educational Resources Information Center

    Frecka, Thomas J.; Morris, Michael H.; Ramanan, Ramachandran

    2004-01-01

    Motivated by concerns about the quality of accounting education and calls for a broader, more active approach to learning by numerous accounting educators and practitioners over the past 2 decades, the authors of this article sought to provide a framework and example materials to address those issues. The framework makes use of broad, economic…

  9. Chandrasekhar equations and computational algorithms for distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Ito, K.; Powers, R. K.

    1984-01-01

    The Chandrasekhar equations arising in optimal control problems for linear distributed parameter systems are considered. The equations are derived via approximation theory. This approach is used to obtain existence, uniqueness, and strong differentiability of the solutions and provides the basis for a convergent computation scheme for approximating feedback gain operators. A numerical example is presented to illustrate these ideas.

  10. A gradient enhanced plasticity-damage microplane model for concrete

    NASA Astrophysics Data System (ADS)

    Zreid, Imadeddin; Kaliske, Michael

    2018-03-01

    Computational modeling of concrete poses two main types of challenges. The first is the mathematical description of local response for such a heterogeneous material under all stress states, and the second is the stability and efficiency of the numerical implementation in finite element codes. The paper at hand presents a comprehensive approach addressing both issues. Adopting the microplane theory, a combined plasticity-damage model is formulated and regularized by an implicit gradient enhancement. The plasticity part introduces a new microplane smooth 3-surface cap yield function, which provides a stable numerical solution within an implicit finite element algorithm. The damage part utilizes a split, which can describe the transition of loading between tension and compression. Regularization of the model by the implicit gradient approach eliminates the mesh sensitivity and numerical instabilities. Identification methods for model parameters are proposed and several numerical examples of plain and reinforced concrete are carried out for illustration.

  11. Numerical modeling of coupled variably saturated fluid flow and reactive transport with fast and slow chemical reactions

    NASA Astrophysics Data System (ADS)

    Yeh, Gour-Tsyh (George); Siegel, Malcolm D.; Li, Ming-Hsu

    2001-02-01

    The couplings among chemical reaction rates, advective and diffusive transport in fractured media or soils, and changes in hydraulic properties due to precipitation and dissolution within fractures and in rock matrix are important for both nuclear waste disposal and remediation of contaminated sites. This paper describes the development and application of LEHGC2.0, a mechanistically based numerical model for simulation of coupled fluid flow and reactive chemical transport, including both fast and slow reactions in variably saturated media. Theoretical bases and numerical implementations are summarized, and two example problems are demonstrated. The first example deals with the effect of precipitation/dissolution on fluid flow and matrix diffusion in a two-dimensional fractured media. Because of the precipitation and decreased diffusion of solute from the fracture into the matrix, retardation in the fractured medium is not as large as the case wherein interactions between chemical reactions and transport are not considered. The second example focuses on a complicated but realistic advective-dispersive-reactive transport problem. This example exemplifies the need for innovative numerical algorithms to solve problems involving stiff geochemical reactions.

  12. Parameter estimation for stiff deterministic dynamical systems via ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Arnold, Andrea; Calvetti, Daniela; Somersalo, Erkki

    2014-10-01

    A commonly encountered problem in numerous areas of applications is to estimate the unknown coefficients of a dynamical system from direct or indirect observations at discrete times of some of the components of the state vector. A related problem is to estimate unobserved components of the state. An egregious example of such a problem is provided by metabolic models, in which the numerous model parameters and the concentrations of the metabolites in tissue are to be estimated from concentration data in the blood. A popular method for addressing similar questions in stochastic and turbulent dynamics is the ensemble Kalman filter (EnKF), a particle-based filtering method that generalizes classical Kalman filtering. In this work, we adapt the EnKF algorithm for deterministic systems in which the numerical approximation error is interpreted as a stochastic drift with variance based on classical error estimates of numerical integrators. This approach, which is particularly suitable for stiff systems where the stiffness may depend on the parameters, allows us to effectively exploit the parallel nature of particle methods. Moreover, we demonstrate how spatial prior information about the state vector, which helps the stability of the computed solution, can be incorporated into the filter. The viability of the approach is shown by computed examples, including a metabolic system modeling an ischemic episode in skeletal muscle, with a high number of unknown parameters.

  13. Method for determining the weight of functional objectives on manufacturing system.

    PubMed

    Zhang, Qingshan; Xu, Wei; Zhang, Jiekun

    2014-01-01

    We propose a three-dimensional integrated weight determination to solve manufacturing system functional objectives, where consumers are weighted by triangular fuzzy numbers to determine the enterprises. The weights, subjective parts are determined by the expert scoring method, the objective parts are determined by the entropy method with the competitive advantage of determining. Based on the integration of three methods and comprehensive weight, we provide some suggestions for the manufacturing system. This paper provides the numerical example analysis to illustrate the feasibility of this method.

  14. UQTk Version 3.0.3 User Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargsyan, Khachik; Safta, Cosmin; Chowdhary, Kamaljit Singh

    2017-05-01

    The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.0.3 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sen- sitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

  15. How number-space relationships are assessed before formal schooling: A taxonomy proposal

    PubMed Central

    Patro, Katarzyna; Nuerk, Hans-Christoph; Cress, Ulrike; Haman, Maciej

    2014-01-01

    The last years of research on numerical development have provided evidence that spatial-numerical associations (SNA) can be formed independent of formal school training. However, most of these studies used various experimental paradigms that referred to slightly different aspects of number and space processing. This poses a question of whether all SNAs described in the developmental literature can be interpreted as a unitary construct, or whether they are rather examples of different, but related phenomena. Our review aims to provide a starting point for a systematic classification of SNA measures used from infancy to late preschool years, and their underlying representations. We propose to distinguish among four basic SNA categories: (i) cross-dimensional magnitude processing, (ii) associations between spatial and numerical intervals, (iii) associations between cardinalities and spatial directions, (iv) associations between ordinalities and spatial directions. Such systematization allows for identifying similarities and differences between processes and representations that underlie the described measures, and also for assessing the adequacy of using different SNA tasks at different developmental stages. PMID:24860532

  16. Computing the optimal path in stochastic dynamical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauver, Martha; Forgoston, Eric, E-mail: eric.forgoston@montclair.edu; Billings, Lora

    2016-08-15

    In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensionalmore » system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.« less

  17. Soft active matter: a contemporary example of Edwardsian statistical mechanics

    NASA Astrophysics Data System (ADS)

    Liverpool, Tanniemola

    Colonies of swimming bacteria, algae or spermatozoa are examples of active systems composed of interacting units that consume energy and collectively generate motion and mechanical stresses. Due to the anisotropy of their interactions, these active particles can exhibit orientational order at high concentrations and have been called ``living liquid crystals''. Biology at the cellular and multicellular scale provides numerous examples of these active systems. They provide a novel class of experimentally accessible system far from equilibrium. Their rich collective behaviour includes non-equilibrium phase transitions and pattern formation on mesoscopic scales. Interestingly however, some of the theoretical insights gained from field theories applied to equilibrium soft matter systems can be used to explain aspects of their behaviour, but with a number of surprising new twists. I will describe and summarise recent theoretical results characterising the behaviour of such soft active systems highlighting in particular the effects of their internal dynamics on their macroscopic behaviour. With support of the EPSRC Grant No. EP/G026440/1.

  18. Graph theory approach to the eigenvalue problem of large space structures

    NASA Technical Reports Server (NTRS)

    Reddy, A. S. S. R.; Bainum, P. M.

    1981-01-01

    Graph theory is used to obtain numerical solutions to eigenvalue problems of large space structures (LSS) characterized by a state vector of large dimensions. The LSS are considered as large, flexible systems requiring both orientation and surface shape control. Graphic interpretation of the determinant of a matrix is employed to reduce a higher dimensional matrix into combinations of smaller dimensional sub-matrices. The reduction is implemented by means of a Boolean equivalent of the original matrices formulated to obtain smaller dimensional equivalents of the original numerical matrix. Computation time becomes less and more accurate solutions are possible. An example is provided in the form of a free-free square plate. Linearized system equations and numerical values of a stiffness matrix are presented, featuring a state vector with 16 components.

  19. On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems

    DOE PAGES

    Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan

    2015-05-19

    The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method.more » Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.« less

  20. Group Theory with Applications in Chemical Physics

    NASA Astrophysics Data System (ADS)

    Jacobs, Patrick

    2005-10-01

    Group Theory is an indispensable mathematical tool in many branches of chemistry and physics. This book provides a self-contained and rigorous account on the fundamentals and applications of the subject to chemical physics, assuming no prior knowledge of group theory. The first half of the book focuses on elementary topics, such as molecular and crystal symmetry, whilst the latter half is more advanced in nature. Discussions on more complex material such as space groups, projective representations, magnetic crystals and spinor bases, often omitted from introductory texts, are expertly dealt with. With the inclusion of numerous exercises and worked examples, this book will appeal to advanced undergraduates and beginning graduate students studying physical sciences and is an ideal text for use on a two-semester course. An introductory and advanced text that comprehensively covers fundamentals and applications of group theory in detail Suitable for a two-semester course with numerous worked examples and problems Includes several topics often omitted from introductory texts, such as rotation group, space groups and spinor bases

  1. Nonlinear resonances in the ABC-flow

    NASA Astrophysics Data System (ADS)

    Didov, A. A.; Uleysky, M. Yu.

    2018-01-01

    In this paper, we study resonances of the ABC-flow in the near integrable case ( C ≪1 ). This is an interesting example of a Hamiltonian system with 3/2 degrees of freedom in which simultaneous existence of two resonances of the same order is possible. Analytical conditions of the resonance existence are received. It is shown numerically that the largest n :1 (n = 1, 2, 3) resonances exist, and their energies are equal to theoretical energies in the near integrable case. We provide analytical and numerical evidences for existence of two branches of the two largest n :1 (n = 1, 2) resonances in the region of finite motion.

  2. Robust Fault Detection for Switched Fuzzy Systems With Unknown Input.

    PubMed

    Han, Jian; Zhang, Huaguang; Wang, Yingchun; Sun, Xun

    2017-10-03

    This paper investigates the fault detection problem for a class of switched nonlinear systems in the T-S fuzzy framework. The unknown input is considered in the systems. A novel fault detection unknown input observer design method is proposed. Based on the proposed observer, the unknown input can be removed from the fault detection residual. The weighted H∞ performance level is considered to ensure the robustness. In addition, the weighted H₋ performance level is introduced, which can increase the sensibility of the proposed detection method. To verify the proposed scheme, a numerical simulation example and an electromechanical system simulation example are provided at the end of this paper.

  3. Modeling electrical power absorption and thermally-induced biological tissue damage.

    PubMed

    Zohdi, T I

    2014-01-01

    This work develops a model for thermally induced damage from high current flow through biological tissue. Using the first law of thermodynamics, the balance of energy produced by the current and the energy absorbed by the tissue are investigated. The tissue damage is correlated with an evolution law that is activated upon exceeding a temperature threshold. As an example, the Fung material model is used. For certain parameter choices, the Fung material law has the ability to absorb relatively significant amounts of energy, due to its inherent exponential response character, thus, to some extent, mitigating possible tissue damage. Numerical examples are provided to illustrate the model's behavior.

  4. A Strategy for Urban Astronomical Observatory Site Preservation: The Southern Arizona Example (Abstract)

    NASA Astrophysics Data System (ADS)

    Craine, E. R.; Craine, B. L.; Craine, P. R.; Craine, E. M.; Fouts, S.

    2014-12-01

    (Abstract only) Urbanized observatories are under financial pressures for numerous and complex reasons, including concerns that increasing sky brightness will continue to erode their scientific viability. The history of urbanized observatories is one of steady decline and divestiture. We argue that light at night (LAN) impacts of urban growth are inadequately understood, that current measurement techniques are incomplete in scope, and that both limit the effectiveness of mitigation programs. We give examples of these factors for Pima County, Arizona, and propose techniques and a program that could provide focus and power to mitigation efforts, and could extend the longevity of southern Arizona observatories.

  5. A Strategy for Urban Astronomical Observatory Site Preservation: The Southern Arizona Example

    NASA Astrophysics Data System (ADS)

    Craine, Eric R.; Craine, Brian L.; Craine, Patrick R.; Craine, Erin M.; Fouts, Scott

    2014-05-01

    Urbanized observatories are under financial pressures for numerous and complex reasons, including concerns that increasing sky brightness will continue to erode their scientific viability. The history of urbanized observatories is one of steady decline and divestiture. We argue that light at night (LAN) impacts of urban growth are inadequately understood, that current measurement techniques are incomplete in scope, and that both limit the effectiveness of mitigation programs. We give examples of these factors for Pima County, Arizona, and propose techniques and a program that could provide focus and power to mitigation efforts, and could extend the longevity of southern Arizona observatories.

  6. Non-holonomic integrators

    NASA Astrophysics Data System (ADS)

    Cortés, J.; Martínez, S.

    2001-09-01

    We introduce a discretization of the Lagrange-d'Alembert principle for Lagrangian systems with non-holonomic constraints, which allows us to construct numerical integrators that approximate the continuous flow. We study the geometric invariance properties of the discrete flow which provide an explanation for the good performance of the proposed method. This is tested on two examples: a non-holonomic particle with a quadratic potential and a mobile robot with fixed orientation.

  7. Modal analysis of a nonuniform string with end mass and variable tension

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Galaboff, Z. J.

    1983-01-01

    Modal synthesis techniques for dynamic systems containing strings describe the lateral displacements of these strings by properly chosen shape functions. An iterative algorithm is provided to calculate the natural modes of a nonuniform string and variable tension for some typical boundary conditions including one end mass. Numerical examples are given for a string in a constant and a gravity gradient force field.

  8. LORAN-C LATITUDE-LONGITUDE CONVERSION AT SEA: PROGRAMMING CONSIDERATIONS.

    USGS Publications Warehouse

    McCullough, James R.; Irwin, Barry J.; Bowles, Robert M.

    1985-01-01

    Comparisons are made of the precision of arc-length routines as computer precision is reduced. Overland propagation delays are discussed and illustrated with observations from offshore New England. Present practice of LORAN-C error budget modeling is then reviewed with the suggestion that additional terms be considered in future modeling. Finally, some detailed numeric examples are provided to help with new computer program checkout.

  9. Deformation and Failure of Protein Materials in Physiologically Extreme Conditions and Disease

    DTIC Science & Technology

    2009-03-01

    resonance (NMR) spectroscopy and X- ray crystallography have advanced our ability to identify 3D protein structures57. Site-specific studies using NMR, a... ray crystallography, providing structural and temporal information about mechanisms of deformation and assembly (for example in intermediate...tens of thousands of 3D atomistic protein structures, identifying the structure of numerous proteins from varying species sources60. X- ray

  10. Mechanical testing of bones: the positive synergy of finite-element models and in vitro experiments.

    PubMed

    Cristofolini, Luca; Schileo, Enrico; Juszczyk, Mateusz; Taddei, Fulvia; Martelli, Saulo; Viceconti, Marco

    2010-06-13

    Bone biomechanics have been extensively investigated in the past both with in vitro experiments and numerical models. In most cases either approach is chosen, without exploiting synergies. Both experiments and numerical models suffer from limitations relative to their accuracy and their respective fields of application. In vitro experiments can improve numerical models by: (i) preliminarily identifying the most relevant failure scenarios; (ii) improving the model identification with experimentally measured material properties; (iii) improving the model identification with accurately measured actual boundary conditions; and (iv) providing quantitative validation based on mechanical properties (strain, displacements) directly measured from physical specimens being tested in parallel with the modelling activity. Likewise, numerical models can improve in vitro experiments by: (i) identifying the most relevant loading configurations among a number of motor tasks that cannot be replicated in vitro; (ii) identifying acceptable simplifications for the in vitro simulation; (iii) optimizing the use of transducers to minimize errors and provide measurements at the most relevant locations; and (iv) exploring a variety of different conditions (material properties, interface, etc.) that would require enormous experimental effort. By reporting an example of successful investigation of the femur, we show how a combination of numerical modelling and controlled experiments within the same research team can be designed to create a virtuous circle where models are used to improve experiments, experiments are used to improve models and their combination synergistically provides more detailed and more reliable results than can be achieved with either approach singularly.

  11. UDU/T/ covariance factorization for Kalman filtering

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Bierman, G. J.

    1980-01-01

    There has been strong motivation to produce numerically stable formulations of the Kalman filter algorithms because it has long been known that the original discrete-time Kalman formulas are numerically unreliable. Numerical instability can be avoided by propagating certain factors of the estimate error covariance matrix rather than the covariance matrix itself. This paper documents filter algorithms that correspond to the covariance factorization P = UDU(T), where U is a unit upper triangular matrix and D is diagonal. Emphasis is on computational efficiency and numerical stability, since these properties are of key importance in real-time filter applications. The history of square-root and U-D covariance filters is reviewed. Simple examples are given to illustrate the numerical inadequacy of the Kalman covariance filter algorithms; these examples show how factorization techniques can give improved computational reliability.

  12. Multi-objective optimal design of sandwich panels using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Xiaomei; Jiang, Yiping; Pueh Lee, Heow

    2017-10-01

    In this study, an optimization problem concerning sandwich panels is investigated by simultaneously considering the two objectives of minimizing the panel mass and maximizing the sound insulation performance. First of all, the acoustic model of sandwich panels is discussed, which provides a foundation to model the acoustic objective function. Then the optimization problem is formulated as a bi-objective programming model, and a solution algorithm based on the non-dominated sorting genetic algorithm II (NSGA-II) is provided to solve the proposed model. Finally, taking an example of a sandwich panel that is expected to be used as an automotive roof panel, numerical experiments are carried out to verify the effectiveness of the proposed model and solution algorithm. Numerical results demonstrate in detail how the core material, geometric constraints and mechanical constraints impact the optimal designs of sandwich panels.

  13. Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method

    NASA Astrophysics Data System (ADS)

    Doha, Eid H.; Bhrawy, Ali H.; Ezz-Eldien, Samer S.

    2013-10-01

    In this paper, a class of fractional diffusion equations with variable coefficients is considered. An accurate and efficient spectral tau technique for solving the fractional diffusion equations numerically is proposed. This method is based upon Chebyshev tau approximation together with Chebyshev operational matrix of Caputo fractional differentiation. Such approach has the advantage of reducing the problem to the solution of a system of algebraic equations, which may then be solved by any standard numerical technique. We apply this general method to solve four specific examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving the time-dependent fractional diffusion equations.

  14. An integral equation-based numerical solver for Taylor states in toroidal geometries

    NASA Astrophysics Data System (ADS)

    O'Neil, Michael; Cerfon, Antoine J.

    2018-04-01

    We present an algorithm for the numerical calculation of Taylor states in toroidal and toroidal-shell geometries using an analytical framework developed for the solution to the time-harmonic Maxwell equations. Taylor states are a special case of what are known as Beltrami fields, or linear force-free fields. The scheme of this work relies on the generalized Debye source representation of Maxwell fields and an integral representation of Beltrami fields which immediately yields a well-conditioned second-kind integral equation. This integral equation has a unique solution whenever the Beltrami parameter λ is not a member of a discrete, countable set of resonances which physically correspond to spontaneous symmetry breaking. Several numerical examples relevant to magnetohydrodynamic equilibria calculations are provided. Lastly, our approach easily generalizes to arbitrary geometries, both bounded and unbounded, and of varying genus.

  15. Stochastic Ocean Predictions with Dynamically-Orthogonal Primitive Equations

    NASA Astrophysics Data System (ADS)

    Subramani, D. N.; Haley, P., Jr.; Lermusiaux, P. F. J.

    2017-12-01

    The coastal ocean is a prime example of multiscale nonlinear fluid dynamics. Ocean fields in such regions are complex and intermittent with unstationary heterogeneous statistics. Due to the limited measurements, there are multiple sources of uncertainties, including the initial conditions, boundary conditions, forcing, parameters, and even the model parameterizations and equations themselves. For efficient and rigorous quantification and prediction of these uncertainities, the stochastic Dynamically Orthogonal (DO) PDEs for a primitive equation ocean modeling system with a nonlinear free-surface are derived and numerical schemes for their space-time integration are obtained. Detailed numerical studies with idealized-to-realistic regional ocean dynamics are completed. These include consistency checks for the numerical schemes and comparisons with ensemble realizations. As an illustrative example, we simulate the 4-d multiscale uncertainty in the Middle Atlantic/New York Bight region during the months of Jan to Mar 2017. To provide intitial conditions for the uncertainty subspace, uncertainties in the region were objectively analyzed using historical data. The DO primitive equations were subsequently integrated in space and time. The probability distribution function (pdf) of the ocean fields is compared to in-situ, remote sensing, and opportunity data collected during the coincident POSYDON experiment. Results show that our probabilistic predictions had skill and are 3- to 4- orders of magnitude faster than classic ensemble schemes.

  16. Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Q.; Sprague, M. A.; Jonkman, J.

    2014-01-01

    This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context ofmore » LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.« less

  17. Teaching Mathematics with Technology: Numerical Relationships.

    ERIC Educational Resources Information Center

    Bright, George W.

    1989-01-01

    Developing numerical relationships with calculators is emphasized. Calculators furnish some needed support for students as they investigate the value of fractions as the numerators or denominators change. An example with Logo programing for computers is also included. (MNS)

  18. Piecewise Polynomial Aggregation as Preprocessing for Data Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Dobronets, B. S.; Popova, O. A.

    2018-05-01

    Data aggregation issues for numerical modeling are reviewed in the present study. The authors discuss data aggregation procedures as preprocessing for subsequent numerical modeling. To calculate the data aggregation, the authors propose using numerical probabilistic analysis (NPA). An important feature of this study is how the authors represent the aggregated data. The study shows that the offered approach to data aggregation can be interpreted as the frequency distribution of a variable. To study its properties, the density function is used. For this purpose, the authors propose using the piecewise polynomial models. A suitable example of such approach is the spline. The authors show that their approach to data aggregation allows reducing the level of data uncertainty and significantly increasing the efficiency of numerical calculations. To demonstrate the degree of the correspondence of the proposed methods to reality, the authors developed a theoretical framework and considered numerical examples devoted to time series aggregation.

  19. Solving a Multi Objective Transportation Problem(MOTP) Under Fuzziness on Using Interval Numbers

    NASA Astrophysics Data System (ADS)

    Saraj, Mansour; Mashkoorzadeh, Feryal

    2010-09-01

    In this paper we present a solution procedure of the Multi Objective Transportation Problem(MOTP) where the coefficients of the objective functions, the source and destination parameters which determined by the decision maker(DM) are symmetric triangular fuzzy numbers. The constraints with interval source and destination parameters have been converted in to deterministic ones. A numerical example is provided to illustrate the approach.

  20. VizieR Online Data Catalog: RefleX : X-ray-tracing code (Paltani+, 2017)

    NASA Astrophysics Data System (ADS)

    Paltani, S.; Ricci, C.

    2017-11-01

    We provide here the RefleX executable, for both Linux and MacOSX, together with the User Manual and example script file and output file Running (for instance): reflex_linux will produce the file reflex.out Note that the results may differ slightly depending on the OS, because of slight differences in some implementations numerical computations. The difference are scientifically meaningless. (5 data files).

  1. Fast orthogonal transforms and generation of Brownian paths

    PubMed Central

    Leobacher, Gunther

    2012-01-01

    We present a number of fast constructions of discrete Brownian paths that can be used as alternatives to principal component analysis and Brownian bridge for stratified Monte Carlo and quasi-Monte Carlo. By fast we mean that a path of length n can be generated in O(nlog(n)) floating point operations. We highlight some of the connections between the different constructions and we provide some numerical examples. PMID:23471545

  2. Interactions of Waves and River Plume and their Effects on Sediment Transport at River Mouth (RIVET I)

    DTIC Science & Technology

    2013-09-30

    nearshore modeling system for inlet hydrodynamics, sediment deposition/resuspension, river plume processes and the resulting morphodynamics in a...modeling systems are sufficiently robust to provide the critical link (interpolation) between the remote-sensing data and the ground-truth data. The...modeling systems . For example, it is well-known that in numerical modeling of inlet hydrodynamics, the results are sensitive to parameterization of

  3. Numerical Analysis of the Photo-Dissociation/Radical Oxidation of Formaldehyde by Ultraviolet Light in a Photolytic Reactor

    DTIC Science & Technology

    1993-12-01

    airstream. For example, the photolytic reactor may not provide any additional benefit in a pollution control device which treats specific emissions ...Atomic Hydrogen Reactions (H*): HHO ~hv -H*+HC0* ),nm 1.30E-Ss -1 [PlA] Atkinson H2O2+hv -.H*+HO2* Xnm 0, (4b - 0) [PSC] Atkinson H202+hv

  4. Multiple-Relaxation-Time Lattice Boltzmann Models in 3D

    NASA Technical Reports Server (NTRS)

    dHumieres, Dominique; Ginzburg, Irina; Krafczyk, Manfred; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    This article provides a concise exposition of the multiple-relaxation-time lattice Boltzmann equation, with examples of fifteen-velocity and nineteen-velocity models in three dimensions. Simulation of a diagonally lid-driven cavity flow in three dimensions at Re=500 and 2000 is performed. The results clearly demonstrate the superior numerical stability of the multiple-relaxation-time lattice Boltzmann equation over the popular lattice Bhatnagar-Gross-Krook equation.

  5. TORO II: A finite element computer program for nonlinear quasi-static problems in electromagnetics: Part 2, User`s manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gartling, D.K.

    User instructions are given for the finite element, electromagnetics program, TORO II. The theoretical background and numerical methods used in the program are documented in SAND95-2472. The present document also describes a number of example problems that have been analyzed with the code and provides sample input files for typical simulations. 20 refs., 34 figs., 3 tabs.

  6. Self-Scheduling Parallel Methods for Multiple Serial Codes with Application to WOPWOP

    NASA Technical Reports Server (NTRS)

    Long, Lyle N.; Brentner, Kenneth S.

    2000-01-01

    This paper presents a scheme for efficiently running a large number of serial jobs on parallel computers. Two examples are given of computer programs that run relatively quickly, but often they must be run numerous times to obtain all the results needed. It is very common in science and engineering to have codes that are not massive computing challenges in themselves, but due to the number of instances that must be run, they do become large-scale computing problems. The two examples given here represent common problems in aerospace engineering: aerodynamic panel methods and aeroacoustic integral methods. The first example simply solves many systems of linear equations. This is representative of an aerodynamic panel code where someone would like to solve for numerous angles of attack. The complete code for this first example is included in the appendix so that it can be readily used by others as a template. The second example is an aeroacoustics code (WOPWOP) that solves the Ffowcs Williams Hawkings equation to predict the far-field sound due to rotating blades. In this example, one quite often needs to compute the sound at numerous observer locations, hence parallelization is utilized to automate the noise computation for a large number of observers.

  7. Optical Air Flow Measurements in Flight

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Jentink, Henk W.

    2004-01-01

    This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.

  8. Method for Determining the Weight of Functional Objectives on Manufacturing System

    PubMed Central

    Zhang, Qingshan; Xu, Wei; Zhang, Jiekun

    2014-01-01

    We propose a three-dimensional integrated weight determination to solve manufacturing system functional objectives, where consumers are weighted by triangular fuzzy numbers to determine the enterprises. The weights, subjective parts are determined by the expert scoring method, the objective parts are determined by the entropy method with the competitive advantage of determining. Based on the integration of three methods and comprehensive weight, we provide some suggestions for the manufacturing system. This paper provides the numerical example analysis to illustrate the feasibility of this method. PMID:25243203

  9. A NURBS-enhanced finite volume solver for steady Euler equations

    NASA Astrophysics Data System (ADS)

    Meng, Xucheng; Hu, Guanghui

    2018-04-01

    In Hu and Yi (2016) [20], a non-oscillatory k-exact reconstruction method was proposed towards the high-order finite volume methods for steady Euler equations, which successfully demonstrated the high-order behavior in the simulations. However, the degeneracy of the numerical accuracy of the approximate solutions to problems with curved boundary can be observed obviously. In this paper, the issue is resolved by introducing the Non-Uniform Rational B-splines (NURBS) method, i.e., with given discrete description of the computational domain, an approximate NURBS curve is reconstructed to provide quality quadrature information along the curved boundary. The advantages of using NURBS include i). both the numerical accuracy of the approximate solutions and convergence rate of the numerical methods are improved simultaneously, and ii). the NURBS curve generation is independent of other modules of the numerical framework, which makes its application very flexible. It is also shown in the paper that by introducing more elements along the normal direction for the reconstruction patch of the boundary element, significant improvement in the convergence to steady state can be achieved. The numerical examples confirm the above features very well.

  10. A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics

    NASA Astrophysics Data System (ADS)

    Franceschini, Andrea; Ferronato, Massimiliano; Janna, Carlo; Teatini, Pietro

    2016-06-01

    The simulation of the mechanics of geological faults and fractures is of paramount importance in several applications, such as ensuring the safety of the underground storage of wastes and hydrocarbons or predicting the possible seismicity triggered by the production and injection of subsurface fluids. However, the stable numerical modeling of ground ruptures is still an open issue. The present work introduces a novel formulation based on the use of the Lagrange multipliers to prescribe the constraints on the contact surfaces. The variational formulation is modified in order to take into account the frictional work along the activated fault portion according to the principle of maximum plastic dissipation. The numerical model, developed in the framework of the Finite Element method, provides stable solutions with a fast convergence of the non-linear problem. The stabilizing properties of the proposed model are emphasized with the aid of a realistic numerical example dealing with the generation of ground fractures due to groundwater withdrawal in arid regions.

  11. Electromagnetic behavior of spatial terahertz wave modulators based on reconfigurable micromirror gratings in Littrow configuration.

    PubMed

    Kappa, Jan; Schmitt, Klemens M; Rahm, Marco

    2017-08-21

    Efficient, high speed spatial modulators with predictable performance are a key element in any coded aperture terahertz imaging system. For spectroscopy, the modulators must also provide a broad modulation frequency range. In this study, we numerically analyze the electromagnetic behavior of a dynamically reconfigurable spatial terahertz wave modulator based on a micromirror grating in Littrow configuration. We show that such a modulator can modulate terahertz radiation over a wide frequency range from 1.7 THz to beyond 3 THz at a modulation depth of more than 0.6. As a specific example, we numerically simulated coded aperture imaging of an object with binary transmissive properties and successfully reconstructed the image.

  12. TORO II: A finite element computer program for nonlinear quasi-static problems in electromagnetics: Part 1, Theoretical background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gartling, D.K.

    The theoretical and numerical background for the finite element computer program, TORO II, is presented in detail. TORO II is designed for the multi-dimensional analysis of nonlinear, electromagnetic field problems described by the quasi-static form of Maxwell`s equations. A general description of the boundary value problems treated by the program is presented. The finite element formulation and the associated numerical methods used in TORO II are also outlined. Instructions for the use of the code are documented in SAND96-0903; examples of problems analyzed with the code are also provided in the user`s manual. 24 refs., 8 figs.

  13. Efficient optimization of the quantum relative entropy

    NASA Astrophysics Data System (ADS)

    Fawzi, Hamza; Fawzi, Omar

    2018-04-01

    Many quantum information measures can be written as an optimization of the quantum relative entropy between sets of states. For example, the relative entropy of entanglement of a state is the minimum relative entropy to the set of separable states. The various capacities of quantum channels can also be written in this way. We propose a unified framework to numerically compute these quantities using off-the-shelf semidefinite programming solvers, exploiting the approximation method proposed in Fawzi, Saunderson and Parrilo (2017 arXiv: 1705.00812). As a notable application, this method allows us to provide numerical counterexamples for a proposed lower bound on the quantum conditional mutual information in terms of the relative entropy of recovery.

  14. Grid adaption based on modified anisotropic diffusion equations formulated in the parametic domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagmeijer, R.

    1994-11-01

    A new grid-adaption algorithm for problems in computational fluid dynamics is presented. The basic equations are derived from a variational problem formulated in the parametric domain of the mapping that defines the existing grid. Modification of the basic equations provides desirable properties in boundary layers. The resulting modified anisotropic diffusion equations are solved for the computational coordinates as functions of the parametric coordinates and these functions are numerically inverted. Numerical examples show that the algorithm is robust, that shocks and boundary layers are well-resolved on the adapted grid, and that the flow solution becomes a globally smooth function of themore » computational coordinates.« less

  15. Parametric symplectic partitioned Runge-Kutta methods with energy-preserving properties for Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Wang, Dongling; Xiao, Aiguo; Li, Xueyang

    2013-02-01

    Based on W-transformation, some parametric symplectic partitioned Runge-Kutta (PRK) methods depending on a real parameter α are developed. For α=0, the corresponding methods become the usual PRK methods, including Radau IA-IA¯ and Lobatto IIIA-IIIB methods as examples. For any α≠0, the corresponding methods are symplectic and there exists a value α∗ such that energy is preserved in the numerical solution at each step. The existence of the parameter and the order of the numerical methods are discussed. Some numerical examples are presented to illustrate these results.

  16. Differential forms for scientists and engineers

    NASA Astrophysics Data System (ADS)

    Blair Perot, J.; Zusi, Christopher J.

    2014-01-01

    This paper is a review of a number of mathematical concepts from differential geometry and exterior calculus that are finding increasing application in the numerical solution of partial differential equations. The objective of the paper is to introduce the scientist/ engineer to some of these ideas via a number of concrete examples in 2, 3, and 4 dimensions. The goal is not to explain these ideas with mathematical precision but to present concrete examples and enable a physical intuition of these concepts for those who are not mathematicians. The objective of this paper is to provide enough context so that scientist/engineers can interpret, implement, and understand other works which use these elegant mathematical concepts.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Yulong; Shu, Chi-wang; Noelle, Sebastian

    This note aims at demonstrating the advantage of moving-water well-balanced schemes over still-water well-balanced schemes for the shallow water equations. We concentrate on numerical examples with solutions near a moving-water equilibrium. For such examples, still-water well-balanced methods are not capable of capturing the small perturbations of the moving-water equilibrium and may generate significant spurious oscillations, unless an extremely refined mesh is used. On the other hand, moving-water well-balanced methods perform well in these tests. The numerical examples in this note clearly demonstrate the importance of utilizing moving-water well-balanced methods for solutions near a moving-water equilibrium.

  18. Long term fault system reorganization of convergent and strike-slip systems

    NASA Astrophysics Data System (ADS)

    Cooke, M. L.; McBeck, J.; Hatem, A. E.; Toeneboehn, K.; Beyer, J. L.

    2017-12-01

    Laboratory and numerical experiments representing deformation over many earthquake cycles demonstrate that fault evolution includes episodes of fault reorganization that optimize work on the fault system. Consequently, the mechanical and kinematic efficiencies of fault systems do not increase monotonically through their evolution. New fault configurations can optimize the external work required to accommodate deformation, suggesting that changes in system efficiency can drive fault reorganization. Laboratory evidence and numerical results show that fault reorganization within accretion, strike-slip and oblique convergent systems is associated with increasing efficiency due to increased fault slip (frictional work and seismic energy) and commensurate decreased off-fault deformation (internal work and work against gravity). Between episodes of fault reorganization, fault systems may become less efficient as they produce increasing off fault deformation. For example, laboratory and numerical experiments show that the interference and interaction between different fault segments may increase local internal work or that increasing convergence can increase work against gravity produced by a fault system. This accumulation of work triggers fault reorganization as stored work provides the energy required to grow new faults that reorganize the system to a more efficient configuration. The results of laboratory and numerical experiments reveal that we should expect crustal fault systems to reorganize following periods of increasing inefficiency, even in the absence of changes to the tectonic regime. In other words, fault reorganization doesn't require a change in tectonic loading. The time frame of fault reorganization depends on fault system configuration, strain rate and processes that relax stresses within the crust. For example, stress relaxation may keep pace with stress accumulation, which would limit the increase in the internal work and gravitational work so that irregularities can persist along active fault systems without reorganization of the fault system. Consequently, steady state behavior, for example with constant fault slip rates, may arise either in systems with high degree of stress-relaxation or occur only within the intervals between episodes of fault reorganization.

  19. On the chaotic diffusion in multidimensional Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Cincotta, P. M.; Giordano, C. M.; Martí, J. G.; Beaugé, C.

    2018-01-01

    We present numerical evidence that diffusion in the herein studied multidimensional near-integrable Hamiltonian systems departs from a normal process, at least for realistic timescales. Therefore, the derivation of a diffusion coefficient from a linear fit on the variance evolution of the unperturbed integrals fails. We review some topics on diffusion in the Arnold Hamiltonian and yield numerical and theoretical arguments to show that in the examples we considered, a standard coefficient would not provide a good estimation of the speed of diffusion. However, numerical experiments concerning diffusion would provide reliable information about the stability of the motion within chaotic regions of the phase space. In this direction, we present an extension of previous results concerning the dynamical structure of the Laplace resonance in Gliese-876 planetary system considering variations of the orbital parameters accordingly to the error introduced by the radial velocity determination. We found that a slight variation of the eccentricity of planet c would destabilize the inner region of the resonance that, though chaotic, shows stable when adopting the best fit values for the parameters.

  20. Gated Silica Mesoporous Materials in Sensing Applications.

    PubMed

    Sancenón, Félix; Pascual, Lluís; Oroval, Mar; Aznar, Elena; Martínez-Máñez, Ramón

    2015-08-01

    Silica mesoporous supports (SMSs) have a large specific surface area and volume and are particularly exciting vehicles for delivery applications. Such container-like structures can be loaded with numerous different chemical substances, such as drugs and reporters. Gated systems also contain addressable functions at openings of voids, and cargo delivery can be controlled on-command using chemical, biochemical or physical stimuli. Many of these gated SMSs have been applied for drug delivery. However, fewer examples of their use in sensing protocols have been reported. The approach of applying SMSs in sensing uses another concept-that of loading pores with a reporter and designing a capping mechanism that is selectively opened in the presence of a target analyte, which results in the delivery of the reporter. According to this concept, we provide herein a complete compilation of published examples of probes based on the use of capped SMSs for sensing. Examples for the detection of anions, cations, small molecules and biomolecules are provided. The diverse range of gated silica mesoporous materials presented here highlights their usefulness in recognition protocols.

  1. Gated Silica Mesoporous Materials in Sensing Applications

    PubMed Central

    Sancenón, Félix; Pascual, Lluís; Oroval, Mar; Aznar, Elena; Martínez-Máñez, Ramón

    2015-01-01

    Silica mesoporous supports (SMSs) have a large specific surface area and volume and are particularly exciting vehicles for delivery applications. Such container-like structures can be loaded with numerous different chemical substances, such as drugs and reporters. Gated systems also contain addressable functions at openings of voids, and cargo delivery can be controlled on-command using chemical, biochemical or physical stimuli. Many of these gated SMSs have been applied for drug delivery. However, fewer examples of their use in sensing protocols have been reported. The approach of applying SMSs in sensing uses another concept—that of loading pores with a reporter and designing a capping mechanism that is selectively opened in the presence of a target analyte, which results in the delivery of the reporter. According to this concept, we provide herein a complete compilation of published examples of probes based on the use of capped SMSs for sensing. Examples for the detection of anions, cations, small molecules and biomolecules are provided. The diverse range of gated silica mesoporous materials presented here highlights their usefulness in recognition protocols. PMID:26491626

  2. Utilizing Direct Numerical Simulations of Transition and Turbulence in Design Optimization

    NASA Technical Reports Server (NTRS)

    Rai, Man M.

    2015-01-01

    Design optimization methods that use the Reynolds-averaged Navier-Stokes equations with the associated turbulence and transition models, or other model-based forms of the governing equations, may result in aerodynamic designs with actual performance levels that are noticeably different from the expected values because of the complexity of modeling turbulence/transition accurately in certain flows. Flow phenomena such as wake-blade interaction and trailing edge vortex shedding in turbines and compressors (examples of such flows) may require a computational approach that is free of transition/turbulence models, such as direct numerical simulations (DNS), for the underlying physics to be computed accurately. Here we explore the possibility of utilizing DNS data in designing a turbine blade section. The ultimate objective is to substantially reduce differences between predicted performance metrics and those obtained in reality. The redesign of a typical low-pressure turbine blade section with the goal of reducing total pressure loss in the row is provided as an example. The basic ideas presented here are of course just as applicable elsewhere in aerodynamic shape optimization as long as the computational costs are not excessive.

  3. Analysis of data mining classification by comparison of C4.5 and ID algorithms

    NASA Astrophysics Data System (ADS)

    Sudrajat, R.; Irianingsih, I.; Krisnawan, D.

    2017-01-01

    The rapid development of information technology, triggered by the intensive use of information technology. For example, data mining widely used in investment. Many techniques that can be used assisting in investment, the method that used for classification is decision tree. Decision tree has a variety of algorithms, such as C4.5 and ID3. Both algorithms can generate different models for similar data sets and different accuracy. C4.5 and ID3 algorithms with discrete data provide accuracy are 87.16% and 99.83% and C4.5 algorithm with numerical data is 89.69%. C4.5 and ID3 algorithms with discrete data provides 520 and 598 customers and C4.5 algorithm with numerical data is 546 customers. From the analysis of the both algorithm it can classified quite well because error rate less than 15%.

  4. The Numerical Propulsion System Simulation: A Multidisciplinary Design System for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Lytle, John K.

    1999-01-01

    Advances in computational technology and in physics-based modeling are making large scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze ma or propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of design process and to provide the designer with critical information about the components early in the design process. This paper describes the development of the Numerical Propulsion System Simulation (NPSS), a multidisciplinary system of analysis tools that is focussed on extending the simulation capability from components to the full system. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.

  5. Relative motion of orbiting satellites

    NASA Technical Reports Server (NTRS)

    Eades, J. B., Jr.

    1972-01-01

    The relative motion problem is analyzed, as a linearized case, and as a numerically determined solution to provide a time history of the geometries representing the motion state. The displacement history and the hodographs for families of solutions are provided, analytically and graphically, to serve as an aid to understanding this problem area. Linearized solutions to relative motion problems of orbiting particles are presented for the impulsive and fixed thrust cases. Second order solutions are described to enhance the accuracy of prediction. A method was developed to obtain accurate, numerical solutions to the intercept and rendezvous problem; and, special situations are examined. A particular problem related to relative motions, where the motion traces develop a cusp, is examined in detail. This phenomenon is found to be dependent on a particular relationship between orbital eccentricity and the inclination between orbital planes. These conditions are determined, and, example situations are presented and discussed.

  6. History-Dependent Problems with Applications to Contact Models for Elastic Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartosz, Krzysztof; Kalita, Piotr; Migórski, Stanisław

    We prove an existence and uniqueness result for a class of subdifferential inclusions which involve a history-dependent operator. Then we specialize this result in the study of a class of history-dependent hemivariational inequalities. Problems of such kind arise in a large number of mathematical models which describe quasistatic processes of contact. To provide an example we consider an elastic beam in contact with a reactive obstacle. The contact is modeled with a new and nonstandard condition which involves both the subdifferential of a nonconvex and nonsmooth function and a Volterra-type integral term. We derive a variational formulation of the problemmore » which is in the form of a history-dependent hemivariational inequality for the displacement field. Then, we use our abstract result to prove its unique weak solvability. Finally, we consider a numerical approximation of the model, solve effectively the approximate problems and provide numerical simulations.« less

  7. Application of the Ramanujan Fourier Transform for the analysis of secondary structure content in amino acid sequences.

    PubMed

    Mainardi, L T; Pattini, L; Cerutti, S

    2007-01-01

    A novel method is presented for the investigation of protein properties of sequences using Ramanujan Fourier Transform (RFT). The new methodology involves the preprocessing of protein sequence data by numerically encoding it and then applying the RFT. The RFT is based on projecting the obtained numerical series on a set of basis functions constituted by Ramanujan sums (RS). In RS components, periodicities of finite integer length, rather than frequency, (as in classical harmonic analysis) are considered. The potential of the new approach is documented by a few examples in the analysis of hydrophobic profiles of proteins in two classes including abundance of alpha-helices (group A) or beta-strands (group B). Different patterns are provided as evidence. RFT can be used to characterize the structural properties of proteins and integrate complementary information provided by other signal processing transforms.

  8. A PDE Pricing Framework for Cross-Currency Interest Rate Derivatives with Target Redemption Features

    NASA Astrophysics Data System (ADS)

    Christara, Christina C.; Minh Dang, Duy; Jackson, Kenneth R.; Lakhany, Asif

    2010-09-01

    We propose a general framework for efficient pricing via a partial differential equation (PDE) approach for exotic cross-currency interest rate (IR) derivatives, with strong emphasis on long-dated foreign exchange (FX) IR hybrids, namely Power Reverse Dual Currency (PRDC) swaps with a FX Target Redemption (FX-TARN) provision. The FX-TARN provision provides a cap on the FX-linked PRDC coupon amounts, and once the accumulated coupon amount reaches this cap, the underlying PRDC swap terminates. Our PDE pricing framework is based on an auxiliary state variable to keep track of the total accumulated PRDC coupon amount. Finite differences on uniform grids and the Alternating Direction Implicit (ADI) method are used for the spatial and time discretizations, respectively, of the model-dependent PDE corresponding to each discretized value of the auxiliary variable. Numerical examples illustrating the convergence properties of the numerical methods are provided.

  9. A Simple Numerical Procedure for the Simulation of "Lifelike" Linear-Sweep Voltammograms

    NASA Astrophysics Data System (ADS)

    Bozzini, Benedetto P.

    2000-01-01

    Practical linear-sweep voltammograms seldom resemble the theoretical ones shown in textbooks. This is because several phenomena (activation, mass transport, ohmic resistance) control the kinetics over different potential ranges scanned during the potential sweep. These effects are generally treated separately in the didactic literature, yet they have never been "assembled" in a way that allows the educational use of real experiments. This makes linear-sweep voltammetric experiments almost unusable in the teaching of physical chemistry. A simple approach to the classroom description of "lifelike" experimental results is proposed in this paper. Analytical expressions of linear sweep voltammograms are provided. The actual numerical evaluations can be carried out with a pocket calculator. Two typical examples are executed and comparison with experimental data is described. This approach to teaching electrode kinetics has proved an effective tool to provide students with an insight into the effects of electrochemical parameters and operating conditions.

  10. Breaking barriers to care: a community of solution for chronic disease management.

    PubMed

    Sanders, Jim; Solberg, Bill; Gauger, Michael

    2013-01-01

    For 10 years the Medical College of Wisconsin and Columbia St. Mary's Hospital have joined together in a partnership to work within some of Milwaukee's most impoverished neighborhoods. Beginning simply by providing health care through a free clinic, the partnership soon was confronted with numerous examples of barriers to care being experienced by patients. A community-based participatory action process allowed the local population to give voice to the local realities of barriers to care. Here we combine our anecdotal clinical experience, the neighborhood's input, and an example of a successful program from a low-resource international setting to create a novel approach to treating chronic disease in uninsured populations. This model of care has been successful for 2 reasons. First, the model shows good health outcomes at low cost. Second, solid community partnerships with care providers, churches, and other groups have been formed in support of the model, ensuring its credibility and sustainability.

  11. Numerical Study of the Generation of Linear Energy Transfer Spectra for Space Radiation Applications

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; Wilson, John W.; Hunter, Abigail

    2005-01-01

    In analyzing charged particle spectra in space due to galactic cosmic rays (GCR) and solar particle events (SPE), the conversion of particle energy spectra into linear energy transfer (LET) distributions is a convenient guide in assessing biologically significant components of these spectra. The mapping of LET to energy is triple valued and can be defined only on open energy subintervals where the derivative of LET with respect to energy is not zero. Presented here is a well-defined numerical procedure which allows for the generation of LET spectra on the open energy subintervals that are integrable in spite of their singular nature. The efficiency and accuracy of the numerical procedures is demonstrated by providing examples of computed differential and integral LET spectra and their equilibrium components for historically large SPEs and 1977 solar minimum GCR environments. Due to the biological significance of tissue, all simulations are done with tissue as the target material.

  12. Fast algorithms for Quadrature by Expansion I: Globally valid expansions

    NASA Astrophysics Data System (ADS)

    Rachh, Manas; Klöckner, Andreas; O'Neil, Michael

    2017-09-01

    The use of integral equation methods for the efficient numerical solution of PDE boundary value problems requires two main tools: quadrature rules for the evaluation of layer potential integral operators with singular kernels, and fast algorithms for solving the resulting dense linear systems. Classically, these tools were developed separately. In this work, we present a unified numerical scheme based on coupling Quadrature by Expansion, a recent quadrature method, to a customized Fast Multipole Method (FMM) for the Helmholtz equation in two dimensions. The method allows the evaluation of layer potentials in linear-time complexity, anywhere in space, with a uniform, user-chosen level of accuracy as a black-box computational method. Providing this capability requires geometric and algorithmic considerations beyond the needs of standard FMMs as well as careful consideration of the accuracy of multipole translations. We illustrate the speed and accuracy of our method with various numerical examples.

  13. Solving fully fuzzy transportation problem using pentagonal fuzzy numbers

    NASA Astrophysics Data System (ADS)

    Maheswari, P. Uma; Ganesan, K.

    2018-04-01

    In this paper, we propose a simple approach for the solution of fuzzy transportation problem under fuzzy environment in which the transportation costs, supplies at sources and demands at destinations are represented by pentagonal fuzzy numbers. The fuzzy transportation problem is solved without converting to its equivalent crisp form using a robust ranking technique and a new fuzzy arithmetic on pentagonal fuzzy numbers. To illustrate the proposed approach a numerical example is provided.

  14. Criminal poisoning: medical murderers.

    PubMed

    Furbee, R Brent

    2006-03-01

    It is impossible to determine the true incidence of homicides that occur within health care facilities. Over the years there have been numerous documented examples of health care providers preying on helpless patients. For several reasons, the health care system has been inadequate in its response. This article reviews some of those cases, the hospitals' responses, and the outcome of investigations,to reveal the common factors that can identify the warning signs of these tragic events.

  15. Advertising and Sealed Bid Auctions in a Transshipment Game

    DTIC Science & Technology

    1996-06-01

    distributors promote their sales by advertising . While the maximum quantity demanded by each customer is fixed and given, his bids on the various...brands are determined by the advertising and other promotional efforts. The bid response function for each consumer is supposed to be given and known. The...the optimal distribution of the product, and the bids of the consumers . A numerical example is provided and the solution routine is discussed.

  16. Comprehension and computation in Bayesian problem solving

    PubMed Central

    Johnson, Eric D.; Tubau, Elisabet

    2015-01-01

    Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian inferences relative to normalized formats (e.g., probabilities, percentages), both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on “transparent” Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e., transparent problem structures) at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct vs. incorrect reasoners depart, and how individual differences might influence this time point. PMID:26283976

  17. A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-Eldien, S. S.

    2015-07-01

    In this paper, an efficient and accurate spectral numerical method is presented for solving second-, fourth-order fractional diffusion-wave equations and fractional wave equations with damping. The proposed method is based on Jacobi tau spectral procedure together with the Jacobi operational matrix for fractional integrals, described in the Riemann-Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations in the unknown expansion coefficients of the sought-for spectral approximations. The validity and effectiveness of the method are demonstrated by solving five numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier.

  18. Vendor-buyer inventory models with trade credit financing under both non-cooperative and integrated environments

    NASA Astrophysics Data System (ADS)

    Teng, Jinn-Tsair; Chang, Chun-Tao; Chern, Maw-Sheng

    2012-11-01

    Most researchers studied vendor-buyer supply chain inventory policies only from the perspective of an integrated model, which provides us the best cooperative solution. However, in reality, not many vendors and buyers are wholly integrated. Hence, it is necessary to study the optimal policies not only under an integrated environment but also under a non-cooperative environment. In this article, we develop a supply chain vendor-buyer inventory model with trade credit financing linked to order quantity. We then study the optimal policies for both the vendor and the buyer under a non-cooperative environment first, and then under a cooperative integrated situation. Further, we provide some numerical examples to illustrate the theoretical results, compare the differences between these two distinct solutions, and obtain some managerial insights. For example, in a cooperative environment, to reduce the total cost for both parties, the vendor should either provide a simple permissible delay without order quantity restriction or offer a long permissible delay linked order quantity. By contrast, in a non-cooperative environment, the vendor should provide a short permissible delay to reduce its total cost.

  19. Convergence acceleration in scattering series and seismic waveform inversion using nonlinear Shanks transformation

    NASA Astrophysics Data System (ADS)

    Eftekhar, Roya; Hu, Hao; Zheng, Yingcai

    2018-06-01

    Iterative solution process is fundamental in seismic inversions, such as in full-waveform inversions and some inverse scattering methods. However, the convergence could be slow or even divergent depending on the initial model used in the iteration. We propose to apply Shanks transformation (ST for short) to accelerate the convergence of the iterative solution. ST is a local nonlinear transformation, which transforms a series locally into another series with an improved convergence property. ST works by separating the series into a smooth background trend called the secular term versus an oscillatory transient term. ST then accelerates the convergence of the secular term. Since the transformation is local, we do not need to know all the terms in the original series which is very important in the numerical implementation. The ST performance was tested numerically for both the forward Born series and the inverse scattering series (ISS). The ST has been shown to accelerate the convergence in several examples, including three examples of forward modeling using the Born series and two examples of velocity inversion based on a particular type of the ISS. We observe that ST is effective in accelerating the convergence and it can also achieve convergence even for a weakly divergent scattering series. As such, it provides a useful technique to invert for a large-contrast medium perturbation in seismic inversion.

  20. Simulations of relativistic quantum plasmas using real-time lattice scalar QED

    NASA Astrophysics Data System (ADS)

    Shi, Yuan; Xiao, Jianyuan; Qin, Hong; Fisch, Nathaniel J.

    2018-05-01

    Real-time lattice quantum electrodynamics (QED) provides a unique tool for simulating plasmas in the strong-field regime, where collective plasma scales are not well separated from relativistic-quantum scales. As a toy model, we study scalar QED, which describes self-consistent interactions between charged bosons and electromagnetic fields. To solve this model on a computer, we first discretize the scalar-QED action on a lattice, in a way that respects geometric structures of exterior calculus and U(1)-gauge symmetry. The lattice scalar QED can then be solved, in the classical-statistics regime, by advancing an ensemble of statistically equivalent initial conditions in time, using classical field equations obtained by extremizing the discrete action. To demonstrate the capability of our numerical scheme, we apply it to two example problems. The first example is the propagation of linear waves, where we recover analytic wave dispersion relations using numerical spectrum. The second example is an intense laser interacting with a one-dimensional plasma slab, where we demonstrate natural transition from wakefield acceleration to pair production when the wave amplitude exceeds the Schwinger threshold. Our real-time lattice scheme is fully explicit and respects local conservation laws, making it reliable for long-time dynamics. The algorithm is readily parallelized using domain decomposition, and the ensemble may be computed using quantum parallelism in the future.

  1. VERAView User's Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, Andrew T.; Lee, Ronald W.

    2016-05-31

    VERAView has been developed as an interactive graphical interface for the visualization and engineering analyses of output data from VERA. The python-based software is easy to install and intuitive to use, and provides instantaneous 2D and 3D images, 1D plots, and alpha-numeric data from VERA multi-physics simulations. This document provides a brief overview of the software and some description of the major features of the application, including examples of each of the encapsulated ‘widgets’ that have been implemented thus far. VERAView is still under major development and large changes in the software and this document are still anticipated.

  2. Metal band drives in spacecraft mechanisms

    NASA Technical Reports Server (NTRS)

    Maus, Daryl

    1993-01-01

    Transmitting and changing the characteristics of force and stroke is a requirement in nearly all mechanisms. Examples include changing linear to rotary motion, providing a 90 deg change in direction, and amplifying stroke or force. Requirements for size, weight, efficiency and reliability create unique problems in spacecraft mechanisms. Flexible metal band and cam drive systems provide powerful solutions to these problems. Band drives, rack and pinion gears, and bell cranks are compared for effectiveness. Band drive issues are discussed including materials, bend radius, fabrication, attachment and reliability. Numerous mechanisms are shown which illustrate practical applications of band drives.

  3. The method of complex characteristics for design of transonic blade sections

    NASA Technical Reports Server (NTRS)

    Bledsoe, M. R.

    1986-01-01

    A variety of computational methods were developed to obtain shockless or near shockless flow past two-dimensional airfoils. The approach used was the method of complex characteristics, which determines smooth solutions to the transonic flow equations based on an input speed distribution. General results from fluid mechanics are presented. An account of the method of complex characteristics is given including a description of the particular spaces and coordinates, conformal transformations, and numerical procedures that are used. The operation of the computer program COMPRES is presented along with examples of blade sections designed with the code. A user manual is included with a glossary to provide additional information which may be helpful. The computer program in Fortran, including numerous comment cards is listed.

  4. Solution landscapes in nematic microfluidics

    NASA Astrophysics Data System (ADS)

    Crespo, M.; Majumdar, A.; Ramos, A. M.; Griffiths, I. M.

    2017-08-01

    We study the static equilibria of a simplified Leslie-Ericksen model for a unidirectional uniaxial nematic flow in a prototype microfluidic channel, as a function of the pressure gradient G and inverse anchoring strength, B. We numerically find multiple static equilibria for admissible pairs (G , B) and classify them according to their winding numbers and stability. The case G = 0 is analytically tractable and we numerically study how the solution landscape is transformed as G increases. We study the one-dimensional dynamical model, the sensitivity of the dynamic solutions to initial conditions and the rate of change of G and B. We provide a physically interesting example of how the time delay between the applications of G and B can determine the selection of the final steady state.

  5. Methods for computing comet core temperatures

    NASA Astrophysics Data System (ADS)

    McKay, C. P.; Squyres, S. W.; Reynolds, R. T.

    1986-06-01

    The temperature profile within the comet nucleus provides the key to an understanding of the history of the volatiles within a comet. Certain difficulties arise in connection with current cometary temperature models. It is shown that the constraint of zero net heat flow can be used to derive general analytical expressions which will allow for the determination of comet core temperature for a spherically symmetric comet, taking into account information about the surface temperature and the thermal conductivity. The obtained results are compared with the expression for comet core temperatures considered by Klinger (1981). Attention is given to analytical results, an example case, and numerical models. The formalization developed makes it possible to determine the core temperature on the basis of the numerical models of the surface temperature.

  6. Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water flows in open channels

    NASA Astrophysics Data System (ADS)

    Qian, Shouguo; Li, Gang; Shao, Fengjing; Xing, Yulong

    2018-05-01

    We construct and study efficient high order discontinuous Galerkin methods for the shallow water flows in open channels with irregular geometry and a non-flat bottom topography in this paper. The proposed methods are well-balanced for the still water steady state solution, and can preserve the non-negativity of wet cross section numerically. The well-balanced property is obtained via a novel source term separation and discretization. A simple positivity-preserving limiter is employed to provide efficient and robust simulations near the wetting and drying fronts. Numerical examples are performed to verify the well-balanced property, the non-negativity of the wet cross section, and good performance for both continuous and discontinuous solutions.

  7. Acceleration of convergence of vector sequences

    NASA Technical Reports Server (NTRS)

    Sidi, A.; Ford, W. F.; Smith, D. A.

    1983-01-01

    A general approach to the construction of convergence acceleration methods for vector sequence is proposed. Using this approach, one can generate some known methods, such as the minimal polynomial extrapolation, the reduced rank extrapolation, and the topological epsilon algorithm, and also some new ones. Some of the new methods are easier to implement than the known methods and are observed to have similar numerical properties. The convergence analysis of these new methods is carried out, and it is shown that they are especially suitable for accelerating the convergence of vector sequences that are obtained when one solves linear systems of equations iteratively. A stability analysis is also given, and numerical examples are provided. The convergence and stability properties of the topological epsilon algorithm are likewise given.

  8. Combined Uncertainty and A-Posteriori Error Bound Estimates for CFD Calculations: Theory and Implementation

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2014-01-01

    Simulation codes often utilize finite-dimensional approximation resulting in numerical error. Some examples include, numerical methods utilizing grids and finite-dimensional basis functions, particle methods using a finite number of particles. These same simulation codes also often contain sources of uncertainty, for example, uncertain parameters and fields associated with the imposition of initial and boundary data,uncertain physical model parameters such as chemical reaction rates, mixture model parameters, material property parameters, etc.

  9. Effective Mechanical Properties of Fuzzy Fiber Composites

    DTIC Science & Technology

    2012-03-16

    fibers’’. Numerical examples of compositesmade of epoxy resin , carbonfibers and carbon nanotubes are presented and the impact of the carbon nanotubes...allows us to compute effective properties of composites with multiple types of ??fuzzy fibers??. Numerical examples of composites made of epoxy resin ...length (Fig. 1 in [42]). The CNTs have inter- nal radius 0.51 nm and external radius 0.85 nm. The ‘‘fuzzy fibers’’ are embedded in EPIKOTE 862 resin . The

  10. Summary of tracking and identification methods

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Yang, Chun; Kadar, Ivan

    2014-06-01

    Over the last two decades, many solutions have arisen to combine target tracking estimation with classification methods. Target tracking includes developments from linear to non-linear and Gaussian to non-Gaussian processing. Pattern recognition includes detection, classification, recognition, and identification methods. Integrating tracking and pattern recognition has resulted in numerous approaches and this paper seeks to organize the various approaches. We discuss the terminology so as to have a common framework for various standards such as the NATO STANAG 4162 - Identification Data Combining Process. In a use case, we provide a comparative example highlighting that location information (as an example) with additional mission objectives from geographical, human, social, cultural, and behavioral modeling is needed to determine identification as classification alone does not allow determining identification or intent.

  11. Computer modeling of the mechanical behavior of composites -- Interfacial cracks in fiber-reinforced materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmauder, S.; Haake, S.; Mueller, W.H.

    Computer modeling of materials and especially modeling the mechanical behavior of composites became increasingly popular in the past few years. Among them are examples of micromechanical modeling of real structures as well as idealized model structures of linear elastic and elasto-plastic material response. In this paper, Erdogan`s Integral Equation Method (IEM) is chosen as an example for a powerful method providing principle insight into elastic fracture mechanical situations. IEM or, alternatively, complex function techniques sometimes even allow for deriving analytical solutions such as in the case of a circumferential crack along a fiber/matrix interface. The analytical formulae of this interfacemore » crack will be analyzed numerically and typical results will be presented graphically.« less

  12. The use of solution adaptive grids in solving partial differential equations

    NASA Technical Reports Server (NTRS)

    Anderson, D. A.; Rai, M. M.

    1982-01-01

    The grid point distribution used in solving a partial differential equation using a numerical method has a substantial influence on the quality of the solution. An adaptive grid which adjusts as the solution changes provides the best results when the number of grid points available for use during the calculation is fixed. Basic concepts used in generating and applying adaptive grids are reviewed in this paper, and examples illustrating applications of these concepts are presented.

  13. SUBOPT: A CAD program for suboptimal linear regulators

    NASA Technical Reports Server (NTRS)

    Fleming, P. J.

    1985-01-01

    An interactive software package which provides design solutions for both standard linear quadratic regulator (LQR) and suboptimal linear regulator problems is described. Intended for time-invariant continuous systems, the package is easily modified to include sampled-data systems. LQR designs are obtained by established techniques while the large class of suboptimal problems containing controller and/or performance index options is solved using a robust gradient minimization technique. Numerical examples demonstrate features of the package and recent developments are described.

  14. Study of Transport Properties and Structure of Extended-Chain Polymers.

    DTIC Science & Technology

    1985-09-01

    Thermometric devices disturb temperature. Unfeasible to use guarded electrodes or hotplates ". Surface and volume conductivities mixed. Numerical examples will...gold or aluminum onto appropriate portions of the surface. Alternatively, graphite pastes, silver pastes, conductive cements, or paints can be used. Care... aluminum box which was grounded to provide elec- 158 85 a) TOP VIEW GROUND WIRETELNBS ONNECTORLO samAewi E SHILDE ELIREDE ALUM5 INV O kv~~TO COVERBA7:E

  15. Lattice Boltzmann model for simulation of magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Chen, Shiyi; Chen, Hudong; Martinez, Daniel; Matthaeus, William

    1991-01-01

    A numerical method, based on a discrete Boltzmann equation, is presented for solving the equations of magnetohydrodynamics (MHD). The algorithm provides advantages similar to the cellular automaton method in that it is local and easily adapted to parallel computing environments. Because of much lower noise levels and less stringent requirements on lattice size, the method appears to be more competitive with traditional solution methods. Examples show that the model accurately reproduces both linear and nonlinear MHD phenomena.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, P. W.

    Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.

  17. A numerical simulation of the dispersal of aerial sprays

    NASA Technical Reports Server (NTRS)

    Bragg, M. B.

    1981-01-01

    A computer program was developed to predict the trajectory, ground deposition, and drift of liquid sprays injected into the wake of an agricultural aircraft in ground effect. The program uses a horseshoe vortex wake model and includes the effects of liquid droplet evaporation, crosswind, the propeller slipstream, ground effect, and tunnel walls on small scale models. This user's guide includes several case examples demonstrating user options. A complete listing of the FORTRAN program is provided.

  18. Comparison of single and consecutive dual frequency induction surface hardening of gear wheels

    NASA Astrophysics Data System (ADS)

    Barglik, J.; Ducki, K.; Kukla, D.; Mizera, J.; Mrówka-Nowotnik, G.; Sieniawski, J.; Smalcerz, A.

    2018-05-01

    Mathematical modelling of single and consecutive dual - frequency induction surface hardening systems are presented and compared. The both models are solved by the 3D FEM-based professional software supported by a number of own numerical procedures. The methodology is illustrated with some examples of surface induction hardening of a gear wheel made of steel 41Cr4. The computations are in a good accordance with experiments provided on the laboratory stand.

  19. REVIEWS OF TOPICAL PROBLEMS: Population synthesis in astrophysics

    NASA Astrophysics Data System (ADS)

    Popov, S. B.; Prokhorov, M. E.

    2007-11-01

    Population synthesis is a method for numerical simulation of the population of objects with a complex evolution. This method is widely used in astrophysics. We consider its main applications to studying astronomical objects. Examples of modeling evolution are given for populations of close binaries and isolated neutron stars. The application of the method to studying active galactic nuclei and the integral spectral characteristics of galaxies is briefly discussed. An extensive bibliography on all the topics covered is provided.

  20. Probabilistic methods for rotordynamics analysis

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Torng, T. Y.; Millwater, H. R.; Fossum, A. F.; Rheinfurth, M. H.

    1991-01-01

    This paper summarizes the development of the methods and a computer program to compute the probability of instability of dynamic systems that can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the eigenvalues or Routh-Hurwitz test functions are investigated. Computational methods based on a fast probability integration concept and an efficient adaptive importance sampling method are proposed to perform efficient probabilistic analysis. A numerical example is provided to demonstrate the methods.

  1. Model and Data Reduction for Control, Identification and Compressed Sensing

    NASA Astrophysics Data System (ADS)

    Kramer, Boris

    This dissertation focuses on problems in design, optimization and control of complex, large-scale dynamical systems from different viewpoints. The goal is to develop new algorithms and methods, that solve real problems more efficiently, together with providing mathematical insight into the success of those methods. There are three main contributions in this dissertation. In Chapter 3, we provide a new method to solve large-scale algebraic Riccati equations, which arise in optimal control, filtering and model reduction. We present a projection based algorithm utilizing proper orthogonal decomposition, which is demonstrated to produce highly accurate solutions at low rank. The method is parallelizable, easy to implement for practitioners, and is a first step towards a matrix free approach to solve AREs. Numerical examples for n ≥ 106 unknowns are presented. In Chapter 4, we develop a system identification method which is motivated by tangential interpolation. This addresses the challenge of fitting linear time invariant systems to input-output responses of complex dynamics, where the number of inputs and outputs is relatively large. The method reduces the computational burden imposed by a full singular value decomposition, by carefully choosing directions on which to project the impulse response prior to assembly of the Hankel matrix. The identification and model reduction step follows from the eigensystem realization algorithm. We present three numerical examples, a mass spring damper system, a heat transfer problem, and a fluid dynamics system. We obtain error bounds and stability results for this method. Chapter 5 deals with control and observation design for parameter dependent dynamical systems. We address this by using local parametric reduced order models, which can be used online. Data available from simulations of the system at various configurations (parameters, boundary conditions) is used to extract a sparse basis to represent the dynamics (via dynamic mode decomposition). Subsequently, a new, compressed sensing based classification algorithm is developed which incorporates the extracted dynamic information into the sensing basis. We show that this augmented classification basis makes the method more robust to noise, and results in superior identification of the correct parameter. Numerical examples consist of a Navier-Stokes, as well as a Boussinesq flow application.

  2. A single-vendor and a single-buyer integrated inventory model with ordering cost reduction dependent on lead time

    NASA Astrophysics Data System (ADS)

    Vijayashree, M.; Uthayakumar, R.

    2017-09-01

    Lead time is one of the major limits that affect planning at every stage of the supply chain system. In this paper, we study a continuous review inventory model. This paper investigates the ordering cost reductions are dependent on lead time. This study addressed two-echelon supply chain problem consisting of a single vendor and a single buyer. The main contribution of this study is that the integrated total cost of the single vendor and the single buyer integrated system is analyzed by adopting two different (linear and logarithmic) types ordering cost reductions act dependent on lead time. In both cases, we develop effective solution procedures for finding the optimal solution and then illustrative numerical examples are given to illustrate the results. The solution procedure is to determine the optimal solutions of order quantity, ordering cost, lead time and the number of deliveries from the single vendor and the single buyer in one production run, so that the integrated total cost incurred has the minimum value. Ordering cost reduction is the main aspect of the proposed model. A numerical example is given to validate the model. Numerical example solved by using Matlab software. The mathematical model is solved analytically by minimizing the integrated total cost. Furthermore, the sensitivity analysis is included and the numerical examples are given to illustrate the results. The results obtained in this paper are illustrated with the help of numerical examples. The sensitivity of the proposed model has been checked with respect to the various major parameters of the system. Results reveal that the proposed integrated inventory model is more applicable for the supply chain manufacturing system. For each case, an algorithm procedure of finding the optimal solution is developed. Finally, the graphical representation is presented to illustrate the proposed model and also include the computer flowchart in each model.

  3. An unconditionally stable method for numerically solving solar sail spacecraft equations of motion

    NASA Astrophysics Data System (ADS)

    Karwas, Alex

    Solar sails use the endless supply of the Sun's radiation to propel spacecraft through space. The sails use the momentum transfer from the impinging solar radiation to provide thrust to the spacecraft while expending zero fuel. Recently, the first solar sail spacecraft, or sailcraft, named IKAROS completed a successful mission to Venus and proved the concept of solar sail propulsion. Sailcraft experimental data is difficult to gather due to the large expenses of space travel, therefore, a reliable and accurate computational method is needed to make the process more efficient. Presented in this document is a new approach to simulating solar sail spacecraft trajectories. The new method provides unconditionally stable numerical solutions for trajectory propagation and includes an improved physical description over other methods. The unconditional stability of the new method means that a unique numerical solution is always determined. The improved physical description of the trajectory provides a numerical solution and time derivatives that are continuous throughout the entire trajectory. The error of the continuous numerical solution is also known for the entire trajectory. Optimal control for maximizing thrust is also provided within the framework of the new method. Verification of the new approach is presented through a mathematical description and through numerical simulations. The mathematical description provides details of the sailcraft equations of motion, the numerical method used to solve the equations, and the formulation for implementing the equations of motion into the numerical solver. Previous work in the field is summarized to show that the new approach can act as a replacement to previous trajectory propagation methods. A code was developed to perform the simulations and it is also described in this document. Results of the simulations are compared to the flight data from the IKAROS mission. Comparison of the two sets of data show that the new approach is capable of accurately simulating sailcraft motion. Sailcraft and spacecraft simulations are compared to flight data and to other numerical solution techniques. The new formulation shows an increase in accuracy over a widely used trajectory propagation technique. Simulations for two-dimensional, three-dimensional, and variable attitude trajectories are presented to show the multiple capabilities of the new technique. An element of optimal control is also part of the new technique. An additional equation is added to the sailcraft equations of motion that maximizes thrust in a specific direction. A technical description and results of an example optimization problem are presented. The spacecraft attitude dynamics equations take the simulation a step further by providing control torques using the angular rate and acceleration outputs of the numerical formulation.

  4. A numerical method for solving a nonlinear 2-D optimal control problem with the classical diffusion equation

    NASA Astrophysics Data System (ADS)

    Mamehrashi, K.; Yousefi, S. A.

    2017-02-01

    This paper presents a numerical solution for solving a nonlinear 2-D optimal control problem (2DOP). The performance index of a nonlinear 2DOP is described with a state and a control function. Furthermore, dynamic constraint of the system is given by a classical diffusion equation. It is preferred to use the Ritz method for finding the numerical solution of the problem. The method is based upon the Legendre polynomial basis. By using this method, the given optimisation nonlinear 2DOP reduces to the problem of solving a system of algebraic equations. The benefit of the method is that it provides greater flexibility in which the given initial and boundary conditions of the problem are imposed. Moreover, compared with the eigenfunction method, the satisfactory results are obtained only in a small number of polynomials order. This numerical approach is applicable and effective for such a kind of nonlinear 2DOP. The convergence of the method is extensively discussed and finally two illustrative examples are included to observe the validity and applicability of the new technique developed in the current work.

  5. Numerical analysis of the flow field in a sloshing tank with a horizontal perforated plate

    NASA Astrophysics Data System (ADS)

    Jin, Heng; Liu, Yong; Li, Huajun; Fu, Qiang

    2017-08-01

    Liquid sloshing is a type of free surface flow inside a partially filled water tank. Sloshing exerts a significant effect on the safety of liquid transport systems; in particular, it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank. Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions. In this study, a numerical model based on OpenFOAM (Open Source Field Operation and Manipulation), an open source computed fluid dynamic code, is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate. The numerical results of the free surface elevations are first verified using experimental data, and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples. The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies. This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.

  6. Capillary Corner Flows With Partial and Nonwetting Fluids

    NASA Technical Reports Server (NTRS)

    Bolleddula, D. A.; Weislogel, M. M.

    2009-01-01

    Capillary flow in containers or conduits with interior corners are common place in nature and industry. The majority of investigations addressing such flows solve the problem numerically in terms of a friction factor for flows along corners with contact angles below the Concus-Finn critical wetting condition for the particular conduit geometry of interest. This research effort provides missing numerical data for the flow resistance function F(sub i) for partially and nonwetting systems above the Concus-Finn condition. In such cases the fluid spontaneously de-wets the interior corner and often retracts into corner-bound drops. A banded numerical coefficient is desirable for further analysis and is achieved by careful selection of length scales x(sub s) and y(sub s) to nondimensionalize the problem. The optimal scaling is found to be identical to the wetting scaling, namely x(sub s) = H and y(sub s) = Htan (alpha), where H is the height from the corner to the free surface and a is the corner half-angle. Employing this scaling produces a relatively weakly varying flow resistance F(sub i) and for subsequent analyses is treated as a constant. Example solutions to steady and transient flow problems are provided that illustrate applications of this result.

  7. Computing Generalized Matrix Inverse on Spiking Neural Substrate.

    PubMed

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines.

  8. Characterizing the Severe Turbulence Environments Associated With Commercial Aviation Accidents: A Real-Time Turbulence Model (RTTM) Designed for the Operational Prediction of Hazardous Aviation Turbulence Environments

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Lux, Kevin M.; Cetola, Jeffrey D.; Huffman, Allan W.; Riordan, Allen J.; Slusser, Sarah W.; Lin, Yuh-Lang; Charney, Joseph J.; Waight, Kenneth T.

    2004-01-01

    Real-time prediction of environments predisposed to producing moderate-severe aviation turbulence is studied. We describe the numerical model and its postprocessing system designed for said prediction of environments predisposed to severe aviation turbulence as well as presenting numerous examples of its utility. The numerical model is MASS version 5.13, which is integrated over three different grid matrices in real time on a university work station in support of NASA Langley Research Center s B-757 turbulence research flight missions. The postprocessing system includes several turbulence-related products, including four turbulence forecasting indices, winds, streamlines, turbulence kinetic energy, and Richardson numbers. Additionally, there are convective products including precipitation, cloud height, cloud mass fluxes, lifted index, and K-index. Furthermore, soundings, sounding parameters, and Froude number plots are also provided. The horizontal cross-section plot products are provided from 16 000 to 46 000 ft in 2000-ft intervals. Products are available every 3 hours at the 60- and 30-km grid interval and every 1.5 hours at the 15-km grid interval. The model is initialized from the NWS ETA analyses and integrated two times a day.

  9. The Size Congruity Effect: Is Bigger Always More?

    ERIC Educational Resources Information Center

    Santens, Seppe; Verguts, Tom

    2011-01-01

    When comparing digits of different physical sizes, numerical and physical size interact. For example, in a numerical comparison task, people are faster to compare two digits when their numerical size (the relevant dimension) and physical size (the irrelevant dimension) are congruent than when they are incongruent. Two main accounts have been put…

  10. Setting numerical population objectives for priority landbird species

    Treesearch

    Kenneth V. Rosenberg; Peter J. Blancher

    2005-01-01

    Following the example of the North American Waterfowl Management Plan, deriving numerical population estimates and conservation targets for priority landbird species is considered a desirable, if not necessary, element of the Partners in Flight planning process. Methodology for deriving such estimates remains in its infancy, however, and the use of numerical population...

  11. Quasi-generalized variables

    NASA Technical Reports Server (NTRS)

    Baumgarten, J.; Ostermeyer, G. P.

    1986-01-01

    The numerical solution of a system of differential and algebraic equations is difficult, due to the appearance of numerical instabilities. A method is presented here which permits numerical solutions of such a system to be obtained which satisfy the algebraic constraint equations exactly without reducing the order of the differential equations. The method is demonstrated using examples from mechanics.

  12. Aerodynamic design using numerical optimization

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Chapman, G. T.

    1983-01-01

    The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.

  13. Monitoring to Protect the Character of Individual Wildernesses

    Treesearch

    David N. Cole

    2006-01-01

    A primary goal of wilderness stewardship is to protect individual wilderness areas from most anthropogenic change. Numerous agents of change threaten to degrade wilderness character. These agents of change are both internal (for example, grazing) and external (for example, polluting industries) to wilderness. They can be activities (for example, recreation use) or the...

  14. Non-robust numerical simulations of analogue extension experiments

    NASA Astrophysics Data System (ADS)

    Naliboff, John; Buiter, Susanne

    2016-04-01

    Numerical and analogue models of lithospheric deformation provide significant insight into the tectonic processes that lead to specific structural and geophysical observations. As these two types of models contain distinct assumptions and tradeoffs, investigations drawing conclusions from both can reveal robust links between first-order processes and observations. Recent studies have focused on detailed comparisons between numerical and analogue experiments in both compressional and extensional tectonics, sometimes involving multiple lithospheric deformation codes and analogue setups. While such comparisons often show good agreement on first-order deformation styles, results frequently diverge on second-order structures, such as shear zone dip angles or spacing, and in certain cases even on first-order structures. Here, we present finite-element experiments that are designed to directly reproduce analogue "sandbox" extension experiments at the cm-scale. We use material properties and boundary conditions that are directly taken from analogue experiments and use a Drucker-Prager failure model to simulate shear zone formation in sand. We find that our numerical experiments are highly sensitive to numerous numerical parameters. For example, changes to the numerical resolution, velocity convergence parameters and elemental viscosity averaging commonly produce significant changes in first- and second-order structures accommodating deformation. The sensitivity of the numerical simulations to small parameter changes likely reflects a number of factors, including, but not limited to, high angles of internal friction assigned to sand, complex, unknown interactions between the brittle sand (used as an upper crust equivalent) and viscous silicone (lower crust), highly non-linear strain weakening processes and poor constraints on the cohesion of sand. Our numerical-analogue comparison is hampered by (a) an incomplete knowledge of the fine details of sand failure and sand properties, and (b) likely limitations to the use of a continuum Drucker-Prager model for representing shear zone formation in sand. In some cases our numerical experiments provide reasonable fits to first-order structures observed in the analogue experiments, but the numerical sensitivity to small parameter variations leads us to conclude that the numerical experiments are not robust.

  15. A forestry application simulation of man-machine techniques for analyzing remotely sensed data

    NASA Technical Reports Server (NTRS)

    Berkebile, J.; Russell, J.; Lube, B.

    1976-01-01

    The typical steps in the analysis of remotely sensed data for a forestry applications example are simulated. The example uses numerically-oriented pattern recognition techniques and emphasizes man-machine interaction.

  16. Functional level-set derivative for a polymer self consistent field theory Hamiltonian

    NASA Astrophysics Data System (ADS)

    Ouaknin, Gaddiel; Laachi, Nabil; Bochkov, Daniil; Delaney, Kris; Fredrickson, Glenn H.; Gibou, Frederic

    2017-09-01

    We derive functional level-set derivatives for the Hamiltonian arising in self-consistent field theory, which are required to solve free boundary problems in the self-assembly of polymeric systems such as block copolymer melts. In particular, we consider Dirichlet, Neumann and Robin boundary conditions. We provide numerical examples that illustrate how these shape derivatives can be used to find equilibrium and metastable structures of block copolymer melts with a free surface in both two and three spatial dimensions.

  17. Hamilton's Equations with Euler Parameters for Rigid Body Dynamics Modeling. Chapter 3

    NASA Technical Reports Server (NTRS)

    Shivarama, Ravishankar; Fahrenthold, Eric P.

    2004-01-01

    A combination of Euler parameter kinematics and Hamiltonian mechanics provides a rigid body dynamics model well suited for use in strongly nonlinear problems involving arbitrarily large rotations. The model is unconstrained, free of singularities, includes a general potential energy function and a minimum set of momentum variables, and takes an explicit state space form convenient for numerical implementation. The general formulation may be specialized to address particular applications, as illustrated in several three dimensional example problems.

  18. Wheels within Wheels: Hamiltonian Dynamics as a Hierarchy of Action Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, Rory J.; Bellan, Paul M.

    2010-09-17

    In systems where one coordinate undergoes periodic oscillation, the net displacement in any other coordinate over a single period is shown to be given by differentiation of the action integral associated with the oscillating coordinate. This result is then used to demonstrate that the action integral acts as a Hamiltonian for slow coordinates providing time is scaled to the 'tick time' of the oscillating coordinate. Numerous examples, including charged particle drifts and relativistic motion, are supplied to illustrate the varied application of these results.

  19. NECAP 4.1: NASA's energy-cost analysis program user's manual

    NASA Technical Reports Server (NTRS)

    Jensen, R. N.; Henninger, R. H.; Miner, D. L.

    1983-01-01

    The Enery Cost Analysis Program (NECAP) is a powerful computerized method to determine and to minimize building energy consumption. The program calculates hourly heat gain or losses taking into account the building thermal resistance and mass, using hourly weather and a "response factor' method. Internal temperatures are allowed to vary in accordance with thermostat settings and equipment capacity. A simplified input procedure and numerous other technical improvements are presented. This Users Manual describes the program and provides examples.

  20. Noise and Dissipation on Coadjoint Orbits

    NASA Astrophysics Data System (ADS)

    Arnaudon, Alexis; De Castro, Alex L.; Holm, Darryl D.

    2018-02-01

    We derive and study stochastic dissipative dynamics on coadjoint orbits by incorporating noise and dissipation into mechanical systems arising from the theory of reduction by symmetry, including a semidirect product extension. Random attractors are found for this general class of systems when the Lie algebra is semi-simple, provided the top Lyapunov exponent is positive. We study in details two canonical examples, the free rigid body and the heavy top, whose stochastic integrable reductions are found and numerical simulations of their random attractors are shown.

  1. Orbital and angular motion construction for low thrust interplanetary flight

    NASA Astrophysics Data System (ADS)

    Yelnikov, R. V.; Mashtakov, Y. V.; Ovchinnikov, M. Yu.; Tkachev, S. S.

    2016-11-01

    Low thrust interplanetary flight is considered. Firstly, the fuel-optimal control is found. Then the angular motion is synthesized. This motion provides the thruster tracking of the required by optimal control direction. And, finally, reaction wheel control law for tracking this angular motion is proposed and implemented. The numerical example is given and total operation time for thrusters is found. Disturbances from solar pressure, thrust eccentricity, inaccuracy of reaction wheels installation and errors of inertia tensor are taken into account.

  2. Aerothermodynamics of Blunt Body Entry Vehicles. Chapter 3

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Borrelli, Salvatore

    2011-01-01

    In this chapter, the aerothermodynamic phenomena of blunt body entry vehicles are discussed. Four topics will be considered that present challenges to current computational modeling techniques for blunt body environments: turbulent flow, non-equilibrium flow, rarefied flow, and radiation transport. Examples of comparisons between computational tools to ground and flight-test data will be presented in order to illustrate the challenges existing in the numerical modeling of each of these phenomena and to provide test cases for evaluation of Computational Fluid Dynamics (CFD) code predictions.

  3. Aerothermodynamics of blunt body entry vehicles

    NASA Astrophysics Data System (ADS)

    Hollis, Brian R.; Borrelli, Salvatore

    2012-01-01

    In this chapter, the aerothermodynamic phenomena of blunt body entry vehicles are discussed. Four topics will be considered that present challenges to current computational modeling techniques for blunt body environments: turbulent flow, non-equilibrium flow, rarefied flow, and radiation transport. Examples of comparisons between computational tools to ground and flight-test data will be presented in order to illustrate the challenges existing in the numerical modeling of each of these phenomena and to provide test cases for evaluation of computational fluid dynamics (CFD) code predictions.

  4. Comparing Methods for Assessing Reliability Uncertainty Based on Pass/Fail Data Collected Over Time

    DOE PAGES

    Abes, Jeff I.; Hamada, Michael S.; Hills, Charles R.

    2017-12-20

    In this paper, we compare statistical methods for analyzing pass/fail data collected over time; some methods are traditional and one (the RADAR or Rationale for Assessing Degradation Arriving at Random) was recently developed. These methods are used to provide uncertainty bounds on reliability. We make observations about the methods' assumptions and properties. Finally, we illustrate the differences between two traditional methods, logistic regression and Weibull failure time analysis, and the RADAR method using a numerical example.

  5. Comparing Methods for Assessing Reliability Uncertainty Based on Pass/Fail Data Collected Over Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abes, Jeff I.; Hamada, Michael S.; Hills, Charles R.

    In this paper, we compare statistical methods for analyzing pass/fail data collected over time; some methods are traditional and one (the RADAR or Rationale for Assessing Degradation Arriving at Random) was recently developed. These methods are used to provide uncertainty bounds on reliability. We make observations about the methods' assumptions and properties. Finally, we illustrate the differences between two traditional methods, logistic regression and Weibull failure time analysis, and the RADAR method using a numerical example.

  6. A Kind of Nonlinear Programming Problem Based on Mixed Fuzzy Relation Equations Constraints

    NASA Astrophysics Data System (ADS)

    Li, Jinquan; Feng, Shuang; Mi, Honghai

    In this work, a kind of nonlinear programming problem with non-differential objective function and under the constraints expressed by a system of mixed fuzzy relation equations is investigated. First, some properties of this kind of optimization problem are obtained. Then, a polynomial-time algorithm for this kind of optimization problem is proposed based on these properties. Furthermore, we show that this algorithm is optimal for the considered optimization problem in this paper. Finally, numerical examples are provided to illustrate our algorithms.

  7. Table look-up estimation of signal and noise parameters from quantized observables

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.; Rodemich, E. R.

    1986-01-01

    A table look-up algorithm for estimating underlying signal and noise parameters from quantized observables is examined. A general mathematical model is developed, and a look-up table designed specifically for estimating parameters from four-bit quantized data is described. Estimator performance is evaluated both analytically and by means of numerical simulation, and an example is provided to illustrate the use of the look-up table for estimating signal-to-noise ratios commonly encountered in Voyager-type data.

  8. Numerical solution of linear and nonlinear Fredholm integral equations by using weighted mean-value theorem.

    PubMed

    Altürk, Ahmet

    2016-01-01

    Mean value theorems for both derivatives and integrals are very useful tools in mathematics. They can be used to obtain very important inequalities and to prove basic theorems of mathematical analysis. In this article, a semi-analytical method that is based on weighted mean-value theorem for obtaining solutions for a wide class of Fredholm integral equations of the second kind is introduced. Illustrative examples are provided to show the significant advantage of the proposed method over some existing techniques.

  9. Earth Remote Sensing for Weather Forecasting and Disaster Applications

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Bell, Jordan; Case, Jonathan; Cole, Tony; Elmer, Nicholas; McGrath, Kevin; Schultz, Lori; Zavodsky, Brad

    2016-01-01

    NASA's constellation of current missions provide several opportunities to apply satellite remote sensing observations to weather forecasting and disaster response applications. Examples include: Using NASA's Terra and Aqua MODIS, and the NASA/NOAA Suomi-NPP VIIRS missions to prepare weather forecasters for capabilities of GOES-R; Incorporating other NASA remote sensing assets for improving aspects of numerical weather prediction; Using NASA, NOAA, and international partner resources (e.g. ESA/Sentinel Series); and commercial platforms (high-res, or UAV) to support disaster mapping.

  10. Active Vibration damping of Smart composite beams based on system identification technique

    NASA Astrophysics Data System (ADS)

    Bendine, Kouider; Satla, Zouaoui; Boukhoulda, Farouk Benallel; Nouari, Mohammed

    2018-03-01

    In the present paper, the active vibration control of a composite beam using piezoelectric actuator is investigated. The space state equation is determined using system identification technique based on the structure input output response provided by ANSYS APDL finite element package. The Linear Quadratic (LQG) control law is designed and integrated into ANSYS APDL to perform closed loop simulations. Numerical examples for different types of excitation loads are presented to test the efficiency and the accuracy of the proposed model.

  11. Classical workflow nets and workflow nets with reset arcs: using Lyapunov stability for soundness verification

    NASA Astrophysics Data System (ADS)

    Clempner, Julio B.

    2017-01-01

    This paper presents a novel analytical method for soundness verification of workflow nets and reset workflow nets, using the well-known stability results of Lyapunov for Petri nets. We also prove that the soundness property is decidable for workflow nets and reset workflow nets. In addition, we provide evidence of several outcomes related with properties such as boundedness, liveness, reversibility and blocking using stability. Our approach is validated theoretically and by a numerical example related to traffic signal-control synchronisation.

  12. Multiloop Functional Renormalization Group That Sums Up All Parquet Diagrams

    NASA Astrophysics Data System (ADS)

    Kugler, Fabian B.; von Delft, Jan

    2018-02-01

    We present a multiloop flow equation for the four-point vertex in the functional renormalization group (FRG) framework. The multiloop flow consists of successive one-loop calculations and sums up all parquet diagrams to arbitrary order. This provides substantial improvement of FRG computations for the four-point vertex and, consequently, the self-energy. Using the x-ray-edge singularity as an example, we show that solving the multiloop FRG flow is equivalent to solving the (first-order) parquet equations and illustrate this with numerical results.

  13. Steady-state numerical groundwater flow model of the Great Basin carbonate and alluvial aquifer system

    USGS Publications Warehouse

    Brooks, Lynette E.; Masbruch, Melissa D.; Sweetkind, Donald S.; Buto, Susan G.

    2014-01-01

    Examples of potential use of the model to investigate the groundwater system include (1) the effects of different recharge, (2) different interpretations of the extent or offset of long faults or fault zones, and (3) different conceptual models of the spatial variation of hydraulic properties. The model can also be used to examine the ultimate effects of groundwater withdrawals on a regional scale, to provide boundary conditions for local-scale models, and to guide data collection.

  14. Stress-strain state of the structure in the service area of underground railway

    NASA Astrophysics Data System (ADS)

    Barabash, M.; Bashinsky, Y.; Korjakins, A.

    2017-10-01

    The paper focuses on numerical study how vibration due to underground trains influences the load-bearing building structures. Diagrams of vibration levels for monolithic floor slab depending on frequency are obtained. Levels of vibrations on floor slabs and columns are measured. The simulation of dynamic load from underground railway onto load-bearing building structures is presented as an example with account of load transmission through the soil. Recommendations for generation of design model in dynamic analysis of structure are provided.

  15. Solving the multi-frequency electromagnetic inverse source problem by the Fourier method

    NASA Astrophysics Data System (ADS)

    Wang, Guan; Ma, Fuming; Guo, Yukun; Li, Jingzhi

    2018-07-01

    This work is concerned with an inverse problem of identifying the current source distribution of the time-harmonic Maxwell's equations from multi-frequency measurements. Motivated by the Fourier method for the scalar Helmholtz equation and the polarization vector decomposition, we propose a novel method for determining the source function in the full vector Maxwell's system. Rigorous mathematical justifications of the method are given and numerical examples are provided to demonstrate the feasibility and effectiveness of the method.

  16. How large a training set is needed to develop a classifier for microarray data?

    PubMed

    Dobbin, Kevin K; Zhao, Yingdong; Simon, Richard M

    2008-01-01

    A common goal of gene expression microarray studies is the development of a classifier that can be used to divide patients into groups with different prognoses, or with different expected responses to a therapy. These types of classifiers are developed on a training set, which is the set of samples used to train a classifier. The question of how many samples are needed in the training set to produce a good classifier from high-dimensional microarray data is challenging. We present a model-based approach to determining the sample size required to adequately train a classifier. It is shown that sample size can be determined from three quantities: standardized fold change, class prevalence, and number of genes or features on the arrays. Numerous examples and important experimental design issues are discussed. The method is adapted to address ex post facto determination of whether the size of a training set used to develop a classifier was adequate. An interactive web site for performing the sample size calculations is provided. We showed that sample size calculations for classifier development from high-dimensional microarray data are feasible, discussed numerous important considerations, and presented examples.

  17. A hybrid, coupled approach for modeling charged fluids from the nano to the mesoscale

    DOE PAGES

    Cheung, James; Frischknecht, Amalie L.; Perego, Mauro; ...

    2017-07-20

    Here, we develop and demonstrate a new, hybrid simulation approach for charged fluids, which combines the accuracy of the nonlocal, classical density functional theory (cDFT) with the efficiency of the Poisson–Nernst–Planck (PNP) equations. The approach is motivated by the fact that the more accurate description of the physics in the cDFT model is required only near the charged surfaces, while away from these regions the PNP equations provide an acceptable representation of the ionic system. We formulate the hybrid approach in two stages. The first stage defines a coupled hybrid model in which the PNP and cDFT equations act independentlymore » on two overlapping domains, subject to suitable interface coupling conditions. At the second stage we apply the principles of the alternating Schwarz method to the hybrid model by using the interface conditions to define the appropriate boundary conditions and volume constraints exchanged between the PNP and the cDFT subdomains. Numerical examples with two representative examples of ionic systems demonstrate the numerical properties of the method and its potential to reduce the computational cost of a full cDFT calculation, while retaining the accuracy of the latter near the charged surfaces.« less

  18. A hybrid, coupled approach for modeling charged fluids from the nano to the mesoscale

    NASA Astrophysics Data System (ADS)

    Cheung, James; Frischknecht, Amalie L.; Perego, Mauro; Bochev, Pavel

    2017-11-01

    We develop and demonstrate a new, hybrid simulation approach for charged fluids, which combines the accuracy of the nonlocal, classical density functional theory (cDFT) with the efficiency of the Poisson-Nernst-Planck (PNP) equations. The approach is motivated by the fact that the more accurate description of the physics in the cDFT model is required only near the charged surfaces, while away from these regions the PNP equations provide an acceptable representation of the ionic system. We formulate the hybrid approach in two stages. The first stage defines a coupled hybrid model in which the PNP and cDFT equations act independently on two overlapping domains, subject to suitable interface coupling conditions. At the second stage we apply the principles of the alternating Schwarz method to the hybrid model by using the interface conditions to define the appropriate boundary conditions and volume constraints exchanged between the PNP and the cDFT subdomains. Numerical examples with two representative examples of ionic systems demonstrate the numerical properties of the method and its potential to reduce the computational cost of a full cDFT calculation, while retaining the accuracy of the latter near the charged surfaces.

  19. A hybrid, coupled approach for modeling charged fluids from the nano to the mesoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, James; Frischknecht, Amalie L.; Perego, Mauro

    Here, we develop and demonstrate a new, hybrid simulation approach for charged fluids, which combines the accuracy of the nonlocal, classical density functional theory (cDFT) with the efficiency of the Poisson–Nernst–Planck (PNP) equations. The approach is motivated by the fact that the more accurate description of the physics in the cDFT model is required only near the charged surfaces, while away from these regions the PNP equations provide an acceptable representation of the ionic system. We formulate the hybrid approach in two stages. The first stage defines a coupled hybrid model in which the PNP and cDFT equations act independentlymore » on two overlapping domains, subject to suitable interface coupling conditions. At the second stage we apply the principles of the alternating Schwarz method to the hybrid model by using the interface conditions to define the appropriate boundary conditions and volume constraints exchanged between the PNP and the cDFT subdomains. Numerical examples with two representative examples of ionic systems demonstrate the numerical properties of the method and its potential to reduce the computational cost of a full cDFT calculation, while retaining the accuracy of the latter near the charged surfaces.« less

  20. Estimating survival rates with time series of standing age‐structure data

    USGS Publications Warehouse

    Udevitz, Mark S.; Gogan, Peter J.

    2012-01-01

    It has long been recognized that age‐structure data contain useful information for assessing the status and dynamics of wildlife populations. For example, age‐specific survival rates can be estimated with just a single sample from the age distribution of a stable, stationary population. For a population that is not stable, age‐specific survival rates can be estimated using techniques such as inverse methods that combine time series of age‐structure data with other demographic data. However, estimation of survival rates using these methods typically requires numerical optimization, a relatively long time series of data, and smoothing or other constraints to provide useful estimates. We developed general models for possibly unstable populations that combine time series of age‐structure data with other demographic data to provide explicit maximum likelihood estimators of age‐specific survival rates with as few as two years of data. As an example, we applied these methods to estimate survival rates for female bison (Bison bison) in Yellowstone National Park, USA. This approach provides a simple tool for monitoring survival rates based on age‐structure data.

  1. Using Python Packages in 6D (Py)Ferret: EOF Analysis, OPeNDAP Sequence Data

    NASA Astrophysics Data System (ADS)

    Smith, K. M.; Manke, A.; Hankin, S. C.

    2012-12-01

    PyFerret was designed to provide the easy methods of access, analysis, and display of data found in the Ferret under the simple yet powerful Python scripting/programming language. This has enabled PyFerret to take advantage of a large and expanding collection of third-party scientific Python modules. Furthermore, ensemble and forecast axes have been added to Ferret and PyFerret for creating and working with collections of related data in Ferret's delayed-evaluation and minimal-data-access mode of operation. These axes simplify processing and visualization of these collections of related data. As one example, an empirical orthogonal function (EOF) analysis Python module was developed, taking advantage of the linear algebra module and other standard functionality in NumPy for efficient numerical array processing. This EOF analysis module is used in a Ferret function to provide an ensemble of levels of data explained by each EOF and Time Amplitude Function (TAF) product. Another example makes use of the PyDAP Python module to provide OPeNDAP sequence data for use in Ferret with minimal data access characteristic of Ferret.

  2. Backward-in-time methods to simulate large-scale transport and mixing in the ocean

    NASA Astrophysics Data System (ADS)

    Prants, S. V.

    2015-06-01

    In oceanography and meteorology, it is important to know not only where water or air masses are headed for, but also where they came from as well. For example, it is important to find unknown sources of oil spills in the ocean and of dangerous substance plumes in the atmosphere. It is impossible with the help of conventional ocean and atmospheric numerical circulation models to extrapolate backward from the observed plumes to find the source because those models cannot be reversed in time. We review here recently elaborated backward-in-time numerical methods to identify and study mesoscale eddies in the ocean and to compute where those waters came from to a given area. The area under study is populated with a large number of artificial tracers that are advected backward in time in a given velocity field that is supposed to be known analytically or numerically, or from satellite and radar measurements. After integrating advection equations, one gets positions of each tracer on a fixed day in the past and can identify from known destinations a particle positions at earlier times. The results provided show that the method is efficient, for example, in estimating probabilities to find increased concentrations of radionuclides and other pollutants in oceanic mesoscale eddies. The backward-in-time methods are illustrated in this paper with a few examples. Backward-in-time Lagrangian maps are applied to identify eddies in satellite-derived and numerically generated velocity fields and to document the pathways by which they exchange water with their surroundings. Backward-in-time trapping maps are used to identify mesoscale eddies in the altimetric velocity field with a risk to be contaminated by Fukushima-derived radionuclides. The results of simulations are compared with in situ mesurement of caesium concentration in sea water samples collected in a recent research vessel cruise in the area to the east of Japan. Backward-in-time latitudinal maps and the corresponding material-line techniques are applied to document transport of water masses across strong currents. Backward-in-time drift maps are shown to be useful in identifying the Lagrangian fronts favorable for fishery.

  3. A new localization set for generalized eigenvalues.

    PubMed

    Gao, Jing; Li, Chaoqian

    2017-01-01

    A new localization set for generalized eigenvalues is obtained. It is shown that the new set is tighter than that in (Numer. Linear Algebra Appl. 16:883-898, 2009). Numerical examples are given to verify the corresponding results.

  4. Analysis research for earth resource information systems - Where do we stand

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A.

    1974-01-01

    Discussion of the state of the technology of earth resources information systems relative to future operational implementation. The importance of recognizing the difference between systems with image orientation and systems with numerical orientation is illustrated in an example concerning the effect of noise on multiband multispectral data obtained in an agricultural experiment. It is suggested that the data system hardware portion of the total earth resources information system be designed in terms of a numerical orientation; it is argued, however, that this choise is entirely compatible with image-oriented analysis tasks. Some aspects of interfacing such an advanced technology with an operational user community in such a way as to accommodate the user's need for flexibility and yet provide the services needed on a cost-effective basis are discussed.

  5. The boundary element method applied to 3D magneto-electro-elastic dynamic problems

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.

    2017-11-01

    Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.

  6. Further studies on stability analysis of nonlinear Roesser-type two-dimensional systems

    NASA Astrophysics Data System (ADS)

    Dai, Xiao-Lin

    2014-04-01

    This paper is concerned with further relaxations of the stability analysis of nonlinear Roesser-type two-dimensional (2D) systems in the Takagi-Sugeno fuzzy form. To achieve the goal, a novel slack matrix variable technique, which is homogenous polynomially parameter-dependent on the normalized fuzzy weighting functions with arbitrary degree, is developed and the algebraic properties of the normalized fuzzy weighting functions are collected into a set of augmented matrices. Consequently, more information about the normalized fuzzy weighting functions is involved and the relaxation quality of the stability analysis is significantly improved. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed result.

  7. An Introduction to Thermodynamic Performance Analysis of Aircraft Gas Turbine Engine Cycles Using the Numerical Propulsion System Simulation Code

    NASA Technical Reports Server (NTRS)

    Jones, Scott M.

    2007-01-01

    This document is intended as an introduction to the analysis of gas turbine engine cycles using the Numerical Propulsion System Simulation (NPSS) code. It is assumed that the analyst has a firm understanding of fluid flow, gas dynamics, thermodynamics, and turbomachinery theory. The purpose of this paper is to provide for the novice the information necessary to begin cycle analysis using NPSS. This paper and the annotated example serve as a starting point and by no means cover the entire range of information and experience necessary for engine performance simulation. NPSS syntax is presented but for a more detailed explanation of the code the user is referred to the NPSS User Guide and Reference document (ref. 1).

  8. Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bokanowski, Olivier, E-mail: boka@math.jussieu.fr; Picarelli, Athena, E-mail: athena.picarelli@inria.fr; Zidani, Hasnaa, E-mail: hasnaa.zidani@ensta.fr

    2015-02-15

    This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system ofmore » controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.« less

  9. Inverse constraints for emission fluxes of atmospheric tracers estimated from concentration measurements and Lagrangian transport

    NASA Astrophysics Data System (ADS)

    Pisso, Ignacio; Patra, Prabir; Breivik, Knut

    2015-04-01

    Lagrangian transport models based on times series of Eulerian fields provide a computationally affordable way of achieving very high resolution for limited areas and time periods. This makes them especially suitable for the analysis of point-wise measurements of atmospheric tracers. We present an application illustrated with examples of greenhouse gases from anthropogenic emissions in urban areas and biogenic emissions in Japan and of pollutants in the Arctic. We asses the algorithmic complexity of the numerical implementation as well as the use of non-procedural techniques such as Object-Oriented programming. We discuss aspects related to the quantification of uncertainty from prior information in the presence of model error and limited number of observations. The case of non-linear constraints is explored using direct numerical optimisation methods.

  10. Understanding Slat Noise Sources

    NASA Technical Reports Server (NTRS)

    Khorrami, Medhi R.

    2003-01-01

    Model-scale aeroacoustic tests of large civil transports point to the leading-edge slat as a dominant high-lift noise source in the low- to mid-frequencies during aircraft approach and landing. Using generic multi-element high-lift models, complementary experimental and numerical tests were carefully planned and executed at NASA in order to isolate slat noise sources and the underlying noise generation mechanisms. In this paper, a brief overview of the supporting computational effort undertaken at NASA Langley Research Center, is provided. Both tonal and broadband aspects of slat noise are discussed. Recent gains in predicting a slat s far-field acoustic noise, current shortcomings of numerical simulations, and other remaining open issues, are presented. Finally, an example of the ever-expanding role of computational simulations in noise reduction studies also is given.

  11. Preparing Colorful Astronomical Images and Illustrations

    NASA Astrophysics Data System (ADS)

    Levay, Z. G.; Frattare, L. M.

    2001-12-01

    We present techniques for using mainstream graphics software, specifically Adobe Photoshop and Illustrator, for producing composite color images and illustrations from astronomical data. These techniques have been used with numerous images from the Hubble Space Telescope to produce printed and web-based news, education and public presentation products as well as illustrations for technical publication. While Photoshop is not intended for quantitative analysis of full dynamic range data (as are IRAF or IDL, for example), we have had much success applying Photoshop's numerous, versatile tools to work with scaled images, masks, text and graphics in multiple semi-transparent layers and channels. These features, along with its user-oriented, visual interface, provide convenient tools to produce high-quality, full-color images and graphics for printed and on-line publication and presentation.

  12. High-Order Semi-Discrete Central-Upwind Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bran R. (Technical Monitor)

    2002-01-01

    We present high-order semi-discrete central-upwind numerical schemes for approximating solutions of multi-dimensional Hamilton-Jacobi (HJ) equations. This scheme is based on the use of fifth-order central interpolants like those developed in [1], in fluxes presented in [3]. These interpolants use the weighted essentially nonoscillatory (WENO) approach to avoid spurious oscillations near singularities, and become "central-upwind" in the semi-discrete limit. This scheme provides numerical approximations whose error is as much as an order of magnitude smaller than those in previous WENO-based fifth-order methods [2, 1]. Thee results are discussed via examples in one, two and three dimensions. We also pregnant explicit N-dimensional formulas for the fluxes, discuss their monotonicity and tl!e connection between this method and that in [2].

  13. Nonlinear dynamics and numerical uncertainties in CFD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.

  14. Numerical integration of asymptotic solutions of ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Thurston, Gaylen A.

    1989-01-01

    Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.

  15. 42 CFR 460.24 - Limit on number of PACE program agreements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PACE program agreements. (a) Numerical limit. Except as specified in paragraph (b) of this section, CMS... of August 5, 1997—40. (2) As of each succeeding August 5, the numerical limit for the preceding year.... (For example, the limit is 60 on August 5, 1998 and 80 on August 5, 1999.) (b) Exception. The numerical...

  16. 42 CFR 460.24 - Limit on number of PACE program agreements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PACE program agreements. (a) Numerical limit. Except as specified in paragraph (b) of this section, CMS... of August 5, 1997—40. (2) As of each succeeding August 5, the numerical limit for the preceding year.... (For example, the limit is 60 on August 5, 1998 and 80 on August 5, 1999.) (b) Exception. The numerical...

  17. 42 CFR 460.24 - Limit on number of PACE program agreements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PACE program agreements. (a) Numerical limit. Except as specified in paragraph (b) of this section, CMS... of August 5, 1997—40. (2) As of each succeeding August 5, the numerical limit for the preceding year.... (For example, the limit is 60 on August 5, 1998 and 80 on August 5, 1999.) (b) Exception. The numerical...

  18. Journal of Aeronautics.

    DTIC Science & Technology

    1982-07-21

    aerodynamic tool for design of elastic aircraft. Several numerical examples are given and some dynamical problems of elastic aircraft are also discussed...Qiangang, Wu Changlin, Jian Zheng Northwestern Polytechnical University Abstract: A numerical metbod,6* ted for predicting the aerodynamic characte- ristics... Numerical value calculation method is one important means of the present research on elastic aircraft pneumatic characteristics. Be- cause this

  19. Interferometric correction system for a numerically controlled machine

    DOEpatents

    Burleson, Robert R.

    1978-01-01

    An interferometric correction system for a numerically controlled machine is provided to improve the positioning accuracy of a machine tool, for example, for a high-precision numerically controlled machine. A laser interferometer feedback system is used to monitor the positioning of the machine tool which is being moved by command pulses to a positioning system to position the tool. The correction system compares the commanded position as indicated by a command pulse train applied to the positioning system with the actual position of the tool as monitored by the laser interferometer. If the tool position lags the commanded position by a preselected error, additional pulses are added to the pulse train applied to the positioning system to advance the tool closer to the commanded position, thereby reducing the lag error. If the actual tool position is leading in comparison to the commanded position, pulses are deleted from the pulse train where the advance error exceeds the preselected error magnitude to correct the position error of the tool relative to the commanded position.

  20. Recent Advances in Application of Biosensors in Tissue Engineering

    PubMed Central

    Paul, Arghya; Lee, Yong-kyu; Jaffa, Ayad A.

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications. PMID:25165697

  1. Operational Dust Prediction

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Baldasano, Jose M.; Basart, Sara; Benincasa, Francesco; Boucher, Olivier; Brooks, Malcolm E.; Chen, Jen-Ping; Colarco, Peter R.; Gong, Sunlin; Huneeus, Nicolas; hide

    2014-01-01

    Over the last few years, numerical prediction of dust aerosol concentration has become prominent at several research and operational weather centres due to growing interest from diverse stakeholders, such as solar energy plant managers, health professionals, aviation and military authorities and policymakers. Dust prediction in numerical weather prediction-type models faces a number of challenges owing to the complexity of the system. At the centre of the problem is the vast range of scales required to fully account for all of the physical processes related to dust. Another limiting factor is the paucity of suitable dust observations available for model, evaluation and assimilation. This chapter discusses in detail numerical prediction of dust with examples from systems that are currently providing dust forecasts in near real-time or are part of international efforts to establish daily provision of dust forecasts based on multi-model ensembles. The various models are introduced and described along with an overview on the importance of dust prediction activities and a historical perspective. Assimilation and evaluation aspects in dust prediction are also discussed.

  2. Recent advances in application of biosensors in tissue engineering.

    PubMed

    Hasan, Anwarul; Nurunnabi, Md; Morshed, Mahboob; Paul, Arghya; Polini, Alessandro; Kuila, Tapas; Al Hariri, Moustafa; Lee, Yong-kyu; Jaffa, Ayad A

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications.

  3. Numerical algorithms for computations of feedback laws arising in control of flexible systems

    NASA Technical Reports Server (NTRS)

    Lasiecka, Irena

    1989-01-01

    Several continuous models will be examined, which describe flexible structures with boundary or point control/observation. Issues related to the computation of feedback laws are examined (particularly stabilizing feedbacks) with sensors and actuators located either on the boundary or at specific point locations of the structure. One of the main difficulties is due to the great sensitivity of the system (hyperbolic systems with unbounded control actions), with respect to perturbations caused either by uncertainty of the model or by the errors introduced in implementing numerical algorithms. Thus, special care must be taken in the choice of the appropriate numerical schemes which eventually lead to implementable finite dimensional solutions. Finite dimensional algorithms are constructed on a basis of a priority analysis of the properties of the original, continuous (infinite diversional) systems with the following criteria in mind: (1) convergence and stability of the algorithms and (2) robustness (reasonable insensitivity with respect to the unknown parameters of the systems). Examples with mixed finite element methods and spectral methods are provided.

  4. The Numerical Propulsion System Simulation: An Overview

    NASA Technical Reports Server (NTRS)

    Lytle, John K.

    2000-01-01

    Advances in computational technology and in physics-based modeling are making large-scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze major propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of designing systems, providing the designer with critical information about the components early in the design process. This paper describes the development of the numerical propulsion system simulation (NPSS), a modular and extensible framework for the integration of multicomponent and multidisciplinary analysis tools using geographically distributed resources such as computing platforms, data bases, and people. The analysis is currently focused on large-scale modeling of complete aircraft engines. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.

  5. Operational atmospheric modeling system CARIS for effective emergency response associated with hazardous chemical releases in Korea.

    PubMed

    Kim, Cheol-Hee; Park, Jin-Ho; Park, Cheol-Jin; Na, Jin-Gyun

    2004-03-01

    The Chemical Accidents Response Information System (CARIS) was developed at the Center for Chemical Safety Management in South Korea in order to track and predict the dispersion of hazardous chemicals in the case of an accident or terrorist attack involving chemical companies. The main objective of CARIS is to facilitate an efficient emergency response to hazardous chemical accidents by rapidly providing key information in the decision-making process. In particular, the atmospheric modeling system implemented in CARIS, which is composed of a real-time numerical weather forecasting model and an air pollution dispersion model, can be used as a tool to forecast concentrations and to provide a wide range of assessments associated with various hazardous chemicals in real time. This article introduces the components of CARIS and describes its operational modeling system. Some examples of the operational modeling system and its use for emergency preparedness are presented and discussed. Finally, this article evaluates the current numerical weather prediction model for Korea.

  6. Three-dimensional conceptual model for the Hanford Site unconfined aquifer system: FY 1994 status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorne, P.D.; Chamness, M.A.; Vermeul, V.R.

    This report documents work conducted during the fiscal year 1994 to development an improved three-dimensional conceptual model of ground-water flow in the unconfined aquifer system across the Hanford Site Ground-Water Surveillance Project, which is managed by Pacific Northwest Laboratory. The main objective of the ongoing effort to develop an improved conceptual model of ground-water flow is to provide the basis for improved numerical report models that will be capable of accurately predicting the movement of radioactive and chemical contaminant plumes in the aquifer beneath Hanford. More accurate ground-water flow models will also be useful in assessing the impacts of changesmore » in facilities and operations. For example, decreasing volumes of operational waste-water discharge are resulting in a declining water table in parts of the unconfined aquifer. In addition to supporting numerical modeling, the conceptual model also provides a qualitative understanding of the movement of ground water and contaminants in the aquifer.« less

  7. STAGS Example Problems Manual

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Rankin, Charles C.

    2006-01-01

    This document summarizes the STructural Analysis of General Shells (STAGS) development effort, STAGS performance for selected demonstration problems, and STAGS application problems illustrating selected advanced features available in the STAGS Version 5.0. Each problem is discussed including selected background information and reference solutions when available. The modeling and solution approach for each problem is described and illustrated. Numerical results are presented and compared with reference solutions, test data, and/or results obtained from mesh refinement studies. These solutions provide an indication of the overall capabilities of the STAGS nonlinear finite element analysis tool and provide users with representative cases, including input files, to explore these capabilities that may then be tailored to other applications.

  8. Optimization of Location-Routing Problem for Cold Chain Logistics Considering Carbon Footprint.

    PubMed

    Wang, Songyi; Tao, Fengming; Shi, Yuhe

    2018-01-06

    In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location-routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network.

  9. A Tale of Two Small Business Grants: The Best of Times, the Worst of Times from the NASA Ames Small Business Innovative Research (SBIR) Program

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Lee, Geoffrey S.

    2006-01-01

    The purposes of the SBIR Program are to: stimulate technological innovation in the private sector; strengthen the role of Small Business Concerns (SBCs) in meeting Federal research and development needs; increase the commercial application of these research results; and encourage participation of socially and economically disadvantaged persons and women-owned small businesses. The process can be highly rewarding, providing the small business with resources to pursue research and development with a focus on providing NASA with new and advanced capabilities. We present two examples of how the NASA Ames SBIR Program has addressed these purposes, nurturing innovative ideas from small, businesses into commercially viable products that also address analytical needs in space research. These examples, from the Science Instruments for Conducting Solar System Exploration Subtopic, describe the journey from innovative concept to analytical instrument, one successful and one hampered by numerous roadblocks (including some international intrigue}.

  10. Exploring inductive linearization for pharmacokinetic-pharmacodynamic systems of nonlinear ordinary differential equations.

    PubMed

    Hasegawa, Chihiro; Duffull, Stephen B

    2018-02-01

    Pharmacokinetic-pharmacodynamic systems are often expressed with nonlinear ordinary differential equations (ODEs). While there are numerous methods to solve such ODEs these methods generally rely on time-stepping solutions (e.g. Runge-Kutta) which need to be matched to the characteristics of the problem at hand. The primary aim of this study was to explore the performance of an inductive approximation which iteratively converts nonlinear ODEs to linear time-varying systems which can then be solved algebraically or numerically. The inductive approximation is applied to three examples, a simple nonlinear pharmacokinetic model with Michaelis-Menten elimination (E1), an integrated glucose-insulin model and an HIV viral load model with recursive feedback systems (E2 and E3, respectively). The secondary aim of this study was to explore the potential advantages of analytically solving linearized ODEs with two examples, again E3 with stiff differential equations and a turnover model of luteinizing hormone with a surge function (E4). The inductive linearization coupled with a matrix exponential solution provided accurate predictions for all examples with comparable solution time to the matched time-stepping solutions for nonlinear ODEs. The time-stepping solutions however did not perform well for E4, particularly when the surge was approximated by a square wave. In circumstances when either a linear ODE is particularly desirable or the uncertainty in matching the integrator to the ODE system is of potential risk, then the inductive approximation method coupled with an analytical integration method would be an appropriate alternative.

  11. Factorization and reduction methods for optimal control of distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Powers, R. K.

    1985-01-01

    A Chandrasekhar-type factorization method is applied to the linear-quadratic optimal control problem for distributed parameter systems. An aeroelastic control problem is used as a model example to demonstrate that if computationally efficient algorithms, such as those of Chandrasekhar-type, are combined with the special structure often available to a particular problem, then an abstract approximation theory developed for distributed parameter control theory becomes a viable method of solution. A numerical scheme based on averaging approximations is applied to hereditary control problems. Numerical examples are given.

  12. Inversion of geophysical potential field data using the finite element method

    NASA Astrophysics Data System (ADS)

    Lamichhane, Bishnu P.; Gross, Lutz

    2017-12-01

    The inversion of geophysical potential field data can be formulated as an optimization problem with a constraint in the form of a partial differential equation (PDE). It is common practice, if possible, to provide an analytical solution for the forward problem and to reduce the problem to a finite dimensional optimization problem. In an alternative approach the optimization is applied to the problem and the resulting continuous problem which is defined by a set of coupled PDEs is subsequently solved using a standard PDE discretization method, such as the finite element method (FEM). In this paper, we show that under very mild conditions on the data misfit functional and the forward problem in the three-dimensional space, the continuous optimization problem and its FEM discretization are well-posed including the existence and uniqueness of respective solutions. We provide error estimates for the FEM solution. A main result of the paper is that the FEM spaces used for the forward problem and the Lagrange multiplier need to be identical but can be chosen independently from the FEM space used to represent the unknown physical property. We will demonstrate the convergence of the solution approximations in a numerical example. The second numerical example which investigates the selection of FEM spaces, shows that from the perspective of computational efficiency one should use 2 to 4 times finer mesh for the forward problem in comparison to the mesh of the physical property.

  13. A conservative fully implicit algorithm for predicting slug flows

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Boris I.; Lukyanov, Alexander A.

    2018-02-01

    An accurate and predictive modelling of slug flows is required by many industries (e.g., oil and gas, nuclear engineering, chemical engineering) to prevent undesired events potentially leading to serious environmental accidents. For example, the hydrodynamic and terrain-induced slugging leads to unwanted unsteady flow conditions. This demands the development of fast and robust numerical techniques for predicting slug flows. The presented in this paper study proposes a multi-fluid model and its implementation method accounting for phase appearance and disappearance. The numerical modelling of phase appearance and disappearance presents a complex numerical challenge for all multi-component and multi-fluid models. Numerical challenges arise from the singular systems of equations when some phases are absent and from the solution discontinuity when some phases appear or disappear. This paper provides a flexible and robust solution to these issues. A fully implicit formulation described in this work enables to efficiently solve governing fluid flow equations. The proposed numerical method provides a modelling capability of phase appearance and disappearance processes, which is based on switching procedure between various sets of governing equations. These sets of equations are constructed using information about the number of phases present in the computational domain. The proposed scheme does not require an explicit truncation of solutions leading to a conservative scheme for mass and linear momentum. A transient two-fluid model is used to verify and validate the proposed algorithm for conditions of hydrodynamic and terrain-induced slug flow regimes. The developed modelling capabilities allow to predict all the major features of the experimental data, and are in a good quantitative agreement with them.

  14. The Forced Soft Spring Equation

    ERIC Educational Resources Information Center

    Fay, T. H.

    2006-01-01

    Through numerical investigations, this paper studies examples of the forced Duffing type spring equation with [epsilon] negative. By performing trial-and-error numerical experiments, the existence is demonstrated of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions. Subharmonic boundaries are…

  15. An iterative transformation procedure for numerical solution of flutter and similar characteristics-value problems

    NASA Technical Reports Server (NTRS)

    Gossard, Myron L

    1952-01-01

    An iterative transformation procedure suggested by H. Wielandt for numerical solution of flutter and similar characteristic-value problems is presented. Application of this procedure to ordinary natural-vibration problems and to flutter problems is shown by numerical examples. Comparisons of computed results with experimental values and with results obtained by other methods of analysis are made.

  16. Numerical analysis for distributed-order differential equations

    NASA Astrophysics Data System (ADS)

    Diethelm, Kai; Ford, Neville J.

    2009-03-01

    In this paper we present and analyse a numerical method for the solution of a distributed-order differential equation of the general form where m is a positive real number and where the derivative is taken to be a fractional derivative of Caputo type of order r. We give a convergence theory for our method and conclude with some numerical examples.

  17. Nonclassicality thresholds for multiqubit states: Numerical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruca, Jacek; Zukowski, Marek; Laskowski, Wieslaw

    2010-07-15

    States that strongly violate Bell's inequalities are required in many quantum-informational protocols as, for example, in cryptography, secret sharing, and the reduction of communication complexity. We investigate families of such states with a numerical method which allows us to reveal nonclassicality even without direct knowledge of Bell's inequalities for the given problem. An extensive set of numerical results is presented and discussed.

  18. A systematic approach to numerical dispersion in Maxwell solvers

    NASA Astrophysics Data System (ADS)

    Blinne, Alexander; Schinkel, David; Kuschel, Stephan; Elkina, Nina; Rykovanov, Sergey G.; Zepf, Matt

    2018-03-01

    The finite-difference time-domain (FDTD) method is a well established method for solving the time evolution of Maxwell's equations. Unfortunately the scheme introduces numerical dispersion and therefore phase and group velocities which deviate from the correct values. The solution to Maxwell's equations in more than one dimension results in non-physical predictions such as numerical dispersion or numerical Cherenkov radiation emitted by a relativistic electron beam propagating in vacuum. Improved solvers, which keep the staggered Yee-type grid for electric and magnetic fields, generally modify the spatial derivative operator in the Maxwell-Faraday equation by increasing the computational stencil. These modified solvers can be characterized by different sets of coefficients, leading to different dispersion properties. In this work we introduce a norm function to rewrite the choice of coefficients into a minimization problem. We solve this problem numerically and show that the minimization procedure leads to phase and group velocities that are considerably closer to c as compared to schemes with manually set coefficients available in the literature. Depending on a specific problem at hand (e.g. electron beam propagation in plasma, high-order harmonic generation from plasma surfaces, etc.), the norm function can be chosen accordingly, for example, to minimize the numerical dispersion in a certain given propagation direction. Particle-in-cell simulations of an electron beam propagating in vacuum using our solver are provided.

  19. Opitmal Platform Strategies in the Smartphone Market

    NASA Astrophysics Data System (ADS)

    Unno, Masaru; Xu, Hua

    In a smartphone market, smartphone makers encourage smartphone application providers (AP) to create more popular smartphone applications through making a revenue-sharing contract with AP and providing application-purchasing support to end users. In this paper, we study revenue-sharing and application-purchasing support problem between a risk-averse smartphone maker and a smartphone application provider. The problem is formulated as the smartphone makers's risk-sensitive stochastic control problem. The sufficient conditions for the existence of the optimal revenue-sharing strategy, the optimal application-purchasing support strategy and the incentive compatible effort recommended to AP are obtained. The effects of the smartphone makers's risk-sensitivity on the optimal strategies are also discussed. A numerical example is solved to show the computation aspects of the problem.

  20. BOOK REVIEW: Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming

    NASA Astrophysics Data System (ADS)

    Katsaounis, T. D.

    2005-02-01

    The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. The first chapter is an introduction to parallel processing. It covers fundamentals of parallel processing in a simple and concrete way and no prior knowledge of the subject is required. Examples of parallel implementation of basic linear algebra operations are presented using the Message Passing Interface (MPI) programming environment. Here, some knowledge of MPI routines is required by the reader. Examples solving in parallel simple PDEs using Diffpack and MPI are also presented. Chapter 2 presents the overlapping domain decomposition method for solving PDEs. It is well known that these methods are suitable for parallel processing. The first part of the chapter covers the mathematical formulation of the method as well as algorithmic and implementational issues. The second part presents a serial and a parallel implementational framework within the programming environment of Diffpack. The chapter closes by showing how to solve two application examples with the overlapping domain decomposition method using Diffpack. Chapter 3 is a tutorial about how to incorporate the multigrid solver in Diffpack. The method is illustrated by examples such as a Poisson solver, a general elliptic problem with various types of boundary conditions and a nonlinear Poisson type problem. In chapter 4 the mixed finite element is introduced. Technical issues concerning the practical implementation of the method are also presented. The main difficulties of the efficient implementation of the method, especially in two and three space dimensions on unstructured grids, are presented and addressed in the framework of Diffpack. The implementational process is illustrated by two examples, namely the system formulation of the Poisson problem and the Stokes problem. Chapter 5 is closely related to chapter 4 and addresses the problem of how to solve efficiently the linear systems arising by the application of the mixed finite element method. The proposed method is block preconditioning. Efficient techniques for implementing the method within Diffpack are presented. Optimal block preconditioners are used to solve the system formulation of the Poisson problem, the Stokes problem and the bidomain model for the electrical activity in the heart. The subject of chapter 6 is systems of PDEs. Linear and nonlinear systems are discussed. Fully implicit and operator splitting methods are presented. Special attention is paid to how existing solvers for scalar equations in Diffpack can be used to derive fully implicit solvers for systems. The proposed techniques are illustrated in terms of two applications, namely a system of PDEs modelling pipeflow and a two-phase porous media flow. Stochastic PDEs is the topic of chapter 7. The first part of the chapter is a simple introduction to stochastic PDEs; basic analytical properties are presented for simple models like transport phenomena and viscous drag forces. The second part considers the numerical solution of stochastic PDEs. Two basic techniques are presented, namely Monte Carlo and perturbation methods. The last part explains how to implement and incorporate these solvers into Diffpack. Chapter 8 describes how to operate Diffpack from Python scripts. The main goal here is to provide all the programming and technical details in order to glue the programming environment of Diffpack with visualization packages through Python and in general take advantage of the Python interfaces. Chapter 9 attempts to show how to use numerical experiments to measure the performance of various PDE solvers. The authors gathered a rather impressive list, a total of 14 PDE solvers. Solvers for problems like Poisson, Navier--Stokes, elasticity, two-phase flows and methods such as finite difference, finite element, multigrid, and gradient type methods are presented. The authors provide a series of numerical results combining various solvers with various methods in order to gain insight into their computational performance and efficiency. In Chapter 10 the authors consider a computationally challenging problem, namely the computation of the electrical activity of the human heart. After a brief introduction on the biology of the problem the authors present the mathematical models involved and a numerical method for solving them within the framework of Diffpack. Chapter 11 and 12 are closely related; actually they could have been combined in a single chapter. Chapter 11 introduces several mathematical models used in finance, based on the Black--Scholes equation. Chapter 12 considers several numerical methods like Monte Carlo, lattice methods, finite difference and finite element methods. Implementation of these methods within Diffpack is presented in the last part of the chapter. Chapter 13 presents how the finite element method is used for the modelling and analysis of elastic structures. The authors describe the structural elements of Diffpack which include popular elements such as beams and plates and examples are presented on how to use them to simulate elastic structures. Chapter 14 describes an application problem, namely the extrusion of aluminum. This is a rather\\endcolumn complicated process which involves non-Newtonian flow, heat transfer and elasticity. The authors describe the systems of PDEs modelling the underlying process and use a finite element method to obtain a numerical solution. The implementation of the numerical method in Diffpack is presented along with some applications. The last chapter, chapter 15, focuses on mathematical and numerical models of systems of PDEs governing geological processes in sedimentary basins. The underlying mathematical model is solved using the finite element method within a fully implicit scheme. The authors discuss the implementational issues involved within Diffpack and they present results from several examples. In summary, the book focuses on the computational and implementational issues involved in solving partial differential equations. The potential reader should have a basic knowledge of PDEs and the finite difference and finite element methods. The examples presented are solved within the programming framework of Diffpack and the reader should have prior experience with the particular software in order to take full advantage of the book. Overall the book is well written, the subject of each chapter is well presented and can serve as a reference for graduate students, researchers and engineers who are interested in the numerical solution of partial differential equations modelling various applications.

  1. Dynamics of Numerics & Spurious Behaviors in CFD Computations. Revised

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Sweby, Peter K.

    1997-01-01

    The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD.

  2. A Quadratic Spring Equation

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2010-01-01

    Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…

  3. Numerical Experiments with a Turbulent Single-Mode Rayleigh-Taylor Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cloutman, L.D.

    2000-04-01

    Direct numerical simulation is a powerful tool for studying turbulent flows. Unfortunately, it is also computationally expensive and often beyond the reach of the largest, fastest computers. Consequently, a variety of turbulence models have been devised to allow tractable and affordable simulations of averaged flow fields. Unfortunately, these present a variety of practical difficulties, including the incorporation of varying degrees of empiricism and phenomenology, which leads to a lack of universality. This unsatisfactory state of affairs has led to the speculation that one can avoid the expense and bother of using a turbulence model by relying on the grid andmore » numerical diffusion of the computational fluid dynamics algorithm to introduce a spectral cutoff on the flow field and to provide dissipation at the grid scale, thereby mimicking two main effects of a large eddy simulation model. This paper shows numerical examples of a single-mode Rayleigh-Taylor instability in which this procedure produces questionable results. We then show a dramatic improvement when two simple subgrid-scale models are employed. This study also illustrates the extreme sensitivity to initial conditions that is a common feature of turbulent flows.« less

  4. Numerical Investigation of Laser Propulsion for Transport in Water Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Bing; Li Beibei; Zhang Hongchao

    Problems that cumber the development of the laser propulsion in atmosphere and vacuum are discussed. Based on the theory of interaction between high-intensity laser and materials, as air and water, it is proved that transport in water environment can be impulsed by laser. The process of laser propulsion in water is investigated theoretically and numerically. It shows that not only the laser induced plasma shock wave, but also the laser induced bubble oscillation shock waves and the pressure induced by the collapsing bubble can be used. Many experimental results show that the theory and the numerical results are valid. Themore » numerical result of the contribution of every propulsion source is given in percentage. And the maximum momentum coupling coefficient Cm is given. Laser propulsion in water environment can be applied in many fields. For example, it can provide highly controllable forces of the order of micro-Newton ({mu}N) in microsystems, such as the MEMS (Micro-electromechanical Systems). It can be used as minimally invasive surgery tools of high temporal and spatial resolution. It can be used as the propulsion source in marine survey and exploitation.« less

  5. Numerical simulation of wave-induced fluid flow seismic attenuation based on the Cole-Cole model.

    PubMed

    Picotti, Stefano; Carcione, José M

    2017-07-01

    The acoustic behavior of porous media can be simulated more realistically using a stress-strain relation based on the Cole-Cole model. In particular, seismic velocity dispersion and attenuation in porous rocks is well described by mesoscopic-loss models. Using the Zener model to simulate wave propagation is a rough approximation, while the Cole-Cole model provides an optimal description of the physics. Here, a time-domain algorithm is proposed based on the Grünwald-Letnikov numerical approximation of the fractional derivative involved in the time-domain representation of the Cole-Cole model, while the spatial derivatives are computed with the Fourier pseudospectral method. The numerical solution is successfully tested against an analytical solution. The methodology is applied to a model of saline aquifer, where carbon dioxide (CO 2 ) is injected. To follow the migration of the gas and detect possible leakages, seismic monitoring surveys should be carried out periodically. To this aim, the sensitivity of the seismic method must be carefully assessed for the specific case. The simulated test considers a possible leakage in the overburden, above the caprock, where the sandstone is partially saturated with gas and brine. The numerical examples illustrate the implementation of the theory.

  6. Development of a Higher Order Laminate Theory for Modeling Composites with Induced Strain Actuators

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Seeley, Charles E.

    1996-01-01

    A refined higher order plate theory is developed to investigate the actuation mechanism of piezoelectric materials surface bonded or embedded in composite laminates. The current analysis uses a displacement field which accurately accounts for transverse shear stresses. Some higher order terms are identified by using the conditions that shear stresses vanish at all free surfaces. Therefore, all boundary conditions for displacements and stresses are satisfied in the present theory. The analysis is implemented using the finite element method which provides a convenient means to construct a numerical solution due to the discrete nature of the actuators. The higher order theory is computationally less expensive than a full three dimensional analysis. The theory is also shown to agree well with published experimental results. Numerical examples are presented for composite plates with thicknesses ranging from thin to very thick.

  7. The origin of spurious solutions in computational electromagnetics

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Wu, Jie; Povinelli, L. A.

    1995-01-01

    The origin of spurious solutions in computational electromagnetics, which violate the divergence equations, is deeply rooted in a misconception about the first-order Maxwell's equations and in an incorrect derivation and use of the curl-curl equations. The divergence equations must be always included in the first-order Maxwell's equations to maintain the ellipticity of the system in the space domain and to guarantee the uniqueness of the solution and/or the accuracy of the numerical solutions. The div-curl method and the least-squares method provide rigorous derivation of the equivalent second-order Maxwell's equations and their boundary conditions. The node-based least-squares finite element method (LSFEM) is recommended for solving the first-order full Maxwell equations directly. Examples of the numerical solutions by LSFEM for time-harmonic problems are given to demonstrate that the LSFEM is free of spurious solutions.

  8. Propagation properties of hollow sinh-Gaussian beams through fractional Fourier transform optical systems

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Jiang, ShengBao; Jiang, Chun; Zhu, Haibin

    2014-07-01

    A hollow sinh-Gaussian beam (HsG) is an appropriate model to describe the dark-hollow beam. Based on Collins integral formula and the fact that a hard-edged-aperture function can be expanded into a finite sum of complex Gaussian functions, the propagation properties of a HsG beam passing through fractional Fourier transform (FRFT) optical systems with and without apertures have been studied in detail by some typical numerical examples. The results obtained using the approximate analytical formula are in good agreement with those obtained using numerical integral calculation. Further, the studies indicate that the normalized intensity distribution of the HsG beam in FRFT plane is closely related with not only the fractional order but also the beam order and the truncation parameter. The FRFT optical systems provide a convenient way for laser beam shaping.

  9. Improving the physiological realism of experimental models.

    PubMed

    Vinnakota, Kalyan C; Cha, Chae Y; Rorsman, Patrik; Balaban, Robert S; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A; Jeneson, Jeroen A L

    2016-04-06

    The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.

  10. Optimal policy for profit maximising in an EOQ model under non-linear holding cost and stock-dependent demand rate

    NASA Astrophysics Data System (ADS)

    Pando, V.; García-Laguna, J.; San-José, L. A.

    2012-11-01

    In this article, we integrate a non-linear holding cost with a stock-dependent demand rate in a maximising profit per unit time model, extending several inventory models studied by other authors. After giving the mathematical formulation of the inventory system, we prove the existence and uniqueness of the optimal policy. Relying on this result, we can obtain the optimal solution using different numerical algorithms. Moreover, we provide a necessary and sufficient condition to determine whether a system is profitable, and we establish a rule to check when a given order quantity is the optimal lot size of the inventory model. The results are illustrated through numerical examples and the sensitivity of the optimal solution with respect to changes in some values of the parameters is assessed.

  11. Stochastic Formal Correctness of Numerical Algorithms

    NASA Technical Reports Server (NTRS)

    Daumas, Marc; Lester, David; Martin-Dorel, Erik; Truffert, Annick

    2009-01-01

    We provide a framework to bound the probability that accumulated errors were never above a given threshold on numerical algorithms. Such algorithms are used for example in aircraft and nuclear power plants. This report contains simple formulas based on Levy's and Markov's inequalities and it presents a formal theory of random variables with a special focus on producing concrete results. We selected four very common applications that fit in our framework and cover the common practices of systems that evolve for a long time. We compute the number of bits that remain continuously significant in the first two applications with a probability of failure around one out of a billion, where worst case analysis considers that no significant bit remains. We are using PVS as such formal tools force explicit statement of all hypotheses and prevent incorrect uses of theorems.

  12. Estimating statistical isotropy violation in CMB due to non-circular beam and complex scan in minutes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pant, Nidhi; Das, Santanu; Mitra, Sanjit

    Mild, unavoidable deviations from circular-symmetry of instrumental beams along with scan strategy can give rise to measurable Statistical Isotropy (SI) violation in Cosmic Microwave Background (CMB) experiments. If not accounted properly, this spurious signal can complicate the extraction of other SI violation signals (if any) in the data. However, estimation of this effect through exact numerical simulation is computationally intensive and time consuming. A generalized analytical formalism not only provides a quick way of estimating this signal, but also gives a detailed understanding connecting the leading beam anisotropy components to a measurable BipoSH characterisation of SI violation. In this paper,more » we provide an approximate generic analytical method for estimating the SI violation generated due to a non-circular (NC) beam and arbitrary scan strategy, in terms of the Bipolar Spherical Harmonic (BipoSH) spectra. Our analytical method can predict almost all the features introduced by a NC beam in a complex scan and thus reduces the need for extensive numerical simulation worth tens of thousands of CPU hours into minutes long calculations. As an illustrative example, we use WMAP beams and scanning strategy to demonstrate the easability, usability and efficiency of our method. We test all our analytical results against that from exact numerical simulations.« less

  13. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    PubMed Central

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines. PMID:29593483

  14. Calculation of controllability and observability matrices for special case of continuous-time multi-order fractional systems.

    PubMed

    Hassanzadeh, Iman; Tabatabaei, Mohammad

    2017-03-28

    In this paper, controllability and observability matrices for pseudo upper or lower triangular multi-order fractional systems are derived. It is demonstrated that these systems are controllable and observable if and only if their controllability and observability matrices are full rank. In other words, the rank of these matrices should be equal to the inner dimension of their corresponding state space realizations. To reduce the computational complexities, these matrices are converted to simplified matrices with smaller dimensions. Numerical examples are provided to show the usefulness of the mentioned matrices for controllability and observability analysis of this case of multi-order fractional systems. These examples clarify that the duality concept is not necessarily true for these special systems. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Fluctuations and correlations in modulation instability

    NASA Astrophysics Data System (ADS)

    Solli, D. R.; Herink, G.; Jalali, B.; Ropers, C.

    2012-07-01

    Stochastically driven nonlinear processes are responsible for spontaneous pattern formation and instabilities in numerous natural and artificial systems, including well-known examples such as sand ripples, cloud formations, water waves, animal pigmentation and heart rhythms. Technologically, a type of such self-amplification drives free-electron lasers and optical supercontinuum sources whose radiation qualities, however, suffer from the stochastic origins. Through time-resolved observations, we identify intrinsic properties of these fluctuations that are hidden in ensemble measurements. We acquire single-shot spectra of modulation instability produced by laser pulses in glass fibre at megahertz real-time capture rates. The temporally confined nature of the gain physically limits the number of amplified modes, which form an antibunched arrangement as identified from a statistical analysis of the data. These dynamics provide an example of pattern competition and interaction in confined nonlinear systems.

  16. pFUnit 3.0 Tutorial Advanced

    NASA Technical Reports Server (NTRS)

    Clune, Tom

    2014-01-01

    This tutorial will introduce Fortran developers to unit-testing and test-driven development (TDD) using pFUnit. As with other unit-testing frameworks, pFUnit, simplifies the process of writing, collecting, and executing tests while providing clear diagnostic messages for failing tests. pFUnit specifically targets the development of scientific-technical software written in Fortran and includes customized features such as: assertions for multi-dimensional arrays, distributed (MPI) and thread-based (OpenMP) parallellism, and flexible parameterized tests.These sessions will include numerous examples and hands-on exercises that gradually build in complexity. Attendees are expected to have working knowledge of F90, but familiarity with object-oriented syntax in F2003 and MPI will be of benefit for the more advanced examples. By the end of the tutorial the audience should feel comfortable in applying pFUnit within their own development environment.

  17. Recent or imminent separation and intimate violence against women. A conceptual overview and some Canadian examples.

    PubMed

    Sev'er, A

    1997-12-01

    The link between recent or imminent separation and violence against female partners is discussed. Interviews were conducted among 87 divorced, separated and domestic violence survivors during 1985-88 to study violence perpetrated by men against their female intimate partners. Various bodies of literature are reviewed to establish the fact that separation heightens the risk of violence. The conceptual contributions of social learning and power and control theories are presented as they pertain to intimate violence against women. An expanded version of the power-and-control model is used to underscore the violence proneness of separations, especially when women initiate separations. To illustrate the expanded model, numerous Canadian examples are provided, drawn from interviews with divorced women, survivors of intimate violence, and news media reports. Finally, different strategies to break the cycle of violence are summarized.

  18. Some observations on boundary conditions for numerical conservation laws

    NASA Technical Reports Server (NTRS)

    Kamowitz, David

    1988-01-01

    Four choices of outflow boundary conditions are considered for numerical conservation laws. All four methods are stable for linear problems, for which examples are presented where either a boundary layer forms or the numerical scheme, together with the boundary condition, is unstable due to the formation of a reflected shock. A simple heuristic argument is presented for determining the suitability of the boundary condition.

  19. ICAM (Conceptual Design for Computer-Integrated Manufacturing. Volume 2. Part 6. Task B - Establishment of the Factory of the Future Conceptual Framework Conceptual Framework Document, (MMR)

    DTIC Science & Technology

    1984-06-29

    effort that requires hard copy documentation. As a result, there are generally numerous delays in providing current quality information. In the FoF...process have had fixed controls or were based on " hard -coded" information. A template, for example, is hard -coded information defining the shape of a...represents soft-coded control information. (Although manual handling of punch tapes still possess some of the limitations of " hard -coded" controls

  20. Maximized gust loads for a nonlinear airplane using matched filter theory and constrained optimization

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III

    1991-01-01

    Two matched filter theory based schemes are described and illustrated for obtaining maximized and time correlated gust loads for a nonlinear aircraft. The first scheme is computationally fast because it uses a simple 1-D search procedure to obtain its answers. The second scheme is computationally slow because it uses a more complex multi-dimensional search procedure to obtain its answers, but it consistently provides slightly higher maximum loads than the first scheme. Both schemes are illustrated with numerical examples involving a nonlinear control system.

  1. Artificial mismatch hybridization

    DOEpatents

    Guo, Zhen; Smith, Lloyd M.

    1998-01-01

    An improved nucleic acid hybridization process is provided which employs a modified oligonucleotide and improves the ability to discriminate a control nucleic acid target from a variant nucleic acid target containing a sequence variation. The modified probe contains at least one artificial mismatch relative to the control nucleic acid target in addition to any mismatch(es) arising from the sequence variation. The invention has direct and advantageous application to numerous existing hybridization methods, including, applications that employ, for example, the Polymerase Chain Reaction, allele-specific nucleic acid sequencing methods, and diagnostic hybridization methods.

  2. Programmable DNA switches and their applications.

    PubMed

    Harroun, Scott G; Prévost-Tremblay, Carl; Lauzon, Dominic; Desrosiers, Arnaud; Wang, Xiaomeng; Pedro, Liliana; Vallée-Bélisle, Alexis

    2018-03-08

    DNA switches are ideally suited for numerous nanotechnological applications, and increasing efforts are being directed toward their engineering. In this review, we discuss how to engineer these switches starting from the selection of a specific DNA-based recognition element, to its adaptation and optimisation into a switch, with applications ranging from sensing to drug delivery, smart materials, molecular transporters, logic gates and others. We provide many examples showcasing their high programmability and recent advances towards their real life applications. We conclude with a short perspective on this exciting emerging field.

  3. Input-output-controlled nonlinear equation solvers

    NASA Technical Reports Server (NTRS)

    Padovan, Joseph

    1988-01-01

    To upgrade the efficiency and stability of the successive substitution (SS) and Newton-Raphson (NR) schemes, the concept of input-output-controlled solvers (IOCS) is introduced. By employing the formal properties of the constrained version of the SS and NR schemes, the IOCS algorithm can handle indefiniteness of the system Jacobian, can maintain iterate monotonicity, and provide for separate control of load incrementation and iterate excursions, as well as having other features. To illustrate the algorithmic properties, the results for several benchmark examples are presented. These define the associated numerical efficiency and stability of the IOCS.

  4. Advanced Models and Algorithms for Self-Similar IP Network Traffic Simulation and Performance Analysis

    NASA Astrophysics Data System (ADS)

    Radev, Dimitar; Lokshina, Izabella

    2010-11-01

    The paper examines self-similar (or fractal) properties of real communication network traffic data over a wide range of time scales. These self-similar properties are very different from the properties of traditional models based on Poisson and Markov-modulated Poisson processes. Advanced fractal models of sequentional generators and fixed-length sequence generators, and efficient algorithms that are used to simulate self-similar behavior of IP network traffic data are developed and applied. Numerical examples are provided; and simulation results are obtained and analyzed.

  5. Maximized gust loads for a nonlinear airplane using matched filter theory and constrained optimization

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Perry, Boyd, III; Pototzky, Anthony S.

    1991-01-01

    This paper describes and illustrates two matched-filter-theory based schemes for obtaining maximized and time-correlated gust-loads for a nonlinear airplane. The first scheme is computationally fast because it uses a simple one-dimensional search procedure to obtain its answers. The second scheme is computationally slow because it uses a more complex multidimensional search procedure to obtain its answers, but it consistently provides slightly higher maximum loads than the first scheme. Both schemes are illustrated with numerical examples involving a nonlinear control system.

  6. An evaluation of dynamic mutuality measurements and methods in cyclic time series

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohua; Huang, Guitian; Duan, Na

    2010-12-01

    Several measurements and techniques have been developed to detect dynamic mutuality and synchronicity of time series in econometrics. This study aims to compare the performances of five methods, i.e., linear regression, dynamic correlation, Markov switching models, concordance index and recurrence quantification analysis, through numerical simulations. We evaluate the abilities of these methods to capture structure changing and cyclicity in time series and the findings of this paper would offer guidance to both academic and empirical researchers. Illustration examples are also provided to demonstrate the subtle differences of these techniques.

  7. Passive synchronization for Markov jump genetic oscillator networks with time-varying delays.

    PubMed

    Lu, Li; He, Bing; Man, Chuntao; Wang, Shun

    2015-04-01

    In this paper, the synchronization problem of coupled Markov jump genetic oscillator networks with time-varying delays and external disturbances is investigated. By introducing the drive-response concept, a novel mode-dependent control scheme is proposed, which guarantees that the synchronization can be achieved. By applying the Lyapunov-Krasovskii functional method and stochastic analysis, sufficient conditions are established based on passivity theory in terms of linear matrix inequalities. A numerical example is provided to demonstrate the effectiveness of our theoretical results. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Networked Guidance and Control for Mobile Multi-Agent Systems: A Multi-Terminal (Network) Information Theoretic Approach

    DTIC Science & Technology

    2014-11-04

    maximization. A numerical example is provided to illustrate these ideas. [2] Marcos M. Vasconcelos and Nuno C. Martins, “Remote Estimation Games...and bias are affected by current and past outputs. (Working papers to be submitted until the end of 2014) [7] Marcos M. Vasconcelos and Nuno C...4.  Personnel:     Students  partially   funded  by  this  grant  E.  Arvelo,  S.  Park,  D.  Ward,  M.   Vasconcelos

  9. Particle-based and meshless methods with Aboria

    NASA Astrophysics Data System (ADS)

    Robinson, Martin; Bruna, Maria

    Aboria is a powerful and flexible C++ library for the implementation of particle-based numerical methods. The particles in such methods can represent actual particles (e.g. Molecular Dynamics) or abstract particles used to discretise a continuous function over a domain (e.g. Radial Basis Functions). Aboria provides a particle container, compatible with the Standard Template Library, spatial search data structures, and a Domain Specific Language to specify non-linear operators on the particle set. This paper gives an overview of Aboria's design, an example of use, and a performance benchmark.

  10. Robust functional regression model for marginal mean and subject-specific inferences.

    PubMed

    Cao, Chunzheng; Shi, Jian Qing; Lee, Youngjo

    2017-01-01

    We introduce flexible robust functional regression models, using various heavy-tailed processes, including a Student t-process. We propose efficient algorithms in estimating parameters for the marginal mean inferences and in predicting conditional means as well as interpolation and extrapolation for the subject-specific inferences. We develop bootstrap prediction intervals (PIs) for conditional mean curves. Numerical studies show that the proposed model provides a robust approach against data contamination or distribution misspecification, and the proposed PIs maintain the nominal confidence levels. A real data application is presented as an illustrative example.

  11. The Learning Cycle: A Reintroduction

    NASA Astrophysics Data System (ADS)

    Maier, Steven J.; Marek, Edmund A.

    2006-02-01

    The learning cycle is an inquiry approach to instruction that continues to demonstrate significant effectiveness in the classroom.1-3 Rooted in Piaget's theory of intellectual development, learning cycles provide a structured means for students to construct concepts from direct experiences with science phenomena. Learning cycles have been the subject of numerous articles in science practitioner periodicals as well as the focus of much research in science education journals.4 This paper reintroduces the learning cycle by giving a brief description, followed by an example suitable for a range of physics classrooms.

  12. Design of ground test suspension systems for verification of flexible space structures

    NASA Technical Reports Server (NTRS)

    Cooley, V. M.; Juang, J. N.; Ghaemmaghami, P.

    1988-01-01

    A simple model demonstrates the frequency-increasing effects of a simple cable suspension on flexible test article/suspension systems. Two passive suspension designs, namely a negative spring mechanism and a rolling cart mechanism, are presented to alleviate the undesirable frequency-increasing effects. Analysis methods are provided for systems in which the augmentations are applied to both discrete and continuous representations of test articles. The damping analyses are based on friction equivalent viscous damping. Numerical examples are given for comparing the two augmentations with respect to minimizing frequency and damping increases.

  13. Dynamics of a stochastic cell-to-cell HIV-1 model with distributed delay

    NASA Astrophysics Data System (ADS)

    Ji, Chunyan; Liu, Qun; Jiang, Daqing

    2018-02-01

    In this paper, we consider a stochastic cell-to-cell HIV-1 model with distributed delay. Firstly, we show that there is a global positive solution of this model before exploring its long-time behavior. Then sufficient conditions for extinction of the disease are established. Moreover, we obtain sufficient conditions for the existence of an ergodic stationary distribution of the model by constructing a suitable stochastic Lyapunov function. The stationary distribution implies that the disease is persistent in the mean. Finally, we provide some numerical examples to illustrate theoretical results.

  14. Fuzzy Hungarian Method for Solving Intuitionistic Fuzzy Travelling Salesman Problem

    NASA Astrophysics Data System (ADS)

    Prabakaran, K.; Ganesan, K.

    2018-04-01

    The travelling salesman problem is to identify the shortest route that the salesman journey all the places and return the starting place with minimum cost. We develop a fuzzy version of Hungarian algorithm for the solution of intuitionistic fuzzy travelling salesman problem using triangular intuitionistic fuzzy numbers without changing them to classical travelling salesman problem. The purposed method is easy to empathize and to implement for finding solution of intuitionistic travelling salesman problem happening in real life situations. To illustrate the proposed method numerical example are provided.

  15. Bayesian design of decision rules for failure detection

    NASA Technical Reports Server (NTRS)

    Chow, E. Y.; Willsky, A. S.

    1984-01-01

    The formulation of the decision making process of a failure detection algorithm as a Bayes sequential decision problem provides a simple conceptualization of the decision rule design problem. As the optimal Bayes rule is not computable, a methodology that is based on the Bayesian approach and aimed at a reduced computational requirement is developed for designing suboptimal rules. A numerical algorithm is constructed to facilitate the design and performance evaluation of these suboptimal rules. The result of applying this design methodology to an example shows that this approach is potentially a useful one.

  16. Tunnelling in Dante's Inferno

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuuchi, Kazuyuki; Sperling, Marcus, E-mail: kazuyuki.furuuchi@manipal.edu, E-mail: marcus.sperling@univie.ac.at

    2017-05-01

    We study quantum tunnelling in Dante's Inferno model of large field inflation. Such a tunnelling process, which will terminate inflation, becomes problematic if the tunnelling rate is rapid compared to the Hubble time scale at the time of inflation. Consequently, we constrain the parameter space of Dante's Inferno model by demanding a suppressed tunnelling rate during inflation. The constraints are derived and explicit numerical bounds are provided for representative examples. Our considerations are at the level of an effective field theory; hence, the presented constraints have to hold regardless of any UV completion.

  17. The numerical solution of linear multi-term fractional differential equations: systems of equations

    NASA Astrophysics Data System (ADS)

    Edwards, John T.; Ford, Neville J.; Simpson, A. Charles

    2002-11-01

    In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.

  18. Determination of stresses in gas-turbine disks subjected to plastic flow and creep

    NASA Technical Reports Server (NTRS)

    Millenson, M B; Manson, S S

    1948-01-01

    A finite-difference method previously presented for computing elastic stresses in rotating disks is extended to include the computation of the disk stresses when plastic flow and creep are considered. A finite-difference method is employed to eliminate numerical integration and to permit nontechnical personnel to make the calculations with a minimum of engineering supervision. Illustrative examples are included to facilitate explanation of the procedure by carrying out the computations on a typical gas-turbine disk through a complete running cycle. The results of the numerical examples presented indicate that plastic flow markedly alters the elastic-stress distribution.

  19. Numerical solutions of nonlinear STIFF initial value problems by perturbed functional iterations

    NASA Technical Reports Server (NTRS)

    Dey, S. K.

    1982-01-01

    Numerical solution of nonlinear stiff initial value problems by a perturbed functional iterative scheme is discussed. The algorithm does not fully linearize the system and requires only the diagonal terms of the Jacobian. Some examples related to chemical kinetics are presented.

  20. Large scale nonlinear programming for the optimization of spacecraft trajectories

    NASA Astrophysics Data System (ADS)

    Arrieta-Camacho, Juan Jose

    Despite the availability of high fidelity mathematical models, the computation of accurate optimal spacecraft trajectories has never been an easy task. While simplified models of spacecraft motion can provide useful estimates on energy requirements, sizing, and cost; the actual launch window and maneuver scheduling must rely on more accurate representations. We propose an alternative for the computation of optimal transfers that uses an accurate representation of the spacecraft dynamics. Like other methodologies for trajectory optimization, this alternative is able to consider all major disturbances. In contrast, it can handle explicitly equality and inequality constraints throughout the trajectory; it requires neither the derivation of costate equations nor the identification of the constrained arcs. The alternative consist of two steps: (1) discretizing the dynamic model using high-order collocation at Radau points, which displays numerical advantages, and (2) solution to the resulting Nonlinear Programming (NLP) problem using an interior point method, which does not suffer from the performance bottleneck associated with identifying the active set, as required by sequential quadratic programming methods; in this way the methodology exploits the availability of sound numerical methods, and next generation NLP solvers. In practice the methodology is versatile; it can be applied to a variety of aerospace problems like homing, guidance, and aircraft collision avoidance; the methodology is particularly well suited for low-thrust spacecraft trajectory optimization. Examples are presented which consider the optimization of a low-thrust orbit transfer subject to the main disturbances due to Earth's gravity field together with Lunar and Solar attraction. Other example considers the optimization of a multiple asteroid rendezvous problem. In both cases, the ability of our proposed methodology to consider non-standard objective functions and constraints is illustrated. Future research directions are identified, involving the automatic scheduling and optimization of trajectory correction maneuvers. The sensitivity information provided by the methodology is expected to be invaluable in such research pursuit. The collocation scheme and nonlinear programming algorithm presented in this work, complement other existing methodologies by providing reliable and efficient numerical methods able to handle large scale, nonlinear dynamic models.

  1. Numerical Treatment of Stokes Solvent Flow and Solute-Solvent Interfacial Dynamics for Nonpolar Molecules.

    PubMed

    Sun, Hui; Zhou, Shenggao; Moore, David K; Cheng, Li-Tien; Li, Bo

    2016-05-01

    We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems.

  2. Numerical Treatment of Stokes Solvent Flow and Solute-Solvent Interfacial Dynamics for Nonpolar Molecules

    PubMed Central

    Sun, Hui; Zhou, Shenggao; Moore, David K.; Cheng, Li-Tien; Li, Bo

    2015-01-01

    We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems. PMID:27365866

  3. A quasi-spectral method for Cauchy problem of 2/D Laplace equation on an annulus

    NASA Astrophysics Data System (ADS)

    Saito, Katsuyoshi; Nakada, Manabu; Iijima, Kentaro; Onishi, Kazuei

    2005-01-01

    Real numbers are usually represented in the computer as a finite number of digits hexa-decimal floating point numbers. Accordingly the numerical analysis is often suffered from rounding errors. The rounding errors particularly deteriorate the precision of numerical solution in inverse and ill-posed problems. We attempt to use a multi-precision arithmetic for reducing the rounding error evil. The use of the multi-precision arithmetic system is by the courtesy of Dr Fujiwara of Kyoto University. In this paper we try to show effectiveness of the multi-precision arithmetic by taking two typical examples; the Cauchy problem of the Laplace equation in two dimensions and the shape identification problem by inverse scattering in three dimensions. It is concluded from a few numerical examples that the multi-precision arithmetic works well on the resolution of those numerical solutions, as it is combined with the high order finite difference method for the Cauchy problem and with the eigenfunction expansion method for the inverse scattering problem.

  4. A numerical study of the 3-periodic wave solutions to KdV-type equations

    NASA Astrophysics Data System (ADS)

    Zhang, Yingnan; Hu, Xingbiao; Sun, Jianqing

    2018-02-01

    In this paper, by using the direct method of calculating periodic wave solutions proposed by Akira Nakamura, we present a numerical process to calculate the 3-periodic wave solutions to several KdV-type equations: the Korteweg-de Vries equation, the Sawada-Koterra equation, the Boussinesq equation, the Ito equation, the Hietarinta equation and the (2 + 1)-dimensional Kadomtsev-Petviashvili equation. Some detailed numerical examples are given to show the existence of the three-periodic wave solutions numerically.

  5. Analytical approximation and numerical simulations for periodic travelling water waves

    NASA Astrophysics Data System (ADS)

    Kalimeris, Konstantinos

    2017-12-01

    We present recent analytical and numerical results for two-dimensional periodic travelling water waves with constant vorticity. The analytical approach is based on novel asymptotic expansions. We obtain numerical results in two different ways: the first is based on the solution of a constrained optimization problem, and the second is realized as a numerical continuation algorithm. Both methods are applied on some examples of non-constant vorticity. This article is part of the theme issue 'Nonlinear water waves'.

  6. Enhanced and tunable electric dipole-dipole interactions near a planar metal film

    NASA Astrophysics Data System (ADS)

    Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen

    2017-08-01

    We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.

  7. Multistability and instability analysis of recurrent neural networks with time-varying delays.

    PubMed

    Zhang, Fanghai; Zeng, Zhigang

    2018-01-01

    This paper provides new theoretical results on the multistability and instability analysis of recurrent neural networks with time-varying delays. It is shown that such n-neuronal recurrent neural networks have exactly [Formula: see text] equilibria, [Formula: see text] of which are locally exponentially stable and the others are unstable, where k 0 is a nonnegative integer such that k 0 ≤n. By using the combination method of two different divisions, recurrent neural networks can possess more dynamic properties. This method improves and extends the existing results in the literature. Finally, one numerical example is provided to show the superiority and effectiveness of the presented results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. An outline of tectonic, igneous, and metamorphic events in the Goshute-Toano Range between Silver Zone Pass and White Horse Pass, Elko County, Nevada; a history of superposed contractional and extensional deformation

    USGS Publications Warehouse

    Ketner, Keith Brindley; Day, Warren C.; Elrick, Maya; Vaag, Myra K.; Zimmerman, Robert A.; Snee, Lawrence W.; Saltus, Richard W.; Repetski, John E.; Wardlaw, Bruce R.; Taylor, Michael E.; Harris, Anita G.

    1998-01-01

    Seven kinds of fault-bounded tracts are described. One of the tracts provides a good example of Mesozoic contractional folding and faulting; six exemplify various aspects of Miocene extensional faulting. Massive landslide deposits resulting from Tertiary faulting are described. Mesozoic intrusive rocks and extensive exposures of Miocene volcanic rocks are described and dated. The age ranges of stratigraphic units were based on numerous conodont collections, and ages of igneous rocks were determined by argon/argon and fission-track methods. The geologic complexity of the Goshute-Toano Range provides opportunities for many additional productive structural studies.

  9. Random learning units using WIRIS quizzes in Moodle

    NASA Astrophysics Data System (ADS)

    Mora, Ángel; Mérida, Enrique; Eixarch, Ramon

    2011-09-01

    Moodle is an extended learning management system for developing learning units, including mathematically-based subjects. A wide variety of material can be developed in Moodle which contains facilities for forums, questionnaires, lessons, tasks, wikis, glossaries and chats. Therefore, the Moodle platform provides a meeting point for those working in a mathematics course. Mathematics requires special materials and activities: The material must include mathematical objects and the activities included in the virtual course must be able to do mathematical computations. WIRIS is a powerful software for educational environments. It has libraries for calculus, algebra, geometry and much more. In this article, examples showing the use of WIRIS in numerical methods and examples of using a new tool, WIRIS quizzes, are illustrated. By enhancing Moodle with WIRIS, we can add random learning questions to modules. Moodle has a simpler version of this capability, but WIRIS extends the method in which the random material is presented to the students. Random objects can appear in a question, in a variable of a question, in a plot or in the definition of a mathematical object. This article illustrates material prepared for numerical methods using a WIRIS library integrated in WIRIS quizzes. As a result, WIRIS in Moodle can be considered as a global solution for mathematics education.

  10. On coarse projective integration for atomic deposition in amorphous systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Claire Y., E-mail: yungc@seas.upenn.edu, E-mail: meister@unm.edu, E-mail: zepedaruiz1@llnl.gov; Sinno, Talid, E-mail: talid@seas.upenn.edu; Han, Sang M., E-mail: yungc@seas.upenn.edu, E-mail: meister@unm.edu, E-mail: zepedaruiz1@llnl.gov

    2015-10-07

    Direct molecular dynamics simulation of atomic deposition under realistic conditions is notoriously challenging because of the wide range of time scales that must be captured. Numerous simulation approaches have been proposed to address the problem, often requiring a compromise between model fidelity, algorithmic complexity, and computational efficiency. Coarse projective integration, an example application of the “equation-free” framework, offers an attractive balance between these constraints. Here, periodically applied, short atomistic simulations are employed to compute time derivatives of slowly evolving coarse variables that are then used to numerically integrate differential equations over relatively large time intervals. A key obstacle to themore » application of this technique in realistic settings is the “lifting” operation in which a valid atomistic configuration is recreated from knowledge of the coarse variables. Using Ge deposition on amorphous SiO{sub 2} substrates as an example application, we present a scheme for lifting realistic atomistic configurations comprised of collections of Ge islands on amorphous SiO{sub 2} using only a few measures of the island size distribution. The approach is shown to provide accurate initial configurations to restart molecular dynamics simulations at arbitrary points in time, enabling the application of coarse projective integration for this morphologically complex system.« less

  11. On Coarse Projective Integration for Atomic Deposition in Amorphous Systems

    DOE PAGES

    Chuang, Claire Y.; Han, Sang M.; Zepeda-Ruiz, Luis A.; ...

    2015-10-02

    Direct molecular dynamics simulation of atomic deposition under realistic conditions is notoriously challenging because of the wide range of timescales that must be captured. Numerous simulation approaches have been proposed to address the problem, often requiring a compromise between model fidelity, algorithmic complexity and computational efficiency. Coarse projective integration, an example application of the ‘equation-free’ framework, offers an attractive balance between these constraints. Here, periodically applied, short atomistic simulations are employed to compute gradients of slowly-evolving coarse variables that are then used to numerically integrate differential equations over relatively large time intervals. A key obstacle to the application of thismore » technique in realistic settings is the ‘lifting’ operation in which a valid atomistic configuration is recreated from knowledge of the coarse variables. Using Ge deposition on amorphous SiO 2 substrates as an example application, we present a scheme for lifting realistic atomistic configurations comprised of collections of Ge islands on amorphous SiO 2 using only a few measures of the island size distribution. In conclusion, the approach is shown to provide accurate initial configurations to restart molecular dynamics simulations at arbitrary points in time, enabling the application of coarse projective integration for this morphologically complex system.« less

  12. Slackline dynamics and the Helmholtz-Duffing oscillator

    NASA Astrophysics Data System (ADS)

    Athanasiadis, Panos J.

    2018-01-01

    Slacklining is a new, rapidly expanding sport, and understanding its physics is paramount for maximizing fun and safety. Yet, compared to other sports, very little has been published so far on slackline dynamics. The equations of motion describing a slackline are fundamentally nonlinear, and assuming linear elasticity, they lead to a form of the Duffing equation. Following this approach, characteristic examples of slackline motion are simulated, including trickline bouncing, leash falls and longline surfing. The time-dependent solutions of the differential equations describing the system are acquired by numerical integration. A simple form of energy dissipation (linear drag) is added in some cases. It is recognized in this study that geometric nonlinearity is a fundamental aspect characterizing the dynamics of slacklines. Sports, and particularly slackline, is an excellent way of engaging young people with physics. A slackline is a simple yet insightful example of a nonlinear oscillator. It is very easy to model in the laboratory, as well as to rig and try on a university campus. For instructive purposes, its behaviour can be explored by numerically integrating the respective equations of motion. A form of the Duffing equation emerges naturally in the analysis and provides a powerful introduction to nonlinear dynamics. The material is suitable for graduate students and undergraduates with a background in classical mechanics and differential equations.

  13. Descriptive statistics: the specification of statistical measures and their presentation in tables and graphs. Part 7 of a series on evaluation of scientific publications.

    PubMed

    Spriestersbach, Albert; Röhrig, Bernd; du Prel, Jean-Baptist; Gerhold-Ay, Aslihan; Blettner, Maria

    2009-09-01

    Descriptive statistics are an essential part of biometric analysis and a prerequisite for the understanding of further statistical evaluations, including the drawing of inferences. When data are well presented, it is usually obvious whether the author has collected and evaluated them correctly and in keeping with accepted practice in the field. Statistical variables in medicine may be of either the metric (continuous, quantitative) or categorical (nominal, ordinal) type. Easily understandable examples are given. Basic techniques for the statistical description of collected data are presented and illustrated with examples. The goal of a scientific study must always be clearly defined. The definition of the target value or clinical endpoint determines the level of measurement of the variables in question. Nearly all variables, whatever their level of measurement, can be usefully presented graphically and numerically. The level of measurement determines what types of diagrams and statistical values are appropriate. There are also different ways of presenting combinations of two independent variables graphically and numerically. The description of collected data is indispensable. If the data are of good quality, valid and important conclusions can already be drawn when they are properly described. Furthermore, data description provides a basis for inferential statistics.

  14. Arithmetic Procedures are Induced from Examples.

    DTIC Science & Technology

    1985-08-13

    concrete numerals (eg. coins. Dienes blocks, poker chips. Montessori rods etc Analogy is included as a third hypothesis even though it is not particularly...collections of coins. Diennes blocks. Montessori rods and so forth. This is a mapping between two kinds of numerals. and not two procedures Later. this

  15. Creating Poetry.

    ERIC Educational Resources Information Center

    Drury, John

    Encouraging exploration and practice, this book offers hundreds of exercises and numerous tips covering every step involved in creating poetry. Each chapter is a self-contained unit offering an overview of material in the chapter, a definition of terms, and poetry examples from well-known authors designed to supplement the numerous exercises.…

  16. Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM

    NASA Astrophysics Data System (ADS)

    Idelsohn, S. R.; Marti, J.; Souto-Iglesias, A.; Oñate, E.

    2008-12-01

    The paper aims to introduce new fluid structure interaction (FSI) tests to compare experimental results with numerical ones. The examples have been chosen for a particular case for which experimental results are not much reported. This is the case of FSI including free surface flows. The possibilities of the Particle Finite Element Method (PFEM) [1] for the simulation of free surface flows is also tested. The simulations are run using the same scale as the experiment in order to minimize errors due to scale effects. Different scenarios are simulated by changing the boundary conditions for reproducing flows with the desired characteristics. Details of the input data for all the examples studied are given. The aim is to identifying benchmark problems for FSI including free surface flows for future comparisons between different numerical approaches.

  17. Improving Public Health through Innovations in Exposure ...

    EPA Pesticide Factsheets

    In the traditional risk assessment paradigm, exposure science is relegated to a supporting role, providing an exposure estimate for comparison with hazard-based guidance values to determine whether there may be an unacceptable risk to public health. More recently, exposure science has transformed into a distinct discipline that complements toxicology as a means to understand the relationship between exposures to chemical mixtures and multiple health effects. This transformation is driven by advances in, for example, analytical methods, biomarker discovery, computational capabilities and algorithms, remote and on-person sensors, and geographic information systems. These major innovations in exposure science provide novel data streams that can revolutionize toxicity testing strategies and conventional risk assessment. For example, large numbers of chemicals are being detected at ever-lower concentrations in environmental and biological samples, providing relevant exposure information to be integrated into toxicity testing strategies. Novel biomarkers are being developed to expand our understanding of exposures, early biological effects, and susceptibility, and to allow for the exploration of contributions from both chemical and non-chemical stressors to adverse health outcomes. This workshop will introduce numerous innovative tools to enable better characterization of human exposures to mixtures of chemicals, including 1) a non-targeted approach to identify

  18. Information System Engineering Supporting Observation, Orientation, Decision, and Compliant Action

    NASA Astrophysics Data System (ADS)

    Georgakopoulos, Dimitrios

    The majority of today's software systems and organizational/business structures have been built on the foundation of solving problems via long-term data collection, analysis, and solution design. This traditional approach of solving problems and building corresponding software systems and business processes, falls short in providing the necessary solutions needed to deal with many problems that require agility as the main ingredient of their solution. For example, such agility is needed in responding to an emergency, in military command control, physical security, price-based competition in business, investing in the stock market, video gaming, network monitoring and self-healing, diagnosis in emergency health care, and many other areas that are too numerous to list here. The concept of Observe, Orient, Decide, and Act (OODA) loops is a guiding principal that captures the fundamental issues and approach for engineering information systems that deal with many of these problem areas. However, there are currently few software systems that are capable of supporting OODA. In this talk, we provide a tour of the research issues and state of the art solutions for supporting OODA. In addition, we provide specific examples of OODA solutions we have developed for the video surveillance and emergency response domains.

  19. Finite element analysis of hysteresis effects in piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Simkovics, Reinhard; Landes, Hermann; Kaltenbacher, Manfred; Hoffelner, Johann; Lerch, Reinhard

    2000-06-01

    The design of ultrasonic transducers for high power applications, e.g. in medical therapy or production engineering, asks for effective computer aided design tools to analyze the occurring nonlinear effects. In this paper the finite-element-boundary-element package CAPA is presented that allows to model different types of electromechanical sensors and actuators. These transducers are based on various physical coupling effects, such as piezoelectricity or magneto- mechanical interactions. Their computer modeling requires the numerical solution of a multifield problem, such as coupled electric-mechanical fields or magnetic-mechanical fields as well as coupled mechanical-acoustic fields. With the reported software environment we are able to compute the dynamic behavior of electromechanical sensors and actuators by taking into account geometric nonlinearities, nonlinear wave propagation and ferroelectric as well as magnetic material nonlinearities. After a short introduction to the basic theory of the numerical calculation schemes, two practical examples will demonstrate the applicability of the numerical simulation tool. As a first example an ultrasonic thickness mode transducer consisting of a piezoceramic material used for high power ultrasound production is examined. Due to ferroelectric hysteresis, higher order harmonics can be detected in the actuators input current. Also in case of electrical and mechanical prestressing a resonance frequency shift occurs, caused by ferroelectric hysteresis and nonlinear dependencies of the material coefficients on electric field and mechanical stresses. As a second example, a power ultrasound transducer used in HIFU-therapy (high intensity focused ultrasound) is presented. Due to the compressibility and losses in the propagating fluid a nonlinear shock wave generation can be observed. For both examples a good agreement between numerical simulation and experimental data has been achieved.

  20. Diagnosing Cognitive Errors: Statistical Pattern Classification and Recognition Approach

    DTIC Science & Technology

    1985-01-01

    often produces several different erroneous rules. For example, when adding two fractions with different denominators, many students add the numerators ...common denominator and add the numerators . As listed in Tatsuoka (1984a), there are eleven different erroneous rules which result from a misconception...the score of five. These patterns correspond to different values of 42 (Tatsuoka, 1985) The numerator of 42 is divided into two parts in Equation (5

  1. Meso-modeling of Carbon Fiber Composite for Crash Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Shih-Po; Chen, Yijung; Zeng, Danielle

    2017-04-06

    In the conventional approach, the material properties for crash safety simulations are typically obtained from standard coupon tests, where the test results only provide single layer material properties used in crash simulations. However, the lay-up effects for the failure behaviors of the real structure were not considered in numerical simulations. Hence, there was discrepancy between the crash simulations and experimental tests. Consequently, an intermediate stage is required for accurate predictions. Some component tests are required to correlate the material models in the intermediate stage. In this paper, a Mazda Tube under high-impact velocity is chosen as an example for themore » crash safety analysis. The tube consists of 24 layers of uni-directional (UD) carbon fiber composite materials, in which 4 layers are perpendicular to, while the other layers are parallel to the impact direction. An LS-DYNA meso-model was constructed with orthotropic material models counting for the single-layer material behaviors. Between layers, a node-based tie-break contact was used for modeling the delamination of the composite material. Since fiber directions are not single-oriented, the lay-up effects could be an important effect. From the first numerical trial, premature material failure occurred due to the use of material parameters obtained directly from the coupon tests. Some parametric studies were conducted to identify the cause of the numerical instability. The finding is that the material failure strength used in the numerical model needs to be enlarged to stabilize the numerical model. Some hypothesis was made to provide the foundation for enlarging the failure strength and the corresponding experiments will be conducted to validate the hypothesis.« less

  2. Structure and Function of Mammalian Carbohydrate-Lectin Interactions

    NASA Astrophysics Data System (ADS)

    Anderson, Kevin; Evers, David; Rice, Kevin G.

    Over the past three decades the field of glycobiology has expanded beyond a basic understanding of the structure and biosynthesis of glycoprotein, proteoglycans, and glycolipids toward a more detailed picture of how these molecules afford communication through binding to mammalian lectins. Although the number of different mammalian lectin domains appears to be finite and even much smaller than early estimates predicated based on the diversity of glycan structures, nature appears capable of using these in numerous combinations to fine tune specificity. The following provides an overview of the major classes of mammalian lectins and discusses their glycan binding specificity. The review provides a snapshot of the field of glycobiology that continues to grow providing an increasing number of examples of biological processes that rely upon glycan-lectin binding.

  3. Probabilistic Damage Characterization Using the Computationally-Efficient Bayesian Approach

    NASA Technical Reports Server (NTRS)

    Warner, James E.; Hochhalter, Jacob D.

    2016-01-01

    This work presents a computationally-ecient approach for damage determination that quanti es uncertainty in the provided diagnosis. Given strain sensor data that are polluted with measurement errors, Bayesian inference is used to estimate the location, size, and orientation of damage. This approach uses Bayes' Theorem to combine any prior knowledge an analyst may have about the nature of the damage with information provided implicitly by the strain sensor data to form a posterior probability distribution over possible damage states. The unknown damage parameters are then estimated based on samples drawn numerically from this distribution using a Markov Chain Monte Carlo (MCMC) sampling algorithm. Several modi cations are made to the traditional Bayesian inference approach to provide signi cant computational speedup. First, an ecient surrogate model is constructed using sparse grid interpolation to replace a costly nite element model that must otherwise be evaluated for each sample drawn with MCMC. Next, the standard Bayesian posterior distribution is modi ed using a weighted likelihood formulation, which is shown to improve the convergence of the sampling process. Finally, a robust MCMC algorithm, Delayed Rejection Adaptive Metropolis (DRAM), is adopted to sample the probability distribution more eciently. Numerical examples demonstrate that the proposed framework e ectively provides damage estimates with uncertainty quanti cation and can yield orders of magnitude speedup over standard Bayesian approaches.

  4. Two-way ANOVA Problems with Simple Numbers.

    ERIC Educational Resources Information Center

    Read, K. L. Q.; Shihab, L. H.

    1998-01-01

    Describes how to construct simple numerical examples in two-way ANOVAs, specifically randomized blocks, balanced two-way layouts, and Latin squares. Indicates that working through simple numerical problems is helpful to students meeting a technique for the first time and should be followed by computer-based analysis of larger, real datasets when…

  5. STAR: A Number Writing Strategy.

    ERIC Educational Resources Information Center

    Boom, Susan E.; Fine, Elaine

    1995-01-01

    The STAR (Stop, Think, Ask, Recite) strategy was developed to help a kindergarten student write numerals. The child was encouraged to recite a "saying" while he formed each numeral. For example, to make a "5," the child would say "the man went down the street, around the corner, and his hat blew off." (JDD)

  6. The meshless local Petrov-Galerkin method based on moving Kriging interpolation for solving the time fractional Navier-Stokes equations.

    PubMed

    Thamareerat, N; Luadsong, A; Aschariyaphotha, N

    2016-01-01

    In this paper, we present a numerical scheme used to solve the nonlinear time fractional Navier-Stokes equations in two dimensions. We first employ the meshless local Petrov-Galerkin (MLPG) method based on a local weak formulation to form the system of discretized equations and then we will approximate the time fractional derivative interpreted in the sense of Caputo by a simple quadrature formula. The moving Kriging interpolation which possesses the Kronecker delta property is applied to construct shape functions. This research aims to extend and develop further the applicability of the truly MLPG method to the generalized incompressible Navier-Stokes equations. Two numerical examples are provided to illustrate the accuracy and efficiency of the proposed algorithm. Very good agreement between the numerically and analytically computed solutions can be observed in the verification. The present MLPG method has proved its efficiency and reliability for solving the two-dimensional time fractional Navier-Stokes equations arising in fluid dynamics as well as several other problems in science and engineering.

  7. System equivalent model mixing

    NASA Astrophysics Data System (ADS)

    Klaassen, Steven W. B.; van der Seijs, Maarten V.; de Klerk, Dennis

    2018-05-01

    This paper introduces SEMM: a method based on Frequency Based Substructuring (FBS) techniques that enables the construction of hybrid dynamic models. With System Equivalent Model Mixing (SEMM) frequency based models, either of numerical or experimental nature, can be mixed to form a hybrid model. This model follows the dynamic behaviour of a predefined weighted master model. A large variety of applications can be thought of, such as the DoF-space expansion of relatively small experimental models using numerical models, or the blending of different models in the frequency spectrum. SEMM is outlined, both mathematically and conceptually, based on a notation commonly used in FBS. A critical physical interpretation of the theory is provided next, along with a comparison to similar techniques; namely DoF expansion techniques. SEMM's concept is further illustrated by means of a numerical example. It will become apparent that the basic method of SEMM has some shortcomings which warrant a few extensions to the method. One of the main applications is tested in a practical case, performed on a validated benchmark structure; it will emphasize the practicality of the method.

  8. Local finite element enrichment strategies for 2D contact computations and a corresponding post-processing scheme

    NASA Astrophysics Data System (ADS)

    Sauer, Roger A.

    2013-08-01

    Recently an enriched contact finite element formulation has been developed that substantially increases the accuracy of contact computations while keeping the additional numerical effort at a minimum reported by Sauer (Int J Numer Meth Eng, 87: 593-616, 2011). Two enrich-ment strategies were proposed, one based on local p-refinement using Lagrange interpolation and one based on Hermite interpolation that produces C 1-smoothness on the contact surface. Both classes, which were initially considered for the frictionless Signorini problem, are extended here to friction and contact between deformable bodies. For this, a symmetric contact formulation is used that allows the unbiased treatment of both contact partners. This paper also proposes a post-processing scheme for contact quantities like the contact pressure. The scheme, which provides a more accurate representation than the raw data, is based on an averaging procedure that is inspired by mortar formulations. The properties of the enrichment strategies and the corresponding post-processing scheme are illustrated by several numerical examples considering sliding and peeling contact in the presence of large deformations.

  9. A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less

  10. A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2017-08-17

    Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less

  11. Exploring the nonequilibrium dynamics of ultracold quantum gases by using numerical tools

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, Fabian

    Numerical tools such as exact diagonalization or the density matrix renormalization group method have been vital for the study of the nonequilibrium dynamics of strongly correlated many-body systems. Moreover, they provided unique insight for the interpretation of quantum gas experiments, whenever a direct comparison with theory is possible. By considering the example of the experiment by Ronzheimer et al., in which both an interaction quench and the release of bosons from a trap into an empty optical lattice (sudden expansion) was realized, I discuss several nonequilibrium effects of strongly interacting quantum gases. These include the thermalization of a closed quantum system and its connection to the eigenstate thermalization hypothesis, nonequilibrium mass transport, dynamical fermionization, and transient phenomena such as quantum distillation or dynamical quasicondensation. I highlight the role of integrability in giving rise to ballistic transport in strongly interacting 1D systems and in determining the asymptotic state after a quantum quench. The talk concludes with a perspective on open questions concerning 2D systems and the numerical simulation of their nonequilibrium dynamics. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 801.

  12. Application of fire and evacuation models in evaluation of fire safety in railway tunnels

    NASA Astrophysics Data System (ADS)

    Cábová, Kamila; Apeltauer, Tomáš; Okřinová, Petra; Wald, František

    2017-09-01

    The paper describes an application of numerical simulation of fire dynamics and evacuation of people in a tunnel. The software tool Fire Dynamics Simulator is used to simulate temperature resolution and development of smoke in a railway tunnel. Comparing to temperature curves which are usually used in the design stage results of the model show that the numerical model gives lower temperature of hot smoke layer. Outputs of the numerical simulation of fire also enable to improve models of evacuation of people during fires in tunnels. In the presented study the calculated high of smoke layer in the tunnel is in 10 min after the fire ignition lower than the level of 2.2 m which is considered as the maximal limit for safe evacuation. Simulation of the evacuation process in bigger scale together with fire dynamics can provide very valuable information about important security conditions like Available Safe Evacuation Time (ASET) vs Required Safe Evacuation Time (RSET). On given example in software EXODUS the paper summarizes selected results of evacuation model which should be in mind of a designer when preparing an evacuation plan.

  13. Streaming potential modeling in fractured rock: Insights into the identification of hydraulically active fractures

    NASA Astrophysics Data System (ADS)

    Roubinet, D.; Linde, N.; Jougnot, D.; Irving, J.

    2016-05-01

    Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  14. A pertinent approach to solve nonlinear fuzzy integro-differential equations.

    PubMed

    Narayanamoorthy, S; Sathiyapriya, S P

    2016-01-01

    Fuzzy integro-differential equations is one of the important parts of fuzzy analysis theory that holds theoretical as well as applicable values in analytical dynamics and so an appropriate computational algorithm to solve them is in essence. In this article, we use parametric forms of fuzzy numbers and suggest an applicable approach for solving nonlinear fuzzy integro-differential equations using homotopy perturbation method. A clear and detailed description of the proposed method is provided. Our main objective is to illustrate that the construction of appropriate convex homotopy in a proper way leads to highly accurate solutions with less computational work. The efficiency of the approximation technique is expressed via stability and convergence analysis so as to guarantee the efficiency and performance of the methodology. Numerical examples are demonstrated to verify the convergence and it reveals the validity of the presented numerical technique. Numerical results are tabulated and examined by comparing the obtained approximate solutions with the known exact solutions. Graphical representations of the exact and acquired approximate fuzzy solutions clarify the accuracy of the approach.

  15. Bayesian Methods for the Physical Sciences. Learning from Examples in Astronomy and Physics.

    NASA Astrophysics Data System (ADS)

    Andreon, Stefano; Weaver, Brian

    2015-05-01

    Chapter 1: This chapter presents some basic steps for performing a good statistical analysis, all summarized in about one page. Chapter 2: This short chapter introduces the basics of probability theory inan intuitive fashion using simple examples. It also illustrates, again with examples, how to propagate errors and the difference between marginal and profile likelihoods. Chapter 3: This chapter introduces the computational tools and methods that we use for sampling from the posterior distribution. Since all numerical computations, and Bayesian ones are no exception, may end in errors, we also provide a few tips to check that the numerical computation is sampling from the posterior distribution. Chapter 4: Many of the concepts of building, running, and summarizing the resultsof a Bayesian analysis are described with this step-by-step guide using a basic (Gaussian) model. The chapter also introduces examples using Poisson and Binomial likelihoods, and how to combine repeated independent measurements. Chapter 5: All statistical analyses make assumptions, and Bayesian analyses are no exception. This chapter emphasizes that results depend on data and priors (assumptions). We illustrate this concept with examples where the prior plays greatly different roles, from major to negligible. We also provide some advice on how to look for information useful for sculpting the prior. Chapter 6: In this chapter we consider examples for which we want to estimate more than a single parameter. These common problems include estimating location and spread. We also consider examples that require the modeling of two populations (one we are interested in and a nuisance population) or averaging incompatible measurements. We also introduce quite complex examples dealing with upper limits and with a larger-than-expected scatter. Chapter 7: Rarely is a sample randomly selected from the population we wish to study. Often, samples are affected by selection effects, e.g., easier-to-collect events or objects are over-represented in samples and difficult-to-collect are under-represented if not missing altogether. In this chapter we show how to account for non-random data collection to infer the properties of the population from the studied sample. Chapter 8: In this chapter we introduce regression models, i.e., how to fit (regress) one, or more quantities, against each other through a functional relationship and estimate any unknown parameters that dictate this relationship. Questions of interest include: how to deal with samples affected by selection effects? How does a rich data structure influence the fitted parameters? And what about non-linear multiple-predictor fits, upper/lower limits, measurements errors of different amplitudes and an intrinsic variety in the studied populations or an extra source of variability? A number of examples illustrate how to answer these questions and how to predict the value of an unavailable quantity by exploiting the existence of a trend with another, available, quantity. Chapter 9: This chapter provides some advice on how the careful scientist should perform model checking and sensitivity analysis, i.e., how to answer the following questions: is the considered model at odds with the current available data (the fitted data), for example because it is over-simplified compared to some specific complexity pointed out by the data? Furthermore, are the data informative about the quantity being measured or are results sensibly dependent on details of the fitted model? And, finally, what about if assumptions are uncertain? A number of examples illustrate how to answer these questions. Chapter 10: This chapter compares the performance of Bayesian methods against simple, non-Bayesian alternatives, such as maximum likelihood, minimal chi square, ordinary and weighted least square, bivariate correlated errors and intrinsic scatter, and robust estimates of location and scale. Performances are evaluated in terms of quality of the prediction, accuracy of the estimates, and fairness and noisiness of the quoted errors. We also focus on three failures of maximum likelihood methods occurring with small samples, with mixtures, and with regressions with errors in the predictor quantity.

  16. An approach to achieve progress in spacecraft shielding

    NASA Astrophysics Data System (ADS)

    Thoma, K.; Schäfer, F.; Hiermaier, S.; Schneider, E.

    2004-01-01

    Progress in shield design against space debris can be achieved only when a combined approach based on several tools is used. This approach depends on the combined application of advanced numerical methods, specific material models and experimental determination of input parameters for these models. Examples of experimental methods for material characterization are given, covering the range from quasi static to very high strain rates for materials like Nextel and carbon fiber-reinforced materials. Mesh free numerical methods have extraordinary capabilities in the simulation of extreme material behaviour including complete failure with phase changes, combined with shock wave phenomena and the interaction with structural components. In this paper the benefits from combining numerical methods, material modelling and detailed experimental studies for shield design are demonstrated. The following examples are given: (1) Development of a material model for Nextel and Kevlar-Epoxy to enable numerical simulation of hypervelocity impacts on complex heavy protection shields for the International Space Station. (2) The influence of projectile shape on protection performance of Whipple Shields and how experimental problems in accelerating such shapes can be overcome by systematic numerical simulation. (3) The benefits of using metallic foams in "sandwich bumper shields" for spacecraft and how to approach systematic characterization of such materials.

  17. Evaluation of methods for measuring relative permeability of anhydride from the Salado Formation: Sensitivity analysis and data reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christiansen, R.L.; Kalbus, J.S.; Howarth, S.M.

    This report documents, demonstrates, evaluates, and provides theoretical justification for methods used to convert experimental data into relative permeability relationships. The report facilities accurate determination of relative permeabilities of anhydride rock samples from the Salado Formation at the Waste Isolation Pilot Plant (WIPP). Relative permeability characteristic curves are necessary for WIPP Performance Assessment (PA) predictions of the potential for flow of waste-generated gas from the repository and brine flow into repository. This report follows Christiansen and Howarth (1995), a comprehensive literature review of methods for measuring relative permeability. It focuses on unsteady-state experiments and describes five methods for obtaining relativemore » permeability relationships from unsteady-state experiments. Unsteady-state experimental methods were recommended for relative permeability measurements of low-permeability anhydrite rock samples form the Salado Formation because these tests produce accurate relative permeability information and take significantly less time to complete than steady-state tests. Five methods for obtaining relative permeability relationships from unsteady-state experiments are described: the Welge method, the Johnson-Bossler-Naumann method, the Jones-Roszelle method, the Ramakrishnan-Cappiello method, and the Hagoort method. A summary, an example of the calculations, and a theoretical justification are provided for each of the five methods. Displacements in porous media are numerically simulated for the calculation examples. The simulated product data were processed using the methods, and the relative permeabilities obtained were compared with those input to the numerical model. A variety of operating conditions were simulated to show sensitivity of production behavior to rock-fluid properties.« less

  18. A new approach to identify the sensitivity and importance of physical parameters combination within numerical models using the Lund-Potsdam-Jena (LPJ) model as an example

    NASA Astrophysics Data System (ADS)

    Sun, Guodong; Mu, Mu

    2017-05-01

    An important source of uncertainty, which causes further uncertainty in numerical simulations, is that residing in the parameters describing physical processes in numerical models. Therefore, finding a subset among numerous physical parameters in numerical models in the atmospheric and oceanic sciences, which are relatively more sensitive and important parameters, and reducing the errors in the physical parameters in this subset would be a far more efficient way to reduce the uncertainties involved in simulations. In this context, we present a new approach based on the conditional nonlinear optimal perturbation related to parameter (CNOP-P) method. The approach provides a framework to ascertain the subset of those relatively more sensitive and important parameters among the physical parameters. The Lund-Potsdam-Jena (LPJ) dynamical global vegetation model was utilized to test the validity of the new approach in China. The results imply that nonlinear interactions among parameters play a key role in the identification of sensitive parameters in arid and semi-arid regions of China compared to those in northern, northeastern, and southern China. The uncertainties in the numerical simulations were reduced considerably by reducing the errors of the subset of relatively more sensitive and important parameters. The results demonstrate that our approach not only offers a new route to identify relatively more sensitive and important physical parameters but also that it is viable to then apply "target observations" to reduce the uncertainties in model parameters.

  19. Look Past the Stuffed Animals and Learn about the Earth: Dioramas at the American Museum of Natural History

    NASA Astrophysics Data System (ADS)

    Passow, M. J.

    2017-12-01

    The dioramas at the American Museum of Natural History (AMNH) in New York City provide great examples of artwork depicting locations of interest and value for teaching the Earth Sciences. When the Museum was established in 1869, it—like most institutions of that time—merely provided a taxidermy collection in cases. But as it expanded into the dozens of Halls in its multiple public buildings, curators made a deliberate effort to display the specimens with backdrops depicting the habitats where the animals were collected. Such `curatorial giants' as Frank Chapman and Carl Ackley spearheaded pioneering efforts to present displays in the curved, framed settings. The impact of these large- and small-scale artworks on the Public cannot be underestimated. Instead of just viewing the remains of a dead animal, visitors are transported around the world into a wide variety of ecosystems. With no more effort than walking from one display to the next, viewers "magically travel" to the multitude of environments across Planet Earth. The dioramas may take one from mountaintop vistas to the microsystem just a few centimeters above and below the forest floor. This presentation will provide selected examples of the artwork in AMNH dioramas. The AMNH website provides numerous videos and posts about its dioramas. I will also provide insights into the creation of more recent artwork using an online interview with Sean Murtha, the artist who created many of the Hall of Ocean Life dioramas. Predating modern technologies, including color photography, television, and computers, these dioramas are rightly described as powerful tools for nurturing scientific education and environmental awareness. These dioramas frequently are utilized to teach important Earth System Science concepts to school groups and other visitors, and examples of such lessons will be included.

  20. TRENDS: A flight test relational database user's guide and reference manual

    NASA Technical Reports Server (NTRS)

    Bondi, M. J.; Bjorkman, W. S.; Cross, J. L.

    1994-01-01

    This report is designed to be a user's guide and reference manual for users intending to access rotocraft test data via TRENDS, the relational database system which was developed as a tool for the aeronautical engineer with no programming background. This report has been written to assist novice and experienced TRENDS users. TRENDS is a complete system for retrieving, searching, and analyzing both numerical and narrative data, and for displaying time history and statistical data in graphical and numerical formats. This manual provides a 'guided tour' and a 'user's guide' for the new and intermediate-skilled users. Examples for the use of each menu item within TRENDS is provided in the Menu Reference section of the manual, including full coverage for TIMEHIST, one of the key tools. This manual is written around the XV-15 Tilt Rotor database, but does include an appendix on the UH-60 Blackhawk database. This user's guide and reference manual establishes a referrable source for the research community and augments NASA TM-101025, TRENDS: The Aeronautical Post-Test, Database Management System, Jan. 1990, written by the same authors.

  1. Investigation and Verification of the Aerodynamic Performance of a Fan/Booster with Through-flow Method

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoheng; Jin, Donghai; Gui, Xingmin

    2018-04-01

    Through-flow method is still widely applied in the revolution of the design of a turbomachinery, which can provide not merely the performance characteristic but also the flow field. In this study, a program based on the through-flow method was proposed, which had been verified by many other numerical examples. So as to improve the accuracy of the calculation, abundant loss and deviation models dependent on the real geometry of engine were put into use, such as: viscous losses, overflow in gaps, leakage from a flow path through seals. By means of this program, the aerodynamic performance of a certain high through-flow commercial fan/booster was investigated. On account of the radial distributions of the relevant parameters, flow deterioration in this machine was speculated. To confirm this surmise, 3-D numerical simulation was carried out with the help of the NUMECA software. Through detailed analysis, the speculation above was demonstrated, which provide sufficient evidence for the conclusion that the through-flow method is an essential and effective method for the performance prediction of the fan/booster.

  2. Enhanced Sidescan-Sonar Imagery, North-Central Long Island Sound

    USGS Publications Warehouse

    McMullen, K.Y.; Poppe, L.J.; Schattgen, P.T.; Doran, E.F.

    2008-01-01

    The U.S. Geological Survey, National Oceanic and Atmospheric Administration (NOAA), and Connecticut Department of Environmental Protection have been working cooperatively to map the sea-floor geology within Long Island Sound. Sidescan-sonar imagery collected during three NOAA hydrographic surveys (H11043, H11044, and H11045) was used to interpret the surficial-sediment distribution and sedimentary environments within the Sound. The original sidescan-sonar imagery generated by NOAA was used to evaluate hazards to navigation, which does not require consistent tonal matching throughout the survey. In order to fully utilize these data for geologic interpretation, artifacts within the imagery, primarily due to sidescan-system settings (for example, gain changes), processing techniques (for example, lack of across-track normalization) and environmental noise (for example, sea state), need to be minimized. Sidescan-sonar imagery from surveys H11043, H11044, and H11045 in north-central Long Island Sound was enhanced by matching the grayscale tones between adjacent sidescan-sonar lines to decrease the patchwork effect caused by numerous artifacts and to provide a more coherent sidescan-sonar image for use in geologic interpretation.

  3. Field-sensitivity To Rheological Parameters

    NASA Astrophysics Data System (ADS)

    Freund, Jonathan; Ewoldt, Randy

    2017-11-01

    We ask this question: where in a flow is a quantity of interest Q quantitatively sensitive to the model parameters θ-> describing the rheology of the fluid? This field sensitivity is computed via the numerical solution of the adjoint flow equations, as developed to expose the target sensitivity δQ / δθ-> (x) via the constraint of satisfying the flow equations. Our primary example is a sphere settling in Carbopol, for which we have experimental data. For this Carreau-model configuration, we simultaneously calculate how much a local change in the fluid intrinsic time-scale λ, limit-viscosities ηo and η∞, and exponent n would affect the drag D. Such field sensitivities can show where different fluid physics in the model (time scales, elastic versus viscous components, etc.) are important for the target observable and generally guide model refinement based on predictive goals. In this case, the computational cost of solving the local sensitivity problem is negligible relative to the flow. The Carreau-fluid/sphere example is illustrative; the utility of field sensitivity is in the design and analysis of less intuitive flows, for which we provide some additional examples.

  4. Optimization of Location–Routing Problem for Cold Chain Logistics Considering Carbon Footprint

    PubMed Central

    Wang, Songyi; Tao, Fengming; Shi, Yuhe

    2018-01-01

    In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location–routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network. PMID:29316639

  5. On displacement-based plastic design of parallel chord vierendeel girders

    NASA Astrophysics Data System (ADS)

    Grigorian, Mark

    2014-09-01

    The paper introduces the principles of displacement-based plastic design (DBPD) and its applications to the efficient design of parallel chord steel vierendeel girders under normal nodal forces. A simplifying assumption has been made that the mathematical model is composed of imaginary, pin connected modules that fit within the bays of the prototype. The use of this modeling concept in conjunction with the applications of the uniform strength theory leads to the development of an algorithm that is ideally suited for manual, minimum weight design of steel vierendeel girders under any distribution of vertical nodal forces. The resulting solutions are exact and unique and lend themselves well to DBPD and minimum weight treatment. In DBPD which is akin to performance control, member strengths and stiffnesses are assigned rather than tested. Several generic examples have been provided to illustrate the applications of the proposed design procedures. The numerical results of these examples have been verified through long hand and computer methods of analysis. An extensive proof of the proposed method of approach has been provided in the "Appendix".

  6. Leading the Way: Students of Teacher Research Experiences

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Larson, A.; Fahnestock, J.

    2017-12-01

    Over the past decade, the PolarTREC (Teachers and Researchers Exploring and Collaborating) program, administered by the Arctic Research Consortium of the United States (ARCUS), has provided over 150 U.S. K-12 teachers the opportunity to work directly with scientists in the polar regions. As a Teacher Research Experiences (TRE), it has provided teachers with a unique professional development opportunity to increase their teacher content knowledge. From recent program evaluation data, there has been a statistically significant improvement in the teacher's self-assessed ability and confidence to increase a variety of scientific processes in their lessons. This is important, as a growing emphasis is in Next Generation Science Standards is not only increasing student achievement in science but the practice of science. In PolarTREC, we have witnessed numerous examples where the increased STEM content knowledge of the teachers has transferred to their students of teachers with more student initiated and student driven research projects. In this presentation, we will share examples of this success and showcase several student-led research projects that have not only demonstrated the practice of science but have also contributed to polar research.

  7. A comparative analysis of user preference-based and existing knowledge management systems attributes in the aerospace industry

    NASA Astrophysics Data System (ADS)

    Varghese, Nishad G.

    Knowledge management (KM) exists in various forms throughout organizations. Process documentation, training courses, and experience sharing are examples of KM activities performed daily. The goal of KM systems (KMS) is to provide a tool set which serves to standardize the creation, sharing, and acquisition of business critical information. Existing literature provides numerous examples of targeted evaluations of KMS, focusing on specific system attributes. This research serves to bridge the targeted evaluations with an industry-specific, holistic approach. The user preferences of aerospace employees in engineering and engineering-related fields were compared to profiles of existing aerospace KMS based on three attribute categories: technical features, system administration, and user experience. The results indicated there is a statistically significant difference between aerospace user preferences and existing profiles in the user experience attribute category, but no statistically significant difference in the technical features and system administration attribute categories. Additional analysis indicated in-house developed systems exhibit higher technical features and user experience ratings than commercial-off-the-self (COTS) systems.

  8. Implicit level set algorithms for modelling hydraulic fracture propagation.

    PubMed

    Peirce, A

    2016-10-13

    Hydraulic fractures are tensile cracks that propagate in pre-stressed solid media due to the injection of a viscous fluid. Developing numerical schemes to model the propagation of these fractures is particularly challenging due to the degenerate, hypersingular nature of the coupled integro-partial differential equations. These equations typically involve a singular free boundary whose velocity can only be determined by evaluating a distinguished limit. This review paper describes a class of numerical schemes that have been developed to use the multiscale asymptotic behaviour typically encountered near the fracture boundary as multiple physical processes compete to determine the evolution of the fracture. The fundamental concepts of locating the free boundary using the tip asymptotics and imposing the tip asymptotic behaviour in a weak form are illustrated in two quite different formulations of the governing equations. These formulations are the displacement discontinuity boundary integral method and the extended finite-element method. Practical issues are also discussed, including new models for proppant transport able to capture 'tip screen-out'; efficient numerical schemes to solve the coupled nonlinear equations; and fast methods to solve resulting linear systems. Numerical examples are provided to illustrate the performance of the numerical schemes. We conclude the paper with open questions for further research. This article is part of the themed issue 'Energy and the subsurface'. © 2016 The Author(s).

  9. Implicit level set algorithms for modelling hydraulic fracture propagation

    PubMed Central

    2016-01-01

    Hydraulic fractures are tensile cracks that propagate in pre-stressed solid media due to the injection of a viscous fluid. Developing numerical schemes to model the propagation of these fractures is particularly challenging due to the degenerate, hypersingular nature of the coupled integro-partial differential equations. These equations typically involve a singular free boundary whose velocity can only be determined by evaluating a distinguished limit. This review paper describes a class of numerical schemes that have been developed to use the multiscale asymptotic behaviour typically encountered near the fracture boundary as multiple physical processes compete to determine the evolution of the fracture. The fundamental concepts of locating the free boundary using the tip asymptotics and imposing the tip asymptotic behaviour in a weak form are illustrated in two quite different formulations of the governing equations. These formulations are the displacement discontinuity boundary integral method and the extended finite-element method. Practical issues are also discussed, including new models for proppant transport able to capture ‘tip screen-out’; efficient numerical schemes to solve the coupled nonlinear equations; and fast methods to solve resulting linear systems. Numerical examples are provided to illustrate the performance of the numerical schemes. We conclude the paper with open questions for further research.  This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597787

  10. Interdisciplinary and multilevel optimum design

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1986-01-01

    Interactions among engineering disciplines and subsystems in engineering system design are surveyed and specific instances of such interactions are described. Examination of the interactions that a traditional design process in which the numerical values of major design variables are decided consecutively is likely to lead to a suboptimal design. Supporting numerical examples are a glider and a space antenna. Under an alternative approach introduced, the design and its sensitivity data from the subsystems and disciplines are generated concurrently and then made available to the system designer enabling him to modify the system design so as to improve its performance. Examples of a framework structure and an airliner wing illustrate that approach.

  11. Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries

    NASA Astrophysics Data System (ADS)

    Xu, Ao; Shyy, Wei; Zhao, Tianshou

    2017-06-01

    Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electrochemical systems requires powerful numerical tools. Over the past decades, the lattice Boltzmann (LB) method has attracted broad interest in the computational fluid dynamics and the numerical heat transfer communities, primarily due to its kinetic nature making it appropriate for modeling complex multiphase transport phenomena. More importantly, the LB method fits well with parallel computing due to its locality feature, which is required for large-scale engineering applications. In this article, we review the LB method for gas-liquid two-phase flows, coupled fluid flow and mass transport in porous media, and particulate flows. Examples of applications are provided in fuel cells and flow batteries. Further developments of the LB method are also outlined.

  12. New Passivity Criteria for Fuzzy Bam Neural Networks with Markovian Jumping Parameters and Time-Varying Delays

    NASA Astrophysics Data System (ADS)

    Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Thangaraj, P.

    2013-02-01

    This paper addresses the problem of passivity analysis issue for a class of fuzzy bidirectional associative memory (BAM) neural networks with Markovian jumping parameters and time varying delays. A set of sufficient conditions for the passiveness of the considered fuzzy BAM neural network model is derived in terms of linear matrix inequalities by using the delay fractioning technique together with the Lyapunov function approach. In addition, the uncertainties are inevitable in neural networks because of the existence of modeling errors and external disturbance. Further, this result is extended to study the robust passivity criteria for uncertain fuzzy BAM neural networks with time varying delays and uncertainties. These criteria are expressed in the form of linear matrix inequalities (LMIs), which can be efficiently solved via standard numerical software. Two numerical examples are provided to demonstrate the effectiveness of the obtained results.

  13. Mathematical interpretation of Brownian motor model: Limit cycles and directed transport phenomena

    NASA Astrophysics Data System (ADS)

    Yang, Jianqiang; Ma, Hong; Zhong, Suchuang

    2018-03-01

    In this article, we first suggest that the attractor of Brownian motor model is one of the reasons for the directed transport phenomenon of Brownian particle. We take the classical Smoluchowski-Feynman (SF) ratchet model as an example to investigate the relationship between limit cycles and directed transport phenomenon of the Brownian particle. We study the existence and variation rule of limit cycles of SF ratchet model at changing parameters through mathematical methods. The influences of these parameters on the directed transport phenomenon of a Brownian particle are then analyzed through numerical simulations. Reasonable mathematical explanations for the directed transport phenomenon of Brownian particle in SF ratchet model are also formulated on the basis of the existence and variation rule of the limit cycles and numerical simulations. These mathematical explanations provide a theoretical basis for applying these theories in physics, biology, chemistry, and engineering.

  14. Mathematical solution of multilevel fractional programming problem with fuzzy goal programming approach

    NASA Astrophysics Data System (ADS)

    Lachhwani, Kailash; Poonia, Mahaveer Prasad

    2012-08-01

    In this paper, we show a procedure for solving multilevel fractional programming problems in a large hierarchical decentralized organization using fuzzy goal programming approach. In the proposed method, the tolerance membership functions for the fuzzily described numerator and denominator part of the objective functions of all levels as well as the control vectors of the higher level decision makers are respectively defined by determining individual optimal solutions of each of the level decision makers. A possible relaxation of the higher level decision is considered for avoiding decision deadlock due to the conflicting nature of objective functions. Then, fuzzy goal programming approach is used for achieving the highest degree of each of the membership goal by minimizing negative deviational variables. We also provide sensitivity analysis with variation of tolerance values on decision vectors to show how the solution is sensitive to the change of tolerance values with the help of a numerical example.

  15. Improving the physiological realism of experimental models

    PubMed Central

    Vinnakota, Kalyan C.; Cha, Chae Y.; Rorsman, Patrik; Balaban, Robert S.; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A.

    2016-01-01

    The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease. PMID:27051507

  16. On importance assessment of aging multi-state system

    NASA Astrophysics Data System (ADS)

    Frenkel, Ilia; Khvatskin, Lev; Lisnianski, Anatoly

    2017-01-01

    Modern high-tech equipment requires precise temperature control and effective cooling below the ambient temperature. Greater cooling efficiencies will allow equipment to be operated for longer periods without overheating, providing a greater return on investment and increased in availability of the equipment. This paper presents application of the Lz-transform method to importance assessment of aging multi-state water-cooling system used in one of Israeli hospitals. The water cooling system consists of 3 principal sub-systems: chillers, heat exchanger and pumps. The performance of the system and the sub-systems is measured by their produced cooling capacity. Heat exchanger is an aging component. Straightforward Markov method applied to solve this problem will require building of a system model with numerous numbers of states and solving a corresponding system of multiple differential equations. Lz-transform method, which is used for calculation of the system elements importance, drastically simplified the solution. Numerical example is presented to illustrate the described approach.

  17. Practical Bayesian tomography

    NASA Astrophysics Data System (ADS)

    Granade, Christopher; Combes, Joshua; Cory, D. G.

    2016-03-01

    In recent years, Bayesian methods have been proposed as a solution to a wide range of issues in quantum state and process tomography. State-of-the-art Bayesian tomography solutions suffer from three problems: numerical intractability, a lack of informative prior distributions, and an inability to track time-dependent processes. Here, we address all three problems. First, we use modern statistical methods, as pioneered by Huszár and Houlsby (2012 Phys. Rev. A 85 052120) and by Ferrie (2014 New J. Phys. 16 093035), to make Bayesian tomography numerically tractable. Our approach allows for practical computation of Bayesian point and region estimators for quantum states and channels. Second, we propose the first priors on quantum states and channels that allow for including useful experimental insight. Finally, we develop a method that allows tracking of time-dependent states and estimates the drift and diffusion processes affecting a state. We provide source code and animated visual examples for our methods.

  18. Users manual for a one-dimensional Lagrangian transport model

    USGS Publications Warehouse

    Schoellhamer, D.H.; Jobson, H.E.

    1986-01-01

    A Users Manual for the Lagrangian Transport Model (LTM) is presented. The LTM uses Lagrangian calculations that are based on a reference frame moving with the river flow. The Lagrangian reference frame eliminates the need to numerically solve the convective term of the convection-diffusion equation and provides significant numerical advantages over the more commonly used Eulerian reference frame. When properly applied, the LTM can simulate riverine transport and decay processes within the accuracy required by most water quality studies. The LTM is applicable to steady or unsteady one-dimensional unidirectional flows in fixed channels with tributary and lateral inflows. Application of the LTM is relatively simple and optional capabilities improve the model 's convenience. Appendices give file formats and three example LTM applications that include the incorporation of the QUAL II water quality model 's reaction kinetics into the LTM. (Author 's abstract)

  19. Optimal damping profile ratios for stabilization of perfectly matched layers in general anisotropic media

    DOE PAGES

    Gao, Kai; Huang, Lianjie

    2017-11-13

    Conventional perfectly matched layers (PML) can be unstable for certain kinds of anisotropic media. Multi-axial PML removes such instability using nonzero damping coe cients in the directions tangential with the PML interface. While using non-zero damping pro le ratios can stabilize PML, it is important to obtain the smallest possible damping pro le ratios to minimize arti cial re ections caused by these non-zero ratios, particularly for 3D general anisotropic media. Using the eigenvectors of the PML system matrix, we develop a straightforward and e cient numerical algorithm to determine the optimal damping pro le ratios to stabilize PML inmore » 2D and 3D general anisotropic media. Numerical examples show that our algorithm provides optimal damping pro le ratios to ensure the stability of PML and complex-frequency-shifted PML for elastic-wave modeling in 2D and 3D general anisotropic media.« less

  20. Bridges for Pedestrians with Random Parameters using the Stochastic Finite Elements Analysis

    NASA Astrophysics Data System (ADS)

    Szafran, J.; Kamiński, M.

    2017-02-01

    The main aim of this paper is to present a Stochastic Finite Element Method analysis with reference to principal design parameters of bridges for pedestrians: eigenfrequency and deflection of bridge span. They are considered with respect to random thickness of plates in boxed-section bridge platform, Young modulus of structural steel and static load resulting from crowd of pedestrians. The influence of the quality of the numerical model in the context of traditional FEM is shown also on the example of a simple steel shield. Steel structures with random parameters are discretized in exactly the same way as for the needs of traditional Finite Element Method. Its probabilistic version is provided thanks to the Response Function Method, where several numerical tests with random parameter values varying around its mean value enable the determination of the structural response and, thanks to the Least Squares Method, its final probabilistic moments.

  1. Some problems in applications of the linear variational method

    NASA Astrophysics Data System (ADS)

    Pupyshev, Vladimir I.; Montgomery, H. E.

    2015-09-01

    The linear variational method is a standard computational method in quantum mechanics and quantum chemistry. As taught in most classes, the general guidance is to include as many basis functions as practical in the variational wave function. However, if it is desired to study the patterns of energy change accompanying the change of system parameters such as the shape and strength of the potential energy, the problem becomes more complicated. We use one-dimensional systems with a particle in a rectangular or in a harmonic potential confined in an infinite rectangular box to illustrate situations where a variational calculation can give incorrect results. These situations result when the energy of the lowest eigenvalue is strongly dependent on the parameters that describe the shape and strength of the potential. The numerical examples described in this work are provided as cautionary notes for practitioners of numerical variational calculations.

  2. Intersections of Gender and Power: Improving the Status of Women in Physics

    NASA Astrophysics Data System (ADS)

    Vrtilek, Saeqa

    2012-02-01

    Numerous problems bedevil the twin goals of increasing the numerical participation in science, technology, engineering, and mathematics (STEM) fields by women and increasing the quality of that participation. The nature of the difficulties is everywhere slightly different, but there are underlying commonalities. A wide portfolio of lessons learned that can be applied to the confluence of cultures, backgrounds, and experiences that shape any given institution have been developed and will be presented. Among these, common and dominant themes are the need for mentoring, management training, and the increased visibility of successful women scientists. These have been identified (Nelson and Rogers 2004; Sonnert and Holton 1995a; Vetter 1996) as some of the key factors in securing the encouragement and increased stability needed for more senior women scientists to thrive to their full potential and provide the example and mentoring needed for a larger and more productive new generation.

  3. Stabilization of dynamics of oscillatory systems by nonautonomous perturbation.

    PubMed

    Lucas, Maxime; Newman, Julian; Stefanovska, Aneta

    2018-04-01

    Synchronization and stability under periodic oscillatory driving are well understood, but little is known about the effects of aperiodic driving, despite its abundance in nature. Here, we consider oscillators subject to driving with slowly varying frequency, and investigate both short-term and long-term stability properties. For a phase oscillator, we find that, counterintuitively, such variation is guaranteed to enlarge the Arnold tongue in parameter space. Using analytical and numerical methods that provide information on time-variable dynamical properties, we find that the growth of the Arnold tongue is specifically due to the growth of a region of intermittent synchronization where trajectories alternate between short-term stability and short-term neutral stability, giving rise to stability on average. We also present examples of higher-dimensional nonlinear oscillators where a similar stabilization phenomenon is numerically observed. Our findings help support the case that in general, deterministic nonautonomous perturbation is a very good candidate for stabilizing complex dynamics.

  4. Stabilization of dynamics of oscillatory systems by nonautonomous perturbation

    NASA Astrophysics Data System (ADS)

    Lucas, Maxime; Newman, Julian; Stefanovska, Aneta

    2018-04-01

    Synchronization and stability under periodic oscillatory driving are well understood, but little is known about the effects of aperiodic driving, despite its abundance in nature. Here, we consider oscillators subject to driving with slowly varying frequency, and investigate both short-term and long-term stability properties. For a phase oscillator, we find that, counterintuitively, such variation is guaranteed to enlarge the Arnold tongue in parameter space. Using analytical and numerical methods that provide information on time-variable dynamical properties, we find that the growth of the Arnold tongue is specifically due to the growth of a region of intermittent synchronization where trajectories alternate between short-term stability and short-term neutral stability, giving rise to stability on average. We also present examples of higher-dimensional nonlinear oscillators where a similar stabilization phenomenon is numerically observed. Our findings help support the case that in general, deterministic nonautonomous perturbation is a very good candidate for stabilizing complex dynamics.

  5. Variational Approach to Enhanced Sampling and Free Energy Calculations

    NASA Astrophysics Data System (ADS)

    Valsson, Omar; Parrinello, Michele

    2014-08-01

    The ability of widely used sampling methods, such as molecular dynamics or Monte Carlo simulations, to explore complex free energy landscapes is severely hampered by the presence of kinetic bottlenecks. A large number of solutions have been proposed to alleviate this problem. Many are based on the introduction of a bias potential which is a function of a small number of collective variables. However constructing such a bias is not simple. Here we introduce a functional of the bias potential and an associated variational principle. The bias that minimizes the functional relates in a simple way to the free energy surface. This variational principle can be turned into a practical, efficient, and flexible sampling method. A number of numerical examples are presented which include the determination of a three-dimensional free energy surface. We argue that, beside being numerically advantageous, our variational approach provides a convenient and novel standpoint for looking at the sampling problem.

  6. Make or buy decision model with multi-stage manufacturing process and supplier imperfect quality

    NASA Astrophysics Data System (ADS)

    Pratama, Mega Aria; Rosyidi, Cucuk Nur

    2017-11-01

    This research develops an make or buy decision model considering supplier imperfect quality. This model can be used to help companies make the right decision in case of make or buy component with the best quality and the least cost in multistage manufacturing process. The imperfect quality is one of the cost component that must be minimizing in this model. Component with imperfect quality, not necessarily defective. It still can be rework and used for assembly. This research also provide a numerical example and sensitivity analysis to show how the model work. We use simulation and help by crystal ball to solve the numerical problem. The sensitivity analysis result show that percentage of imperfect generally not affect to the model significantly, and the model is not sensitive to changes in these parameters. This is because the imperfect cost are smaller than overall total cost components.

  7. Optimal damping profile ratios for stabilization of perfectly matched layers in general anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Huang, Lianjie

    Conventional perfectly matched layers (PML) can be unstable for certain kinds of anisotropic media. Multi-axial PML removes such instability using nonzero damping coe cients in the directions tangential with the PML interface. While using non-zero damping pro le ratios can stabilize PML, it is important to obtain the smallest possible damping pro le ratios to minimize arti cial re ections caused by these non-zero ratios, particularly for 3D general anisotropic media. Using the eigenvectors of the PML system matrix, we develop a straightforward and e cient numerical algorithm to determine the optimal damping pro le ratios to stabilize PML inmore » 2D and 3D general anisotropic media. Numerical examples show that our algorithm provides optimal damping pro le ratios to ensure the stability of PML and complex-frequency-shifted PML for elastic-wave modeling in 2D and 3D general anisotropic media.« less

  8. Striving for a good standard of maths for potential student nurses.

    PubMed

    Roberts, Sheila; Campbell, Anne

    2017-01-12

    This article explores some of the issues surrounding numerical competence for potential pre-registration children's nursing students, with examples of success and failure, at the University of Hertfordshire. With poor numerical ability causing concern in the UK, and the effect of low competence on patient safety when calculating drug dosages in healthcare, this article considers some of the literature surrounding numerical ability, confidence and anxiety, along with considering whether a 'C' grade at GCSE is a suitable marker for assessing numerical competence before starting a pre-registration nursing programme.

  9. Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Pietro, Daniele A.; Droniou, Jérôme; Manzini, Gianmarco

    Here, in this work we develop arbitrary-order Discontinuous Skeletal Gradient Discretisations (DSGD) on general polytopal meshes. Discontinuous Skeletal refers to the fact that the globally coupled unknowns are broken polynomials on the mesh skeleton. The key ingredient is a high-order gradient reconstruction composed of two terms: (i) a consistent contribution obtained mimicking an integration by parts formula inside each element and (ii) a stabilising term for which sufficient design conditions are provided. An example of stabilisation that satisfies the design conditions is proposed based on a local lifting of high-order residuals on a Raviart–Thomas–Nédélec subspace. We prove that the novelmore » DSGDs satisfy coercivity, consistency, limit-conformity, and compactness requirements that ensure convergence for a variety of elliptic and parabolic problems. Lastly, links with Hybrid High-Order, non-conforming Mimetic Finite Difference and non-conforming Virtual Element methods are also studied. Numerical examples complete the exposition.« less

  10. From 2001 to 1994: Political environment and the design of NASA's Space Station system

    NASA Technical Reports Server (NTRS)

    Fries, Sylvia Doughty

    1988-01-01

    The U.S. civilian space station, a hope of numerous NASA engineers since before the agency was founded in 1958 and promoted by NASA as the country's 'next logical step' into space, provides an excellent case study of the way public-sector research and development agencies continuously redefine new technologies in the absence of the market discipline that governs private-sector technological development. The number of space station design studies conducted since 1959, both internally by NASA or contracted by the agency to the aerospace industry, easily exceeds a hundred. Because of this, three clearly distinguishable examples are selected from the almost thirty-year history of space station design in NASA. Together these examples illustrate the difficulty of defining a new technological system in the public sector as that system becomes increasingly subject, for its development, to the vagaries of federal research and development politics.

  11. Sensitivity Analysis of earth and environmental models: a systematic review to guide scientific advancement

    NASA Astrophysics Data System (ADS)

    Wagener, Thorsten; Pianosi, Francesca

    2016-04-01

    Sensitivity Analysis (SA) investigates how the variation in the output of a numerical model can be attributed to variations of its input factors. SA is increasingly being used in earth and environmental modelling for a variety of purposes, including uncertainty assessment, model calibration and diagnostic evaluation, dominant control analysis and robust decision-making. Here we provide some practical advice regarding best practice in SA and discuss important open questions based on a detailed recent review of the existing body of work in SA. Open questions relate to the consideration of input factor interactions, methods for factor mapping and the formal inclusion of discrete factors in SA (for example for model structure comparison). We will analyse these questions using relevant examples and discuss possible ways forward. We aim at stimulating the discussion within the community of SA developers and users regarding the setting of good practices and on defining priorities for future research.

  12. OSCAR a Matlab based optical FFT code

    NASA Astrophysics Data System (ADS)

    Degallaix, Jérôme

    2010-05-01

    Optical simulation softwares are essential tools for designing and commissioning laser interferometers. This article aims to introduce OSCAR, a Matlab based FFT code, to the experimentalist community. OSCAR (Optical Simulation Containing Ansys Results) is used to simulate the steady state electric fields in optical cavities with realistic mirrors. The main advantage of OSCAR over other similar packages is the simplicity of its code requiring only a short time to master. As a result, even for a beginner, it is relatively easy to modify OSCAR to suit other specific purposes. OSCAR includes an extensive manual and numerous detailed examples such as simulating thermal aberration, calculating cavity eigen modes and diffraction loss, simulating flat beam cavities and three mirror ring cavities. An example is also provided about how to run OSCAR on the GPU of modern graphic cards instead of the CPU, making the simulation up to 20 times faster.

  13. Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes

    DOE PAGES

    Di Pietro, Daniele A.; Droniou, Jérôme; Manzini, Gianmarco

    2017-11-21

    Here, in this work we develop arbitrary-order Discontinuous Skeletal Gradient Discretisations (DSGD) on general polytopal meshes. Discontinuous Skeletal refers to the fact that the globally coupled unknowns are broken polynomials on the mesh skeleton. The key ingredient is a high-order gradient reconstruction composed of two terms: (i) a consistent contribution obtained mimicking an integration by parts formula inside each element and (ii) a stabilising term for which sufficient design conditions are provided. An example of stabilisation that satisfies the design conditions is proposed based on a local lifting of high-order residuals on a Raviart–Thomas–Nédélec subspace. We prove that the novelmore » DSGDs satisfy coercivity, consistency, limit-conformity, and compactness requirements that ensure convergence for a variety of elliptic and parabolic problems. Lastly, links with Hybrid High-Order, non-conforming Mimetic Finite Difference and non-conforming Virtual Element methods are also studied. Numerical examples complete the exposition.« less

  14. Holographic 3D imaging through diffuse media by compressive sampling of the mutual intensity

    NASA Astrophysics Data System (ADS)

    Falldorf, Claas; Klein, Thorsten; Agour, Mostafa; Bergmann, Ralf B.

    2017-05-01

    We present a method for holographic imaging through a volume scattering material, which is based on selfreference and light with good spatial but limited temporal coherence. In contrast to existing techniques, we do not require a separate reference wave, thus our approach provides great advantages towards the flexibility of the measurement system. The main applications are remote sensing and investigation of moving objects through gaseous streams, bubbles or foggy water for example. Furthermore, due to the common path nature, the system is also insensitive to mechanical disturbances. The measurement result is a complex amplitude which is comparable to a phase shifted digital hologramm and therefore allows 3D imaging, numerical refocusing and quantitative phase contrast imaging. As an example of application, we present measurements of the quantitative phase contrast of the epidermis of an onion through a volume scattering material.

  15. Gain weighted eigenspace assignment

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Andrisani, Dominick, II

    1994-01-01

    This report presents the development of the gain weighted eigenspace assignment methodology. This provides a designer with a systematic methodology for trading off eigenvector placement versus gain magnitudes, while still maintaining desired closed-loop eigenvalue locations. This is accomplished by forming a cost function composed of a scalar measure of error between desired and achievable eigenvectors and a scalar measure of gain magnitude, determining analytical expressions for the gradients, and solving for the optimal solution by numerical iteration. For this development the scalar measure of gain magnitude is chosen to be a weighted sum of the squares of all the individual elements of the feedback gain matrix. An example is presented to demonstrate the method. In this example, solutions yielding achievable eigenvectors close to the desired eigenvectors are obtained with significant reductions in gain magnitude compared to a solution obtained using a previously developed eigenspace (eigenstructure) assignment method.

  16. Transmission Magnitude and Phase Control for Polarization-Preserving Reflectionless Metasurfaces

    NASA Astrophysics Data System (ADS)

    Kwon, Do-Hoon; Ptitcyn, Grigorii; Díaz-Rubio, Ana; Tretyakov, Sergei A.

    2018-03-01

    For transmissive applications of electromagnetic metasurfaces, an array of subwavelength Huygens' meta-atoms are typically used to eliminate reflection and achieve a high-transmission power efficiency together with a wide transmission phase coverage. We show that the underlying principle of low reflection and full control over transmission is asymmetric scattering into the specular reflection and transmission directions that results from a superposition of symmetric and antisymmetric scattering components, with Huygens' meta-atoms being one example configuration. Available for oblique illumination in TM polarization, a meta-atom configuration comprising normal and tangential electric polarizations is presented, which is capable of reflectionless, full-power transmission and a 2 π transmission phase coverage as well as full absorption. For lossy metasurfaces, we show that a complete phase coverage is still available for reflectionless designs for any value of absorptance. Numerical examples in the microwave and optical regimes are provided.

  17. User-perceived reliability of unrepairable shared protection systems with functionally identical units

    NASA Astrophysics Data System (ADS)

    Ozaki, Hirokazu; Kara, Atsushi; Cheng, Zixue

    2012-05-01

    In this article, we investigate the reliability of M-for-N (M:N) shared protection systems. We focus on the reliability that is perceived by an end user of one of N units. We assume that any failed unit is instantly replaced by one of the M units (if available). We describe the effectiveness of such a protection system in a quantitative manner under the condition that the failed units are not repairable. Mathematical analysis gives the closed-form solution of the reliability and mean time to failure (MTTF). We also analyse several numerical examples of the reliability and MTTF. This result can be applied, for example, to the analysis and design of an integrated circuit consisting of redundant backup components. In such a device, repairing a failed component is unrealistic. The analysis provides useful information for the design for general shared protection systems in which the failed units are not repaired.

  18. Some remarks on the numerical solution of parabolic partial differential equations

    NASA Astrophysics Data System (ADS)

    Campagna, R.; Cuomo, S.; Leveque, S.; Toraldo, G.; Giannino, F.; Severino, G.

    2017-11-01

    Numerous environmental/engineering applications relying upon the theory of diffusion phenomena into chaotic environments have recently stimulated the interest toward the numerical solution of parabolic partial differential equations (PDEs). In the present paper, we outline a formulation of the mathematical problem underlying a quite general diffusion mechanism in the natural environments, and we shortly emphasize some remarks concerning the applicability of the (straightforward) finite difference method. An illustration example is also presented.

  19. Integrating experimental and numerical methods for a scenario-based quantitative assessment of subsurface energy storage options

    NASA Astrophysics Data System (ADS)

    Kabuth, Alina; Dahmke, Andreas; Hagrey, Said Attia al; Berta, Márton; Dörr, Cordula; Koproch, Nicolas; Köber, Ralf; Köhn, Daniel; Nolde, Michael; Tilmann Pfeiffer, Wolf; Popp, Steffi; Schwanebeck, Malte; Bauer, Sebastian

    2016-04-01

    Within the framework of the transition to renewable energy sources ("Energiewende"), the German government defined the target of producing 60 % of the final energy consumption from renewable energy sources by the year 2050. However, renewable energies are subject to natural fluctuations. Energy storage can help to buffer the resulting time shifts between production and demand. Subsurface geological structures provide large potential capacities for energy stored in the form of heat or gas on daily to seasonal time scales. In order to explore this potential sustainably, the possible induced effects of energy storage operations have to be quantified for both specified normal operation and events of failure. The ANGUS+ project therefore integrates experimental laboratory studies with numerical approaches to assess subsurface energy storage scenarios and monitoring methods. Subsurface storage options for gas, i.e. hydrogen, synthetic methane and compressed air in salt caverns or porous structures, as well as subsurface heat storage are investigated with respect to site prerequisites, storage dimensions, induced effects, monitoring methods and integration into spatial planning schemes. The conceptual interdisciplinary approach of the ANGUS+ project towards the integration of subsurface energy storage into a sustainable subsurface planning scheme is presented here, and this approach is then demonstrated using the examples of two selected energy storage options: Firstly, the option of seasonal heat storage in a shallow aquifer is presented. Coupled thermal and hydraulic processes induced by periodic heat injection and extraction were simulated in the open-source numerical modelling package OpenGeoSys. Situations of specified normal operation as well as cases of failure in operational storage with leaking heat transfer fluid are considered. Bench-scale experiments provided parameterisations of temperature dependent changes in shallow groundwater hydrogeochemistry. As a second example, the option of seasonal hydrogen storage in a deep saline aquifer is considered. The induced thermal and hydraulic multiphase flow processes were simulated. Also, an integrative approach towards geophysical monitoring of gas presence was evaluated by synthetically applying these monitoring methods to the synthetic, however realistically defined numerical storage scenarios. Laboratory experiments provided parameterisations of geochemical effects caused by storage gas leakage into shallow aquifers in cases of sealing failure. Ultimately, the analysis of realistically defined scenarios of subsurface energy storage within the ANGUS+ project allows a quantification of the subsurface space claimed by a storage operation and its induced effects. Acknowledgments: This work is part of the ANGUS+ project (www.angusplus.de) and funded by the German Federal Ministry of Education and Research (BMBF) as part of the energy storage initiative "Energiespeicher".

  20. The analysis of delays in simulator digital computing systems. Volume 1: Formulation of an analysis approach using a central example simulator model

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Jewell, W. F.; Whitbeck, R. F.; Schulman, T. M.

    1980-01-01

    The effects of spurious delays in real time digital computing systems are examined. Various sources of spurious delays are defined and analyzed using an extant simulator system as an example. A specific analysis procedure is set forth and four cases are viewed in terms of their time and frequency domain characteristics. Numerical solutions are obtained for three single rate one- and two-computer examples, and the analysis problem is formulated for a two-rate, two-computer example.

  1. Multidisciplinary Optimization of a Transport Aircraft Wing using Particle Swarm Optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Venter, Gerhard

    2002-01-01

    The purpose of this paper is to demonstrate the application of particle swarm optimization to a realistic multidisciplinary optimization test problem. The paper's new contributions to multidisciplinary optimization is the application of a new algorithm for dealing with the unique challenges associated with multidisciplinary optimization problems, and recommendations as to the utility of the algorithm in future multidisciplinary optimization applications. The selected example is a bi-level optimization problem that demonstrates severe numerical noise and has a combination of continuous and truly discrete design variables. The use of traditional gradient-based optimization algorithms is thus not practical. The numerical results presented indicate that the particle swarm optimization algorithm is able to reliably find the optimum design for the problem presented here. The algorithm is capable of dealing with the unique challenges posed by multidisciplinary optimization as well as the numerical noise and truly discrete variables present in the current example problem.

  2. Approximate and exact numerical integration of the gas dynamic equations

    NASA Technical Reports Server (NTRS)

    Lewis, T. S.; Sirovich, L.

    1979-01-01

    A highly accurate approximation and a rapidly convergent numerical procedure are developed for two dimensional steady supersonic flow over an airfoil. Examples are given for a symmetric airfoil over a range of Mach numbers. Several interesting features are found in the calculation of the tail shock and the flow behind the airfoil.

  3. Numerical stability of the error diffusion concept

    NASA Astrophysics Data System (ADS)

    Weissbach, Severin; Wyrowski, Frank

    1992-10-01

    The error diffusion algorithm is an easy implementable mean to handle nonlinearities in signal processing, e.g. in picture binarization and coding of diffractive elements. The numerical stability of the algorithm depends on the choice of the diffusion weights. A criterion for the stability of the algorithm is presented and evaluated for some examples.

  4. On the numerical modeling of sliding beams: A comparison of different approaches

    NASA Astrophysics Data System (ADS)

    Steinbrecher, Ivo; Humer, Alexander; Vu-Quoc, Loc

    2017-11-01

    The transient analysis of sliding beams represents a challenging problem of structural mechanics. Typically, the sliding motion superimposed by large flexible deformation requires numerical methods as, e.g., finite elements, to obtain approximate solutions. By means of the classical sliding spaghetti problem, the present paper provides a guideline to the numerical modeling with conventional finite element codes. For this purpose, two approaches, one using solid elements and one using beam elements, respectively, are employed in the analysis, and the characteristics of each approach are addressed. The contact formulation realizing the interaction of the beam with its support demands particular attention in the context of sliding structures. Additionally, the paper employs the sliding-beam formulation as a third approach, which avoids the numerical difficulties caused by the large sliding motion through a suitable coordinate transformation. The present paper briefly outlines the theoretical fundamentals of the respective approaches for the modeling of sliding structures and gives a detailed comparison by means of the sliding spaghetti serving as a representative example. The specific advantages and limitations of the different approaches with regard to accuracy and computational efficiency are discussed in detail. Through the comparison, the sliding-beam formulation, which proves as an effective approach for the modeling, can be validated for the general problem of a sliding structure subjected to large deformation.

  5. An accurate front capturing scheme for tumor growth models with a free boundary limit

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Tang, Min; Wang, Li; Zhou, Zhennan

    2018-07-01

    We consider a class of tumor growth models under the combined effects of density-dependent pressure and cell multiplication, with a free boundary model as its singular limit when the pressure-density relationship becomes highly nonlinear. In particular, the constitutive law connecting pressure p and density ρ is p (ρ) = m/m-1 ρ m - 1, and when m ≫ 1, the cell density ρ may evolve its support according to a pressure-driven geometric motion with sharp interface along its boundary. The nonlinearity and degeneracy in the diffusion bring great challenges in numerical simulations. Prior to the present paper, there is lack of standard mechanism to numerically capture the front propagation speed as m ≫ 1. In this paper, we develop a numerical scheme based on a novel prediction-correction reformulation that can accurately approximate the front propagation even when the nonlinearity is extremely strong. We show that the semi-discrete scheme naturally connects to the free boundary limit equation as m → ∞. With proper spatial discretization, the fully discrete scheme has improved stability, preserves positivity, and can be implemented without nonlinear solvers. Finally, extensive numerical examples in both one and two dimensions are provided to verify the claimed properties in various applications.

  6. On the sound insulation of acoustic metasurface using a sub-structuring approach

    NASA Astrophysics Data System (ADS)

    Yu, Xiang; Lu, Zhenbo; Cheng, Li; Cui, Fangsen

    2017-08-01

    The feasibility of using an acoustic metasurface (AMS) with acoustic stop-band property to realize sound insulation with ventilation function is investigated. An efficient numerical approach is proposed to evaluate its sound insulation performance. The AMS is excited by a reverberant sound source and the standardized sound reduction index (SRI) is numerically investigated. To facilitate the modeling, the coupling between the AMS and the adjacent acoustic fields is formulated using a sub-structuring approach. A modal based formulation is applied to both the source and receiving room, enabling an efficient calculation in the frequency range from 125 Hz to 2000 Hz. The sound pressures and the velocities at the interface are matched by using a transfer function relation based on ;patches;. For illustration purposes, numerical examples are investigated using the proposed approach. The unit cell constituting the AMS is constructed in the shape of a thin acoustic chamber with tailored inner structures, whose stop-band property is numerically analyzed and experimentally demonstrated. The AMS is shown to provide effective sound insulation of over 30 dB in the stop-band frequencies from 600 to 1600 Hz. It is also shown that the proposed approach has the potential to be applied to a broad range of AMS studies and optimization problems.

  7. Differentiating Assessment in Middle and High School Mathematics and Science

    ERIC Educational Resources Information Center

    Waterman, Sheryn Spencer

    2009-01-01

    This book by Sheryn Spencer Waterman follows the bestselling "Handbook on Differentiated Instruction for Middle and High Schools." With numerous examples and strategies, it is an all-inclusive manual on assessing student readiness, interests, learning and thinking styles. It includes examples of: (1) Pre-, Formative and Summative assessments; (2)…

  8. Differentiating Assessment in Middle and High School English and Social Studies

    ERIC Educational Resources Information Center

    Waterman, Sheryn Spencer

    2009-01-01

    This book by Sheryn Spencer Waterman follows the bestselling "Handbook on Differentiated Instruction for Middle and High Schools." With numerous examples and strategies, it is an all-inclusive manual on assessing student readiness, interests, learning and thinking styles. It includes examples of: (1) Pre-, Formative and Summative assessments; (2)…

  9. Prodrug strategy for cancer cell-specific targeting: A recent overview.

    PubMed

    Zhang, Xian; Li, Xiang; You, Qidong; Zhang, Xiaojin

    2017-10-20

    The increasing development of targeted cancer therapy provides extensive possibilities in clinical trials, and numerous strategies have been explored. The prodrug is one of the most promising strategies in targeted cancer therapy to improve the selectivity and efficacy of cytotoxic compounds. Compared with normal tissues, cancer cells are characterized by unique aberrant markers, thus inactive prodrugs targeting these markers are excellent therapeutics to release active drugs, killing cancer cells without damaging normal tissues. In this review, we explore an integrated view of potential prodrugs applied in targeted cancer therapy based on aberrant cancer specific markers and some examples are provided for inspiring new ideas of prodrug strategy for cancer cell-specific targeting. Copyright © 2017. Published by Elsevier Masson SAS.

  10. Distributed Secure Coordinated Control for Multiagent Systems Under Strategic Attacks.

    PubMed

    Feng, Zhi; Wen, Guanghui; Hu, Guoqiang

    2017-05-01

    This paper studies a distributed secure consensus tracking control problem for multiagent systems subject to strategic cyber attacks modeled by a random Markov process. A hybrid stochastic secure control framework is established for designing a distributed secure control law such that mean-square exponential consensus tracking is achieved. A connectivity restoration mechanism is considered and the properties on attack frequency and attack length rate are investigated, respectively. Based on the solutions of an algebraic Riccati equation and an algebraic Riccati inequality, a procedure to select the control gains is provided and stability analysis is studied by using Lyapunov's method.. The effect of strategic attacks on discrete-time systems is also investigated. Finally, numerical examples are provided to illustrate the effectiveness of theoretical analysis.

  11. Strain-Based Damage Determination Using Finite Element Analysis for Structural Health Management

    NASA Technical Reports Server (NTRS)

    Hochhalter, Jacob D.; Krishnamurthy, Thiagaraja; Aguilo, Miguel A.

    2016-01-01

    A damage determination method is presented that relies on in-service strain sensor measurements. The method employs a gradient-based optimization procedure combined with the finite element method for solution to the forward problem. It is demonstrated that strains, measured at a limited number of sensors, can be used to accurately determine the location, size, and orientation of damage. Numerical examples are presented to demonstrate the general procedure. This work is motivated by the need to provide structural health management systems with a real-time damage characterization. The damage cases investigated herein are characteristic of point-source damage, which can attain critical size during flight. The procedure described can be used to provide prognosis tools with the current damage configuration.

  12. Hybrid thrusters and reaction wheels strategy for large angle rapid reorientation with high precision

    NASA Astrophysics Data System (ADS)

    Ye, Dong; Sun, Zhaowei; Wu, Shunan

    2012-08-01

    The quaternion-based, high precision, large angle rapid reorientation of rigid spacecraft is the main problem investigated in this study. The operation is accomplished via a hybrid thrusters and reaction wheels strategy where thrusters are engaged in providing a primary maneuver torque in open loop, while reaction wheels provide fine control torque to achieve high precision in closed-loop control. The inaccuracy of thrusters is handled by a variable structure control (VSC). In addition, a signum function is mixed in the switching surface in VSC to produce a maneuver to the reference attitude trajectory in a shortest distance. Detailed proofs and numerical simulation examples are presented to illustrate all the technical aspects of this work.

  13. An advanced probabilistic structural analysis method for implicit performance functions

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Millwater, H. R.; Cruse, T. A.

    1989-01-01

    In probabilistic structural analysis, the performance or response functions usually are implicitly defined and must be solved by numerical analysis methods such as finite element methods. In such cases, the most commonly used probabilistic analysis tool is the mean-based, second-moment method which provides only the first two statistical moments. This paper presents a generalized advanced mean value (AMV) method which is capable of establishing the distributions to provide additional information for reliability design. The method requires slightly more computations than the second-moment method but is highly efficient relative to the other alternative methods. In particular, the examples show that the AMV method can be used to solve problems involving non-monotonic functions that result in truncated distributions.

  14. RCHILD - an R-package for flexible use of the landscape evolution model CHILD

    NASA Astrophysics Data System (ADS)

    Dietze, Michael

    2014-05-01

    Landscape evolution models provide powerful approaches to numerically assess earth surface processes, to quantify rates of landscape change, infer sediment transfer rates, estimate sediment budgets, investigate the consequences of changes in external drivers on a geomorphic system, to provide spatio-temporal interpolations between known landscape states or to test conceptual hypotheses. CHILD (Channel-Hillslope Integrated Landscape Development Model) is one of the most-used models of landscape change in the context of at least tectonic and geomorphologic process interactions. Running CHILD from command line and working with the model output can be a rather awkward task (static model control via text input file, only numeric output in text files). The package RCHILD is a collection of functions for the free statistical software R that help using CHILD in a flexible, dynamic and user-friendly way. The comprised functions allow creating maps, real-time scenes, animations and further thematic plots from model output. The model input files can be modified dynamically and, hence, (feedback-related) changes in external factors can be implemented iteratively. Output files can be written to common formats that can be readily imported to standard GIS software. This contribution presents the basic functionality of the model CHILD as visualised and modified by the package. A rough overview of the available functions is given. Application examples help to illustrate the great potential of numeric modelling of geomorphologic processes.

  15. Numerical Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia

    2006-01-01

    The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.

  16. What determines direction of asymmetry: genes, environment or chance?

    PubMed Central

    2016-01-01

    Conspicuous asymmetries seen in many animals and plants offer diverse opportunities to test how the development of a similar morphological feature has evolved in wildly different types of organisms. One key question is: do common rules govern how direction of asymmetry is determined (symmetry is broken) during ontogeny to yield an asymmetrical individual? Examples from numerous organisms illustrate how diverse this process is. These examples also provide some surprising answers to related questions. Is direction of asymmetry in an individual determined by genes, environment or chance? Is direction of asymmetry determined locally (structure by structure) or globally (at the level of the whole body)? Does direction of asymmetry persist when an asymmetrical structure regenerates following autotomy? The answers vary greatly for asymmetries as diverse as gastropod coiling direction, flatfish eye side, crossbill finch bill crossing, asymmetrical claws in shrimp, lobsters and crabs, katydid sound-producing structures, earwig penises and various plant asymmetries. Several examples also reveal how stochastic asymmetry in mollusc and crustacean early cleavage, in Drosophila oogenesis, and in Caenorhabditis elegans epidermal blast cell movement, is a normal component of deterministic development. Collectively, these examples shed light on the role of genes as leaders or followers in evolution. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821528

  17. Statistical Analyses of High-Resolution Aircraft and Satellite Observations of Sea Ice: Applications for Improving Model Simulations

    NASA Astrophysics Data System (ADS)

    Farrell, S. L.; Kurtz, N. T.; Richter-Menge, J.; Harbeck, J. P.; Onana, V.

    2012-12-01

    Satellite-derived estimates of ice thickness and observations of ice extent over the last decade point to a downward trend in the basin-scale ice volume of the Arctic Ocean. This loss has broad-ranging impacts on the regional climate and ecosystems, as well as implications for regional infrastructure, marine navigation, national security, and resource exploration. New observational datasets at small spatial and temporal scales are now required to improve our understanding of physical processes occurring within the ice pack and advance parameterizations in the next generation of numerical sea-ice models. High-resolution airborne and satellite observations of the sea ice are now available at meter-scale resolution or better that provide new details on the properties and morphology of the ice pack across basin scales. For example the NASA IceBridge airborne campaign routinely surveys the sea ice of the Arctic and Southern Oceans with an advanced sensor suite including laser and radar altimeters and digital cameras that together provide high-resolution measurements of sea ice freeboard, thickness, snow depth and lead distribution. Here we present statistical analyses of the ice pack primarily derived from the following IceBridge instruments: the Digital Mapping System (DMS), a nadir-looking, high-resolution digital camera; the Airborne Topographic Mapper, a scanning lidar; and the University of Kansas snow radar, a novel instrument designed to estimate snow depth on sea ice. Together these instruments provide data from which a wide range of sea ice properties may be derived. We provide statistics on lead distribution and spacing, lead width and area, floe size and distance between floes, as well as ridge height, frequency and distribution. The goals of this study are to (i) identify unique statistics that can be used to describe the characteristics of specific ice regions, for example first-year/multi-year ice, diffuse ice edge/consolidated ice pack, and convergent/divergent ice zones, (ii) provide datasets that support enhanced parameterizations in numerical models as well as model initialization and validation, (iii) parameters of interest to Arctic stakeholders for marine navigation and ice engineering studies, and (iv) statistics that support algorithm development for the next-generation of airborne and satellite altimeters, including NASA's ICESat-2 mission. We describe the potential contribution our results can make towards the improvement of coupled ice-ocean numerical models, and discuss how data synthesis and integration with high-resolution models may improve our understanding of sea ice variability and our capabilities in predicting the future state of the ice pack.

  18. PyMICE: APython library for analysis of IntelliCage data.

    PubMed

    Dzik, Jakub M; Puścian, Alicja; Mijakowska, Zofia; Radwanska, Kasia; Łęski, Szymon

    2018-04-01

    IntelliCage is an automated system for recording the behavior of a group of mice housed together. It produces rich, detailed behavioral data calling for new methods and software for their analysis. Here we present PyMICE, a free and open-source library for analysis of IntelliCage data in the Python programming language. We describe the design and demonstrate the use of the library through a series of examples. PyMICE provides easy and intuitive access to IntelliCage data, and thus facilitates the possibility of using numerous other Python scientific libraries to form a complete data analysis workflow.

  19. Protection of Marine Mammals.

    PubMed

    Knoll, Michaela; Ciaccia, Ettore; Dekeling, René; Kvadsheim, Petter; Liddell, Kate; Gunnarsson, Stig-Lennart; Ludwig, Stefan; Nissen, Ivor; Lorenzen, Dirk; Kreimeyer, Roman; Pavan, Gianni; Meneghetti, Nello; Nordlund, Nina; Benders, Frank; van der Zwan, Timo; van Zon, Tim; Fraser, Leanne; Johansson, Torbjörn; Garmelius, Martin

    2016-01-01

    Within the European Defense Agency (EDA), the Protection of Marine Mammals (PoMM) project, a comprehensive common marine mammal database essential for risk mitigation tools, was established. The database, built on an extensive dataset collection with the focus on areas of operational interest for European navies, consists of annual and seasonal distribution and density maps, random and systematic sightings, an encyclopedia providing knowledge on the characteristics of 126 marine mammal species, data on marine mammal protection areas, and audio information including numerous examples of various vocalizations. Special investigations on marine mammal acoustics were carried out to improve the detection and classification capabilities.

  20. Network reconfiguration and neuronal plasticity in rhythm-generating networks.

    PubMed

    Koch, Henner; Garcia, Alfredo J; Ramirez, Jan-Marino

    2011-12-01

    Neuronal networks are highly plastic and reconfigure in a state-dependent manner. The plasticity at the network level emerges through multiple intrinsic and synaptic membrane properties that imbue neurons and their interactions with numerous nonlinear properties. These properties are continuously regulated by neuromodulators and homeostatic mechanisms that are critical to maintain not only network stability and also adapt networks in a short- and long-term manner to changes in behavioral, developmental, metabolic, and environmental conditions. This review provides concrete examples from neuronal networks in invertebrates and vertebrates, and illustrates that the concepts and rules that govern neuronal networks and behaviors are universal.

  1. Dynamic stability analysis of fractional order leaky integrator echo state neural networks

    NASA Astrophysics Data System (ADS)

    Pahnehkolaei, Seyed Mehdi Abedi; Alfi, Alireza; Tenreiro Machado, J. A.

    2017-06-01

    The Leaky integrator echo state neural network (Leaky-ESN) is an improved model of the recurrent neural network (RNN) and adopts an interconnected recurrent grid of processing neurons. This paper presents a new proof for the convergence of a Lyapunov candidate function to zero when time tends to infinity by means of the Caputo fractional derivative with order lying in the range (0, 1). The stability of Fractional-Order Leaky-ESN (FO Leaky-ESN) is then analyzed, and the existence, uniqueness and stability of the equilibrium point are provided. A numerical example demonstrates the feasibility of the proposed method.

  2. Finite-time synchronization control of a class of memristor-based recurrent neural networks.

    PubMed

    Jiang, Minghui; Wang, Shuangtao; Mei, Jun; Shen, Yanjun

    2015-03-01

    This paper presents a global and local finite-time synchronization control law for memristor neural networks. By utilizing the drive-response concept, differential inclusions theory, and Lyapunov functional method, we establish several sufficient conditions for finite-time synchronization between the master and corresponding slave memristor-based neural network with the designed controller. In comparison with the existing results, the proposed stability conditions are new, and the obtained results extend some previous works on conventional recurrent neural networks. Two numerical examples are provided to illustrate the effective of the design method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. General Series Solutions for Stresses and Displacements in an Inner-fixed Ring

    NASA Astrophysics Data System (ADS)

    Jiao, Yongshu; Liu, Shuo; Qi, Dexuan

    2018-03-01

    The general series solution approach is provided to get the stress and displacement fields in the inner-fixed ring. After choosing an Airy stress function in series form, stresses are expressed by infinite coefficients. Displacements are obtained by integrating the geometric equations. For an inner-fixed ring, the arbitrary loads acting on outer edge are extended into two sets of Fourier series. The zero displacement boundary conditions on inner surface are utilized. Then the stress (and displacement) coefficients are expressed by loading coefficients. A numerical example shows the validity of this approach.

  4. Stereoselective heterocycle synthesis through oxidative carbon-hydrogen bond activation.

    PubMed

    Liu, Lei; Floreancig, Paul E

    2010-01-01

    Heterocycles are ubiquitous structures in both drugs and natural products, and efficient methods for their construction are being pursued constantly. Carbon-hydrogen bond activation offers numerous advantages for the synthesis of heterocycles with respect to minimizing the length of synthetic routes and reducing waste. As interest in chiral medicinal leads increases, stereoselective methods for heterocycle synthesis must be developed. The use of carbon-hydrogen bond activation reactions for stereoselective heterocycle synthesis has produced a range of creative transformations that provide a wide array of structural motifs, selected examples of which are described in this review.

  5. System identification from closed-loop data with known output feedback dynamics

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Horta, Lucas G.; Longman, Richard W.

    1992-01-01

    This paper presents a procedure to identify the open loop systems when it is operating under closed loop conditions. First, closed loop excitation data are used to compute the system open loop and closed loop Markov parameters. The Markov parameters, which are the pulse response samples, are then used to compute a state space representation of the open loop system. Two closed loop configurations are considered in this paper. The closed loop system can have either a linear output feedback controller or a dynamic output feedback controller. Numerical examples are provided to illustrate the proposed closed loop identification method.

  6. Angularly-selective transmission imaging in a scanning electron microscope.

    PubMed

    Holm, Jason; Keller, Robert R

    2016-08-01

    This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. Published by Elsevier B.V.

  7. LQR Control of Shell Vibrations Via Piezoceramic Actuators

    NASA Technical Reports Server (NTRS)

    delRosario, R. C. H.; Smith, R. C.

    1997-01-01

    A model-based Linear Quadratic Regulator (LQR) method for controlling vibrations in cylindrical shells is presented. Surface-mounted piezo-ceramic patches are employed as actuators which leads to unbounded control input operators. Modified Donnell-Mushtari shell equations incorporating strong or Kelvin-Voigt damping are used to model the system. The model is then abstractly formulated in terms of sesquilinear forms. This provides a framework amenable for proving model well-posedness and convergence of LQR gains using analytic semigroup results combined with LQR theory for unbounded input operators. Finally, numerical examples demonstrating the effectiveness of the method are presented.

  8. Use of dirichlet distributions and orthogonal projection techniques for the fluctuation analysis of steady-state multivariate birth-death systems

    NASA Astrophysics Data System (ADS)

    Palombi, Filippo; Toti, Simona

    2015-05-01

    Approximate weak solutions of the Fokker-Planck equation represent a useful tool to analyze the equilibrium fluctuations of birth-death systems, as they provide a quantitative knowledge lying in between numerical simulations and exact analytic arguments. In this paper, we adapt the general mathematical formalism known as the Ritz-Galerkin method for partial differential equations to the Fokker-Planck equation with time-independent polynomial drift and diffusion coefficients on the simplex. Then, we show how the method works in two examples, namely the binary and multi-state voter models with zealots.

  9. Semiempirical methods for computing turbulent flows

    NASA Technical Reports Server (NTRS)

    Belov, I. A.; Ginzburg, I. P.

    1986-01-01

    Two semiempirical theories which provide a basis for determining the turbulent friction and heat exchange near a wall are presented: (1) the Prandtl-Karman theory, and (2) the theory utilizing an equation for the energy of turbulent pulsations. A comparison is made between exact numerical methods and approximate integral methods for computing the turbulent boundary layers in the presence of pressure, blowing, or suction gradients. Using the turbulent flow around a plate as an example, it is shown that, when computing turbulent flows with external turbulence, it is preferable to construct a turbulence model based on the equation for energy of turbulent pulsations.

  10. Calculation of transmission probability by solving an eigenvalue problem

    NASA Astrophysics Data System (ADS)

    Bubin, Sergiy; Varga, Kálmán

    2010-11-01

    The electron transmission probability in nanodevices is calculated by solving an eigenvalue problem. The eigenvalues are the transmission probabilities and the number of nonzero eigenvalues is equal to the number of open quantum transmission eigenchannels. The number of open eigenchannels is typically a few dozen at most, thus the computational cost amounts to the calculation of a few outer eigenvalues of a complex Hermitian matrix (the transmission matrix). The method is implemented on a real space grid basis providing an alternative to localized atomic orbital based quantum transport calculations. Numerical examples are presented to illustrate the efficiency of the method.

  11. Evaluating the performance of distributed approaches for modal identification

    NASA Astrophysics Data System (ADS)

    Krishnan, Sriram S.; Sun, Zhuoxiong; Irfanoglu, Ayhan; Dyke, Shirley J.; Yan, Guirong

    2011-04-01

    In this paper two modal identification approaches appropriate for use in a distributed computing environment are applied to a full-scale, complex structure. The natural excitation technique (NExT) is used in conjunction with a condensed eigensystem realization algorithm (ERA), and the frequency domain decomposition with peak-picking (FDD-PP) are both applied to sensor data acquired from a 57.5-ft, 10 bay highway sign truss structure. Monte-Carlo simulations are performed on a numerical example to investigate the statistical properties and sensitivity to noise of the two distributed algorithms. Experimental results are provided and discussed.

  12. The consistency of positive fully fuzzy linear system

    NASA Astrophysics Data System (ADS)

    Malkawi, Ghassan O.; Alfifi, Hassan Y.

    2017-11-01

    In this paper, the consistency of fuzziness of positive solution of the n × n fully fuzzy linear system (P - FFLS) is studied based on its associated linear system (P - ALS). That can consist of the whole entries of triangular fuzzy numbers in a linear system without fuzzy operations. The nature of solution is differentiated in case of fuzzy solution, non-fuzzy solution and fuzzy non-positive solution. Moreover, the analysis reveals that the P - ALS is applicable to provide the set of infinite number of solutions. Numerical examples are presented to illustrate the proposed analysis.

  13. Fractal attractors and singular invariant measures in two-sector growth models with random factor shares

    NASA Astrophysics Data System (ADS)

    La Torre, Davide; Marsiglio, Simone; Mendivil, Franklin; Privileggi, Fabio

    2018-05-01

    We analyze a multi-sector growth model subject to random shocks affecting the two sector-specific production functions twofold: the evolution of both productivity and factor shares is the result of such exogenous shocks. We determine the optimal dynamics via Euler-Lagrange equations, and show how these dynamics can be described in terms of an iterated function system with probability. We also provide conditions that imply the singularity of the invariant measure associated with the fractal attractor. Numerical examples show how specific parameter configurations might generate distorted copies of the Barnsley's fern attractor.

  14. A discontinuous Galerkin method for two-dimensional PDE models of Asian options

    NASA Astrophysics Data System (ADS)

    Hozman, J.; Tichý, T.; Cvejnová, D.

    2016-06-01

    In our previous research we have focused on the problem of plain vanilla option valuation using discontinuous Galerkin method for numerical PDE solution. Here we extend a simple one-dimensional problem into two-dimensional one and design a scheme for valuation of Asian options, i.e. options with payoff depending on the average of prices collected over prespecified horizon. The algorithm is based on the approach combining the advantages of the finite element methods together with the piecewise polynomial generally discontinuous approximations. Finally, an illustrative example using DAX option market data is provided.

  15. Calibrated Blade-Element/Momentum Theory Aerodynamic Model of the MARIN Stock Wind Turbine: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goupee, A.; Kimball, R.; de Ridder, E. J.

    2015-04-02

    In this paper, a calibrated blade-element/momentum theory aerodynamic model of the MARIN stock wind turbine is developed and documented. The model is created using open-source software and calibrated to closely emulate experimental data obtained by the DeepCwind Consortium using a genetic algorithm optimization routine. The provided model will be useful for those interested in validating interested in validating floating wind turbine numerical simulators that rely on experiments utilizing the MARIN stock wind turbine—for example, the International Energy Agency Wind Task 30’s Offshore Code Comparison Collaboration Continued, with Correlation project.

  16. Complexity and Intermittent Turbulence in Space Plasmas

    NASA Technical Reports Server (NTRS)

    Chang, Tom; Tam, Sunny W. Y.; Wu, Cheng-Chin

    2004-01-01

    Sporadic and localized interactions of coherent structures arising from plasma resonances can be the origin of "complexity" of the coexistence of non- propagating spatiotemporal fluctuations and propagating modes in space plasmas. Numerical simulation results are presented to demonstrate the intermittent character of the non-propagating fluctuations. The technique of the dynamic renormalization-group is introduced and applied to the study of scale invariance of such type of multiscale fluctuations. We also demonstrate that the particle interactions with the intermittent turbulence can lead to the efficient energization of the plasma populations. An example related to the ion acceleration processes in the auroral zone is provided.

  17. Glycopeptide Analysis, Recent Developments and Applications*

    PubMed Central

    Desaire, Heather

    2013-01-01

    Glycopeptide-based analysis is used to inform researchers about the glycans on one or more proteins. The method's key attractive feature is its ability to link glycosylation information to exact locations (glycosylation sites) on proteins. Numerous applications for glycopeptide analysis are known, and several examples are described herein. The techniques used to characterize glycopeptides are still emerging, and recently, research focused on facilitating aspects of glycopeptide analysis has advanced significantly in the areas of sample preparation, MS fragmentation, and automation of data analysis. These recent developments, described herein, provide the foundation for the growth of glycopeptide analysis as a blossoming field. PMID:23389047

  18. Future opportunities in nanophotonics

    NASA Astrophysics Data System (ADS)

    Prasad, Paras N.

    2003-11-01

    Nanophotonics, dealing with optical science and technology at nanoscale, is an exciting new frontier, which provides numerous opportunities both for fundamental research and new applications of photonics. The Institute for Lasers, Photonics and Biophotonics at Buffalo has a comprehensive multidisciplinary program in Nanophotonics funded by the United States Department of Defense. This program focuses on three major areas of Nanophotonics: (i) interactions involving nanoscale confined radiation, (ii) use of nanoscale photoexcitation for nanofabrication and (iii) design and control of excitation dynamics in nanostructured optical materials. Selected examples of our accomplishments in nanophotonics are presented here which illustrate some of the opportunities.

  19. Computerized Design and Analysis of Face-Milled, Uniform Tooth Height Spiral Bevel Gear Drives

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Wang, Anngwo; Handschuh, R. F.

    1996-01-01

    Face-milled spiral bevel gears with uniform tooth height are considered. An approach is proposed for the design of low noise and localized bearing contact of such gears. The approach is based on the mismatch of contacting surfaces and permits two types of bearing contact either directed longitudinally or across the surface to be obtained. A Tooth Contact Analysis (TCA) computer program was developed. This analysis was used to determine the influence of misalignment on meshing and contact of the spiral bevel gears. A numerical example that illustrates the developed theory is provided.

  20. On substructuring algorithms and solution techniques for the numerical approximation of partial differential equations

    NASA Technical Reports Server (NTRS)

    Gunzburger, M. D.; Nicolaides, R. A.

    1986-01-01

    Substructuring methods are in common use in mechanics problems where typically the associated linear systems of algebraic equations are positive definite. Here these methods are extended to problems which lead to nonpositive definite, nonsymmetric matrices. The extension is based on an algorithm which carries out the block Gauss elimination procedure without the need for interchanges even when a pivot matrix is singular. Examples are provided wherein the method is used in connection with finite element solutions of the stationary Stokes equations and the Helmholtz equation, and dual methods for second-order elliptic equations.

  1. Applying integrals of motion to the numerical solution of differential equations

    NASA Technical Reports Server (NTRS)

    Vezewski, D. J.

    1980-01-01

    A method is developed for using the integrals of systems of nonlinear, ordinary, differential equations in a numerical integration process to control the local errors in these integrals and reduce the global errors of the solution. The method is general and can be applied to either scalar or vector integrals. A number of example problems, with accompanying numerical results, are used to verify the analysis and support the conjecture of global error reduction.

  2. On numerical modeling of one-dimensional geothermal histories

    USGS Publications Warehouse

    Haugerud, R.A.

    1989-01-01

    Numerical models of one-dimensional geothermal histories are one way of understanding the relations between tectonics and transient thermal structure in the crust. Such models can be powerful tools for interpreting geochronologic and thermobarometric data. A flexible program to calculate these models on a microcomputer is available and examples of its use are presented. Potential problems with this approach include the simplifying assumptions that are made, limitations of the numerical techniques, and the neglect of convective heat transfer. ?? 1989.

  3. Applying integrals of motion to the numerical solution of differential equations

    NASA Technical Reports Server (NTRS)

    Jezewski, D. J.

    1979-01-01

    A method is developed for using the integrals of systems of nonlinear, ordinary differential equations in a numerical integration process to control the local errors in these integrals and reduce the global errors of the solution. The method is general and can be applied to either scaler or vector integrals. A number of example problems, with accompanying numerical results, are used to verify the analysis and support the conjecture of global error reduction.

  4. Compatible-strain mixed finite element methods for incompressible nonlinear elasticity

    NASA Astrophysics Data System (ADS)

    Faghih Shojaei, Mostafa; Yavari, Arash

    2018-05-01

    We introduce a new family of mixed finite elements for incompressible nonlinear elasticity - compatible-strain mixed finite element methods (CSFEMs). Based on a Hu-Washizu-type functional, we write a four-field mixed formulation with the displacement, the displacement gradient, the first Piola-Kirchhoff stress, and a pressure-like field as the four independent unknowns. Using the Hilbert complexes of nonlinear elasticity, which describe the kinematics and the kinetics of motion, we identify the solution spaces of the independent unknown fields. In particular, we define the displacement in H1, the displacement gradient in H (curl), the stress in H (div), and the pressure field in L2. The test spaces of the mixed formulations are chosen to be the same as the corresponding solution spaces. Next, in a conforming setting, we approximate the solution and the test spaces with some piecewise polynomial subspaces of them. Among these approximation spaces are the tensorial analogues of the Nédélec and Raviart-Thomas finite element spaces of vector fields. This approach results in compatible-strain mixed finite element methods that satisfy both the Hadamard compatibility condition and the continuity of traction at the discrete level independently of the refinement level of the mesh. By considering several numerical examples, we demonstrate that CSFEMs have a good performance for bending problems and for bodies with complex geometries. CSFEMs are capable of capturing very large strains and accurately approximating stress and pressure fields. Using CSFEMs, we do not observe any numerical artifacts, e.g., checkerboarding of pressure, hourglass instability, or locking in our numerical examples. Moreover, CSFEMs provide an efficient framework for modeling heterogeneous solids.

  5. Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems

    NASA Astrophysics Data System (ADS)

    Bäcker, A.

    Summary: We give an introduction to some of the numerical aspects in quantum chaos. The classical dynamics of two-dimensional area-preserving maps on the torus is illustrated using the standard map and a perturbed cat map. The quantization of area-preserving maps given by their generating function is discussed and for the computation of the eigenvalues a computer program in Python is presented. We illustrate the eigenvalue distribution for two types of perturbed cat maps, one leading to COE and the other to CUE statistics. For the eigenfunctions of quantum maps we study the distribution of the eigenvectors and compare them with the corresponding random matrix distributions. The Husimi representation allows for a direct comparison of the localization of the eigenstates in phase space with the corresponding classical structures. Examples for a perturbed cat map and the standard map with different parameters are shown. Billiard systems and the corresponding quantum billiards are another important class of systems (which are also relevant to applications, for example in mesoscopic physics). We provide a detailed exposition of the boundary integral method, which is one important method to determine the eigenvalues and eigenfunctions of the Helmholtz equation. We discuss several methods to determine the eigenvalues from the Fredholm equation and illustrate them for the stadium billiard. The occurrence of spurious solutions is discussed in detail and illustrated for the circular billiard, the stadium billiard, and the annular sector billiard. We emphasize the role of the normal derivative function to compute the normalization of eigenfunctions, momentum representations or autocorrelation functions in a very efficient and direct way. Some examples for these quantities are given and discussed.

  6. Nitsche’s Method For Helmholtz Problems with Embedded Interfaces

    PubMed Central

    Zou, Zilong; Aquino, Wilkins; Harari, Isaac

    2016-01-01

    SUMMARY In this work, we use Nitsche’s formulation to weakly enforce kinematic constraints at an embedded interface in Helmholtz problems. Allowing embedded interfaces in a mesh provides significant ease for discretization, especially when material interfaces have complex geometries. We provide analytical results that establish the well-posedness of Helmholtz variational problems and convergence of the corresponding finite element discretizations when Nitsche’s method is used to enforce kinematic constraints. As in the analysis of conventional Helmholtz problems, we show that the inf-sup constant remains positive provided that the Nitsche’s stabilization parameter is judiciously chosen. We then apply our formulation to several 2D plane-wave examples that confirm our analytical findings. Doing so, we demonstrate the asymptotic convergence of the proposed method and show that numerical results are in accordance with the theoretical analysis. PMID:28713177

  7. Interdisciplinary and multilevel optimum design. [in aerospace structural engineering

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1987-01-01

    Interactions among engineering disciplines and subsystems in engineering system design are surveyed and specific instances of such interactions are described. Examination of the interactions that a traditional design process in which the numerical values of major design variables are decided consecutively is likely to lead to a suboptimal design. Supporting numerical examples are a glider and a space antenna. Under an alternative approach introduced, the design and its sensitivity data from the subsystems and disciplines are generated concurrently and then made available to the system designer enabling him to modify the system design so as to improve its performance. Examples of a framework structure and an airliner wing illustrate that approach.

  8. Numerical integration for ab initio many-electron self energy calculations within the GW approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fang, E-mail: fliu@lsec.cc.ac.cn; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

    We present a numerical integration scheme for evaluating the convolution of a Green's function with a screened Coulomb potential on the real axis in the GW approximation of the self energy. Our scheme takes the zero broadening limit in Green's function first, replaces the numerator of the integrand with a piecewise polynomial approximation, and performs principal value integration on subintervals analytically. We give the error bound of our numerical integration scheme and show by numerical examples that it is more reliable and accurate than the standard quadrature rules such as the composite trapezoidal rule. We also discuss the benefit ofmore » using different self energy expressions to perform the numerical convolution at different frequencies.« less

  9. Papua New Guinea MT: Looking where seismic is blind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoversten, G.M.

    1996-11-01

    Hydrocarbon exploration in the Papuan fold belt is made extremely difficult by mountainous terrain, equatorial jungle and thick karstified Miocene limestones at the surface. The high-velocity karstified limestones at or near the surface often render the seismic technique useless for imaging the subsurface. In such areas magnetotellurics (MT) provides a valuable capability for mapping subsurface structure. Numerical and field data examples are presented which demonstrate the severity of the 1D errors and the improvements in accuracy which can be achieved using a 2D inverse solution. Two MT lines over adjacent anticlines, both with well control and seismic data, are usedmore » to demonstrate the application of 1D and 2D inversions for structural models. The example over the Hides anticline illustrates a situation where 1D inversion of either TE or TM mode provides essentially the same depth to base of Darai as 2D inversion of both TE and TM. The example over the Angore anticline illustrates the inadequacy of 1D inversion in structurally complex geology complicated by electrical statics. Four MT lines along the Angore anticline have been interpreted using 2D inversion. Three-dimensional modelling has been used to simulate 3D statics in an otherwise 2D earth. These data were used to test the Groom-Bailey (GB) decomposition for possible benefits in reducing static effects and estimating geoelectric strike in the Papua New Guinea (PNG) field data. It has been found that the GB decomposition can provide improved regional 2D strike estimates in 3D contaminated data. However, in situations such as PNG, where the regional 2D strike is well established and hence can be fixed, the GB decomposition provides apparent resistivities identical to those simply rotated to strike.« less

  10. A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson-Nernst-Planck systems

    NASA Astrophysics Data System (ADS)

    Liu, Hailiang; Wang, Zhongming

    2017-01-01

    We design an arbitrary-order free energy satisfying discontinuous Galerkin (DG) method for solving time-dependent Poisson-Nernst-Planck systems. Both the semi-discrete and fully discrete DG methods are shown to satisfy the corresponding discrete free energy dissipation law for positive numerical solutions. Positivity of numerical solutions is enforced by an accuracy-preserving limiter in reference to positive cell averages. Numerical examples are presented to demonstrate the high resolution of the numerical algorithm and to illustrate the proven properties of mass conservation, free energy dissipation, as well as the preservation of steady states.

  11. Numerical solution of distributed order fractional differential equations

    NASA Astrophysics Data System (ADS)

    Katsikadelis, John T.

    2014-02-01

    In this paper a method for the numerical solution of distributed order FDEs (fractional differential equations) of a general form is presented. The method applies to both linear and nonlinear equations. The Caputo type fractional derivative is employed. The distributed order FDE is approximated with a multi-term FDE, which is then solved by adjusting appropriately the numerical method developed for multi-term FDEs by Katsikadelis. Several example equations are solved and the response of mechanical systems described by such equations is studied. The convergence and the accuracy of the method for linear and nonlinear equations are demonstrated through well corroborated numerical results.

  12. Approaching the investigation of plasma turbulence through a rigorous verification and validation procedure: A practical example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricci, P., E-mail: paolo.ricci@epfl.ch; Riva, F.; Theiler, C.

    In the present work, a Verification and Validation procedure is presented and applied showing, through a practical example, how it can contribute to advancing our physics understanding of plasma turbulence. Bridging the gap between plasma physics and other scientific domains, in particular, the computational fluid dynamics community, a rigorous methodology for the verification of a plasma simulation code is presented, based on the method of manufactured solutions. This methodology assesses that the model equations are correctly solved, within the order of accuracy of the numerical scheme. The technique to carry out a solution verification is described to provide a rigorousmore » estimate of the uncertainty affecting the numerical results. A methodology for plasma turbulence code validation is also discussed, focusing on quantitative assessment of the agreement between experiments and simulations. The Verification and Validation methodology is then applied to the study of plasma turbulence in the basic plasma physics experiment TORPEX [Fasoli et al., Phys. Plasmas 13, 055902 (2006)], considering both two-dimensional and three-dimensional simulations carried out with the GBS code [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. The validation procedure allows progress in the understanding of the turbulent dynamics in TORPEX, by pinpointing the presence of a turbulent regime transition, due to the competition between the resistive and ideal interchange instabilities.« less

  13. Neyman, Markov processes and survival analysis.

    PubMed

    Yang, Grace

    2013-07-01

    J. Neyman used stochastic processes extensively in his applied work. One example is the Fix and Neyman (F-N) competing risks model (1951) that uses finite homogeneous Markov processes to analyse clinical trials with breast cancer patients. We revisit the F-N model, and compare it with the Kaplan-Meier (K-M) formulation for right censored data. The comparison offers a way to generalize the K-M formulation to include risks of recovery and relapses in the calculation of a patient's survival probability. The generalization is to extend the F-N model to a nonhomogeneous Markov process. Closed-form solutions of the survival probability are available in special cases of the nonhomogeneous processes, like the popular multiple decrement model (including the K-M model) and Chiang's staging model, but these models do not consider recovery and relapses while the F-N model does. An analysis of sero-epidemiology current status data with recurrent events is illustrated. Fix and Neyman used Neyman's RBAN (regular best asymptotic normal) estimates for the risks, and provided a numerical example showing the importance of considering both the survival probability and the length of time of a patient living a normal life in the evaluation of clinical trials. The said extension would result in a complicated model and it is unlikely to find analytical closed-form solutions for survival analysis. With ever increasing computing power, numerical methods offer a viable way of investigating the problem.

  14. A novel approach to solve nonlinear Fredholm integral equations of the second kind.

    PubMed

    Li, Hu; Huang, Jin

    2016-01-01

    In this paper, we present a novel approach to solve nonlinear Fredholm integral equations of the second kind. This algorithm is constructed by the integral mean value theorem and Newton iteration. Convergence and error analysis of the numerical solutions are given. Moreover, Numerical examples show the algorithm is very effective and simple.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ch.; Gao, X. W.; Sladek, J.

    This paper reports our recent research works on crack analysis in continuously non-homogeneous and linear elastic functionally graded materials. A meshless boundary element method is developed for this purpose. Numerical examples are presented and discussed to demonstrate the efficiency and the accuracy of the present numerical method, and to show the effects of the material gradation on the crack-opening-displacements and the stress intensity factors.

  16. The Harmonic Oscillator with a Gaussian Perturbation: Evaluation of the Integrals and Example Applications

    ERIC Educational Resources Information Center

    Earl, Boyd L.

    2008-01-01

    A general result for the integrals of the Gaussian function over the harmonic oscillator wavefunctions is derived using generating functions. Using this result, an example problem of a harmonic oscillator with various Gaussian perturbations is explored in order to compare the results of precise numerical solution, the variational method, and…

  17. Petroleum accounting principles, procedures, and issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, H.R.; Klingstedt, J.P.; Jones, D.M.

    1985-01-01

    This book begins with the basics and leads one through the complexities of accounting and reporting for the industry. It presents the material one needs as an accountant in the petroleum industry. Examples deal with real problems and issues. It also includes numerous illustrations and examples, as well as sample forms, lease agreements, and industry and governmental regulations.

  18. A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franceschini, Andrea; Ferronato, Massimiliano, E-mail: massimiliano.ferronato@unipd.it; Janna, Carlo

    The simulation of the mechanics of geological faults and fractures is of paramount importance in several applications, such as ensuring the safety of the underground storage of wastes and hydrocarbons or predicting the possible seismicity triggered by the production and injection of subsurface fluids. However, the stable numerical modeling of ground ruptures is still an open issue. The present work introduces a novel formulation based on the use of the Lagrange multipliers to prescribe the constraints on the contact surfaces. The variational formulation is modified in order to take into account the frictional work along the activated fault portion accordingmore » to the principle of maximum plastic dissipation. The numerical model, developed in the framework of the Finite Element method, provides stable solutions with a fast convergence of the non-linear problem. The stabilizing properties of the proposed model are emphasized with the aid of a realistic numerical example dealing with the generation of ground fractures due to groundwater withdrawal in arid regions. - Highlights: • A numerical model is developed for the simulation of fault and fracture mechanics. • The model is implemented in the framework of the Finite Element method and with the aid of Lagrange multipliers. • The proposed formulation introduces a new contribution due to the frictional work on the portion of activated fault. • The resulting algorithm is highly non-linear as the portion of activated fault is itself unknown. • The numerical solution is validated against analytical results and proves to be stable also in realistic applications.« less

  19. Time-Accurate Local Time Stepping and High-Order Time CESE Methods for Multi-Dimensional Flows Using Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji Shankar; Cheng, Gary

    2013-01-01

    With the wide availability of affordable multiple-core parallel supercomputers, next generation numerical simulations of flow physics are being focused on unsteady computations for problems involving multiple time scales and multiple physics. These simulations require higher solution accuracy than most algorithms and computational fluid dynamics codes currently available. This paper focuses on the developmental effort for high-fidelity multi-dimensional, unstructured-mesh flow solvers using the space-time conservation element, solution element (CESE) framework. Two approaches have been investigated in this research in order to provide high-accuracy, cross-cutting numerical simulations for a variety of flow regimes: 1) time-accurate local time stepping and 2) highorder CESE method. The first approach utilizes consistent numerical formulations in the space-time flux integration to preserve temporal conservation across the cells with different marching time steps. Such approach relieves the stringent time step constraint associated with the smallest time step in the computational domain while preserving temporal accuracy for all the cells. For flows involving multiple scales, both numerical accuracy and efficiency can be significantly enhanced. The second approach extends the current CESE solver to higher-order accuracy. Unlike other existing explicit high-order methods for unstructured meshes, the CESE framework maintains a CFL condition of one for arbitrarily high-order formulations while retaining the same compact stencil as its second-order counterpart. For large-scale unsteady computations, this feature substantially enhances numerical efficiency. Numerical formulations and validations using benchmark problems are discussed in this paper along with realistic examples.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudiarta, I. Wayan; Angraini, Lily Maysari, E-mail: lilyangraini@unram.ac.id

    We have applied the finite difference time domain (FDTD) method with the supersymmetric quantum mechanics (SUSY-QM) procedure to determine excited energies of one dimensional quantum systems. The theoretical basis of FDTD, SUSY-QM, a numerical algorithm and an illustrative example for a particle in a one dimensional square-well potential were given in this paper. It was shown that the numerical results were in excellent agreement with theoretical results. Numerical errors produced by the SUSY-QM procedure was due to errors in estimations of superpotentials and supersymmetric partner potentials.

  1. Galois groups of Schubert problems via homotopy computation

    NASA Astrophysics Data System (ADS)

    Leykin, Anton; Sottile, Frank

    2009-09-01

    Numerical homotopy continuation of solutions to polynomial equations is the foundation for numerical algebraic geometry, whose development has been driven by applications of mathematics. We use numerical homotopy continuation to investigate the problem in pure mathematics of determining Galois groups in the Schubert calculus. For example, we show by direct computation that the Galois group of the Schubert problem of 3-planes in mathbb{C}^8 meeting 15 fixed 5-planes non-trivially is the full symmetric group S_{6006} .

  2. A technique for increasing the accuracy of the numerical inversion of the Laplace transform with applications

    NASA Technical Reports Server (NTRS)

    Berger, B. S.; Duangudom, S.

    1973-01-01

    A technique is introduced which extends the range of useful approximation of numerical inversion techniques to many cycles of an oscillatory function without requiring either the evaluation of the image function for many values of s or the computation of higher-order terms. The technique consists in reducing a given initial value problem defined over some interval into a sequence of initial value problems defined over a set of subintervals. Several numerical examples demonstrate the utility of the method.

  3. Igpet software for modeling igneous processes: examples of application using the open educational version

    NASA Astrophysics Data System (ADS)

    Carr, Michael J.; Gazel, Esteban

    2017-04-01

    We provide here an open version of Igpet software, called t-Igpet to emphasize its application for teaching and research in forward modeling of igneous geochemistry. There are three programs, a norm utility, a petrologic mixing program using least squares and Igpet, a graphics program that includes many forms of numerical modeling. Igpet is a multifaceted tool that provides the following basic capabilities: igneous rock identification using the IUGS (International Union of Geological Sciences) classification and several supplementary diagrams; tectonic discrimination diagrams; pseudo-quaternary projections; least squares fitting of lines, polynomials and hyperbolae; magma mixing using two endmembers, histograms, x-y plots, ternary plots and spider-diagrams. The advanced capabilities of Igpet are multi-element mixing and magma evolution modeling. Mixing models are particularly useful for understanding the isotopic variations in rock suites that evolved by mixing different sources. The important melting models include, batch melting, fractional melting and aggregated fractional melting. Crystallization models include equilibrium and fractional crystallization and AFC (assimilation and fractional crystallization). Theses, reports and proposals concerning igneous petrology are improved by numerical modeling. For reviewed publications some elements of modeling are practically a requirement. Our intention in providing this software is to facilitate improved communication and lower entry barriers to research, especially for students.

  4. Marginal and Random Intercepts Models for Longitudinal Binary Data With Examples From Criminology.

    PubMed

    Long, Jeffrey D; Loeber, Rolf; Farrington, David P

    2009-01-01

    Two models for the analysis of longitudinal binary data are discussed: the marginal model and the random intercepts model. In contrast to the linear mixed model (LMM), the two models for binary data are not subsumed under a single hierarchical model. The marginal model provides group-level information whereas the random intercepts model provides individual-level information including information about heterogeneity of growth. It is shown how a type of numerical averaging can be used with the random intercepts model to obtain group-level information, thus approximating individual and marginal aspects of the LMM. The types of inferences associated with each model are illustrated with longitudinal criminal offending data based on N = 506 males followed over a 22-year period. Violent offending indexed by official records and self-report were analyzed, with the marginal model estimated using generalized estimating equations and the random intercepts model estimated using maximum likelihood. The results show that the numerical averaging based on the random intercepts can produce prediction curves almost identical to those obtained directly from the marginal model parameter estimates. The results provide a basis for contrasting the models and the estimation procedures and key features are discussed to aid in selecting a method for empirical analysis.

  5. Downscattered Neutron Imaging for ICF

    NASA Astrophysics Data System (ADS)

    Moran, Michael; Haan, Steven; Hatchett, Stephen; Izumi, Nobuhiko; Koch, Jeffrey; Lerche, Richard; Phillips, Thomas

    2002-11-01

    Diagnostics which measure the performance of implosions are critical for the success of ignition. Neutron yield, fusion-burn time history, and images are examples of important diagnostics. Neutron and x-ray images will record the geometries of compressed targets during the fusion-burn process. Such images provide a critical test of the accuracy of numerical modeling of ICF experiments. Imaging of downscattered neutrons, by using energy-resolved detection, offers the intriguing advantage of being able to provide independent images of burning and non-burning regions of the nuclear fuel. The usefulness of downscattered neutron imaging depends on both the information content of the data and on the quality of the data that can be recorded. The information content will relate to the characteristic neutron spectra that are associated with emission from different regions of the source. Numerical modeling of ICF fusion burn will be required to interpret the corresponding energy-dependent images. The exercise will be useful only if the images can be recorded with sufficient definition to reveal the spatial and energy-dependent features of interest. Several options are being evaluated with respect to the feasibility of providing the desired simultaneous spatial and energy resolution. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  6. Long-term care insurance and market for aged care in Japan: focusing on the status of care service providers by locality and organisational nature based on survey results.

    PubMed

    Kubo, Makoto

    2014-09-01

    The purpose of this paper is to examine the status of care service providers by locality and organisational nature. Questionnaires were sent to 9505 home-based care service providers registered in the databases of 17 prefectures. The prefectures were selected according to population size. Numerous for-profit providers have newly entered the aged care service market and are operating selectively in Tokyo, a typical example of a metropolitan area. Furthermore, both for-profit and non-profit providers have suffered from a shortage of care workers and difficult management conditions, which tend to be more pronounced in Tokyo. The market under long-term care insurance was successful in terms of the volume of services, but most providers were sceptical as to whether competition in the market could facilitate quality care services. © 2013 The Author. Australasian Journal on Ageing © 2013 ACOTA.

  7. Digging Back In Time: Integrating Historical Data Into an Operational Ocean Observing System

    NASA Astrophysics Data System (ADS)

    McCammon, M.

    2016-02-01

    Modern technologies allow reporting and display of data near real-time from in situ instrumentation live on the internet. This has given users fast access to critical information for scientific applications, marine safety, planning, and numerous other activities. Equally as valuable is having access to historical data sets. However, it is challenging to identify sources and access of historical data of interest as it exists in many different locations, depending on the funding source and provider. Also, time-varying formats can make it difficult to data-mine and display historical data. There is also the issue of data quality, and having a systematic means of assessing credibility of historical data sets. The Alaska Ocean Observing System (AOOS) data management system demonstrates the successful ingestion of historical data, both old and new (as recent as yesterday) and has integrated numerous historical data streams into user friendly data portals, available for data upload and display on the AOOS Website. An example is the inclusion of non-real-time (e.g. day old) AIS (Automatic Identification System) ship tracking data, important for scientists working in marine mammal migration regions. Other examples include historical sea ice data, and various data streams from previous research projects (e.g. moored time series, HF Radar surface currents, weather, shipboard CTD). Most program or project websites only offer access to data specific to their agency or project alone, but do not have the capacity to provide access to the plethora of other data that might be available for the region and be useful for integration, comparison and synthesis. AOOS offers end users access to a one stop-shop for data in the area they want to research, helping them identify other sources of information and access. Demonstrations of data portals using historical data illustrate these benefits.

  8. Chaotic Bohmian trajectories for stationary states

    NASA Astrophysics Data System (ADS)

    Cesa, Alexandre; Martin, John; Struyve, Ward

    2016-09-01

    In Bohmian mechanics, the nodes of the wave function play an important role in the generation of chaos. However, so far, most of the attention has been on moving nodes; little is known about the possibility of chaos in the case of stationary nodes. We address this question by considering stationary states, which provide the simplest examples of wave functions with stationary nodes. We provide examples of stationary wave functions for which there is chaos, as demonstrated by numerical computations, for one particle moving in three spatial dimensions and for two and three entangled particles in two dimensions. Our conclusion is that the motion of the nodes is not necessary for the generation of chaos. What is important is the overall complexity of the wave function. That is, if the wave function, or rather its phase, has a complex spatial variation, it will lead to complex Bohmian trajectories and hence to chaos. Another aspect of our work concerns the average Lyapunov exponent, which quantifies the overall amount of chaos. Since it is very hard to evaluate the average Lyapunov exponent analytically, which is often computed numerically, it is useful to have simple quantities that agree well with the average Lyapunov exponent. We investigate possible correlations with quantities such as the participation ratio and different measures of entanglement, for different systems and different families of stationary wave functions. We find that these quantities often tend to correlate to the amount of chaos. However, the correlation is not perfect, because, in particular, these measures do not depend on the form of the basis states used to expand the wave function, while the amount of chaos does.

  9. A multiresolution method for climate system modeling: application of spherical centroidal Voronoi tessellations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringler, Todd; Ju, Lili; Gunzburger, Max

    2008-11-14

    During the next decade and beyond, climate system models will be challenged to resolve scales and processes that are far beyond their current scope. Each climate system component has its prototypical example of an unresolved process that may strongly influence the global climate system, ranging from eddy activity within ocean models, to ice streams within ice sheet models, to surface hydrological processes within land system models, to cloud processes within atmosphere models. These new demands will almost certainly result in the develop of multiresolution schemes that are able, at least regionally, to faithfully simulate these fine-scale processes. Spherical centroidal Voronoimore » tessellations (SCVTs) offer one potential path toward the development of a robust, multiresolution climate system model components. SCVTs allow for the generation of high quality Voronoi diagrams and Delaunay triangulations through the use of an intuitive, user-defined density function. In each of the examples provided, this method results in high-quality meshes where the quality measures are guaranteed to improve as the number of nodes is increased. Real-world examples are developed for the Greenland ice sheet and the North Atlantic ocean. Idealized examples are developed for ocean–ice shelf interaction and for regional atmospheric modeling. In addition to defining, developing, and exhibiting SCVTs, we pair this mesh generation technique with a previously developed finite-volume method. Our numerical example is based on the nonlinear, shallow water equations spanning the entire surface of the sphere. This example is used to elucidate both the potential benefits of this multiresolution method and the challenges ahead.« less

  10. A three-dimensional multiphase flow model for assessing NAPL contamination in porous and fractured media, 2. Porous medium simulation examples

    NASA Astrophysics Data System (ADS)

    Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Springer, E. P.

    1994-06-01

    This paper discusses the verification and application of the three-dimensional (3-D) multiphase flow model presented by Huyakorn et al. (Part 1 in this issue) for assessing contamination due to subsurface releases of non-aqueous-phase liquids (NAPL's). Attention is focussed on situations involving one-, two- and three-dimensional flow through porous media. The model formulations and numerical schemes are tested for highly nonlinear field conditions. The utility and accuracy of various simplifications to certain simulation scenarios are assessed. Five simulation examples are included for demonstrative purposes. The first example verifies the model for vertical flow and compares the performance of the fully three-phase and the passive-air-phase formulations. Air-phase boundary conditions are noted to have considerable effects on simulation results. The second example verifies the model for cross-sectional analyses involving LNAPL and DNAPL migration. Finite-difference (5-point) and finite-element (9-point) spatial approximations are compared for different grid aspect ratios. Unless corrected, negative-transmissivity conditions were found to have undesirable impact on the finite-element solutions. The third example provides a model validation against laboratory experimental data on 5-spot water-flood treatment of oil reservoirs. The sensitivity to grid orientation is noted for the finite-difference schemes. The fourth example demonstrates model utility in characterizing the 3-D migration of LNAPL and DNAPL from surface sources. The final example present a modeling study of air sparging. Critical parameters affecting the performance of air-sparging system are examined. In general, the modeling results indicate sparging is more effective in water-retentive soils, and larger values of sparge influence radius may be achieved for certain anisotropic conditions.

  11. Application of Bayesian Maximum Entropy Filter in parameter calibration of groundwater flow model in PingTung Plain

    NASA Astrophysics Data System (ADS)

    Cheung, Shao-Yong; Lee, Chieh-Han; Yu, Hwa-Lung

    2017-04-01

    Due to the limited hydrogeological observation data and high levels of uncertainty within, parameter estimation of the groundwater model has been an important issue. There are many methods of parameter estimation, for example, Kalman filter provides a real-time calibration of parameters through measurement of groundwater monitoring wells, related methods such as Extended Kalman Filter and Ensemble Kalman Filter are widely applied in groundwater research. However, Kalman Filter method is limited to linearity. This study propose a novel method, Bayesian Maximum Entropy Filtering, which provides a method that can considers the uncertainty of data in parameter estimation. With this two methods, we can estimate parameter by given hard data (certain) and soft data (uncertain) in the same time. In this study, we use Python and QGIS in groundwater model (MODFLOW) and development of Extended Kalman Filter and Bayesian Maximum Entropy Filtering in Python in parameter estimation. This method may provide a conventional filtering method and also consider the uncertainty of data. This study was conducted through numerical model experiment to explore, combine Bayesian maximum entropy filter and a hypothesis for the architecture of MODFLOW groundwater model numerical estimation. Through the virtual observation wells to simulate and observe the groundwater model periodically. The result showed that considering the uncertainty of data, the Bayesian maximum entropy filter will provide an ideal result of real-time parameters estimation.

  12. Influences of system uncertainties on the numerical transfer path analysis of engine systems

    NASA Astrophysics Data System (ADS)

    Acri, A.; Nijman, E.; Acri, A.; Offner, G.

    2017-10-01

    Practical mechanical systems operate with some degree of uncertainty. In numerical models uncertainties can result from poorly known or variable parameters, from geometrical approximation, from discretization or numerical errors, from uncertain inputs or from rapidly changing forcing that can be best described in a stochastic framework. Recently, random matrix theory was introduced to take parameter uncertainties into account in numerical modeling problems. In particular in this paper, Wishart random matrix theory is applied on a multi-body dynamic system to generate random variations of the properties of system components. Multi-body dynamics is a powerful numerical tool largely implemented during the design of new engines. In this paper the influence of model parameter variability on the results obtained from the multi-body simulation of engine dynamics is investigated. The aim is to define a methodology to properly assess and rank system sources when dealing with uncertainties. Particular attention is paid to the influence of these uncertainties on the analysis and the assessment of the different engine vibration sources. Examples of the effects of different levels of uncertainties are illustrated by means of examples using a representative numerical powertrain model. A numerical transfer path analysis, based on system dynamic substructuring, is used to derive and assess the internal engine vibration sources. The results obtained from this analysis are used to derive correlations between parameter uncertainties and statistical distribution of results. The derived statistical information can be used to advance the knowledge of the multi-body analysis and the assessment of system sources when uncertainties in model parameters are considered.

  13. Effects of viscosity on shock-induced damping of an initial sinusoidal disturbance

    NASA Astrophysics Data System (ADS)

    Ma, Xiaojuan; Liu, Fusheng; Jing, Fuqian

    2010-05-01

    A lack of reliable data treatment method has been for several decades the bottleneck of viscosity measurement by disturbance amplitude damping method of shock waves. In this work the finite difference method is firstly applied to obtain the numerical solutions for disturbance amplitude damping behavior of sinusoidal shock front in inviscid and viscous flow. When water shocked to 15 GPa is taken as an example, the main results are as follows: (1) For inviscid and lower viscous flows the numerical method gives results in good agreement with the analytic solutions under the condition of small disturbance ( a 0/ λ=0.02); (2) For the flow of viscosity beyond 200 Pa s ( η = κ) the analytic solution is found to overestimate obviously the effects of viscosity. It is attributed to the unreal pre-conditions of analytic solution by Miller and Ahrens; (3) The present numerical method provides an effective tool with more confidence to overcome the bottleneck of data treatment when the effects of higher viscosity in experiments of Sakharov and flyer impact are expected to be analyzed, because it can in principle simulate the development of shock waves in flows with larger disturbance amplitude, higher viscosity, and complicated initial flow.

  14. A highly precise frequency-based method for estimating the tension of an inclined cable with unknown boundary conditions

    NASA Astrophysics Data System (ADS)

    Ma, Lin

    2017-11-01

    This paper develops a method for precisely determining the tension of an inclined cable with unknown boundary conditions. First, the nonlinear motion equation of an inclined cable is derived, and a numerical model of the motion of the cable is proposed using the finite difference method. The proposed numerical model includes the sag-extensibility, flexural stiffness, inclination angle and rotational stiffness at two ends of the cable. Second, the influence of the dynamic parameters of the cable on its frequencies is discussed in detail, and a method for precisely determining the tension of an inclined cable is proposed based on the derivatives of the eigenvalues of the matrices. Finally, a multiparameter identification method is developed that can simultaneously identify multiple parameters, including the rotational stiffness at two ends. This scheme is applicable to inclined cables with varying sag, varying flexural stiffness and unknown boundary conditions. Numerical examples indicate that the method provides good precision. Because the parameters of cables other than tension (e.g., the flexural stiffness and rotational stiffness at the ends) are not accurately known in practical engineering, the multiparameter identification method could further improve the accuracy of cable tension measurements.

  15. Analytic Couple Modeling Introducing Device Design Factor, Fin Factor, Thermal Diffusivity Factor, and Inductance Factor

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    A set of convenient thermoelectric device solutions have been derived in order to capture a number of factors which are previously only resolved with numerical techniques. The concise conversion efficiency equations derived from governing equations provide intuitive and straight-forward design guidelines. These guidelines allow for better device design without requiring detailed numerical modeling. The analytical modeling accounts for factors such as i) variable temperature boundary conditions, ii) lateral heat transfer, iii) temperature variable material properties, and iv) transient operation. New dimensionless parameters, similar to the figure of merit, are introduced including the device design factor, fin factor, thermal diffusivity factor, and inductance factor. These new device factors allow for the straight-forward description of phenomenon generally only captured with numerical work otherwise. As an example a device design factor of 0.38, which accounts for thermal resistance of the hot and cold shoes, can be used to calculate a conversion efficiency of 2.28 while the ideal conversion efficiency based on figure of merit alone would be 6.15. Likewise an ideal couple with efficiency of 6.15 will be reduced to 5.33 when lateral heat is accounted for with a fin factor of 1.0.

  16. A numerical approach to finding general stationary vacuum black holes

    NASA Astrophysics Data System (ADS)

    Adam, Alexander; Kitchen, Sam; Wiseman, Toby

    2012-08-01

    The Harmonic Einstein equation is the vacuum Einstein equation supplemented by a gauge fixing term which we take to be that of DeTurck. For static black holes analytically continued to Riemannian manifolds without boundary at the horizon, this equation has previously been shown to be elliptic, and Ricci flow and Newton’s method provide good numerical algorithms to solve it. Here we extend these techniques to the arbitrary cohomogeneity stationary case which must be treated in Lorentzian signature. For stationary spacetimes with globally timelike Killing vector the Harmonic Einstein equation is elliptic. In the presence of horizons and ergo-regions it is less obviously so. Motivated by the Rigidity theorem we study a class of stationary black hole spacetimes which is general enough to include many interesting higher dimensional solutions. We argue the Harmonic Einstein equation consistently truncates to this class of spacetimes giving an elliptic problem. The Killing horizons and axes of rotational symmetry are boundaries for this problem and we determine boundary conditions there. As a simple example we numerically construct 4D rotating black holes in a cavity using Anderson’s boundary conditions. We demonstrate both Newton’s method and Ricci flow to find these Lorentzian solutions.

  17. Fractional dynamics of charged particles in magnetic fields

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.

    2016-02-01

    In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.

  18. CrystalMoM: a tool for modeling the evolution of Crystals Size Distributions in magmas with the Method of Moments

    NASA Astrophysics Data System (ADS)

    Colucci, Simone; de'Michieli Vitturi, Mattia; Landi, Patrizia

    2016-04-01

    It is well known that nucleation and growth of crystals play a fundamental role in controlling magma ascent dynamics and eruptive behavior. Size- and shape-distribution of crystal populations can affect mixture viscosity, causing, potentially, transitions between effusive and explosive eruptions. Furthermore, volcanic samples are usually characterized in terms of Crystal Size Distribution (CSD), which provide a valuable insight into the physical processes that led to the observed distributions. For example, a large average size can be representative of a slow magma ascent, and a bimodal CSD may indicate two events of nucleation, determined by two degassing events within the conduit. The Method of Moments (MoM), well established in the field of chemical engineering, represents a mesoscopic modeling approach that rigorously tracks the polydispersity by considering the evolution in time and space of integral parameters characterizing the distribution, the moments, by solving their transport differential-integral equations. One important advantage of this approach is that the moments of the distribution correspond to quantities that have meaningful physical interpretations and are directly measurable in natural eruptive products, as well as in experimental samples. For example, when the CSD is defined by the number of particles of size D per unit volume of the magmatic mixture, the zeroth moment gives the total number of crystals, the third moment gives the crystal volume fraction in the magmatic mixture and ratios between successive moments provide different ways to evaluate average crystal length. Tracking these quantities, instead of volume fraction only, will allow using, for example, more accurate viscosity models in numerical code for magma ascent. Here we adopted, for the first time, a quadrature based method of moments to track the temporal evolution of CSD in a magmatic mixture and we verified and calibrated the model again experimental data. We also show how the equations and the tool developed can be integrated in a magma ascent numerical model, with application to eruptive events occurred at Stromboli volcano (Italy).

  19. Planetary Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Christensen, Ulrich R.

    2017-06-01

    The Earth's magnetic field has been known for centuries. Since the mid-20th century space missions carrying vector magnetometers showed that most, but not all, solar system planets have a global magnetic field of internal origin. They also revealed a surprising diversity in terms of field strength and morphology. While Jupiter's field, like that of Earth, is dominated by a dipole moderately tilted relative to the planet's spin axis, with multipole components being subordinate but not negligible, the fields of Uranus and Neptune are multipole-dominated, whereas those of Saturn und Mercury are highly symmetric relative to the rotation axis. Planetary magnetism originates from a dynamo process, which requires a fluid and electrically conducting region in the interior with sufficiently rapid and complex flow. The magnetic fields are of interest for three reasons: (1) They provide ground truth for dynamo theory, which is a fundamental and not completely solved physical problem; (2) the magnetic field controls how the planet interacts with its space environment, for example, the solar wind; and (3) the existence (or nonexistence) and the properties of the field allow us to draw inferences on the constitution, dynamics, and thermal evolution of the planet's interior. For example, the lack of global magnetic fields at Mars and Venus can be explained if their iron cores, although liquid, are stably stratified. Numerical simulations of the geodynamo—in which convective flow in a rapidly rotating spherical shell representing the outer liquid iron core of the Earth leads to induction of electric currents and the associated magnetic field—have successfully reproduced many observed properties of the geomagnetic field. They have also provided guidelines on the factors controlling magnetic field strength and, tentatively, their morphology. For numerical reasons the simulations must employ viscosities far greater than those inside planets, and it is debatable whether they truly capture the correct physics of planetary dynamo processes. Nonetheless, such models have been adapted to test concepts for explaining magnetic field properties of other planets. For example, they show that a stable stratified conducting layer above the dynamo region is a plausible cause for the strongly axisymmetric magnetic fields of Mercury or Saturn.

  20. Numerical modeling of a point-source image under relative motion of radiation receiver and atmosphere

    NASA Astrophysics Data System (ADS)

    Kucherov, A. N.; Makashev, N. K.; Ustinov, E. V.

    1994-02-01

    A procedure is proposed for numerical modeling of instantaneous and averaged (over various time intervals) distant-point-source images perturbed by a turbulent atmosphere that moves relative to the radiation receiver. Examples of image calculations under conditions of the significant effect of atmospheric turbulence in an approximation of geometrical optics are presented and analyzed.

  1. Structural reliability assessment capability in NESSUS

    NASA Technical Reports Server (NTRS)

    Millwater, H.; Wu, Y.-T.

    1992-01-01

    The principal capabilities of NESSUS (Numerical Evaluation of Stochastic Structures Under Stress), an advanced computer code developed for probabilistic structural response analysis, are reviewed, and its structural reliability assessed. The code combines flexible structural modeling tools with advanced probabilistic algorithms in order to compute probabilistic structural response and resistance, component reliability and risk, and system reliability and risk. An illustrative numerical example is presented.

  2. Structural reliability assessment capability in NESSUS

    NASA Astrophysics Data System (ADS)

    Millwater, H.; Wu, Y.-T.

    1992-07-01

    The principal capabilities of NESSUS (Numerical Evaluation of Stochastic Structures Under Stress), an advanced computer code developed for probabilistic structural response analysis, are reviewed, and its structural reliability assessed. The code combines flexible structural modeling tools with advanced probabilistic algorithms in order to compute probabilistic structural response and resistance, component reliability and risk, and system reliability and risk. An illustrative numerical example is presented.

  3. Testing numerical models for boulder transport due to high energy marine wave events: examples from the Saurashtra coast, Western India

    NASA Astrophysics Data System (ADS)

    Chavare, Kushal; Bhatt, Nilesh; Prizomwala, Siddharth

    2017-04-01

    The boulder deposits on the coasts are interpreted and evaluated as high energy marine wave events like tsunami. Several numerical models are now available to estimate wave height and/or run up of the tsunami wave. The coast of Saurashtra, facing the Arabian Sea on its west hosts such deposits in younger ( 1 and 6 ka) and older ( 35 ka) coastal records. The dimensions, characteristics and morphology of these boulders were studied with different numeric models and were applied with reference to submerged, sub-aerial and joint bounded boulder scenarios which were combined with the local control variables like roughness coefficient, slope of platforms, fractures, shoaling effect, etc. The application of these models indicated a significant role of local control variables in boulder dislodgment, transport and final emplacement on shore platform. Examples from three different sites from the coast of Saurashtra, western India are reported and discussed in detail.

  4. Computational thermo-hydro-mechanics for freezing and thawing multiphase geological media in the finite deformation range

    NASA Astrophysics Data System (ADS)

    Sun, W.; Na, S.

    2017-12-01

    A stabilized thermo-hydro-mechanical (THM) finite element model is introduced to investigate the freeze-thaw action of frozen porous media in the finite deformation range. By applying the mixture theory, frozen soil is idealized as a composite consisting of three phases, i.e., solid grain, unfrozen water and ice crystal. A generalized hardening rule at finite strain is adopted to replicate how the elasto-plastic responses and critical state evolve under the influence of phase transitions and heat transfer. The enhanced particle interlocking and ice strengthening during the freezing processes and the thawing-induced consolidation at the geometrical nonlinear regimes are both replicated in numerical examples. The numerical issues due to lack of two-fold inf-sup condition and ill-conditioning of the system of equations are addressed. Numerical examples for engineering applications at cold region are analyzed via the proposed model to predict the impacts of changing climate on infrastructure at cold regions.

  5. Numerically stable finite difference simulation for ultrasonic NDE in anisotropic composites

    NASA Astrophysics Data System (ADS)

    Leckey, Cara A. C.; Quintanilla, Francisco Hernando; Cole, Christina M.

    2018-04-01

    Simulation tools can enable optimized inspection of advanced materials and complex geometry structures. Recent work at NASA Langley is focused on the development of custom simulation tools for modeling ultrasonic wave behavior in composite materials. Prior work focused on the use of a standard staggered grid finite difference type of mathematical approach, by implementing a three-dimensional (3D) anisotropic Elastodynamic Finite Integration Technique (EFIT) code. However, observations showed that the anisotropic EFIT method displays numerically unstable behavior at the locations of stress-free boundaries for some cases of anisotropic materials. This paper gives examples of the numerical instabilities observed for EFIT and discusses the source of instability. As an alternative to EFIT, the 3D Lebedev Finite Difference (LFD) method has been implemented. The paper briefly describes the LFD approach and shows examples of stable behavior in the presence of stress-free boundaries for a monoclinic anisotropy case. The LFD results are also compared to experimental results and dispersion curves.

  6. [Effects decomposition in mediation analysis: a numerical example].

    PubMed

    Zugna, Daniela; Richiardi, Lorenzo

    2018-01-01

    Mediation analysis aims to decompose the total effect of the exposure on the outcome into a direct effect (unmediated) and an indirect effect (mediated by a mediator). When the interest also lies on understanding whether the exposure effect differs in different sub-groups of study population or under different scenarios, the mediation analysis needs to be integrated with interaction analysis. In this setting it is necessary to decompose the total effect not only into two components, the direct and indirect effects, but other two components linked to interaction. The interaction between the exposure and the mediator in their effect on the outcome could indeed act through the effect of the exposure on the mediator or through the mediator when the mediator is not totally explained by the exposure. We describe options for decomposition, proposed in literature, of the total effect and we illustrate them through a hypothetical example of the effect of age at diagnosis of cancer on survival, mediated and unmediated by the therapeutical approach, and a numerical example.

  7. Combined control-structure optimization

    NASA Technical Reports Server (NTRS)

    Salama, M.; Milman, M.; Bruno, R.; Scheid, R.; Gibson, S.

    1989-01-01

    An approach for combined control-structure optimization keyed to enhancing early design trade-offs is outlined and illustrated by numerical examples. The approach employs a homotopic strategy and appears to be effective for generating families of designs that can be used in these early trade studies. Analytical results were obtained for classes of structure/control objectives with linear quadratic Gaussian (LQG) and linear quadratic regulator (LQR) costs. For these, researchers demonstrated that global optima can be computed for small values of the homotopy parameter. Conditions for local optima along the homotopy path were also given. Details of two numerical examples employing the LQR control cost were given showing variations of the optimal design variables along the homotopy path. The results of the second example suggest that introducing a second homotopy parameter relating the two parts of the control index in the LQG/LQR formulation might serve to enlarge the family of Pareto optima, but its effect on modifying the optimal structural shapes may be analogous to the original parameter lambda.

  8. Health Safety of Soft Drinks: Contents, Containers, and Microorganisms

    PubMed Central

    2015-01-01

    Soft drinks consumption is still a controversial issue for public health and public policy. Over the years, numerous studies have been conducted into the possible links between soft drink intake and medical problems, the results of which, however, remain highly contested. Nevertheless, as a result, increasing emphasis is being placed on the health properties of soft drinks, by both the industry and the consumers, for example, in the expanding area of functional drinks. Extensive legislation has been put in place to ensure that soft drinks manufacturers conform to established national and international standards. Consumers trust that the soft drinks they buy are safe and their quality is guaranteed. They also expect to be provided with information that can help them to make informed decisions about the purchase of products and that the information on product labels is not false or misleading. This paper provides a broad overview of available scientific knowledge and cites numerous studies on various aspects of soft drinks and their implications for health safety. Particular attention is given to ingredients, including artificial flavorings, colorings, and preservatives and to the lesser known risks of microbiological and chemical contamination during processing and storage. PMID:25695045

  9. Generalized correlation integral vectors: A distance concept for chaotic dynamical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haario, Heikki, E-mail: heikki.haario@lut.fi; Kalachev, Leonid, E-mail: KalachevL@mso.umt.edu; Hakkarainen, Janne

    2015-06-15

    Several concepts of fractal dimension have been developed to characterise properties of attractors of chaotic dynamical systems. Numerical approximations of them must be calculated by finite samples of simulated trajectories. In principle, the quantities should not depend on the choice of the trajectory, as long as it provides properly distributed samples of the underlying attractor. In practice, however, the trajectories are sensitive with respect to varying initial values, small changes of the model parameters, to the choice of a solver, numeric tolerances, etc. The purpose of this paper is to present a statistically sound approach to quantify this variability. Wemore » modify the concept of correlation integral to produce a vector that summarises the variability at all selected scales. The distribution of this stochastic vector can be estimated, and it provides a statistical distance concept between trajectories. Here, we demonstrate the use of the distance for the purpose of estimating model parameters of a chaotic dynamic model. The methodology is illustrated using computational examples for the Lorenz 63 and Lorenz 95 systems, together with a framework for Markov chain Monte Carlo sampling to produce posterior distributions of model parameters.« less

  10. Non-linear eigensolver-based alternative to traditional SCF methods

    NASA Astrophysics Data System (ADS)

    Gavin, Brendan; Polizzi, Eric

    2013-03-01

    The self-consistent iterative procedure in Density Functional Theory calculations is revisited using a new, highly efficient and robust algorithm for solving the non-linear eigenvector problem (i.e. H(X)X = EX;) of the Kohn-Sham equations. This new scheme is derived from a generalization of the FEAST eigenvalue algorithm, and provides a fundamental and practical numerical solution for addressing the non-linearity of the Hamiltonian with the occupied eigenvectors. In contrast to SCF techniques, the traditional outer iterations are replaced by subspace iterations that are intrinsic to the FEAST algorithm, while the non-linearity is handled at the level of a projected reduced system which is orders of magnitude smaller than the original one. Using a series of numerical examples, it will be shown that our approach can outperform the traditional SCF mixing techniques such as Pulay-DIIS by providing a high converge rate and by converging to the correct solution regardless of the choice of the initial guess. We also discuss a practical implementation of the technique that can be achieved effectively using the FEAST solver package. This research is supported by NSF under Grant #ECCS-0846457 and Intel Corporation.

  11. 'Fish matters': the relevance of fish skin biology to investigative dermatology.

    PubMed

    Rakers, Sebastian; Gebert, Marina; Uppalapati, Sai; Meyer, Wilfried; Maderson, Paul; Sell, Anne F; Kruse, Charli; Paus, Ralf

    2010-04-01

    Fish skin is a multi-purpose tissue that serves numerous vital functions including chemical and physical protection, sensory activity, behavioural purposes or hormone metabolism. Further, it is an important first-line defense system against pathogens, as fish are continuously exposed to multiple microbial challenges in their aquatic habitat. Fish skin excels in highly developed antimicrobial features, many of which have been preserved throughout evolution, and infection defense principles employed by piscine skin are still operative in human skin. This review argues that it is both rewarding and important for investigative dermatologists to revive their interest in fish skin biology, as it provides insights into numerous fundamental issues that are of major relevance to mammalian skin. The basic molecular insights provided by zebrafish in vivo-genomics for genetic, regeneration and melanoma research, the complex antimicrobial defense systems of fish skin and the molecular controls of melanocyte stem cells are just some of the fascinating examples that illustrate the multiple potential uses of fish skin models in investigative dermatology. We synthesize the essentials of fish skin biology and highlight selected aspects that are of particular comparative interest to basic and clinically applied human skin research.

  12. Health safety of soft drinks: contents, containers, and microorganisms.

    PubMed

    Kregiel, Dorota

    2015-01-01

    Soft drinks consumption is still a controversial issue for public health and public policy. Over the years, numerous studies have been conducted into the possible links between soft drink intake and medical problems, the results of which, however, remain highly contested. Nevertheless, as a result, increasing emphasis is being placed on the health properties of soft drinks, by both the industry and the consumers, for example, in the expanding area of functional drinks. Extensive legislation has been put in place to ensure that soft drinks manufacturers conform to established national and international standards. Consumers trust that the soft drinks they buy are safe and their quality is guaranteed. They also expect to be provided with information that can help them to make informed decisions about the purchase of products and that the information on product labels is not false or misleading. This paper provides a broad overview of available scientific knowledge and cites numerous studies on various aspects of soft drinks and their implications for health safety. Particular attention is given to ingredients, including artificial flavorings, colorings, and preservatives and to the lesser known risks of microbiological and chemical contamination during processing and storage.

  13. Making the Most of Audio. Technology in Language Learning Series.

    ERIC Educational Resources Information Center

    Barley, Anthony

    Prepared for practicing language teachers, this book's aim is to help them make the most of audio, a readily accessible resource. The book shows, with the help of numerous practical examples, how a range of language skills can be developed. Most examples are in French. Chapters cover the following information: (1) making the most of audio (e.g.,…

  14. On the Trajectories of the Predetermined ALT Model: What Are We Really Modeling?

    ERIC Educational Resources Information Center

    Jongerling, Joran; Hamaker, Ellen L.

    2011-01-01

    This article shows that the mean and covariance structure of the predetermined autoregressive latent trajectory (ALT) model are very flexible. As a result, the shape of the modeled growth curve can be quite different from what one might expect at first glance. This is illustrated with several numerical examples that show that, for example, a…

  15. Optimization-based decision support to assist in logistics planning for hospital evacuations.

    PubMed

    Glick, Roger; Bish, Douglas R; Agca, Esra

    2013-01-01

    The evacuation of the hospital is a very complex process and evacuation planning is an important part of a hospital's emergency management plan. There are numerous factors that affect the evacuation plan including the nature of threat, availability of resources and staff the characteristics of the evacuee population, and risk to patients and staff. The safety and health of patients is of fundamental importance, but safely moving patients to alternative care facilities while under threat is a very challenging task. This article describes the logistical issues and complexities involved in planning and execution of hospital evacuations. Furthermore, this article provides examples of how optimization-based decision support tools can help evacuation planners to better plan for complex evacuations by providing real-world solutions to various evacuation scenarios.

  16. FPCAS3D User's guide: A three dimensional full potential aeroelastic program, version 1

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.

    1995-01-01

    The FPCAS3D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady three-dimensional full potential equation which is solved for a blade row. The structural analysis is based on a finite-element model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS3D code. A complete description of the input data is provided in this report. In addition, six examples, including inputs and outputs, are provided.

  17. Further Results on Sufficient LMI Conditions for H∞ Static Output Feedback Control of Discrete-Time Systems

    NASA Astrophysics Data System (ADS)

    Feng, Zhi-Yong; Xu, Li; Matsushita, Shin-Ya; Wu, Min

    Further results on sufficient LMI conditions for H∞ static output feedback (SOF) control of discrete-time systems are presented in this paper, which provide some new insights into this issue. First, by introducing a slack variable with block-triangular structure and choosing the coordinate transformation matrix properly, the conservativeness of one kind of existing sufficient LMI condition is further reduced. Then, by introducing a slack variable with linear matrix equality constraint, another kind of sufficient LMI condition is proposed. Furthermore, the relation of these two kinds of LMI conditions are revealed for the first time through analyzing the effect of different choices of coordinate transformation matrices. Finally, a numerical example is provided to demonstrate the effectiveness and merits of the proposed methods.

  18. Multiplexing 200 spatial modes with a single hologram

    NASA Astrophysics Data System (ADS)

    Rosales-Guzmán, Carmelo; Bhebhe, Nkosiphile; Mahonisi, Nyiku; Forbes, Andrew

    2017-11-01

    The on-demand tailoring of light's spatial shape is of great relevance in a wide variety of research areas. Computer-controlled devices, such as spatial light modulators (SLMs) or digital micromirror devices, offer a very accurate, flexible and fast holographic means to this end. Remarkably, digital holography affords the simultaneous generation of multiple beams (multiplexing), a tool with numerous applications in many fields. Here, we provide a self-contained tutorial on light beam multiplexing. Through the use of several examples, the readers will be guided step by step in the process of light beam shaping and multiplexing. Additionally, we provide a quantitative analysis on the multiplexing capabilities of SLMs to assess the maximum number of beams that can be multiplexed on a single SLM, showing approximately 200 modes on a single hologram.

  19. Computerized Design of Low-noise Face-milled Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Zhang, YI; Handschuh, Robert F.

    1994-01-01

    An advanced design methodology is proposed for the face-milled spiral bevel gears with modified tooth surface geometry that provides a reduced level of noise and has a stabilized bearing contact. The approach is based on the local synthesis of the gear drive that provides the 'best' machine-tool settings. The theoretical aspects of the local synthesis approach are based on the application of a predesigned parabolic function for absorption of undesirable transmission errors caused by misalignment and the direct relations between principal curvatures and directions for mating surfaces. The meshing and contact of the gear drive is synthesized and analyzed by a computer program. The generation of gears with the proposed geometry design can be accomplished by application of existing equipment. A numerical example that illustrates the proposed theory is presented.

  20. LiveView3D: Real Time Data Visualization for the Aerospace Testing Environment

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; Fleming, Gary A.

    2006-01-01

    This paper addresses LiveView3D, a software package and associated data visualization system for use in the aerospace testing environment. The LiveView3D system allows researchers to graphically view data from numerous wind tunnel instruments in real time in an interactive virtual environment. The graphical nature of the LiveView3D display provides researchers with an intuitive view of the measurement data, making it easier to interpret the aerodynamic phenomenon under investigation. LiveView3D has been developed at the NASA Langley Research Center and has been applied in the Langley Unitary Plan Wind Tunnel (UPWT). This paper discusses the capabilities of the LiveView3D system, provides example results from its application in the UPWT, and outlines features planned for future implementation.

Top