REMOTE SENSING TECHNOLOGIES APPLICATIONS RESEARCH
Remote sensing technologies applications research supports the ORD Landscape Sciences Program (LSP) in two separate areas: operational remote sensing, and remote sensing research and development. Operational remote sensing is provided to the LSP through the use of current and t...
Commercial future: making remote sensing a media event
NASA Astrophysics Data System (ADS)
Lurie, Ian
1999-12-01
The rapid growth of commercial remote sensing has made high quality digital sensing data widely available -- now, remote sensing must become and remain a strong, commercially viable industry. However, this new industry cannot survive without an educated consumer base. To access markets, remote sensing providers must make their product more accessible, both literally and figuratively: Potential customers must be able to find the data they require, when they require it, and they must understand the utility of the information available to them. The Internet and the World Wide Web offer the perfect medium to educate potential customers and to sell remote sensing data to those customers. A well-designed web presence can provide both an information center and a market place for companies offering their data for sale. A very high potential web-based market for remote sensing lies in media. News agencies, web sites, and a host of other visual media services can use remote sensing data to provide current, relevant information regarding news around the world. This paper will provide a model for promotion and sale of remote sensing data via the Internet.
Unmanned aerial vehicle: A unique platform for low-altitude remote sensing for crop management
USDA-ARS?s Scientific Manuscript database
Unmanned aerial vehicles (UAV) provide a unique platform for remote sensing to monitor crop fields that complements remote sensing from satellite, aircraft and ground-based platforms. The UAV-based remote sensing is versatile at ultra-low altitude to be able to provide an ultra-high-resolution imag...
Remote sensing of vegetation fires and its contribution to a fire management information system
Stephane P. Flasse; Simon N. Trigg; Pietro N. Ceccato; Anita H. Perryman; Andrew T. Hudak; Mark W. Thompson; Bruce H. Brockett; Moussa Drame; Tim Ntabeni; Philip E. Frost; Tobias Landmann; Johan L. le Roux
2004-01-01
In the last decade, research has proven that remote sensing can provide very useful support to fire managers. This chapter provides an overview of the types of information remote sensing can provide to the fire community. First, it considers fire management information needs in the context of a fire management information system. An introduction to remote sensing then...
Commerical Remote Sensing Data Contract
,
2005-01-01
The U. S. Geological Survey's (USGS) Commercial Remote Sensing Data Contracts (CRSDCs) provide government agencies with access to a broad range of commercially available remotely sensed airborne and satellite data. These contracts were established to support The National Map partners, other Federal Civilian agency programs, and Department of Defense programs that require data for the United States and its territories. Experience shows that centralized procurement of remotely sensed data leads to considerable cost savings to the Federal government through volume discounts, reduction of redundant contract administrative costs, and avoidance of duplicate purchases. These contracts directly support the President's Commercial Remote Sensing Space Policy, signed in 2003, by providing a centralized mechanism for civil agencies to acquire commercial remote sensing products to support their mission needs in an efficient and coordinated way. CRSDC administration is provided by the USGS Mid-Continent Mapping Center in Rolla, Missouri.
Reflections on Earth--Remote-Sensing Research from Your Classroom.
ERIC Educational Resources Information Center
Campbell, Bruce A.
2001-01-01
Points out the uses of remote sensing in different areas, and introduces the program "Reflections on Earth" which provides access to basic and instructional information on remote sensing to students and teachers. Introduces students to concepts related to remote sensing and measuring distances. (YDS)
System and method for evaluating wind flow fields using remote sensing devices
Schroeder, John; Hirth, Brian; Guynes, Jerry
2016-12-13
The present invention provides a system and method for obtaining data to determine one or more characteristics of a wind field using a first remote sensing device and a second remote sensing device. Coordinated data is collected from the first and second remote sensing devices and analyzed to determine the one or more characteristics of the wind field. The first remote sensing device is positioned to have a portion of the wind field within a first scanning sector of the first remote sensing device. The second remote sensing device is positioned to have the portion of the wind field disposed within a second scanning sector of the second remote sensing device.
An introduction to quantitative remote sensing. [data processing
NASA Technical Reports Server (NTRS)
Lindenlaub, J. C.; Russell, J.
1974-01-01
The quantitative approach to remote sensing is discussed along with the analysis of remote sensing data. Emphasis is placed on the application of pattern recognition in numerically oriented remote sensing systems. A common background and orientation for users of the LARS computer software system is provided.
Remote sensing as a source of data for outdoor recreation planning
NASA Technical Reports Server (NTRS)
Reed, W. E.; Goodell, H. G.; Emmitt, G. D.
1972-01-01
Specific data needs for outdoor recreation planning and the ability of tested remote sensors to provide sources for these data are examined. Data needs, remote sensor capabilities, availability of imagery, and advantages and problems of incorporating remote sensing data sources into ongoing planning data collection programs are discussed in detail. Examples of the use of imagery to derive data for a range of common planning analyses are provided. A selected bibliography indicates specific uses of data in planning, basic background materials on remote sensing technology, and sources of information on environmental information systems expected to use remote sensing to provide new environmental data of use in outdoor recreation planning.
Online catalog access and distribution of remotely sensed information
NASA Astrophysics Data System (ADS)
Lutton, Stephen M.
1997-09-01
Remote sensing is providing voluminous data and value added information products. Electronic sensors, communication electronics, computer software, hardware, and network communications technology have matured to the point where a distributed infrastructure for remotely sensed information is a reality. The amount of remotely sensed data and information is making distributed infrastructure almost a necessity. This infrastructure provides data collection, archiving, cataloging, browsing, processing, and viewing for applications from scientific research to economic, legal, and national security decision making. The remote sensing field is entering a new exciting stage of commercial growth and expansion into the mainstream of government and business decision making. This paper overviews this new distributed infrastructure and then focuses on describing a software system for on-line catalog access and distribution of remotely sensed information.
Application of remote sensing to water resources problems
NASA Technical Reports Server (NTRS)
Clapp, J. L.
1972-01-01
The following conclusions were reached concerning the applications of remote sensing to water resources problems: (1) Remote sensing methods provide the most practical method of obtaining data for many water resources problems; (2) the multi-disciplinary approach is essential to the effective application of remote sensing to water resource problems; (3) there is a correlation between the amount of suspended solids in an effluent discharged into a water body and reflected energy; (4) remote sensing provides for more effective and accurate monitoring, discovery and characterization of the mixing zone of effluent discharged into a receiving water body; and (5) it is possible to differentiate between blue and blue-green algae.
Research on remote sensing image pixel attribute data acquisition method in AutoCAD
NASA Astrophysics Data System (ADS)
Liu, Xiaoyang; Sun, Guangtong; Liu, Jun; Liu, Hui
2013-07-01
The remote sensing image has been widely used in AutoCAD, but AutoCAD lack of the function of remote sensing image processing. In the paper, ObjectARX was used for the secondary development tool, combined with the Image Engine SDK to realize remote sensing image pixel attribute data acquisition in AutoCAD, which provides critical technical support for AutoCAD environment remote sensing image processing algorithms.
NASA Technical Reports Server (NTRS)
Miller, L. D.; Tom, C.; Nualchawee, K.
1977-01-01
A tropical forest area of Northern Thailand provided a test case of the application of the approach in more natural surroundings. Remote sensing imagery subjected to proper computer analysis has been shown to be a very useful means of collecting spatial data for the science of hydrology. Remote sensing products provide direct input to hydrologic models and practical data bases for planning large and small-scale hydrologic developments. Combining the available remote sensing imagery together with available map information in the landscape model provides a basis for substantial improvements in these applications.
Microwave remote sensing of snowpack properties
NASA Technical Reports Server (NTRS)
Rango, A. (Editor)
1980-01-01
Topic concerning remote sensing capabilities for providing reliable snow cover data and measurement of snow water equivalents are discussed. Specific remote sensing technqiues discussed include those in the microwave region of the electromagnetic spectrum.
Remote Sensing: Analyzing Satellite Images to Create Higher Order Thinking Skills.
ERIC Educational Resources Information Center
Marks, Steven K.; And Others
1996-01-01
Presents a unit that uses remote-sensing images from satellites and other spacecraft to provide new perspectives of the earth and generate greater global awareness. Relates the levels of Bloom's hierarchy to different aspects of the remote sensing unit to confirm that the concepts and principles of remote sensing and related images belong in…
Annotated bibliography of remote sensing methods for monitoring desertification
Walker, A.S.; Robinove, Charles J.
1981-01-01
Remote sensing techniques are valuable for locating, assessing, and monitoring desertification. Remotely sensed data provide a permanent record of the condition of the land in a format that allows changes in land features and condition to be measured. The annotated bibliography of 118 items discusses remote sensing methods that may be applied to desertification studies.
Remote Sensing as a Demonstration of Applied Physics.
ERIC Educational Resources Information Center
Colwell, Robert N.
1980-01-01
Provides information about the field of remote sensing, including discussions of geo-synchronous and sun-synchronous remote-sensing platforms, the actual physical processes and equipment involved in sensing, the analysis of images by humans and machines, and inexpensive, small scale methods, including aerial photography. (CS)
SUPERFUND REMOTE SENSING SUPPORT
This task provides remote sensing technical support to the Superfund program. Support includes the collection, processing, and analysis of remote sensing data to characterize hazardous waste disposal sites and their history. Image analysis reports, aerial photographs, and assoc...
Method of determining forest production from remotely sensed forest parameters
Corey, J.C.; Mackey, H.E. Jr.
1987-08-31
A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.
Remote Sensing: A Film Review.
ERIC Educational Resources Information Center
Carter, David J.
1986-01-01
Reviews the content of 19 films on remote sensing published between 1973 and 1980. Concludes that they are overly simplistic, notably outdated, and generally too optimistic about the potential of remote sensing from space for resource exploration and environmental problem-solving. Provides names and addresses of more current remote sensing…
Offshore Wind Resource Characterization | Wind | NREL
identify critical data needed. Remote Sensing and Modeling Photo of the SeaZephIR Prototype at sea. 2009 techniques such as remote sensing and modeling to provide data on design conditions. Research includes comparing the data provided by remote sensing devices and models to data collected by traditional methods
A study of remote sensing as applied to regional and small watersheds. Volume 1: Summary report
NASA Technical Reports Server (NTRS)
Ambaruch, R.
1974-01-01
The accuracy of remotely sensed measurements to provide inputs to hydrologic models of watersheds is studied. A series of sensitivity analyses on continuous simulation models of three watersheds determined: (1)Optimal values and permissible tolerances of inputs to achieve accurate simulation of streamflow from the watersheds; (2) Which model inputs can be quantified from remote sensing, directly, indirectly or by inference; and (3) How accurate remotely sensed measurements (from spacecraft or aircraft) must be to provide a basis for quantifying model inputs within permissible tolerances.
Cybernetic Basis and System Practice of Remote Sensing and Spatial Information Science
NASA Astrophysics Data System (ADS)
Tan, X.; Jing, X.; Chen, R.; Ming, Z.; He, L.; Sun, Y.; Sun, X.; Yan, L.
2017-09-01
Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.
NASA Astrophysics Data System (ADS)
Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang
2017-08-01
According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.
NASA Technical Reports Server (NTRS)
Maxwell, E. L.
1980-01-01
The need for degree programs in remote sensing is considered. Any education program which claims to train remote sensing specialists must include expertise in the physical principles upon which remote sensing is based. These principles dictate the limits of engineering and design, computer analysis, photogrammetry, and photointerpretation. Faculty members must be hired to provide emphasis in those five areas.
Exploring Remote Rensing Through The Use Of Readily-Available Classroom Technologies
NASA Astrophysics Data System (ADS)
Rogers, M. A.
2013-12-01
Frontier geoscience research using remotely-sensed satellite observation routinely requires sophisticated and novel remote sensing techniques to succeed. Describing these techniques in an educational format presents significant challenges to the science educator, especially with regards to the professional development setting where a small, but competent audience has limited instructor contact time to develop the necessary understanding. In this presentation, we describe the use of simple and cheaply available technologies, including ultrasonic transducers, FLIR detectors, and even simple web cameras to provide a tangible analogue to sophisticated remote sensing platforms. We also describe methods of curriculum development that leverages the use of these simple devices to teach the fundamentals of remote sensing, resulting in a deeper and more intuitive understanding of the techniques used in modern remote sensing research. Sample workshop itineraries using these techniques are provided as well.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Committees prior to any release outside the Department. (6) Related to remote sensing. (i) Provide technical... satellite remote sensing activities to assure full consideration and evaluation of advanced technology. (ii) Coordinate administrative, management, and budget information relating to the Department's remote sensing...
Ten ways remote sensing can contribute to conservation
Rose, Robert A.; Byler, Dirck; Eastman, J. Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A.; Laporte, Nadine; Leidner, Allison K.; Leimgruber, Peter; Morisette, Jeffrey T.; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C.; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara
2014-01-01
In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions?
Ten ways remote sensing can contribute to conservation.
Rose, Robert A; Byler, Dirck; Eastman, J Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A; Laporte, Nadine; Leidner, Allison; Leimgruber, Peter; Morisette, Jeffrey; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara
2015-04-01
In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions? © 2014 Society for Conservation Biology.
Remote sensing and eLearning 2.0 for school education
NASA Astrophysics Data System (ADS)
Voss, Kerstin; Goetzke, Roland; Hodam, Henryk
2010-10-01
The "Remote Sensing in Schools" project aims at improving the integration of "Satellite remote sensing" into school teaching. Therefore, it is the project's overall objective to teach students in primary and secondary schools the basics and fields of application of remote sensing. Existing results show that many teachers are interested in remote sensing and at same time motivated to integrate it into their teaching. Despite the good intention, in the end, the implementation often fails due to the complexity and poor set-up of the information provided. Therefore, a comprehensive and well-structured learning platform on the topic of remote sensing is developed. The platform shall allow a structured introduction to the topic.
The application of remote sensing techniques to inter and intra urban analysis
NASA Technical Reports Server (NTRS)
Horton, F. E.
1972-01-01
This is an effort to assess the applicability of air and spaceborne photography toward providing data inputs to urban and regional planning, management, and research. Through evaluation of remote sensing inputs to urban change detection systems, analyzing an effort to replicate an existing urban land use data file using remotely sensed data, estimating population and dwelling units from imagery, and by identifying and evaluating a system of urban places ultilizing space photography, it was determined that remote sensing can provide data concerning land use, changes in commercial structure, data for transportation planning, housing quality, residential dynamics, and population density.
REMOTE SENSING IN OCEANOGRAPHY.
remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and
Commercial use of remote sensing in agriculture: a case study
NASA Astrophysics Data System (ADS)
Gnauck, Gary E.
1999-12-01
Over 25 years of research have clearly shown that an analysis of remote sensing imagery can provide information on agricultural crops. Most of this research has been funded by and directed toward the needs of government agencies. Commercial use of agricultural remote sensing has been limited to very small-scale operations supplying remote sensing services to a few selected customers. Datron/Transco Inc. undertook an internally funded remote sensing program directed toward the California cash crop industry (strawberries, lettuce, tomatoes, other fresh vegetables and cotton). The objectives of this program were twofold: (1) to assess the need and readiness of agricultural land managers to adopt remote sensing as a management tool, and (2) determine what technical barriers exist to large-scale implementation of this technology on a commercial basis. The program was divided into three phases: Planning, Engineering Test and Evaluation, and Commercial Operations. Findings: Remote sensing technology can deliver high resolution multispectral imagery with rapid turnaround, that can provide information on crop stress insects, disease and various soil parameters. The limiting factors to the use of remote sensing in agriculture are a lack of familiarization by the land managers, difficulty in translating 'information' into increased revenue or reduced cost for the land manager, and the large economies of scale needed to make the venture commercially viable.
Analysis of Coastal Dunes: A Remote Sensing and Statistical Approach.
ERIC Educational Resources Information Center
Jones, J. Richard
1985-01-01
Remote sensing analysis and statistical methods were used to analyze the coastal dunes of Plum Island, Massachusetts. The research methodology used provides an example of a student project for remote sensing, geomorphology, or spatial analysis courses at the university level. (RM)
DARLA: Data Assimilation and Remote Sensing for Littoral Applications
NASA Astrophysics Data System (ADS)
Jessup, A.; Holman, R. A.; Chickadel, C.; Elgar, S.; Farquharson, G.; Haller, M. C.; Kurapov, A. L.; Özkan-Haller, H. T.; Raubenheimer, B.; Thomson, J. M.
2012-12-01
DARLA is 5-year collaborative project that couples state-of-the-art remote sensing and in situ measurements with advanced data assimilation (DA) modeling to (a) evaluate and improve remote sensing retrieval algorithms for environmental parameters, (b) determine the extent to which remote sensing data can be used in place of in situ data in models, and (c) infer bathymetry for littoral environments by combining remotely-sensed parameters and data assimilation models. The project uses microwave, electro-optical, and infrared techniques to characterize the littoral ocean with a focus on wave and current parameters required for DA modeling. In conjunction with the RIVET (River and Inlets) Project, extensive in situ measurements provide ground truth for both the remote sensing retrieval algorithms and the DA modeling. Our goal is to use remote sensing to constrain data assimilation models of wave and circulation dynamics in a tidal inlet and surrounding beaches. We seek to improve environmental parameter estimation via remote sensing fusion, determine the success of using remote sensing data to drive DA models, and produce a dynamically consistent representation of the wave, circulation, and bathymetry fields in complex environments. The objectives are to test the following three hypotheses: 1. Environmental parameter estimation using remote sensing techniques can be significantly improved by fusion of multiple sensor products. 2. Data assimilation models can be adequately constrained (i.e., forced or guided) with environmental parameters derived from remote sensing measurements. 3. Bathymetry on open beaches, river mouths, and at tidal inlets can be inferred from a combination of remotely-sensed parameters and data assimilation models. Our approach is to conduct a series of field experiments combining remote sensing and in situ measurements to investigate signature physics and to gather data for developing and testing DA models. A preliminary experiment conducted at the Field Research Facility at Duck, NC in September 2010 focused on assimilation of tower-based electo-optical, infrared, and radar measurements in predictions of longshore currents. Here we provide an overview of our contribution to the RIVET I experiment at New River Inlet, NC in May 2012. During the course of the 3-week measurement period, continuous tower-based remote sensing measurements were made using electro-optical, infrared, and radar techniques covering the nearshore zone and the inlet mouth. A total of 50 hours of airborne measurements were made using high-resolution infrared imagers and a customized along track interferometric synthetic aperture radar (ATI SAR). The airborne IR imagery provides kilometer-scale mapping of frontal features that evolve as the inlet flow interacts with the oceanic wave and current fields. The ATI SAR provides maps of the two-dimensional surface currents. Near-surface measurements of turbulent velocities and surface waves using SWIFT drifters, designed to measures near-surface properties relevant to remote sensing, complimented the extensive in situ measurements by RIVET investigators.
The U.S. Geological Survey Land Remote Sensing Program
,
2003-01-01
In 2002, the U. S. Geological Survey (USGS) launched a program to enhance the acquisition, preservation, and use of remotely sensed data for USGS science programs, as well as for those of cooperators and customers. Remotely sensed data are fundamental tools for studying the Earth's land surface, including coastal and near-shore environments. For many decades, the USGS has been a leader in providing remotely sensed data to the national and international communities. Acting on its historical topographic mapping mission, the USGS has archived and distributed aerial photographs of the United States for more than half a century. Since 1972, the USGS has acquired, processed, archived, and distributed Landsat and other satellite and airborne remotely sensed data products to users worldwide. Today, the USGS operates and manages the Landsats 5 and 7 missions and cooperates with the National Aeronautics and Space Administration (NASA) to define and implement future satellite missions that will continue and expand the collection of moderate-resolution remotely sensed data. In addition to being a provider of remotely sensed data, the USGS is a user of these data and related remote sensing technology. These data are used in natural resource evaluations for energy and minerals, coastal environmental surveys, assessments of natural hazards (earthquakes, volcanoes, and landslides), biological surveys and investigations, water resources status and trends analyses and studies, and geographic and cartographic applications, such as wildfire detection and tracking and as a source of information for The National Map. The program furthers these distinct but related roles by leading the USGS activities in providing remotely sensed data while advancing applications of such data for USGS programs and a wider user community.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.
1998-01-01
Thermal Infrared (TIR) remote sensing data can provide important measurements of surface energy fluxes and temperatures, which are integral to understanding landscape processes and responses. One example of this is the successful application of TIR remote sensing data to estimate evapotranspiration and soil moisture, where results from a number of studies suggest that satellite-based measurements from TIR remote sensing data can lead to more accurate regional-scale estimates of daily evapotranspiration. With further refinement in analytical techniques and models, the use of TIR data from airborne and satellite sensors could be very useful for parameterizing surface moisture conditions and developing better simulations of landscape energy exchange over a variety of conditions and space and time scales. Thus, TIR remote sensing data can significantly contribute to the observation, measurement, and analysis of energy balance characteristics (i.e., the fluxes and redistribution of thermal energy within and across the land surface) as an implicit and important aspect of landscape dynamics and landscape functioning. The application of TIR remote sensing data in landscape ecological studies has been limited, however, for several fundamental reasons that relate primarily to the perceived difficulty in use and availability of these data by the landscape ecology community, and from the fragmentation of references on TIR remote sensing throughout the scientific literature. It is our purpose here to provide evidence from work that has employed TIR remote sensing for analysis of landscape characteristics to illustrate how these data can provide important data for the improved measurement of landscape energy response and energy flux relationships. We examine the direct or indirect use of TIR remote sensing data to analyze landscape biophysical characteristics, thereby offering some insight on how these data can be used more robustly to further the understanding and modeling of landscape ecological processes.
The University of Kansas Applied Sensing Program: An operational perspective
NASA Technical Reports Server (NTRS)
Martinko, E. A.
1981-01-01
The Kansas applied remote sensing (KARS) program conducts demonstration projects and applied research on remote sensing techniques which enable local, regional, state and federal agency personnel to better utilize available satellite and airborne remote sensing systems. As liason with Kansas agencies for the Earth Resources Laboratory (ERL), Kansas demonstration project, KARS coordinated interagency communication, field data collection, hands-on training, and follow-on technical assistance and worked with Kansas agency personnel in evaluating land cover maps provided by ERL. Short courses are being conducted to provide training in state-of-the-art remote sensing technology for university faculty, state personnel, and persons from private industry and federal government. Topics are listed which were considered in intensive five-day courses covering the acquisition, interpretation, and application of information derived through remote sensing with specific training and hands-on experience in image interpretation and the analysis of LANDSAT data are listed.
People, Places and Pixels: Remote Sensing in the Service of Society
NASA Technical Reports Server (NTRS)
Lulla, Kamlesh
2003-01-01
What is the role of Earth remote sensing and other geospatial technologies in our society? Recent global events have brought into focus the role of geospatial science and technology such as remote sensing, GIS, GPS in assisting the professionals who are responsible for operations such as rescue and recovery of sites after a disaster or a terrorist act. This paper reviews the use of recent remote sensing products from satellites such as IKONOS in these efforts. Aerial and satellite imagery used in land mine detection has been evaluated and the results of this evaluation will be discussed. Synopsis of current and future ISS Earth Remote Sensing capabilities will be provided. The role of future missions in humanitarian use of remote sensing will be explored.
First results of ground-based LWIR hyperspectral imaging remote gas detection
NASA Astrophysics Data System (ADS)
Zheng, Wei-jian; Lei, Zheng-gang; Yu, Chun-chao; Wang, Hai-yang; Fu, Yan-peng; Liao, Ning-fang; Su, Jun-hong
2014-11-01
The new progress of ground-based long-wave infrared remote sensing is presented. The LWIR hyperspectral imaging by using the windowing spatial and temporal modulation Fourier spectroscopy, and the results of outdoor ether gas detection, verify the features of LWIR hyperspectral imaging remote sensing and technical approach. It provides a new technical means for ground-based gas remote sensing.
Research on assessment and improvement method of remote sensing image reconstruction
NASA Astrophysics Data System (ADS)
Sun, Li; Hua, Nian; Yu, Yanbo; Zhao, Zhanping
2018-01-01
Remote sensing image quality assessment and improvement is an important part of image processing. Generally, the use of compressive sampling theory in remote sensing imaging system can compress images while sampling which can improve efficiency. A method of two-dimensional principal component analysis (2DPCA) is proposed to reconstruct the remote sensing image to improve the quality of the compressed image in this paper, which contain the useful information of image and can restrain the noise. Then, remote sensing image quality influence factors are analyzed, and the evaluation parameters for quantitative evaluation are introduced. On this basis, the quality of the reconstructed images is evaluated and the different factors influence on the reconstruction is analyzed, providing meaningful referential data for enhancing the quality of remote sensing images. The experiment results show that evaluation results fit human visual feature, and the method proposed have good application value in the field of remote sensing image processing.
[A review on polarization information in the remote sensing detection].
Gong, Jie-Qiong; Zhan, Hai-Gang; Liu, Da-Zhao
2010-04-01
Polarization is one of the inherent characteristics. Because the surface of the target structure, internal structure, and the angle of incident light are different, the earth's surface and any target in atmosphere under optical interaction process will have their own characteristic nature of polarization. Polarimetric characteristics of radiation energy from the targets are used in polarization remote sensing detection as detective information. Polarization remote sensing detection can get the seven-dimensional information of targets in complicated backgrounds, detect well-resolved outline of targets and low-reflectance region of objectives, and resolve the problems of atmospheric detection and identification camouflage detection which the traditional remote sensing detection can not solve, having good foreground in applications. This paper introduces the development of polarization information in the remote sensing detection from the following four aspects. The rationale of polarization remote sensing detection is the base of polarization remote sensing detection, so it is firstly introduced. Secondly, the present researches on equipments that are used in polarization remote sensing detection are particularly and completely expatiated. Thirdly, the present exploration of theoretical simulation of polarization remote sensing detection is well detailed. Finally, the authors present the applications research home and abroad of the polarization remote sensing detection technique in the fields of remote sensing, atmospheric sounding, sea surface and underwater detection, biology and medical diagnosis, astronomical observation and military, summing up the current problems in polarization remote sensing detection. The development trend of polarization remote sensing detection technology in the future is pointed out in order to provide a reference for similar studies.
Evapotranspiration estimates derived using multi-platform remote sensing in a semiarid region
USDA-ARS?s Scientific Manuscript database
Evapotranspiration (ET) is a key component of the water balance, especially in arid and semiarid regions. The current study takes advantage of spatially-distributed, near real-time information provided by satellite remote sensing to develop a regional scale ET product derived from remotely-sensed ob...
Code of Federal Regulations, 2010 CFR
2010-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.9 License term. (a) Each license for... licensee to: (1) Provide data to the National Satellite Land Remote Sensing Data Archive for the basic data set; (2) Make data available to the National Satellite Land Remote Sensing Data Archive that the...
Interactive Online Tools for Enhancing Student Learning Experiences in Remote Sensing
ERIC Educational Resources Information Center
Joyce, Karen E.; Boitshwarelo, Bopelo; Phinn, Stuart R.; Hill, Greg J. E.; Kelly, Gail D.
2014-01-01
The rapid growth in Information and Communications Technologies usage in higher education has provided immense opportunities to foster effective student learning experiences in geography. In particular, remote sensing lends itself to the creative utilization of multimedia technologies. This paper presents a case study of a remote sensing computer…
Satellites, Remote Sensing, and Classroom Geography for Canadian Teachers.
ERIC Educational Resources Information Center
Kirman, Joseph M.
1998-01-01
Argues that remote sensing images are a powerful tool for teaching geography. Discusses the use of remote sensing images in the classroom and provides a number of sources for them, some free, many on the World Wide Web. Reviews each source's usefulness for different grade levels and geographic topics. (DSK)
Advanced Remote Sensing Research
Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna
2008-01-01
'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).
Physics teaching by infrared remote sensing of vegetation
NASA Astrophysics Data System (ADS)
Schüttler, Tobias; Maman, Shimrit; Girwidz, Raimund
2018-05-01
Context- and project-based teaching has proven to foster different affective and cognitive aspects of learning. As a versatile and multidisciplinary scientific research area with diverse applications for everyday life, satellite remote sensing is an interesting context for physics education. In this paper we give a brief overview of satellite remote sensing of vegetation and how to obtain your own, individual infrared remote sensing data with affordable converted digital cameras. This novel technique provides the opportunity to conduct individual remote sensing measurement projects with students in their respective environment. The data can be compared to real satellite data and is of sufficient accuracy for educational purposes.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.
2004-01-01
Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.
Crosscutting Airborne Remote Sensing Technologies for Oil and Gas and Earth Science Applications
NASA Technical Reports Server (NTRS)
Aubrey, A. D.; Frankenberg, C.; Green, R. O.; Eastwood, M. L.; Thompson, D. R.; Thorpe, A. K.
2015-01-01
Airborne imaging spectroscopy has evolved dramatically since the 1980s as a robust remote sensing technique used to generate 2-dimensional maps of surface properties over large spatial areas. Traditional applications for passive airborne imaging spectroscopy include interrogation of surface composition, such as mapping of vegetation diversity and surface geological composition. Two recent applications are particularly relevant to the needs of both the oil and gas as well as government sectors: quantification of surficial hydrocarbon thickness in aquatic environments and mapping atmospheric greenhouse gas components. These techniques provide valuable capabilities for petroleum seepage in addition to detection and quantification of fugitive emissions. New empirical data that provides insight into the source strength of anthropogenic methane will be reviewed, with particular emphasis on the evolving constraints enabled by new methane remote sensing techniques. Contemporary studies attribute high-strength point sources as significantly contributing to the national methane inventory and underscore the need for high performance remote sensing technologies that provide quantitative leak detection. Imaging sensors that map spatial distributions of methane anomalies provide effective techniques to detect, localize, and quantify fugitive leaks. Airborne remote sensing instruments provide the unique combination of high spatial resolution (<1 m) and large coverage required to directly attribute methane emissions to individual emission sources. This capability cannot currently be achieved using spaceborne sensors. In this study, results from recent NASA remote sensing field experiments focused on point-source leak detection, will be highlighted. This includes existing quantitative capabilities for oil and methane using state-of-the-art airborne remote sensing instruments. While these capabilities are of interest to NASA for assessment of environmental impact and global climate change, industry similarly seeks to detect and localize leaks of both oil and methane across operating fields. In some cases, higher sensitivities desired for upstream and downstream applications can only be provided by new airborne remote sensing instruments tailored specifically for a given application. There exists a unique opportunity for alignment of efforts between commercial and government sectors to advance the next generation of instruments to provide more sensitive leak detection capabilities, including those for quantitative source strength determination.
NASA Technical Reports Server (NTRS)
Philipson, W. R. (Principal Investigator)
1983-01-01
Built on Cornell's thirty years of experience in aerial photographic studies, the NASA-sponsored remote sensing program strengthened instruction and research in remote sensing, established communication links within and beyond the university community, and conducted research projects for or with town, county, state, federal, and private organizations in New York State. The 43 completed applied research projects are listed as well as 13 spinoff grants/contracts. The curriculum offered, consultations provided, and data processing facilities available are described. Publications engendered are listed including the thesis of graduates in the remote sensing program.
Remote Sensing For Water Resources And Hydrology. Recommended research emphasis for the 1980's
NASA Technical Reports Server (NTRS)
1980-01-01
The problems and the areas of activity that the Panel believes should be emphasized in work on remote sensing for water resources and hydrology in the 1980's are set forth. The Panel deals only with those activities and problems in water resources and hydrology that the Panel considers important, and where, in the Panel's opinion, application of current remote sensing capability or advancements in remote sensing capability can help meet urgent problems and provide large returns in practical benefits.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., climate, and related crop monitoring activities. (d) Remote sensing. (1) Provide technical assistance, coordination, and guidance to Department agencies in planning, developing, and carrying out satellite remote... administrative, management, and budget information relating to Department's remote sensing activities. ...
Using GPS Reflections for Satellite Remote Sensing
NASA Technical Reports Server (NTRS)
Mickler, David
2000-01-01
GPS signals that have reflected off of the ocean's surface have shown potential for use in oceanographic and atmospheric studies. The research described here investigates the possible deployment of a GPS reflection receiver onboard a remote sensing satellite in low Earth orbit (LEO). The coverage and resolution characteristics of this receiver are calculated and estimated. This mission analysis examines using reflected GPS signals for several remote sensing missions. These include measurement of the total electron content in the ionosphere, sea surface height, and ocean wind speed and direction. Also discussed is the potential test deployment of such a GPS receiver on the space shuttle. Constellations of satellites are proposed to provide adequate spatial and temporal resolution for the aforementioned remote sensing missions. These results provide a starting point for research into the feasibility of augmenting or replacing existing remote sensing satellites with spaceborne GPS reflection-detecting receivers.
The U.S. Geological Survey Land Remote Sensing Program
,
2007-01-01
The fundamental goals of the U.S. Geological Survey's Land Remote Sens-ing (LRS) Program are to provide the Federal Government and the public with a primary source of remotely sensed data and applications and to be a leader in defining the future of land remote sensing, nationally and internationally. Remotely sensed data provide information that enhance the understand-ing of ecosystems and the capabilities for predicting ecosystem change. The data promote an understanding of the role of the environment and wildlife in human health issues, the requirements for disaster response, the effects of climate variability, and the availability of energy and mineral resources. Also, as land satellite systems acquire global coverage, the program coordinates a network of international receiving stations and users of the data. It is the responsibility of the program to assure that data from land imaging satellites, airborne photography, radar, and other technologies are available to the national and global science communities.
Needs Assessment for the Use of NASA Remote Sensing Data for Regulatory Water Quality
NASA Technical Reports Server (NTRS)
Spiering, Bruce; Underwood, Lauren
2010-01-01
This slide presentation reviews the assessment of the needs that NASA can use for the remote sensing of water quality. The goal of this project is to provide information for decision-making activities (water quality standards) using remotely sensed/satellite based water quality data from MODIS and Landsat data.
Remote sensing procurement package: A technical guide for state and local governments
NASA Technical Reports Server (NTRS)
1981-01-01
The guide provides the tools and techniques for procuring remote sensing products and services. It is written for administrators, procurement officials and line agency staff who are directly involved in identifying information needs; defining remote sensing project requirements; soliciting and evaluating contract responses and negotiating, awarding, and administering contracts.
Natural Resource Information System. Remote Sensing Studies.
ERIC Educational Resources Information Center
Leachtenauer, J.; And Others
A major design objective of the Natural Resource Information System entailed the use of remote sensing data as an input to the system. Potential applications of remote sensing data were therefore reviewed and available imagery interpreted to provide input to a demonstration data base. A literature review was conducted to determine the types and…
Remote sensing of ecosystem health: opportunities, challenges, and future perspectives.
Li, Zhaoqin; Xu, Dandan; Guo, Xulin
2014-11-07
Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges.
Remote Sensing of Precipitation from Space
NASA Technical Reports Server (NTRS)
Stocker, Erich Franz
2010-01-01
This slide presentation reviews the use of remote sensing of precipitation from satellite observations. The purpose of the presentation is to introduce the three prime instrument types for measuring precipitation from space, give an overview of the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission, provides examples of how measurements from space can be used, and provides simple, high level scenarios for how remote sensed precipitation data can be used by planners and managers.
NASA Astrophysics Data System (ADS)
Hodam, H.; Goetzke, R.; Rinow, A.; Voß, K.
2012-04-01
The project FIS - Fernerkundung in Schulen (German for "Remote Sensing in Schools") - aims at a better integration of remote sensing in school lessons. Respectively, the overall ob-jective is to teach pupils from primary school up to high-school graduation basics and fields of application of remote sensing. Working with remote sensing data opens up new and modern ways of teaching. Therefore many teachers have great interest in the subject "remote sensing", being motivated to integrate this topic into teaching, provided that the curriculum is con-sidered. In many cases, this encouragement fails because of confusing information, which ruins all good intentions. For this reason, a comprehensive and well structured learning portal on the subject remote sensing is developed. This will allow teachers and pupils to have a structured initial understanding of the topic. Recognizing that in-depth use of satellite imagery can only be achieved by the means of computer aided learning methods, a sizeable number of e-Learning contents have been created throughout the last 5 years since the project's kickoff which are now integrated into the learning portal. Three main sections form the backbone of the developed learning portal. 1. The "Teaching Materials" section provides registered teachers with interactive lessons to convey curriculum relevant topics through remote sensing. They are able to use the implemented management system to create classes and enregister pupils, keep track of their progresses and control results of the conducted lessons. Abandoning the functio-nalities of the management system the lessons are also available to non-registered us-ers. 2. Pupils and Teachers can investigate further into remote sensing in the "Research" sec-tion, where a knowledge base alongside a satellite image gallery offer general back-ground information on remote sensing and the provided lessons in a semi interactive manner. 3. The "Analysis Tools" section offers means to further experiment with satellite images by working with predefined sets of Images and Tools. All three sections of the platform are presented exemplary explaining the underlying didactical and technical concepts of the project, showing how they are realized and what their potentials are when put to use in school lessons.
An Approach of Registration between Remote Sensing Image and Electronic Chart Based on Coastal Line
NASA Astrophysics Data System (ADS)
Li, Ying; Yu, Shuiming; Li, Chuanlong
Remote sensing plays an important role marine oil spill emergency. In order to implement a timely and effective countermeasure, it is important to provide exact position of oil spills. Therefore it is necessary to match remote sensing image and electronic chart properly. Variance ordinarily exists between oil spill image and electronic chart, although geometric correction is applied to remote sensing image. It is difficult to find the steady control points on sea to make exact rectification of remote sensing image. An improved relaxation algorithm was developed for finding the control points along the coastline since oil spills occurs generally near the coast. A conversion function is created with the least square, and remote sensing image can be registered with the vector map based on this function. SAR image was used as the remote sensing data and shape format map as the electronic chart data. The results show that this approach can guarantee the precision of the registration, which is essential for oil spill monitoring.
The U.S. Geological Survey land remote sensing program
Saunders, T.; Feuquay, J.; Kelmelis, J.A.
2003-01-01
The U.S. Geological Survey has been a provider of remotely sensed information for decades. As the availability and use of satellite data has grown, USGS has placed increasing emphasis on expanding the knowledge about the science of remote sensing and on making remotely sensed data more accessible. USGS encourages widespread availability and distribution of these data and through its programs, encourages and enables a variety of research activities and the development of useful applications of the data. The science of remote sensing has great potential for assisting in the monitoring and assessment of the impacts of natural disasters, management and analysis of environmental, biological, energy, and mineral investigations, and supporting informed public policy decisions. By establishing the Land Remote Sensing Program (LRS) as a major unit of the USGS Geography Program, USGS has taken the next step to further increase support for the accessibility, understanding, and use of remotely sensed data. This article describes the LRS Program, its mission and objectives, and how the program has been structured to accomplish its goals.
NASA Technical Reports Server (NTRS)
Mallon, H. J.; Howard, J. Y.; Karch, K. M.
1971-01-01
A comprehensive inventory of a series of remote sensing applications for a variety of regional planning programs in metropolitan Washington was undertaken. Examples of application, methods for data utilization, and corresponding photographic illustrations are provided illustrating how remote sensing would prove particularly useful as a unique and/or supplemental data source.
Remote sensing - A new view for public health
NASA Technical Reports Server (NTRS)
Morrison, D. R.; Barnes, C. M.; Fuller, C. E.
1973-01-01
It is shown that the technology of remote sensing can be of great importance to the field of public health. This possibility is based on the deepened understanding of the biologies and ecologies of the vector/organism/host interelationships of arthropod-, soil-, and water-borne diseases to result from the information that remote sensing can provide.
A systematic framework for Monte Carlo simulation of remote sensing errors map in carbon assessments
S. Healey; P. Patterson; S. Urbanski
2014-01-01
Remotely sensed observations can provide unique perspective on how management and natural disturbance affect carbon stocks in forests. However, integration of these observations into formal decision support will rely upon improved uncertainty accounting. Monte Carlo (MC) simulations offer a practical, empirical method of accounting for potential remote sensing errors...
Sebastian Martinuzzi; Lee A. Vierling; William A. Gould; Kerri T. Vierling; Andrew T. Hudak
2009-01-01
Remote sensing provides critical information for broad scale assessments of wildlife habitat distribution and conservation. However, such efforts have been typically unable to incorporate information about vegetation structure, a variable important for explaining the distribution of many wildlife species. We evaluated the consequences of incorporating remotely sensed...
NASA Technical Reports Server (NTRS)
Estes, J. E.; Jensen, J. R.; Simonett, D. S.
1977-01-01
The use of remotely sensed data by cartographers and other physical geographers is reviewed. The current status of remote sensing in the academic, governmental, and private sector is assessed, as well as its capability for providing information within the context of the explanatory forms used by geographers.
NASA Astrophysics Data System (ADS)
Chen, Xuelong; Su, Bob
2017-04-01
Remote sensing has provided us an opportunity to observe Earth land surface with a much higher resolution than any of GCM simulation. Due to scarcity of information for land surface physical parameters, up-to-date GCMs still have large uncertainties in the coupled land surface process modeling. One critical issue is a large amount of parameters used in their land surface models. Thus remote sensing of land surface spectral information can be used to provide information on these parameters or assimilated to decrease the model uncertainties. Satellite imager could observe the Earth land surface with optical, thermal and microwave bands. Some basic Earth land surface status (land surface temperature, canopy height, canopy leaf area index, soil moisture etc.) has been produced with remote sensing technique, which already help scientists understanding Earth land and atmosphere interaction more precisely. However, there are some challenges when applying remote sensing variables to calculate global land-air heat and water exchange fluxes. Firstly, a global turbulent exchange parameterization scheme needs to be developed and verified, especially for global momentum and heat roughness length calculation with remote sensing information. Secondly, a compromise needs to be innovated to overcome the spatial-temporal gaps in remote sensing variables to make the remote sensing based land surface fluxes applicable for GCM model verification or comparison. A flux network data library (more 200 flux towers) was collected to verify the designed method. Important progress in remote sensing of global land flux and evaporation will be presented and its benefits for GCM models will also be discussed. Some in-situ studies on the Tibetan Plateau and problems of land surface process simulation will also be discussed.
Remote Sensing in Geography in the New Millennium: Prospects, Challenges, and Opportunities
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Jensen, John R.; Morain, Stanley A.; Walsh, Stephen J.; Ridd, Merrill K.
1999-01-01
Remote sensing science contributes greatly to our understanding of the Earth's ecosystems and cultural landscapes. Almost all the natural and social sciences, including geography, rely heavily on remote sensing to provide quantitative, and indispensable spatial information. Many geographers have made significant contributions to remote sensing science since the 1970s, including the specification of advanced remote sensing systems, improvements in analog and digital image analysis, biophysical modeling, and terrain analysis. In fact, the Remote Sensing Specialty Group (RSSG) is one of the largest specialty groups within the AAG with over 500 members. Remote sensing in concert with a geographic information systems, offers much value to geography as both an incisive spatial-analytical tool and as a scholarly pursuit that adds to the body of geographic knowledge on the whole. The "power" of remote sensing as a research endeavor in geography lies in its capabilities for obtaining synoptic, near-real time data at many spatial and temporal scales, and in many regions of the electromagnetic spectrum - from microwave, to RADAR, to visible, and reflective and thermal infrared. In turn, these data present a vast compendium of information for assessing Earth attributes and characte6stics that are at the very core of geography. Here we revisit how remote sensing has become a fundamental and important tool for geographical research, and how with the advent of new and improved sensing systems to be launched in the near future, remote sensing will further advance geographical analysis in the approaching New Millennium.
Development of satellite remote sensing techniques as an economic tool for forestry industry
NASA Technical Reports Server (NTRS)
Sader, Steven A.; Jadkowski, Mark A.
1989-01-01
A cooperative commercial development project designed to focus on cost-effective and practical applications of satellite remote sensing in forest management is discussed. The project, initiated in September, 1988 is being executed in three phases: (1) development of a forest resource inventory and geographic information system (GIS) updating systems; (2) testing and evaluation of remote-sensing products against forest industry specifications; and (3) integration of remote-sensing services and products in an operational setting. An advisory group represented by eleven major forest-product companies will provide direct involvement of the target market. The advisory group will focus on the following questions: Does the technology work for them? How can it be packaged to provide the needed forest-management information? Can the products and information be provided in a cost-effective manner?
NASA Technical Reports Server (NTRS)
Thorley, G. A.; Draeger, W. C.; Lauer, D. T.; Lent, J.; Roberts, E.
1971-01-01
The four problem are as being investigated are: (1) determination of the feasibility of providing the resource manager with operationally useful information through the use of remote sensing techniques; (2) definition of the spectral characteristics of earth resources and the optimum procedures for calibrating tone and color characteristics of multispectral imagery (3) determination of the extent to which humans can extract useful earth resource information through remote sensing imagery; (4) determination of the extent to which automatic classification and data processing can extract useful information from remote sensing data.
Sturdevant, J.A.
1981-01-01
The Earth Resources Observation Systems (EROS) Data Center (EDO, administered by the U.S. Geological Survey, U.S. Department of the Interior, provides remotely sensed data to the user community and offers a variety of professional services to further the understanding and use of remote sensing technology. EDC reproduces and sells photographic and electronic copies of satellite images of areas throughout the world. Other products include aerial photographs collected by 16 organizations, including the U.S. Geological Survey and the National Aeronautics and Space Administration. Primary users of the remotely sensed data are Federal, State, and municipal government agencies, universities, foreign nations, and private industries. The professional services available at EDC are primarily directed at integrating satellite and aircraft remote sensing technology into the programs of the Department of the Interior and its cooperators. This is accomplished through formal training workshops, user assistance, cooperative demonstration projects, and access to equipment and capabilities in an advanced data analysis laboratory. In addition, other Federal agencies, State and local governments, universities, and the general public can get assistance from the EDC Staff. Since 1973, EDC has contributed to the accelerating growth in development and operational use of remotely sensed data for land resource problems through its role as educator and by conducting basic and applied remote sensing applications research. As remote sensing technology continues to evolve, EDC will continue to respond to the increasing demand for timely information on remote sensing applications. Questions most often asked about EDC's research and training programs include: Who may attend an EDC remote sensing training course? Specifically, what is taught? Who may cooperate with EDC on remote sensing projects? Are interpretation services provided on a service basis? This report attempts to define the goals and objectives of and policies on the following EDC services: Training Program.User Assistance.Data Analysis Laboratory.Cooperative Demonstration Projects.Research Projects.
Sun, Zhong Yu; Chen, Yan Qiao; Yang, Long; Tang, Guang Liang; Yuan, Shao Xiong; Lin, Zhi Wen
2017-02-01
Low-altitude unmanned aerial vehicles (UAV) remote sensing system overcomes the deficiencies of space and aerial remote sensing system in resolution, revisit period, cloud cover and cost, which provides a novel method for ecological research on mesoscale. This study introduced the composition of UAV remote sensing system, reviewed its applications in species, population, community and ecosystem ecology research. Challenges and opportunities of UAV ecology were identified to direct future research. The promising research area of UAV ecology includes the establishment of species morphology and spectral characteristic data base, species automatic identification, the revelation of relationship between spectral index and plant physiological processes, three-dimension monitoring of ecosystem, and the integration of remote sensing data from multi resources and multi scales. With the development of UAV platform, data transformation and sensors, UAV remote sensing technology will have wide application in ecology research.
[Estimation of desert vegetation coverage based on multi-source remote sensing data].
Wan, Hong-Mei; Li, Xia; Dong, Dao-Rui
2012-12-01
Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study areaAbstract: Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study area and based on the ground investigation and the multi-source remote sensing data of different resolutions, the estimation models for desert vegetation coverage were built, with the precisions of different estimation methods and models compared. The results showed that with the increasing spatial resolution of remote sensing data, the precisions of the estimation models increased. The estimation precision of the models based on the high, middle-high, and middle-low resolution remote sensing data was 89.5%, 87.0%, and 84.56%, respectively, and the precisions of the remote sensing models were higher than that of vegetation index method. This study revealed the change patterns of the estimation precision of desert vegetation coverage based on different spatial resolution remote sensing data, and realized the quantitative conversion of the parameters and scales among the high, middle, and low spatial resolution remote sensing data of desert vegetation coverage, which would provide direct evidence for establishing and implementing comprehensive remote sensing monitoring scheme for the ecological restoration in the study area.
Remote sensing procurement package: A management report for state and local governments
NASA Technical Reports Server (NTRS)
1981-01-01
An overview of the remote sensing procurement process is presented for chief executives, senior administrators, and other local and state officials responsible for purchasing remote sensing products, services, or equipment. Guidelines are provided for planning, organizing, staffing, and implementing such a procurement project. Other sections of the four-volume package are described and their benefits examined.
The ASPRS Remote Sensing Industry Forecast: Phase II & III - Digital Sensor Compilation
NASA Technical Reports Server (NTRS)
Mondello, Charles
2007-01-01
In August 1999, ASPRS and NASA's (then) Commercial Remote Sensing Program (CRSP) entered into a 5-year Space Act Agreement (SAA), combining resources and expertise to: (a) Baseline the Remote Sensing Industry (RSI) based on GEIA Model; (b) Develop a 10-Year RSI market forecast and attendant processes; and (c) Provide improved information for decision makers.
Remote Sensing of Ecosystem Health: Opportunities, Challenges, and Future Perspectives
Li, Zhaoqin; Xu, Dandan; Guo, Xulin
2014-01-01
Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges. PMID:25386759
Remote Sensing for Climate and Environmental Change
NASA Technical Reports Server (NTRS)
Evans, Diane
2011-01-01
Remote sensing is being used more and more for decision-making and policy development. Specific examples are: (1) Providing constraints on climate models used in IPCC assessments (2) Framing discussions about greenhouse gas monitoring (3) Providing support for hazard assessment and recovery.
Use of Remote Sensing for Decision Support in Africa
NASA Technical Reports Server (NTRS)
Policelli, Frederick S.
2007-01-01
Over the past 30 years, the scientific community has learned a great deal about the Earth as an integrated system. Much of this research has been enabled by the development of remote sensing technologies and their operation from space. Decision makers in many nations have begun to make use of remote sensing data for resource management, policy making, and sustainable development planning. This paper makes an attempt to provide a survey of the current state of the requirements and use of remote sensing for sustainable development in Africa. This activity has shown that there are not many climate data ready decision support tools already functioning in Africa. There are, however, endusers with known requirements who could benefit from remote sensing data.
NASA Astrophysics Data System (ADS)
Tan, Songxin; Narayanan, Ram M.
2004-04-01
The University of Nebraska has developed a multiwavelength airborne polarimetric lidar (MAPL) system to support its Airborne Remote Sensing Program for vegetation remote sensing. The MAPL design and instrumentation are described in detail. Characteristics of the MAPL system include lidar waveform capture and polarimetric measurement capabilities, which provide enhanced opportunities for vegetation remote sensing compared with current sensors. Field tests were conducted to calibrate the range measurement. Polarimetric calibration of the system is also discussed. Backscattered polarimetric returns, as well as the cross-polarization ratios, were obtained from a small forested area to validate the system's ability for vegetation canopy detection. The system has been packaged to fly abroad a Piper Saratoga aircraft for airborne vegetation remote sensing applications.
Airborne and satellite remote sensors for precision agriculture
USDA-ARS?s Scientific Manuscript database
Remote sensing provides an important source of information to characterize soil and crop variability for both within-season and after-season management despite the availability of numerous ground-based soil and crop sensors. Remote sensing applications in precision agriculture have been steadily inc...
The role of satellite remote sensing in structured ecosystem risk assessments.
Murray, Nicholas J; Keith, David A; Bland, Lucie M; Ferrari, Renata; Lyons, Mitchell B; Lucas, Richard; Pettorelli, Nathalie; Nicholson, Emily
2018-04-01
The current set of global conservation targets requires methods for monitoring the changing status of ecosystems. Protocols for ecosystem risk assessment are uniquely suited to this task, providing objective syntheses of a wide range of data to estimate the likelihood of ecosystem collapse. Satellite remote sensing can deliver ecologically relevant, long-term datasets suitable for analysing changes in ecosystem area, structure and function at temporal and spatial scales relevant to risk assessment protocols. However, there is considerable uncertainty about how to select and effectively utilise remotely sensed variables for risk assessment. Here, we review the use of satellite remote sensing for assessing spatial and functional changes of ecosystems, with the aim of providing guidance on the use of these data in ecosystem risk assessment. We suggest that decisions on the use of satellite remote sensing should be made a priori and deductively with the assistance of conceptual ecosystem models that identify the primary indicators representing the dynamics of a focal ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shuxin, Li; Zhilong, Zhang; Biao, Li
2018-01-01
Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.
Remote sensing in Michigan for land resource management: Highway impact assessment
NASA Technical Reports Server (NTRS)
1972-01-01
An existing section of M-14 freeway constructed in 1964 and a potential extension from Ann Arbor to Plymouth, Michigan provided an opportunity for investigating the potential uses of remote sensing techniques in providing projective information needed for assessing the impact of highway construction. Remote sensing data included multispectral scanner imagery and aerial photography. Only minor effects on vegetation, soils, and land use were found to have occurred in the existing corridor. Adverse changes expected to take place in the corridor proposed for extension of the freeway can be minimized by proper design of drainage ditches and attention to good construction practices. Remote sensing can be used to collect and present many types of data useful for highway impact assessment on land use, vegetation categories and species, soil properties and hydrologic characteristics.
NASA Technical Reports Server (NTRS)
1976-01-01
Abstracts related to remote sensing instrumentation and techniques, and to the remote sensing of natural resources are presented by the Technology Application Center at the University of New Mexico. Areas of interest included theory, general surveys, and miscellaneous studies; geology and hydrology; agriculture and forestry; marine sciences; and urban and land use. An alphabetically arranged Author/Key Word index is provided.
ERIC Educational Resources Information Center
Baumann, Paul R., Ed.
This teaching guide offers educators glimpses into the value of remote sensing, the process of observing and analyzing the earth from a distance. Remote sensing provides information in forms to see spatial patterns over large areas in a more realistic way than thematic maps and allows a macro-scale look at global problems. The six instructional…
Olga N. Krankina; Mark E. Harmon; Warren B. Cohen; Doug R. Oetter; Olga Zyrina; Maureen V. Duane
2004-01-01
Forest inventories and remote sensing are the two principal data sources used to estimate carbon (C) stocks and fluxes for large forest regions. National governments have historically relied on forest inventories for assessments but developments in remote sensing technology provide additional opportunities for operational C monitoring. The estimate of total C stock in...
Agricultural Research Service research highlights in remote sensing for calendar year 1980
NASA Technical Reports Server (NTRS)
Ritchie, J. C. (Principal Investigator)
1981-01-01
The AR research mission in remote sensing is to develop the basic understanding of the soil plant animal atmosphere continuum in agricultural ecosystems and to determine when remotely sensed data can be used to provide information about these agricultural ecosystems. A brief statement of the significant results of each project is given. A list of 1980 publication and location contacts is also given.
2011-06-01
Remote sensing from space provides critical data for many commercial space applications. Due to global market demand, it has undergone tremendous...commercial space imaging capability in the future, remote sensing policy makers, systems engineers, and industry analysts must be aware of the implications to United States National Security....available dissemination and accessibility. The analysis results, together with the findings from a review of commercial programs, initiatives, and remote
National Satellite Land Remote Sensing Data Archive
Faundeen, John L.; Kelly, Francis P.; Holm, Thomas M.; Nolt, Jenna E.
2013-01-01
The National Satellite Land Remote Sensing Data Archive (NSLRSDA) resides at the U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center. Through the Land Remote Sensing Policy Act of 1992, the U.S. Congress directed the Department of the Interior (DOI) to establish a permanent Government archive containing satellite remote sensing data of the Earth's land surface and to make this data easily accessible and readily available. This unique DOI/USGS archive provides a comprehensive, permanent, and impartial observational record of the planet's land surface obtained throughout more than five decades of satellite remote sensing. Satellite-derived data and information products are primary sources used to detect and understand changes such as deforestation, desertification, agricultural crop vigor, water quality, invasive plant species, and certain natural hazards such as flood extent and wildfire scars.
NASA Technical Reports Server (NTRS)
Spiering, Bruce; Underwood, Lauren; Ellis, Chris; Lehrter, John; Hagy, Jim; Schaeffer, Blake
2010-01-01
The goals of the project are to provide information from satellite remote sensing to support numeric nutrient criteria development and to determine data processing methods and data quality requirements to support nutrient criteria development and implementation. The approach is to identify water quality indicators that are used by decision makers to assess water quality and that are related to optical properties of the water; to develop remotely sensed data products based on algorithms relating remote sensing imagery to field-based observations of indicator values; to develop methods to assess estuarine water quality, including trends, spatial and temporal variability, and seasonality; and to develop tools to assist in the development and implementation of estuarine and coastal nutrient criteria. Additional slides present process, criteria development, typical data sources and analyses for criteria process, the power of remote sensing data for the process, examples from Pensacola Bay, spatial and temporal variability, pixel matchups, remote sensing validation, remote sensing in coastal waters, requirements for remotely sensed data products, and needs assessment. An additional presentation examines group engagement and information collection. Topics include needs assessment purpose and objectives, understanding water quality decision making, determining information requirements, and next steps.
NASA Astrophysics Data System (ADS)
Hilker, T.; Hall, F. G.; Dyrud, L. P.; Slagowski, S.
2014-12-01
Frequent earth observations are essential for assessing the risks involved with global climate change, its feedbacks on carbon, energy and water cycling and consequences for live on earth. Often, satellite-remote sensing is the only practical way to provide such observations at comprehensive spatial scales, but relationships between land surface parameters and remotely sensed observations are mostly empirical and cannot easily be scaled across larger areas or over longer time intervals. For instance, optically based methods frequently depend on extraneous effects that are unrelated to the surface property of interest, including the sun-server geometry or background reflectance. As an alternative to traditional, mono-angle techniques, multi-angle remote sensing can help overcome some of these limitations by allowing vegetation properties to be derived from comprehensive reflectance models that describe changes in surface parameters based on physical principles and radiative transfer theory. Recent results have shown in theoretical and experimental research that multi-angle techniques can be used to infer and scale the photosynthetic rate of vegetation, its biochemical and structural composition robustly from remote sensing. Multi-angle remote sensing could therefore revolutionize estimates of the terrestrial carbon uptake as scaling of primary productivity may provide a quantum leap in understanding the spatial and temporal complexity of terrestrial earth science. Here, we introduce a framework of next generation tower-based instruments to a novel and unique constellation of nano-satellites (Figure 1) that will allow us to systematically scale vegetation parameters from stand to global levels. We provide technical insights, scientific rationale and present results. We conclude that future earth observation from multi-angle satellite constellations, supported by tower based remote sensing will open new opportunities for earth system science and earth system modeling.
Estimates of Leaf Relative Water Content from Optical Polarization Measurements
NASA Astrophysics Data System (ADS)
Dahlgren, R. P.; Vanderbilt, V. C.; Daughtry, C. S. T.
2017-12-01
Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Existing approaches to remotely sensing canopy water status, such as the Crop Water Stress Index (CWSI) and the Equivalent Water Thickness (EWT), have limitations. The CWSI, based upon remotely sensing canopy radiant temperature in the thermal infrared spectral region, does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWT is based upon the physics of water-light interaction in the 900-2000nm spectral region, not plant physiology. Our goal, development of a remote sensing technique for estimating plant water status based upon measurements in the VIS/NIR spectral region, would potentially provide remote sensing access to plant dehydration physiology - to the cellular photochemistry and structural changes associated with water deficits in leaves. In this research, we used optical, crossed polarization filters to measure the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, for 78 corn (Zea mays) and soybean (Glycine max) leaves having relative water contents (RWC) between 0.60 and 0.98. Our results show that as RWC decreases R increases while T decreases. Our results tie R and T changes in the VIS/NIR to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future.
NASA Astrophysics Data System (ADS)
Kanwar, R.; Narayan, U.; Lakshmi, V.
2005-12-01
Remote sensing has the potential to immensely advance the science and application of hydrology as it provides multi-scale and multi-temporal measurements of several hydrologic parameters. There is a wide variety of remote sensing data sources available to a hydrologist with a myriad of data formats, access techniques, data quality issues and temporal and spatial extents. It is very important to make data availability and its usage as convenient as possible for potential users. The CUAHSI Hydrologic Information System (HIS) initiative addresses this issue of better data access and management for hydrologists with a focus on in-situ data, that is point measurements of water and energy fluxes which make up the 'more conventional' sources of hydrologic data. This paper explores various sources of remotely sensed hydrologic data available, their data formats and volumes, current modes of data acquisition by end users, metadata associated with data itself, and requirements from potential data models that would allow a seamless integration of remotely sensed hydrologic observations into the Hydrologic Information System. Further, a prototype hydrologic observatory (HO) for the Neuse River Basin is developed using surface temperature, vegetation indices and soil moisture estimates available from remote sensing. The prototype (HO) uses the CUAHSI digital library system (DLS) on the back (server) end. On the front (client) end, a rich visual environment has been developed in order to provide better decision making tools in order to make an optimal choice in the selection of remote sensing data for a particular application. An easy point and click interface to the remote sensing data is also implemented for common users who are just interested in location based query of hydrologic variable values.
Lee, Seung-Jae; Serre, Marc L; van Donkelaar, Aaron; Martin, Randall V; Burnett, Richard T; Jerrett, Michael
2012-12-01
A better understanding of the adverse health effects of chronic exposure to fine particulate matter (PM2.5) requires accurate estimates of PM2.5 variation at fine spatial scales. Remote sensing has emerged as an important means of estimating PM2.5 exposures, but relatively few studies have compared remote-sensing estimates to those derived from monitor-based data. We evaluated and compared the predictive capabilities of remote sensing and geostatistical interpolation. We developed a space-time geostatistical kriging model to predict PM2.5 over the continental United States and compared resulting predictions to estimates derived from satellite retrievals. The kriging estimate was more accurate for locations that were about 100 km from a monitoring station, whereas the remote sensing estimate was more accurate for locations that were > 100 km from a monitoring station. Based on this finding, we developed a hybrid map that combines the kriging and satellite-based PM2.5 estimates. We found that for most of the populated areas of the continental United States, geostatistical interpolation produced more accurate estimates than remote sensing. The differences between the estimates resulting from the two methods, however, were relatively small. In areas with extensive monitoring networks, the interpolation may provide more accurate estimates, but in the many areas of the world without such monitoring, remote sensing can provide useful exposure estimates that perform nearly as well.
An Interactive Web-Based Analysis Framework for Remote Sensing Cloud Computing
NASA Astrophysics Data System (ADS)
Wang, X. Z.; Zhang, H. M.; Zhao, J. H.; Lin, Q. H.; Zhou, Y. C.; Li, J. H.
2015-07-01
Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users' private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook. Users can write complex data processing code on the web directly, so they can design their own data processing algorithm.
USDA-ARS?s Scientific Manuscript database
Thermal-infrared (TIR) remote sensing of land surface temperature (LST) provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition as well as providing useful information for constraining prognostic land surface models. This presentation d...
The application of remote sensing techniques to the study of ophiolites
NASA Astrophysics Data System (ADS)
Khan, Shuhab D.; Mahmood, Khalid
2008-08-01
Satellite remote sensing methods are a powerful tool for detailed geologic analysis, especially in inaccessible regions of the earth's surface. Short-wave infrared (SWIR) bands are shown to provide spectral information bearing on the lithologic, structural, and geochemical character of rock bodies such as ophiolites, allowing for a more comprehensive assessment of the lithologies present, their stratigraphic relationships, and geochemical character. Most remote sensing data are widely available for little or no cost, along with user-friendly software for non-specialists. In this paper we review common remote sensing systems and methods that allow for the discrimination of solid rock (lithologic) components of ophiolite complexes and their structural relationships. Ophiolites are enigmatic rock bodies which associated with most, if not all, plate collision sutures. Ophiolites are ideal for remote sensing given their widely recognized diversity of lithologic types and structural relationships. Accordingly, as a basis for demonstrating the utility of remote sensing techniques, we briefly review typical ophiolites in the Tethyan tectonic belt. As a case study, we apply integrated remote sensing studies of a well-studied example, the Muslim Bagh ophiolite, located in Balochistan, western Pakistan. On this basis, we attempt to demonstrate how remote sensing data can validate and reconcile existing information obtained from field studies. The lithologic and geochemical diversity of Muslim Bagh are representative of Tethyan ophiolites. Despite it's remote location it has been extensively mapped and characterized by structural and geochemical studies, and is virtually free of vegetative cover. Moreover, integrating the remote sensing data with 'ground truth' information thus offers the potential of an improved template for interpreting remote sensing data sets of other ophiolites for which little or no field information is available.
Robert E. Kennedy; Philip A. Townsend; John E. Gross; Warren B. Cohen; Paul Bolstad; Wang Y. Q.; Phyllis Adams
2009-01-01
Remote sensing provides a broad view of landscapes and can be consistent through time, making it an important tool for monitoring and managing protected areas. An impediment to broader use of remote sensing science for monitoring has been the need for resource managers to understand the specialized capabilities of an ever-expanding array of image sources and analysis...
,
1977-01-01
The Earth Resources Observation Systems (EROS) Program of the U.S. Department of the Interior, administered by the Geological Survey, was established in 1966 to apply remote-sensing techniques to the inventory, monitoring, and management of natural resources. To meet its primary objective, the EROS Program includes research and training in the interpretation and application of remotely sensed data and provides remotely sensed data at nominal cost to scientists, resource planners, managers, and the public.
,
1981-01-01
The Earth Resources Observation Systems (EROS) Program of the U.S. Department of the Interior, administered by the Geological Survey, was established in 1966 to apply remote-sensing techniques to the inventory, monitoring, and management of natural resources. To meet its primary objective, the EROS Program includes research and training in the interpretation and application of remotely sensed data and provides remotely sensed data at nominal cost to scientists, resource planners, managers, and the public.
Scaling field data to calibrate and validate moderate spatial resolution remote sensing models
Baccini, A.; Friedl, M.A.; Woodcock, C.E.; Zhu, Z.
2007-01-01
Validation and calibration are essential components of nearly all remote sensing-based studies. In both cases, ground measurements are collected and then related to the remote sensing observations or model results. In many situations, and particularly in studies that use moderate resolution remote sensing, a mismatch exists between the sensor's field of view and the scale at which in situ measurements are collected. The use of in situ measurements for model calibration and validation, therefore, requires a robust and defensible method to spatially aggregate ground measurements to the scale at which the remotely sensed data are acquired. This paper examines this challenge and specifically considers two different approaches for aggregating field measurements to match the spatial resolution of moderate spatial resolution remote sensing data: (a) landscape stratification; and (b) averaging of fine spatial resolution maps. The results show that an empirically estimated stratification based on a regression tree method provides a statistically defensible and operational basis for performing this type of procedure.
a Hadoop-Based Distributed Framework for Efficient Managing and Processing Big Remote Sensing Images
NASA Astrophysics Data System (ADS)
Wang, C.; Hu, F.; Hu, X.; Zhao, S.; Wen, W.; Yang, C.
2015-07-01
Various sensors from airborne and satellite platforms are producing large volumes of remote sensing images for mapping, environmental monitoring, disaster management, military intelligence, and others. However, it is challenging to efficiently storage, query and process such big data due to the data- and computing- intensive issues. In this paper, a Hadoop-based framework is proposed to manage and process the big remote sensing data in a distributed and parallel manner. Especially, remote sensing data can be directly fetched from other data platforms into the Hadoop Distributed File System (HDFS). The Orfeo toolbox, a ready-to-use tool for large image processing, is integrated into MapReduce to provide affluent image processing operations. With the integration of HDFS, Orfeo toolbox and MapReduce, these remote sensing images can be directly processed in parallel in a scalable computing environment. The experiment results show that the proposed framework can efficiently manage and process such big remote sensing data.
Rafanoharana, Serge; Boissière, Manuel; Wijaya, Arief; Wardhana, Wahyu
2016-01-01
Remote sensing has been widely used for mapping land cover and is considered key to monitoring changes in forest areas in the REDD+ Measurement, Reporting and Verification (MRV) system. But Remote Sensing as a desk study cannot capture the whole picture; it also requires ground checking. Therefore, complementing remote sensing analysis using participatory mapping can help provide information for an initial forest cover assessment, gain better understanding of how local land use might affect changes, and provide a way to engage local communities in REDD+. Our study looked at the potential of participatory mapping in providing complementary information for remotely sensed maps. The research sites were located in different ecological and socio-economic contexts in the provinces of Papua, West Kalimantan and Central Java, Indonesia. Twenty-one maps of land cover and land use were drawn with local community participation during focus group discussions in seven villages. These maps, covering a total of 270,000ha, were used to add information to maps developed using remote sensing, adding 39 land covers to the eight from our initial desk assessment. They also provided additional information on drivers of land use and land cover change, resource areas, territory claims and land status, which we were able to correlate to understand changes in forest cover. Incorporating participatory mapping in the REDD+ MRV protocol would help with initial remotely sensed land classifications, stratify an area for ground checks and measurement plots, and add other valuable social data not visible at the RS scale. Ultimately, it would provide a forum for local communities to discuss REDD+ activities and develop a better understanding of REDD+. PMID:27977685
NASA Astrophysics Data System (ADS)
Washington-Allen, R. A.; Fatoyinbo, T. E.; Ribeiro, N. S.; Shugart, H. H.; Therrell, M. D.; Vaz, K. T.; von Schill, L.
2006-12-01
A workshop titled: Environmental Remote Sensing for Natural Resources Management was held from June 12 23, 2006 at Eduardo Mondlane University in Maputo Mozambique. The workshop was initiated through an invitation and pre-course evaluation form to interested NGOs, universities, and government organizations. The purpose of the workshop was to provide training to interested professionals, graduate students, faculty and researchers at Mozambican institutions on the research and practical uses of remote sensing for natural resource management. The course had 24 participants who were predominantly professionals in remote sensing and GIS from various NGOs, governmental and academic institutions in Mozambique. The course taught remote sensing from an ecological perspective, specifically the course focused on the application of new remote sensing technology [the Shuttle Radar Topography Mission (SRTM) C-band radar data] to carbon accounting research in Miombo woodlands and Mangrove forests. The 2-week course was free to participants and consisted of lectures, laboratories, and a field trip to the mangrove forests of Inhaca Island, Maputo. The field trip consisted of training in the use of forest inventory techniques in support of remote sensing studies. Specifically, the field workshop centered on use of Global Positioning Systems (GPS) and collection of forest inventory data on tree height, structure [leaf area index (LAI)], and productivity. Productivity studies were enhanced with the teaching of introductory dendrochronology including sample collection of tree rings from four different mangrove species. Students were provided with all course materials including a DVD that contained satellite data (e.g., Landsat and SRTM imagery), ancillary data, lectures, exercises, and remote sensing publications used in the course including a CD from the Environmental Protection Agency's Environmental Photographic Interpretation Center's (EPA-EPIC) program to teach remote sensing and data CDs from NASA's SAFARI 2000 field campaign. Nineteen participants evaluated the effectiveness of the course in regards to the course lectures, instructors, and the field trip. Future workshops should focus more on the individual projects that students are engaged with in their jobs, replace the laboratories computers with workstations geared towards computer intensive image processing software, and the purchase of field remote sensing instrumentation for practical exercises.
Naval EarthMap Observer (NEMO) Hyperspectral Remote Sensing Program
2000-10-01
The NEMO hyperspectral remote sensing program will provide unclassified, space-based hyperspectral passive imagery at moderate resolution that offers substantial potential for direct use by Naval forces and the Civil Sector.
Integrated Remote Sensing Modalities for Classification at a Legacy Test Site
NASA Astrophysics Data System (ADS)
Lee, D. J.; Anderson, D.; Craven, J.
2016-12-01
Detecting, locating, and characterizing suspected underground nuclear test sites is of interest to the worldwide nonproliferation monitoring community. Remote sensing provides both cultural and surface geological information over a large search area in a non-intrusive manner. We have characterized a legacy nuclear test site at the Nevada National Security Site (NNSS) using an aerial system based on RGB imagery, light detection and ranging, and hyperspectral imaging. We integrate these different remote sensing modalities to perform pattern recognition and classification tasks on the test site. These tasks include detecting cultural artifacts and exotic materials. We evaluate if the integration of different remote sensing modalities improves classification performance.
Energy Remote Sensing Applications Projects at the NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Norman, S. D.; Likens, W. C.; Mouat, D. A.
1982-01-01
The NASA Ames Research Center is active in energy projects primarily in the role of providing assistance to users in the solution of a number of problems related to energy. Data bases were produced which can be used, in combination with other sources of information, to solve spatially related energy problems. Six project activities at Ames are described which relate to energy and remote sensing. Two projects involve power demand forecasting and estimations using remote sensing and geographic information systems; two others involve transmission line routing and corridor analysis; one involves a synfuel user needs assessment through remote sensing; and the sixth involves the siting of energy facilities.
Remote Sensing Data Fusion to Detect Illicit Crops and Unauthorized Airstrips
NASA Astrophysics Data System (ADS)
Pena, J. A.; Yumin, T.; Liu, H.; Zhao, B.; Garcia, J. A.; Pinto, J.
2018-04-01
Remote sensing data fusion has been playing a more and more important role in crop planting area monitoring, especially for crop area information acquisition. Multi-temporal data and multi-spectral time series are two major aspects for improving crop identification accuracy. Remote sensing fusion provides high quality multi-spectral and panchromatic images in terms of spectral and spatial information, respectively. In this paper, we take one step further and prove the application of remote sensing data fusion in detecting illicit crop through LSMM, GOBIA, and MCE analyzing of strategic information. This methodology emerges as a complementary and effective strategy to control and eradicate illicit crops.
Remote sensing sensors and applications in environmental resources mapping and modeling
Melesse, Assefa M.; Weng, Qihao; Thenkabail, Prasad S.; Senay, Gabriel B.
2007-01-01
The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling.
Narragansett Bay From Space: A Perspective for the 21st Century
NASA Technical Reports Server (NTRS)
Mustard, John F.; Swanson, Craig; Deacutis, Chris
2001-01-01
In 1996, the NASA Administrator Dan Goldin and Rhode Island Congressman Patrick Kennedy challenged researchers in the Department of Geological Sciences at Brown University to developed a series of projects to apply remotely sensed data to problems of immediate concern to the State of Rhode Island. The result of that challenge was the project Narragansett Bay from Space: A Perspective for the 21st Century. The goals of the effort were to a) identify problems in coordination with state and local agencies, b) apply NASA technology to the problems and c) to involve small business that would benefit from incorporating remotely sensed data into their business operations. The overall effort was to serve two functions: help provide high quality science results based on remotely sensed data and increase the capacity of environmental managers and companies to use remotely sensed data. The effort has succeeded on both these fronts by providing new, quantitative information on the extent of environmental problems and developing a greater awareness and acceptance of remotely sensed data as a tool for monitoring and research.
Online Remote Sensing Interface
NASA Technical Reports Server (NTRS)
Lawhead, Joel
2007-01-01
BasinTools Module 1 processes remotely sensed raster data, including multi- and hyper-spectral data products, via a Web site with no downloads and no plug-ins required. The interface provides standardized algorithms designed so that a user with little or no remote-sensing experience can use the site. This Web-based approach reduces the amount of software, hardware, and computing power necessary to perform the specified analyses. Access to imagery and derived products is enterprise-level and controlled. Because the user never takes possession of the imagery, the licensing of the data is greatly simplified. BasinTools takes the "just-in-time" inventory control model from commercial manufacturing and applies it to remotely-sensed data. Products are created and delivered on-the-fly with no human intervention, even for casual users. Well-defined procedures can be combined in different ways to extend verified and validated methods in order to derive new remote-sensing products, which improves efficiency in any well-defined geospatial domain. Remote-sensing products produced in BasinTools are self-documenting, allowing procedures to be independently verified or peer-reviewed. The software can be used enterprise-wide to conduct low-level remote sensing, viewing, sharing, and manipulating of image data without the need for desktop applications.
What is a picture worth? A history of remote sensing
Moore, Gerald K.
1979-01-01
Remote sensing is the use of electromagnetic energy to measure the physical properties of distant objects. It includes photography and geophysical surveying as well as newer techniques that use other parts of the electromagnetic spectrum. The history of remote sensing begins with photography. The origin of other types of remote sensing can be traced to World War II, with the development of radar, sonar, and thermal infrared detection systems. Since the 1960s, sensors have been designed to operate in virtually all of the electromagnetic spectrum. Today a wide variety of remote sensing instruments are available for use in hydrological studies; satellite data, such as Skylab photographs and Landsat images are particularly suitable for regional problems and studies. Planned future satellites will provide a ground resolution of 10–80 m. Remote sensing is currently used for hydrological applications in most countries of the world. The range of applications includes groundwater exploration determination of physical water quality, snowfield mapping, flood-inundation delineation, and making inventories of irrigated land. The use of remote sensing commonly results in considerable hydrological information at minimal cost. This information can be used to speed-up the development of water resources, to improve management practices, and to monitor environmental problems.
Remote sensing in Michigan for land resource management
NASA Technical Reports Server (NTRS)
Lowe, D. S.; Istvan, L. B.; Roller, N. E.; Sattinger, I. J.; Sellman, A. N.; Wagner, T. W.
1974-01-01
The application of NASA earth resource survey technology to resource management and environmental protection in Michigan was investigated. Remote sensing techniques to aid Michigan government agencies were applied in the following activities: (1) land use inventory and management, (2) great lakes shorelands protection and management, (3) wetlands protection and management, and (4) soil survey. In addition, information was disseminated on remote sensing technology, and advice and assistance was provided to a number of users.
NASA Astrophysics Data System (ADS)
Han, Xiuzhen; Ma, Jianwen; Bao, Yuhai
2006-12-01
Currently the function of operational locust monitor system mainly focused on after-hazards monitoring and assessment, and to found the way effectively to perform early warning and prediction has more practical meaning. Through 2001, 2002 two years continuously field sample and statistics for locusts eggs hatching, nymph growth, adults 3 phases observation, sample statistics and calculation, spectral measurements as well as synchronically remote sensing data processing we raise the view point of Remote Sensing three stage monitor the locust hazards. Based on the point of view we designed remote sensing monitor in three stages: (1) during the egg hitching phase remote sensing can retrieve parameters of land surface temperature (LST) and soil moisture; (2) during nymph growth phase locust increases appetite greatly and remote sensing can calculate vegetation index, leaf area index, vegetation cover and analysis changes; (3) during adult phase the locust move and assembly towards ponds and water ditches as well as less than 75% vegetation cover areas and remote sensing combination with field data can monitor and predicts potential areas for adult locusts to assembly. In this way the priority of remote sensing technology is elaborated effectively and it also provides technique support for the locust monitor system. The idea and techniques used in the study can also be used as reference for other plant diseases and insect pests.
Aerospace remote sensing of the coastal zone for water quality and biotic productivity applications
NASA Technical Reports Server (NTRS)
Pritchard, E. B.; Harriss, R. C.
1981-01-01
Remote sensing can provide the wide area synoptic coverage of surface waters which is required for studies of such phenomena as river plume mixing, phytoplankton dynamics, and pollutant transport and fate, but which is not obtainable by conventional oceanographic techniques. The application of several remote sensors (aircraftborne and spacecraftborne multispectral scanners, passive microwave radiometers, and active laser systems) to coastal zone research is discussed. Current measurement capabilities (particulates, chlorophyll a, temperature, salinity, ocean dumped materials, other pollutants, and surface winds and roughness) are defined and the results of recent remote sensing experiments conducted in the North Atlantic coastal zone are presented. The future development of remote sensing must rely on an integrated laboratory research program in optical physics. Recent results indicate the potential for separation of particulates into subsets by remote sensors.
Water Quality Analysis Tool (WQAT) | Science Inventory | US ...
The purpose of the Water Quality Analysis Tool (WQAT) software is to provide a means for analyzing and producing useful remotely sensed data products for an entire estuary, a particular point or area of interest (AOI or POI) in estuaries, or water bodies of interest where pre-processed and geographically gridded remotely sensed images are available. A graphical user interface (GUI), was created to enable the user to select and display imagery from a variety of remote sensing data sources. The user can select a date (or date range) and location to extract pixels from the remotely sensed imagery. The GUI is used to obtain all available pixel values (i.e. pixel from all available bands of all available satellites) for a given location on a given date and time. The resultant data set can be analyzed or saved to a file for future use. The WQAT software provides users with a way to establish algorithms between remote sensing reflectance (Rrs) and any available in situ parameters, as well as statistical and regression analysis. The combined data sets can be used to improve water quality research and studies. Satellites provide spatially synoptic data at high frequency (daily to weekly). These characteristics are desirable for supplementing existing water quality observations and for providing information for large aquatic ecosystems that are historically under-sampled by field programs. Thus, the Water Quality Assessment Tool (WQAT) software tool was developed to suppo
NASA Technical Reports Server (NTRS)
Cetin, Haluk
1999-01-01
The purpose of this project was to establish a new hyperspectral remote sensing laboratory at the Mid-America Remote sensing Center (MARC), dedicated to in situ and laboratory measurements of environmental samples and to the manipulation, analysis, and storage of remotely sensed data for environmental monitoring and research in ecological modeling using hyperspectral remote sensing at MARC, one of three research facilities of the Center of Reservoir Research at Murray State University (MSU), a Kentucky Commonwealth Center of Excellence. The equipment purchased, a FieldSpec FR portable spectroradiometer and peripherals, and ENVI hyperspectral data processing software, allowed MARC to provide hands-on experience, education, and training for the students of the Department of Geosciences in quantitative remote sensing using hyperspectral data, Geographic Information System (GIS), digital image processing (DIP), computer, geological and geophysical mapping; to provide field support to the researchers and students collecting in situ and laboratory measurements of environmental data; to create a spectral library of the cover types and to establish a World Wide Web server to provide the spectral library to other academic, state and Federal institutions. Much of the research will soon be published in scientific journals. A World Wide Web page has been created at the web site of MARC. Results of this project are grouped in two categories, education and research accomplishments. The Principal Investigator (PI) modified remote sensing and DIP courses to introduce students to ii situ field spectra and laboratory remote sensing studies for environmental monitoring in the region by using the new equipment in the courses. The PI collected in situ measurements using the spectroradiometer for the ER-2 mission to Puerto Rico project for the Moderate Resolution Imaging Spectrometer (MODIS) Airborne Simulator (MAS). Currently MARC is mapping water quality in Kentucky Lake and vegetation in the Land-Between-the Lakes (LBL) using Landsat-TM data. A Landsat-TM scene of the same day was obtained to relate ground measurements to the satellite data. A spectral library has been created for overstory species in LBL. Some of the methods, such as NPDF and IDFD techniques for spectral unmixing and reduction of effects of shadows in classifications- comparison of hyperspectral classification techniques, and spectral nonlinear and linear unmixing techniques, are being tested using the laboratory.
Quantifying biological integrity of California sage scrub communities using plant life-form cover.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Y.; Stow, D. A.; Franklin, J.
2010-01-01
The California sage scrub (CSS) community type in California's Mediterranean-type ecosystems supports a large number of rare, threatened, and endangered species, and is critically degraded and endangered. Monitoring ecological variables that provide information about community integrity is vital to conserving these biologically diverse communities. Fractional cover of true shrub, subshrub, herbaceous vegetation, and bare ground should fill information gaps between generalized vegetation type maps and detailed field-based plot measurements of species composition and provide an effective means for quantifying CSS community integrity. Remote sensing is the only tool available for estimating spatially comprehensive fractional cover over large extent, and fractionalmore » cover of plant life-form types is one of the measures of vegetation state that is most amenable to remote sensing. The use of remote sensing does not eliminate the need for either field surveying or vegetation type mapping; rather it will likely require a combination of approaches to reliably estimate life-form cover and to provide comprehensive information for communities. According to our review and synthesis, life-form fractional cover has strong potential for providing ecologically meaningful intermediate-scale information, which is unattainable from vegetation type maps and species-level field measurements. Thus, we strongly recommend incorporating fractional cover of true shrub, subshrub, herb, and bare ground in CSS community monitoring methods. Estimating life-form cover at a 25 m x 25 m spatial scale using remote sensing would be an appropriate approach for initial implementation. Investigation of remote sensing techniques and an appropriate spatial scale; collaboration of resource managers, biologists, and remote sensing specialists, and refinement of protocols are essential for integrating life-form fractional cover mapping into strategies for sustainable long-term CSS community management.« less
The Increasing Use of Remote Sensing Data in Studying the Climatological Impacts on Public Health
NASA Astrophysics Data System (ADS)
Kempler, S.; Benedict, K. K.; Ceccato, P.; Golden, M.; Maxwell, S.; Morain, S.; Soebiyanto, R.; Tong, D.
2011-12-01
One of the most fortunate outcomes of the capture and transformation of remote sensing data into applied information is their usefulness and impacts to better understanding climatological impacts on public health. Today, with petabytes of remote sensing data providing global coverage of climatological parameters, public health research and policy decision makers have an unprecedented (and growing) data record that relates the effects of climatic parameters, such as rainfall, heat, soil moisture, etc. to incidences and spread of disease, as well as predictive modeling. In addition, tools and services that specifically serve public health researchers and respondents have grown in response to the needs of the these information users. This presentation provides: A perspective of the use of remote sensing data in public health research; NASA funded systems developed to facilitate specific public health decision and public support services, and: Insights on remote sensing data and information services that are available for public health studies and decision making. After providing a review of the use of remote sensing data, the following specific services will be discussed: - Rainfall, Vegetation and Water Bodies Monitoring for Malaria Surveillance - Heat Evaluation and Assessment - Multi-resolution Nested Dust Forecast - Socioeconomic Data and Application Center (SEDAC) Health Related Data and Services - Goddard Earth Sciences Data and Information Services Center (GES DISC) Health Related Data and Services The purpose of this presentation is to provide a (strong) flavor of the data and information services available to public health research and decision making, to invoke new ways of thinking about how public health work can be accomplished, and stimulate new ideas on how information services can be further utilized.
Medium Spatial Resolution Satellite Characterization
NASA Technical Reports Server (NTRS)
Stensaas, Greg
2007-01-01
This project provides characterization and calibration of aerial and satellite systems in support of quality acquisition and understanding of remote sensing data, and verifies and validates the associated data products with respect to ground and and atmospheric truth so that accurate value-added science can be performed. The project also provides assessment of new remote sensing technologies.
A number of existing and new remote sensing data provide images of areas ranging from small communities to continents. These images provide views on a wide range of physical features in the landscape, including vegetation, road infrastructure, urban areas, geology, soils, and wa...
USDA-ARS?s Scientific Manuscript database
Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynami...
Remote sensing tools to study ocean biogeochemistry: state of the art
NASA Technical Reports Server (NTRS)
Carr, M. E.
2001-01-01
Remote sensing of the world ocean presently provides measurements of sea-surface temperature, sea surface height, wind speed and direction, and ocean color, from which chlorophyll concentration and aerosol optical thickness are obtained.
Remote Sensing Applications to Water Quality Management in Florida
Increasingly, optical datasets from estuarine and coastal systems are becoming available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data ...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-09
... remote sensing system would be set up to monitor nesting seabirds, turtles, and other wildlife... for improved law enforcement oversight and compliance, and remote sensing would also provide better...
The 2006 transgenic corn imaging research campaign has been greatly assisted through a cooperative effort with several Illinois growers who provided planting area and crop composition. This research effort was designed to evaluate the effectiveness of remote sensed imagery of var...
Commercialization of the land remote sensing system: An examination of mechanisms and issues
NASA Technical Reports Server (NTRS)
Cauley, J. K.; Gaelick, C.; Greenberg, J. S.; Logsdon, J.; Monk, T.
1983-01-01
In September 1982 the Secretary of Commerce was authorized (by Title II of H.R. 5890 of the 97th Congress) to plan and provide for the management and operation of the civil land remote sensing satellite systems, to provide for user fees, and to plan for the transfer of the ownership and operation of future civil operational land remote sensing satellite systems to the private sector. As part of the planning for transfer, a number of approaches were to be compared including wholly private ownership and operation of the system by an entity competitively selected, mixed government/private ownership and operation, and a legislatively-chartered privately-owned corporation. The results of an analysis and comparison of a limited number of financial and organizational approaches for either transfer of the ownership and operation of the civil operational land remote sensing program to the private sector or government retention are presented.
NASA Astrophysics Data System (ADS)
Gao, Zhiqiang; Xu, Fuxiang; Song, Debin; Zheng, Xiangyu; Chen, Maosi
2017-09-01
This paper conducted dynamic monitoring over the green tide (large green alga—Ulva prolifera) occurred in the Yellow Sea in 2014 to 2016 by the use of multi-source remote sensing data, including GF-1 WFV, HJ-1A/1B CCD, CBERS-04 WFI, Landsat-7 ETM+ and Landsta-8 OLI, and by the combination of VB-FAH (index of Virtual-Baseline Floating macroAlgae Height) with manual assisted interpretation based on remote sensing and geographic information system technologies. The result shows that unmanned aerial vehicle (UAV) and shipborne platform could accurately monitor the distribution of Ulva prolifera in small spaces, and therefore provide validation data for the result of remote sensing monitoring over Ulva prolifera. The result of this research can provide effective information support for the prevention and control of Ulva prolifera.
NASA Astrophysics Data System (ADS)
Tseng, K.-H.; Liu, K. T.; Shum, C. K.; Jia, Y.; Shang, K.; Dai, C.
2016-06-01
Glaciers over the Tibetan Plateau have experienced accelerated depletion in the last few decades due primarily to the global warming. The freshwater drained into brackish lakes is also observed by optical remote sensing and altimetry satellites. However, the actual water storage change is difficult to be quantified since the altimetry or remote sensing only provide data in limited dimensions. The altimetry data give an elevation change of surface while the remote sensing images provide an extent variation in horizontal plane. Hence a data set used to describe the volume change is needed to measure the exact mass transition in a time span. In this study, we utilize GRACE gravimetry mission to quantify the total column mass change in the central Tibetan Plateau, especially focused on the lakes near Tanggula Mountains. By removing these factors, the freshwater storage change of glacier system at study area can be potentially isolated.
Autonomous Exploration for Gathering Increased Science
NASA Technical Reports Server (NTRS)
Bornstein, Benjamin J.; Castano, Rebecca; Estlin, Tara A.; Gaines, Daniel M.; Anderson, Robert C.; Thompson, David R.; DeGranville, Charles K.; Chien, Steve A.; Tang, Benyang; Burl, Michael C.;
2010-01-01
The Autonomous Exploration for Gathering Increased Science System (AEGIS) provides automated targeting for remote sensing instruments on the Mars Exploration Rover (MER) mission, which at the time of this reporting has had two rovers exploring the surface of Mars (see figure). Currently, targets for rover remote-sensing instruments must be selected manually based on imagery already on the ground with the operations team. AEGIS enables the rover flight software to analyze imagery onboard in order to autonomously select and sequence targeted remote-sensing observations in an opportunistic fashion. In particular, this technology will be used to automatically acquire sub-framed, high-resolution, targeted images taken with the MER panoramic cameras. This software provides: 1) Automatic detection of terrain features in rover camera images, 2) Feature extraction for detected terrain targets, 3) Prioritization of terrain targets based on a scientist target feature set, and 4) Automated re-targeting of rover remote-sensing instruments at the highest priority target.
NASA Astrophysics Data System (ADS)
Diao, Chunyuan
In today's big data era, the increasing availability of satellite and airborne platforms at various spatial and temporal scales creates unprecedented opportunities to understand the complex and dynamic systems (e.g., plant invasion). Time series remote sensing is becoming more and more important to monitor the earth system dynamics and interactions. To date, most of the time series remote sensing studies have been conducted with the images acquired at coarse spatial scale, due to their relatively high temporal resolution. The construction of time series at fine spatial scale, however, is limited to few or discrete images acquired within or across years. The objective of this research is to advance the time series remote sensing at fine spatial scale, particularly to shift from discrete time series remote sensing to continuous time series remote sensing. The objective will be achieved through the following aims: 1) Advance intra-annual time series remote sensing under the pure-pixel assumption; 2) Advance intra-annual time series remote sensing under the mixed-pixel assumption; 3) Advance inter-annual time series remote sensing in monitoring the land surface dynamics; and 4) Advance the species distribution model with time series remote sensing. Taking invasive saltcedar as an example, four methods (i.e., phenological time series remote sensing model, temporal partial unmixing method, multiyear spectral angle clustering model, and time series remote sensing-based spatially explicit species distribution model) were developed to achieve the objectives. Results indicated that the phenological time series remote sensing model could effectively map saltcedar distributions through characterizing the seasonal phenological dynamics of plant species throughout the year. The proposed temporal partial unmixing method, compared to conventional unmixing methods, could more accurately estimate saltcedar abundance within a pixel by exploiting the adequate temporal signatures of saltcedar. The multiyear spectral angle clustering model could guide the selection of the most representative remotely sensed image for repetitive saltcedar mapping over space and time. Through incorporating spatial autocorrelation, the species distribution model developed in the study could identify the suitable habitats of saltcedar at a fine spatial scale and locate appropriate areas at high risk of saltcedar infestation. Among 10 environmental variables, the distance to the river and the phenological attributes summarized by the time series remote sensing were regarded as the most important. These methods developed in the study provide new perspectives on how the continuous time series can be leveraged under various conditions to investigate the plant invasion dynamics.
[Use of Remote Sensing for Crop and Soil Analysis
NASA Technical Reports Server (NTRS)
Johannsen, Chris J.
1997-01-01
The primary agricultural objective of this research is to determine what soil and crop information can be verified from remotely sensed images during the growing season. Specifically: (1) Elements of crop stress due to drought, weeds, disease and nutrient deficiencies will be documented with ground truth over specific agricultural sites and (2) Use of remote sensing with GPS and GIS technology for providing a safe and environmentally friendly application of fertilizers and chemicals will be documented.
Progress and needs in agricultural research, development, and applications programs
NASA Technical Reports Server (NTRS)
Moore, D. G.; Myers, V. I.
1977-01-01
The dynamic nature of agriculture requires repetitive resource assessments such as those from remote sensing. Until recently, the use of remote sensing in agriculture has been limited primarily to site specific investigations without large-scale evaluations. Examples of successful applications at various user levels are provided. The stage of development for applying remote sensing to many agricultural problems is assessed, and goals for planning future data characteristics for increased use in agriculture are suggested.
Applying narrowband remote-sensing reflectance models to wideband data.
Lee, Zhongping
2009-06-10
Remote sensing of coastal and inland waters requires sensors to have a high spatial resolution to cover the spatial variation of biogeochemical properties in fine scales. High spatial-resolution sensors, however, are usually equipped with spectral bands that are wide in bandwidth (50 nm or wider). In this study, based on numerical simulations of hyperspectral remote-sensing reflectance of optically-deep waters, and using Landsat band specifics as an example, the impact of a wide spectral channel on remote sensing is analyzed. It is found that simple adoption of a narrowband model may result in >20% underestimation in calculated remote-sensing reflectance, and inversely may result in >20% overestimation in inverted absorption coefficients even under perfect conditions, although smaller (approximately 5%) uncertainties are found for higher absorbing waters. These results provide a cautious note, but also a justification for turbid coastal waters, on applying narrowband models to wideband data.
NASA Astrophysics Data System (ADS)
French, N. H. F.; Lawrence, R. L.
2017-12-01
AmericaView is a nationwide partnership of remote sensing scientists who support the use of Landsat and other public domain remotely sensed data through applied remote sensing research, K-12 and higher STEM education, workforce development, and technology transfer. The national AmericaView program currently has active university-lead members in 39 states, each of which has a "stateview" consortium consisting of some combination of university, agency, non-profit, and other members. This "consortium of consortia" has resulted in a strong and unique nationwide network of remote sensing practitioners. AmericaView has used this network to contribute to the USGS Requirements Capabilities & Analysis for Earth Observations. Participating states have conducted interviews of key remote sensing end users across the country to provide key input at the state and local level for the design and implementation of future U.S. moderate resolution Earth observations.
Li, Hongyi; Shi, Zhou; Sha, Jinming; Cheng, Jieliang
2006-08-01
In the present study, vegetation, soil brightness, and moisture indices were extracted from Landsat ETM remote sensing image, heat indices were extracted from MODIS land surface temperature product, and climate index and other auxiliary geographical information were selected as the input of neural network. The remote sensing eco-environmental background value of standard interest region evaluated in situ was selected as the output of neural network, and the back propagation (BP) neural network prediction model containing three layers was designed. The network was trained, and the remote sensing eco-environmental background value of Fuzhou in China was predicted by using software MATLAB. The class mapping of remote sensing eco-environmental background values based on evaluation standard showed that the total classification accuracy was 87. 8%. The method with a scheme of prediction first and classification then could provide acceptable results in accord with the regional eco-environment types.
Quantitative interpretation of Great Lakes remote sensing data
NASA Technical Reports Server (NTRS)
Shook, D. F.; Salzman, J.; Svehla, R. A.; Gedney, R. T.
1980-01-01
The paper discusses the quantitative interpretation of Great Lakes remote sensing water quality data. Remote sensing using color information must take into account (1) the existence of many different organic and inorganic species throughout the Great Lakes, (2) the occurrence of a mixture of species in most locations, and (3) spatial variations in types and concentration of species. The radiative transfer model provides a potential method for an orderly analysis of remote sensing data and a physical basis for developing quantitative algorithms. Predictions and field measurements of volume reflectances are presented which show the advantage of using a radiative transfer model. Spectral absorptance and backscattering coefficients for two inorganic sediments are reported.
Remote Sensing Sensors and Applications in Environmental Resources Mapping and Modelling
Melesse, Assefa M.; Weng, Qihao; S.Thenkabail, Prasad; Senay, Gabriel B.
2007-01-01
The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling. PMID:28903290
Development of multi-mission satellite data systems at the German Remote Sensing Data Centre
NASA Astrophysics Data System (ADS)
Lotz-Iwen, H. J.; Markwitz, W.; Schreier, G.
1998-11-01
This paper focuses on conceptual aspects of the access to multi-mission remote sensing data by online catalogue and information systems. The system ISIS of the German Remote Sensing Data Centre is described as an example of a user interface to earth observation data. ISIS has been designed to support international scientific research as well as operational applications by offering online access to the database via public networks. It provides catalogue retrieval, visualisation and transfer of image data, and is integrated in international activities dedicated to catalogue and archive interoperability. Finally, an outlook is given on international projects dealing with access to remote sensing data in distributed archives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; Rollins, Katherine E.
2016-11-01
Monitoring environmental impacts over large, remote desert regions for long periods of time can be very costly. Remote sensing technologies present a promising monitoring tool because they entail the collection of spatially contiguous data, automated processing, and streamlined data analysis. This report provides a summary of remote sensing products and refinement of remote sensing data interpretation methodologies that were generated as part of the U.S. Department of the Interior Bureau of Land Management Solar Energy Program. In March 2015, a team of researchers from Argonne National Laboratory (Argonne) collected field data of vegetation and surface types from more than 5,000more » survey points within the eastern part of the Riverside East Solar Energy Zone (SEZ). Using the field data, remote sensing products that were generated in 2014 using very high spatial resolution (VHSR; 15 cm) multispectral aerial images were validated in order to evaluate potential refinements to the previous methodologies to improve the information extraction accuracy.« less
The application analysis of the multi-angle polarization technique for ocean color remote sensing
NASA Astrophysics Data System (ADS)
Zhang, Yongchao; Zhu, Jun; Yin, Huan; Zhang, Keli
2017-02-01
The multi-angle polarization technique, which uses the intensity of polarized radiation as the observed quantity, is a new remote sensing means for earth observation. With this method, not only can the multi-angle light intensity data be provided, but also the multi-angle information of polarized radiation can be obtained. So, the technique may solve the problems, those could not be solved with the traditional remote sensing methods. Nowadays, the multi-angle polarization technique has become one of the hot topics in the field of the international quantitative research on remote sensing. In this paper, we firstly introduce the principles of the multi-angle polarization technique, then the situations of basic research and engineering applications are particularly summarized and analysed in 1) the peeled-off method of sun glitter based on polarization, 2) the ocean color remote sensing based on polarization, 3) oil spill detection using polarization technique, 4) the ocean aerosol monitoring based on polarization. Finally, based on the previous work, we briefly present the problems and prospects of the multi-angle polarization technique used in China's ocean color remote sensing.
Bushland Evapotranspiration and Agricultural Remote Sensing System (BEARS) software
NASA Astrophysics Data System (ADS)
Gowda, P. H.; Moorhead, J.; Brauer, D. K.
2017-12-01
Evapotranspiration (ET) is a major component of the hydrologic cycle. ET data are used for a variety of water management and research purposes such as irrigation scheduling, water and crop modeling, streamflow, water availability, and many more. Remote sensing products have been widely used to create spatially representative ET data sets which provide important information from field to regional scales. As UAV capabilities increase, remote sensing use is likely to also increase. For that purpose, scientists at the USDA-ARS research laboratory in Bushland, TX developed the Bushland Evapotranspiration and Agricultural Remote Sensing System (BEARS) software. The BEARS software is a Java based software that allows users to process remote sensing data to generate ET outputs using predefined models, or enter custom equations and models. The capability to define new equations and build new models expands the applicability of the BEARS software beyond ET mapping to any remote sensing application. The software also includes an image viewing tool that allows users to visualize outputs, as well as draw an area of interest using various shapes. This software is freely available from the USDA-ARS Conservation and Production Research Laboratory website.
NASA Astrophysics Data System (ADS)
Genet, Richard P.
1995-11-01
Policy changes in the United States and Europe will bring a number of firms into the remote sensing market. More importantly, there will be a vast increase in the amount of data and potentially, the amount of information, that is available for academic, commercial and a variety of public uses. Presently many of the users of remote sensing data have some understanding of photogrammetric and remote sensing technologies. This is especially true of environmentalist users and academics. As the amount of remote sensing data increases, in order to broaden the user base, it will become increasingly important that the information user not be required to have a background in photogrammetry, remote sensing, or even in the basics of geographic information systems. The user must be able to articulate his requirements in view of existence of new sources of information. This paper provides the framework for expert systems to accomplish this interface. Specific examples of the capabilities which must be developed in order to maximize the utility of specific images and image archives are presented and discussed.
NASA Astrophysics Data System (ADS)
Jin, Jiahua; Yan, Xiangbin; Tan, Qiaoqiao; Li, Yijun
2014-03-01
With the development of remote sensing technology, remote-sensing satellite has been widely used in many aspects of national construction. Big data with different standards and massive users with different needs, make the satellite data delivery service to be a complex giant system. How to deliver remote-sensing satellite data efficiently and effectively is a big challenge. Based on customer service theory, this paper proposes a hierarchy conceptual model for examining the determinations of remote-sensing satellite data delivery service quality in the Chinese context. Three main dimensions: service expectation, service perception and service environment, and 8 sub-dimensions are included in the model. Large amount of first-hand data on the remote-sensing satellite data delivery service have been obtained through field research, semi-structured questionnaire and focused interview. A positivist case study is conducted to validate and develop the proposed model, as well as to investigate the service status and related influence mechanisms. Findings from the analysis demonstrate the explanatory validity of the model, and provide potentially helpful insights for future practice.
Monitoring Crop Phenology and Growth Stages from Space: Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Gao, F.; Anderson, M. C.; Mladenova, I. E.; Kustas, W. P.; Alfieri, J. G.
2014-12-01
Crop growth stages in concert with weather and soil moisture conditions can have a significant impact on crop yields. In the U.S., crop growth stages and conditions are reported by farmers at the county level. These reports are somewhat subjective and fluctuate between different reporters, locations and times. Remote sensing data provide an alternative approach to monitoring crop growth over large areas in a more consistent and quantitative way. In the recent years, remote sensing data have been used to detect vegetation phenology at 1-km spatial resolution globally. However, agricultural applications at field scale require finer spatial resolution remote sensing data. Landsat (30-m) data have been successfully used for agricultural applications. There are many medium resolution sensors available today or in near future. These include Landsat, SPOT, RapidEye, ASTER and future Sentinel-2 etc. Approaches have been developed in the past several years to integrate remote sensing data from different sensors which may have different sensor characteristics, and spatial and temporal resolutions. This allows us opportunities today to map crop growth stages and conditions using dense time-series remote sensing at field scales. However, remotely sensed phenology (or phenological metrics) is normally derived based on the mathematical functions of the time-series data. The phenological metrics are determined by either identifying inflection (curvature) points or some pre-defined thresholds in the remote sensing phenology algorithms. Furthermore, physiological crop growth stages may not be directly correlated to the remotely sensed phenology. The relationship between remotely sensed phenology and crop growth stages is likely to vary for specific crop types and varieties, growing stages, conditions and even locations. In this presentation, we will examine the relationship between remotely sensed phenology and crop growth stages using in-situ measurements from Fluxnet sites and crop progress reports from USDA NASS. We will present remote sensing approaches and focus on: 1) integrating multiple sources of remote sensing data; and 2) extracting crop phenology at field scales. An example in the U.S. Corn Belt area will be presented and analyzed. Future directions for mapping crop growth stages will be discussed.
Evaluating the Use of Remote Sensing Data in the USAID Famine Early Warning Systems Network
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Brickley, Elizabeth B.
2011-01-01
The US Agency for International Development (USAID) s Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to food insecurity emergencies on three continents. FEWS NET uses satellite remote sensing and ground observations of rainfall and vegetation in order to provide information on drought, floods and other extreme weather events to decision makers. Previous research has presented results from a professional review questionnaire with FEWS NET expert end-users whose focus was to elicit Earth observation requirements. The review provided FEWS NET operational requirements and assessed the usefulness of additional remote sensing data. Here we analyzed 1342 food security update reports from FEWS NET. The reports consider the biophysical, socioeconomic, and contextual influences on the food security in 17 countries in Africa from 2000-2009. The objective was to evaluate the use of remote sensing information in comparison with other important factors in the evaluation of food security crises. The results show that all 17 countries use rainfall information, agricultural production statistics, food prices and food access parameters in their analysis of food security problems. The reports display large scale patterns that are strongly related to history of the FEWS NET program in each country. We found that rainfall data was used 84% of the time, remote sensing of vegetation 28% of the time, and gridded crop models 10%, reflecting the length of use of each product in the regions. More investment is needed in training personnel on remote sensing products to improve use of data products throughout the FEWS NET system.
Rapid deployable global sensing hazard alert system
Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M
2015-04-28
A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.
NASA Astrophysics Data System (ADS)
AghaKouchak, A.; Huning, L. S.; Love, C. A.; Farahmand, A.
2017-12-01
This presentation surveys current and emerging drought monitoring approaches using satellite remote sensing observations from climatological and ecosystem perspectives. Satellite observations that are not currently used for operational drought monitoring, such as near-surface air relative humidity and water vapor, provide opportunities to improve early drought warning. Current and future satellite missions offer opportunities to develop composite and multi-indicator drought models. This presentation describes how different satellite observations can be combined for overall drought development and impact assessment. Finally, we provide an overview of the research gaps and challenges that are facing us ahead in the remote sensing of drought.
Earth Observations from the International Space Station: Benefits for Humanity
NASA Technical Reports Server (NTRS)
Stefanov, William L.
2015-01-01
The International Space Station (ISS) is a unique terrestrial remote sensing platform for observation of the Earth's land surface, oceans, and atmosphere. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted active and passive remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous, sun-synchronous sensor systems in higher altitude polar orbits. Beginning in May 2012, NASA ISS sensor systems have been available to respond to requests for data through the International Charter, Space and Major Disasters, also known as the "International Disaster Charter" or IDC. Data from digital handheld cameras, multispectral, and hyperspectral imaging systems has been acquired in response to IDC activations and delivered to requesting agencies through the United States Geological Survey. The characteristics of the ISS for Earth observation will be presented, including past, current, and planned NASA, International Partner, and commercial remote sensing systems. The role and capabilities of the ISS for humanitarian benefit, specifically collection of remotely sensed disaster response data, will be discussed.
A data fusion framework for floodplain analysis using GIS and remotely sensed data
NASA Astrophysics Data System (ADS)
Necsoiu, Dorel Marius
Throughout history floods have been part of the human experience. They are recurring phenomena that form a necessary and enduring feature of all river basin and lowland coastal systems. In an average year, they benefit millions of people who depend on them. In the more developed countries, major floods can be the largest cause of economic losses from natural disasters, and are also a major cause of disaster-related deaths in the less developed countries. Flood disaster mitigation research was conducted to determine how remotely sensed data can effectively be used to produce accurate flood plain maps (FPMs), and to identify/quantify the sources of error associated with such data. Differences were analyzed between flood maps produced by an automated remote sensing analysis tailored to the available satellite remote sensing datasets (rFPM), the 100-year flooded areas "predicted" by the Flood Insurance Rate Maps, and FPMs based on DEM and hydrological data (aFPM). Landuse/landcover was also examined to determine its influence on rFPM errors. These errors were identified and the results were integrated in a GIS to minimize landuse/landcover effects. Two substantial flood events were analyzed. These events were selected because of their similar characteristics (i.e., the existence of FIRM or Q3 data; flood data which included flood peaks, rating curves, and flood profiles; and DEM and remote sensing imagery). Automatic feature extraction was determined to be an important component for successful flood analysis. A process network, in conjunction with domain specific information, was used to map raw remotely sensed data onto a representation that is more compatible with a GIS data model. From a practical point of view, rFPM provides a way to automatically match existing data models to the type of remote sensing data available for each event under investigation. Overall, results showed how remote sensing could contribute to the complex problem of flood management by providing an efficient way to revise the National Flood Insurance Program maps.
The Federal Oil Spill Team for Emergency Response Remote Sensing (FOSTERRS)
NASA Astrophysics Data System (ADS)
Stough, T.; Jones, C. E.; Leifer, I.; Lindsay, F. E.; Murray, J. J.; Ramirez, E. M.; Salemi, A.; Streett, D.
2014-12-01
Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, for which remote sensing plays a critical role in detection and monitoring of oil spills. The FOSTERRS interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft) and analysis techniques are quickly, effectively and seamlessly available to oil spills responders. FOSTERRS enables cooperation between agencies with core environmental remote sensing assets and capabilities and academic and industry experts to act as an oil spill remote sensing information clearinghouse. The US government and its collaborators have a broad variety of aircraft and satellite sensors, imagery interrogation techniques and other technology that can provide indispensable remote sensing information to agencies, emergency responders and the public during an oil spill. Specifically, FOSTERRS will work to ensure that (1) suitable aircraft and satellite imagery and radar observations are quickly made available in a manner that can be integrated into oil spill detection and mitigation efforts, (2) existing imagery interrogation techniques are in the hands of those who will provide the 24 x 7 operational support and (3) efforts are made to develop new technology where the existing techniques do not provide oil spills responders with important information they need. The FOSTERRS mission goal places it in an ideal place for identification of critical technological needs, and identifying bottlenecks in technology acceptance. The core FOSTERRS team incorporates representation for operations and science for agencies with relevant instrumental and platform assets (NASA, NOAA, USGS, NRL). FOSTERRS membership will open to a wide range of end-user agencies and planned observer status from industry and academic experts, and eventually international partners. Through these collaborations, FOSTERRS facilitates interagency and cooperation and communication to the larger end-user community on remote sensing and its best use.
NASA Astrophysics Data System (ADS)
Hong, Liang
2013-10-01
The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.
Earth Remote Sensing for Weather Forecasting and Disaster Applications
NASA Technical Reports Server (NTRS)
Molthan, Andrew; Bell, Jordan; Case, Jonathan; Cole, Tony; Elmer, Nicholas; McGrath, Kevin; Schultz, Lori; Zavodsky, Brad
2016-01-01
NASA's constellation of current missions provide several opportunities to apply satellite remote sensing observations to weather forecasting and disaster response applications. Examples include: Using NASA's Terra and Aqua MODIS, and the NASA/NOAA Suomi-NPP VIIRS missions to prepare weather forecasters for capabilities of GOES-R; Incorporating other NASA remote sensing assets for improving aspects of numerical weather prediction; Using NASA, NOAA, and international partner resources (e.g. ESA/Sentinel Series); and commercial platforms (high-res, or UAV) to support disaster mapping.
Remote Sensing Analysis of Forest Disturbances
NASA Technical Reports Server (NTRS)
Asner, Gregory P. (Inventor)
2015-01-01
The present invention provides systems and methods to automatically analyze Landsat satellite data of forests. The present invention can easily be used to monitor any type of forest disturbance such as from selective logging, agriculture, cattle ranching, natural hazards (fire, wind events, storms), etc. The present invention provides a large-scale, high-resolution, automated remote sensing analysis of such disturbances.
Remote sensing analysis of forest disturbances
NASA Technical Reports Server (NTRS)
Asner, Gregory P. (Inventor)
2012-01-01
The present invention provides systems and methods to automatically analyze Landsat satellite data of forests. The present invention can easily be used to monitor any type of forest disturbance such as from selective logging, agriculture, cattle ranching, natural hazards (fire, wind events, storms), etc. The present invention provides a large-scale, high-resolution, automated remote sensing analysis of such disturbances.
Runyon, Larry [Richland, WA; Gunter, Wayne M [Richland, WA; Gilbert, Ronald W [Gilroy, CA
2006-07-25
A system for remotely monitoring the status of one or more fire extinguishers includes means for sensing at least one parameter of each of the fire extinguishers; means for selectively transmitting the sensed parameters along with information identifying the fire extinguishers from which the parameters were sensed; and means for receiving the sensed parameters and identifying information for the fire extinguisher or extinguishers at a common location. Other systems and methods for remotely monitoring the status of multiple fire extinguishers are also provided.
From ships to robots: The social relations of sensing the world ocean.
Lehman, Jessica
2018-02-01
The dominant practices of physical oceanography have recently shifted from being based on ship-based ocean sampling and sensing to being based on remote and robotic sensing using satellites, drifting floats and remotely operated and autonomous underwater vehicles. What are the implications of this change for the social relations of oceanographic science? This paper contributes to efforts to address this question, pursuing a situated view of ocean sensing technologies so as to contextualize and analyze new representations of the sea, and interactions between individual scientists, technologies and the ocean. By taking a broad view on oceanography through a 50-year shift from ship-based to remote and robotic sensing, I show the ways in which new technologies may provide an opportunity to fight what Oreskes has called 'ideologies of scientific heroism'. In particular, new sensing relations may emphasize the contributions of women and scientists from less well-funded institutions, as well as the ways in which oceanographic knowledge is always partial and dependent on interactions between nonhuman animals, technologies, and different humans. Thus, I argue that remote and robotic sensing technologies do not simply create more abstracted relations between scientists and the sea, but also may provide opportunities for more equitable scientific practice and refigured sensing relations.
Remote Sensing Information Gateway (RSIG3D) Fact Sheet
The Remote Sensing Information Gateway-3D (RSIG3D) is a free and downloadable application that provides easy and secure access to petabytes (millions of gigabytes) of atmospheric data that can be used to study complex air quality issues.
Integrating multiple satellite data for crop monitoring
USDA-ARS?s Scientific Manuscript database
Remote sensing provides a valuable data source for detecting crop types, monitoring crop condition and predicting crop yields from space. Routine and continuous remote sensing data are critical for agricultural research and operational applications. Since crop field dimensions tend to be relatively ...
Remote rainfall sensing for landslide hazard analysis
Wieczorek, Gerald F.; McWreath, Harry; Davenport, Clay
2001-01-01
Methods of assessing landslide hazards and providing warnings are becoming more advanced as remote sensing of rainfall provides more detailed temporal and spatial data on rainfall distribution. Two recent landslide disasters are examined noting the potential for using remotely sensed rainfall data for landslide hazard analysis. For the June 27, 1995, storm in Madison County, Virginia, USA, National Weather Service WSR-88D Doppler radar provided rainfall estimates based on a relation between cloud reflectivity and moisture content on a 1 sq. km. resolution every 6 minutes. Ground-based measurements of rainfall intensity and precipitation total, in addition to landslide timing and distribution, were compared with the radar-derived rainfall data. For the December 14-16, 1999, storm in Vargas State, Venezuela, infrared sensing from the GOES-8 satellite of cloud top temperatures provided the basis for NOAA/NESDIS rainfall estimates on a 16 sq. km. resolution every 30 minutes. These rainfall estimates were also compared with ground-based measurements of rainfall and landslide distribution. In both examples, the remotely sensed data either overestimated or underestimated ground-based values by up to a factor of 2. The factors that influenced the accuracy of rainfall data include spatial registration and map projection, as well as prevailing wind direction, cloud orientation, and topography.
Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review
Zhang, Dianjun; Zhou, Guoqing
2016-01-01
As an important parameter in recent and numerous environmental studies, soil moisture (SM) influences the exchange of water and energy at the interface between the land surface and atmosphere. Accurate estimate of the spatio-temporal variations of SM is critical for numerous large-scale terrestrial studies. Although microwave remote sensing provides many algorithms to obtain SM at large scale, such as SMOS and SMAP etc., resulting in many data products, they are almost low resolution and not applicable in small catchment or field scale. Estimations of SM from optical and thermal remote sensing have been studied for many years and significant progress has been made. In contrast to previous reviews, this paper presents a new, comprehensive and systematic review of using optical and thermal remote sensing for estimating SM. The physical basis and status of the estimation methods are analyzed and summarized in detail. The most important and latest advances in soil moisture estimation using temporal information have been shown in this paper. SM estimation from optical and thermal remote sensing mainly depends on the relationship between SM and the surface reflectance or vegetation index. The thermal infrared remote sensing methods uses the relationship between SM and the surface temperature or variations of surface temperature/vegetation index. These approaches often have complex derivation processes and many approximations. Therefore, combinations of optical and thermal infrared remotely sensed data can provide more valuable information for SM estimation. Moreover, the advantages and weaknesses of different approaches are compared and applicable conditions as well as key issues in current soil moisture estimation algorithms are discussed. Finally, key problems and suggested solutions are proposed for future research. PMID:27548168
Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review.
Zhang, Dianjun; Zhou, Guoqing
2016-08-17
As an important parameter in recent and numerous environmental studies, soil moisture (SM) influences the exchange of water and energy at the interface between the land surface and atmosphere. Accurate estimate of the spatio-temporal variations of SM is critical for numerous large-scale terrestrial studies. Although microwave remote sensing provides many algorithms to obtain SM at large scale, such as SMOS and SMAP etc., resulting in many data products, they are almost low resolution and not applicable in small catchment or field scale. Estimations of SM from optical and thermal remote sensing have been studied for many years and significant progress has been made. In contrast to previous reviews, this paper presents a new, comprehensive and systematic review of using optical and thermal remote sensing for estimating SM. The physical basis and status of the estimation methods are analyzed and summarized in detail. The most important and latest advances in soil moisture estimation using temporal information have been shown in this paper. SM estimation from optical and thermal remote sensing mainly depends on the relationship between SM and the surface reflectance or vegetation index. The thermal infrared remote sensing methods uses the relationship between SM and the surface temperature or variations of surface temperature/vegetation index. These approaches often have complex derivation processes and many approximations. Therefore, combinations of optical and thermal infrared remotely sensed data can provide more valuable information for SM estimation. Moreover, the advantages and weaknesses of different approaches are compared and applicable conditions as well as key issues in current soil moisture estimation algorithms are discussed. Finally, key problems and suggested solutions are proposed for future research.
Propagation Limitations in Remote Sensing.
Contents: Multi-sensors and systems in remote sensing ; Radar sensing systems over land; Remote sensing techniques in oceanography; Influence of...propagation media and background; Infrared techniques in remote sensing ; Photography in remote sensing ; Analytical studies in remote sensing .
Satellite remote sensing of surface energy and mass balance - Results from FIFE
NASA Technical Reports Server (NTRS)
Hall, F. G.; Markham, B. J.; Wang, J. R.; Huemmrich, F.; Sellers, P. J.; Strebel, D. E.; Kanemasu, E. T.; Kelly, Robert D.; Blad, Blaine L.
1991-01-01
Results obtained from the FIFE experiments conducted in 1987 and 1989 are summarized. Data analyses indicate that the hypotheses linking energy balance components to surface biology and remote sensing are reasonable at a point level, and that satellite remote sensing can potentially provide useful estimates of the surface energy budget. An investigation of atmospheric scattering and absorption effects on satellite remote sensing of surface radiance shows that the magnitude of atmospheric opacity variations within the FIFE site and with season can have a large effect on satellite measured values of surface radiances. Comparisons of atmospherically corrected TM radiances with surface measured radiances agreed to within about two percent at the visible and near-infrared wavelengths and to 6 percent in the midinfrared.
NASA Astrophysics Data System (ADS)
Arulbalaji, Palanisamy; Balasubramanian, Gurugnanam
2017-07-01
This study uses advanced spaceborne thermal emission and reflection radiometer (ASTER) hyperspectral remote sensing techniques to discriminate rock types composing Kanjamalai hill located in the Salem district of Tamil Nadu, India. Kanjamalai hill is of particular interest because it contains economically viable iron ore deposits. ASTER hyperspectral data were subjected to principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF) to improve identification of lithologies remotely and to compare these digital data results with published geologic maps. Hyperspectral remote sensing analysis indicates that PCA (R∶G∶B=2∶1∶3), MNF (R∶G∶B=3∶2∶1), and ICA (R∶G∶B=1∶3∶2) provide the best band combination for effective discrimination of lithological rock types composing Kanjamalai hill. The remote sensing-derived lithological map compares favorably with a published geological map from Geological Survey of India and has been verified with ground truth field investigations. Therefore, ASTER data-based lithological mapping provides fast, cost-effective, and accurate geologic data useful for lithological discrimination and identification of ore deposits.
NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing
NASA Technical Reports Server (NTRS)
Chirayath, Ved
2018-01-01
We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and aquatic organics.
Data Collection for Disaster Response from the International Space Station
NASA Astrophysics Data System (ADS)
Stefanov, W. L.; Evans, C. A.
2015-04-01
Remotely sensed data acquired by orbital sensor systems has emerged as a vital tool to identify the extent of damage resulting from a natural disaster, as well as providing near-real time mapping support to response efforts on the ground and humanitarian aid efforts. The International Space Station (ISS) is a unique terrestrial remote sensing platform for acquiring disaster response imagery. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 90 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous sensor systems in higher altitude polar orbits. NASA remote sensing assets on the station began collecting International Charter, Space and Major Disasters, also known informally as the International Disaster Charter (IDC) response data in May 2012. Since the start of IDC response in 2012, and as of late March 2015, there have been 123 IDC activations; NASA sensor systems have collected data for thirty-four of these events. Of the successful data collections, eight involved two or more ISS sensor systems responding to the same event. Data has also been collected by International Partners in response to natural disasters, most notably JAXA and Roscosmos/Energia through the Urugan program.
User requirements for project-oriented remote sensing
NASA Technical Reports Server (NTRS)
Hitchcock, H. C.; Baxter, F. P.; Cox, T. L.
1975-01-01
Registration of remotely sensed data to geodetic coordinates provides for overlay analysis of land use data. For aerial photographs of a large area, differences in scales, dates, and film types are reconciled, and multispectral scanner data are machine registered at the time of acquisition.
Spatial and temporal remote sensing data fusion for vegetation monitoring
USDA-ARS?s Scientific Manuscript database
The suite of available remote sensing instruments varies widely in terms of sensor characteristics, spatial resolution and acquisition frequency. For example, the Moderate-resolution Imaging Spectroradiometer (MODIS) provides daily global observations at 250m to 1km spatial resolution. While imagery...
CRESTA : consortium on remote sensing of freight flows in congested border crossings and work zones.
DOT National Transportation Integrated Search
2011-03-01
"The objectives of this project were to develop and demonstrate the use of remote sensing and : geospatial information technologies to provide useful information for applications related to : the times trucks incur in various activities (activity...
Remote Sensing in Environmental Education.
ERIC Educational Resources Information Center
Huber, Thomas P.
1983-01-01
Describes general concepts of remote sensing and provides three examples of how its techniques have been used in the context of environmental issues. Examples focus on the use of this data gathering technique in the visible (aerial photography), near infrared, and thermal infrared ranges. (JN)
UAV low-altitude remote sensing for precision weed management
USDA-ARS?s Scientific Manuscript database
Precision weed management, an application of precision agriculture, accounts for within-field variability of weed infestation and herbicide damage. Unmanned aerial vehicles (UAVs) provide a unique platform for remote sensing of field crops. They are more efficient and flexible than manned agricultur...
Stratospheric measurement requirements and satellite-borne remote sensing capabilities
NASA Technical Reports Server (NTRS)
Carmichael, J. J.; Eldridge, R. G.; Frey, E. J.; Friedman, E. J.; Ghovanlou, A. H.
1976-01-01
The capabilities of specific NASA remote sensing systems to provide appropriate measurements of stratospheric parameters for potential user needs were assessed. This was used to evaluate the capabilities of the remote sensing systems to perform global monitoring of the stratosphere. The following conclusions were reached: (1) The performance of current remote stratospheric sensors, in some cases, compares quite well with identified measurement requirements. Their ability to measure other species has not been demonstrated. (2) None of the current, in-situ methods have the capability to satisfy the requirements for global monitoring and the temporal constraints derived from the users needs portion of the study. (3) Existing, non-remote techniques will continue to play an important role in stratospheric investigations for both corroboration of remotely collected data and in the evolutionary development of future remote sensors.
Hyperspectral remote sensing study of harmful algal blooms in the Chesapeake Bay
NASA Astrophysics Data System (ADS)
Nie, Yixiang
Recent development of hyperspectral remote sensing provides capability to identify and classify harmful algal blooms beyond the estimation of chlorophyll concentrations. This study uses hyperspectral data to extract spectral signatures, classify algal blooms, and map the spatial distribution of the algal blooms in the upper Chesapeake Bay. Furthermore, water quality parameters from ground stations have been used together with remote sensing data to provide better understanding of the formation and transformation of the life cycle of harmful algal blooms, and the cause of their outbreaks in the upper Chesapeake Bay. The present results show a strong and significant positive correlation between chlorophyll concentrations and total organic nitrogen concentrations. This relation suggests that total organic nitrogen played an important role in triggering the harmful algal blooms in the upper Chesapeake Bay in this study. This study establishes an integrated approach which combines hyperspectral imaging with multispectral ocean color remote sensing data and traditional water quality monitoring system in the study of harmful algal blooms in small water bodies such as the Chesapeake Bay. Presently, remote sensing is well integrated into the research community, but is less commonly used by resource managers. This dissertation couples remote sensing technologies with specific monitoring programs. The present results will help natural resource managers, local authorities, and the public to utilize an integrated approach in order to better understand, evaluate, preserve, and restore the health of the Chesapeake Bay waters and habitats.
NASA Technical Reports Server (NTRS)
Brown, Molly Elizabeth; Brickley, Elizabeth B
2012-01-01
The U.S. Agency for International Development (USAID)'s Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to food insecurity emergencies on three continents. FEWS NET uses satellite remote sensing and ground observations of rainfall and vegetation in order to provide information on drought, floods, and other extreme weather events to decision makers. Previous research has presented results from a professional review questionnaire with FEWS NET expert end-users whose focus was to elicit Earth observation requirements. The review provided FEWS NET operational requirements and assessed the usefulness of additional remote sensing data. We analyzed 1342 food security update reports from FEWS NET. The reports consider the biophysical, socioeconomic, and contextual influences on the food security in 17 countries in Africa from 2000 to 2009. The objective was to evaluate the use of remote sensing information in comparison with other important factors in the evaluation of food security crises. The results show that all 17 countries use rainfall information, agricultural production statistics, food prices, and food access parameters in their analysis of food security problems. The reports display large-scale patterns that are strongly related to history of the FEWS NET program in each country. We found that rainfall data were used 84% of the time, remote sensing of vegetation 28% of the time, and gridded crop models 10% of the time, reflecting the length of use of each product in the regions. More investment is needed in training personnel on remote sensing products to improve use of data products throughout the FEWS NET system.
Zimmermann, N.E.; Edwards, T.C.; Moisen, Gretchen G.; Frescino, T.S.; Blackard, J.A.
2007-01-01
1. Compared to bioclimatic variables, remote sensing predictors are rarely used for predictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial distribution of species remains unexplored. Here we analysed the partial contributions of remotely sensed and climatic predictor sets to explain and predict the distribution of 19 tree species in Utah. We also tested how these partial contributions were related to characteristics such as successional types or species traits. 2. We developed two spatial predictor sets of remotely sensed and topo-climatic variables to explain the distribution of tree species. We used variation partitioning techniques applied to generalized linear models to explore the combined and partial predictive powers of the two predictor sets. Non-parametric tests were used to explore the relationships between the partial model contributions of both predictor sets and species characteristics. 3. More than 60% of the variation explained by the models represented contributions by one of the two partial predictor sets alone, with topo-climatic variables outperforming the remotely sensed predictors. However, the partial models derived from only remotely sensed predictors still provided high model accuracies, indicating a significant correlation between climate and remote sensing variables. The overall accuracy of the models was high, but small sample sizes had a strong effect on cross-validated accuracies for rare species. 4. Models of early successional and broadleaf species benefited significantly more from adding remotely sensed predictors than did late seral and needleleaf species. The core-satellite species types differed significantly with respect to overall model accuracies. Models of satellite and urban species, both with low prevalence, benefited more from use of remotely sensed predictors than did the more frequent core species. 5. Synthesis and applications. If carefully prepared, remotely sensed variables are useful additional predictors for the spatial distribution of trees. Major improvements resulted for deciduous, early successional, satellite and rare species. The ability to improve model accuracy for species having markedly different life history strategies is a crucial step for assessing effects of global change. ?? 2007 The Authors.
ZIMMERMANN, N E; EDWARDS, T C; MOISEN, G G; FRESCINO, T S; BLACKARD, J A
2007-01-01
Compared to bioclimatic variables, remote sensing predictors are rarely used for predictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial distribution of species remains unexplored. Here we analysed the partial contributions of remotely sensed and climatic predictor sets to explain and predict the distribution of 19 tree species in Utah. We also tested how these partial contributions were related to characteristics such as successional types or species traits. We developed two spatial predictor sets of remotely sensed and topo-climatic variables to explain the distribution of tree species. We used variation partitioning techniques applied to generalized linear models to explore the combined and partial predictive powers of the two predictor sets. Non-parametric tests were used to explore the relationships between the partial model contributions of both predictor sets and species characteristics. More than 60% of the variation explained by the models represented contributions by one of the two partial predictor sets alone, with topo-climatic variables outperforming the remotely sensed predictors. However, the partial models derived from only remotely sensed predictors still provided high model accuracies, indicating a significant correlation between climate and remote sensing variables. The overall accuracy of the models was high, but small sample sizes had a strong effect on cross-validated accuracies for rare species. Models of early successional and broadleaf species benefited significantly more from adding remotely sensed predictors than did late seral and needleleaf species. The core-satellite species types differed significantly with respect to overall model accuracies. Models of satellite and urban species, both with low prevalence, benefited more from use of remotely sensed predictors than did the more frequent core species. Synthesis and applications. If carefully prepared, remotely sensed variables are useful additional predictors for the spatial distribution of trees. Major improvements resulted for deciduous, early successional, satellite and rare species. The ability to improve model accuracy for species having markedly different life history strategies is a crucial step for assessing effects of global change. PMID:18642470
Data compression in remote sensing applications
NASA Technical Reports Server (NTRS)
Sayood, Khalid
1992-01-01
A survey of current data compression techniques which are being used to reduce the amount of data in remote sensing applications is provided. The survey aspect is far from complete, reflecting the substantial activity in this area. The purpose of the survey is more to exemplify the different approaches being taken rather than to provide an exhaustive list of the various proposed approaches.
NASA Technical Reports Server (NTRS)
Barr, B. G.
1975-01-01
Specific assistance to state agencies and public bodies on over 15 remote sensing projects concerned with (1) urban and regional analysis, (2) rural development, and (3) habitat management and environmental analysis is discussed. Specific problems of officials are considered and a basis for communication by demonstration is provided. In addition to data products in support of specific agency projects; consultation and training in use of satellite and aircraft imagery is provided to personnel from several state, regional, and county agencies. Effective communication and confidence is established through these efforts and users now routinely seek information and advice about the application of remote sensing technology to solution of their agency problems.
The CORSAGE Programme: Continuous Orbital Remote Sensing of Archipelagic Geochemical Effects
NASA Technical Reports Server (NTRS)
Acker, J. G.; Brown, C. W.; Hine, A. C.
1997-01-01
Current and pending oceanographic remote sensing technology allows the conceptualization of a programme designed to investigate ocean island interactions that could induce short-term nearshore fluxes of particulate organic carbon and biogenic calcium carbonate from pelagic island archipelagoes. These events will influence the geochemistry of adjacent waters, particularly the marine carbon system. Justification and design are provided for a study that would combine oceanographic satellite remote sensing (visible and infrared radiometry, altimetry and scatterometry) with shore-based facilities. A programme incorporating the methodology outlined here would seek to identify the mechanisms that cause such events, assess their geochemical significance, and provide both analytical and predictive capabilities for observations on greater temporal and spatial scales.
NASA Astrophysics Data System (ADS)
Pan, Xiaoduo; Li, Xin; Cheng, Guodong
2017-04-01
Traditionally, ground-based, in situ observations, remote sensing, and regional climate modeling, individually, cannot provide the high-quality precipitation data required for hydrological prediction, especially over complex terrain. Data assimilation techniques are often used to assimilate ground observations and remote sensing products into models for dynamic downscaling. In this study, the Weather Research and Forecasting (WRF) model was used to assimilate two satellite precipitation products (TRMM 3B42 and FY-2D) using the 4D-Var data assimilation method. The results show that the assimilation of remote sensing precipitation products can improve the initial WRF fields of humidity and temperature, thereby improving precipitation forecasting and decreasing the spin-up time. Hence, assimilating TRMM and FY-2D remote sensing precipitation products using WRF 4D-Var can be viewed as a positive step toward improving the accuracy and lead time of numerical weather prediction models, particularly for short-term weather forecasting. Future work is proposed to assimilate a suite of remote sensing data, e.g., the combination of precipitation and soil moisture data, into a WRF model to improve 7-8 day forecasts of precipitation and other atmospheric variables.
Practical applications of remote sensing technology
NASA Technical Reports Server (NTRS)
Whitmore, Roy A., Jr.
1990-01-01
Land managers increasingly are becoming dependent upon remote sensing and automated analysis techniques for information gathering and synthesis. Remote sensing and geographic information system (GIS) techniques provide quick and economical information gathering for large areas. The outputs of remote sensing classification and analysis are most effective when combined with a total natural resources data base within the capabilities of a computerized GIS. Some examples are presented of the successes, as well as the problems, in integrating remote sensing and geographic information systems. The need to exploit remotely sensed data and the potential that geographic information systems offer for managing and analyzing such data continues to grow. New microcomputers with vastly enlarged memory, multi-fold increases in operating speed and storage capacity that was previously available only on mainframe computers are a reality. Improved raster GIS software systems have been developed for these high performance microcomputers. Vector GIS systems previously reserved for mini and mainframe systems are available to operate on these enhanced microcomputers. One of the more exciting areas that is beginning to emerge is the integration of both raster and vector formats on a single computer screen. This technology will allow satellite imagery or digital aerial photography to be presented as a background to a vector display.
Water Column Correction for Coral Reef Studies by Remote Sensing
Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton
2014-01-01
Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application. PMID:25215941
[Progress in inversion of vegetation nitrogen concentration by hyperspectral remote sensing].
Wang, Li-Wen; Wei, Ya-Xing
2013-10-01
Nitrogen is the necessary element in life activity of vegetation, which takes important function in biosynthesis of protein, nucleic acid, chlorophyll, and enzyme etc, and plays a key role in vegetation photosynthesis. The technology about inversion of vegetation nitrogen concentration by hyperspectral remote sensing has been the research hotspot since the 70s of last century. With the development of hyperspectral remote sensing technology in recent years, the advantage of spectral bands subdivision in a certain spectral region provides the powerful technology measure for correlative spectral characteristic research on vegetation nitrogen. In the present paper, combined with the newest research production about monitoring vegetation nitrogen concentration by hyperspectral remote sensing published in main geography science literature in recent several years, the principle and correlated problem about monitoring vegetation nitrogen concentration by hyperspectral remote sensing were introduced. From four aspects including vegetation nitrogen spectral index, vegetation nitrogen content inversion based on chlorophyll index, regression model, and eliminating influence factors to inversion of vegetation nitrogen concentration, main technology methods about inversion of vegetation nitrogen concentration by hyperspectral remote sensing were detailedly introduced. Correlative research conclusions were summarized and analyzed, and research development trend was discussed.
Water column correction for coral reef studies by remote sensing.
Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton
2014-09-11
Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application.
Earth view: A business guide to orbital remote sensing
NASA Technical Reports Server (NTRS)
Bishop, Peter C.
1990-01-01
The following subject areas are covered: Earth view - a guide to orbital remote sensing; current orbital remote sensing systems (LANDSAT, SPOT image, MOS-1, Soviet remote sensing systems); remote sensing satellite; and remote sensing organizations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... licensee to: (1) Provide data to the National Satellite Land Remote Sensing Data Archive for the basic data set; (2) Make data available to the National Satellite Land Remote Sensing Data Archive that the... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA...
Code of Federal Regulations, 2013 CFR
2013-01-01
... licensee to: (1) Provide data to the National Satellite Land Remote Sensing Data Archive for the basic data set; (2) Make data available to the National Satellite Land Remote Sensing Data Archive that the... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA...
Code of Federal Regulations, 2011 CFR
2011-01-01
... licensee to: (1) Provide data to the National Satellite Land Remote Sensing Data Archive for the basic data set; (2) Make data available to the National Satellite Land Remote Sensing Data Archive that the... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA...
Code of Federal Regulations, 2014 CFR
2014-01-01
... licensee to: (1) Provide data to the National Satellite Land Remote Sensing Data Archive for the basic data set; (2) Make data available to the National Satellite Land Remote Sensing Data Archive that the... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA...
A Physically-Based Drought Product Using Thermal Remote Sensing of Evapotranspiration
USDA-ARS?s Scientific Manuscript database
Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI) have demonst...
PLANT INCORPORATED PROTECTANT CROP MONITORING USING REMOTE SENSING
The extent of past and anticipated plantings of transgenic corn in the United States requires a new approach to monitor this important crop for the development of pest resistance. Remote sensing by aerial and/or satellite images may provide a method of identifying transgenic pest...
Nasa's Land Remote Sensing Plans for the 1980's
NASA Technical Reports Server (NTRS)
Higg, H. C.; Butera, K. M.; Settle, M.
1985-01-01
Research since the launch of LANDSAT-1 has been primarily directed to the development of analysis techniques and to the conduct of applications studies designed to address resource information needs in the United States and in many other countries. The current measurement capabilities represented by MSS, TM, and SIR-A and B, coupled with the present level of remote sensing understanding and the state of knowledge in the discipline earth sciences, form the foundation for NASA's Land Processes Program. Science issues to be systematically addressed include: energy balance, hydrologic cycle, biogeochemical cycles, biological productivity, rock cycle, landscape development, geological and botanical associations, and land surface inventory, monitoring, and modeling. A global perspective is required for using remote sensing technology for problem solving or applications context. A successful model for this kind of activity involves joint research with a user entity where the user provides a test site and ground truth and NASA provides the remote sensing techniques to be tested.
NASA Technical Reports Server (NTRS)
Labovitz, M. L.; Masuoka, E. J.; Bell, R.; Nelson, R. F.; Larsen, C. A.; Hooker, L. K.; Troensegaard, K. W.
1985-01-01
It is pointed out that in many regions of the world, vegetation is the predominant factor influencing variation in reflected energy in the 0.4-2.5 micron region of the spectrum. Studies have, therefore, been conducted regarding the utility of remote sensing for detecting changes in vegetation which could be related to the presence of mineralization. The present paper provides primarily a report on the results of the second year of a multiyear study of geobotanical-remote-sensing relationships as developed over areas of sulfide mineralization. The field study has a strong experimental design basis. It is proceeded by first delineating the boundaries of a large geographic region which satisfied a set of previously enumerated field-site criteria. Within this region, carefully selected pairs of mineralized and nonmineralized test sites were examined over the growing season. The experiment is to provide information about the spectral and temporal resolutions required for remote-sensing-geobotanical exploration. The obtained results are evaluated.
Future Applications of Remote Sensing to Archeological Research
NASA Technical Reports Server (NTRS)
Sever, Thomas L.
2003-01-01
Archeology was one of the first disciplines to use aerial photography in its investigations at the turn of the 20th century. However, the low resolution of satellite technology that became available in the 1970 s limited their application to regional studies. That has recently changed. The arrival of the high resolution, multi-spectral capabilities of the IKONOS and QUICKBIRD satellites and the scheduled launch of new satellites in the next few years provides an unlimited horizon for future archeological research. In addition, affordable aerial and ground-based remote sensing instrumentation are providing archeologists with information that is not available through traditional methodologies. Although many archeologists are not yet comfortable with remote sensing technology a new generation has embraced it and is accumulating a wealth of new evidence. They have discovered that through the use of remote sensing it is possible to gather information without disturbing the site and that those cultural resources can be monitored and protected for the future.
NASA Technical Reports Server (NTRS)
2001-01-01
Commercial remote sensing uses satellite imagery to provide valuable information about the planet's features. By capturing light reflected from the Earth's surface with cameras or sensor systems, usually mounted on an orbiting satellite, data is obtained for business enterprises with an interest in land feature distribution. Remote sensing is practical when applied to large-area coverage, such as agricultural monitoring, regional mapping, environmental assessment, and infrastructure planning. For example, cellular service providers use satellite imagery to select the most ideal location for a communication tower. Crowsey Incorporated has the ability to use remote sensing capabilities to conduct spatial geographic visualizations and other remote-sensing services. Presently, the company has found a demand for these services in the area of litigation support. By using spatial information and analyses, Crowsey helps litigators understand and visualize complex issues and then to communicate a clear argument, with complete indisputable evidence. Crowsey Incorporated is a proud partner in NASA's Mississippi Space Commerce Initiative, with research offices at the John C. Stennis Space Center.
Satellite Remote Sensing: Aerosol Measurements
NASA Technical Reports Server (NTRS)
Kahn, Ralph A.
2013-01-01
Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.
Applications of Remote Sensing to Alien Invasive Plant Studies
Huang, Cho-ying; Asner, Gregory P.
2009-01-01
Biological invasions can affect ecosystems across a wide spectrum of bioclimatic conditions. Therefore, it is often important to systematically monitor the spread of species over a broad region. Remote sensing has been an important tool for large-scale ecological studies in the past three decades, but it was not commonly used to study alien invasive plants until the mid 1990s. We synthesize previous research efforts on remote sensing of invasive plants from spatial, temporal and spectral perspectives. We also highlight a recently developed state-of-the-art image fusion technique that integrates passive and active energies concurrently collected by an imaging spectrometer and a scanning-waveform light detection and ranging (LiDAR) system, respectively. This approach provides a means to detect the structure and functional properties of invasive plants of different canopy levels. Finally, we summarize regional studies of biological invasions using remote sensing, discuss the limitations of remote sensing approaches, and highlight current research needs and future directions. PMID:22408558
NASA Astrophysics Data System (ADS)
Chandrasekharan, Anita; Ramsankaran, Raaj
2017-04-01
The current study aims at modelling glacier mass balances over Chhota Shigiri glacier (32.28o N; 77.58° E) in Himachal Pradesh, India using the Equilibrium Line Altitude (ELA) gradient approach proposed by Rabatel et al. (2005). The model requires yearly ELA, average mass balance and mass balance gradient to estimate annual mass balance of a glacier which can be obtained either through field measurements or remote sensing observations. However, in view of the general scenario of lack of field data for Himalayan glaciers, in this study the model has been applied only using the inputs derived through multi-temporal satellite remote sensing observations thus eliminating the need for any field measurements. Preliminary analysis show that the obtained results are comparable with the observed field mass balance. The results also demonstrate that this approach with remote sensing inputs has potential to be used for glacier mass balance estimations provided good quality multi-temporal remote sensing dataset are available.
Hydrological Relevant Parameters from Remote Sensing - Spatial Modelling Input and Validation Basis
NASA Astrophysics Data System (ADS)
Hochschild, V.
2012-12-01
This keynote paper will demonstrate how multisensoral remote sensing data is used as spatial input for mesoscale hydrological modeling as well as for sophisticated validation purposes. The tasks of Water Resources Management are subject as well as the role of remote sensing in regional catchment modeling. Parameters derived from remote sensing discussed in this presentation will be land cover, topographical information from digital elevation models, biophysical vegetation parameters, surface soil moisture, evapotranspiration estimations, lake level measurements, determination of snow covered area, lake ice cycles, soil erosion type, mass wasting monitoring, sealed area, flash flood estimation. The actual possibilities of recent satellite and airborne systems are discussed, as well as the data integration into GIS and hydrological modeling, scaling issues and quality assessment will be mentioned. The presentation will provide an overview of own research examples from Germany, Tibet and Africa (Ethiopia, South Africa) as well as other international research activities. Finally the paper gives an outlook on upcoming sensors and concludes the possibilities of remote sensing in hydrology.
Remote sensing and the Mississippi high accuracy reference network
NASA Technical Reports Server (NTRS)
Mick, Mark; Alexander, Timothy M.; Woolley, Stan
1994-01-01
Since 1986, NASA's Commercial Remote Sensing Program (CRSP) at Stennis Space Center has supported commercial remote sensing partnerships with industry. CRSP's mission is to maximize U.S. market exploitation of remote sensing and related space-based technologies and to develop advanced technical solutions for spatial information requirements. Observation, geolocation, and communications technologies are converging and their integration is critical to realize the economic potential for spatial informational needs. Global positioning system (GPS) technology enables a virtual revolution in geopositionally accurate remote sensing of the earth. A majority of states are creating GPS-based reference networks, or high accuracy reference networks (HARN). A HARN can be defined for a variety of local applications and tied to aerial or satellite observations to provide an important contribution to geographic information systems (GIS). This paper details CRSP's experience in the design and implementation of a HARN in Mississippi and the design and support of future applications of integrated earth observations, geolocation, and communications technology.
MARTA GANs: Unsupervised Representation Learning for Remote Sensing Image Classification
NASA Astrophysics Data System (ADS)
Lin, Daoyu; Fu, Kun; Wang, Yang; Xu, Guangluan; Sun, Xian
2017-11-01
With the development of deep learning, supervised learning has frequently been adopted to classify remotely sensed images using convolutional networks (CNNs). However, due to the limited amount of labeled data available, supervised learning is often difficult to carry out. Therefore, we proposed an unsupervised model called multiple-layer feature-matching generative adversarial networks (MARTA GANs) to learn a representation using only unlabeled data. MARTA GANs consists of both a generative model $G$ and a discriminative model $D$. We treat $D$ as a feature extractor. To fit the complex properties of remote sensing data, we use a fusion layer to merge the mid-level and global features. $G$ can produce numerous images that are similar to the training data; therefore, $D$ can learn better representations of remotely sensed images using the training data provided by $G$. The classification results on two widely used remote sensing image databases show that the proposed method significantly improves the classification performance compared with other state-of-the-art methods.
Restoration of color in a remote sensing image and its quality evaluation
NASA Astrophysics Data System (ADS)
Zhang, Zuxun; Li, Zhijiang; Zhang, Jianqing; Wang, Zhihe
2003-09-01
This paper is focused on the restoration of color remote sensing (including airborne photo). A complete approach is recommended. It propose that two main aspects should be concerned in restoring a remote sensing image, that are restoration of space information, restoration of photometric information. In this proposal, the restoration of space information can be performed by making the modulation transfer function (MTF) as degradation function, in which the MTF is obtained by measuring the edge curve of origin image. The restoration of photometric information can be performed by improved local maximum entropy algorithm. What's more, a valid approach in processing color remote sensing image is recommended. That is splits the color remote sensing image into three monochromatic images which corresponding three visible light bands and synthesizes the three images after being processed separately with psychological color vision restriction. Finally, three novel evaluation variables are obtained based on image restoration to evaluate the image restoration quality in space restoration quality and photometric restoration quality. An evaluation is provided at last.
NASA Astrophysics Data System (ADS)
Yao, C.; Zhang, Y.; Zhang, Y.; Liu, H.
2017-09-01
With the rapid development of Precision Agriculture (PA) promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN). For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.
Airborne remote sensing for geology and the environment; present and future
Watson, Ken; Knepper, Daniel H.
1994-01-01
In 1988, a group of leading experts from government, academia, and industry attended a workshop on airborne remote sensing sponsored by the U.S. Geological Survey (USGS) and hosted by the Branch of Geophysics. The purpose of the workshop was to examine the scientific rationale for airborne remote sensing in support of government earth science in the next decade. This report has arranged the six resulting working-group reports under two main headings: (1) Geologic Remote Sensing, for the reports on geologic mapping, mineral resources, and fossil fuels and geothermal resources; and (2) Environmental Remote Sensing, for the reports on environmental geology, geologic hazards, and water resources. The intent of the workshop was to provide an evaluation of demonstrated capabilities, their direct extensions, and possible future applications, and this was the organizational format used for the geologic remote sensing reports. The working groups in environmental remote sensing chose to present their reports in a somewhat modified version of this format. A final section examines future advances and limitations in the field. There is a large, complex, and often bewildering array of remote sensing data available. Early remote sensing studies were based on data collected from airborne platforms. Much of that technology was later extended to satellites. The original 80-m-resolution Landsat Multispectral Scanner System (MSS) has now been largely superseded by the 30-m-resolution Thematic Mapper (TM) system that has additional spectral channels. The French satellite SPOT provides higher spatial resolution for channels equivalent to MSS. Low-resolution (1 km) data are available from the National Oceanographic and Atmospheric Administration's AVHRR system, which acquires reflectance and day and night thermal data daily. Several experimental satellites have acquired limited data, and there are extensive plans for future satellites including those of Japan (JERS), Europe (ESA), Canada (Radarsat), and the United States (EOS). There are currently two national airborne remote sensing programs (photography, radar) with data archived at the USGS' EROS Data Center. Airborne broadband multispectral data (comparable to Landsat MSS and TM but involving several more channels) for limited geographic areas also are available for digital processing and analysis. Narrow-band imaging spectrometer data are available for some NASA experiment sites and can be acquired for other locations commercially. Remote sensing data and derivative images, because of the uniform spatial coverage, availability at different resolutions, and digital format, are becoming important data sets for geographic information system (GIS) analyses. Examples range from overlaying digitized geologic maps on remote sensing images and draping these over topography, to maps of mineral distribution and inferred abundance. A large variety of remote sensing data sets are available, with costs ranging from a few dollars per square mile for satellite digital data to a few hundred dollars per square mile for airborne imaging spectrometry. Computer processing and analysis costs routinely surpass these expenses because of the equipment and expertise necessary for information extraction and interpretation. Effective use requires both an understanding of the current methodology and an appreciation of the most cost-effective solution.
GPS Remote Sensing Measurements Using Aerosonde UAV
NASA Technical Reports Server (NTRS)
Grant, Michael S.; Katzberg, Stephen J.; Lawrence, R. W.
2005-01-01
In February 2004, a NASA-Langley GPS Remote Sensor (GPSRS) unit was flown on an Aerosonde unmanned aerial vehicle (UAV) from the Wallops Flight Facility (WFF) in Virginia. Using direct and surface-reflected 1.575 GHz coarse acquisition (C/A) coded GPS signals, remote sensing measurements were obtained over land and portions of open water. The strength of the surface-reflected GPS signal is proportional to the amount of moisture in the surface, and is also influenced by surface roughness. Amplitude and other characteristics of the reflected signal allow an estimate of wind speed over open water. In this paper we provide a synopsis of the instrument accommodation requirements, installation procedures, and preliminary results from what is likely the first-ever flight of a GPS remote sensing instrument on a UAV. The correct operation of the GPSRS unit on this flight indicates that Aerosonde-like UAV's can serve as platforms for future GPS remote sensing science missions.
Remote sensing of land surface phenology
Meier, G.A.; Brown, Jesslyn F.
2014-01-01
Remote sensing of land-surface phenology is an important method for studying the patterns of plant and animal growth cycles. Phenological events are sensitive to climate variation; therefore phenology data provide important baseline information documenting trends in ecology and detecting the impacts of climate change on multiple scales. The USGS Remote sensing of land surface phenology program produces annually, nine phenology indicator variables at 250 m and 1,000 m resolution for the contiguous U.S. The 12 year archive is available at http://phenology.cr.usgs.gov/index.php.
Remote Sensing Technologies and Geospatial Modelling Hierarchy for Smart City Support
NASA Astrophysics Data System (ADS)
Popov, M.; Fedorovsky, O.; Stankevich, S.; Filipovich, V.; Khyzhniak, A.; Piestova, I.; Lubskyi, M.; Svideniuk, M.
2017-12-01
The approach to implementing the remote sensing technologies and geospatial modelling for smart city support is presented. The hierarchical structure and basic components of the smart city information support subsystem are considered. Some of the already available useful practical developments are described. These include city land use planning, urban vegetation analysis, thermal condition forecasting, geohazard detection, flooding risk assessment. Remote sensing data fusion approach for comprehensive geospatial analysis is discussed. Long-term city development forecasting by Forrester - Graham system dynamics model is provided over Kiev urban area.
NASA Technical Reports Server (NTRS)
Stow, D. A.; Estes, J. E.; Mertz, F. C.
1981-01-01
A learning kit is an essential part of any remote sensing workshop, course, or in-house training program to provide the "hands-on" experience of working with remotely sensed imagery. This is the objective of laboratory and field exercises as well as the reason behind the production of imagery/map kits. The way in which these learning kits (containing conventional remotely sensed and collateral data products) are put together is described and some concerns that influence the creation of learning kits are discussed. These include budgetary constraints, number of imagery types, and number of collateral data types.
Skylab experiments. Volume 2: Remote sensing of earth resources
NASA Technical Reports Server (NTRS)
1973-01-01
This volume covers the broad area of earth resources in which Skylab experiments will be performed. A brief description of the Skylab program, its objectives, and vehicles is included. Section 1 introduces the concept and historical significance of remote sensing, and discusses the major scientific considerations involved in remotely sensing the earth's resources. Sections 2 through 6 provide a description of the individual earth resource sensors and experiments to be performed. Each description includes a discussion of the experiment background and scientific objectives, the equipment involved, and a discussion of significant experiment performance areas.
Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor)
NASA Technical Reports Server (NTRS)
Pitman, Joe; Duncan, Alan; Stubbs, David; Sigler, Robert; Kendrick, Rick; Chilese, John; Lipps, Jere; Manga, Mike; Graham, James; dePater, Imke
2004-01-01
The science capabilities and features of an innovative and revolutionary approach to remote sensing imaging systems, aimed at increasing the return on future space science missions many fold, are described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional telescopes, by integrating optical interferometry technologies into a mature multiple aperture array concept that addresses one of the highest needs for advancing future planetary science remote sensing.
Technology study of quantum remote sensing imaging
NASA Astrophysics Data System (ADS)
Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang
2016-02-01
According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.
Change detection from remotely sensed images: From pixel-based to object-based approaches
NASA Astrophysics Data System (ADS)
Hussain, Masroor; Chen, Dongmei; Cheng, Angela; Wei, Hui; Stanley, David
2013-06-01
The appetite for up-to-date information about earth's surface is ever increasing, as such information provides a base for a large number of applications, including local, regional and global resources monitoring, land-cover and land-use change monitoring, and environmental studies. The data from remote sensing satellites provide opportunities to acquire information about land at varying resolutions and has been widely used for change detection studies. A large number of change detection methodologies and techniques, utilizing remotely sensed data, have been developed, and newer techniques are still emerging. This paper begins with a discussion of the traditionally pixel-based and (mostly) statistics-oriented change detection techniques which focus mainly on the spectral values and mostly ignore the spatial context. This is succeeded by a review of object-based change detection techniques. Finally there is a brief discussion of spatial data mining techniques in image processing and change detection from remote sensing data. The merits and issues of different techniques are compared. The importance of the exponential increase in the image data volume and multiple sensors and associated challenges on the development of change detection techniques are highlighted. With the wide use of very-high-resolution (VHR) remotely sensed images, object-based methods and data mining techniques may have more potential in change detection.
A NEW APPROACH TO PIP CROP MONITORING USING REMOTE SENSING
Current plantings of 25+ million acres of transgenic corn in the United States require a new approach to monitor this important crop for the development of pest resistance. Remote sensing by aerial or satellite images may provide a method of identifying transgenic pesticidal cro...
Can hyperspectral remote sensing detect species specific biochemicals?
USDA-ARS?s Scientific Manuscript database
Discrimination of a few plants scattered among many plants is a goal common to detection of agricultural weeds and invasive species. Detection of clandestinely grown Cannabis sativa L. is in many ways a special case of weed detection. Remote sensing technology provides an automated, computer based,...
How Can Remote Sensing Be Used for Water Quality Monitoring?
“How can remote sensing address information needs and gaps in water quality and quantity management?” was a workshop convened during the biennial National Water Quality Monitoring Conference 2014, held in Cincinnati, OH. The focus of this workshop was to provide an o...
Environmental and Landscape Remote Sensing Using Free and Open Source Image Processing Tools
As global climate change and human activities impact the environment, there is a growing need for scientific tools to monitor and measure environmental conditions that support human and ecological health. Remotely sensed imagery from satellite and airborne platforms provides a g...
Congress of the United States provided NASA with funding to operate a Science Data Purchase, through the auspices of the NASA Stennis Space Centers Commercial Remote Sensing Program, now part of their Earth Science Applications Directorate. NASA Stennis solicited commercial remote sensing companies for potential
NASA Technical Reports Server (NTRS)
2002-01-01
This volume contains abstracts that have been accepted for presentation at the symposium on Solar System Remote Sensing, September 20-21, 2002, in Pittsburgh, Pennsylvania. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Departments at the Lunar and Planetary Institute.
NASA Technical Reports Server (NTRS)
Bauer, M. E.; Cary, T. K.; Davis, B. J.; Swain, P. H.
1975-01-01
The results of classifications and experiments for the crop identification technology assessment for remote sensing are summarized. Using two analysis procedures, 15 data sets were classified. One procedure used class weights while the other assumed equal probabilities of occurrence for all classes. Additionally, 20 data sets were classified using training statistics from another segment or date. The classification and proportion estimation results of the local and nonlocal classifications are reported. Data also describe several other experiments to provide additional understanding of the results of the crop identification technology assessment for remote sensing. These experiments investigated alternative analysis procedures, training set selection and size, effects of multitemporal registration, spectral discriminability of corn, soybeans, and other, and analyses of aircraft multispectral data.
Public Good or Commercial Opportunity: Case Studies in Remote Sensing Commercialization
NASA Technical Reports Server (NTRS)
Johnston, Shaida; Cordes, Joseph
2002-01-01
The U.S. Government is once again attempting to commercialize the Landsat program and is asking the private sector to develop a next generation mid-resolution remote sensing system that will provide continuity with the thirty-year data archive of Landsat data. Much of the case for commercializing the Landsat program rests on the apparently successful commercialization of high-resolution remote sensing activities coupled with the belief that conditions have changed since the failed attempt to commercialize Landsat in the 1980s. This paper analyzes the economic, political and technical conditions that prevailed in the 1980s as well as conditions that might account for the apparent success of the emerging high-resolution remote sensing industry today. Lessons are gleaned for the future of the Landsat program.
The potential and prospects of proximal remote sensing of arthropod pests.
Nansen, Christian
2016-04-01
Bench-top or proximal remote sensing applications are widely used as part of quality control and machine vision systems in commercial operations. In addition, these technologies are becoming increasingly important in insect systematics and studies of insect physiology and pest management. This paper provides a review and discussion of how proximal remote sensing may contribute valuable quantitative information regarding identification of species, assessment of insect responses to insecticides, insect host responses to parasitoids and performance of biological control agents. The future role of proximal remote sensing is discussed as an exciting path for novel paths of multidisciplinary research among entomologists and scientists from a wide range of other disciplines, including image processing engineers, medical engineers, research pharmacists and computer scientists. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Runco, Susan K.; Pickard,Henry; Kowtha, Vijayanand; Jackson, Dan
2011-01-01
Universities and secondary schools can help solve a real issue for remote sensing from the ISS WORF through hands-on engineering and activities. Remote sensing technology is providing scientists with higher resolution, higher sensitivity sensors. Where is it pointing? - To take full advantage of these improved sensors, space platforms must provide commensurate improvements in attitude determination
Literature review of the remote sensing of natural resources. [bibliography
NASA Technical Reports Server (NTRS)
Fears, C. B. (Editor); Inglis, M. H. (Editor)
1977-01-01
Abstracts of 596 documents related to remote sensors or the remote sensing of natural resources by satellite, aircraft, or ground-based stations are presented. Topics covered include general theory, geology and hydrology, agriculture and forestry, marine sciences, urban land use, and instrumentation. Recent documents not yet cited in any of the seven information sources used for the compilation are summarized. An author/key word index is provided.
Remotely Sensed Information and Field Data are both Essential to Assess Biodiversity CONDITION!
NASA Astrophysics Data System (ADS)
Sparrow, B.; Schaefer, M.; Scarth, P.; Phinn, S. R.; Christensen, R.; Lowe, A. J.; O'Neill, S.; Thurgate, N.; Wundke, D.
2015-12-01
Over the past year the TERN Ausplots facility has hosted a process to determine the definition of Biodiversity Condition in an Australian Continental Context, and conducted a wide collaborative process to determine which environmental attributes are required to be measures to accurately inform on biodiversity condition. A major output from this work was the acknowledgement that good quality data from both remotely sensed sources and good quality field collected data are both essential to provide the best information possible on biodiversity condition. This poster details some background to the project, the assesment of which attributes to measure, and if the are sources primarily from field based or remotely sensed measures. It then proceeds to provide three examples of ways in which the combination of data types provides a superior product as output, with one example being provided for the three cornerstone areas of condition: Structure, Function and Composition.
15 CFR 960.8 - Notification of foreign agreements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.8... Secretary; (2) The obligations of the licensee to provide access to data for the National Satellite Land Remote Sensing Data Archive; and (3) The obligations of the licensee to convey to the foreign party the...
15 CFR 960.8 - Notification of foreign agreements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.8... Secretary; (2) The obligations of the licensee to provide access to data for the National Satellite Land Remote Sensing Data Archive; and (3) The obligations of the licensee to convey to the foreign party the...
15 CFR 960.8 - Notification of foreign agreements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.8... Secretary; (2) The obligations of the licensee to provide access to data for the National Satellite Land Remote Sensing Data Archive; and (3) The obligations of the licensee to convey to the foreign party the...
15 CFR 960.8 - Notification of foreign agreements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.8... Secretary; (2) The obligations of the licensee to provide access to data for the National Satellite Land Remote Sensing Data Archive; and (3) The obligations of the licensee to convey to the foreign party the...
USDA-ARS?s Scientific Manuscript database
Thermal-infrared remote sensing of land surface temperature provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition. This paper describes a robust but relatively simple thermal-based energy balance model that parameterizes the key soil/s...
USDA-ARS?s Scientific Manuscript database
As soil moisture increases, slope stability decreases. Remotely sensed soil moisture data can provide routine updates of slope conditions necessary for landslide predictions. For regional scale landslide investigations, only remote sensing methods have the spatial and temporal resolution required to...
USDA-ARS?s Scientific Manuscript database
Satellite remote sensing provides unmatched spatiotemporal information on vegetation gross primary productivity (GPP). Yet, understanding of the relationship between GPP and remote sensing observations and how it changes as a function of factors such as scale, biophysical constraint, and vegetation ...
Applications of satellite remote sensing to forested ecosystems
Louis R. Iverson; Robin Lambert Graham; Elizabeth A. Cook; Elizabeth A. Cook
1989-01-01
Since the launch of the first civilian earth-observing satellite in 1972, satellite remote sensing has provided increasingly sophisticated information on the structure and function of forested ecosystems. Forest classification and mapping, common uses of satellite data, have improved over the years as a result of more discriminating sensors, better classification...
Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying...
Coupling fine-scale root and canopy structure using ground-based remote sensing
Brady Hardiman; Christopher Gough; John Butnor; Gil Bohrer; Matteo Detto; Peter Curtis
2017-01-01
Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in...
Tracking MODIS NDVI time series to estimate fuel accumulation
Kellie A. Uyeda; Douglas A. Stow; Philip J. Riggan
2015-01-01
Patterns of post-fire recovery in southern California chaparral shrublands are important for understanding fuel available for future fires. Satellite remote sensing provides an opportunity to examine these patterns over large spatial extents and at high temporal resolution. The relatively limited temporal range of satellite remote sensing products has previously...
USDA-ARS?s Scientific Manuscript database
Remote sensing technology can rapidly provide spatial information on crop growth status, which ideally could be used to invert radiative transfer models or ecophysiological models for estimating a variety of crop biophysical properties. However, the outcome of the model inversion procedure will be ...
NASA Astrophysics Data System (ADS)
Czapski, Paweł
2016-07-01
We are going to show the latest achievements of the Remote Sensing Division of the Institute of Aviation in the area of remote sensing, i.e. the project of the integrated solution for the whole remote sensing process ranging from acquiring to providing the end user with required information. Currently, these tasks are partially performed by several centers in Poland, however there is no leader providing an integrated solution. Motivated by this fact, the Earth Observation Mission Control Centre (EOMC2) was established in the Remote Sensing Division of the Institute of Aviation that will provide such a comprehensive approach. Establishing of EOMC2 can be compared with creating Data Center Aerial and Satellite Data Centre (OPOLIS) in the Institute of Geodesy and Cartography in the mid-70s in Poland. OPOLIS was responsible for broadly defined data processing, it was a breakthrough innovation that initiated the use of aerial image analysis in Poland. Operation center is a part of the project that will be created, which in comparison with the competitors will provide better solutions, i.e.: • Centralization of the acquiring, processing, publishing and archiving of data, • Implementing elements of the INSPIRE directive recommendations on spatial data management, • Providing the end-user with information in the near real-time, • Ability of supplying the system with images of various origin (aerial, satellite, e.g. EUMETCast, Sentinel, Landsat) and diversity of telemetry data, data aggregation and using the same algorithms to images obtained from different sources, • System reconfiguration and batch processing of large data sets at any time, • A wide range of potential applications: precision agriculture, environmental protection, crisis management and national security, aerial, small satellite and sounding rocket missions monitoring.
USGS Provision of Near Real Time Remotely Sensed Imagery for Emergency Response
NASA Astrophysics Data System (ADS)
Jones, B. K.
2014-12-01
The use of remotely sensed imagery in the aftermath of a disaster can have an important impact on the effectiveness of the response for many types of disasters such as floods, earthquakes, volcanic eruptions, landslides, and other natural or human-induced disasters. Ideally, responders in areas that are commonly affected by disasters would have access to archived remote sensing imagery plus the ability to easily obtain the new post event data products. The cost of obtaining and storing the data and the lack of trained professionals who can process the data into a mapping product oftentimes prevent this from happening. USGS Emergency Operations provides remote sensing and geospatial support to emergency managers by providing access to satellite images from numerous domestic and international space agencies including those affiliated with the International Charter Space and Major Disasters and their space-based assets and by hosting and distributing thousands of near real time event related images and map products through the Hazards Data Distribution System (HDDS). These data may include digital elevation models, hydrographic models, base satellite images, vector data layers such as roads, aerial photographs, and other pre and post disaster data. These layers are incorporated into a Web-based browser and data delivery service, the Hazards Data Distribution System (HDDS). The HDDS can be made accessible either to the general public or to specific response agencies. The HDDS concept anticipates customer requirements and provides rapid delivery of data and services. This presentation will provide an overview of remotely sensed imagery that is currently available to support emergency response operations and examples of products that have been created for past events that have provided near real time situational awareness for responding agencies.
A high throughput geocomputing system for remote sensing quantitative retrieval and a case study
NASA Astrophysics Data System (ADS)
Xue, Yong; Chen, Ziqiang; Xu, Hui; Ai, Jianwen; Jiang, Shuzheng; Li, Yingjie; Wang, Ying; Guang, Jie; Mei, Linlu; Jiao, Xijuan; He, Xingwei; Hou, Tingting
2011-12-01
The quality and accuracy of remote sensing instruments have been improved significantly, however, rapid processing of large-scale remote sensing data becomes the bottleneck for remote sensing quantitative retrieval applications. The remote sensing quantitative retrieval is a data-intensive computation application, which is one of the research issues of high throughput computation. The remote sensing quantitative retrieval Grid workflow is a high-level core component of remote sensing Grid, which is used to support the modeling, reconstruction and implementation of large-scale complex applications of remote sensing science. In this paper, we intend to study middleware components of the remote sensing Grid - the dynamic Grid workflow based on the remote sensing quantitative retrieval application on Grid platform. We designed a novel architecture for the remote sensing Grid workflow. According to this architecture, we constructed the Remote Sensing Information Service Grid Node (RSSN) with Condor. We developed a graphic user interface (GUI) tools to compose remote sensing processing Grid workflows, and took the aerosol optical depth (AOD) retrieval as an example. The case study showed that significant improvement in the system performance could be achieved with this implementation. The results also give a perspective on the potential of applying Grid workflow practices to remote sensing quantitative retrieval problems using commodity class PCs.
Lessons from Providing Professional Development in Remote Sensing for Community College Instructors
NASA Astrophysics Data System (ADS)
Allen, J. E.
2014-12-01
Two-year colleges and Tribal colleges are important centers for workforce education and training. A professional development program funded by the National Science Foundation's Advanced Technological Education Program, 2007-2011 and 2012-2015, is providing the resources needed by instructors at those colleges to develop courses and programs in remote sensing. The highly successful program, "Integrated Geospatial Education and Technology Training-Remote Sensing (iGETT-RS)" will complete its currently funded work in May 2015. 76 instructors of Geographic Information Systems (GIS) from all over the country will have been served. Each of them will have spent 18 months on the project, participating in two Summer Institutes at NASA and USGS and in monthly webinars on science and technology of remote sensing. iGETT-RS participants have created their own exercises and "concept modules" for the classroom, and many have created new courses and new programs across the country. As the external evaluator for iGETT-RS expressed it, the impact on project participants can "only be described as transformational." Viewers of this presentation will learn about the iGETT-RS project design and approach; successes, failures and lessons learned by the staff; and how to access the workshop materials and participant-authored classroom resources. Viewers will also learn about the Geospatial Technology Competency Model at the US Department of Labor, and about specifications for the Remote Sensing Model Course recently developed by the National Geospatial Technology Center to provide invaluable frameworks for faculty, students, administrators and employers.
Development of a fusion approach selection tool
NASA Astrophysics Data System (ADS)
Pohl, C.; Zeng, Y.
2015-06-01
During the last decades number and quality of available remote sensing satellite sensors for Earth observation has grown significantly. The amount of available multi-sensor images along with their increased spatial and spectral resolution provides new challenges to Earth scientists. With a Fusion Approach Selection Tool (FAST) the remote sensing community would obtain access to an optimized and improved image processing technology. Remote sensing image fusion is a mean to produce images containing information that is not inherent in the single image alone. In the meantime the user has access to sophisticated commercialized image fusion techniques plus the option to tune the parameters of each individual technique to match the anticipated application. This leaves the operator with an uncountable number of options to combine remote sensing images, not talking about the selection of the appropriate images, resolution and bands. Image fusion can be a machine and time-consuming endeavour. In addition it requires knowledge about remote sensing, image fusion, digital image processing and the application. FAST shall provide the user with a quick overview of processing flows to choose from to reach the target. FAST will ask for available images, application parameters and desired information to process this input to come out with a workflow to quickly obtain the best results. It will optimize data and image fusion techniques. It provides an overview on the possible results from which the user can choose the best. FAST will enable even inexperienced users to use advanced processing methods to maximize the benefit of multi-sensor image exploitation.
NASA Astrophysics Data System (ADS)
Tsai, F.; Chen, L.-C.
2014-04-01
During the past decade, Taiwan has experienced an unusual and fast growing in the industry of mapping, remote sensing, spatial information and related markets. A successful space program and dozens of advanced airborne and ground-based remote sensing instruments as well as mobile mapping systems have been implemented and put into operation to support the vast demands of geospatial data acquisition. Moreover, in addition to the government agencies and research institutes, there are also tens of companies in the private sector providing geo-spatial data and services. However, the fast developing industry is also posing a great challenge to the education sector in Taiwan, especially the higher education for geo-spatial information. Facing this fast developing industry, the demands of skilled professionals and new technologies in order to address diversified needs are indubitably high. Consequently, while delighting in the expanding and prospering benefitted from the fast growing industry, how to fulfill these demands has become a challenge for the remote sensing and spatial information disciplines in the higher education institutes in Taiwan. This paper provides a brief insight into the status of the remote sensing and spatial information industry in Taiwan as well as the challenges of the education and technology transfer to support the increasing demands and to ensure the continuous development of the industry. In addition to the report of the current status of the remote sensing and spatial information related courses and programs in the colleges and universities, current and potential threatening issues and possible resolutions are also discussed in different points of view.
NASA Astrophysics Data System (ADS)
Zhang, J.; Okin, G.
2016-12-01
Rangelands provide a variety of important ecosystem goods and services across drylands globally. They are also the most important emitters of dust across the globe. Field data collection based on points does not represent spatially continuous information about surface variables and, given the vast size of the world's rangelands, cannot cover even a small fraction of their area. Remote sensing is potentially a labor- and time-saving method to observe important rangeland vegetation variables at both temporal and spatial scales. Information on vegetation cover, bare gap size, and plant height provide key rangeland vegetation variables in arid and semiarid rangelands, in part because they strongly impact dust emission and determine wildlife habitat characteristics. This study reports on relationships between remote sensing in the reflected solar spectrum and field measures related to these three variables, and shows how these relationships can be extended to produce spatially and temporally continuous datasets coupled with quantitative estimates of error. Field data for this study included over 3,800 Assessment, Inventory, and Monitoring (AIM) measurements on Bureau of Land Management (BLM) lands throughout the western US. Remote sensing data were derived from MODIS nadir BRDF-adjusted reflectance (NBAR) and Landsat 8 OLI surface reflectance. Normalized bare gap size, total foliar cover, herbaceous cover and herbaceous height exhibit the greatest predictability from remote sensing variables with physically-reasonable relationships between remote sensing variables and field measures. Data fields produced using these relationships across the western US exhibit good agreement with independent high-resolution imagery.
Hyperspectral sensing of forests
NASA Astrophysics Data System (ADS)
Goodenough, David G.; Dyk, Andrew; Chen, Hao; Hobart, Geordie; Niemann, K. Olaf; Richardson, Ash
2007-11-01
Canada contains 10% of the world's forests covering an area of 418 million hectares. The sustainable management of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of new and improved information products to resource managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory, forest health, foliar biochemistry, biomass, and aboveground carbon than are currently available. This paper surveys recent methods and results in hyperspectral sensing of forests and describes space initiatives for hyperspectral sensing.
The NASA CYGNSS mission: a pathfinder for GNSS scatterometry remote sensing applications
NASA Astrophysics Data System (ADS)
Rose, Randy; Gleason, Scott; Ruf, Chris
2014-10-01
Global Navigation Satellite System (GNSS) based scatterometry offers breakthrough opportunities for wave, wind, ice, and soil moisture remote sensing. Recent developments in electronics and nano-satellite technologies combined with modeling techniques developed over the past 20 years are enabling a new class of remote sensing capabilities that present more cost effective solutions to existing problems while opening new applications of Earth remote sensing. Key information about the ocean and global climate is hidden from existing space borne observatories because of the frequency band in which they operate. Using GNSS-based bi-static scatterometry performed by a constellation of microsatellites offers remote sensing of ocean wave, wind, and ice data with unprecedented temporal resolution and spatial coverage across the full dynamic range of ocean wind speeds in all precipitating conditions. The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a space borne mission being developed to study tropical cyclone inner core processes. CYGNSS consists of 8 GPS bi-static radar receivers to be deployed on separate micro-satellites in October 2016. CYGNSS will provide data to address what are thought to be the principle deficiencies with current tropical cyclone intensity forecasts: inadequate observations and modeling of the inner core. The inadequacy in observations results from two causes: 1) Much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands. 2) The rapidly evolving (genesis and intensification) stages of the tropical cyclone life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. It is anticipated that numerous additional Earth science applications can also benefit from the cost effective high spatial and temporal sampling capabilities of GNSS remote sensing. These applications include monitoring of rough and dangerous sea states, global observations of sea ice cover and extent, meso-scale ocean circulation studies, and near surface soil moisture observations. This presentation provides a primer for GNSS based scatterometry, an overview of NASA's CYGNSS mission and its expected performance, as well as a summary of possible other GNSS based remote sensing applications.
NASA Astrophysics Data System (ADS)
Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.
2017-12-01
Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.
NASA Technical Reports Server (NTRS)
Wildesen, S. E.; Phillips, E. P.
1981-01-01
Because of the size of the Pocomoke River Basin, the inaccessibility of certain areas, and study time constraints, several remote sensing techniques were used to collect base information on the river corridor, (a 23.2 km channel) and on a 1.2 km wooded floodplain. This information provided an adequate understanding of the environment and its resources, thus enabling effective management options to be designed. The remote sensing techniques used for assessment included manual analysis of high altitude color-infrared photography, computer-assisted analysis of LANDSAT-2 imagery, and the application of airborne oceanographic Lidar for topographic mapping. Results show that each techniques was valuable in providing the needed base data necessary for resource planning.
Remote sensing in Michigan for land resource management
NASA Technical Reports Server (NTRS)
Lowe, D. S.; Istvan, L. B.; Roller, N. E. G.; Sellman, A. N.; Wagner, T. W.
1975-01-01
The utilization of NASA earth resource survey technology as an important aid in the solution of current problems in resource management and environmental protection in Michigan is discussed. Remote sensing techniques to aid Michigan government agencies were used to achieve the following results: (1) provide data on Great Lakes beach recession rates to establish shoreline zoning ordinances; (2) supply technical justification for public acquisition of land to establish the St. John's Marshland Recreation Area; (3) establish economical and effective methods for performing a statewide wetlands survey; (4) accomplish a variety of regional resource management actions in the Upper Peninsula; and (5) demonstrate improved soil survey methods. The project disseminated information on remote sensing technology and provided advice and assistance to a number of users in Michigan.
Effective use of remote sensing products in litigation
NASA Technical Reports Server (NTRS)
Jaynes, R. A.
1983-01-01
A boiled-down version of major legal principles affecting the admissibility of data and products from remote sensing devices is presented. It is suggested that enhancements or classifications of digital data (from scanning devices or from digitized aerial photography) be proffered as evidence in a fashion similar to the manner in which maps from photogrammetric techniques are introduced as evidence. Every effort should be made to illucidate the processes by which digital data are analytically treated or manipulated. Remote sensing expert witnesses should be practiced in providing concise and clear explanations of both data and methods. Special emphasis should be placed on being prepared to provide a detailed accounting of steps taken to calibrate and verify spectral characteristics with ground truth.
The use of remotely sensed data for operational fisheries oceanography
NASA Technical Reports Server (NTRS)
Fiuza, Armando F. G.
1992-01-01
Satellite remote sensing data are used under two contexts in fisheries: as a tool for fisheries research and as a means to provide operational support to fishing activities. Fishing operations need synoptic data provided timely; fisheries research needs that type of data and, also, good short-term climatologies. A description is given of several experiences conducted around the world which have employed or are using satellite data for operational fisheries problems. An overview is included of the Portuguese program for fisheries support using remotely sensed data provided by satellites and in situ observations conducted by fishermen. Environmental products useful for fisheries necessarily combine satellite and in situ data. The role of fishermen as a source of good, near-real-time in situ environmental data is stressed; so far, this role seems to have been largely overlooked.
NASA Technical Reports Server (NTRS)
King, Michael; Reehorst, Andrew; Serke, Dave
2015-01-01
NASA and the National Center for Atmospheric Research have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology has recently been extended to provide volumetric coverage surrounding an airport. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize a vertical pointing cloud radar, a multifrequency microwave radiometer with azimuth and elevation pointing, and a NEXRAD radar. The new terminal area icing remote sensing system processes the data streams from these instruments to derive temperature, liquid water content, and cloud droplet size for each examined point in space. These data are then combined to ultimately provide icing hazard classification along defined approach paths into an airport.
Zhang, Jia-Hua; Li, Xin; Yao, Feng-Mei; Li, Xian-Hua
2009-08-01
Land surface temperature (LST) is an important parameter in the study on the exchange of substance and energy between land surface and air for the land surface physics process at regional and global scales. Many applications of satellites remotely sensed data must provide exact and quantificational LST, such as drought, high temperature, forest fire, earthquake, hydrology and the vegetation monitor, and the models of global circulation and regional climate also need LST as input parameter. Therefore, the retrieval of LST using remote sensing technology becomes one of the key tasks in quantificational remote sensing study. Normally, in the spectrum bands, the thermal infrared (TIR, 3-15 microm) and microwave bands (1 mm-1 m) are important for retrieval of the LST. In the present paper, firstly, several methods for estimating the LST on the basis of thermal infrared (TIR) remote sensing were synthetically reviewed, i. e., the LST measured with an ground-base infrared thermometer, the LST retrieval from mono-window algorithm (MWA), single-channel algorithm (SCA), split-window techniques (SWT) and multi-channels algorithm(MCA), single-channel & multi-angle algorithm and multi-channels algorithm & multi-angle algorithm, and retrieval method of land surface component temperature using thermal infrared remotely sensed satellite observation. Secondly, the study status of land surface emissivity (epsilon) was presented. Thirdly, in order to retrieve LST for all weather conditions, microwave remotely sensed data, instead of thermal infrared data, have been developed recently, and the LST retrieval method from passive microwave remotely sensed data was also introduced. Finally, the main merits and shortcomings of different kinds of LST retrieval methods were discussed, respectively.
Geological remote sensing signatures of terrestrial impact craters
NASA Technical Reports Server (NTRS)
Garvin, J. B.; Schnetzler, C.; Grieve, R. A. F.
1988-01-01
Geological remote sensing techniques can be used to investigate structural, depositional, and shock metamorphic effects associated with hypervelocity impact structures, some of which may be linked to global Earth system catastrophies. Although detailed laboratory and field investigations are necessary to establish conclusive evidence of an impact origin for suspected crater landforms, the synoptic perspective provided by various remote sensing systems can often serve as a pathfinder to key deposits which can then be targetted for intensive field study. In addition, remote sensing imagery can be used as a tool in the search for impact and other catastrophic explosion landforms on the basis of localized disruption and anomaly patterns. In order to reconstruct original dimensions of large, complex impact features in isolated, inaccessible regions, remote sensing imagery can be used to make preliminary estimates in the absence of field geophysical surveys. The experienced gained from two decades of planetary remote sensing of impact craters on the terrestrial planets, as well as the techniques developed for recognizing stages of degradation and initial crater morphology, can now be applied to the problem of discovering and studying eroded impact landforms on Earth. Preliminary results of remote sensing analyses of a set of terrestrial impact features in various states of degradation, geologic settings, and for a broad range of diameters and hence energies of formation are summarized. The intention is to develop a database of remote sensing signatures for catastrophic impact landforms which can then be used in EOS-era global surveys as the basis for locating the possibly hundreds of missing impact structures. In addition, refinement of initial dimensions of extremely recent structures such as Zhamanshin and Bosumtwi is an important objective in order to permit re-evaluation of global Earth system responses associated with these types of events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfmeyer, Volker; Hardesty, R. Michael; Turner, David D.
A review of remote sensing technology for lower tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer—usually characterized by an inversion—and the lowermore » troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global navigation satellite system, as well as water vapor and temperature Raman lidar and water vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
Brolly, Matthew; Woodhouse, Iain H.; Niklas, Karl J.; Hammond, Sean T.
2012-01-01
Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA) analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H100, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H100 and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 102–106 plants/hectare and heights 6–49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to remote sensing physics is recommended as a more universal indicator of volume when using remote sensing than achieved using either maximum height or H100. PMID:22457800
Objected-oriented remote sensing image classification method based on geographic ontology model
NASA Astrophysics Data System (ADS)
Chu, Z.; Liu, Z. J.; Gu, H. Y.
2016-11-01
Nowadays, with the development of high resolution remote sensing image and the wide application of laser point cloud data, proceeding objected-oriented remote sensing classification based on the characteristic knowledge of multi-source spatial data has been an important trend on the field of remote sensing image classification, which gradually replaced the traditional method through improving algorithm to optimize image classification results. For this purpose, the paper puts forward a remote sensing image classification method that uses the he characteristic knowledge of multi-source spatial data to build the geographic ontology semantic network model, and carries out the objected-oriented classification experiment to implement urban features classification, the experiment uses protégé software which is developed by Stanford University in the United States, and intelligent image analysis software—eCognition software as the experiment platform, uses hyperspectral image and Lidar data that is obtained through flight in DaFeng City of JiangSu as the main data source, first of all, the experiment uses hyperspectral image to obtain feature knowledge of remote sensing image and related special index, the second, the experiment uses Lidar data to generate nDSM(Normalized DSM, Normalized Digital Surface Model),obtaining elevation information, the last, the experiment bases image feature knowledge, special index and elevation information to build the geographic ontology semantic network model that implement urban features classification, the experiment results show that, this method is significantly higher than the traditional classification algorithm on classification accuracy, especially it performs more evidently on the respect of building classification. The method not only considers the advantage of multi-source spatial data, for example, remote sensing image, Lidar data and so on, but also realizes multi-source spatial data knowledge integration and application of the knowledge to the field of remote sensing image classification, which provides an effective way for objected-oriented remote sensing image classification in the future.
Brolly, Matthew; Woodhouse, Iain H; Niklas, Karl J; Hammond, Sean T
2012-01-01
Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA) analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H₁₀₀, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H₁₀₀ and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 10²-10⁶ plants/hectare and heights 6-49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to remote sensing physics is recommended as a more universal indicator of volume when using remote sensing than achieved using either maximum height or H₁₀₀.
Applications of Remote Sensing to Emergency Management.
1980-02-15
Contents: Foundations of Remote Sensing : Data Acquisition and Interpretation; Availability of Remote Sensing Technology for Disaster Response...Imaging Systems, Current and Near Future Satellite and Aircraft Remote Sensing Systems; Utilization of Remote Sensing in Disaster Response: Categories of...Disasters, Phases of Monitoring Activities; Recommendations for Utilization of Remote Sensing Technology in Disaster Response; Selected Reading List.
Remote measurement of pollution
NASA Technical Reports Server (NTRS)
1971-01-01
A summary of the major conclusions and recommendations developed by the panels on gaseous air pollution, water pollution, and particulate air pollution is presented. It becomes evident that many of the trace gases are amenable to remote sensing; that certain water pollutants can be measured by remote techniques, but their number is limited; and that a similar approach to the remote measurement of specific particulate pollutants will follow only after understanding of their physical, chemical, and radiative properties is improved. It is also clear that remote sensing can provide essential information in all three categories that can not be obtained by any other means.
Remote sensing, hydrological modeling and in situ observations in snow cover research: A review
NASA Astrophysics Data System (ADS)
Dong, Chunyu
2018-06-01
Snow is an important component of the hydrological cycle. As a major part of the cryosphere, snow cover also represents a valuable terrestrial water resource. In the context of climate change, the dynamics of snow cover play a crucial role in rebalancing the global energy and water budgets. Remote sensing, hydrological modeling and in situ observations are three techniques frequently utilized for snow cover investigations. However, the uncertainties caused by systematic errors, scale gaps, and complicated snow physics, among other factors, limit the usability of these three approaches in snow studies. In this paper, an overview of the advantages, limitations and recent progress of the three methods is presented, and more effective ways to estimate snow cover properties are evaluated. The possibility of improving remotely sensed snow information using ground-based observations is discussed. As a rapidly growing source of volunteered geographic information (VGI), web-based geotagged photos have great potential to provide ground truth data for remotely sensed products and hydrological models and thus contribute to procedures for cloud removal, correction, validation, forcing and assimilation. Finally, this review proposes a synergistic framework for the future of snow cover research. This framework highlights the cross-scale integration of in situ and remotely sensed snow measurements and the assimilation of improved remote sensing data into hydrological models.
Technology Trends and Remote Sensing
NASA Technical Reports Server (NTRS)
Wegener, Steve; Hipskind, R. Stephen (Technical Monitor)
2001-01-01
The science and application of remote sensing is flourishing in the digital age. Geographical information systems can provide a broad range of information tailored to the specific needs of disaster managers. Recent advances in airborne platforms, sensors and information technologies have come together provide the ability to put geo-registered, multispectral imagery on the web in near real-time. Highlights of a demonstration of NASA's First Response Experiment (FiRE) will be presented.
Remote sensing of water quality and contaminants in the California Bay-Delta
NASA Astrophysics Data System (ADS)
Fichot, C. G.; Downing, B. D.; Windham-Myers, L.; Marvin-DiPasquale, M. C.; Bergamaschi, B. A.; Thompson, D. R.; Gierach, M. M.
2014-12-01
The California Bay-Delta is a highly altered ecosystem largely reclaimed from wetlands for agriculture, and millions of acres of farmland and Californians rely on the Bay-Delta for their water supply. The Bay-Delta also harbors important habitats for many organisms, including commercial and endangered species. Recently, the Delta Stewardship Council developed a two component mission (coequal goals) to 1) provide a more reliable water supply for California while 2) protecting, restoring, and enhancing the Bay-Delta ecosystem. Dissolved organic carbon, turbidity, and contaminants such as methylmercury represent important water quality issues for water management and in the context of wetland restoration in the Bay-Delta, and can threaten the achievement of the coequal goals. Here, we use field measurements of optical properties, chemical analyses, and remotely sensed data acquired with the airborne Portable Remote Imaging SpectroMeter (PRISM ; http://prism.jpl.nasa.gov/index.html) to demonstrate these water quality parameters and the study of their dynamics in the Bay-Delta are amenable to remote sensing. PRISM provides high signal-to-noise, high spatial resolution (~2 m), hyperspectral measurements of remote-sensing reflectance in the 350-1050 nm range, and therefore has the adequate resolutions for water quality monitoring in inland, optically complex waters. Remote sensing of water quality will represent a valuable complement to existing in situ water quality monitoring programs in this region and will help with decision-making to achieve the co-equal goals.
A review of spatial downscaling of satellite remotely sensed soil moisture
NASA Astrophysics Data System (ADS)
Peng, Jian; Loew, Alexander; Merlin, Olivier; Verhoest, Niko E. C.
2017-06-01
Satellite remote sensing technology has been widely used to estimate surface soil moisture. Numerous efforts have been devoted to develop global soil moisture products. However, these global soil moisture products, normally retrieved from microwave remote sensing data, are typically not suitable for regional hydrological and agricultural applications such as irrigation management and flood predictions, due to their coarse spatial resolution. Therefore, various downscaling methods have been proposed to improve the coarse resolution soil moisture products. The purpose of this paper is to review existing methods for downscaling satellite remotely sensed soil moisture. These methods are assessed and compared in terms of their advantages and limitations. This review also provides the accuracy level of these methods based on published validation studies. In the final part, problems and future trends associated with these methods are analyzed.
Capacity Building in Using NASA Remote Sensing for Water Resources and Disasters Management
NASA Astrophysics Data System (ADS)
Mehta, A. V.; Podest, E.; Prados, A. I.
2017-12-01
The NASA Applied Remote Sensing Training Program (ARSET), a part of NASA's Applied Sciences Capacity Building program, empowers the global community through online and in-person training. The program focuses on helping policy makers, environmental managers, and other professionals, both domestic and international, use remote sensing in decision making. Since 2011, ARSET has provided more than 20 trainings in water resource and disaster management, including floods and droughts. This presentation will include an overview of the ARSET program, best practices for approaching trainings, feedback from participants, and examples of case studies from the trainings showing the application of GPM, SMAP, Landsat, Terra and Aqua (MODIS), and Sentinel (SAR) data. This presentation will also outline how ARSET can serve as a liaison between remote sensing applications developers and users in the areas of water resource and disaster management.
Remote sensing for urban planning
NASA Technical Reports Server (NTRS)
Davis, Bruce A.; Schmidt, Nicholas; Jensen, John R.; Cowen, Dave J.; Halls, Joanne; Narumalani, Sunil; Burgess, Bryan
1994-01-01
Utility companies are challenged to provide services to a highly dynamic customer base. With factory closures and shifts in employment becoming a routine occurrence, the utility industry must develop new techniques to maintain records and plan for expected growth. BellSouth Telecommunications, the largest of the Bell telephone companies, currently serves over 13 million residences and 2 million commercial customers. Tracking the movement of customers and scheduling the delivery of service are major tasks for BellSouth that require intensive manpower and sophisticated information management techniques. Through NASA's Commercial Remote Sensing Program Office, BellSouth is investigating the utility of remote sensing and geographic information system techniques to forecast residential development. This paper highlights the initial results of this project, which indicate a high correlation between the U.S. Bureau of Census block group statistics and statistics derived from remote sensing data.
Remote sensing of water quality in reservoirs and lakes in semi-arid climates
NASA Technical Reports Server (NTRS)
Anderson, H. M.; Horne, A. J.
1975-01-01
Overlake measurements using aerial cameras (remote sensing) combined with water truth collected from boats most economically provided wide-band photographs rather than precise spectra. With use of false color infrared film (400-950 nm), the reflected spectral signatures seen from hundreds to thousands of meters above the lake merged to produce various color tones. Such colors were easily and inexpensively obtained and could be recognized by lake management personnel without any prior training. The characteristic spectral signatures of various algal types were also recognizable in part by the color tone produced by remote sensing.
Optical vs. electronic enhancement of remote sensing imagery
NASA Technical Reports Server (NTRS)
Colwell, R. N.; Katibah, E. F.
1976-01-01
Basic aspects of remote sensing are considered and a description is provided of the methods which are employed in connection with the optical or electronic enhancement of remote sensing imagery. The advantages and limitations of various image enhancement methods and techniques are evaluated. It is pointed out that optical enhancement methods and techniques are currently superior to electronic ones with respect to spatial resolution and equipment cost considerations. Advantages of electronic procedures, on the other hand, are related to a greater flexibility regarding the presentation of the information as an aid for the interpretation by the image analyst.
NASA Astrophysics Data System (ADS)
Yu, J.; Gan, Z.; Zhong, L.; Deng, L.
2018-04-01
The objective of this paper is to investigate the use of UAV remote sensing in the monitoring and management of construction projects in riparian areas through the case study of embankment construction projects' monitoring in the Three Gorges Reservoir area. A three-step approach is proposed to address the problem: data acquisition with UAV, data processing, and monitoring information extraction. The results of the case study demonstrate that UAV remote sensing is capable of providing fast and accurate measurements and calculations for the needs of monitoring of riparian constructions.
Design and construction of a remote sensing apparatus
NASA Technical Reports Server (NTRS)
Maples, D.; Hagewood, J. F.
1973-01-01
The methods of identifying plant and soil types using remote sensing techniques are described. The equipment employed consists of a balloon system and a mobile remote sensing laboratory housing a radiometer which is mounted on a turret mechanism. The radiometer is made up of a telescope whose lenses are replaced by mirrors which channel received radiation into a monochromator. The radiation is then focused onto detectors for measurement of the intensity of the electromagnetic energy as a function of wavelength. Measurements from a wavelength of 0.2 microns to 15 microns are obtained with the system. diagrams are provided.
Multispectral analysis of ocean dumped materials
NASA Technical Reports Server (NTRS)
Johnson, R. W.
1977-01-01
Experiments conducted in the Atlantic coastal zone indicated that plumes resulting from ocean dumping of acid wastes and sewage sludge have unique spectral characteristics. Remotely sensed wide area synoptic coverage provided information on these pollution features that was not readily available from other sources. Aircraft remotely sensed photographic and multispectral scanner data were interpreted by two methods. First, qualitative analyses in which pollution features were located, mapped, and identified without concurrent sea truth and, second, quantitative analyses in which concurrently collected sea truth was used to calibrate the remotely sensed data and to determine quantitative distributions of one or more parameters in a plume.
The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce
NASA Astrophysics Data System (ADS)
Chen, Xi; Zhou, Liqing
2015-12-01
With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.
Specific sensors for special roles in oil spill remote sensing
NASA Astrophysics Data System (ADS)
Brown, Carl E.; Fingas, Mervin F.
1997-01-01
Remote sensing is becoming an increasingly important tool for the effective direction of oil spill countermeasures. Cleanup personnel have recognized that remote sensing can increase spill cleanup efficiency. The general public expects that the government and/or the spiller know the location and the extent of the contamination. The Emergencies Science Division (ESD) of Environment Canada, is responsible for remote sensing during oil spill emergencies along Canada's three coastlines, extensive inland waterways, as well as over the entire land mass. In addition to providing operational remote sensing, ESD conducts research into the development of airborne oil spill remote sensors, including the Scanning Laser Environmental Airborne Fluorosensor (SLEAF) and the Laser Ultrasonic Remote SEnsing of Oil Thickness (LURSOT) sensor. It has long been recognized that there is not one sensor or 'magic bullet' which is capable of detecting oil and related petroleum products in all environments and spill scenarios. There are sensors which possess a wide filed-of-view and can therefore be used to map the overall extent of the spill. These sensors, however lack the specificity required to positively identify oil and related products. This is even more of a problem along complicated beach and shoreline environments where several substrates are present. The specific laser- based sensors under development by Environment Canada are designed to respond to special roles in oil spill response. In particular, the SLEAF is being developed to unambiguously detect and map oil and related petroleum products in complicated marine and shoreline environments where other non-specific sensors experience difficulty. The role of the SLEAF would be to confirm or reject suspected oil contamination sites that have been targeted by the non- specific sensors. This confirmation will release response crews from the time consuming task of physically inspecting each site, and direct crews to sites that require remediation. The LURSOT sensor will provide an absolute measurement of oil thickness form an airborne platform. There are presently no sensors available, either airborne or in the laboratory which can provide an absolute measurement of oil thickness. This information is necessary for the effective direction of spill countermeasures such as dispersant application and in-situ burning. This paper will describe the development of laser-based airborne oil spill remote sensing instrumentation at Environment Canada and identify the anticipated benefits of the use of this technology to the oil spill response community.
Satellite Remote Sensing of Harmful Algal Blooms (HABs) and a Potential Synthesized Framework
Shen, Li; Xu, Huiping; Guo, Xulin
2012-01-01
Harmful algal blooms (HABs) are severe ecological disasters threatening aquatic systems throughout the World, which necessitate scientific efforts in detecting and monitoring them. Compared with traditional in situ point observations, satellite remote sensing is considered as a promising technique for studying HABs due to its advantages of large-scale, real-time, and long-term monitoring. The present review summarizes the suitability of current satellite data sources and different algorithms for detecting HABs. It also discusses the spatial scale issue of HABs. Based on the major problems identified from previous literature, including the unsystematic understanding of HABs, the insufficient incorporation of satellite remote sensing, and a lack of multiple oceanographic explanations of the mechanisms causing HABs, this review also attempts to provide a comprehensive understanding of the complicated mechanism of HABs impacted by multiple oceanographic factors. A potential synthesized framework can be established by combining multiple accessible satellite remote sensing approaches including visual interpretation, spectra analysis, parameters retrieval and spatial-temporal pattern analysis. This framework aims to lead to a systematic and comprehensive monitoring of HABs based on satellite remote sensing from multiple oceanographic perspectives. PMID:22969372
Advancements in Open Geospatial Standards for Photogrammetry and Remote Sensing from Ogc
NASA Astrophysics Data System (ADS)
Percivall, George; Simonis, Ingo
2016-06-01
The necessity of open standards for effective sharing and use of remote sensing continues to receive increasing emphasis in policies of agencies and projects around the world. Coordination on the development of open standards for geospatial information is a vital step to insure that the technical standards are ready to support the policy objectives. The mission of the Open Geospatial Consortium (OGC) is to advance development and use of international standards and supporting services that promote geospatial interoperability. To accomplish this mission, OGC serves as the global forum for the collaboration of geospatial data / solution providers and users. Photogrammetry and remote sensing are sources of the largest and most complex geospatial information. Some of the most mature OGC standards for remote sensing include the Sensor Web Enablement (SWE) standards, the Web Coverage Service (WCS) suite of standards, encodings such as NetCDF, GMLJP2 and GeoPackage, and the soon to be approved Discrete Global Grid Systems (DGGS) standard. In collaboration with ISPRS, OGC working with government, research and industrial organizations continue to advance the state of geospatial standards for full use of photogrammetry and remote sensing.
NASA Astrophysics Data System (ADS)
Moonon, Altan-Ulzii; Hu, Jianwen; Li, Shutao
2015-12-01
The remote sensing image fusion is an important preprocessing technique in remote sensing image processing. In this paper, a remote sensing image fusion method based on the nonsubsampled shearlet transform (NSST) with sparse representation (SR) is proposed. Firstly, the low resolution multispectral (MS) image is upsampled and color space is transformed from Red-Green-Blue (RGB) to Intensity-Hue-Saturation (IHS). Then, the high resolution panchromatic (PAN) image and intensity component of MS image are decomposed by NSST to high and low frequency coefficients. The low frequency coefficients of PAN and the intensity component are fused by the SR with the learned dictionary. The high frequency coefficients of intensity component and PAN image are fused by local energy based fusion rule. Finally, the fused result is obtained by performing inverse NSST and inverse IHS transform. The experimental results on IKONOS and QuickBird satellites demonstrate that the proposed method provides better spectral quality and superior spatial information in the fused image than other remote sensing image fusion methods both in visual effect and object evaluation.
NASA Astrophysics Data System (ADS)
Wang, S.; Zhang, L.; Guanter, L.; Huang, C.
2017-12-01
Photosynthesis and evapotranspiration (ET) are the two most important activities of vegetation and make a great contribution to carbon, water and energy exchanges. Remote sensing provides opportunities for monitoring these processes across time and space. This study focuses on tracking diurnal changes of photosynthesis and evapotranspiration over soybean using multiple measurement techniques. Diurnal changes of both remote sensing-based indicators, including active and passive chlorophyll fluorescence and biophysical-related parameters, including photosynthesis rate (photo) and leaf stomatal conductance (cond), were observed. Results showed that both leaf-level steady-state fluorescence (Fs) and canopy-level solar-induced chlorophyll fluorescence were linearly correlated to photosynthetically active radiation (PAR) during the daytime. A double-peak diurnal change curve was observed for leaf-level photo and cond but not for Fs or SIF. Photo and cond showed a strong nonlinear (second-order) correlation, indicating that photosynthesis, which might be remotely sensed by SIF, has the opportunity to track short-term changes of ET. Results presented in this report will be helpful for better understanding the relationship between remote-sensing-based indices and vegetation's biophysical processes.
Theory and analysis of statistical discriminant techniques as applied to remote sensing data
NASA Technical Reports Server (NTRS)
Odell, P. L.
1973-01-01
Classification of remote earth resources sensing data according to normed exponential density statistics is reported. The use of density models appropriate for several physical situations provides an exact solution for the probabilities of classifications associated with the Bayes discriminant procedure even when the covariance matrices are unequal.
USDA-ARS?s Scientific Manuscript database
Remotely-sensed soil moisture studies have mainly focused on retrievals using active and passive microwave (MW) sensors whose measurements provided a direct relationship to soil moisture (SM). MW sensors present obvious advantages such as the ability to retrieve through non-precipitating cloud cover...
Hyperspectral remote sensing of canopy biodiversity in Hawaiian lowland rainforests
Kimberly M. Carlson; Gregory P. Asner; R. Flint Hughes; Rebecca Ostertag; Roberta E. Martin
2007-01-01
Mapping biological diversity is a high priority for conservation research, management and policy development, but few studies have provided diversity data at high spatial resolution from remote sensing. We used airborne imaging spectroscopy to map woody vascular plant species richness in lowland tropical forest ecosystems in Hawaii. Hyperspectral signatures spanning...
InP HEMT Integrated Circuits for Submillimeter Wave Radiometers in Earth Remote Sensing
NASA Technical Reports Server (NTRS)
Deal, William R.; Chattopadhyay, Goutam
2012-01-01
The operating frequency of InP integrated circuits has pushed well into the Submillimeter Wave frequency band, with amplification reported as high as 670 GHz. This paper provides an overview of current performance and potential application of InP HEMT to Submillimeter Wave radiometers for earth remote sensing.
How to Study the Earth From Space.
ERIC Educational Resources Information Center
Boyer, Robert E.
This booklet is one in a series of instructional aids designed for use by elementary and secondary school science teachers. It reviews how the various forms of remote sensing can provide invaluable knowledge about the earth as the need for environmental information continues to increase. Remote sensing involves space photography, infrared imagery,…
Radarsat Satellite Images: A New Geography Tool for Upper Elementary Classrooms.
ERIC Educational Resources Information Center
Kirman, Joseph M.
1999-01-01
Describes the Canadian Radarsat Satellite and remote sensing in order to demonstrate that teachers can incorporate this technology into the classroom. Maintains that third, fourth, fifth, and sixth grade students can understand and interpret remote sensing images and Landsat images. Provides a list of teaching resources other than the expensive…
The Sky Is the Limit: Reconstructing Physical Geography from an Aerial Perspective
ERIC Educational Resources Information Center
Williams, Richard D.; Tooth, Stephen; Gibson, Morgan
2017-01-01
In an era of rapid geographical data acquisition, interpretations of remote sensing products are an integral part of many undergraduate geography degree schemes but there are fewer opportunities for collection and processing of primary remote sensing data. Unmanned Aerial Vehicles (UAVs) provide a relatively inexpensive opportunity to introduce…
USDA-ARS?s Scientific Manuscript database
Thermal-infrared remote sensing of land surface temperature provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition. A thermal-based scheme, called the Two-Source Energy Balance (TSEB) model, solves for the soil/substrate and canopy temp...
Potential for a remote-sensing-aided forest resource survey for the whole globe
E. Tomppo; R. L. Czaplewski
2002-01-01
The Global Forest Resources Assessment 2000 (FRA 2000) relied primarily on information provided by countries, but FAO also conducted a remote-sensing study of tropical forests to complement country information and to bolster understanding of land-cover change processes in the tropics, especially deforestation, forest degradation, fragmentation and shifting cultivation...
A tool for NDVI time series extraction from wide-swath remotely sensed images
NASA Astrophysics Data System (ADS)
Li, Zhishan; Shi, Runhe; Zhou, Cong
2015-09-01
Normalized Difference Vegetation Index (NDVI) is one of the most widely used indicators for monitoring the vegetation coverage in land surface. The time series features of NDVI are capable of reflecting dynamic changes of various ecosystems. Calculating NDVI via Moderate Resolution Imaging Spectrometer (MODIS) and other wide-swath remotely sensed images provides an important way to monitor the spatial and temporal characteristics of large-scale NDVI. However, difficulties are still existed for ecologists to extract such information correctly and efficiently because of the problems in several professional processes on the original remote sensing images including radiometric calibration, geometric correction, multiple data composition and curve smoothing. In this study, we developed an efficient and convenient online toolbox for non-remote sensing professionals who want to extract NDVI time series with a friendly graphic user interface. It is based on Java Web and Web GIS technically. Moreover, Struts, Spring and Hibernate frameworks (SSH) are integrated in the system for the purpose of easy maintenance and expansion. Latitude, longitude and time period are the key inputs that users need to provide, and the NDVI time series are calculated automatically.
Comparison of Balloonsonde and Remote Sensing Atmospheric Measurements
NASA Technical Reports Server (NTRS)
Brinker, David J.; Reehorst, Andrew L.; Power, Jack
2006-01-01
As part of its aircraft icing research program, the NASA Glenn Research Center is conducting a program to develop technologies for the remote sensing of atmospheric conditions. A suite of instruments, currently ground-based, are used to identify a region of supercooled liquid water which is labeled as hazardous if its liquid water content is sufficiently high. During the recently completed Alliance Icing Research Study (AIRS II), these instruments were deployed in conjunction with those of other U.S. and Canadian researchers at the Mirabel Airport near Montreal. As part of the study, balloonsondes were employed to provide in-situ measurement of the atmospheric conditions that were being concurrently remotely sensed. Balloonsonde launches occurred daily at 1200 GMT to provide AIRS forecasters with local data and additionally when research aircraft were present in the airspace. In this paper, we compare the processed data from the NASA remote sensing instruments, which included an X-band radar, lidar and two radiometers, to the data gathered from the 70 soundings conducted while the NASA instruments were active. Among the parameters compared are cloud upper and lower boundaries, temperature and humidity profiles and freezing levels.
Tracking and Monitoring Oil Slicks Using remote Sensing
NASA Astrophysics Data System (ADS)
Klemas, V. V.
2011-12-01
Tracking and Monitoring Oil Slicks Using Remote Sensing Victor Klemas, Ph.D. , College of Earth, Ocean and Environment, University of Delaware, Newark, DE 19716 Abstract Oil spills can harm marine life in the ocean, estuaries and wetlands. To limit the damage by a spill and facilitate cleanup efforts, emergency managers need information on spill location, size and extent, direction and speed of oil movement, wind, current, and wave information for predicting oil drift and dispersion. The main operational data requirements are fast turn-around time and frequent imaging to monitor the dynamics of the spill. Radar and multispectral remote sensors on satellites and aircraft meet most of these requirements by tracking the spilled oil at various resolutions, over wide areas and at frequent intervals. They also provide key inputs to drift prediction models and facilitate targeting of skimming and booming efforts. Satellite data are frequently supplemented by information provided by aircraft, ships and remotely controlled underwater robots. The Sea Princess tanker grounding off the coast of Wales and the explosion on the Deepwater Horizon rig in the Gulf of Mexico provide two representative, yet different, scenarios for evaluating the effectiveness of remote sensors during oil spill emergencies. Session NH17: Remote Sensing of Natural Hazards Session Chair: Ramesh P. Singh Sponsor: Natural Hazards (NH)
The micron- to kilometer-scale Moon: linking samples to orbital observations, Apollo to LRO
NASA Astrophysics Data System (ADS)
Crites, S.; Lucey, P. G.; Taylor, J.; Martel, L.; Sun, L.; Honniball, C.; Lemelin, M.
2017-12-01
The Apollo missions have shaped the field of lunar science and our understanding of the Moon, from global-scale revelations like the magma ocean hypothesis, to providing ground truth for compositional remote sensing and absolute ages to anchor cratering chronologies. While lunar meteorite samples can provide a global- to regional-level view of the Moon, samples returned from known locations are needed to directly link orbital-scale observations with laboratory measurements-a link that can be brought to full fruition with today's extremely high spatial resolution observations from Lunar Reconnaissance Orbiter and other recent missions. Korotev et al. (2005) described a scenario of the Moon without Apollo to speculate about our understanding of the Moon if our data were confined to lunar meteorites and remote sensing. I will review some of the major points discussed by Korotev et al. (2005), and focus on some of the ways in which spectroscopic remote sensing in particular has benefited from the Apollo samples. For example, could the causes and effects of lunar-style space weathering have been unraveled without the Apollo samples? What would be the limitations on remote sensing compositional measurements that rely on Apollo samples for calibration and validation? And what new opportunities to bring together orbital and sample analyses now exist, in light of today's high spatial and spectral resolution remote sensing datasets?
Integration of remote sensing based surface information into a three-dimensional microclimate model
NASA Astrophysics Data System (ADS)
Heldens, Wieke; Heiden, Uta; Esch, Thomas; Mueller, Andreas; Dech, Stefan
2017-03-01
Climate change urges cities to consider the urban climate as part of sustainable planning. Urban microclimate models can provide knowledge on the climate at building block level. However, very detailed information on the area of interest is required. Most microclimate studies therefore make use of assumptions and generalizations to describe the model area. Remote sensing data with area wide coverage provides a means to derive many parameters at the detailed spatial and thematic scale required by urban climate models. This study shows how microclimate simulations for a series of real world urban areas can be supported by using remote sensing data. In an automated process, surface materials, albedo, LAI/LAD and object height have been derived and integrated into the urban microclimate model ENVI-met. Multiple microclimate simulations have been carried out both with the dynamic remote sensing based input data as well as with manual and static input data to analyze the impact of the RS-based surface information and the suitability of the applied data and techniques. A valuable support of the integration of the remote sensing based input data for ENVI-met is the use of an automated processing chain. This saves tedious manual editing and allows for fast and area wide generation of simulation areas. The analysis of the different modes shows the importance of high quality height data, detailed surface material information and albedo.
NASA Astrophysics Data System (ADS)
Ceccato, P.; Bell, M. A.; Mantilla, G.; Thomson, M. C.
2012-12-01
This presentation will provide an overview of capacity-building activities developed by the International Research Institute for Climate and Society to help diverse stakeholder communities use remote sensing to monitor climate and environmental factors that influence public health, natural disasters and food security. Teaching at a graduate level at Columbia University, at summer institutes and in counties, we developed training modules and case studies on how to combine remote sensing data to monitor precipitation, temperature, vegetation, and water bodies with climate information and field data (e.g. fires, infectious disease incidence, Desert Locusts) to 1) understand the relationship between climate, environmental factors and specific challenges to development and 2) provide methodologies and tools to forecast and better manage the problems. At Columbia University, we have developed a graduate course that provides the practical and theoretical foundations for the application of remote sensing techniques to the identification and monitoring of environmental change. We use the IRI Data Library, an online tool, to i) manage diverse data, ii) visualize data, iii) analyze remote sensing images and iii) combine data from different sources (e.g., fires, public health, natural disasters, agriculture). The IRI Data Library tool allows the users to analyze on-line climatic and environmental factors in relation to particular problems at various space and time scales. A Summer Institute on Climate Information for Public Health, first developed in 2008, has brought together experts from the public health and climate communities at the IRI to learn how to integrate climate and environmental factors with public health issues. In countries and regions, we also provide training for climate and public health working professionals in Madagascar, Ethiopia, Eritrea, Colombia and the Mercosur Region (including Uruguay, Paraguay, Brazil and Argentina).
Remote sensing: Snow monitoring tool for today and tomorrow
NASA Technical Reports Server (NTRS)
Rango, A.
1977-01-01
Various types of remote sensing are now available or will be in the future for snowpack monitoring. Aircraft reconnaissance is now used in a conventional manner by various water resources agencies to obtain information on snowlines, depth, and melting of the snowpack for forecasting purposes. The use of earth resources satellites for mapping snowcovered area, snowlines, and changes in snowcover during the spring has increased during the last five years. Gamma ray aircraft flights, although confined to an extremely low altitude, provide a means for obtaining valuable information on snow water equivalent. The most recently developed remote sensing technology for snow, namely, microwave monitoring, has provided initial results that may eventually allow us to infer snow water equivalent or depth, snow wetness, and the hydrologic condition of the underlying soil.
The Solar Spectrum: An Atmospheric Remote Sensing Perspective
NASA Technical Reports Server (NTRS)
Toon, Geoff
2013-01-01
The solar spectrum not only contains information about the composition and structure of the sun, it also provides a bright and stable continuum source for earth remote sensing (atmosphere and surface). Many types of remote sensors use solar radiation. While high-resolution spaceborne sensors (e.g. ACE) can largely remove the effects of the solar spectrum by exo-atmospheric calibration, this isn't an option for sub-orbital sensors, such as the FTIR spectrometers used in the NDACC and TCCON networks. In this case the solar contribution must be explicitly included in the spectral analysis. In this talk the methods used to derive the solar spectrum are presented, and the underlying solar physics are discussed. Implication for remote sensing are described.
Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA
NASA Astrophysics Data System (ADS)
Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Wiegele, A.; Christner, E.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.
2012-12-01
Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.
Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA
NASA Astrophysics Data System (ADS)
Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.
2012-08-01
Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologues data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and interferences from humidity are the leading error sources. We introduce an a posteriori correction method of the humidity interference error and we recommend applying it for isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.
Qin, Changbo; Jia, Yangwen; Su, Z; Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen
2008-07-29
This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems.
Qin, Changbo; Jia, Yangwen; Su, Z.(Bob); Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen
2008-01-01
This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems. PMID:27879946
Remotely-sensed and in-situ observations of Greenland firn aquifers
NASA Astrophysics Data System (ADS)
Forster, R. R.; Miège, C.; Koenig, L.; Solomon, D. K.; Schmerr, N. C.; Miller, O. L.; Ligtenberg, S.; Montgomery, L. N.; Brucker, L.; Miller, J.; Legchenko, A.
2017-12-01
In 2011, prior to seasonal melt, our research team drilled into an unknown firn aquifer system in Southeast Greenland. Since 2013, we have conducted four field seasons, complemented with modeling and remote sensing to gain knowledge regarding firn aquifers and surrounding snow/firn/ice. We aim to provide a more complete picture of the system including formation conditions, controlling mechanisms, spatial and temporal changes, and connections with the larger ice sheet hydrologic system. This work summarizes remote sensing data since 1993 showing the spatial and temporal evolution of the aquifer extent. To complement the remote sensing and better characterize the firn aquifer in the field, we use a combination of three different geophysics methods. Ground penetrating radar provides us knowledge of the water table elevation and its variations, magnetic-resonance soundings give us the water volume held in the aquifer and the active seismic data allow us to locate the bottom of the aquifer. In addition, firn/ice-core stratigraphy suggests that the timing and evolution of the aquifer bottom is controlled by thermodynamics. Our compilation of remote sensing measurements point to a dynamic and expanding aquifer system. We found that firn aquifers have existed at least since 1993 (dataset start) in the high melt and high accumulation region of the South Eastern Greenland ice sheet. Firn aquifers are now growing toward the interior related to the warming air temperatures in the Arctic and more intense melt during summers. These remotely sensed observations and in-situ measurements are required to validate improved ice sheet mass balance models that incorporate firn aquifers. They are also needed to further investigate the potential of firn aquifer discharge to the glacier bed via crevasse hydrofracturing influencing ice dynamics.
Tunnel-Site Selection by Remote Sensing Techniques
A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave
Sensing our Environment: Remote sensing in a physics classroom
NASA Astrophysics Data System (ADS)
Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit
2017-04-01
Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora. The teams then processed their data and presented it to their foreign partners for evaluation in a video conference call. Alongside exciting insights about their respective environments and living conditions, the young scientists had daily access to live satellite sensors and remote sensing through the DLR_School_Lab in Germany and the Earth and Planetary Image Facility in Israel. This paper provides an overview regarding the project, the techniques used and the evaluation results following a pre-past-questionnaire design, and above all demonstrates the use of remote sensing as an application for physics teaching in a significant learning environment.
NASA Technical Reports Server (NTRS)
Jenkins, D. W.
1972-01-01
NASA chose the watershed of Rhode River, a small sub-estuary of the Bay, as a representative test area for intensive studies of remote sensing, the results of which could be extrapolated to other estuarine watersheds around the Bay. A broad program of ecological research was already underway within the watershed, conducted by the Smithsonian Institution's Chesapeake Bay Center for Environmental Studies (CBCES) and cooperating universities. This research program offered a unique opportunity to explore potential applications for remote sensing techniques. This led to a joint NASA-CBCES project with two basic objectives: to evaluate remote sensing data for the interpretation of ecological parameters, and to provide essential data for ongoing research at the CBCES. A third objective, dependent upon realization of the first two, was to extrapolate photointerpretive expertise gained at the Rhode River watershed to other portions of the Chesapeake Bay.
Toward the optimization of PC-based training
NASA Astrophysics Data System (ADS)
Cho, Kohei; Murai, Shunji
Since 1992, the National Space Development Agency of Japan (NASDA) and the Economic and Social Commission for Asia and the Pacific (ESCAP) have been co-organising the Regional Remote Sensing Seminar on Tropical Ecosystem Management (Program Chairman: Prof. Shunji Murai) every year in some country in Asia. In these seminars, the members of the ISPRS Working Group VI/2 'Computer Assisted Teaching' have been performing a PC-based hands-on-training on remote sensing and GIS for beginners. The main objective of the training was to transfer not only knowledge but also the technology of remote sensing and GIS to the beginners. The software and CD-ROM data set provided at the training were well designed not only for training but also for practical data analysis. This paper presents an outline of the training and discusses the optimisation of PC-based training for remote sensing and GIS.
Application of remote sensing to monitoring and studying dispersion in ocean dumping
NASA Technical Reports Server (NTRS)
Johnson, R. W.; Ohlhorst, C. W.
1981-01-01
Remotely sensed wide area synoptic data provides information on ocean dumping that is not readily available by other means. A qualitative approach has been used to map features, such as river plumes. Results of quantitative analyses have been used to develop maps showing quantitative distributions of one or more water quality parameters, such as suspended solids or chlorophyll a. Joint NASA/NOAA experiments have been conducted at designated dump areas in the U.S. coastal zones to determine the applicability of aircraft remote sensing systems to map plumes resulting from ocean dumping of sewage sludge and industrial wastes. A second objective is related to the evaluation of previously developed quantitative analysis techniques for studying dispersion of materials in these plumes. It was found that plumes resulting from dumping of four waste materials have distinctive spectral characteristics. The development of a technology for use in a routine monitoring system, based on remote sensing techniques, is discussed.
Early Warning of Food Security Crises in Urban Areas: The Case of Harare, Zimbabwe, 2007
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Funk, Christopher C.
2008-01-01
In 2007, the citizens of Harare, Zimbabwe began experiencing an intense food security crisis. The crisis, due to a complex mix of poor government policies, high inflation rates and production decline due to drought, resulted in a massive increase in the number of food insecure people in Harare. The international humanitarian aid response to this crisis was largely successful due to the early agreement among donors and humanitarian aid officials as to the size and nature of the problem. Remote sensing enabled an early and decisive movement of resources greatly assisting the delivery of food aid in a timely manner. Remote sensing data gave a clear and compelling assessment of significant crop production shortfalls, and provided donors of humanitarian assistance a single number around which they could come to agreement. This use of remote sensing data typifies how remote sensing may be used in early warning systems in Africa.
NASA Technical Reports Server (NTRS)
Myers, V. I.; Frazee, C. J.; Rusche, A. E.; Moore, D. G.; Nelson, G. D.; Westin, F. C.
1974-01-01
The basic procedures for interpreting remote sensing imagery to rapidly develop general soils and land use inventories were developed and utilized in Pennington County, South Dakota. These procedures and remote sensing data products were illustrated and explained to many user groups, some of whom are interested in obtaining similar data. The general soils data were integrated with land soils data supplied by the county director of equalization to prepare a land value map. A computer print-out of this map indicating a land value for each quarter section is being used in tax reappraisal of Pennington County. The land use data provided the land use planners with the present use of land in Pennington County. Additional uses of remote sensing applications are also discussed including tornado damage assessment, hail damage evaluation, and presentation of soil and land value information on base maps assembled from ERTS-1 imagery.
Satellite remote sensing for hydrology and water management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, E.C.; Power, C.H.; Micallef, A.
Interest in satellite remote sensing is fast moving away from pure science and individual case studies towards truly operational applications. At the same time the micro-computer revolution is ensuring that data reception and processing facilities need no longer be the preserve of a small number of global centers, but can be common-place installations in smaller countries and even local regional agency offices or laboratories. As remote sensing matures, and its applications proliferate, a new type of treatment is required to ensure both that decision makers, managers and engineers with problems to solve are informed of today's opportunities and that scientistsmore » are provided with integrated overviews of the ever-growing need for their services. This book addresses these needs uniquely focusing on the area bounded by satellite remote sensing, pure and applied hydrological sciences, and a specific world region, namely the Mediterranean basin.« less
China national space remote sensing infrastructure and its application
NASA Astrophysics Data System (ADS)
Li, Ming
2016-07-01
Space Infrastructure is a space system that provides communication, navigation and remote sensing service for broad users. China National Space Remote Sensing Infrastructure includes remote sensing satellites, ground system and related systems. According to the principle of multiple-function on one satellite, multiple satellites in one constellation and collaboration between constellations, series of land observation, ocean observation and atmosphere observation satellites have been suggested to have high, middle and low resolution and fly on different orbits and with different means of payloads to achieve a high ability for global synthetically observation. With such an infrastructure, we can carry out the research on climate change, geophysics global surveying and mapping, water resources management, safety and emergency management, and so on. I This paper gives a detailed introduction about the planning of this infrastructure and its application in different area, especially the international cooperation potential in the so called One Belt and One Road space information corridor.
Exploring Models and Data for Remote Sensing Image Caption Generation
NASA Astrophysics Data System (ADS)
Lu, Xiaoqiang; Wang, Binqiang; Zheng, Xiangtao; Li, Xuelong
2018-04-01
Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at https://github.com/201528014227051/RSICD_optimal
Spectral estimates of net radiation and soil heat flux
Daughtry, C.S.T.; Kustas, William P.; Moran, M.S.; Pinter, P. J.; Jackson, R. D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.
1990-01-01
Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under nonadvective conditions. ?? 1990.
Introduction to the physics and techniques of remote sensing
NASA Technical Reports Server (NTRS)
Elachi, Charles
1987-01-01
This book presents a comprehensive overview of the basics behind remote-sensing physics, techniques, and technology. The physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum, and the concepts behind remote sensing techniques now established and future ones under development are discussed. Applications of remote sensing are described for a wide variety of earth and planetary atmosphere and surface sciences. Solid surface sensing across the electromagnetic spectrum, ocean surface sensing, basic principles of atmospheric sensing and radiative transfer, and atmospheric remote sensing in the microwave, millimeter, submillimeter, and infrared regions are examined.
Remote sensing in Michigan for land resource management
NASA Technical Reports Server (NTRS)
Sattinger, I. J.; Istvan, L. B.; Roller, N. E. G.; Lowe, D. S.
1977-01-01
An extensive program was conducted to establish practical uses of NASA earth resource survey technology in meeting resource management problems throughout Michigan. As a result, a broad interest in and understanding of the usefulness of remote sensing methods was developed and a wide variety of applications was undertaken to provide information needed for informed decision making and effective action.
Land Cover Change and Remote Sensing in the Classroom: An Exercise to Study Urban Growth
ERIC Educational Resources Information Center
Delahunty, Tina; Lewis-Gonzales, Sarah; Phelps, Jack; Sawicki, Ben; Roberts, Charles; Carpenter, Penny
2012-01-01
The processes and implications of urban growth are studied in a variety of disciplines as urban growth affects both the physical and human landscape. Remote sensing methods provide ways to visualize and mathematically represent urban growth; and resultant land cover change data enable both quantitative and qualitative analysis. This article helps…
Remote sensing and the pelagic fisheries environment off Oregon
NASA Technical Reports Server (NTRS)
Pearcy, W. G.
1970-01-01
Remote sensing oceanography at Oregon State University is part of a multidisciplinary research program: (1) to learn more about nearshore oceanographic processes and how they affect the production of marine life and the availability of albacore tuna; and (2) to provide fishermen with information in near real time that will be useful in scouting for albacore concentrations.
Effects of the Ionosphere on Passive Microwave Remote Sensing of Ocean Salinity from Space
NASA Technical Reports Server (NTRS)
LeVine, D. M.; Abaham, Saji; Hildebrand, Peter H. (Technical Monitor)
2001-01-01
Among the remote sensing applications currently being considered from space is the measurement of sea surface salinity. The salinity of the open ocean is important for understanding ocean circulation and for modeling energy exchange with the atmosphere. Passive microwave remote sensors operating near 1.4 GHz (L-band) could provide data needed to fill the gap in current coverage and to complement in situ arrays being planned to provide subsurface profiles in the future. However, the dynamic range of the salinity signal in the open ocean is relatively small and propagation effects along the path from surface to sensor must be taken into account. In particular, Faraday rotation and even attenuation/emission in the ionosphere can be important sources of error. The purpose or this work is to estimate the magnitude of these effects in the context of a future remote sensing system in space to measure salinity in L-band. Data will be presented as a function of time location and solar activity using IRI-95 to model the ionosphere. The ionosphere presents two potential sources of error for the measurement of salinity: Rotation of the polarization vector (Faraday rotation) and attenuation/emission. Estimates of the effect of these two phenomena on passive remote sensing over the oceans at L-band (1.4 GHz) are presented.
NASA Astrophysics Data System (ADS)
Ozdogan, M.; Serrat-Capdevila, A.; Anderson, M. C.
2017-12-01
Despite increasing scarcity of freshwater resources, there is dearth of spatially explicit information on irrigation water consumption through evapotranspiration, particularly in semi-arid and arid geographies. Remote sensing, either alone or in combination with ground surveys, is increasingly being used for irrigation water management by quantifying evaporative losses at the farm level. Increased availability of observations, sophisticated algorithms, and access to cloud-based computing is also helping this effort. This presentation will focus on crop-specific evapotranspiration estimates at the farm level derived from remote sensing in a number of water-scarce regions of the world. The work is part of a larger effort to quantify irrigation water use and improve use efficiencies associated with several World Bank projects. Examples will be drawn from India, where groundwater based irrigation withdrawals are monitored with the help of crop type mapping and evapotranspiration estimates from remote sensing. Another example will be provided from a northern irrigation district in Mexico, where remote sensing is used for detailed water accounting at the farm level. These locations exemplify the success stories in irrigation water management with the help of remote sensing with the hope that spatially disaggregated information on evapotranspiration can be used as inputs for various water management decisions as well as for better water allocation strategies in many other water scarce regions.
Remote sensing of high-latitude ionization profiles by ground-based and spaceborne instrumentation
NASA Technical Reports Server (NTRS)
Vondrak, R. R.
1981-01-01
Ionospheric specification and modeling are now largely based on data provided by active remote sensing with radiowave techniques (ionosondes, incoherent-scatter radars, and satellite beacons). More recently, passive remote sensing techniques have been developed that can be used to monitor quantitatively the spatial distribution of high-latitude E-region ionization. These passive methods depend on the measurement, or inference, of the energy distribution of precipitating kilovolt electrons, the principal source of the nighttime E-region at high latitudes. To validate these techniques, coordinated measurements of the auroral ionosphere have been made with the Chatanika incoherent-scatter radar and a variety of ground-based and spaceborne sensors
Optical registration of spaceborne low light remote sensing camera
NASA Astrophysics Data System (ADS)
Li, Chong-yang; Hao, Yan-hui; Xu, Peng-mei; Wang, Dong-jie; Ma, Li-na; Zhao, Ying-long
2018-02-01
For the high precision requirement of spaceborne low light remote sensing camera optical registration, optical registration of dual channel for CCD and EMCCD is achieved by the high magnification optical registration system. System integration optical registration and accuracy of optical registration scheme for spaceborne low light remote sensing camera with short focal depth and wide field of view is proposed in this paper. It also includes analysis of parallel misalignment of CCD and accuracy of optical registration. Actual registration results show that imaging clearly, MTF and accuracy of optical registration meet requirements, it provide important guarantee to get high quality image data in orbit.
RFI and Remote Sensing of the Earth from Space
NASA Technical Reports Server (NTRS)
Le Vine, D. M.; Johnson, J. T.; Piepmeier, J.
2016-01-01
Passive microwave remote sensing of the Earth from space provides information essential for understanding the Earth's environment and its evolution. Parameters such as soil moisture, sea surface temperature and salinity, and profiles of atmospheric temperature and humidity are measured at frequencies determined by the physics (e.g. sensitivity to changes in desired parameters) and by the availability of suitable spectrum free from interference. Interference from manmade sources (radio frequency interference) is an impediment that in many cases limits the potential for accurate measurements from space. A review is presented here of the frequencies employed in passive microwave remote sensing of the Earth from space and the associated experience with RFI.
[Thematic Issue: Remote Sensing.
ERIC Educational Resources Information Center
Howkins, John, Ed.
1978-01-01
Four of the articles in this publication discuss the remote sensing of the Earth and its resources by satellites. Among the topics dealt with are the development and management of remote sensing systems, types of satellites used for remote sensing, the uses of remote sensing, and issues involved in using information obtained through remote…
75 FR 65304 - Advisory Committee on Commercial Remote Sensing (ACCRES); Request for Nominations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-22
... Commercial Remote Sensing (ACCRES); Request for Nominations AGENCY: National Oceanic and Atmospheric... Commercial Remote Sensing (ACCRES). SUMMARY: The Advisory Committee on Commercial Remote Sensing (ACCRES) was... Atmosphere, on matters relating to the U.S. commercial remote sensing industry and NOAA's activities to carry...
Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites
NASA Astrophysics Data System (ADS)
Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.
2015-12-01
Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.
NASA Astrophysics Data System (ADS)
Crawford, T. N.; Schaeffer, B. A.
2016-12-01
Anthropogenic nutrient pollution is a major stressor of aquatic ecosystems around the world. In the United States, states and tribes can adopt numeric water quality values (i.e. criteria) into their water quality management standards to protect aquatic life from eutrophication impacts. However, budget and resource constraints have limited the ability of many states and tribes to collect the water quality monitoring data needed to derive numeric criteria. Over the last few decades, satellite technology has provided water quality measurements on a global scale over long time periods. Water quality managers are finding the data provided by satellite technology useful in managing eutrophication impacts in coastal waters, estuaries, lakes, and reservoirs. In recent years EPA has worked with states and tribes to derive remotely sensed numeric Chl-a criteria for coastal waters with limited field-based data. This approach is now being expanded and used to derive Chl-a criteria in freshwater systems across the United States. This presentation will cover EPA's approach to derive numeric Chl-a criteria using satellite remote sensing, recommendations to improve satellite sensors to expand applications, potential areas of interest, and the challenges of using remote sensing to establish water quality management goals, as well as provide a case in which this approach has been applied.
Application of Remote Sensors in Mapping Rice Area and Forecasting Its Production: A Review
Mosleh, Mostafa K.; Hassan, Quazi K.; Chowdhury, Ehsan H.
2015-01-01
Rice is one of the staple foods for more than three billion people worldwide. Rice paddies accounted for approximately 11.5% of the World's arable land area during 2012. Rice provided ∼19% of the global dietary energy in recent times and its annual average consumption per capita was ∼65 kg during 2010–2011. Therefore, rice area mapping and forecasting its production is important for food security, where demands often exceed production due to an ever increasing population. Timely and accurate estimation of rice areas and forecasting its production can provide invaluable information for governments, planners, and decision makers in formulating policies in regard to import/export in the event of shortfall and/or surplus. The aim of this paper was to review the applicability of the remote sensing-based imagery for rice area mapping and forecasting its production. Recent advances on the resolutions (i.e., spectral, spatial, radiometric, and temporal) and availability of remote sensing imagery have allowed us timely collection of information on the growth and development stages of the rice crop. For elaborative understanding of the application of remote sensing sensors, following issues were described: the rice area mapping and forecasting its production using optical and microwave imagery, synergy between remote sensing-based methods and other developments, and their implications as an operational one. The overview of the studies to date indicated that remote sensing-based methods using optical and microwave imagery found to be encouraging. However, there were having some limitations, such as: (i) optical remote sensing imagery had relatively low spatial resolution led to inaccurate estimation of rice areas; and (ii) radar imagery would suffer from speckles, which potentially would degrade the quality of the images; and also the brightness of the backscatters were sensitive to the interacting surface. In addition, most of the methods used in forecasting rice yield were empirical in nature, so thus it would require further calibration and validation prior to implement over other geographical locations. PMID:25569753
Application of remote sensors in mapping rice area and forecasting its production: a review.
Mosleh, Mostafa K; Hassan, Quazi K; Chowdhury, Ehsan H
2015-01-05
Rice is one of the staple foods for more than three billion people worldwide. Rice paddies accounted for approximately 11.5% of the World's arable land area during 2012. Rice provided ~19% of the global dietary energy in recent times and its annual average consumption per capita was ~65 kg during 2010-2011. Therefore, rice area mapping and forecasting its production is important for food security, where demands often exceed production due to an ever increasing population. Timely and accurate estimation of rice areas and forecasting its production can provide invaluable information for governments, planners, and decision makers in formulating policies in regard to import/export in the event of shortfall and/or surplus. The aim of this paper was to review the applicability of the remote sensing-based imagery for rice area mapping and forecasting its production. Recent advances on the resolutions (i.e., spectral, spatial, radiometric, and temporal) and availability of remote sensing imagery have allowed us timely collection of information on the growth and development stages of the rice crop. For elaborative understanding of the application of remote sensing sensors, following issues were described: the rice area mapping and forecasting its production using optical and microwave imagery, synergy between remote sensing-based methods and other developments, and their implications as an operational one. The overview of the studies to date indicated that remote sensing-based methods using optical and microwave imagery found to be encouraging. However, there were having some limitations, such as: (i) optical remote sensing imagery had relatively low spatial resolution led to inaccurate estimation of rice areas; and (ii) radar imagery would suffer from speckles, which potentially would degrade the quality of the images; and also the brightness of the backscatters were sensitive to the interacting surface. In addition, most of the methods used in forecasting rice yield were empirical in nature, so thus it would require further calibration and validation prior to implement over other geographical locations.
Advanced and applied remote sensing of environmental conditions
Slonecker, E. Terrence; Fisher, Gary B.; Marr, David A.; Milheim, Lesley E.; Roig-Silva, Coral M.
2013-01-01
"Remote sensing” is a general term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth’s surface. Remotely sensed data are fundamental to geographic science. The U.S. Geological Survey’s (USGS) Eastern Geographic Science Center (EGSC) is currently conducting and promoting the research and development of several different aspects of remote sensing science in both the laboratory and from overhead instruments. Spectroscopy is the science of recording interactions of energy and matter and is the bench science for all remote sensing. Visible and infrared analysis in the laboratory with special instruments called spectrometers enables the transfer of this research from the laboratory to multispectral (5–15 broad bands) and hyperspectral (50–300 narrow contiguous bands) analyses from aircraft and satellite sensors. In addition, mid-wave (3–5 micrometers, µm) and long-wave (8–14 µm) infrared data analysis, such as attenuated total reflectance (ATR) spectral analysis, are also conducted. ATR is a special form of vibrational infrared spectroscopy that has many applications in chemistry and biology but has recently been shown to be especially diagnostic for vegetation analysis.
International Commercial Remote Sensing Practices and Policies: A Comparative Analysis
NASA Astrophysics Data System (ADS)
Stryker, Timothy
In recent years, there has been much discussion about U.S. commercial remoteUnder the Act, the Secretary of Commerce sensing policies and how effectively theylicenses the operations of private U.S. address U.S. national security, foreignremote sensing satellite systems, in policy, commercial, and public interests.consultation with the Secretaries of Defense, This paper will provide an overview of U.S.State, and Interior. PDD-23 provided further commercial remote sensing laws,details concerning the operation of advanced regulations, and policies, and describe recentsystems, as well as criteria for the export of NOAA initiatives. It will also addressturnkey systems and/or components. In July related foreign practices, and the overall2000, pursuant to the authority delegated to legal context for trade and investment in thisit by the Secretary of Commerce, NOAA critical industry.iss ued new regulations for the industry. Licensing and Regulationsatellite systems. NOAA's program is The 1992 Land Remote Sensing Policy Act ("the Act"), and the 1994 policy on Foreign Access to Remote Sensing Space Capabilities (known as Presidential Decision Directive-23, or PDD-23) put into place an ambitious legal and policy framework for the U.S. Government's licensing of privately-owned, high-resolution satellite systems. Previously, capabilities afforded national security and observes the international obligations of the United States; maintain positive control of spacecraft operations; maintain a tasking record in conjunction with other record-keeping requirements; provide U.S. Government access to and use of data when required for national security or foreign policy purposes; provide for U.S. Government review of all significant foreign agreements; obtain U.S. Government approval for any encryption devices used; make available unenhanced data to a "sensed state" as soon as such data are available and on reasonable cost terms and conditions; make available unenhanced data as requested by the U.S. Government Archive; and, obtain a priori U.S. Government approval of all plans and procedures to deal with safe disposition of the satellite. Further information on NOAA's regulations and NOAA's licensing program is available at www.licensing.noaa.gov. Monitoring and Enforcement NOAA's enforcement mission is focused on the legislative mandate which states that the Secretary of Commerce has a continuing obligation to ensure that licensed imaging systems are operated lawfully to preserve the national security and foreign policies of the United States. NOAA has constructed an end-to-end monitoring and compliance program to review the activities of licensed companies. This program includes a pre- launch review, an operational baseline audit, and an annual comprehensive national security audit. If at any time there is suspicion or concern that a system is being operated unlawfully, a no-notice inspection may be initiated. setbacks, three U.S. companies are now operational, with more firms expected to become so in the future. While NOAA does not disclose specific systems capabilities for proprietary reasons, its current licensing resolution thresholds for general commercial availability are as follows: 0.5 meter Ground Sample Distance (GSD) for panchromatic systems, 2 meter GSD for multi-spectral systems, 3 meter Impulse Response (IPR) for Synthetic Aperture Radar systems, and 20 meter GSD for hyperspectral systems (with certain 8-meter hyperspectral derived products also licensed for commercial distribution). These thresholds are subject to change based upon foreign availability and other considerations. It should also be noted that license applications are reviewed and granted on a case-by-case basis, pursuant to each system's technology and concept of operations. In 2001, NOAA, along with the Department of Commerce's International Trade Administration, commissioned a study by the RAND Corporation to assess the risks faced by the U.S. commercial remote sensing satellite industry. In commissioning this study, NOAA's goal was to better understand the role that U.S. Government policies and regulations have in shaping the prospects for emerging commercial remote sensing satellite firms. The study assessed the risks against broader trends in the larger U.S. remote sensing industry and geospatial technology and effective policy implementation. The Department of Commerce is working with NOAA licensees to identify foreign actions which could restrict market access by U.S. firms, and seeking to provide a "level playing field" for U.S. service providers. The Department of Commerce has dedicated new resources to its licensing activities. In Fiscal Year 2002, the Department obtained 1.2 million in funding to support the NOAA program, through staff, equipment, technical support, constituent outreach, and market and policy studies. To better understand the market and make more well-informed licensing decisions, NOAA is participating in a broad-based market study effort under the direction of the American Society for Photogrammetry and Remote Sensing (ASPRS) and NASA's Commercial Remote Sensing Program. This study is providing long-term analysis of the commercial remote sensing industry. It is being supported by interviews with industry and government experts, a web-based survey, and a thorough review and analysis of related literature. The project should more clearly determine future remote sensing needs and requirements, and maximize the industry's baselines, standards, and socio-economic potential. NOAA, through its participation in this study, has gained important new insights into the status and future trends of this industry. The study's initial findings estimate 2001 industry revenue at 2 billion, growing at 13% per year, to an approximate level of 6 billion in 2010 (in constant, calendar year 2000 dollars). Currently, across all sectors, the most active market segments are in nati onal /glo bal security, mapping/geography, civil government, and have provided for appropriate measures for monitoring and compliance. This approach provides a valuable framework for companies, investors, customers, and foreign partners. The clearly-defined ground rules are designed to facilitate full private sector competition, innovation, and domestic and international market development. International market development remains a key issue for the U.S. Government and for U.S. industry in general. NOAA has learned of some interest by foreign governments in promulgating new laws and regulations to address this growing industry. However, to date, most governments have yet to publicize new commercial remote sensing laws or regulations. In some instances, data policies for commercial remote sensing have been developed, but only in the context of government-owned and operated systems, or private systems in which a government is the controlling shareholder. Other than some initial consultations and limited agreements between supplier nations, there has to date been little overall international coordination of commercial remote sensing policies and practices. The result has been an uncertain and non- uniform international business environment, which can cause difficulties for all commercial remote sensing operators. Related international market distortions inhibit the maturation of the industry and the normalization of business practices. This situation may make it more difficult for key stakeholders to make decisions on investments, purchases, regulatory affairs, and international partnerships. To put this growing industry on a more level footing, there should be further coordination
Remote sensing of vegetation structure using computer vision
NASA Astrophysics Data System (ADS)
Dandois, Jonathan P.
High-spatial resolution measurements of vegetation structure are needed for improving understanding of ecosystem carbon, water and nutrient dynamics, the response of ecosystems to a changing climate, and for biodiversity mapping and conservation, among many research areas. Our ability to make such measurements has been greatly enhanced by continuing developments in remote sensing technology---allowing researchers the ability to measure numerous forest traits at varying spatial and temporal scales and over large spatial extents with minimal to no field work, which is costly for large spatial areas or logistically difficult in some locations. Despite these advances, there remain several research challenges related to the methods by which three-dimensional (3D) and spectral datasets are joined (remote sensing fusion) and the availability and portability of systems for frequent data collections at small scale sampling locations. Recent advances in the areas of computer vision structure from motion (SFM) and consumer unmanned aerial systems (UAS) offer the potential to address these challenges by enabling repeatable measurements of vegetation structural and spectral traits at the scale of individual trees. However, the potential advances offered by computer vision remote sensing also present unique challenges and questions that need to be addressed before this approach can be used to improve understanding of forest ecosystems. For computer vision remote sensing to be a valuable tool for studying forests, bounding information about the characteristics of the data produced by the system will help researchers understand and interpret results in the context of the forest being studied and of other remote sensing techniques. This research advances understanding of how forest canopy and tree 3D structure and color are accurately measured by a relatively low-cost and portable computer vision personal remote sensing system: 'Ecosynth'. Recommendations are made for optimal conditions under which forest structure measurements should be obtained with UAS-SFM remote sensing. Ultimately remote sensing of vegetation by computer vision offers the potential to provide an 'ecologist's eye view', capturing not only canopy 3D and spectral properties, but also seeing the trees in the forest and the leaves on the trees.
NASA Astrophysics Data System (ADS)
Verma, Manish K.
Terrestrial gross primary productivity (GPP) is the largest and most variable component of the carbon cycle and is strongly influenced by phenology. Realistic characterization of spatio-temporal variation in GPP and phenology is therefore crucial for understanding dynamics in the global carbon cycle. In the last two decades, remote sensing has become a widely-used tool for this purpose. However, no study has comprehensively examined how well remote sensing models capture spatiotemporal patterns in GPP, and validation of remote sensing-based phenology models is limited. Using in-situ data from 144 eddy covariance towers located in all major biomes, I assessed the ability of 10 remote sensing-based methods to capture spatio-temporal variation in GPP at annual and seasonal scales. The models are based on different hypotheses regarding ecophysiological controls on GPP and span a range of structural and computational complexity. The results lead to four main conclusions: (i) at annual time scale, models were more successful capturing spatial variability than temporal variability; (ii) at seasonal scale, models were more successful in capturing average seasonal variability than interannual variability; (iii) simpler models performed as well or better than complex models; and (iv) models that were best at explaining seasonal variability in GPP were different from those that were best able to explain variability in annual scale GPP. Seasonal phenology of vegetation follows bounded growth and decay, and is widely modeled using growth functions. However, the specific form of the growth function affects how phenological dynamics are represented in ecosystem and remote sensing-base models. To examine this, four different growth functions (the logistic, Gompertz, Mirror-Gompertz and Richards function) were assessed using remotely sensed and in-situ data collected at several deciduous forest sites. All of the growth functions provided good statistical representation of in-situ and remote sensing time series. However, the Richards function captured observed asymmetric dynamics that were not captured by the other functions. The timing of key phenophase transitions derived using the Richards function therefore agreed best with observations. This suggests that ecosystem models and remote-sensing algorithms would benefit from using the Richards function to represent phenological dynamics.
Literature relevant to remote sensing of water quality
NASA Technical Reports Server (NTRS)
Middleton, E. M.; Marcell, R. F.
1983-01-01
References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.
Learning Methods of Remote Sensing In the 2013 Curriculum of Secondary School
NASA Astrophysics Data System (ADS)
Lili Somantri, Nandi
2016-11-01
The new remote sensing material included in the subjects of geography in the curriculum of 1994. For geography teachers generation of 90s and over who in college do not get the material remote sensing, for teaching is a tough matter. Most teachers only give a theoretical matter, and do not carry out practical reasons in the lack of facilities and infrastructure of computer laboratories. Therefore, in this paper studies the importance about the method or manner of teaching remote sensing material in schools. The purpose of this paper is 1) to explain the position of remote sensing material in the study of geography, 2) analyze the Geography Curriculum 2013 Subjects related to remote sensing material, 3) describes a method of teaching remote sensing material in schools. The method used in this paper is a descriptive analytical study supported by the literature. The conclusion of this paper that the position of remote sensing in the study of geography is a method or a way to obtain spatial data earth's surface. In the 2013 curriculum remote sensing material has been applied to the study of land use and transportation. Remote sensing methods of teaching must go through a practicum, which starts from the introduction of the theory of remote sensing, data extraction phase of remote sensing imagery to produce maps, both visually and digitally, field surveys, interpretation of test accuracy, and improved maps.
NASA Technical Reports Server (NTRS)
Jones, E. B.
1983-01-01
As remote sensing increasingly becomes more of an operational tool in the field of snow management and snow hydrology, there is need for some degree of standardization of ""snowpack ground truth'' techniques. This manual provides a first step in standardizing these procedures and was prepared to meet the needs of remote sensing researchers in planning missions requiring ground truth as well as those providing the ground truth. Focus is on ground truth for remote sensors primarily operating in the microwave portion of the electromagnetic spectrum; nevertheless, the manual should be of value to other types of sensor programs. This first edition of ground truth procedures must be updated as new or modified techniques are developed.
JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.
1991-01-17
Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.
2014-01-01
NASA or NOAA Earth-observing satellites are not the only space-based TIR platforms. The European Space Agency (ESA), the Chinese, and other countries have in orbit or plan to launch TIR remote sensing systems. Satellite remote sensing provides an excellent opportunity to study land-atmosphere energy exchanges at the regional scale. A predominant application of TIR data has been in inferring evaporation, evapotranspiration (ET), and soil moisture. In addition to using TIR data for ET and soil moisture analysis over vegetated surfaces, there is also a need for using these data for assessment of drought conditions. The concept of ecological thermodynamics provides a quantification of surface energy fluxes for landscape characterization in relation to the overall amount of energy input and output from specific land cover types.
Problems in merging Earth sensing satellite data sets
NASA Technical Reports Server (NTRS)
Smith, Paul H.; Goldberg, Michael J.
1987-01-01
Satellite remote sensing systems provide a tremendous source of data flow to the Earth science community. These systems provide scientists with data of types and on a scale previously unattainable. Looking forward to the capabilities of Space Station and the Earth Observing System (EOS), the full realization of the potential of satellite remote sensing will be handicapped by inadequate information systems. There is a growing emphasis in Earth science research to ask questions which are multidisciplinary in nature and global in scale. Many of these research projects emphasize the interactions of the land surface, the atmosphere, and the oceans through various physical mechanisms. Conducting this research requires large and complex data sets and teams of multidisciplinary scientists, often working at remote locations. A review of the problems of merging these large volumes of data into spatially referenced and manageable data sets is presented.
Remote sensing for rural development planning in Africa
NASA Technical Reports Server (NTRS)
Dunford, C.; Mouat, D. A.; Norton-Griffiths, M.; Slaymaker, D. M.
1983-01-01
Multilevel remote-sensing techniques were combined to provide land resource and land-use information for rural development planning in Arusha Region, Tanzania. Enhanced Landsat imagery, supplemented by low-level aerial survey data, slope angle data from topographic sheets, and existing reports on vegetation and soil conditions, was used jointly by image analysts and district-level land-management officials to divide the region's six districts into land-planning units. District-planning officials selected a number of these land-planning units for priority planning and development activities. For the priority areas, natural color aerial photographs provided detailed information for land-use planning discussions between district officials and villagers. Consideration of the efficiency of this remote sensing approach leads to general recommendations for similar applications. The technology and timing of data collection and interpretation activities should allow maximum participation by intended users of the information.
NASA Astrophysics Data System (ADS)
Miralles-Wilhelm, F.; Serrat-Capdevila, A.; Rodriguez, D.
2017-12-01
This research is focused on development of remote sensing methods to assess surface water pollution issues, particularly in multipurpose reservoirs. Three case study applications are presented to comparatively analyze remote sensing techniquesforo detection of nutrient related pollution, i.e., Nitrogen, Phosphorus, Chlorophyll, as this is a major water quality issue that has been identified in terms of pollution of major water sources around the country. This assessment will contribute to a better understanding of options for nutrient remote sensing capabilities and needs and assist water agencies in identifying the appropriate remote sensing tools and devise an application strategy to provide information needed to support decision-making regarding the targeting and monitoring of nutrient pollution prevention and mitigation measures. A detailed review of the water quality data available from ground based measurements was conducted in order to determine their suitability for a case study application of remote sensing. In the first case study, the Valle de Bravo reservoir in Mexico City reservoir offers a larger database of water quality which may be used to better calibrate and validate the algorithms required to obtain water quality data from remote sensing raw data. In the second case study application, the relatively data scarce Lake Toba in Indonesia can be useful to illustrate the value added of remote sensing data in locations where water quality data is deficient or inexistent. The third case study in the Paso Severino reservoir in Uruguay offers a combination of data scarcity and persistent development of harmful algae blooms. Landsat-TM data was obteined for the 3 study sites and algorithms for three key water quality parameters that are related to nutrient pollution: Chlorophyll-a, Total Nitrogen, and Total Phosphorus were calibrated and validated at the study sites. The three case study applications were developed into capacity building/training workshops for water resources students, applied scientists, practitioners, reservoir and water quality managers, and other interested stakeholders.
Multi- and hyperspectral geologic remote sensing: A review
NASA Astrophysics Data System (ADS)
van der Meer, Freek D.; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Hecker, Chris A.; Bakker, Wim H.; Noomen, Marleen F.; van der Meijde, Mark; Carranza, E. John M.; Smeth, J. Boudewijn de; Woldai, Tsehaie
2012-02-01
Geologists have used remote sensing data since the advent of the technology for regional mapping, structural interpretation and to aid in prospecting for ores and hydrocarbons. This paper provides a review of multispectral and hyperspectral remote sensing data, products and applications in geology. During the early days of Landsat Multispectral scanner and Thematic Mapper, geologists developed band ratio techniques and selective principal component analysis to produce iron oxide and hydroxyl images that could be related to hydrothermal alteration. The advent of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) with six channels in the shortwave infrared and five channels in the thermal region allowed to produce qualitative surface mineral maps of clay minerals (kaolinite, illite), sulfate minerals (alunite), carbonate minerals (calcite, dolomite), iron oxides (hematite, goethite), and silica (quartz) which allowed to map alteration facies (propylitic, argillic etc.). The step toward quantitative and validated (subpixel) surface mineralogic mapping was made with the advent of high spectral resolution hyperspectral remote sensing. This led to a wealth of techniques to match image pixel spectra to library and field spectra and to unravel mixed pixel spectra to pure endmember spectra to derive subpixel surface compositional information. These products have found their way to the mining industry and are to a lesser extent taken up by the oil and gas sector. The main threat for geologic remote sensing lies in the lack of (satellite) data continuity. There is however a unique opportunity to develop standardized protocols leading to validated and reproducible products from satellite remote sensing for the geology community. By focusing on geologic mapping products such as mineral and lithologic maps, geochemistry, P-T paths, fluid pathways etc. the geologic remote sensing community can bridge the gap with the geosciences community. Increasingly workflows should be multidisciplinary and remote sensing data should be integrated with field observations and subsurface geophysical data to monitor and understand geologic processes.
NASA Astrophysics Data System (ADS)
Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.
2016-10-01
Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.
NASA Technical Reports Server (NTRS)
Tsang, Leung; Hwang, Jenq-Neng
1996-01-01
A method to incorporate passive microwave remote sensing measurements within a spatially distributed snow hydrology model to provide estimates of the spatial distribution of Snow Water Equivalent (SWE) as a function of time is implemented. The passive microwave remote sensing measurements are at 25 km resolution. However, in mountain regions the spatial variability of SWE over a 25 km footprint is large due to topographic influences. On the other hand, the snow hydrology model has built-in topographic information and the capability to estimate SWE at a 1 km resolution. In our work, the snow hydrology SWE estimates are updated and corrected using SSM/I passive microwave remote sensing measurements. The method is applied to the Upper Rio Grande River Basin in the mountains of Colorado. The change in prediction of SWE from hydrology modeling with and without updating is compared with measurements from two SNOTEL sites in and near the basin. The results indicate that the method incorporating the remote sensing measurements into the hydrology model is able to more closely estimate the temporal evolution of the measured values of SWE as a function of time.
NASA Astrophysics Data System (ADS)
Changyong, Dou; Huadong, Guo; Chunming, Han; Ming, Liu
2014-03-01
With more and more Earth observation data available to the community, how to manage and sharing these valuable remote sensing datasets is becoming an urgent issue to be solved. The web based Geographical Information Systems (GIS) technology provides a convenient way for the users in different locations to share and make use of the same dataset. In order to efficiently use the airborne Synthetic Aperture Radar (SAR) remote sensing data acquired in the Airborne Remote Sensing Center of the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), a Web-GIS based platform for airborne SAR data management, distribution and sharing was designed and developed. The major features of the system include map based navigation search interface, full resolution imagery shown overlaid the map, and all the software adopted in the platform are Open Source Software (OSS). The functions of the platform include browsing the imagery on the map navigation based interface, ordering and downloading data online, image dataset and user management, etc. At present, the system is under testing in RADI and will come to regular operation soon.
NASA Astrophysics Data System (ADS)
Song, Yi; Wang, Jiemin; Yang, Kun; Ma, Mingguo; Li, Xin; Zhang, Zhihui; Wang, Xufeng
2012-07-01
Estimating evapotranspiration (ET) is required for many environmental studies. Remote sensing provides the ability to spatially map latent heat flux. Many studies have developed approaches to derive spatially distributed surface energy fluxes from various satellite sensors with the help of field observations. In this study, remote-sensing-based λE mapping was conducted using a Landsat Thematic Mapper (TM) image and an Enhanced Thematic Mapper Plus (ETM+) image. The remotely sensed data and field observations employed in this study were obtained from Watershed Allied Telemetry Experimental Research (WATER). A biophysics-based surface resistance model was revised to account for water stress and temperature constraints. The precision of the results was validated using 'ground truth' data obtained by eddy covariance (EC) system. Scale effects play an important role, especially for parameter optimisation and validation of the latent heat flux (λE). After considering the footprint of EC, the λE derived from the remote sensing data was comparable to the EC measured value during the satellite's passage. The results showed that the revised surface resistance parameterisation scheme was useful for estimating the latent heat flux over cropland in arid regions.
NASA Astrophysics Data System (ADS)
Lei, Tianjie; Zhang, Yazhen; Wang, Xingyong; Fu, Jun'e.; Li, Lin; Pang, Zhiguo; Zhang, Xiaolei; Kan, Guangyuan
2017-07-01
Remote sensing system fitted on Unmanned Aerial Vehicle (UAV) can obtain clear images and high-resolution aerial photographs. It has advantages of strong real-time, flexibility and convenience, free from influence of external environment, low cost, low-flying under clouds and ability to work full-time. When an earthquake happened, it could go deep into the places safely and reliably which human staff can hardly approach, such as secondary geological disasters hit areas. The system can be timely precise in response to secondary geological disasters monitoring by a way of obtaining first-hand information as quickly as possible, producing a unique emergency response capacity to provide a scientific basis for overall decision-making processes. It can greatly enhance the capability of on-site disaster emergency working team in data collection and transmission. The great advantages of UAV remote sensing system played an irreplaceable role in monitoring secondary geological disaster dynamics and influences. Taking the landslides and barrier lakes for example, the paper explored the basic application and process of UAV remote sensing in the disaster emergency relief. UAV high-resolution remote sensing images had been exploited to estimate the situation of disaster-hit areas and monitor secondary geological disasters rapidly, systematically and continuously. Furthermore, a rapid quantitative assessment on the distribution and size of landslides and barrier lakes was carried out. Monitoring results could support relevant government departments and rescue teams, providing detailed and reliable scientific evidence for disaster relief and decision-making.
NASA Astrophysics Data System (ADS)
Wiegele, A.; Schneider, M.; Hase, F.; Barthlott, S.; García, O. E.; Sepúlveda, E.; González, Y.; Blumenstock, T.; Raffalski, U.; Gisi, M.; Kohlhepp, R.
2014-04-01
Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) ground- and space-based remote sensing as well as in-situ datasets of tropospheric water vapour isotopologues are provided. The space-based remote-sensing dataset is produced from spectra measured by the IASI (Infrared Atmospheric Sounding Interferometer) sensor and is potentially available on a global scale. Here, we present the MUSICA IASI data for three different geophysical locations (subtropics, mid-latitudes, and arctic) and we provide a comprehensive characterisation of the complex nature of such space-based isotopologue remote sensing products. The quality assessment study is complemented by a comparison to MUSICA's ground-based FTIR (Fourier-Transform InfraRed) remote sensing data retrieved from the spectra recorded at three different locations within the framework of NDACC (Network for the Detection of Atmospheric Composition Change). We confirm that IASI is able to measure tropospheric H2O profiles with a vertical resolution of about 4 km and a random error of about 10%. In addition IASI can observe middle tropospheric δD that adds complementary value to IASI's middle tropospheric H2O observations. Our study is both, a theoretical and an empirical proof that IASI has the capability for a global observation of middle tropospheric water vapour isotopologues on a daily timescale and at a quality that is sufficiently high for water cycle research purposes.
NASA Astrophysics Data System (ADS)
Wiegele, A.; Schneider, M.; Hase, F.; Barthlott, S.; García, O. E.; Sepúlveda, E.; González, Y.; Blumenstock, T.; Raffalski, U.; Gisi, M.; Kohlhepp, R.
2014-08-01
Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) ground- and space-based remote sensing as well as in situ data sets of tropospheric water vapour isotopologues are provided. The space-based remote-sensing data set is produced from spectra measured by the IASI (Infrared Atmospheric Sounding Interferometer) sensor and is potentially available on a global scale. Here, we present the MUSICA IASI data for three different geophysical locations (subtropics, midlatitudes, and Arctic), and we provide a comprehensive characterisation of the complex nature of such space-based isotopologue remote-sensing products. The quality assessment study is complemented by a comparison to MUSICA's ground-based FTIR (Fourier Transform InfraRed) remote-sensing data retrieved from the spectra recorded at three different locations within the framework of NDACC (Network for the Detection of Atmospheric Composition Change). We confirm that IASI is able to measure tropospheric H2O profiles with a vertical resolution of about 4 km and a random error of about 10%. In addition IASI can observe middle tropospheric δD that adds complementary value to IASI's middle tropospheric H2O observations. Our study presents theoretical and empirical proof that IASI has the capability for a global observation of middle tropospheric water vapour isotopologues on a daily timescale and at a quality that is sufficiently high for water cycle research purposes.
Meta Data Mining in Earth Remote Sensing Data Archives
NASA Astrophysics Data System (ADS)
Davis, B.; Steinwand, D.
2014-12-01
Modern search and discovery tools for satellite based remote sensing data are often catalog based and rely on query systems which use scene- (or granule-) based meta data for those queries. While these traditional catalog systems are often robust, very little has been done in the way of meta data mining to aid in the search and discovery process. The recently coined term "Big Data" can be applied in the remote sensing world's efforts to derive information from the vast data holdings of satellite based land remote sensing data. Large catalog-based search and discovery systems such as the United States Geological Survey's Earth Explorer system and the NASA Earth Observing System Data and Information System's Reverb-ECHO system provide comprehensive access to these data holdings, but do little to expose the underlying scene-based meta data. These catalog-based systems are extremely flexible, but are manually intensive and often require a high level of user expertise. Exposing scene-based meta data to external, web-based services can enable machine-driven queries to aid in the search and discovery process. Furthermore, services which expose additional scene-based content data (such as product quality information) are now available and can provide a "deeper look" into remote sensing data archives too large for efficient manual search methods. This presentation shows examples of the mining of Landsat and Aster scene-based meta data, and an experimental service using OPeNDAP to extract information from quality band from multiple granules in the MODIS archive.
Cornell University remote sensing program. [New York State
NASA Technical Reports Server (NTRS)
Liang, T.; Philipson, W. R. (Principal Investigator); Stanturf, J. A.
1980-01-01
High altitude, color infrared aerial photography as well as imagery from Skylab and LANDSAT were used to inventory timber and assess potential sites for industrial development in New York State. The utility of small scale remotely sensed data for monitoring clearcutting in hardwood forests was also investigated. Consultation was provided regarding the Love Canal Landfill as part of environment protection efforts.
NASA Astrophysics Data System (ADS)
Clevers, Jan G. P. W.
2018-05-01
This book provides a comprehensive and timely overview on all aspects of hyperspectral remote sensing combined with various applications. As such, it is an excellent book of reference for both students and professionals active in the field of optical remote sensing. It deals with all aspects of retrieving quantitative information on biophysical properties of the Earth's surface, the data corrections needed and the range of analysis approaches available.
Utility of remotely sensed imagery for assessing the impact of salvage logging after forest fires
Sarah A. Lewis; Peter R. Robichaud; Andrew T. Hudak; Brian Austin; Robert J. Liebermann
2012-01-01
Remotely sensed imagery provides a useful tool for land managers to assess the extent and severity of post-wildfire salvage logging disturbance. This investigation uses high resolution QuickBird and National Agricultural Imagery Program (NAIP) imagery to map soil exposure after ground-based salvage operations. Three wildfires with varying post-fire salvage activities...
Multivariate Density Estimation and Remote Sensing
NASA Technical Reports Server (NTRS)
Scott, D. W.
1983-01-01
Current efforts to develop methods and computer algorithms to effectively represent multivariate data commonly encountered in remote sensing applications are described. While this may involve scatter diagrams, multivariate representations of nonparametric probability density estimates are emphasized. The density function provides a useful graphical tool for looking at data and a useful theoretical tool for classification. This approach is called a thunderstorm data analysis.
Local involvement in measuring and governing carbon stocks in China, Vietnam, Indonesia and Laos
Michael Køie Poulsen
2013-01-01
An important element of MRV is to ensure accurate measurements of carbon stocks. Measuring trees on the ground may be needed for ground truthing of remote sensing results. It can also provide more accurate carbon stock monitoring than remote sensing alone. Local involvement in measuring trees for monitoring of carbon stocks may be advantageous in several ways....
NASA Technical Reports Server (NTRS)
Castruccio, P. A.; Loats, H. L., Jr.; Fowler, T. R.
1977-01-01
Methods for the reduction of remotely sensed data and its application in hydrologic land use assessment, surface water inventory, and soil property studies are presented. LANDSAT data is used to provide quantitative parameters and coefficients to construct watershed transfer functions for a hydrologic planning model aimed at estimating peak outflow from rainfall inputs.
Tools and Services for Working with Multiple Land Remote Sensing Data Products
NASA Astrophysics Data System (ADS)
Krehbiel, C.; Friesz, A.; Harriman, L.; Quenzer, R.; Impecoven, K.; Maiersperger, T.
2016-12-01
The availability of increasingly large and diverse satellite remote sensing datasets provides both an opportunity and a challenge across broad Earth science research communities. On one hand, the extensive assortment of available data offer unprecedented opportunities to improve our understanding of Earth science and enable data use across a multitude of science disciplines. On the other hand, increasingly complex formats, data structures, and metadata can be an obstacle to data use for the broad user community that is interested in incorporating remote sensing Earth science data into their research. NASA's Land Processes Distributed Active Archive Center (LP DAAC) provides easy to use Python notebook tutorials for services such as accessing land remote sensing data from the LP DAAC Data Pool and interpreting data quality information from MODIS. We use examples to demonstrate the capabilities of the Application for Extracting and Exploring Analysis Ready Samples (AppEEARS), such as spatially and spectrally subsetting data, decoding valuable quality information, and exploring initial analysis results within the user interface. We also show data recipes for R and Python scripts that help users process ASTER L1T and ASTER Global Emissivity Datasets.
Purification of Training Samples Based on Spectral Feature and Superpixel Segmentation
NASA Astrophysics Data System (ADS)
Guan, X.; Qi, W.; He, J.; Wen, Q.; Chen, T.; Wang, Z.
2018-04-01
Remote sensing image classification is an effective way to extract information from large volumes of high-spatial resolution remote sensing images. Generally, supervised image classification relies on abundant and high-precision training data, which is often manually interpreted by human experts to provide ground truth for training and evaluating the performance of the classifier. Remote sensing enterprises accumulated lots of manually interpreted products from early lower-spatial resolution remote sensing images by executing their routine research and business programs. However, these manually interpreted products may not match the very high resolution (VHR) image properly because of different dates or spatial resolution of both data, thus, hindering suitability of manually interpreted products in training classification models, or small coverage area of these manually interpreted products. We also face similar problems in our laboratory in 21st Century Aerospace Technology Co. Ltd (short for 21AT). In this work, we propose a method to purify the interpreted product to match newly available VHRI data and provide the best training data for supervised image classifiers in VHR image classification. And results indicate that our proposed method can efficiently purify the input data for future machine learning use.
An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks
NASA Astrophysics Data System (ADS)
Holben, Brent N.; Kim, Jhoon; Sano, Itaru; Mukai, Sonoyo; Eck, Thomas F.; Giles, David M.; Schafer, Joel S.; Sinyuk, Aliaksandr; Slutsker, Ilya; Smirnov, Alexander; Sorokin, Mikhail; Anderson, Bruce E.; Che, Huizheng; Choi, Myungje; Crawford, James H.; Ferrare, Richard A.; Garay, Michael J.; Jeong, Ukkyo; Kim, Mijin; Kim, Woogyung; Knox, Nichola; Li, Zhengqiang; Lim, Hwee S.; Liu, Yang; Maring, Hal; Nakata, Makiko; Pickering, Kenneth E.; Piketh, Stuart; Redemann, Jens; Reid, Jeffrey S.; Salinas, Santo; Seo, Sora; Tan, Fuyi; Tripathi, Sachchida N.; Toon, Owen B.; Xiao, Qingyang
2018-01-01
Over the past 24 years, the AErosol RObotic NETwork (AERONET) program has provided highly accurate remote-sensing characterization of aerosol optical and physical properties for an increasingly extensive geographic distribution including all continents and many oceanic island and coastal sites. The measurements and retrievals from the AERONET global network have addressed satellite and model validation needs very well, but there have been challenges in making comparisons to similar parameters from in situ surface and airborne measurements. Additionally, with improved spatial and temporal satellite remote sensing of aerosols, there is a need for higher spatial-resolution ground-based remote-sensing networks. An effort to address these needs resulted in a number of field campaign networks called Distributed Regional Aerosol Gridded Observation Networks (DRAGONs) that were designed to provide a database for in situ and remote-sensing comparison and analysis of local to mesoscale variability in aerosol properties. This paper describes the DRAGON deployments that will continue to contribute to the growing body of research related to meso- and microscale aerosol features and processes. The research presented in this special issue illustrates the diversity of topics that has resulted from the application of data from these networks.
A Review of Wetland Remote Sensing.
Guo, Meng; Li, Jing; Sheng, Chunlei; Xu, Jiawei; Wu, Li
2017-04-05
Wetlands are some of the most important ecosystems on Earth. They play a key role in alleviating floods and filtering polluted water and also provide habitats for many plants and animals. Wetlands also interact with climate change. Over the past 50 years, wetlands have been polluted and declined dramatically as land cover has changed in some regions. Remote sensing has been the most useful tool to acquire spatial and temporal information about wetlands. In this paper, seven types of sensors were reviewed: aerial photos coarse-resolution, medium-resolution, high-resolution, hyperspectral imagery, radar, and Light Detection and Ranging (LiDAR) data. This study also discusses the advantage of each sensor for wetland research. Wetland research themes reviewed in this paper include wetland classification, habitat or biodiversity, biomass estimation, plant leaf chemistry, water quality, mangrove forest, and sea level rise. This study also gives an overview of the methods used in wetland research such as supervised and unsupervised classification and decision tree and object-based classification. Finally, this paper provides some advice on future wetland remote sensing. To our knowledge, this paper is the most comprehensive and detailed review of wetland remote sensing and it will be a good reference for wetland researchers.
A Review of Wetland Remote Sensing
Guo, Meng; Li, Jing; Sheng, Chunlei; Xu, Jiawei; Wu, Li
2017-01-01
Wetlands are some of the most important ecosystems on Earth. They play a key role in alleviating floods and filtering polluted water and also provide habitats for many plants and animals. Wetlands also interact with climate change. Over the past 50 years, wetlands have been polluted and declined dramatically as land cover has changed in some regions. Remote sensing has been the most useful tool to acquire spatial and temporal information about wetlands. In this paper, seven types of sensors were reviewed: aerial photos coarse-resolution, medium-resolution, high-resolution, hyperspectral imagery, radar, and Light Detection and Ranging (LiDAR) data. This study also discusses the advantage of each sensor for wetland research. Wetland research themes reviewed in this paper include wetland classification, habitat or biodiversity, biomass estimation, plant leaf chemistry, water quality, mangrove forest, and sea level rise. This study also gives an overview of the methods used in wetland research such as supervised and unsupervised classification and decision tree and object-based classification. Finally, this paper provides some advice on future wetland remote sensing. To our knowledge, this paper is the most comprehensive and detailed review of wetland remote sensing and it will be a good reference for wetland researchers. PMID:28379174
The AmericaView Project - Putting the Earth into Your Hands
,
2005-01-01
The U.S. Geological Survey (USGS) is a leader in collecting, archiving, and distributing geospatial data and information about the Earth. Providing quick, reliable access to remotely sensed images and geospatial data is the driving principle behind the AmericaView Project. A national not-for-profit organization, AmericaView, Inc. was established and is supported by the USGS to coordinate the activities of a national network of university-led consortia with the primary objective of the advancement of the science of remote sensing. Individual consortia members include academic institutions, as well as state, local, and tribal government agencies. AmericaView's focus is to expand the understanding and use of remote sensing through education and outreach efforts and to provide affordable, integrated remote sensing information access and delivery to the American public. USGS's Landsat and NASA's Earth Observing System (EOS) satellite data are downlinked from satellites or transferred from other facilities to the USGS Center for Earth Resources Observation and Science (EROS) ground receiving station in Sioux Falls, South Dakota. The data can then be transferred over high-speed networks to consortium members, where it is archived and made available for public use.
Review of FEWS NET Biophysical Monitoring Requirements
NASA Technical Reports Server (NTRS)
Ross, K. W.; Brown, Molly E.; Verdin, J.; Underwood, L. W.
2009-01-01
The Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to famine and food insecurity. FEWS NET transforms satellite remote sensing data into rainfall and vegetation information that can be used by these decision makers. The National Aeronautics and Space Administration has recently funded activities to enhance remote sensing inputs to FEWS NET. To elicit Earth observation requirements, a professional review questionnaire was disseminated to FEWS NET expert end-users: it focused upon operational requirements to determine additional useful remote sensing data and; subsequently, beneficial FEWS NET biophysical supplementary inputs. The review was completed by over 40 experts from around the world, enabling a robust set of professional perspectives to be gathered and analyzed rapidly. Reviewers were asked to evaluate the relative importance of environmental variables and spatio-temporal requirements for Earth science data products, in particular for rainfall and vegetation products. The results showed that spatio-temporal resolution requirements are complex and need to vary according to place, time, and hazard: that high resolution remote sensing products continue to be in demand, and that rainfall and vegetation products were valued as data that provide actionable food security information.
Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.; ...
2015-07-08
A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – andmore » the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.
A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – andmore » the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
Ardö, Jonas
2015-12-01
Africa is an important part of the global carbon cycle. It is also a continent facing potential problems due to increasing resource demand in combination with climate change-induced changes in resource supply. Quantifying the pools and fluxes constituting the terrestrial African carbon cycle is a challenge, because of uncertainties in meteorological driver data, lack of validation data, and potentially uncertain representation of important processes in major ecosystems. In this paper, terrestrial primary production estimates derived from remote sensing and a dynamic vegetation model are compared and quantified for major African land cover types. Continental gross primary production estimates derived from remote sensing were higher than corresponding estimates derived from a dynamic vegetation model. However, estimates of continental net primary production from remote sensing were lower than corresponding estimates from the dynamic vegetation model. Variation was found among land cover classes, and the largest differences in gross primary production were found in the evergreen broadleaf forest. Average carbon use efficiency (NPP/GPP) was 0.58 for the vegetation model and 0.46 for the remote sensing method. Validation versus in situ data of aboveground net primary production revealed significant positive relationships for both methods. A combination of the remote sensing method with the dynamic vegetation model did not strongly affect this relationship. Observed significant differences in estimated vegetation productivity may have several causes, including model design and temperature sensitivity. Differences in carbon use efficiency reflect underlying model assumptions. Integrating the realistic process representation of dynamic vegetation models with the high resolution observational strength of remote sensing may support realistic estimation of components of the carbon cycle and enhance resource monitoring, providing suitable validation data is available.
Remote sensing of the marginal ice zone during Marginal Ice Zone Experiment (MIZEX) 83
NASA Technical Reports Server (NTRS)
Shuchman, R. A.; Campbell, W. J.; Burns, B. A.; Ellingsen, E.; Farrelly, B. A.; Gloersen, P.; Grenfell, T. C.; Hollinger, J.; Horn, D.; Johannessen, J. A.
1984-01-01
The remote sensing techniques utilized in the Marginal Ice Zone Experiment (MIZEX) to study the physical characteristics and geophysical processes of the Fram Strait Region of the Greenland Sea are described. The studies, which utilized satellites, aircraft, helicopters, and ship and ground-based remote sensors, focused on the use of microwave remote sensors. Results indicate that remote sensors can provide marginal ice zone characteristics which include ice edge and ice boundary locations, ice types and concentration, ice deformation, ice kinematics, gravity waves and swell (in the water and the ice), location of internal wave fields, location of eddies and current boundaries, surface currents and sea surface winds.
NASA Astrophysics Data System (ADS)
Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriakos; Nisantzi, Argyro; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter; Hadjimitsis, Diofantos
2016-08-01
The landscape of Cyprus is characterized by transformations that occurred during the 20th century, with many of such changes being still active today. Landscapes' changes are due to a variety of reasons including war conflicts, environmental conditions and modern development that have often caused the alteration or even the total loss of important information that could have assisted the archaeologists to comprehend the archaeo-landscape. The present work aims to provide detailed information regarding the different existing datasets that can be used to support archaeologists in understanding the transformations that the landscape in Cyprus undergone, from a remote sensing perspective. Such datasets may help archaeologists to visualize a lost landscape and try to retrieve valuable information, while they support researchers for future investigations. As such they can further highlight in a predictive manner and consequently assess the impacts of landscape transformation -being of natural or anthropogenic cause- to cultural heritage. Three main datasets are presented here: aerial images, satellite datasets including spy satellite datasets acquired during the Cold War, and cadastral maps. The variety of data is provided in a chronological order (e.g. year of acquisitions), while other important parameters such as the cost and the accuracy are also determined. Individual examples of archaeological sites in Cyprus are also provided for each dataset in order to underline both their importance and performance. Also some pre- and post-processing remote sensing methodologies are briefly described in order to enhance the final results. The paper within the framework of ATHENA project, dedicated to remote sensing archaeology/CH, aims to fill a significant gap in the recent literature of remote sensing archaeology of the island and to assist current and future archaeologists in their quest for remote sensing information to support their research.
PREFACE: 35th International Symposium on Remote Sensing of Environment (ISRSE35)
NASA Astrophysics Data System (ADS)
2014-03-01
35th International Symposium on Remote Sensing of Environment (ISRSE35) 22-26 April, 2013, Beijing, China The 35th International Symposium on Remote Sensing of Environment (ISRSE35) was successfully convened in Beijing, China, from April 22nd to 26th, 2013. This was the first event in the ISRSE series being held in China. The symposium was hosted by the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, and co-organized by the International Center for Remote Sensing of Environment (ICRSE), the International Society for Photogrammetry and Remote Sensing (ISPRS), the Group on Earth Observations (GEO), the International Society for Digital Earth (ISDE) and the Chinese Academy of Sciences (CAS). The theme of the symposium was ''Earth Observation and Global Environmental Change''. Back in 1962, the first ISRSE was convened at the University of Michigan, USA. Over the past 50 years, Earth observation has advanced significantly, and remote sensing has become a mature technology for observing the Earth and monitoring global environmental change. At present, remote sensing has already entered an era of integrated, coordinated and sustainable global Earth observation and rapid development of spatial information services. It is very exciting to see that remote sensing technologies have become indispensable tools in numerous fields of Earth systems science, and are playing more and more important roles in areas such as land resources surveying and mapping, crop and forest monitoring, mineral exploration, urban development, ocean and coastlines resources surveillance, and in the monitoring and assessment of floods, droughts, forest fires, landslides and earthquakes. Thus, remote sensing has made great contributions to the socio-economic development of the world and it is anticipated that it will provide more powerful support in advancing the fields of Earth systems science and global change research. The 35th ISRSE was a platform for scientists and young scholars to exchange their research results from the cutting-edge frontiers of spatial information sciences, to review the history of remote sensing development and to consider the prospects for the future development of geospatial information. Therefore, this symposium was dedicated to marking the 50th anniversary of remote sensing especially focused on earth observation and global environmental change. The 35th ISRSE attracted over a thousand scientists and researchers from 56 countries and regions. The Technical Program Committee selected 346 oral presentations and 376 poster presentations, out of 1249 submitted abstracts. In order that the papers from this symposium could be published on a well-recognized platform, the organizers decided to produce refereed papers in IOP EES and invited all presenters to contribute to these proceedings. Each submitted paper was refereed by two anonymous reviewers, following the guidelines of the IOP's Peer Review Policy. The final collection of 279 papers covers a broad range of topics under 14 headings, which not only reflects the diversity of the presentations prompted by the current research hotspots related to remote sensing of the environment, but also witnesses to the increasingly mature development of the discipline. We would like to take this opportunity of the publication of the ISRSE35 Proceedings to express our gratitude to all the participants, especially those who contributed with presentations and manuscripts, for making ISRSE35 such a successful conference. Our thanks also go to our colleagues for their support and encouragement, particularly to the reviewers who worked very hard in reviewing the papers and provided thoughtful comments on the manuscripts. Finally, we sincerely hope that 35th ISRSE will prove to be a significant step forward in Earth observation technologies as applied to addressing the persistent challenges related to global sustainable development. Thank you for your interest and please enjoy the Proceedings. Editor-in-Chief: GUO Huadong Executive Editors: WANG Changlin, JING Linhai, WANG Lizhe, and CHEN Fang Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences The organizing structure of the 35th International Symposium on Remote Sensing of Environment can be found in the PDF.
NASA Technical Reports Server (NTRS)
Birnie, R. W.; Stoiber, R. E. (Principal Investigator)
1981-01-01
A fanning technique based on a simplistic physical model provided a classification algorithm for mixture landscapes. Results of applications to LANDSAT inventory of 1.5 million acres of forest land in Northern Maine are presented. Signatures for potential deer year habitat in New Hampshire were developed. Volcanic activity was monitored in Nicaragua, El Salvador, and Guatemala along with the Mt. St. Helens eruption. Emphasis in the monitoring was placed on the remote sensing of SO2 concentrations in the plumes of the volcanoes.
Computer applications in remote sensing education
NASA Technical Reports Server (NTRS)
Danielson, R. L.
1980-01-01
Computer applications to instruction in any field may be divided into two broad generic classes: computer-managed instruction and computer-assisted instruction. The division is based on how frequently the computer affects the instructional process and how active a role the computer affects the instructional process and how active a role the computer takes in actually providing instruction. There are no inherent characteristics of remote sensing education to preclude the use of one or both of these techniques, depending on the computer facilities available to the instructor. The characteristics of the two classes are summarized, potential applications to remote sensing education are discussed, and the advantages and disadvantages of computer applications to the instructional process are considered.
The Increasing Use of Remote Sensing Data in Studying the Climatological Impacts on Public Health
NASA Technical Reports Server (NTRS)
Kempler, Steven; Benedict, Karl; Ceccato, Pietro; Golden, Meredith; Maxwell, Susan; Morian, Stan; Soebiyanto, Radina; Tong, Daniel
2011-01-01
One of the more fortunate outcomes of the capture and transformation of remote sensing data into applied information is their usefulness and impacts to better understanding climatological impacts on public health. Today, with petabytes of remote sensing data providing global coverage of climatological parameters, public health research and policy decision makers have an unprecedented (and growing) data record that relates the effects of climatic parameters, such as rainfall, heat, soil moisture, etc. to incidences and spread of disease, as well as predictive modeling. In addition, tools and services that specifically serve public health researchers and respondents have grown in response to needs of the these information users.
Chemical-biological defense remote sensing: what's happening
NASA Astrophysics Data System (ADS)
Carrico, John P.
1998-08-01
The proliferation of weapons of mass destruction (WMD) continues to be a serious threat to the security of the US. Proliferation of chemical and biological (CB) weapons is particularly disturbing, and the threats posed can be devastating. Critical elements of the US efforts to reduce and counter WMD proliferation include: (1) the location and characterization of WMD facilities and capabilities worldwide; (2) the ability to rapidly detect and identify the use of CB weapons for expeditious warning and reporting on the battlefield; and (3) the capability to mitigate deleterious consequences of a CB incident through effective protective and medical treatment measures. Remote sensing has been touted as a key technology in these efforts. Historically, the role of remote sensing in CB defense has been to provide early warning of an attack from an extended distance. However, additional roles for remote sensing in CB defense, as well as applications in related missions, are possible and should be pursued. This paper examines what has been happening in remote sensing over the past decade to address needs in this area. Accomplishments, emerging technologies, programmatic issues, and opportunities for the future are covered. The Department of Defence chemical- biological, the Department of Energy's Chemical Analysis by Laser Interrogation of Proliferation Effluents, and other agency related programs are examined. Also, the status of remote sensing in the commercial market arena for environmental monitoring, its relevance to the WMD counterproliferation program, and opportunities for technology transfer are discussed. A course of action for the future is recommended.
Hyperspectral Remote Sensing of Foliar Nitrogen Content
NASA Technical Reports Server (NTRS)
Knyazikhin, Yuri; Schull, Mitchell A.; Stenberg, Pauline; Moettus, Matti; Rautiainen, Miina; Yang, Yan; Marshak, Alexander; Carmona, Pedro Latorre; Kaufmann, Robert K.; Lewis, Philip;
2013-01-01
A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional role for nitrogen in the climate system via its influence on surface albedo and may offer a simple approach for monitoring foliar nitrogen using satellite data. We report, however, that the previously reported correlation is an artifact - it is a consequence of variations in canopy structure, rather than of %N. The data underlying this relationship were collected at sites with varying proportions of foliar nitrogen-poor needleleaf and nitrogen-rich broadleaf species, whose canopy structure differs considerably. When the BRF data are corrected for canopy-structure effects, the residual reflectance variations are negatively related to %N at all wavelengths in the interval 423-855 nm. This suggests that the observed positive correlation between BRF and %N conveys no information about %N. We find that to infer leaf biochemical constituents, e.g., N content, from remotely sensed data, BRF spectra in the interval 710-790 nm provide critical information for correction of structural influences. Our analysis also suggests that surface characteristics of leaves impact remote sensing of its internal constituents. This further decreases the ability to remotely sense canopy foliar nitrogen. Finally, the analysis presented here is generic to the problem of remote sensing of leaf-tissue constituents and is therefore not a specific critique of articles espousing remote sensing of foliar %N.
Reitz, Meredith; Senay, Gabriel; Sanford, Ward E.
2017-01-01
Evapotranspiration (ET) is a key component of the hydrologic cycle, accounting for ~70% of precipitation in the conterminous U.S. (CONUS), but it has been a challenge to predict accurately across different spatio-temporal scales. The increasing availability of remotely sensed data has led to significant advances in the frequency and spatial resolution of ET estimates, derived from energy balance principles with variables such as temperature used to estimate surface latent heat flux. Although remote sensing methods excel at depicting spatial and temporal variability, estimation of ET independently of other water budget components can lead to inconsistency with other budget terms. Methods that rely on ground-based data better constrain long-term ET, but are unable to provide the same temporal resolution. Here we combine long-term ET estimates from a water-balance approach with the SSEBop (operational Simplified Surface Energy Balance) remote sensing-based ET product for 2000–2015. We test the new combined method, the original SSEBop product, and another remote sensing ET product (MOD16) against monthly measurements from 119 flux towers. The new product showed advantages especially in non-irrigated areas where the new method showed a coefficient of determination R2 of 0.44, compared to 0.41 for SSEBop or 0.35 for MOD16. The resulting monthly data set will be a useful, unique contribution to ET estimation, due to its combination of remote sensing-based variability and ground-based long-term water balance constraints.
Polarization Remote Sensing Physical Mechanism, Key Methods and Application
NASA Astrophysics Data System (ADS)
Yang, B.; Wu, T.; Chen, W.; Li, Y.; Knjazihhin, J.; Asundi, A.; Yan, L.
2017-09-01
China's long-term planning major projects "high-resolution earth observation system" has been invested nearly 100 billion and the satellites will reach 100 to 2020. As to 2/3 of China's area covered by mountains it has a higher demand for remote sensing. In addition to light intensity, frequency, phase, polarization is also the main physical characteristics of remote sensing electromagnetic waves. Polarization is an important component of the reflected information from the surface and the atmospheric information, and the polarization effect of the ground object reflection is the basis of the observation of polarization remote sensing. Therefore, the effect of eliminating the polarization effect is very important for remote sensing applications. The main innovations of this paper is as follows: (1) Remote sensing observation method. It is theoretically deduced and verified that the polarization can weaken the light in the strong light region, and then provide the polarization effective information. In turn, the polarization in the low light region can strengthen the weak light, the same can be obtained polarization effective information. (2) Polarization effect of vegetation. By analyzing the structure characteristics of vegetation, polarization information is obtained, then the vegetation structure information directly affects the absorption of biochemical components of leaves. (3) Atmospheric polarization neutral point observation method. It is proved to be effective to achieve the ground-gas separation, which can achieve the effect of eliminating the atmospheric polarization effect and enhancing the polarization effect of the object.
NASA Astrophysics Data System (ADS)
Hendrickx, Jan M. H.; Kleissl, Jan; Gómez Vélez, Jesús D.; Hong, Sung-ho; Fábrega Duque, José R.; Vega, David; Moreno Ramírez, Hernán A.; Ogden, Fred L.
2007-04-01
Accurate estimation of sensible and latent heat fluxes as well as soil moisture from remotely sensed satellite images poses a great challenge. Yet, it is critical to face this challenge since the estimation of spatial and temporal distributions of these parameters over large areas is impossible using only ground measurements. A major difficulty for the calibration and validation of operational remote sensing methods such as SEBAL, METRIC, and ALEXI is the ground measurement of sensible heat fluxes at a scale similar to the spatial resolution of the remote sensing image. While the spatial length scale of remote sensing images covers a range from 30 m (LandSat) to 1000 m (MODIS) direct methods to measure sensible heat fluxes such as eddy covariance (EC) only provide point measurements at a scale that may be considerably smaller than the estimate obtained from a remote sensing method. The Large Aperture scintillometer (LAS) flux footprint area is larger (up to 5000 m long) and its spatial extent better constraint than that of EC systems. Therefore, scintillometers offer the unique possibility of measuring the vertical flux of sensible heat averaged over areas comparable with several pixels of a satellite image (up to about 40 Landsat thermal pixels or about 5 MODIS thermal pixels). The objective of this paper is to present our experiences with an existing network of seven scintillometers in New Mexico and a planned network of three scintillometers in the humid tropics of Panama and Colombia.
A review of the 2005 Kashmir earthquake-induced landslides; from a remote sensing prospective
NASA Astrophysics Data System (ADS)
Shafique, Muhammad; van der Meijde, Mark; Khan, M. Asif
2016-03-01
The 8th October 2005 Kashmir earthquake, in northern Pakistan has triggered thousands of landslides, which was the second major factor in the destruction of the build-up environment, after earthquake-induced ground shaking. Subsequent to the earthquake, several researchers from home and abroad applied a variety of remote sensing techniques, supported with field observations, to develop inventories of the earthquake-triggered landslides, analyzed their spatial distribution and subsequently developed landslide-susceptibility maps. Earthquake causative fault rupture, geology, anthropogenic activities and remote sensing derived topographic attributes were observed to have major influence on the spatial distribution of landslides. These were subsequently used to develop a landslide susceptibility map, thereby demarcating the areas prone to landsliding. Temporal studies monitoring the earthquake-induced landslides shows that the earthquake-induced landslides are stabilized, contrary to earlier belief, directly after the earthquake. The biggest landslide induced dam, as a result of the massive Hattian Bala landslide, is still posing a threat to the surrounding communities. It is observed that remote sensing data is effectively and efficiently used to assess the landslides triggered by the Kashmir earthquake, however, there is still a need of more research to understand the mechanism of intensity and distribution of landslides; and their continuous monitoring using remote sensing data at a regional scale. This paper, provides an overview of remote sensing and GIS applications, for the Kashmir-earthquake triggered landslides, derived outputs and discusses the lessons learnt, advantages, limitations and recommendations for future research.
NASA Astrophysics Data System (ADS)
Leonard, Donald A.; Sweeney, Harold E.
1990-09-01
The physical properties of ocean water, in the top few ten meters, are of great interest in the scientific, engineering, and general oceanographic communities. Subsurface profiles of temperature, salinity, and sound speed measured by laser radar in real time on a synoptic basis over a wide area from an airborne platform would provide valuable information complementary to the data that is now readily available. The laser-radar technique specifically applicable to ocean sensing uses spectroscopic analysis of the inelastic backscattered optical signal. Two methods have received considerable attention for remote sensing and both have been demonstrated in field experiments. These are spontaneous Raman1 and spontaneous Brillouin2 scattering. A discussion of these two processes and a comparison of their properties that are useful for remote sensing was presented3 at SPIE Ocean Optics IX. This paper compares ocean remote sensing using stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) processes with better known spontaneous methods. The results of laboratory measurements of temperature using SBS and some preliminary results of SRS are presented with extensions to performance estimates of potential field systems.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760
NASA Astrophysics Data System (ADS)
Floyd, A.; Liljedahl, A. K.; Gens, R.; Prakash, A.; Mann, D. H.
2011-12-01
A combined use of remote sensing techniques, modeling and in-situ measurements is a pragmatic approach to study arctic hydrology, given the vastness, complexity, and logistical challenges posed by most arctic watersheds. Remote sensing techniques can provide tools to assess the geospatial variations that form the integrated response of a river system and therefore provide important details to study climate change effects on the remote arctic environment. The proposed study tests the applicability of remote sensing and modeling techniques to map, monitor and compare river temperatures and river break-up in the coastal and foothill sections of the Kuparak River, which is an intensely studied watershed. We co-registered about hundred synthetic aperture radar (SAR) images from RADARSAT-1, ERS-1 and ERS-2 satellites, acquired during the months of May through July for a period between 1999 and 2010. Co-registration involved a Fast Fourier Transform (FFT) match of amplitude images. The offsets were then applied to the radiometrically corrected SAR images, converted to dB values, to generate an image stack. We applied a mask to extract pixels representing only the river, and used an adaptive threshold to delineate open water from frozen areas. The variation in river break-up can be bracketed by defining open vs. frozen river conditions. Summer river surface water temperatures will be simulated through the well-established HEC-RAS hydrologic software package and validated with field measurements. The three-pronged approach of using remote sensing, modeling and field measurements demonstrated in this study can be adapted to work for other watersheds across the Arctic.
Near-earth orbital guidance and remote sensing
NASA Technical Reports Server (NTRS)
Powers, W. F.
1972-01-01
The curriculum of a short course in remote sensing and parameter optimization is presented. The subjects discussed are: (1) basics of remote sensing and the user community, (2) multivariant spectral analysis, (3) advanced mathematics and physics of remote sensing, (4) the atmospheric environment, (5) imaging sensing, and (6)nonimaging sensing. Mathematical models of optimization techniques are developed.
NASA Technical Reports Server (NTRS)
Wychgram, D. C.
1972-01-01
Remote sensor data from a NASA Convair 990 radar flight and Mission 101 and 105 have been interpreted and evaluated. Based on interpretation of the remote sensor data, a geologic map has been prepared and compared with a second geologic map, prepared from interpretation of both remote sensor data and field data. Comparison of the two maps gives one indication of the usefulness and reliability of the remote sensor data. Color and color infrared photography provided the largest amount of valuable information. Multiband photography was of lesser value and side-looking radar imagery provided no new information that was not available on small scale photography. Thermal scanner imagery proved to be a very specialized remote sensing tool that should be applied to areas of low relief and sparse vegetation where geologic features produce known or suspected thermal contrast. Low sun angle photography may be a good alternative to side-looking radar imagery but must be flown with critical timing.
Operational programs in forest management and priority in the utilization of remote sensing
NASA Technical Reports Server (NTRS)
Douglass, R. W.
1978-01-01
A speech is given on operational remote sensing programs in forest management and the importance of remote sensing in forestry is emphasized. Forest service priorities in using remote sensing are outlined.
Remote sensing, land use, and demography - A look at people through their effects on the land
NASA Technical Reports Server (NTRS)
Paul, C. K.; Landini, A. J.
1976-01-01
Relevant causes of failure by the remote sensing community in the urban scene are analyzed. The reasons for the insignificant role of remote sensing in urban land use data collection are called the law of realism, the incompatibility of remote sensing and urban management system data formats is termed the law of nominal/ordinal systems compatibility, and the land use/population correlation dilemma is referred to as the law of missing persons. The study summarizes the three laws of urban land use information for which violations, avoidance, or ignorance have caused the decline of present remote sensing research. Particular attention is given to the rationale for urban land use information and for remote sensing. It is shown that remote sensing of urban land uses compatible with the three laws can be effectively developed by realizing the 10 percent contribution of remote sensing to urban land use planning data collection.
NASA Technical Reports Server (NTRS)
1991-01-01
The proceedings contain papers discussing the state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing, along with the research and development activities aimed at increasing the future capabilities of this technology. The following topics are addressed: spectral geology, U.S. and international hydrocarbon exporation, radar and thermal infrared remote sensing, engineering geology and hydrogeology, mineral exploration, remote sensing for marine and environmental applications, image processing and analysis, geobotanical remote sensing, and data integration and geographic information systems. Particular attention is given to spectral alteration mapping with imaging spectrometers, mapping the coastal plain of the Congo with airborne digital radar, applications of remote sensing techniques to the assessment of dam safety, remote sensing of ferric iron minerals as guides for gold exploration, principal component analysis for alteration mappping, and the application of remote sensing techniques for gold prospecting in the north Fujian province.
Methods of training the graduate level and professional geologist in remote sensing technology
NASA Technical Reports Server (NTRS)
Kolm, K. E.
1981-01-01
Requirements for a basic course in remote sensing to accommodate the needs of the graduate level and professional geologist are described. The course should stress the general topics of basic remote sensing theory, the theory and data types relating to different remote sensing systems, an introduction to the basic concepts of computer image processing and analysis, the characteristics of different data types, the development of methods for geological interpretations, the integration of all scales and data types of remote sensing in a given study, the integration of other data bases (geophysical and geochemical) into a remote sensing study, and geological remote sensing applications. The laboratories should stress hands on experience to reinforce the concepts and procedures presented in the lecture. The geologist should then be encouraged to pursue a second course in computer image processing and analysis of remotely sensed data.
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, J. A.
1993-01-01
Progress report on remote sensing of Earth terrain covering the period from Jan. to June 1993 is presented. Areas of research include: radiative transfer model for active and passive remote sensing of vegetation canopy; polarimetric thermal emission from rough ocean surfaces; polarimetric passive remote sensing of ocean wind vectors; polarimetric thermal emission from periodic water surfaces; layer model with tandom spheriodal scatterers for remote sensing of vegetation canopy; application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.
A Terminal Area Icing Remote Sensing System
NASA Technical Reports Server (NTRS)
Reehorst, Andrew L.; Serke, David J.
2014-01-01
NASA and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology is now being extended to provide volumetric coverage surrounding an airport. With volumetric airport terminal area coverage, the resulting icing hazard information will be usable by aircrews, traffic control, and airline dispatch to make strategic and tactical decisions regarding routing when conditions are conducive to airframe icing. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize cloud radar, microwave radiometry, and NEXRAD radar. This terminal area icing remote sensing system will use the data streams from these instruments to provide icing hazard classification along the defined approach paths into an airport. Strategies for comparison to in-situ instruments on aircraft and weather balloons for a planned NASA field test are discussed, as are possible future applications into the NextGen airspace system.
NASA Astrophysics Data System (ADS)
Lenain, L.; Clark, D. B.; Guza, R. T.; Hally-Rosendahl, K.; Statom, N.; Feddersen, F.
2012-12-01
The transport and evolution of temperature, sediment, chlorophyll, fluorescent dye, and other tracers is of significant oceanographic interest, particularly in complex coastal environments such as the nearshore, river mouths, and tidal inlets. Remote sensing improves spatial coverage over in situ observations, and ground truthing remote sensed observations is critical for its use. Here, we present remotely sensed observations of Rhodamine WT dye and Sea Surface Temperature (SST) using the SIO Modular Aerial Sensing System (MASS) and compare them with in situ observations from the IB09 (0-300 m seaward of the surfzone, Imperial Beach, CA, October 2009) and RIVET (New River Inlet, NC, May 2012) field experiments. Dye concentrations are estimated from a unique multispectral camera system that measures the emission and absorption wavelengths of Rhodamine WT dye. During RIVET, dye is also characterized using a pushbroom hyperspectral imaging system (SPECIM AISAEagle VNIR 400-990 nm) while SST is estimated using a long-wave infrared camera (FLIR SC6000HS) coupled with an infrared pyrometer (Heitronics KT19.85II). Repeated flight passes over the dye plume were conducted approximately every 5 min for up to 4.5 hr in duration with a swath width ranging from 400 to 2000 m (altitude dependent), and provided a unique spatio-temporal depiction of the plume. A dye proxy is developed using the measured radiance at the emission and absorption wavelengths of the Rhodamine WT dye. During IB09 and RIVET, in situ dye and temperature were measured with two GPS-tracked jet skis, a small boat, and moored observations. The in situ observations are compared with the remotely sensed data in these two complex coastal environments. Funding was provided by the Office of Naval Research.
Spatial and Temporal Scaling of Thermal Infrared Remote Sensing Data
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Goel, Narendra S.
1995-01-01
Although remote sensing has a central role to play in the acquisition of synoptic data obtained at multiple spatial and temporal scales to facilitate our understanding of local and regional processes as they influence the global climate, the use of thermal infrared (TIR) remote sensing data in this capacity has received only minimal attention. This results from some fundamental challenges that are associated with employing TIR data collected at different space and time scales, either with the same or different sensing systems, and also from other problems that arise in applying a multiple scaled approach to the measurement of surface temperatures. In this paper, we describe some of the more important problems associated with using TIR remote sensing data obtained at different spatial and temporal scales, examine why these problems appear as impediments to using multiple scaled TIR data, and provide some suggestions for future research activities that may address these problems. We elucidate the fundamental concept of scale as it relates to remote sensing and explore how space and time relationships affect TIR data from a problem-dependency perspective. We also describe how linearity and non-linearity observation versus parameter relationships affect the quantitative analysis of TIR data. Some insight is given on how the atmosphere between target and sensor influences the accurate measurement of surface temperatures and how these effects will be compounded in analyzing multiple scaled TIR data. Last, we describe some of the challenges in modeling TIR data obtained at different space and time scales and discuss how multiple scaled TIR data can be used to provide new and important information for measuring and modeling land-atmosphere energy balance processes.
Remote sensing by satellite - Technical and operational implications for international cooperation
NASA Technical Reports Server (NTRS)
Doyle, S. E.
1976-01-01
International cooperation in the U.S. Space Program is discussed and related to the NASA program for remote sensing of the earth. Satellite remote sensing techniques are considered along with the selection of the best sensors and wavelength bands. The technology of remote sensing satellites is considered with emphasis on the Landsat system configuration. Future aspects of remote sensing satellites are considered.
Airborne Remote Sensing (ARS) for Agricultural Research and Commercialization Applications
NASA Technical Reports Server (NTRS)
Narayanan, Ram; Bowen, Brent D.; Nickerson, Jocelyn S.
2002-01-01
Tremendous advances in remote sensing technology and computing power over the last few decades are now providing scientists with the opportunity to investigate, measure, and model environmental patterns and processes with increasing confidence. Such advances are being pursued by the Nebraska Remote Sensing Facility, which consists of approximately 30 faculty members and is very competitive with other institutions in the depth of the work that is accomplished. The development of this facility targeted at applications, commercialization, and education programs in the area of precision agriculture provides a unique opportunity. This critical area is within the scope of NASA goals and objectives of NASA s Applications, Technology Transfer, Commercialization, and Education Division and the Earth Science Enterprise. This innovative integration of Aerospace (Aeronautics) Technology Enterprise applications with other NASA enterprises serves as a model of cross-enterprise transfer of science with specific commercial applications.
A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards
Wright, Daniel B.; Mantilla, Ricardo; Peters-Lidard, Christa D.
2018-01-01
RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. RainyDay can be useful for hazard modeling under nonstationary conditions. PMID:29657544
Research on Remote Sensing Geological Information Extraction Based on Object Oriented Classification
NASA Astrophysics Data System (ADS)
Gao, Hui
2018-04-01
The northern Tibet belongs to the Sub cold arid climate zone in the plateau. It is rarely visited by people. The geological working conditions are very poor. However, the stratum exposures are good and human interference is very small. Therefore, the research on the automatic classification and extraction of remote sensing geological information has typical significance and good application prospect. Based on the object-oriented classification in Northern Tibet, using the Worldview2 high-resolution remote sensing data, combined with the tectonic information and image enhancement, the lithological spectral features, shape features, spatial locations and topological relations of various geological information are excavated. By setting the threshold, based on the hierarchical classification, eight kinds of geological information were classified and extracted. Compared with the existing geological maps, the accuracy analysis shows that the overall accuracy reached 87.8561 %, indicating that the classification-oriented method is effective and feasible for this study area and provides a new idea for the automatic extraction of remote sensing geological information.
Small unmanned aircraft systems for remote sensing and Earth science research
NASA Astrophysics Data System (ADS)
Hugenholtz, Chris H.; Moorman, Brian J.; Riddell, Kevin; Whitehead, Ken
2012-06-01
To understand and predict Earth-surface dynamics, scientists often rely on access to the latest remote sensing data. Over the past several decades, considerable progress has been made in the development of specialized Earth observation sensors for measuring a wide range of processes and features. Comparatively little progress has been made, however, in the development of new platforms upon which these sensors can be deployed. Conventional platforms are still almost exclusively restricted to piloted aircraft and satellites. For many Earth science research questions and applications these platforms do not yet have the resolution or operational flexibility to provide answers affordably. The most effective remote sensing data match the spatiotemporal scale of the process or feature of interest. An emerging technology comprising unmanned aircraft systems (UAS), also known as unmanned aerial vehicles (UAV), is poised to offer a viable alternative to conventional platforms for acquiring high-resolution remote sensing data with increased operational flexibility, lower cost, and greater versatility (Figure 1).
[Contribution of remote sensing to malaria control].
Machault, V; Pages, F; Rogier, C
2009-04-01
Despite national and international efforts, malaria remains a major public health problem and the fight to control the disease is confronted by numerous hurdles. Study of space and time dynamics of malaria is necessary as a basis for making appropriate decision and prioritizing intervention including in areas where field data are rare and sanitary information systems are inadequate. Evaluation of malarial risk should also help anticipate the risk of epidemics as a basis for early warning systems. Since 1960-70 civilian satellites launched for earth observation have been providing information for the measuring or evaluating geo-climatic and anthropogenic factors related to malaria transmission and burden. Remotely sensed data gathered for several civilian or military studies have allowed setup of entomological, parasitological, and epidemiological risk models and maps for rural and urban areas. Mapping of human populations at risk has also benefited from remotely sensing. The results of the published studies show that remote sensing is a suitable tool for optimizing planning, efficacy and efficiency of malaria control.
Strong, James Asa; Elliott, Michael
2017-03-15
The reporting of ecological phenomena and environmental status routinely required point observations, collected with traditional sampling approaches to be extrapolated to larger reporting scales. This process encompasses difficulties that can quickly entrain significant errors. Remote sensing techniques offer insights and exceptional spatial coverage for observing the marine environment. This review provides guidance on (i) the structures and discontinuities inherent within the extrapolative process, (ii) how to extrapolate effectively across multiple spatial scales, and (iii) remote sensing techniques and data sets that can facilitate this process. This evaluation illustrates that remote sensing techniques are a critical component in extrapolation and likely to underpin the production of high-quality assessments of ecological phenomena and the regional reporting of environmental status. Ultimately, is it hoped that this guidance will aid the production of robust and consistent extrapolations that also make full use of the techniques and data sets that expedite this process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Concept for a hyperspectral remote sensing algorithm for floating marine macro plastics.
Goddijn-Murphy, Lonneke; Peters, Steef; van Sebille, Erik; James, Neil A; Gibb, Stuart
2018-01-01
There is growing global concern over the chemical, biological and ecological impact of plastics in the ocean. Remote sensing has the potential to provide long-term, global monitoring but for marine plastics it is still in its early stages. Some progress has been made in hyperspectral remote sensing of marine macroplastics in the visible (VIS) to short wave infrared (SWIR) spectrum. We present a reflectance model of sunlight interacting with a sea surface littered with macro plastics, based on geometrical optics and the spectral signatures of plastic and seawater. This is a first step towards the development of a remote sensing algorithm for marine plastic using light reflectance measurements in air. Our model takes the colour, transparency, reflectivity and shape of plastic litter into account. This concept model can aid the design of laboratory, field and Earth observation measurements in the VIS-SWIR spectrum and explain the results. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards.
Wright, Daniel B; Mantilla, Ricardo; Peters-Lidard, Christa D
2017-04-01
RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. RainyDay can be useful for hazard modeling under nonstationary conditions.
IEA Task 32: Wind Lidar Systems for Wind Energy Deployment (LIDAR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhn, Martin; Trabucchi, Davide; Clifton, Andrew
2016-05-25
Under the International Energy Agency Wind Implementing Agreement (IEA Wind) Task 11, researchers started examining novel applications for remote sensing and the issues around them during the 51st topical expert meeting about remote sensing in January 2007. The 59th topical expert meeting organized by Task 11 in October 2009 was also dedicated to remote sensing, and the first draft of the Task's recommended practices on remote sensing was published in January 2013. The results of the Task 11 topical expert meetings provided solid groundwork for a new IEA Wind Task 32 on wind lidar technologies. Members of the wind communitymore » identified the need to consolidate the knowledge about wind lidar systems to facilitate their use, and to investigate how to exploit the advantages offered by this technology. This was the motivation that led to the start of IEA Wind Task 32 'Lidar Application for Wind Energy Deployment' in November 2011. The kick-off was meeting was held in May 2012.« less
A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards
NASA Technical Reports Server (NTRS)
Wright, Daniel B.; Mantilla, Ricardo; Peters-Lidard, Christa D.
2017-01-01
RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, Rainy Day can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, Rainy Day can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. Rainy Day can be useful for hazard modeling under nonstationary conditions.
NASA Technical Reports Server (NTRS)
Stucky, Richard K.; Krishtalka, Leonard
1991-01-01
Since 1986, remote sensing images derived from satellite and aircraft-borne sensor data have been used to study the stratigraphy and sedimentology of the vertebrate-bearing Wind River and Wagon Bed formations in the Wind River Basin (Wyoming). Landsat 5 TM and aircraft Thermal Infrared Multispectral Scanner data were combined with conventional geologic analyses. The remote sensing data have contributed significantly to: (1) geologic mapping at the formation, member, and bed levels; (2) stratigraphic correlation; (3) reconstruction of ancient depositional environments; and (4) identification of structural complexity. This information is critical to vertebrate paleontology in providing the stratigraphic, sedimentologic, and structural framework required for evolutionary and paleoecologic studies. Of primary importance is the ability to map at minimal cost the geology of large areas (20,000 sq km or greater) at a high level of precision. Remote sensing data can be especially useful in geologically and paleontologically unexplored or poorly understood regions.
A Constrained-Clustering Approach to the Analysis of Remote Sensing Data.
1983-01-01
One old and two new clustering methods were applied to the constrained-clustering problem of separating different agricultural fields based on multispectral remote sensing satellite data. (Constrained-clustering involves double clustering in multispectral measurement similarity and geographical location.) The results of applying the three methods are provided along with a discussion of their relative strengths and weaknesses and a detailed description of their algorithms.
Remote sensing in operational range management programs in Western Canada
NASA Technical Reports Server (NTRS)
Thompson, M. D.
1977-01-01
A pilot program carried out in Western Canada to test remote sensing under semi-operational conditions and display its applicability to operational range management programs was described. Four agencies were involved in the program, two in Alberta and two in Manitoba. Each had different objectives and needs for remote sensing within its range management programs, and each was generally unfamiliar with remote sensing techniques and their applications. Personnel with experience and expertise in the remote sensing and range management fields worked with the agency personnel through every phase of the pilot program. Results indicate that these agencies have found remote sensing to be a cost effective tool and will begin to utilize remote sensing in their operational work during ensuing seasons.
Use of remote sensing for land use policy formulation
NASA Technical Reports Server (NTRS)
1987-01-01
The overall objectives and strategies of the Center for Remote Sensing remain to provide a center for excellence for multidisciplinary scientific expertise to address land-related global habitability and earth observing systems scientific issues. Specific research projects that were underway during the final contract period include: digital classification of coniferous forest types in Michigan's northern lower peninsula; a physiographic ecosystem approach to remote classification and mapping; land surface change detection and inventory; analysis of radiant temperature data; and development of methodologies to assess possible impacts of man's changes of land surface on meteorological parameters. Significant progress in each of the five project areas has occurred. Summaries on each of the projects are provided.
Mapping and monitoring carbon stocks with satellite observations: a comparison of methods.
Goetz, Scott J; Baccini, Alessandro; Laporte, Nadine T; Johns, Tracy; Walker, Wayne; Kellndorfer, Josef; Houghton, Richard A; Sun, Mindy
2009-03-25
Mapping and monitoring carbon stocks in forested regions of the world, particularly the tropics, has attracted a great deal of attention in recent years as deforestation and forest degradation account for up to 30% of anthropogenic carbon emissions, and are now included in climate change negotiations. We review the potential for satellites to measure carbon stocks, specifically aboveground biomass (AGB), and provide an overview of a range of approaches that have been developed and used to map AGB across a diverse set of conditions and geographic areas. We provide a summary of types of remote sensing measurements relevant to mapping AGB, and assess the relative merits and limitations of each. We then provide an overview of traditional techniques of mapping AGB based on ascribing field measurements to vegetation or land cover type classes, and describe the merits and limitations of those relative to recent data mining algorithms used in the context of an approach based on direct utilization of remote sensing measurements, whether optical or lidar reflectance, or radar backscatter. We conclude that while satellite remote sensing has often been discounted as inadequate for the task, attempts to map AGB without satellite imagery are insufficient. Moreover, the direct remote sensing approach provided more coherent maps of AGB relative to traditional approaches. We demonstrate this with a case study focused on continental Africa and discuss the work in the context of reducing uncertainty for carbon monitoring and markets.
Optical sampling of the flux tower footprint
NASA Astrophysics Data System (ADS)
Gamon, J. A.
2015-03-01
The purpose of this review is to address the reasons and methods for conducting optical remote sensing within the flux tower footprint. Fundamental principles and conclusions gleaned from over two decades of proximal remote sensing at flux tower sites are reviewed. An organizing framework is the light-use efficiency (LUE) model, both because it is widely used, and because it provides a useful theoretical construct for integrating optical remote sensing with flux measurements. Multiple ways of driving this model, ranging from meteorological measurements to remote sensing, have emerged in recent years, making it a convenient conceptual framework for comparative experimental studies. New interpretations of established optical sampling methods, including the Photochemical Reflectance Index (PRI) and Solar-Induced Fluorescence (SIF), are discussed within the context of the LUE model. Multi-scale analysis across temporal and spatial axes is a central theme, because such scaling can provide links between ecophysiological mechanisms detectable at the level of individual organisms and broad patterns emerging at larger scales, enabling evaluation of emergent properties and extrapolation to the flux footprint and beyond. Proper analysis of sampling scale requires an awareness of sampling context that is often essential to the proper interpretation of optical signals. Additionally, the concept of optical types, vegetation exhibiting contrasting optical behavior in time and space, is explored as a way to frame our understanding of the controls on surface-atmosphere fluxes. Complementary NDVI and PRI patterns across ecosystems are offered as an example of this hypothesis, with the LUE model and light-response curve providing an integrating framework. We conclude that experimental approaches allowing systematic exploration of plant optical behavior in the context of the flux tower network provides a unique way to improve our understanding of environmental constraints and ecophysiological function. In addition to an enhanced mechanistic understanding of ecosystem processes, this integration of remote sensing with flux measurements offers many rich opportunities for upscaling, satellite validation, and informing practical management objectives ranging form assessing ecosystem health and productivity to quantifying biospheric carbon sequestration.
Monitoring Change in Temperate Coniferous Forest Ecosystems
NASA Technical Reports Server (NTRS)
Williams, Darrel (Technical Monitor); Woodcock, Curtis E.
2004-01-01
The primary goal of this research was to improve monitoring of temperate forest change using remote sensing. In this context, change includes both clearing of forest due to effects such as fire, logging, or land conversion and forest growth and succession. The Landsat 7 ETM+ proved an extremely valuable research tool in this domain. The Landsat 7 program has generated an extremely valuable transformation in the land remote sensing community by making high quality images available for relatively low cost. In addition, the tremendous improvements in the acquisition strategy greatly improved the overall availability of remote sensing images. I believe that from an historical prespective, the Landsat 7 mission will be considered extremely important as the improved image availability will stimulate the use of multitemporal imagery at resolutions useful for local to regional mapping. Also, Landsat 7 has opened the way to global applications of remote sensing at spatial scales where important surface processes and change can be directly monitored. It has been a wonderful experience to have participated on the Landsat 7 Science Team. The research conducted under this project led to contributions in four general domains: I. Improved understanding of the information content of images as a function of spatial resolution; II. Monitoring Forest Change and Succession; III. Development and Integration of Advanced Analysis Methods; and IV. General support of the remote sensing of forests and environmental change. This report is organized according to these topics. This report does not attempt to provide the complete details of the research conducted with support from this grant. That level of detail is provided in the 16 peer reviewed journal articles, 7 book chapters and 5 conference proceedings papers published as part of this grant. This report attempts to explain how the various publications fit together to improve our understanding of how forests are changing and how to monitor forest change with remote sensing. There were no new inventions that resulted from this grant.
PROCEEDINGS OF THE FOURTH SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT; 12, 13, 14 APRIL 1966.
The symposium was conducted as part of a continuing program investigating the field of remote sensing , its potential in scientific research and...information on all aspects of remote sensing , with special emphasis on such topics as needs for remotely sensed data, data management, and the special... remote sensing programs, data acquisition, data analysis and application, and equipment design, were presented. (Author)
Remote sensing as a research tool. [sea ice surveillance from aircraft and spacecraft
NASA Technical Reports Server (NTRS)
Carsey, F. D.; Zwally, H. J.
1986-01-01
The application of aircraft and spacecraft remote sensing techniques to sea ice surveillance is evaluated. The effects of ice in the air-sea-ice system are examined. The measurement principles and characteristics of remote sensing methods for aircraft and spacecraft surveillance of sea ice are described. Consideration is given to ambient visible light, IR, passive microwave, active microwave, and laser altimeter and sonar systems. The applications of these systems to sea ice surveillance are discussed and examples are provided. Particular attention is placed on the use of microwave data and the relation between ice thickness and sea ice interactions. It is noted that spacecraft and aircraft sensing techniques can successfully measure snow cover; ice thickness; ice type; ice concentration; ice velocity field; ocean temperature; surface wind vector field; and air, snow, and ice surface temperatures.
NASA Astrophysics Data System (ADS)
McNamara, Laura A.; Berg, Leif; Butler, Karin; Klein, Laura
2017-05-01
Even as remote sensing technology has advanced in leaps and bounds over the past decade, the remote sensing community lacks interfaces and interaction models that facilitate effective human operation of our sensor platforms. Interfaces that make great sense to electrical engineers and flight test crews can be anxiety-inducing to operational users who lack professional experience in the design and testing of sophisticated remote sensing platforms. In this paper, we reflect on an 18-month collaboration which our Sandia National Laboratory research team partnered with an industry software team to identify and fix critical issues in a widely-used sensor interface. Drawing on basic principles from cognitive and perceptual psychology and interaction design, we provide simple, easily learned guidance for minimizing common barriers to system learnability, memorability, and user engagement.
Remote sensing and image interpretation
NASA Technical Reports Server (NTRS)
Lillesand, T. M.; Kiefer, R. W. (Principal Investigator)
1979-01-01
A textbook prepared primarily for use in introductory courses in remote sensing is presented. Topics covered include concepts and foundations of remote sensing; elements of photographic systems; introduction to airphoto interpretation; airphoto interpretation for terrain evaluation; photogrammetry; radiometric characteristics of aerial photographs; aerial thermography; multispectral scanning and spectral pattern recognition; microwave sensing; and remote sensing from space.
NASA Astrophysics Data System (ADS)
Singh, Manoj K.; Gautam, Ritesh; Gatebe, Charles K.; Poudyal, Rajesh
2016-11-01
The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR). Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wildfire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.
NASA Astrophysics Data System (ADS)
Poudyal, R.; Singh, M.; Gautam, R.; Gatebe, C. K.
2016-12-01
The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR)- http://car.gsfc.nasa.gov/. Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wildfire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.
NASA Astrophysics Data System (ADS)
Leidner, A. K.; Skidmore, A. K.; Turner, W. W.; Geller, G. N.
2017-12-01
The biodiversity community is working towards developing a consensus on a set of Essential Biodiversity Variables (EBVs) that can be used to measure and monitor biodiversity change over time. These EBVs will inform research, modeling, policy, and assessment efforts. The synoptic coverage provided by satellite data make remote sensing a particularly important observation tool to inform many EBVs. Biodiversity is a relatively new subject matter for space agencies, and thus the definition, description, and requirements of EBVs with a significant remote sensing component can foster ways for the biodiversity community to clearly and concisely communicate observational needs to space agencies and the Committee on Earth Observing Satellites (CEOS, the international coordinating body for civilian space agencies). Here, we present an overview of EBVs with a particular emphasis on those for which remote sensing will play a significant role and also report on the results of recent workshops to prioritize and refine EBVs. Our goal is to provide a framework for the biodiversity community to coalesce around a set of observational needs to convey to space agencies. Compared to many physical science disciplines, the biodiversity community represents a wide range of sub-disciplines and organizations (academia, non-governmental organizations, research institutes, national and local natural resource management agencies, etc.), which creates additional challenges when communicating needs to space agencies unfamiliar with the topic. EBVs thus offer a communication pathway that could increase awareness within space agencies of the uses of remote sensing for biodiversity research and applications, which in turn could foster greater use of remote sensing in the broader biodiversity community.
A Design of a Novel Airborne Aerosol Spectrometer for Remote Sensing Validation
NASA Astrophysics Data System (ADS)
Adler, G. A.; Brock, C. A.; Dube, W. P.; Erdesz, F.; Gordon, T.; Law, D. C.; Manfred, K.; Mason, B. J.; McLaughlin, R. J.; Richardson, M.; Wagner, N. L.; Washenfelder, R. A.; Murphy, D. M.
2016-12-01
Aerosols and their effect on the radiative properties of clouds contribute one of the largest sources of uncertainty to the Earth's energy budget. Many current global assessments, of atmospheric aerosol radiative forcing rely heavily on remote sensing observation; therefore, in situ aircraft and ground-based measurements are essential for validation of remote sensing measurements. Cavity ringdown spectrometers (CRD) measure aerosol extinction and are commonly used to validate remote sensing observations. These instruments have been deployed on aircraft based platforms over the years thus providing the opportunity to measure these properties over large areas in various conditions. However, deployment of the CRD on an aircraft platform has drawbacks. Typically, aircraft based CRDs draw sampled aerosol into a cabin based instrument through long lengths of tubing. This limits the ability of the instrument to measure: 1) Course mode aerosols (e.g. dust) 2) Aerosols at high relative humidity (above 90%) Here we describe the design of a novel aircraft based open path CRD. The open path CRD is intended to be mounted external to the cabin and has no sample tubing for aerosol delivery, thus measuring optical properties of all aerosol at the ambient conditions. However, the design of an open path CRD for operation on a wing-mounted aircraft platform has certain design complexities. The instrument's special design features include 2 CRD channels, 2 airfoils around the open Path CRD and a configuration which could be easily aligned and rigid at the same time. This novel implementation of cavity ringdown spectroscopy will provide a better assessment of the accuracy of remote sensing satellite measurements
Satellites as Shared Resources for Caribbean Climate and Health Studies
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.
2002-01-01
Remotely-sensed data and observations are providing powerful new tools for addressing climate and environment-related human health problems through increased capabilities for monitoring, risk mapping, and surveillance of parameters useful to such problems as vector-borne and infectious diseases, air and water quality, harmful algal blooms, UV (ultraviolet) radiation, contaminant and pathogen transport in air and water, and thermal stress. Remote sensing, geographic information systems (GIS), global positioning systems (GPS), improved computational capabilities, and interdisciplinary research between the Earth and health science communities are being combined in rich collaborative efforts resulting in more rapid problem-solving, early warning, and prevention in global health issues. Collaborative efforts among scientists from health and Earth sciences together with local decision-makers are enabling increased understanding of the relationships between changes in temperature, rainfall, wind, soil moisture, solar radiation, vegetation, and the patterns of extreme weather events and the occurrence and patterns of diseases (especially, infectious and vector-borne diseases) and other health problems. This increased understanding through improved information and data sharing, in turn, empowers local health and environmental officials to better predict health problems, take preventive measure, and improve response actions. This paper summarizes the remote sensing systems most useful for climate, environment and health studies of the Caribbean region and provides several examples of interdisciplinary research projects in the Caribbean currently using remote sensing technologies. These summaries include the use of remote sensing of algal blooms, pollution transport, coral reef monitoring, vectorborne disease studies, and potential health effects of African dust on Trinidad and Barbados.
NASA Technical Reports Server (NTRS)
Singh, Manoj K.; Gautam, Ritesh; Gatebe, Charles K.; Poudyal, Rajesh
2016-01-01
The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR). Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wild fire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.
Driving terrestrial ecosystem models from space
NASA Technical Reports Server (NTRS)
Waring, R. H.
1993-01-01
Regional air pollution, land-use conversion, and projected climate change all affect ecosystem processes at large scales. Changes in vegetation cover and growth dynamics can impact the functioning of ecosystems, carbon fluxes, and climate. As a result, there is a need to assess and monitor vegetation structure and function comprehensively at regional to global scales. To provide a test of our present understanding of how ecosystems operate at large scales we can compare model predictions of CO2, O2, and methane exchange with the atmosphere against regional measurements of interannual variation in the atmospheric concentration of these gases. Recent advances in remote sensing of the Earth's surface are beginning to provide methods for estimating important ecosystem variables at large scales. Ecologists attempting to generalize across landscapes have made extensive use of models and remote sensing technology. The success of such ventures is dependent on merging insights and expertise from two distinct fields. Ecologists must provide the understanding of how well models emulate important biological variables and their interactions; experts in remote sensing must provide the biophysical interpretation of complex optical reflectance and radar backscatter data.
Real-Time and Post-Processed Georeferencing for Hyperpspectral Drone Remote Sensing
NASA Astrophysics Data System (ADS)
Oliveira, R. A.; Khoramshahi, E.; Suomalainen, J.; Hakala, T.; Viljanen, N.; Honkavaara, E.
2018-05-01
The use of drones and photogrammetric technologies are increasing rapidly in different applications. Currently, drone processing workflow is in most cases based on sequential image acquisition and post-processing, but there are great interests towards real-time solutions. Fast and reliable real-time drone data processing can benefit, for instance, environmental monitoring tasks in precision agriculture and in forest. Recent developments in miniaturized and low-cost inertial measurement systems and GNSS sensors, and Real-time kinematic (RTK) position data are offering new perspectives for the comprehensive remote sensing applications. The combination of these sensors and light-weight and low-cost multi- or hyperspectral frame sensors in drones provides the opportunity of creating near real-time or real-time remote sensing data of target object. We have developed a system with direct georeferencing onboard drone to be used combined with hyperspectral frame cameras in real-time remote sensing applications. The objective of this study is to evaluate the real-time georeferencing comparing with post-processing solutions. Experimental data sets were captured in agricultural and forested test sites using the system. The accuracy of onboard georeferencing data were better than 0.5 m. The results showed that the real-time remote sensing is promising and feasible in both test sites.
NASA Astrophysics Data System (ADS)
Tamondong, A.; Cruz, C.; Ticman, T.; Peralta, R.; Go, G. A.; Vergara, M.; Estabillo, M. S.; Cadalzo, I. E.; Jalbuena, R.; Blanco, A.
2016-06-01
Remote sensing has been an effective technology in mapping natural resources by reducing the costs and field data gathering time and bringing in timely information. With the launch of several earth observation satellites, an increase in the availability of satellite imageries provides an immense selection of data for the users. The Philippines has recently embarked in a program which will enable the gathering of LiDAR data in the whole country. The capacity of the Philippines to take advantage of these advancements and opportunities is lacking. There is a need to transfer the knowledge of remote sensing technology to other institutions to better utilize the available data. Being an archipelagic country with approximately 36,000 kilometers of coastline, and most of its people depending on its coastal resources, remote sensing is an optimal choice in mapping such resources. A project involving fifteen (15) state universities and colleges and higher education institutions all over the country headed by the University of the Philippines Training Center for Applied Geodesy and Photogrammetry and funded by the Department of Science and Technology was formed to carry out the task of capacity building in mapping the country's coastal resources using LiDAR and other remotely sensed datasets. This paper discusses the accomplishments and the future activities of the project.
Earthquake Hazard Analysis Methods: A Review
NASA Astrophysics Data System (ADS)
Sari, A. M.; Fakhrurrozi, A.
2018-02-01
One of natural disasters that have significantly impacted on risks and damage is an earthquake. World countries such as China, Japan, and Indonesia are countries located on the active movement of continental plates with more frequent earthquake occurrence compared to other countries. Several methods of earthquake hazard analysis have been done, for example by analyzing seismic zone and earthquake hazard micro-zonation, by using Neo-Deterministic Seismic Hazard Analysis (N-DSHA) method, and by using Remote Sensing. In its application, it is necessary to review the effectiveness of each technique in advance. Considering the efficiency of time and the accuracy of data, remote sensing is used as a reference to the assess earthquake hazard accurately and quickly as it only takes a limited time required in the right decision-making shortly after the disaster. Exposed areas and possibly vulnerable areas due to earthquake hazards can be easily analyzed using remote sensing. Technological developments in remote sensing such as GeoEye-1 provide added value and excellence in the use of remote sensing as one of the methods in the assessment of earthquake risk and damage. Furthermore, the use of this technique is expected to be considered in designing policies for disaster management in particular and can reduce the risk of natural disasters such as earthquakes in Indonesia.
Cooling effect of rivers on metropolitan Taipei using remote sensing.
Chen, Yen-Chang; Tan, Chih-Hung; Wei, Chiang; Su, Zi-Wen
2014-01-23
This study applied remote sensing technology to analyze how rivers in the urban environment affect the surface temperature of their ambient areas. While surface meteorological stations can supply accurate data points in the city, remote sensing can provide such data in a two-dimensional (2-D) manner. The goal of this paper is to apply the remote sensing technique to further our understanding of the relationship between the surface temperature and rivers in urban areas. The 2-D surface temperature data was retrieved from Landsat-7 thermal infrared images, while data collected by Formosat-2 was used to categorize the land uses in the urban area. The land surface temperature distribution is simulated by a sigmoid function with nonlinear regression analysis. Combining the aforementioned data, the range of effect on the surface temperature from rivers can be derived. With the remote sensing data collected for the Taipei Metropolitan area, factors affecting the surface temperature were explored. It indicated that the effect on the developed area was less significant than on the ambient nature zone; moreover, the size of the buffer zone between the river and city, such as the wetlands or flood plain, was found to correlate with the affected distance of the river surface temperature.
Cooling Effect of Rivers on Metropolitan Taipei Using Remote Sensing
Chen, Yen-Chang; Tan, Chih-Hung; Wei, Chiang; Su, Zi-Wen
2014-01-01
This study applied remote sensing technology to analyze how rivers in the urban environment affect the surface temperature of their ambient areas. While surface meteorological stations can supply accurate data points in the city, remote sensing can provide such data in a two-dimensional (2-D) manner. The goal of this paper is to apply the remote sensing technique to further our understanding of the relationship between the surface temperature and rivers in urban areas. The 2-D surface temperature data was retrieved from Landsat-7 thermal infrared images, while data collected by Formosat-2 was used to categorize the land uses in the urban area. The land surface temperature distribution is simulated by a sigmoid function with nonlinear regression analysis. Combining the aforementioned data, the range of effect on the surface temperature from rivers can be derived. With the remote sensing data collected for the Taipei Metropolitan area, factors affecting the surface temperature were explored. It indicated that the effect on the developed area was less significant than on the ambient nature zone; moreover, the size of the buffer zone between the river and city, such as the wetlands or flood plain, was found to correlate with the affected distance of the river surface temperature. PMID:24464232
Remote sensing in the coming decade: the vision and the reality
NASA Astrophysics Data System (ADS)
Gail, William B.
2006-08-01
Investment in understanding the Earth pays off twice. It enables pursuit of scientific questions that rank among the most interesting and profound of our time. It also serves society's practical need for increased prosperity and security. Over the last half-century, we have built a sophisticated network of satellites, aircraft, and ground-based remote sensing systems to provide the raw information from which we derive Earth knowledge. This network has served us well in the development of science and the provision of operational services. In the next decade, the demand for such information will grow dramatically. New remote sensing capabilities will emerge. Rapid evolution of Internet geospatial and location-based services will make communication and sharing of Earth knowledge much easier. Governments, businesses, and consumers will all benefit. But this exciting future is threatened from many directions. Risks range from technology and market uncertainties in the private sector to budget cuts and project setbacks in the public sector. The coming decade will see a dramatic confrontation between the vision of what needs to be accomplished in Earth remote sensing and the reality of our resources and commitment. The outcome will have long-term implications for both the remote sensing community and society as a whole.
[Review of estimation on oceanic primary productivity by using remote sensing methods.
Xu, Hong Yun; Zhou, Wei Feng; Ji, Shi Jian
2016-09-01
Accuracy estimation of oceanic primary productivity is of great significance in the assessment and management of fisheries resources, marine ecology systems, global change and other fields. The traditional measurement and estimation of oceanic primary productivity has to rely on in situ sample data by vessels. Satellite remote sensing has advantages of providing dynamic and eco-environmental parameters of ocean surface at large scale in real time. Thus, satellite remote sensing has increasingly become an important means for oceanic primary productivity estimation on large spatio-temporal scale. Combining with the development of ocean color sensors, the models to estimate the oceanic primary productivity by satellite remote sensing have been developed that could be mainly summarized as chlorophyll-based, carbon-based and phytoplankton absorption-based approach. The flexibility and complexity of the three kinds of models were presented in the paper. On this basis, the current research status for global estimation of oceanic primary productivity was analyzed and evaluated. In view of these, four research fields needed to be strengthened in further stu-dy: 1) Global oceanic primary productivity estimation should be segmented and studied, 2) to dee-pen the research on absorption coefficient of phytoplankton, 3) to enhance the technology of ocea-nic remote sensing, 4) to improve the in situ measurement of primary productivity.
NASA Technical Reports Server (NTRS)
Le Vine, David M; Jackson, Thomas J.; Kim, Edward J.; Lang, Roger H.
2011-01-01
The Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad 2010) was held in Washington, DC from March 1 to 4, 2010. The objective of MicroRad 2010 was to provide an open forum to report and discuss recent advances in the field of microwave radiometry, particularly with application to remote sensing of the environment. The meeting was highly successful, with more than 200 registrations representing 48 countries. There were 80 oral presentations and more than 100 posters. MicroRad has become a venue for the microwave radiometry community to present new research results, instrument designs, and applications to an audience that is conversant in these issues. The meeting was divided into 16 sessions (listed in order of presentation): 1) SMOS Mission; 2) Future Passive Microwave Remote Sensing Missions; 3) Theory and Physical Principles of Electromagnetic Models; 4) Field Experiment Results; 5) Soil Moisture and Vegetation; 6) Snow and Cryosphere; 7) Passive/Active Microwave Remote Sensing Synergy; 8) Oceans; 9) Atmospheric Sounding and Assimilation; 10) Clouds and Precipitation; 11) Instruments and Advanced Techniques I; 12) Instruments and Advanced Techniques II; 13) Cross Calibration of Satellite Radiometers; 14) Calibration Theory and Methodology; 15) New Technologies for Microwave Radiometry; 16) Radio Frequency Interference.
Imperatore, Pasquale; Iodice, Antonio; Riccio, Daniele
2017-12-27
A general, approximate perturbation method, able to provide closed-form expressions of scattering from a layered structure with an arbitrary number of rough interfaces, has been recently developed. Such a method provides a unique tool for the characterization of radar response patterns of natural rough multilayers. In order to show that, here, for the first time in a journal paper, we describe the application of the developed perturbation theory to fractal interfaces; we then employ the perturbative method solution to analyze the scattering from real-world layered structures of practical interest in remote sensing applications. We focus on the dependence of normalized radar cross section on geometrical and physical properties of the considered scenarios, and we choose two classes of natural stratifications: wet paleosoil covered by a low-loss dry sand layer and a sea-ice layer above water with dry snow cover. Results are in accordance with the experimental evidence available in the literature for the low-loss dry sand layer, and they may provide useful indications about the actual ability of remote sensing instruments to perform sub-surface sensing for different sensor and scene parameters.
2017-01-01
A general, approximate perturbation method, able to provide closed-form expressions of scattering from a layered structure with an arbitrary number of rough interfaces, has been recently developed. Such a method provides a unique tool for the characterization of radar response patterns of natural rough multilayers. In order to show that, here, for the first time in a journal paper, we describe the application of the developed perturbation theory to fractal interfaces; we then employ the perturbative method solution to analyze the scattering from real-world layered structures of practical interest in remote sensing applications. We focus on the dependence of normalized radar cross section on geometrical and physical properties of the considered scenarios, and we choose two classes of natural stratifications: wet paleosoil covered by a low-loss dry sand layer and a sea-ice layer above water with dry snow cover. Results are in accordance with the experimental evidence available in the literature for the low-loss dry sand layer, and they may provide useful indications about the actual ability of remote sensing instruments to perform sub-surface sensing for different sensor and scene parameters. PMID:29280979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, A.I.; Pettersson, C.B.
1988-01-01
Papers and discussions concerning the geotechnical applications of remote sensing and remote data transmission, sources of remotely sensed data, and glossaries of remote sensing and remote data transmission terms, acronyms, and abbreviations are presented. Aspects of remote sensing use covered include the significance of lineaments and their effects on ground-water systems, waste-site use and geotechnical characterization, the estimation of reservoir submerging losses using CIR aerial photographs, and satellite-based investigation of the significance of surficial deposits for surface mining operations. Other topics presented include the location of potential ground subsidence and collapse features in soluble carbonate rock, optical Fourier analysis ofmore » surface features of interest in geotechnical engineering, geotechnical applications of U.S. Government remote sensing programs, updating the data base for a Geographic Information System, the joint NASA/Geosat Test Case Project, the selection of remote data telemetry methods for geotechnical applications, the standardization of remote sensing data collection and transmission, and a comparison of airborne Goodyear electronic mapping system/SAR with satelliteborne Seasat/SAR radar imagery.« less
Education in Environmental Remote Sensing: Potentials and Problems.
ERIC Educational Resources Information Center
Kiefer, Ralph W.; Lillesand, Thomas M.
1983-01-01
Discusses remote sensing principles and applications and the status and needs of remote sensing education in the United States. A summary of the fundamental policy issues that will determine remote sensing's future role in environmental and resource managements is included. (Author/BC)
THE EPA REMOTE SENSING ARCHIVE
What would you do if you were faced with organizing 30 years of remote sensing projects that had been haphazardly stored at two separate locations for years then combined? The EPA Remote Sensing Archive, currently located in Las Vegas, Nevada. contains the remote sensing data and...
Bibliography of Remote Sensing Techniques Used in Wetland Research.
1993-01-01
remote sensing technology for detecting changes in wetland environments. This report documents a bibliographic search conducted as part of that work unit on applications of remote sensing techniques in wetland research. Results were used to guide research efforts on the use of remote sensing technology for wetland change detection and assessment. The citations are presented in three appendixes, organized by wetland type, sensor type, and author.... Change detection, Wetland assessment, Remote sensing ,
Kite Aerial Photography as a Tool for Remote Sensing
ERIC Educational Resources Information Center
Sallee, Jeff; Meier, Lesley R.
2010-01-01
As humans, we perform remote sensing nearly all the time. This is because we acquire most of our information about our surroundings through the senses of sight and hearing. Whether viewed by the unenhanced eye or a military satellite, remote sensing is observing objects from a distance. With our current technology, remote sensing has become a part…
Remote sensing for detecting and mapping whitefly (Bemisia tabaci) infestations
USDA-ARS?s Scientific Manuscript database
Remote sensing technology has long been used for detecting insect infestations on agricultural crops. With recent advances in remote sensing sensors and other spatial information technologies such as Global Position Systems (GPS) and Geographic Information Systems (GIS), remote sensing is finding mo...
Remote-Sensing Practice and Potential
1974-05-01
Six essential processes that must be accomplished if use of a remote - sensing system is to result in useful information are defined as problem...to be useful in remote - sensing projects are described. An overview of the current state-of-the-art of remote sensing is presented.
History and future of remote sensing technology and education
NASA Technical Reports Server (NTRS)
Colwell, R. N.
1980-01-01
A historical overview of the discovery and development of photography, related sciences, and remote sensing technology is presented. The role of education to date in the development of remote sensing is discussed. The probable future and potential of remote sensing and training is described.
Thermal Remote Sensing and the Thermodynamics of Ecosystem Development
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Kay, James J.; Fraser, Roydon F.
2000-01-01
Thermal remote sensing can provide environmental measuring tools with capabilities for measuring ecosystem development and integrity. Recent advances in applying principles of nonequilibrium thermodynamics to ecology provide fundamental insights into energy partitioning in ecosystems. Ecosystems are nonequilibrium systems, open to material and energy flows, which grow and develop structures and processes to increase energy degradation. More developed terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading its energy content). This can be measured by the effective surface temperature of the ecosystem on a landscape scale.
NASA Technical Reports Server (NTRS)
Lee, Jae K.; Randolph, J. C.; Lulla, Kamlesh P.; Helfert, Michael R.
1993-01-01
Because changes in the Earth's environment have become major global issues, continuous, longterm scientific information is required to assess global problems such as deforestation, desertification, greenhouse effects and climate variations. Global change studies require understanding of interactions of complex processes regulating the Earth system. Space-based Earth observation is an essential element in global change research for documenting changes in Earth environment. It provides synoptic data for conceptual predictive modeling of future environmental change. This paper provides a brief overview of remote sensing technology from the perspective of global change research.
Assessing the Interdisciplinary Use of Socioeconomic and Remote Sensing Data in the Earth Sciences
NASA Astrophysics Data System (ADS)
Chen, R. S.; Downs, R. R.; Schumacher, J.
2013-12-01
Remotely sensed data are widely used in Earth science research and applications not just to improve understanding of natural systems but also to elucidate interactions between natural and human systems and to model and predict human impacts on the environment, whether planned or unplanned. It is therefore often necessary for both remote sensing and socioeconomic data to be used together in both Earth science and social science research, for example in modeling past, present, and future land cover change, in assessing societal vulnerability to geophysical and climatological hazards, in measuring the human health impacts of air and water pollution, or in developing improved approaches to managing water, ecological, and other resources. The NASA Socioeconomic Data and Applications Center (SEDAC) was established as part of the Earth Observing System Data and Information System (EOSDIS) to facilitate access to and use of socioeconomic data in conjunction with remote sensing data in both research and applications. SEDAC provides access both to socioeconomic data that have been transformed into forms more readily usable by Earth scientists and other users, and to integrated datasets that incorporate both socioeconomic and remote sensing data. SEDAC data have been cited in at least 2,000 scientific papers covering a wide range of scientific disciplines and problem areas. In many cases, SEDAC data are cited in these papers along with other remote sensing datasets available from NASA or other sources. However, such citations do not necessarily indicate significant, integrated use of SEDAC and remote sensing data. To assess the level and type of integrated data use, we analyze a selection of recent SEDAC data citations in Earth science journals to characterize the ways in which SEDAC data have been used in the underlying research project and the paper itself. Papers were selected based on the presence of a SEDAC data citation and one or more keywords related to a remote sensing instrument or dataset. We assess if and how the SEDAC and remote sensing data are used together, e.g., in an empirical analysis, model, and/or visualization. We also ascertain the multidisciplinary backgrounds of the author or authors, as well as the Web of Science category and impact factor associated with the journal, to help characterize the user community and the overall scientific impact of the data use. Another issue is whether or not authors are formally citing SEDAC data and remote sensing in reference sections as opposed to referring to data informally, e.g., in figure captions. A key challenge in promoting the cross-disciplinary use of scientific data is the identification of ways in which scientists and other users not only access data from other disciplines but also use these data in their research. Objective assessment of scientific outputs such as the peer-reviewed scientific literature provides important insight into how individual scientists and scientific teams are taking advantage of the ongoing explosion in the variety and quantity of digital data from multiple disciplines to address pressing research problems and applications.
NASA Technical Reports Server (NTRS)
Rusche, A. E.; Myers, V. I.
1974-01-01
Remote sensing data obtained from aerial reconnaissance of tornado damage to the city of Pierre, South Dakota on July 23, 1973 was evaluated to determine its value as a decision making and management tool in post-disaster restoration activities. The imaging techniques used are briefly discussed, and both aerial and closeup color photographs are provided which were used in the evaluation. The immediate advantages of the data are identified as a 'quick-look' assessment, and a list is given which outlines the additional advantages for which positive rescue and cleanup action may be initiated. Hail and flood damage evaluation, and remote sensing of crop damage due to insect of disease infestation is also briefly described.
State resource management and role of remote sensing. [California
NASA Technical Reports Server (NTRS)
Johnson, H. D.
1981-01-01
Remote sensing by satellite can provide valuable information to state officials when making decisions regarding resources management. Portions of California's investment for Prosperity program which seem likely candidates for remote sensing include: (1) surveying vegetation type, age, and density in forests and wildlife habitats; (2) controlling fires through chaparal management; (3) monitoring wetlands and measuring ocean biomass; (4) eliminating ground water overdraught; (5) locating crops in overdraught areas, assessing soil erosion and the areas of poorly drained soils and those affected by salt; (6) monitoring coastal lands and resources; (7) changes in landscapes for recreational purposes; (8) inventorying irrigated lands; (9) classifying ground cover; (10) monitoring farmland conversion; and (11) supplying data for a statewide computerized farmlands data base.
Evapotranspiration and remote sensing
NASA Technical Reports Server (NTRS)
Schmugge, T. J.; Gurney, R.
1982-01-01
There are three things required for evapotranspiration to occur: (1) energy (580 cal/gm) for the change of phase of the water; (2) a source of the water, i.e., adequate soil moisture in the surface layer or in the root zone of the plant; and (3) a sink for the water, i.e., a moisture deficit in the air above the ground. Remote sensing can contribute information to the first two of these conditions by providing estimates of solar insolation, surface albedo, surface temperature, vegetation cover, and soil moisture content. In addition there have been attempts to estimate precipitation and shelter air temperature from remotely sensed data. The problem remains to develop methods for effectively using these sources of information to make large area estimates of evapotranspiration.
NASA Technical Reports Server (NTRS)
1987-01-01
Remote sensing is the process of acquiring physical information from a distance, obtaining data on Earth features from a satellite or an airplane. Advanced remote sensing instruments detect radiations not visible to the ordinary camera or the human eye in several bands of the spectrum. These data are computer processed to produce multispectral images that can provide enormous amounts of information about Earth objects or phenomena. Since every object on Earth emits or reflects radiation in its own unique signature, remote sensing data can be interpreted to tell the difference between one type of vegetation and another, between densely populated urban areas and lightly populated farmland, between clear and polluted water or in the archeological application between rain forest and hidden man made structures.
Earth Remote Sensing: What is it Really? What to do with it?
NASA Technical Reports Server (NTRS)
Meeson, Blanche W.
1998-01-01
NASA!s Earth Sciences Program supports a wide range of endeavors in basic Earth system scientific research, technology development to support that research, development of materials and training for educators and students based on that research and information, and increasingly practical applications. A brief overview of the scope of this scientific research and the key features of the necessary remote sensing instrumentation will be given. I will also describe available educational materials and training courses for a wide range of grade levels. Information will be provided on how to obtain educational materials or to participate in a training course. Finally, a few examples will be given to illustrate how Earth remote sensing effects our daily life.
Remote sensing and geographically based information systems
NASA Technical Reports Server (NTRS)
Cicone, R. C.
1977-01-01
A structure is proposed for a geographically-oriented computer-based information system applicable to the analysis of remote sensing digital data. The structure, intended to answer a wide variety of user needs, would permit multiple views of the data, provide independent management of data security, quality and integrity, and rely on automatic data filing. Problems in geographically-oriented data systems, including those related to line encoding and cell encoding, are considered.
Earth Resources. A Continuing Bibliography with Indexes
1987-11-01
Airborne microwave Doppler measurements of ocean of Guinea according to ground-based and satellite Coral reef remote sensing applications wave directional...understanding of internal Coral reef remote sensing applications an earth-to-satellite Hadamard transform laser long-path waves in the ocean p 20 A87-32951...classifications of coral reefs , and an are provided and new topographic features that are revealed are autocorrelation technique is being developed to
[Algorithms of multiband remote sensing for coastal red tide waters].
Mao, Xianmou; Huang, Weigen
2003-07-01
The spectral characteristics of the coastal waters in East China Sea was studied using in situ measurements, and the multiband algorithms of remote sensing for bloom waters was discussed and developed. Examples of red tide detection using the algorithms in the East China Sea were presented. The results showed that the algorithms could provide information about the location and the area coverage of the red tide events.
Contextual classification on a CDC Flexible Processor system. [for photomapped remote sensing data
NASA Technical Reports Server (NTRS)
Smith, B. W.; Siegel, H. J.; Swain, P. H.
1981-01-01
A potential hardware organization for the Flexible Processor Array is presented. An algorithm that implements a contextual classifier for remote sensing data analysis is given, along with uniprocessor classification algorithms. The Flexible Processor algorithm is provided, as are simulated timings for contextual classifiers run on the Flexible Processor Array and another system. The timings are analyzed for context neighborhoods of sizes three and nine.
NASA Technical Reports Server (NTRS)
Hall, M. J.
1981-01-01
An inventory technique based upon using remote sensing technology, interpreting both high altitude aerial photography and LANDSAT multispectral scanner imagery, is discussed. It is noted that once the final land use inventory maps of irrigated agricultural lands are available and approximately scaled they may be overlaid directly onto either multispectral scanner or return beam vidicon prints, thereby providing an inexpensive updating procedure.
Benjamin C. Bright; Andrew T. Hudak; Arjan J. H. Meddens; Todd J. Hawbaker; Jennifer S. Briggs; Robert E. Kennedy
2017-01-01
Wildfire behavior depends on the type, quantity, and condition of fuels, and the effect that bark beetle outbreaks have on fuels is a topic of current research and debate. Remote sensing can provide estimates of fuels across landscapes, although few studies have estimated surface fuels from remote sensing data. Here we predicted and mapped field-measured canopy and...
Atmospheric Transmittance and Radiance: Methods of Calculation
1975-06-01
plasma theory. There are many analogies and in many cases the mathematical procedures used in the analyses are quite similar. The axiomatic basis for the...Nevertheless, an almost complete compilation is provided by the Radiation Shielding Information Center at the Oak Ridge National a.boratory. The...E. Turner, "Atmospheric Fifects In Remote Sensing," Remote Sensing of Earth Re- sources, Vol. II, F. Shahrokhl (ed.), University of Tennessee, 1973
COSMO-SkyMed and GIS applications
NASA Astrophysics Data System (ADS)
Milillo, Pietro; Sole, Aurelia; Serio, Carmine
2013-04-01
Geographic Information Systems (GIS) and Remote Sensing have become key technology tools for the collection, storage and analysis of spatially referenced data. Industries that utilise these spatial technologies include agriculture, forestry, mining, market research as well as the environmental analysis . Synthetic Aperture Radar (SAR) is a coherent active sensor operating in the microwave band which exploits relative motion between antenna and target in order to obtain a finer spatial resolution in the flight direction exploiting the Doppler effect. SAR have wide applications in Remote Sensing such as cartography, surface deformation detection, forest cover mapping, urban planning, disasters monitoring , surveillance etc… The utilization of satellite remote sensing and GIS technology for this applications has proven to be a powerful and effective tool for environmental monitoring. Remote sensing techniques are often less costly and time-consuming for large geographic areas compared to conventional methods, moreover GIS technology provides a flexible environment for, analyzing and displaying digital data from various sources necessary for classification, change detection and database development. The aim of this work si to illustrate the potential of COSMO-SkyMed data and SAR applications in a GIS environment, in particular a demostration of the operational use of COSMO-SkyMed SAR data and GIS in real cases will be provided for what concern DEM validation, river basin estimation, flood mapping and landslide monitoring.
Role of remote sensing in documenting living resources
NASA Technical Reports Server (NTRS)
Wagner, P. E.; Anderson, R. R.; Brun, B.; Eisenberg, M.; Genys, J. B.; Lear, D. W., Jr.; Miller, M. H.
1978-01-01
Specific cases of known or potentially useful applications of remote sensing in assessing biological resources are discussed. It is concluded that the more usable remote sensing techniques relate to the measurement of population fluctuations in aquatic systems. Sensing of the flora and the fauna of the Bay is considered with emphasis on direct sensing of aquatic plant populations and of water quality. Recommendations for remote sensing projects are given.
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Stone, Leland (Technical Monitor)
1997-01-01
This paper details two projects that use the World Wide Web (WWW) for dissemination of curricula that focus on remote sensing. 1) Presenting grade-school students with the concepts used in remote sensing involves educating the teacher and then providing the teacher with lesson plans. In a NASA-sponsored project designed to introduce students in grades 4 through 12 to some of the ideas and terminology used in remote sensing, teachers from local grade schools and middle schools were recruited to write lessons about remote sensing concepts they could use in their classrooms. Twenty-two lessons were produced and placed in seven modules that include: the electromagnetic spectrum, two- and three-dimensional perception, maps and topography, scale, remote sensing, biotic and abiotic concepts, and landscape chi rise. Each lesson includes a section that evaluates what students have learned by doing the exercise. The lessons, instead of being published in a workbook and distributed to a limited number of teachers, have been placed on a WWW server, enabling much broader access to the package. This arrangement also allows for the lessons to be modified after feedback from teachers accessing the package. 2) Two-year colleges serve to teach trade skills, prepare students for enrollment in senior institutions of learning, and more and more, retrain students who have college degrees in new technologies and skills. A NASA-sponsored curriculum development project is producing a curriculum using remote sensing analysis an Earth science applications. The project has three major goals. First, it will implement the use of remote sensing data in a broad range of community college courses. Second, it will create curriculum modules and classes that are transportable to other community colleges. Third, the project will be an ongoing source of data and curricular materials to other community colleges. The curriculum will have these course pathways to a certificate; a) a Science emphasis, b) an Arts and Letters emphasis, and c) a Computer Science emphasis Each pathway includes course work in remote sensing, geographical information systems (GIS), computer science, Earth science, software and technology utilization, and communication. Distribution of products from this project to other two-year colleges will be accomplished using the WWW.
77 FR 39220 - Advisory Committee on Commercial Remote Sensing (ACCRES); Charter Renewal
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-02
... Commercial Remote Sensing (ACCRES); Charter Renewal AGENCY: National Oceanic and Atmospheric Administration... Committee on Commercial Remote Sensing (ACCRES) was renewed on March 14, 2012. SUPPLEMENTARY INFORMATION: In... Commercial Remote Sensing (ACCRES) is in the public interest in connection with the performance of duties...
76 FR 66042 - Advisory Committee on Commercial Remote Sensing (ACCRES); Request for Nominations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... Commercial Remote Sensing (ACCRES); Request for Nominations ACTION: Notice requesting nominations for the Advisory Committee on Commercial Remote Sensing (ACCRES). SUMMARY: The Advisory Committee on Commercial Remote Sensing (ACCRES) was established to advise the Secretary of Commerce, through the Under Secretary...
Qiu, Guo Yu; Zhao, Ming
2010-03-01
Remote monitoring of soil evaporation and soil water status is necessary for water resource and environment management. Ground based remote sensing can be the bridge between satellite remote sensing and ground-based point measurement. The primary object of this study is to provide an algorithm to estimate evaporation and soil water status by remote sensing and to verify its accuracy. Observations were carried out in a flat field with varied soil water content. High-resolution thermal images were taken with a thermal camera; soil evaporation was measured with a weighing lysimeter; weather data were recorded at a nearby meteorological station. Based on the thermal imaging and the three-temperatures model (3T model), we developed an algorithm to estimate soil evaporation and soil water status. The required parameters of the proposed method were soil surface temperature, air temperature, and solar radiation. By using the proposed method, daily variation in soil evaporation was estimated. Meanwhile, soil water status was remotely monitored by using the soil evaporation transfer coefficient. Results showed that the daily variation trends of measured and estimated evaporation agreed with each other, with a regression line of y = 0.92x and coefficient of determination R(2) = 0.69. The simplicity of the proposed method makes the 3T model a potentially valuable tool for remote sensing.
NASA Astrophysics Data System (ADS)
Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.
2013-01-01
Tropospheric NO2 vertical column densities were retrieved for the first time in Toronto, Canada using three methods of differing spatial scales. Remotely-sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities derived using a pair of chemiluminescence monitors situated 0.01 and 0.5 km above ground level. The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson R ranging from 0.68 to 0.79), but the in situ vertical column densities were 27% to 55% greater than the remotely-sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely-sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely-sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each of the methods.
NASA Astrophysics Data System (ADS)
Goodman, James Ansell
My research focuses on the development and application of hyperspectral remote sensing as a valuable component in the assessment and management of coral ecosystems. Remote sensing provides an important quantitative ability to investigate the spatial dynamics of coral health and evaluate the impacts of local, regional and global change on this important natural resource. Furthermore, advances in detector capabilities and analysis methods, particularly with respect to hyperspectral remote sensing, are also increasing the accuracy and level of effectiveness of the resulting data products. Using imagery of Kaneohe Bay and French Frigate Shoals in the Hawaiian Islands, acquired in 2000 by NASA's Airborne Visible InfraRed Imaging Spectrometer (AVIRIS), I developed, applied and evaluated algorithms for analyzing coral reefs using hyperspectral remote sensing data. Research included developing methods for acquiring in situ underwater reflectance, collecting spectral measurements of the dominant bottom components in Kaneohe Bay, applying atmospheric correction and sunglint removal algorithms, employing a semianalytical optimization model to derive bathymetry and aquatic optical properties, and developing a linear unmixing approach for deriving bottom composition. Additionally, algorithm development focused on using fundamental scientific principles to facilitate the portability of methods to diverse geographic locations and across variable environmental conditions. Assessments of this methodology compared favorably with available field measurements and habitat information, and the overall analysis demonstrated the capacity to derive information on water properties, bathymetry and habitat composition. Thus, results illustrated a successful approach for extracting environmental information and habitat composition from a coral reef environment using hyperspectral remote sensing.
NASA Astrophysics Data System (ADS)
Wei, Guifeng; Tang, Danling; Wang, Sufen
Monitoring of spatial and temporal distribution of chlorophyll (Chl-a) concentrations in the aquatic milieu is always challenging and often interesting. However, the recent advancements in satellite digital data play a significant role in providing outstanding results for the marine environmental investigations. The present paper is aimed to review ‘remote sensing research in Chinese seas’ within the period of 24 years from 1978 to 2002. Owing to generalized distributional pattern, the Chl-a concentrations are recognized high towards northern Chinese seas than the southern. Moreover, the coastal waters, estuaries, and upwelling zones always exhibit relatively high Chl-a concentrations compared with offshore waters. On the basis of marine Chl-a estimates obtained from satellite and other field measured environmental parameters, we have further discussed on the applications of satellite remote sensing in the fields of harmful algal blooms (HABs), primary production and physical oceanographic currents of the regional seas. Concerned with studies of HABs, satellite remote sensing proved more advantageous than any other conventional methods for large-scale applications. Probably, it may be the only source of authentic information responsible for the evaluation of new research methodologies to detect HABs. At present, studies using remote sensing methods are mostly confined to observe algal bloom occurrences, hence, it is essential to coordinate the mechanism of marine ecological and oceanographic dynamic processes of HABs using satellite remote sensing data with in situ measurements of marine environmental parameters. The satellite remote sensing on marine environment and HABs is believed to have a great improvement with popular application of technology.
Remote Sensing Applications to Water Quality Management in Florida
NASA Astrophysics Data System (ADS)
Lehrter, J. C.; Schaeffer, B. A.; Hagy, J.; Spiering, B.; Barnes, B.; Hu, C.; Le, C.; McEachron, L.; Underwood, L. W.; Ellis, C.; Fisher, B.
2013-12-01
Optical datasets from estuarine and coastal systems are increasingly available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data for local and regional coastal water quality management. Our presentation will highlight two recent applications of optical data and remote sensing to water quality decision-making in coastal regions of the state of Florida; (1) informing the development of estuarine and coastal nutrient criteria for the state of Florida and (2) informing the rezoning of the Florida Keys National Marine Sanctuary. These efforts involved building up the underlying science to demonstrate the applicability of satellite data as well as an outreach component to educate decision-makers about the use, utility, and uncertainties of remote sensing data products. Scientific developments included testing existing algorithms and generating new algorithms for water clarity and chlorophylla in case II (CDOM or turbidity dominated) estuarine and coastal waters and demonstrating the accuracy of remote sensing data products in comparison to traditional field based measurements. Including members from decision-making organizations on the research team and interacting with decision-makers early and often in the process were key factors for the success of the outreach efforts and the eventual adoption of satellite data into the data records and analyses used in decision-making. Florida coastal water bodies (black boxes) for which remote sensing imagery were applied to derive numeric nutrient criteria and in situ observations (black dots) used to validate imagery. Florida ocean color applied to development of numeric nutrient criteria
Dong, Yong-Bo; Luo, Yao; Zhu, Cong; Peng, Wen-Fu; Xu, Xin-Liang; Fang, Qing-Mao
2017-11-01
Swertia mussotii is a kind of rare medicinal materials, the relevant researches are mainly concentrated on its medicinal efficacy and medicinal value till now, researches of adaptive distribution by applying remote sensing and GIS are relatively less. This study is to analyze the adaptive distribution of S.mussotii in Sichuan province by applying remote sensing and GIS technology, and provide scientific basis for the protection and development of wild resources, artificial cultivation and adjustment of Chinese medicine industrial distribution in Sichuan province. Based on literature review and ecological factors such as altitude, annual precipitation and annual average temperature, this study extracted ecological factors, overlay analysis in GIS, as well as combining GPS field validation data by means of remote sensing and GIS, discusses the adaptive distribution of SMF sin Sichuan province. ①The area of adaptive distribution of S. mussotii in Sichuan province is 1 543.749 km², mainly in Dege county, Ganzi county, Daofu county, Kangding county, Barkam, Jinchuan county, Xiaojin county, Danba county, Daocheng county, Xiangcheng county, Xinlong county, Aba county, Muli county and other counties and cities, accounts for about 7.25% in total area. ② Combining statistical information and field validation, this study found that S. mussotii adaptive distribution gained by remote sensing and GIS is in conformity with its actual distribution. The study shows that remote sensing and GIS technology are feasible to obtain the S. mussotii adaptive distribution, they can further be applied to studies on adaptive distributions of other rare Chinese medicinal herb. Copyright© by the Chinese Pharmaceutical Association.
Wageningen UR Unmanned Aerial Remote Sensing Facility - Overview of activities
NASA Astrophysics Data System (ADS)
Bartholomeus, Harm; Keesstra, Saskia; Kooistra, Lammert; Suomalainen, Juha; Mucher, Sander; Kramer, Henk; Franke, Jappe
2016-04-01
To support environmental management there is an increasing need for timely, accurate and detailed information on our land. Unmanned Aerial Systems (UAS) are increasingly used to monitor agricultural crop development, habitat quality or urban heat efficiency. An important reason is that UAS technology is maturing quickly while the flexible capabilities of UAS fill a gap between satellite based and ground based geo-sensing systems. In 2012, different groups within Wageningen University and Research Centre have established an Unmanned Airborne Remote Sensing Facility. The objective of this facility is threefold: a) To develop innovation in the field of remote sensing science by providing a platform for dedicated and high-quality experiments; b) To support high quality UAS services by providing calibration facilities and disseminating processing procedures to the UAS user community; and c) To promote and test the use of UAS in a broad range of application fields like habitat monitoring, precision agriculture and land degradation assessment. The facility is hosted by the Laboratory of Geo-Information Science and Remote Sensing (GRS) and the Department of Soil Physics and Land Management (SLM) of Wageningen University together with the team Earth Informatics (EI) of Alterra. The added value of the Unmanned Aerial Remote Sensing Facility is that compared to for example satellite based remote sensing more dedicated science experiments can be prepared. This includes for example higher frequent observations in time (e.g., diurnal observations), observations of an object under different observation angles for characterization of BRDF and flexibility in use of camera's and sensors types. In this way, laboratory type of set ups can be tested in a field situation and effects of up-scaling can be tested. In the last years we developed and implemented different camera systems (e.g. a hyperspectral pushbroom system, and multispectral frame cameras) which we operated in projects all around the world, while new camera systems are being planned such as LiDAR and a full frame hyperspectral camera. In the presentation we will give an overview of our activities, ranging from erosion studies, decision support for precision agriculture, determining leaf biochemistry and canopy structure in tropical forests to the mapping of coastal zones.
Wang, Kai; Franklin, Steven E.; Guo, Xulin; Cattet, Marc
2010-01-01
Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS). PMID:22163432
Wang, Kai; Franklin, Steven E; Guo, Xulin; Cattet, Marc
2010-01-01
Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS).
Remote Sensing and Reflectance Profiling in Entomology.
Nansen, Christian; Elliott, Norman
2016-01-01
Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.
1993-01-01
during the agricultural season. Satellite remote sensing can contribute significantly to such a system by collecting information on crops and on...well as techniques to derive biophysical variables from remotely-sensed data. Finally, the integration of these remote - sensing techniques with crop
2010-12-01
remote - sensing reflectance) can be highly inaccurate if a spectrally constant value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear
2010-12-06
remote - sensing reflectance) can be highly inaccurate if a spectrally constant value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear
NASA Astrophysics Data System (ADS)
Abdullah, U. N. N.; Handroos, H.
2017-09-01
Introduction: This paper presents the study of sense of control parameters to improve the lack of direct motion feeling through remote operated container crane station (ROCCS) joystick interface. The investigations of the parameters in this study are important to develop the engineering parameters related to the sense of control goal in the next design process. Methodology: Structured interviews and observations were conducted to obtain the user experience data from thirteen remote container crane operators from two international terminals. Then, interview analysis, task analysis, activity analysis and time line analysis were conducted to compare and contrast the results from interviews and observations. Results: Four experience parameters were identified to support the sense of control goal in the later design improvement of the ROCC joystick interface. The significance of difficulties to control, unsynchronized movements, facilitate in control and decision making in unexpected situation as parameters to the sense of control goal were validated by' feedbacks from operators as well as analysis. Contribution: This study provides feedback directly from end users towards developing a sustainable control interface for ROCCS in specific and remote operated off-road vehicles in general.
Horizon sensors attitude errors simulation for the Brazilian Remote Sensing Satellite
NASA Astrophysics Data System (ADS)
Vicente de Brum, Antonio Gil; Ricci, Mario Cesar
Remote sensing, meteorological and other types of satellites require an increasingly better Earth related positioning. From the past experience it is well known that the thermal horizon in the 15 micrometer band provides conditions of determining the local vertical at any time. This detection is done by horizon sensors which are accurate instruments for Earth referred attitude sensing and control whose performance is limited by systematic and random errors amounting about 0.5 deg. Using the computer programs OBLATE, SEASON, ELECTRO and MISALIGN, developed at INPE to simulate four distinct facets of conical scanning horizon sensors, attitude errors are obtained for the Brazilian Remote Sensing Satellite (the first one, SSR-1, is scheduled to fly in 1996). These errors are due to the oblate shape of the Earth, seasonal and latitudinal variations of the 15 micrometer infrared radiation, electronic processing time delay and misalignment of sensor axis. The sensor related attitude errors are thus properly quantified in this work and will, together with other systematic errors (for instance, ambient temperature variation) take part in the pre-launch analysis of the Brazilian Remote Sensing Satellite, with respect to the horizon sensor performance.
Characterization of Vegetation using the UC Davis Remote Sensing Testbed
NASA Astrophysics Data System (ADS)
Falk, M.; Hart, Q. J.; Bowen, K. S.; Ustin, S. L.
2006-12-01
Remote sensing provides information about the dynamics of the terrestrial biosphere with continuous spatial and temporal coverage on many different scales. We present the design and construction of a suite of instrument modules and network infrastructure with size, weight and power constraints suitable for small scale vehicles, anticipating vigorous growth in unmanned aerial vehicles (UAV) and other mobile platforms. Our approach provides the rapid deployment and low cost acquisition of high aerial imagery for applications requiring high spatial resolution and revisits. The testbed supports a wide range of applications, encourages remote sensing solutions in new disciplines and demonstrates the complete range of engineering knowledge required for the successful deployment of remote sensing instruments. The initial testbed is deployed on a Sig Kadet Senior remote controlled plane. It includes an onboard computer with wireless radio, GPS, inertia measurement unit, 3-axis electronic compass and digital cameras. The onboard camera is either a RGB digital camera or a modified digital camera with red and NIR channels. Cameras were calibrated using selective light sources, an integrating spheres and a spectrometer, allowing for the computation of vegetation indices such as the NDVI. Field tests to date have investigated technical challenges in wireless communication bandwidth limits, automated image geolocation, and user interfaces; as well as image applications such as environmental landscape mapping focusing on Sudden Oak Death and invasive species detection, studies on the impact of bird colonies on tree canopies, and precision agriculture.
NASA Astrophysics Data System (ADS)
Coburn, C. A.; Qin, Y.; Zhang, J.; Staenz, K.
2015-12-01
Food security is one of the most pressing issues facing humankind. Recent estimates predict that over one billion people don't have enough food to meet their basic nutritional needs. The ability of remote sensing tools to monitor and model crop production and predict crop yield is essential for providing governments and farmers with vital information to ensure food security. Google Earth Engine (GEE) is a cloud computing platform, which integrates storage and processing algorithms for massive remotely sensed imagery and vector data sets. By providing the capabilities of storing and analyzing the data sets, it provides an ideal platform for the development of advanced analytic tools for extracting key variables used in regional and national food security systems. With the high performance computing and storing capabilities of GEE, a cloud-computing based system for near real-time crop land monitoring was developed using multi-source remotely sensed data over large areas. The system is able to process and visualize the MODIS time series NDVI profile in conjunction with Landsat 8 image segmentation for crop monitoring. With multi-temporal Landsat 8 imagery, the crop fields are extracted using the image segmentation algorithm developed by Baatz et al.[1]. The MODIS time series NDVI data are modeled by TIMESAT [2], a software package developed for analyzing time series of satellite data. The seasonality of MODIS time series data, for example, the start date of the growing season, length of growing season, and NDVI peak at a field-level are obtained for evaluating the crop-growth conditions. The system fuses MODIS time series NDVI data and Landsat 8 imagery to provide information of near real-time crop-growth conditions through the visualization of MODIS NDVI time series and comparison of multi-year NDVI profiles. Stakeholders, i.e., farmers and government officers, are able to obtain crop-growth information at crop-field level online. This unique utilization of GEE in combination with advanced analytic and extraction techniques provides a vital remote sensing tool for decision makers and scientists with a high-degree of flexibility to adapt to different uses.
NASA Astrophysics Data System (ADS)
Schimel, D.; Pavlick, R.; Stavros, E. N.; Townsend, P. A.; Ustin, S.; Thompson, D. R.
2017-12-01
Remote sensing can inform a wide variety of essential biodiversity variables, including measurements that define primary productivity, forest structure, biome distribution, plant communities, land use-land cover change and climate drivers of change. Emerging remote sensing technologies can add significantly to remote sensing of EBVs, providing new, large scale insights on plant and habitat diversity itself, as well as causes and consequences of biodiversity change. All current biodiversity assessments identify major data gaps, with insufficient coverage in critical regions, limited observations to monitor change over time, with very limited revisit of sample locations, as well as taxon-specific biased biases. Remote sensing cannot fill many of the gaps in global biodiversity observations, but spectroscopic measurements in terrestrial and marine environments can aid in assessing plant/phytoplankton functional diversity and efficiently reveal patterns in space, as well as changes over time, and, by making use of chlorophyll fluorescence, reveal associated patterns in photosynthesis. LIDAR and RADAR measurements quantify ecosystem structure, and can precisely define changes due to growth, disturbance and land use. Current satellite-based EBVs have taken advantage of the extraordinary time series from LANDSAT and MODIS, but new measurements more directly reveal ecosystem structure, function and composition. We will present results from pre-space airborne studies showing the synergistic ability of a suite of new remote observation techniques to quantify biodiversity and ecosystem function and show how it changes during major disturbance events.
Software Suite to Support In-Flight Characterization of Remote Sensing Systems
NASA Technical Reports Server (NTRS)
Stanley, Thomas; Holekamp, Kara; Gasser, Gerald; Tabor, Wes; Vaughan, Ronald; Ryan, Robert; Pagnutti, Mary; Blonski, Slawomir; Kenton, Ross
2014-01-01
A characterization software suite was developed to facilitate NASA's in-flight characterization of commercial remote sensing systems. Characterization of aerial and satellite systems requires knowledge of ground characteristics, or ground truth. This information is typically obtained with instruments taking measurements prior to or during a remote sensing system overpass. Acquired ground-truth data, which can consist of hundreds of measurements with different data formats, must be processed before it can be used in the characterization. Accurate in-flight characterization of remote sensing systems relies on multiple field data acquisitions that are efficiently processed, with minimal error. To address the need for timely, reproducible ground-truth data, a characterization software suite was developed to automate the data processing methods. The characterization software suite is engineering code, requiring some prior knowledge and expertise to run. The suite consists of component scripts for each of the three main in-flight characterization types: radiometric, geometric, and spatial. The component scripts for the radiometric characterization operate primarily by reading the raw data acquired by the field instruments, combining it with other applicable information, and then reducing it to a format that is appropriate for input into MODTRAN (MODerate resolution atmospheric TRANsmission), an Air Force Research Laboratory-developed radiative transport code used to predict at-sensor measurements. The geometric scripts operate by comparing identified target locations from the remote sensing image to known target locations, producing circular error statistics defined by the Federal Geographic Data Committee Standards. The spatial scripts analyze a target edge within the image, and produce estimates of Relative Edge Response and the value of the Modulation Transfer Function at the Nyquist frequency. The software suite enables rapid, efficient, automated processing of ground truth data, which has been used to provide reproducible characterizations on a number of commercial remote sensing systems. Overall, this characterization software suite improves the reliability of ground-truth data processing techniques that are required for remote sensing system in-flight characterizations.
NASA Technical Reports Server (NTRS)
Allen, Thomas R., Jr.
1999-01-01
Old Dominion University has claimed the title "University of the 21st Century," with a bold emphasis on technology innovation and application. In keeping with this claim, the proposed work has implemented a new laboratory equipped for remote sensing as well as curriculum and research innovations afforded for present and future faculty and students. The developments summarized within this report would not have been possible without the support of the NASA grant and significant cost-sharing of several units within the University. The grant effectively spring-boarded the university into major improvements in its approach to remote sensing and geospatial information technologies. The university has now committed to licensing Erdas Imagine software for the laboratory, a campus-wide ESRI geographic information system (GIS) products license, and several smaller software and hardware utilities available to faculty and students through the laboratory. Campus beneficiaries of this grant have included faculty from departments including Ocean, Earth. and Atmospheric Sciences, Political Science and Geography, Ecological Sciences, Environmental Health, and Civil and Environmental Engineering. High student interest is evidenced in students in geology, geography, ecology, urban studies, and planning. Three new courses have been added to the catalog and offered this year. Cross-cutting curriculum changes are in place with growing enrollments in remote sensing, GIS, and a new co-taught seminar in applied coastal remote sensing. The enabling grant has also allowed project participants to attract external funding for research grants, thereby providing additional funds beyond the planned matching, maintenance and growth of software and hardware, and stipends for student assistants. Two undergraduate assistants and two graduate assistants have been employed by full-time assistantships as a result. A new certificate is offered to students completing an interdisciplinary course sequence in remote sensing and coastal environments. Subsequent phases of the project are under planning. including seminars for regional coastal managers and public dissemination of remote sensing science through the local media and university publications.
NASA Technical Reports Server (NTRS)
Kiang, Richard; Adimi, Farida; Kempler, Steven
2008-01-01
Background: The transmission of vectorborne infectious diseases is often influenced by environmental, meteorological and climatic parameters, because the vector life cycle depends on these factors. For example, the geophysical parameters relevant to malaria transmission include precipitation, surface temperature, humidity, elevation, and vegetation type. Because these parameters are routinely measured by satellites, remote sensing is an important technological tool for predicting, preventing, and containing a number of vectorborne infectious diseases, such as malaria, dengue, West Nile virus, etc. Methods: A variety of NASA remote sensing data can be used for modeling vectorborne infectious disease transmission. We will discuss both the well known and less known remote sensing data, including Landsat, AVHRR (Advanced Very High Resolution Radiometer), MODIS (Moderate Resolution Imaging Spectroradiometer), TRMM (Tropical Rainfall Measuring Mission), ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), EO-1 (Earth Observing One) ALI (Advanced Land Imager), and SIESIP (Seasonal to Interannual Earth Science Information Partner) dataset. Giovanni is a Web-based application developed by the NASA Goddard Earth Sciences Data and Information Services Center. It provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data. After remote sensing data is obtained, a variety of techniques, including generalized linear models and artificial intelligence oriented methods, t 3 can be used to model the dependency of disease transmission on these parameters. Results: The processes of accessing, visualizing and utilizing precipitation data using Giovanni, and acquiring other data at additional websites are illustrated. Malaria incidence time series for some parts of Thailand and Indonesia are used to demonstrate that malaria incidences are reasonably well modeled with generalized linear models and artificial intelligence based techniques. Conclusions: Remote sensing data relevant to the transmission of vectorborne infectious diseases can be conveniently accessed at NASA and some other websites. These data are useful for vectorborne infectious disease surveillance and modeling.
Walz, Yvonne; Wegmann, Martin; Dech, Stefan; Vounatsou, Penelope; Poda, Jean-Noël; N'Goran, Eliézer K.; Utzinger, Jürg; Raso, Giovanna
2015-01-01
Background Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. Methodology We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d’Ivoire and validated against readily available survey data from school-aged children. Principal Findings Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d’Ivoire. Conclusions/Significance A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail-related fitness. Our model provides a useful tool to monitor the development of new hotspots of potential schistosomiasis transmission based on regularly updated remote sensing data. PMID:26587839
Walz, Yvonne; Wegmann, Martin; Dech, Stefan; Vounatsou, Penelope; Poda, Jean-Noël; N'Goran, Eliézer K; Utzinger, Jürg; Raso, Giovanna
2015-11-01
Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d'Ivoire and validated against readily available survey data from school-aged children. Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d'Ivoire. A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail-related fitness. Our model provides a useful tool to monitor the development of new hotspots of potential schistosomiasis transmission based on regularly updated remote sensing data.
Field Data Collection: an Essential Element in Remote Sensing Applications
NASA Technical Reports Server (NTRS)
Pettinger, L. R.
1971-01-01
Field data collected in support of remote sensing projects are generally used for the following purposes: (1) calibration of remote sensing systems, (2) evaluation of experimental applications of remote sensing imagery on small test sites, and (3) designing and evaluating operational regional resource studies and inventories which are conducted using the remote sensing imagery obtained. Field data may be used to help develop a technique for a particular application, or to aid in the application of that technique to a resource evaluation or inventory problem for a large area. Scientists at the Forestry Remote Sensing Laboratory have utilized field data for both purposes. How meaningful field data has been collected in each case is discussed.
Remote monitoring of a thermal plume
NASA Technical Reports Server (NTRS)
Kuo, C. Y.; Talay, T. A.
1979-01-01
A remote-sensing experiment conducted on May 17, 1977, over the Surry nuclear power station on the James River, Virginia is discussed. Isotherms of the thermal plume from the power station were derived from remotely sensed data and compared with in situ water temperature measurements provided by the Virginia Electric and Power Company, VEPCO. The results of this study were also qualitatively compared with those from other previous studies under comparable conditions of the power station's operation and the ambient flow. These studies included hydraulic model predictions carried out by Pritchard and Carpenter and a 5-year in situ monitoring program based on boat surveys.
Remote Sensing: A valuable tool in the Forest Service decision making process. [in Utah
NASA Technical Reports Server (NTRS)
Stanton, F. L.
1975-01-01
Forest Service studies for integrating remotely sensed data into existing information systems highlight a need to: (1) re-examine present methods of collecting and organizing data, (2) develop an integrated information system for rapidly processing and interpreting data, (3) apply existing technological tools in new ways, and (4) provide accurate and timely information for making right management decisions. The Forest Service developed an integrated information system using remote sensors, microdensitometers, computer hardware and software, and interactive accessories. Their efforts substantially reduce the time it takes for collecting and processing data.
Cropland measurement using Thematic Mapper data and radiometric model
NASA Technical Reports Server (NTRS)
Lyon, John G.; Khuwaiter, I. H. S.
1989-01-01
To halt erosion and desertification, it is necessary to quantify resources that are affected. Necessary information includes inventory of croplands and desert areas as they change over time. Several studies indicate the value of remote sensor data as input to inventories. In this study, the radiometric modeling of spectral characteristics of soil and vegetation provides the theoretical basis for the remote sensing approach. Use of Landsat Thematic Mapper images allows measurement of croplands in Saudi Arabia, demonstrating the capability of the approach. The inventory techniques and remote sensing approach presented are potentially useful in developing countries.
Remote sensing programs and courses in engineering and water resources
NASA Technical Reports Server (NTRS)
Kiefer, R. W.
1981-01-01
The content of typical basic and advanced remote sensing and image interpretation courses are described and typical remote sensing graduate programs of study in civil engineering and in interdisciplinary environmental remote sensing and water resources management programs are outlined. Ideally, graduate programs with an emphasis on remote sensing and image interpretation should be built around a core of five courses: (1) a basic course in fundamentals of remote sensing upon which the more specialized advanced remote sensing courses can build; (2) a course dealing with visual image interpretation; (3) a course dealing with quantitative (computer-based) image interpretation; (4) a basic photogrammetry course; and (5) a basic surveying course. These five courses comprise up to one-half of the course work required for the M.S. degree. The nature of other course work and thesis requirements vary greatly, depending on the department in which the degree is being awarded.
Remote sensing research in geographic education: An alternative view
NASA Technical Reports Server (NTRS)
Wilson, H.; Cary, T. K.; Goward, S. N.
1981-01-01
It is noted that within many geography departments remote sensing is viewed as a mere technique a student should learn in order to carry out true geographic research. This view inhibits both students and faculty from investigation of remotely sensed data as a new source of geographic knowledge that may alter our understanding of the Earth. The tendency is for geographers to accept these new data and analysis techniques from engineers and mathematicians without questioning the accompanying premises. This black-box approach hinders geographic applications of the new remotely sensed data and limits the geographer's contribution to further development of remote sensing observation systems. It is suggested that geographers contribute to the development of remote sensing through pursuit of basic research. This research can be encouraged, particularly among students, by demonstrating the links between geographic theory and remotely sensed observations, encouraging a healthy skepticism concerning the current understanding of these data.
NASA Astrophysics Data System (ADS)
Krehbiel, C.; Maiersperger, T.; Friesz, A.; Harriman, L.; Quenzer, R.; Impecoven, K.
2016-12-01
Three major obstacles facing big Earth data users include data storage, management, and analysis. As the amount of satellite remote sensing data increases, so does the need for better data storage and management strategies to exploit the plethora of data now available. Standard GIS tools can help big Earth data users whom interact with and analyze increasingly large and diverse datasets. In this presentation we highlight how NASA's Land Processes Distributed Active Archive Center (LP DAAC) is tackling these big Earth data challenges. We provide a real life use case example to describe three tools and services provided by the LP DAAC to more efficiently exploit big Earth data in a GIS environment. First, we describe the Open-source Project for a Network Data Access Protocol (OPeNDAP), which calls to specific data, minimizing the amount of data that a user downloads and improves the efficiency of data downloading and processing. Next, we cover the LP DAAC's Application for Extracting and Exploring Analysis Ready Samples (AppEEARS), a web application interface for extracting and analyzing land remote sensing data. From there, we review an ArcPython toolbox that was developed to provide quality control services to land remote sensing data products. Locating and extracting specific subsets of larger big Earth datasets improves data storage and management efficiency for the end user, and quality control services provides a straightforward interpretation of big Earth data. These tools and services are beneficial to the GIS user community in terms of standardizing workflows and improving data storage, management, and analysis tactics.
Christopher D. Lippitt; Douglas A. Stow; Philip J. Riggan
2016-01-01
Remote sensing for hazard response requires a priori identification of sensor, transmission, processing, and distribution methods to permit the extraction of relevant information in timescales sufficient to allow managers to make a given time-sensitive decision. This study applies and demonstrates the utility of the Remote Sensing Communication...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and.... Abstract NOAA has established requirements for the licensing of private operators of remote-sensing space... Land Remote- Sensing Policy Act of 1992 and with the national security and international obligations of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-24
... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and... for the licensing of private operators of remote-sensing space systems. The information in applications and subsequent reports is needed to ensure compliance with the Land Remote- Sensing Policy Act of...
Advancement of China’s Visible Light Remote Sensing Technology In Aerospace,
1996-03-19
Aerospace visible light film systems were among the earliest space remote sensing systems to be developed in China. They have been applied very well...makes China the third nation in the world to master space remote sensing technology, it also puts recoverable remote sensing satellites among the first
Polarimetric passive remote sensing of periodic surfaces
NASA Technical Reports Server (NTRS)
Veysoglu, Murat E.; Yueh, H. A.; Shin, R. T.; Kong, J. A.
1991-01-01
The concept of polarimetry in active remote sensing is extended to passive remote sensing. The potential use of the third and fourth Stokes parameters U and V, which play an important role in polarimetric active remote sensing, is demonstrated for passive remote sensing. It is shown that, by the use of the reciprocity principle, the polarimetric parameters of passive remote sensing can be obtained through the solution of the associated direct scattering problem. These ideas are applied to study polarimetric passive remote sensing of periodic surfaces. The solution of the direct scattering problem is obtained by an integral equation formulation which involves evaluation of periodic Green's functions and normal derivative of those on the surface. Rapid evaluation of the slowly convergent series associated with these functions is observed to be critical for the feasibility of the method. New formulas, which are rapidly convergent, are derived for the calculation of these series. The study has shown that the brightness temperature of the Stokes parameter U can be significant in passive remote sensing. Values as high as 50 K are observed for certain configurations.
From planets to crops and back: Remote sensing makes sense
NASA Astrophysics Data System (ADS)
Mustard, John F.
2017-04-01
Remotely sensed data and the instruments that acquire them are core parts of Earth and planetary observation systems. They are used to quantify the Earth's interconnected systems, and remote sensing is the only way to get a daily, or more frequent, snapshot of the status of the Earth. It really is the Earth's stethoscope. In a similar manner remote sensing is the rock hammer of the planetary scientist and the only way comprehensive data sets can be acquired. To risk offending many remotely sensed data acquired across the electromagnetic spectrum, it is the tricorder to explore known and unknown planets. Arriving where we are today in the use of remotely sensed data in the solar system has been a continually evolving synergy between Earth observation, planetary exploration, and fundamental laboratory work.
A History of NASA Remote Sensing Contributions to Archaeology
NASA Technical Reports Server (NTRS)
Giardino, Marco J.
2010-01-01
During its long history of developing and deploying remote sensing instruments, NASA has provided a scientific data that have benefitted a variety of scientific applications among them archaeology. Multispectral and hyperspectral instrument mounted on orbiting and suborbital platforms have provided new and important information for the discovery, delineation and analysis of archaeological sites worldwide. Since the early 1970s, several of the ten NASA centers have collaborated with archaeologists to refine and validate the use of active and passive remote sensing for archeological use. The Stennis Space Center (SSC), located in Mississippi USA has been the NASA leader in archeological research. Together with colleagues from Goddard Space Flight Center (GSFC), Marshall Space Flight Center (MSFC), and the Jet Propulsion Laboratory (JPL), SSC scientists have provided the archaeological community with useful images and sophisticated processing that have pushed the technological frontiers of archaeological research and applications. Successful projects include identifying prehistoric roads in Chaco canyon, identifying sites from the Lewis and Clark Corps of Discovery exploration and assessing prehistoric settlement patterns in southeast Louisiana. The Scientific Data Purchase (SDP) stimulated commercial companies to collect archaeological data. At present, NASA formally solicits "space archaeology" proposals through its Earth Science Directorate and continues to assist archaeologists and cultural resource managers in doing their work more efficiently and effectively. This paper focuses on passive remote sensing and does not consider the significant contributions made by NASA active sensors. Hyperspectral data offers new opportunities for future archeological discoveries.
Remote sensing of on-road vehicle emissions: Mechanism, applications and a case study from Hong Kong
NASA Astrophysics Data System (ADS)
Huang, Yuhan; Organ, Bruce; Zhou, John L.; Surawski, Nic C.; Hong, Guang; Chan, Edward F. C.; Yam, Yat Shing
2018-06-01
Vehicle emissions are a major contributor to air pollution in cities and have serious health impacts to their inhabitants. On-road remote sensing is an effective and economic tool to monitor and control vehicle emissions. In this review, the mechanism, accuracy, advantages and limitations of remote sensing were introduced. Then the applications and major findings of remote sensing were critically reviewed. It was revealed that the emission distribution of on-road vehicles was highly skewed so that the dirtiest 10% vehicles accounted for over half of the total fleet emissions. Such findings highlighted the importance and effectiveness of using remote sensing for in situ identification of high-emitting vehicles for further inspection and maintenance programs. However, the accuracy and number of vehicles affected by screening programs were greatly dependent on the screening criteria. Remote sensing studies showed that the emissions of gasoline and diesel vehicles were significantly reduced in recent years, with the exception of NOx emissions of diesel vehicles in spite of greatly tightened automotive emission regulations. Thirdly, the experience and issues of using remote sensing for identifying high-emitting vehicles in Hong Kong (where remote sensing is a legislative instrument for enforcement purposes) were reported. That was followed by the first time ever identification and discussion of the issue of frequent false detection of diesel high-emitters using remote sensing. Finally, the challenges and future research directions of on-road remote sensing were elaborated.
Remote sensing of natural resources: Quarterly literature review
NASA Technical Reports Server (NTRS)
1976-01-01
A quarterly review of technical literature concerning remote sensing techniques is presented. The format contains indexed and abstracted materials with emphasis on data gathering techniques performed or obtained remotely from space, aircraft, or ground-based stations. Remote sensor applications including the remote sensing of natural resources are presented.
Implications of sampling design and sample size for national carbon accounting systems.
Köhl, Michael; Lister, Andrew; Scott, Charles T; Baldauf, Thomas; Plugge, Daniel
2011-11-08
Countries willing to adopt a REDD regime need to establish a national Measurement, Reporting and Verification (MRV) system that provides information on forest carbon stocks and carbon stock changes. Due to the extensive areas covered by forests the information is generally obtained by sample based surveys. Most operational sampling approaches utilize a combination of earth-observation data and in-situ field assessments as data sources. We compared the cost-efficiency of four different sampling design alternatives (simple random sampling, regression estimators, stratified sampling, 2-phase sampling with regression estimators) that have been proposed in the scope of REDD. Three of the design alternatives provide for a combination of in-situ and earth-observation data. Under different settings of remote sensing coverage, cost per field plot, cost of remote sensing imagery, correlation between attributes quantified in remote sensing and field data, as well as population variability and the percent standard error over total survey cost was calculated. The cost-efficiency of forest carbon stock assessments is driven by the sampling design chosen. Our results indicate that the cost of remote sensing imagery is decisive for the cost-efficiency of a sampling design. The variability of the sample population impairs cost-efficiency, but does not reverse the pattern of cost-efficiency of the individual design alternatives. Our results clearly indicate that it is important to consider cost-efficiency in the development of forest carbon stock assessments and the selection of remote sensing techniques. The development of MRV-systems for REDD need to be based on a sound optimization process that compares different data sources and sampling designs with respect to their cost-efficiency. This helps to reduce the uncertainties related with the quantification of carbon stocks and to increase the financial benefits from adopting a REDD regime.
Laser-based sensors for oil spill remote sensing
NASA Astrophysics Data System (ADS)
Brown, Carl E.; Fingas, Mervin F.; Mullin, Joseph V.
1997-07-01
Remote sensing is becoming an increasingly important tool for the effective direction of oil spill countermeasures. Cleanup personnel have recognized that remote sensing can increase spill cleanup efficiency. It has long been recognized that there is no one sensor which is capable of detecting oil and related petroleum products in all environments and spill scenarios. There are sensors which possess a wide field-of- view and can therefore be used to map the overall extent of the spill. These sensors, however lack the capability to positively identify oil and related products, especially along complicated beach and shoreline environments where several substrates are present. The laser-based sensors under development by the Emergencies Science Division of Environment Canada are designed to fill specific roles in oil spill response. The scanning laser environmental airborne fluorosensor (SLEAF) is being developed to detect and map oil and related petroleum products in complex marine and shoreline environments where other non-specific sensors experience difficulty. The role of the SLEAF would be to confirm or reject suspected oil contamination sites that have been targeted by the non-specific sensors. This confirmation will release response crews from the time-consuming task of physically inspecting each site, and direct crews to sites that require remediation. The laser ultrasonic remote sensing of oil thickness (LURSOT) sensor will provide an absolute measurement of oil thickness from an airborne platform. There are presently no sensors available, either airborne or in the laboratory which can provide an absolute measurement of oil thickness. This information is necessary for the effective direction of spill countermeasures such as dispersant application and in-situ burning. This paper describes the development of laser-based airborne oil spill remote sensing instrumentation at Environment Canada and identifies the anticipated benefits of the use of this technology to the oil spill response community.
NASA Astrophysics Data System (ADS)
Umar, M.; Rhoads, Bruce L.; Greenberg, Jonathan A.
2018-01-01
Although past work has noted that contrasts in turbidity often are detectable on remotely sensed images of rivers downstream from confluences, no systematic methodology has been developed for assessing mixing over distance of confluent flows with differing surficial suspended sediment concentrations (SSSC). In contrast to field measurements of mixing below confluences, satellite remote-sensing can provide detailed information on spatial distributions of SSSC over long distances. This paper presents a methodology that uses remote-sensing data to estimate spatial patterns of SSSC downstream of confluences along large rivers and to determine changes in the amount of mixing over distance from confluences. The method develops a calibrated Random Forest (RF) model by relating training SSSC data from river gaging stations to derived spectral indices for the pixels corresponding to gaging-station locations. The calibrated model is then used to predict SSSC values for every river pixel in a remotely sensed image, which provides the basis for mapping of spatial variability in SSSCs along the river. The pixel data are used to estimate average surficial values of SSSC at cross sections spaced uniformly along the river. Based on the cross-section data, a mixing metric is computed for each cross section. The spatial pattern of change in this metric over distance can be used to define rates and length scales of surficial mixing of suspended sediment downstream of a confluence. This type of information is useful for exploring the potential influence of various controlling factors on mixing downstream of confluences, for evaluating how mixing in a river system varies over time and space, and for determining how these variations influence water quality and ecological conditions along the river.
Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage
NASA Astrophysics Data System (ADS)
Burks, J. E.; Molthan, A.; Schultz, L. A.; McGrath, K.; Bell, J. R.; Cole, T.; Angle, K.
2014-12-01
In 2014, collaborations between the Short-term Prediction Research and Transition (SPoRT) Center at NASA Marshall Space Flight Center, the National Weather Service (NWS), and the USGS led to the incorporation of Earth remote sensing imagery within the NOAA/NWS Damage Assessment Toolkit (DAT). The DAT is a smartphone, tablet, and web-based application that allows NWS meteorologists to acquire, quality control, and manage various storm damage indicators following a severe weather event, such as a tornado, occurrence of widespread damaging winds, or significant hail. Earth remote sensing supports the damage assessment process by providing a broad overview of how various acquired damage indicators relate to scarring visible from space, ranging from high spatial resolution commercial imagery (~1-4m) acquired via USGS and in collaboration with other federal and private sector partners, to moderate resolution imaging from NASA sensors (~15-30m) such as those aboard Landsat 7 and 8 and Terra's ASTER, to lower resolution but routine imaging from NASA's Terra and Aqua MODIS, or the Suomi-NPP VIIRS instrument. In several cases, the acquisition and delivery of imagery in the days after a severe weather event has proven helpful in confirming or in some cases adjusting the preliminary damage track acquired during a ground survey. For example, limited road networks and access to private property may make it difficult to observe the entire length of a tornado track, while satellite imagery can fill in observation gaps to complete a more detailed damage track assessment. This presentation will highlight successful applications of Earth remote sensing for the improvement of damage surveys, discuss remaining challenges, and provide direction on future efforts that will improve the delivery of remote sensing data and use through new automation processes and training opportunities.