Sample records for provide spatial estimates

  1. Modeling trends from North American Breeding Bird Survey data: a spatially explicit approach

    USGS Publications Warehouse

    Bled, Florent; Sauer, John R.; Pardieck, Keith L.; Doherty, Paul; Royle, J. Andy

    2013-01-01

    Population trends, defined as interval-specific proportional changes in population size, are often used to help identify species of conservation interest. Efficient modeling of such trends depends on the consideration of the correlation of population changes with key spatial and environmental covariates. This can provide insights into causal mechanisms and allow spatially explicit summaries at scales that are of interest to management agencies. We expand the hierarchical modeling framework used in the North American Breeding Bird Survey (BBS) by developing a spatially explicit model of temporal trend using a conditional autoregressive (CAR) model. By adopting a formal spatial model for abundance, we produce spatially explicit abundance and trend estimates. Analyses based on large-scale geographic strata such as Bird Conservation Regions (BCR) can suffer from basic imbalances in spatial sampling. Our approach addresses this issue by providing an explicit weighting based on the fundamental sample allocation unit of the BBS. We applied the spatial model to three species from the BBS. Species have been chosen based upon their well-known population change patterns, which allows us to evaluate the quality of our model and the biological meaning of our estimates. We also compare our results with the ones obtained for BCRs using a nonspatial hierarchical model (Sauer and Link 2011). Globally, estimates for mean trends are consistent between the two approaches but spatial estimates provide much more precise trend estimates in regions on the edges of species ranges that were poorly estimated in non-spatial analyses. Incorporating a spatial component in the analysis not only allows us to obtain relevant and biologically meaningful estimates for population trends, but also enables us to provide a flexible framework in order to obtain trend estimates for any area.

  2. Combined point and distributed techniques for multidimensional estimation of spatial groundwater-stream water exchange in a heterogeneous sand bed-stream.

    NASA Astrophysics Data System (ADS)

    Gaona Garcia, J.; Lewandowski, J.; Bellin, A.

    2017-12-01

    Groundwater-stream water interactions in rivers determine water balances, but also chemical and biological processes in the streambed at different spatial and temporal scales. Due to the difficult identification and quantification of gaining, neutral and losing conditions, it is necessary to combine techniques with complementary capabilities and scale ranges. We applied this concept to a study site at the River Schlaube, East Brandenburg-Germany, a sand bed stream with intense sediment heterogeneity and complex environmental conditions. In our approach, point techniques such as temperature profiles of the streambed together with vertical hydraulic gradients provide data for the estimation of fluxes between groundwater and surface water with the numerical model 1DTempPro. On behalf of distributed techniques, fiber optic distributed temperature sensing identifies the spatial patterns of neutral, down- and up-welling areas by analysis of the changes in the thermal patterns at the streambed interface under certain flow. The study finally links point and surface temperatures to provide a method for upscaling of fluxes. Point techniques provide point flux estimates with essential depth detail to infer streambed structures while the results hardly represent the spatial distribution of fluxes caused by the heterogeneity of streambed properties. Fiber optics proved capable of providing spatial thermal patterns with enough resolution to observe distinct hyporheic thermal footprints at multiple scales. The relation of thermal footprint patterns and temporal behavior with flux results from point techniques enabled the use of methods for spatial flux estimates. The lack of detailed information of the physical driver's spatial distribution restricts the spatial flux estimation to the application of the T-proxy method, whose highly uncertain results mainly provide coarse spatial flux estimates. The study concludes that the upscaling of groundwater-stream water interactions using thermal measurements with combined point and distributed techniques requires the integration of physical drivers because of the heterogeneity of the flux patterns. Combined experimental and modeling approaches may help to obtain more reliable understanding of groundwater-surface water interactions at multiple scales.

  3. Counting Cats: Spatially Explicit Population Estimates of Cheetah (Acinonyx jubatus) Using Unstructured Sampling Data

    PubMed Central

    Broekhuis, Femke; Gopalaswamy, Arjun M.

    2016-01-01

    Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed ‘hotspots’ of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species. PMID:27135614

  4. Counting Cats: Spatially Explicit Population Estimates of Cheetah (Acinonyx jubatus) Using Unstructured Sampling Data.

    PubMed

    Broekhuis, Femke; Gopalaswamy, Arjun M

    2016-01-01

    Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed 'hotspots' of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species.

  5. Estimating the spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing

    NASA Astrophysics Data System (ADS)

    Gao, Shengguo; Zhu, Zhongli; Liu, Shaomin; Jin, Rui; Yang, Guangchao; Tan, Lei

    2014-10-01

    Soil moisture (SM) plays a fundamental role in the land-atmosphere exchange process. Spatial estimation based on multi in situ (network) data is a critical way to understand the spatial structure and variation of land surface soil moisture. Theoretically, integrating densely sampled auxiliary data spatially correlated with soil moisture into the procedure of spatial estimation can improve its accuracy. In this study, we present a novel approach to estimate the spatial pattern of soil moisture by using the BME method based on wireless sensor network data and auxiliary information from ASTER (Terra) land surface temperature measurements. For comparison, three traditional geostatistic methods were also applied: ordinary kriging (OK), which used the wireless sensor network data only, regression kriging (RK) and ordinary co-kriging (Co-OK) which both integrated the ASTER land surface temperature as a covariate. In Co-OK, LST was linearly contained in the estimator, in RK, estimator is expressed as the sum of the regression estimate and the kriged estimate of the spatially correlated residual, but in BME, the ASTER land surface temperature was first retrieved as soil moisture based on the linear regression, then, the t-distributed prediction interval (PI) of soil moisture was estimated and used as soft data in probability form. The results indicate that all three methods provide reasonable estimations. Co-OK, RK and BME can provide a more accurate spatial estimation by integrating the auxiliary information Compared to OK. RK and BME shows more obvious improvement compared to Co-OK, and even BME can perform slightly better than RK. The inherent issue of spatial estimation (overestimation in the range of low values and underestimation in the range of high values) can also be further improved in both RK and BME. We can conclude that integrating auxiliary data into spatial estimation can indeed improve the accuracy, BME and RK take better advantage of the auxiliary information compared to Co-OK, and BME outperforms RK by integrating the auxiliary data in a probability form.

  6. Analysis of spatial correlation in predictive models of forest variables that use LiDAR auxiliary information

    Treesearch

    F. Mauro; Vicente J. Monleon; H. Temesgen; L.A. Ruiz

    2017-01-01

    Accounting for spatial correlation of LiDAR model errors can improve the precision of model-based estimators. To estimate spatial correlation, sample designs that provide close observations are needed, but their implementation might be prohibitively expensive. To quantify the gains obtained by accounting for the spatial correlation of model errors, we examined (

  7. Spatial discretization of large watersheds and its influence on the estimation of hillslope sediment yield

    USDA-ARS?s Scientific Manuscript database

    The combined use of water erosion models and geographic information systems (GIS) has facilitated soil loss estimation at the watershed scale. Tools such as the Geo-spatial interface for the Water Erosion Prediction Project (GeoWEPP) model provide a convenient spatially distributed soil loss estimat...

  8. Estimating temporal trend in the presence of spatial complexity: A Bayesian hierarchical model for a wetland plant population undergoing restoration

    USGS Publications Warehouse

    Rodhouse, T.J.; Irvine, K.M.; Vierling, K.T.; Vierling, L.A.

    2011-01-01

    Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed Bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas]) population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones") with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity-a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.

  9. Integrating Eddy Covariance, Penman-Monteith and METRIC based Evapotranspiration estimates to generate high resolution space-time ET over the Brazos River Basin

    NASA Astrophysics Data System (ADS)

    Mbabazi, D.; Mohanty, B.; Gaur, N.

    2017-12-01

    Evapotranspiration (ET) is an important component of the water and energy balance and accounts for 60 -70% of precipitation losses. However, accurate estimates of ET are difficult to quantify at varying spatial and temporal scales. Eddy covariance methods estimate ET at high temporal resolutions but without capturing the spatial variation in ET within its footprint. On the other hand, remote sensing methods using Landsat imagery provide ET with high spatial resolution but low temporal resolution (16 days). In this study, we used both eddy covariance and remote sensing methods to generate high space-time resolution ET. Daily, monthly and seasonal ET estimates were obtained using the eddy covariance (EC) method, Penman-Monteith (PM) and Mapping Evapotranspiration with Internalized Calibration (METRIC) models to determine cotton and native prairie ET dynamics in the Brazos river basin characterized by varying hydro-climatic and geological gradients. Daily estimates of spatially distributed ET (30 m resolution) were generated using spatial autocorrelation and temporal interpolations between the EC flux variable footprints and METRIC ET for the 2016 and 2017 growing seasons. A comparison of the 2016 and 2017 preliminary daily ET estimates showed similar ET dynamics/trends among the EC, PM and METRIC methods, and 5-20% differences in seasonal ET estimates. This study will improve the spatial estimates of EC ET and temporal resolution of satellite derived ET thus providing better ET data for water use management.

  10. Hedonic approaches based on spatial econometrics and spatial statistics: application to evaluation of project benefits

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Morito; Seya, Hajime

    2009-12-01

    This study discusses the theoretical foundation of the application of spatial hedonic approaches—the hedonic approach employing spatial econometrics or/and spatial statistics—to benefits evaluation. The study highlights the limitations of the spatial econometrics approach since it uses a spatial weight matrix that is not employed by the spatial statistics approach. Further, the study presents empirical analyses by applying the Spatial Autoregressive Error Model (SAEM), which is based on the spatial econometrics approach, and the Spatial Process Model (SPM), which is based on the spatial statistics approach. SPMs are conducted based on both isotropy and anisotropy and applied to different mesh sizes. The empirical analysis reveals that the estimated benefits are quite different, especially between isotropic and anisotropic SPM and between isotropic SPM and SAEM; the estimated benefits are similar for SAEM and anisotropic SPM. The study demonstrates that the mesh size does not affect the estimated amount of benefits. Finally, the study provides a confidence interval for the estimated benefits and raises an issue with regard to benefit evaluation.

  11. Trap configuration and spacing influences parameter estimates in spatial capture-recapture models

    USGS Publications Warehouse

    Sun, Catherine C.; Fuller, Angela K.; Royle, J. Andrew

    2014-01-01

    An increasing number of studies employ spatial capture-recapture models to estimate population size, but there has been limited research on how different spatial sampling designs and trap configurations influence parameter estimators. Spatial capture-recapture models provide an advantage over non-spatial models by explicitly accounting for heterogeneous detection probabilities among individuals that arise due to the spatial organization of individuals relative to sampling devices. We simulated black bear (Ursus americanus) populations and spatial capture-recapture data to evaluate the influence of trap configuration and trap spacing on estimates of population size and a spatial scale parameter, sigma, that relates to home range size. We varied detection probability and home range size, and considered three trap configurations common to large-mammal mark-recapture studies: regular spacing, clustered, and a temporal sequence of different cluster configurations (i.e., trap relocation). We explored trap spacing and number of traps per cluster by varying the number of traps. The clustered arrangement performed well when detection rates were low, and provides for easier field implementation than the sequential trap arrangement. However, performance differences between trap configurations diminished as home range size increased. Our simulations suggest it is important to consider trap spacing relative to home range sizes, with traps ideally spaced no more than twice the spatial scale parameter. While spatial capture-recapture models can accommodate different sampling designs and still estimate parameters with accuracy and precision, our simulations demonstrate that aspects of sampling design, namely trap configuration and spacing, must consider study area size, ranges of individual movement, and home range sizes in the study population.

  12. Geostatistics: a new tool for describing spatially-varied surface conditions from timber harvested and burned hillslopes

    Treesearch

    Peter R. Robichaud

    1997-01-01

    Geostatistics provides a method to describe the spatial continuity of many natural phenomena. Spatial models are based upon the concept of scaling, kriging and conditional simulation. These techniques were used to describe the spatially-varied surface conditions on timber harvest and burned hillslopes. Geostatistical techniques provided estimates of the ground cover (...

  13. Effect of spatial resolution on remote sensing estimation of total evaporation in the uMngeni catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Shoko, Cletah; Clark, David; Mengistu, Michael; Dube, Timothy; Bulcock, Hartley

    2015-01-01

    This study evaluated the effect of two readily available multispectral sensors: the newly launched 30 m spatial resolution Landsat 8 and the long-serving 1000 m moderate resolution imaging spectroradiometer (MODIS) datasets in the spatial representation of total evaporation in the heterogeneous uMngeni catchment, South Africa, using the surface energy balance system model. The results showed that sensor spatial resolution plays a critical role in the accurate estimation of energy fluxes and total evaporation across a heterogeneous catchment. Landsat 8 estimates showed better spatial representation of the biophysical parameters and total evaporation for different land cover types, due to the relatively higher spatial resolution compared to the coarse spatial resolution MODIS sensor. Moreover, MODIS failed to capture the spatial variations of total evaporation estimates across the catchment. Analysis of variance (ANOVA) results showed that MODIS-based total evaporation estimates did not show any significant differences across different land cover types (one-way ANOVA; F1.924=1.412, p=0.186). However, Landsat 8 images yielded significantly different estimates between different land cover types (one-way ANOVA; F1.993=5.185, p<0.001). The validation results showed that Landsat 8 estimates were more comparable to eddy covariance (EC) measurements than the MODIS-based total evaporation estimates. EC measurement on May 23, 2013, was 3.8 mm/day, whereas the Landsat 8 estimate on the same day was 3.6 mm/day, with MODIS showing significantly lower estimates of 2.3 mm/day. The findings of this study underscore the importance of spatial resolution in estimating spatial variations of total evaporation at the catchment scale, thus, they provide critical information on the relevance of the readily available remote sensing products in water resources management in data-scarce environments.

  14. Spatial-temporal models for improved county-level annual estimates

    Treesearch

    Francis Roesch

    2009-01-01

    The consumers of data derived from extensive forest inventories often seek annual estimates at a finer spatial scale than that which the inventory was designed to provide. This paper discusses a few model-based and model-assisted estimators to consider for county level attributes that can be applied when the sample would otherwise be inadequate for producing low-...

  15. Void Growth and Coalescence Simulations

    DTIC Science & Technology

    2013-08-01

    distortion and damage, minimum time step, and appropriate material model parameters. Further, a temporal and spatial convergence study was used to...estimate errors, thus, this study helps to provide guidelines for modeling of materials with voids. Finally, we use a Gurson model with Johnson-Cook...spatial convergence study was used to estimate errors, thus, this study helps to provide guidelines for modeling of materials with voids. Finally, we

  16. Soil water content spatial pattern estimated by thermal inertia from air-borne sensors

    NASA Astrophysics Data System (ADS)

    Coppola, Antonio; Basile, Angelo; Esposito, Marco; Menenti, Massimo; Buonanno, Maurizio

    2010-05-01

    Remote sensing of soil water content from air- or space-borne platforms offer the possibility to provide large spatial coverage and temporal continuity. The water content can be actually monitored in a thin soil layer, usually up to a depth of 0.05m below the soil surface. To the contrary, difficulties arise in the estimation of the water content storage along the soil profile and its spatial (horizontal) distribution, which are closely connected to soil hydraulic properties and their spatial distribution. A promising approach for estimating soil water contents profiles is the integration of remote sensing of surface water content and hydrological modeling. A major goal of the scientific group is to develop a practical and robust procedure for estimating water contents throughout the soil profile from surface water content. As a first step, in this work, we will show some preliminary results from aircraft images analysis and their validation by field campaigns data. The data extracted from the airborne sensors provided the opportunity of retrieving land surface temperatures with a very high spatial resolution. The surface water content pattern, as deduced by the thermal inertia estimations, was compared to the surface water contents maps measured in situ by time domain reflectometry-based probes.

  17. Application of Data-Driven Evidential Belief Functions to Prospectivity Mapping for Aquamarine-Bearing Pegmatites, Lundazi District, Zambia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carranza, E. J. M., E-mail: carranza@itc.nl; Woldai, T.; Chikambwe, E. M.

    A case application of data-driven estimation of evidential belief functions (EBFs) is demonstrated to prospectivity mapping in Lundazi district (eastern Zambia). Spatial data used to represent recognition criteria of prospectivity for aquamarine-bearing pegmatites include mapped granites, mapped faults/fractures, mapped shear zones, and radioelement concentration ratios derived from gridded airborne radiometric data. Data-driven estimates EBFs take into account not only (a) spatial association between an evidential map layer and target deposits but also (b) spatial relationships between classes of evidences in an evidential map layer. Data-driven estimates of EBFs can indicate which spatial data provide positive or negative evidence of prospectivity.more » Data-driven estimates of EBFs of only spatial data providing positive evidence of prospectivity were integrated according to Dempster's rule of combination. Map of integrated degrees of belief was used to delineate zones of relative degress of prospectivity for aquamarine-bearing pegmatites. The predictive map has at least 85% prediction rate and at least 79% success rate of delineating training and validation deposits, respectively. The results illustrate usefulness of data-driven estimation of EBFs in GIS-based predictive mapping of mineral prospectivity. The results also show usefulness of EBFs in managing uncertainties associated with evidential maps.« less

  18. Estimating spatially specific demand and supply of dental services: a longitudinal comparison in Northern Germany.

    PubMed

    Schwendicke, Falk; Jäger, Ralf; Hoffmann, Wolfgang; Jordan, Rainer A; van den Berg, Neeltje

    2016-09-01

    Assessing the spatial distribution of oral morbidity-related demand and the workforce-related supply is relevant for planning dental services. We aimed to establish and validate a model for estimating the spatially specific demand and supply. This model was then applied to compare demand-supply ratios in 2001 and 2011 in the federal state of Mecklenburg-Vorpommern (Northern Germany). The spatial units were zip code areas. Demand per area was estimated by linking population-specific oral morbidities to working times via insurance claim data. Estimated demand was validated against the provided demand in 2001 and 2011. Supply was calculated for both years using cohort data from the dentist register. The ratio of demand and supply was geographically mapped and its distribution between areas assessed using the Gini coefficient. Between 2001 and 2011, a significant decrease of the general population (-7.0 percent), the annual demand (-13.1 percent), and the annual supply (-12.9 percent) was recorded. The estimated demands were nearly (2001: -4 percent) and completely (2011: ±0 percent) congruent with provided demands. The average demand-supply-ratio did not change significantly between 2001 and 2011 (P > 0.05), but was increasingly unequally distributed. In both years, few areas were over-serviced, while many were under-serviced. The established model can be used to estimate spatially specific demand and supply. © 2016 American Association of Public Health Dentistry.

  19. The case for increasing the statistical power of eddy covariance ecosystem studies: why, where and how?

    PubMed

    Hill, Timothy; Chocholek, Melanie; Clement, Robert

    2017-06-01

    Eddy covariance (EC) continues to provide invaluable insights into the dynamics of Earth's surface processes. However, despite its many strengths, spatial replication of EC at the ecosystem scale is rare. High equipment costs are likely to be partially responsible. This contributes to the low sampling, and even lower replication, of ecoregions in Africa, Oceania (excluding Australia) and South America. The level of replication matters as it directly affects statistical power. While the ergodicity of turbulence and temporal replication allow an EC tower to provide statistically robust flux estimates for its footprint, these principles do not extend to larger ecosystem scales. Despite the challenge of spatially replicating EC, it is clearly of interest to be able to use EC to provide statistically robust flux estimates for larger areas. We ask: How much spatial replication of EC is required for statistical confidence in our flux estimates of an ecosystem? We provide the reader with tools to estimate the number of EC towers needed to achieve a given statistical power. We show that for a typical ecosystem, around four EC towers are needed to have 95% statistical confidence that the annual flux of an ecosystem is nonzero. Furthermore, if the true flux is small relative to instrument noise and spatial variability, the number of towers needed can rise dramatically. We discuss approaches for improving statistical power and describe one solution: an inexpensive EC system that could help by making spatial replication more affordable. However, we note that diverting limited resources from other key measurements in order to allow spatial replication may not be optimal, and a balance needs to be struck. While individual EC towers are well suited to providing fluxes from the flux footprint, we emphasize that spatial replication is essential for statistically robust fluxes if a wider ecosystem is being studied. © 2016 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  20. Hierarchical spatial models of abundance and occurrence from imperfect survey data

    USGS Publications Warehouse

    Royle, J. Andrew; Kery, M.; Gautier, R.; Schmid, Hans

    2007-01-01

    Many estimation and inference problems arising from large-scale animal surveys are focused on developing an understanding of patterns in abundance or occurrence of a species based on spatially referenced count data. One fundamental challenge, then, is that it is generally not feasible to completely enumerate ('census') all individuals present in each sample unit. This observation bias may consist of several components, including spatial coverage bias (not all individuals in the Population are exposed to sampling) and detection bias (exposed individuals may go undetected). Thus, observations are biased for the state variable (abundance, occupancy) that is the object of inference. Moreover, data are often sparse for most observation locations, requiring consideration of methods for spatially aggregating or otherwise combining sparse data among sample units. The development of methods that unify spatial statistical models with models accommodating non-detection is necessary to resolve important spatial inference problems based on animal survey data. In this paper, we develop a novel hierarchical spatial model for estimation of abundance and occurrence from survey data wherein detection is imperfect. Our application is focused on spatial inference problems in the Swiss Survey of Common Breeding Birds. The observation model for the survey data is specified conditional on the unknown quadrat population size, N(s). We augment the observation model with a spatial process model for N(s), describing the spatial variation in abundance of the species. The model includes explicit sources of variation in habitat structure (forest, elevation) and latent variation in the form of a correlated spatial process. This provides a model-based framework for combining the spatially referenced samples while at the same time yielding a unified treatment of estimation problems involving both abundance and occurrence. We provide a Bayesian framework for analysis and prediction based on the integrated likelihood, and we use the model to obtain estimates of abundance and occurrence maps for the European Jay (Garrulus glandarius), a widespread, elusive, forest bird. The naive national abundance estimate ignoring imperfect detection and incomplete quadrat coverage was 77 766 territories. Accounting for imperfect detection added approximately 18 000 territories, and adjusting for coverage bias added another 131 000 territories to yield a fully corrected estimate of the national total of about 227 000 territories. This is approximately three times as high as previous estimates that assume every territory is detected in each quadrat.

  1. Understanding the Spatial Scale of Genetic Connectivity at Sea: Unique Insights from a Land Fish and a Meta-Analysis.

    PubMed

    Cooke, Georgina M; Schlub, Timothy E; Sherwin, William B; Ord, Terry J

    2016-01-01

    Quantifying the spatial scale of population connectivity is important for understanding the evolutionary potential of ecologically divergent populations and for designing conservation strategies to preserve those populations. For marine organisms like fish, the spatial scale of connectivity is generally set by a pelagic larval phase. This has complicated past estimates of connectivity because detailed information on larval movements are difficult to obtain. Genetic approaches provide a tractable alternative and have the added benefit of estimating directly the reproductive isolation of populations. In this study, we leveraged empirical estimates of genetic differentiation among populations with simulations and a meta-analysis to provide a general estimate of the spatial scale of genetic connectivity in marine environments. We used neutral genetic markers to first quantify the genetic differentiation of ecologically-isolated adult populations of a land dwelling fish, the Pacific leaping blenny (Alticus arnoldorum), where marine larval dispersal is the only probable means of connectivity among populations. We then compared these estimates to simulations of a range of marine dispersal scenarios and to collated FST and distance data from the literature for marine fish across diverse spatial scales. We found genetic connectivity at sea was extensive among marine populations and in the case of A. arnoldorum, apparently little affected by the presence of ecological barriers. We estimated that ~5000 km (with broad confidence intervals ranging from 810-11,692 km) was the spatial scale at which evolutionarily meaningful barriers to gene flow start to occur at sea, although substantially shorter distances are also possible for some taxa. In general, however, such a large estimate of connectivity has important implications for the evolutionary and conservation potential of many marine fish communities.

  2. Downscaling soil moisture over regions that include multiple coarse-resolution grid cells

    USDA-ARS?s Scientific Manuscript database

    Many applications require soil moisture estimates over large spatial extents (30-300 km) and at fine-resolutions (10-30 m). Remote-sensing methods can provide soil moisture estimates over very large spatial extents (continental to global) at coarse resolutions (10-40 km), but their output must be d...

  3. Tensor-guided fitting of subduction slab depths

    USGS Publications Warehouse

    Bazargani, Farhad; Hayes, Gavin P.

    2013-01-01

    Geophysical measurements are often acquired at scattered locations in space. Therefore, interpolating or fitting the sparsely sampled data as a uniform function of space (a procedure commonly known as gridding) is a ubiquitous problem in geophysics. Most gridding methods require a model of spatial correlation for data. This spatial correlation model can often be inferred from some sort of secondary information, which may also be sparsely sampled in space. In this paper, we present a new method to model the geometry of a subducting slab in which we use a data‐fitting approach to address the problem. Earthquakes and active‐source seismic surveys provide estimates of depths of subducting slabs but only at scattered locations. In addition to estimates of depths from earthquake locations, focal mechanisms of subduction zone earthquakes also provide estimates of the strikes of the subducting slab on which they occur. We use these spatially sparse strike samples and the Earth’s curved surface geometry to infer a model for spatial correlation that guides a blended neighbor interpolation of slab depths. We then modify the interpolation method to account for the uncertainties associated with the depth estimates.

  4. A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data

    NASA Astrophysics Data System (ADS)

    Velasco-Forero, Carlos A.; Sempere-Torres, Daniel; Cassiraga, Eduardo F.; Jaime Gómez-Hernández, J.

    2009-07-01

    Quantitative estimation of rainfall fields has been a crucial objective from early studies of the hydrological applications of weather radar. Previous studies have suggested that flow estimations are improved when radar and rain gauge data are combined to estimate input rainfall fields. This paper reports new research carried out in this field. Classical approaches for the selection and fitting of a theoretical correlogram (or semivariogram) model (needed to apply geostatistical estimators) are avoided in this study. Instead, a non-parametric technique based on FFT is used to obtain two-dimensional positive-definite correlograms directly from radar observations, dealing with both the natural anisotropy and the temporal variation of the spatial structure of the rainfall in the estimated fields. Because these correlation maps can be automatically obtained at each time step of a given rainfall event, this technique might easily be used in operational (real-time) applications. This paper describes the development of the non-parametric estimator exploiting the advantages of FFT for the automatic computation of correlograms and provides examples of its application on a case study using six rainfall events. This methodology is applied to three different alternatives to incorporate the radar information (as a secondary variable), and a comparison of performances is provided. In particular, their ability to reproduce in estimated rainfall fields (i) the rain gauge observations (in a cross-validation analysis) and (ii) the spatial patterns of radar fields are analyzed. Results seem to indicate that the methodology of kriging with external drift [KED], in combination with the technique of automatically computing 2-D spatial correlograms, provides merged rainfall fields with good agreement with rain gauges and with the most accurate approach to the spatial tendencies observed in the radar rainfall fields, when compared with other alternatives analyzed.

  5. Evaluation of spatial filtering on the accuracy of wheat area estimate

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Moreira, M. A.; Chen, S. C.; Delima, A. M.

    1982-01-01

    A 3 x 3 pixel spatial filter for postclassification was used for wheat classification to evaluate the effects of this procedure on the accuracy of area estimation using LANDSAT digital data obtained from a single pass. Quantitative analyses were carried out in five test sites (approx 40 sq km each) and t tests showed that filtering with threshold values significantly decreased errors of commission and omission. In area estimation filtering improved the overestimate of 4.5% to 2.7% and the root-mean-square error decreased from 126.18 ha to 107.02 ha. Extrapolating the same procedure of automatic classification using spatial filtering for postclassification to the whole study area, the accuracy in area estimate was improved from the overestimate of 10.9% to 9.7%. It is concluded that when single pass LANDSAT data is used for crop identification and area estimation the postclassification procedure using a spatial filter provides a more accurate area estimate by reducing classification errors.

  6. On the Character and Mitigation of Atmospheric Noise in InSAR Time Series Analysis (Invited)

    NASA Astrophysics Data System (ADS)

    Barnhart, W. D.; Fielding, E. J.; Fishbein, E.

    2013-12-01

    Time series analysis of interferometric synthetic aperture radar (InSAR) data, with its broad spatial coverage and ability to image regions that are sometimes very difficult to access, is a powerful tool for characterizing continental surface deformation and its temporal variations. With the impending launch of dedicated SAR missions such as Sentinel-1, ALOS-2, and the planned NASA L-band SAR mission, large volume data sets will allow researchers to further probe ground displacement processes with increased fidelity. Unfortunately, the precision of measurements in individual interferograms is impacted by several sources of noise, notably spatially correlated signals caused by path delays through the stratified and turbulent atmosphere and ionosphere. Spatial and temporal variations in atmospheric water vapor often introduce several to tens of centimeters of apparent deformation in the radar line-of-sight, correlated over short spatial scales (<10 km). Signals resulting from atmospheric path delays are particularly problematic because, like the subsidence and uplift signals associated with tectonic deformation, they are often spatially correlated with topography. In this talk, we provide an overview of the effects of spatially correlated tropospheric noise in individual interferograms and InSAR time series analysis, and we highlight where common assumptions of the temporal and spatial characteristics of tropospheric noise fail. Next, we discuss two classes of methods for mitigating the effects of tropospheric water vapor noise in InSAR time series analysis and single interferograms: noise estimation and characterization with independent observations from multispectral sensors such as MODIS and MERIS; and noise estimation and removal with weather models, multispectral sensor observations, and GPS. Each of these techniques can provide independent assessments of the contribution of water vapor in interferograms, but each technique also suffers from several pitfalls that we outline. The multispectral near-infrared (NIR) sensors provide high spatial resolution (~1 km) estimates of total column tropospheric water vapor by measuring the absorption of reflected solar illumination and provide may excellent estimates of wet delay. The Online Services for Correcting Atmosphere in Radar (OSCAR) project currently provides water vapor products through web services (http://oscar.jpl.nasa.gov). Unfortunately, such sensors require daytime and cloudless observations. Global and regional numerical weather models can provide an additional estimate of both the dry and atmospheric delays with spatial resolution of (3-100 km) and time scales of 1-3 hours, though these models are of lower accuracy than imaging observations and are benefited by independent observations from independent observations of atmospheric water vapor. Despite these issues, the integration of these techniques for InSAR correction and uncertainty estimation may contribute substantially to the reduction and rigorous characterization of uncertainty in InSAR time series analysis - helping to expand the range of tectonic displacements imaged with InSAR, to robustly constrain geophysical models, and to generate a-priori assessments of satellite acquisitions goals.

  7. Estimating prevalence of coronary heart disease for small areas using collateral indicators of morbidity.

    PubMed

    Congdon, Peter

    2010-01-01

    Different indicators of morbidity for chronic disease may not necessarily be available at a disaggregated spatial scale (e.g., for small areas with populations under 10 thousand). Instead certain indicators may only be available at a more highly aggregated spatial scale; for example, deaths may be recorded for small areas, but disease prevalence only at a considerably higher spatial scale. Nevertheless prevalence estimates at small area level are important for assessing health need. An instance is provided by England where deaths and hospital admissions for coronary heart disease are available for small areas known as wards, but prevalence is only available for relatively large health authority areas. To estimate CHD prevalence at small area level in such a situation, a shared random effect method is proposed that pools information regarding spatial morbidity contrasts over different indicators (deaths, hospitalizations, prevalence). The shared random effect approach also incorporates differences between small areas in known risk factors (e.g., income, ethnic structure). A Poisson-multinomial equivalence may be used to ensure small area prevalence estimates sum to the known higher area total. An illustration is provided by data for London using hospital admissions and CHD deaths at ward level, together with CHD prevalence totals for considerably larger local health authority areas. The shared random effect involved a spatially correlated common factor, that accounts for clustering in latent risk factors, and also provides a summary measure of small area CHD morbidity.

  8. Estimating Prevalence of Coronary Heart Disease for Small Areas Using Collateral Indicators of Morbidity

    PubMed Central

    Congdon, Peter

    2010-01-01

    Different indicators of morbidity for chronic disease may not necessarily be available at a disaggregated spatial scale (e.g., for small areas with populations under 10 thousand). Instead certain indicators may only be available at a more highly aggregated spatial scale; for example, deaths may be recorded for small areas, but disease prevalence only at a considerably higher spatial scale. Nevertheless prevalence estimates at small area level are important for assessing health need. An instance is provided by England where deaths and hospital admissions for coronary heart disease are available for small areas known as wards, but prevalence is only available for relatively large health authority areas. To estimate CHD prevalence at small area level in such a situation, a shared random effect method is proposed that pools information regarding spatial morbidity contrasts over different indicators (deaths, hospitalizations, prevalence). The shared random effect approach also incorporates differences between small areas in known risk factors (e.g., income, ethnic structure). A Poisson-multinomial equivalence may be used to ensure small area prevalence estimates sum to the known higher area total. An illustration is provided by data for London using hospital admissions and CHD deaths at ward level, together with CHD prevalence totals for considerably larger local health authority areas. The shared random effect involved a spatially correlated common factor, that accounts for clustering in latent risk factors, and also provides a summary measure of small area CHD morbidity. PMID:20195439

  9. Focused ultrasound transducer spatial peak intensity estimation: a comparison of methods

    NASA Astrophysics Data System (ADS)

    Civale, John; Rivens, Ian; Shaw, Adam; ter Haar, Gail

    2018-03-01

    Characterisation of the spatial peak intensity at the focus of high intensity focused ultrasound transducers is difficult because of the risk of damage to hydrophone sensors at the high focal pressures generated. Hill et al (1994 Ultrasound Med. Biol. 20 259-69) provided a simple equation for estimating spatial-peak intensity for solid spherical bowl transducers using measured acoustic power and focal beamwidth. This paper demonstrates theoretically and experimentally that this expression is only strictly valid for spherical bowl transducers without a central (imaging) aperture. A hole in the centre of the transducer results in over-estimation of the peak intensity. Improved strategies for determining focal peak intensity from a measurement of total acoustic power are proposed. Four methods are compared: (i) a solid spherical bowl approximation (after Hill et al 1994 Ultrasound Med. Biol. 20 259-69), (ii) a numerical method derived from theory, (iii) a method using measured sidelobe to focal peak pressure ratio, and (iv) a method for measuring the focal power fraction (FPF) experimentally. Spatial-peak intensities were estimated for 8 transducers at three drive powers levels: low (approximately 1 W), moderate (~10 W) and high (20-70 W). The calculated intensities were compared with those derived from focal peak pressure measurements made using a calibrated hydrophone. The FPF measurement method was found to provide focal peak intensity estimates that agreed most closely (within 15%) with the hydrophone measurements, followed by the pressure ratio method (within 20%). The numerical method was found to consistently over-estimate focal peak intensity (+40% on average), however, for transducers with a central hole it was more accurate than using the solid bowl assumption (+70% over-estimation). In conclusion, the ability to make use of an automated beam plotting system, and a hydrophone with good spatial resolution, greatly facilitates characterisation of the FPF, and consequently gives improved confidence in estimating spatial peak intensity from measurement of acoustic power.

  10. ASSESSING THE ACCURACY OF NATIONAL LAND COVER DATASET AREA ESTIMATES AT MULTIPLE SPATIAL EXTENTS

    EPA Science Inventory

    Site specific accuracy assessments provide fine-scale evaluation of the thematic accuracy of land use/land cover (LULC) datasets; however, they provide little insight into LULC accuracy across varying spatial extents. Additionally, LULC data are typically used to describe lands...

  11. MAPPING SPATIAL ACCURACY AND ESTIMATING LANDSCAPE INDICATORS FROM THEMATIC LAND COVER MAPS USING FUZZY SET THEORY

    EPA Science Inventory

    The accuracy of thematic map products is not spatially homogenous, but instead variable across most landscapes. Properly analyzing and representing the spatial distribution (pattern) of thematic map accuracy would provide valuable user information for assessing appropriate applic...

  12. Density estimation in a wolverine population using spatial capture-recapture models

    USGS Publications Warehouse

    Royle, J. Andrew; Magoun, Audrey J.; Gardner, Beth; Valkenbury, Patrick; Lowell, Richard E.; McKelvey, Kevin

    2011-01-01

    Classical closed-population capture-recapture models do not accommodate the spatial information inherent in encounter history data obtained from camera-trapping studies. As a result, individual heterogeneity in encounter probability is induced, and it is not possible to estimate density objectively because trap arrays do not have a well-defined sample area. We applied newly-developed, capture-recapture models that accommodate the spatial attribute inherent in capture-recapture data to a population of wolverines (Gulo gulo) in Southeast Alaska in 2008. We used camera-trapping data collected from 37 cameras in a 2,140-km2 area of forested and open habitats largely enclosed by ocean and glacial icefields. We detected 21 unique individuals 115 times. Wolverines exhibited a strong positive trap response, with an increased tendency to revisit previously visited traps. Under the trap-response model, we estimated wolverine density at 9.7 individuals/1,000-km2(95% Bayesian CI: 5.9-15.0). Our model provides a formal statistical framework for estimating density from wolverine camera-trapping studies that accounts for a behavioral response due to baited traps. Further, our model-based estimator does not have strict requirements about the spatial configuration of traps or length of trapping sessions, providing considerable operational flexibility in the development of field studies.

  13. A technique for evaluating the influence of spatial sampling on the determination of global mean total columnar ozone

    NASA Technical Reports Server (NTRS)

    Tolson, R. H.

    1981-01-01

    A technique is described for providing a means of evaluating the influence of spatial sampling on the determination of global mean total columnar ozone. A finite number of coefficients in the expansion are determined, and the truncated part of the expansion is shown to contribute an error to the estimate, which depends strongly on the spatial sampling and is relatively insensitive to data noise. First and second order statistics are derived for each term in a spherical harmonic expansion which represents the ozone field, and the statistics are used to estimate systematic and random errors in the estimates of total ozone.

  14. Numerical trials of HISSE

    NASA Technical Reports Server (NTRS)

    Peters, C.; Kampe, F. (Principal Investigator)

    1980-01-01

    The mathematical description and implementation of the statistical estimation procedure known as the Houston integrated spatial/spectral estimator (HISSE) is discussed. HISSE is based on a normal mixture model and is designed to take advantage of spectral and spatial information of LANDSAT data pixels, utilizing the initial classification and clustering information provided by the AMOEBA algorithm. The HISSE calculates parametric estimates of class proportions which reduce the error inherent in estimates derived from typical classify and count procedures common to nonparametric clustering algorithms. It also singles out spatial groupings of pixels which are most suitable for labeling classes. These calculations are designed to aid the analyst/interpreter in labeling patches with a crop class label. Finally, HISSE's initial performance on an actual LANDSAT agricultural ground truth data set is reported.

  15. A Comparison of the Spatial Linear Model to Nearest Neighbor (k-NN) Methods for Forestry Applications

    Treesearch

    Jay M. Ver Hoef; Hailemariam Temesgen; Sergio Gómez

    2013-01-01

    Forest surveys provide critical information for many diverse interests. Data are often collected from samples, and from these samples, maps of resources and estimates of aerial totals or averages are required. In this paper, two approaches for mapping and estimating totals; the spatial linear model (SLM) and k-NN (k-Nearest Neighbor) are compared, theoretically,...

  16. Using geostatistical methods to estimate snow water equivalence distribution in a mountain watershed

    USGS Publications Warehouse

    Balk, B.; Elder, K.; Baron, Jill S.

    1998-01-01

    Knowledge of the spatial distribution of snow water equivalence (SWE) is necessary to adequately forecast the volume and timing of snowmelt runoff.  In April 1997, peak accumulation snow depth and density measurements were independently taken in the Loch Vale watershed (6.6 km2), Rocky Mountain National Park, Colorado.  Geostatistics and classical statistics were used to estimate SWE distribution across the watershed.  Snow depths were spatially distributed across the watershed through kriging interpolation methods which provide unbiased estimates that have minimum variances.  Snow densities were spatially modeled through regression analysis.  Combining the modeled depth and density with snow-covered area (SCA produced an estimate of the spatial distribution of SWE.  The kriged estimates of snow depth explained 37-68% of the observed variance in the measured depths.  Steep slopes, variably strong winds, and complex energy balance in the watershed contribute to a large degree of heterogeneity in snow depth.

  17. Wireless Sensor Array Network DoA Estimation from Compressed Array Data via Joint Sparse Representation.

    PubMed

    Yu, Kai; Yin, Ming; Luo, Ji-An; Wang, Yingguan; Bao, Ming; Hu, Yu-Hen; Wang, Zhi

    2016-05-23

    A compressive sensing joint sparse representation direction of arrival estimation (CSJSR-DoA) approach is proposed for wireless sensor array networks (WSAN). By exploiting the joint spatial and spectral correlations of acoustic sensor array data, the CSJSR-DoA approach provides reliable DoA estimation using randomly-sampled acoustic sensor data. Since random sampling is performed at remote sensor arrays, less data need to be transmitted over lossy wireless channels to the fusion center (FC), and the expensive source coding operation at sensor nodes can be avoided. To investigate the spatial sparsity, an upper bound of the coherence of incoming sensor signals is derived assuming a linear sensor array configuration. This bound provides a theoretical constraint on the angular separation of acoustic sources to ensure the spatial sparsity of the received acoustic sensor array signals. The Cram e ´ r-Rao bound of the CSJSR-DoA estimator that quantifies the theoretical DoA estimation performance is also derived. The potential performance of the CSJSR-DoA approach is validated using both simulations and field experiments on a prototype WSAN platform. Compared to existing compressive sensing-based DoA estimation methods, the CSJSR-DoA approach shows significant performance improvement.

  18. Concepts: Integrating population survey data from different spatial scales, sampling methods, and species

    USGS Publications Warehouse

    Dorazio, Robert; Delampady, Mohan; Dey, Soumen; Gopalaswamy, Arjun M.; Karanth, K. Ullas; Nichols, James D.

    2017-01-01

    Conservationists and managers are continually under pressure from the public, the media, and political policy makers to provide “tiger numbers,” not just for protected reserves, but also for large spatial scales, including landscapes, regions, states, nations, and even globally. Estimating the abundance of tigers within relatively small areas (e.g., protected reserves) is becoming increasingly tractable (see Chaps. 9 and 10), but doing so for larger spatial scales still presents a formidable challenge. Those who seek “tiger numbers” are often not satisfied by estimates of tiger occupancy alone, regardless of the reliability of the estimates (see Chaps. 4 and 5). As a result, wherever tiger conservation efforts are underway, either substantially or nominally, scientists and managers are frequently asked to provide putative large-scale tiger numbers based either on a total count or on an extrapolation of some sort (see Chaps. 1 and 2).

  19. Use of spatial capture–recapture to estimate density of Andean bears in northern Ecuador

    USGS Publications Warehouse

    Molina, Santiago; Fuller, Angela K.; Morin, Dana J.; Royle, J. Andrew

    2017-01-01

    The Andean bear (Tremarctos ornatus) is the only extant species of bear in South America and is considered threatened across its range and endangered in Ecuador. Habitat loss and fragmentation is considered a critical threat to the species, and there is a lack of knowledge regarding its distribution and abundance. The species is thought to occur at low densities, making field studies designed to estimate abundance or density challenging. We conducted a pilot camera-trap study to estimate Andean bear density in a recently identified population of Andean bears northwest of Quito, Ecuador, during 2012. We compared 12 candidate spatial capture–recapture models including covariates on encounter probability and density and estimated a density of 7.45 bears/100 km2 within the region. In addition, we estimated that approximately 40 bears used a recently named Andean bear corridor established by the Secretary of Environment, and we produced a density map for this area. Use of a rub-post with vanilla scent attractant allowed us to capture numerous photographs for each event, improving our ability to identify individual bears by unique facial markings. This study provides the first empirically derived density estimate for Andean bears in Ecuador and should provide direction for future landscape-scale studies interested in conservation initiatives requiring spatially explicit estimates of density.

  20. Estimating riparian understory vegetation cover with beta regression and copula models

    USGS Publications Warehouse

    Eskelson, Bianca N.I.; Madsen, Lisa; Hagar, Joan C.; Temesgen, Hailemariam

    2011-01-01

    Understory vegetation communities are critical components of forest ecosystems. As a result, the importance of modeling understory vegetation characteristics in forested landscapes has become more apparent. Abundance measures such as shrub cover are bounded between 0 and 1, exhibit heteroscedastic error variance, and are often subject to spatial dependence. These distributional features tend to be ignored when shrub cover data are analyzed. The beta distribution has been used successfully to describe the frequency distribution of vegetation cover. Beta regression models ignoring spatial dependence (BR) and accounting for spatial dependence (BRdep) were used to estimate percent shrub cover as a function of topographic conditions and overstory vegetation structure in riparian zones in western Oregon. The BR models showed poor explanatory power (pseudo-R2 ≤ 0.34) but outperformed ordinary least-squares (OLS) and generalized least-squares (GLS) regression models with logit-transformed response in terms of mean square prediction error and absolute bias. We introduce a copula (COP) model that is based on the beta distribution and accounts for spatial dependence. A simulation study was designed to illustrate the effects of incorrectly assuming normality, equal variance, and spatial independence. It showed that BR, BRdep, and COP models provide unbiased parameter estimates, whereas OLS and GLS models result in slightly biased estimates for two of the three parameters. On the basis of the simulation study, 93–97% of the GLS, BRdep, and COP confidence intervals covered the true parameters, whereas OLS and BR only resulted in 84–88% coverage, which demonstrated the superiority of GLS, BRdep, and COP over OLS and BR models in providing standard errors for the parameter estimates in the presence of spatial dependence.

  1. Comparison Study on the Estimation of the Spatial Distribution of Regional Soil Metal(loid)s Pollution Based on Kriging Interpolation and BP Neural Network.

    PubMed

    Jia, Zhenyi; Zhou, Shenglu; Su, Quanlong; Yi, Haomin; Wang, Junxiao

    2017-12-26

    Soil pollution by metal(loid)s resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid) pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As) and cadmium (Cd) pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE) of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loid)s in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid) pollution.

  2. A Spatial Method to Calculate Small-Scale Fisheries Extent

    NASA Astrophysics Data System (ADS)

    Johnson, A. F.; Moreno-Báez, M.; Giron-Nava, A.; Corominas, J.; Erisman, B.; Ezcurra, E.; Aburto-Oropeza, O.

    2016-02-01

    Despite global catch per unit effort having redoubled since the 1950's, the global fishing fleet is estimated to be twice the size that the oceans can sustainably support. In order to gauge the collateral impacts of fishing intensity, we must be able to estimate the spatial extent and amount of fishing vessels in the oceans. Methods that do currently exist are built around electronic tracking and log book systems and generally focus on industrial fisheries. Spatial extent for small-scale fisheries therefore remains elusive for many small-scale fishing fleets; even though these fisheries land the same biomass for human consumption as industrial fisheries. Current methods are data-intensive and require extensive extrapolation when estimated across large spatial scales. We present an accessible, spatial method of calculating the extent of small-scale fisheries based on two simple measures that are available, or at least easily estimable, in even the most data poor fisheries: the number of boats and the local coastal human population. We demonstrate this method is fishery-type independent and can be used to quantitatively evaluate the efficacy of growth in small-scale fisheries. This method provides an important first step towards estimating the fishing extent of the small-scale fleet, globally.

  3. The Ability of Atmospheric Data to Reduce Disagreements in Wetland Methane Flux Estimates over North America

    NASA Astrophysics Data System (ADS)

    Miller, S. M.; Andrews, A. E.; Benmergui, J. S.; Commane, R.; Dlugokencky, E. J.; Janssens-Maenhout, G.; Melton, J. R.; Michalak, A. M.; Sweeney, C.; Worthy, D. E. J.

    2015-12-01

    Existing estimates of methane fluxes from wetlands differ in both magnitude and distribution across North America. We discuss seven different bottom-up methane estimates in the context of atmospheric methane data collected across the US and Canada. In the first component of this study, we explore whether the observation network can even detect a methane pattern from wetlands. We find that the observation network can identify a methane pattern from Canadian wetlands but not reliably from US wetlands. Over Canada, the network can even identify spatial patterns at multi-provence scales. Over the US, by contrast, anthropogenic emissions and modeling errors obscure atmospheric patterns from wetland fluxes. In the second component of the study, we then use these observations to reconcile disagreements in the magnitude, seasonal cycle, and spatial distribution of existing estimates. Most existing estimates predict fluxes that are too large with a seasonal cycle that is too narrow. A model known as LPJ-Bern has a spatial distribution most consistent with atmospheric observations. By contrast, a spatially-constant model outperforms the distribution of most existing flux estimates across Canada. The results presented here provide several pathways to reduce disagreements among existing wetland flux estimates across North America.

  4. Accounting for the ecosystem services of migratory species: Quantifying migration support and spatial subsidies

    USGS Publications Warehouse

    Semmens, Darius J.; Diffendorfer, James E.; López-Hoffman, Laura; Shapiro, Carl D.

    2011-01-01

    Migratory species support ecosystem process and function in multiple areas, establishing ecological linkages between their different habitats. As they travel, migratory species also provide ecosystem services to people in many different locations. Previous research suggests there may be spatial mismatches between locations where humans use services and the ecosystems that produce them. This occurs with migratory species, between the areas that most support the species' population viability – and hence their long-term ability to provide services – and the locations where species provide the most ecosystem services. This paper presents a conceptual framework for estimating how much a particular location supports the provision of ecosystem services in other locations, and for estimating the extent to which local benefits are dependent upon other locations. We also describe a method for estimating the net payment, or subsidy, owed by or to a location that balances benefits received and support provided by locations throughout the migratory range of multiple species. The ability to quantify these spatial subsidies could provide a foundation for the establishment of markets that incentivize cross-jurisdictional cooperative management of migratory species. It could also provide a mechanism for resolving conflicts over the sustainable and equitable allocation of exploited migratory species.

  5. Overcoming default categorical bias in spatial memory.

    PubMed

    Sampaio, Cristina; Wang, Ranxiao Frances

    2010-12-01

    In the present study, we investigated whether a strong default categorical bias can be overcome in spatial memory by using alternative membership information. In three experiments, we tested location memory in a circular space while providing participants with an alternative categorization. We found that visual presentation of the boundaries of the alternative categories (Experiment 1) did not induce the use of the alternative categories in estimation. In contrast, visual cuing of the alternative category membership of a target (Experiment 2) and unique target feature information associated with each alternative category (Experiment 3) successfully led to the use of the alternative categories in estimation. Taken together, the results indicate that default categorical bias in spatial memory can be overcome when appropriate cues are provided. We discuss how these findings expand the category adjustment model (Huttenlocher, Hedges, & Duncan, 1991) in spatial memory by proposing a retrieval-based category adjustment (RCA) model.

  6. Optimal sampling design for estimating spatial distribution and abundance of a freshwater mussel population

    USGS Publications Warehouse

    Pooler, P.S.; Smith, D.R.

    2005-01-01

    We compared the ability of simple random sampling (SRS) and a variety of systematic sampling (SYS) designs to estimate abundance, quantify spatial clustering, and predict spatial distribution of freshwater mussels. Sampling simulations were conducted using data obtained from a census of freshwater mussels in a 40 X 33 m section of the Cacapon River near Capon Bridge, West Virginia, and from a simulated spatially random population generated to have the same abundance as the real population. Sampling units that were 0.25 m 2 gave more accurate and precise abundance estimates and generally better spatial predictions than 1-m2 sampling units. Systematic sampling with ???2 random starts was more efficient than SRS. Estimates of abundance based on SYS were more accurate when the distance between sampling units across the stream was less than or equal to the distance between sampling units along the stream. Three measures for quantifying spatial clustering were examined: Hopkins Statistic, the Clumping Index, and Morisita's Index. Morisita's Index was the most reliable, and the Hopkins Statistic was prone to false rejection of complete spatial randomness. SYS designs with units spaced equally across and up stream provided the most accurate predictions when estimating the spatial distribution by kriging. Our research indicates that SYS designs with sampling units equally spaced both across and along the stream would be appropriate for sampling freshwater mussels even if no information about the true underlying spatial distribution of the population were available to guide the design choice. ?? 2005 by The North American Benthological Society.

  7. Bias-adjusted satellite-based rainfall estimates for predicting floods: Narayani Basin

    USGS Publications Warehouse

    Shrestha, M.S.; Artan, G.A.; Bajracharya, S.R.; Gautam, D.K.; Tokar, S.A.

    2011-01-01

    In Nepal, as the spatial distribution of rain gauges is not sufficient to provide detailed perspective on the highly varied spatial nature of rainfall, satellite-based rainfall estimates provides the opportunity for timely estimation. This paper presents the flood prediction of Narayani Basin at the Devghat hydrometric station (32000km2) using bias-adjusted satellite rainfall estimates and the Geospatial Stream Flow Model (GeoSFM), a spatially distributed, physically based hydrologic model. The GeoSFM with gridded gauge observed rainfall inputs using kriging interpolation from 2003 was used for calibration and 2004 for validation to simulate stream flow with both having a Nash Sutcliff Efficiency of above 0.7. With the National Oceanic and Atmospheric Administration Climate Prediction Centre's rainfall estimates (CPC-RFE2.0), using the same calibrated parameters, for 2003 the model performance deteriorated but improved after recalibration with CPC-RFE2.0 indicating the need to recalibrate the model with satellite-based rainfall estimates. Adjusting the CPC-RFE2.0 by a seasonal, monthly and 7-day moving average ratio, improvement in model performance was achieved. Furthermore, a new gauge-satellite merged rainfall estimates obtained from ingestion of local rain gauge data resulted in significant improvement in flood predictability. The results indicate the applicability of satellite-based rainfall estimates in flood prediction with appropriate bias correction. ?? 2011 The Authors. Journal of Flood Risk Management ?? 2011 The Chartered Institution of Water and Environmental Management.

  8. Bias-adjusted satellite-based rainfall estimates for predicting floods: Narayani Basin

    USGS Publications Warehouse

    Artan, Guleid A.; Tokar, S.A.; Gautam, D.K.; Bajracharya, S.R.; Shrestha, M.S.

    2011-01-01

    In Nepal, as the spatial distribution of rain gauges is not sufficient to provide detailed perspective on the highly varied spatial nature of rainfall, satellite-based rainfall estimates provides the opportunity for timely estimation. This paper presents the flood prediction of Narayani Basin at the Devghat hydrometric station (32 000 km2) using bias-adjusted satellite rainfall estimates and the Geospatial Stream Flow Model (GeoSFM), a spatially distributed, physically based hydrologic model. The GeoSFM with gridded gauge observed rainfall inputs using kriging interpolation from 2003 was used for calibration and 2004 for validation to simulate stream flow with both having a Nash Sutcliff Efficiency of above 0.7. With the National Oceanic and Atmospheric Administration Climate Prediction Centre's rainfall estimates (CPC_RFE2.0), using the same calibrated parameters, for 2003 the model performance deteriorated but improved after recalibration with CPC_RFE2.0 indicating the need to recalibrate the model with satellite-based rainfall estimates. Adjusting the CPC_RFE2.0 by a seasonal, monthly and 7-day moving average ratio, improvement in model performance was achieved. Furthermore, a new gauge-satellite merged rainfall estimates obtained from ingestion of local rain gauge data resulted in significant improvement in flood predictability. The results indicate the applicability of satellite-based rainfall estimates in flood prediction with appropriate bias correction.

  9. Proposing water balance method for water availability estimation in Indonesian regional spatial planning

    NASA Astrophysics Data System (ADS)

    Juniati, A. T.; Sutjiningsih, D.; Soeryantono, H.; Kusratmoko, E.

    2018-01-01

    The water availability (WA) of a region is one of important consideration in both the formulation of spatial plans and the evaluation of the effectiveness of actual land use in providing sustainable water resources. Information on land-water needs vis-a-vis their availability in a region determines the state of the surplus or deficit to inform effective land use utilization. How to calculate water availability have been described in the Guideline in Determining the Carrying Capacity of the Environment in Regional Spatial Planning. However, the method of determining the supply and demand of water on these guidelines is debatable since the determination of WA in this guideline used a rational method. The rational method is developed the basis for storm drain design practice and it is essentially a peak discharge method peak discharge calculation method. This paper review the literature in methods of water availability estimation which is described descriptively, and present arguments to claim that water balance method is a more fundamental and appropriate tool in water availability estimation. A better water availability estimation method would serve to improve the practice in preparing formulations of Regional Spatial Plan (RSP) as well as evaluating land use capacity in providing sustainable water resources.

  10. Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain

    NASA Astrophysics Data System (ADS)

    Gruber, A.; Crow, W. T.; Dorigo, W. A.

    2018-02-01

    Growth in the availability of near-real-time soil moisture observations from ground-based networks has spurred interest in the assimilation of these observations into land surface models via a two-dimensional data assimilation system. However, the design of such systems is currently hampered by our ignorance concerning the spatial structure of error afflicting ground and model-based soil moisture estimates. Here we apply newly developed triple collocation techniques to provide the spatial error information required to fully parameterize a two-dimensional (2-D) data assimilation system designed to assimilate spatially sparse observations acquired from existing ground-based soil moisture networks into a spatially continuous Antecedent Precipitation Index (API) model for operational agricultural drought monitoring. Over the contiguous United States (CONUS), the posterior uncertainty of surface soil moisture estimates associated with this 2-D system is compared to that obtained from the 1-D assimilation of remote sensing retrievals to assess the value of ground-based observations to constrain a surface soil moisture analysis. Results demonstrate that a fourfold increase in existing CONUS ground station density is needed for ground network observations to provide a level of skill comparable to that provided by existing satellite-based surface soil moisture retrievals.

  11. Scale effects on the evapotranspiration estimation over a water-controlled Mediterranean ecosystem and its influence on hydrological modelling

    NASA Astrophysics Data System (ADS)

    Carpintero, Elisabet; González-Dugo, María P.; José Polo, María; Hain, Christopher; Nieto, Héctor; Gao, Feng; Andreu, Ana; Kustas, William; Anderson, Martha

    2017-04-01

    The integration of currently available satellite data into surface energy balance models can provide estimates of evapotranspiration (ET) with spatial and temporal resolutions determined by sensor characteristics. The use of data fusion techniques may increase the temporal resolution of these estimates using multiple satellites, providing a more frequent ET monitoring for hydrological purposes. The objective of this work is to analyze the effects of pixel resolution on the estimation of evapotranspiration using different remote sensing platforms, and to provide continuous monitoring of ET over a water-controlled ecosystem, the Holm oak savanna woodland known as dehesa. It is an agroforestry system with a complex canopy structure characterized by widely-spaced oak trees combined with crops, pasture and shrubs. The study was carried out during two years, 2013 and 2014, combining ET estimates at different spatial and temporal resolutions and applying data fusion techniques for a frequent monitoring of water use at fine spatial resolution. A global and daily ET product at 5 km resolution, developed with the ALEXI model using MODIS day-night temperature difference (Anderson et al., 2015a) was used as a starting point. The associated flux disaggregation scheme, DisALEXI (Norman et al., 2003), was later applied to constrain higher resolution ET from both MODIS and Landsat 7/8 images. The Climate Forecast System Reanalysis (CFSR) provided the meteorological data. Finally, a data fusion technique, the STARFM model (Gao et al., 2006), was applied to fuse MODIS and Landsat ET maps in order to obtain daily ET at 30 m resolution. These estimates were validated and analyzed at two different scales: at local scale over a dehesa experimental site and at watershed scale with a predominant Mediterranean oak savanna landscape, both located in Southern Spain. Local ET estimates from the modeling system were validated with measurements provided by an eddy covariance tower installed in the dehesa (38 ° 12 'N, 4 ° 17' W, 736 m a.s.l.). The results supported the ability of ALEXI/DisALEXI model to accurately estimate turbulent and radiative fluxes over this complex landscape, both at 1 Km and at 30 m spatial resolution. The application of the STARFM model gave significant improvement in capturing the spatio-temporal heterogeneity of ET over the different seasons, compared with traditional interpolation methods using MODIS and Landsat ET data. At basin scale, the physically-based distributed hydrological model WiMMed has been applied to evaluate ET estimates. This model focuses on the spatial interpolation of the meteorological variables and the physical modelling of the daily water balance at the cell and watershed scale, using daily streamflow rates measured at the watershed outlet for final comparison.

  12. Observations-based GPP estimates

    NASA Astrophysics Data System (ADS)

    Joiner, J.; Yoshida, Y.; Jung, M.; Tucker, C. J.; Pinzon, J. E.

    2017-12-01

    We have developed global estimates of gross primary production based on a relatively simple satellite observations-based approach using reflectance data from the MODIS instruments in the form of vegetation indices that provide information about photosynthetic capacity at both high temporal and spatial resolution and combined with information from chlorophyll solar-induced fluorescence from the Global Ozone Monitoring Experiment-2 instrument that is noisier and available only at lower temporal and spatial scales. We compare our gross primary production estimates with those from eddy covariance flux towers and show that they are competitive with more complicated extrapolated machine learning gross primary production products. Our results provide insight into the amount of variance in gross primary production that can be explained with satellite observations data and also show how processing of the satellite reflectance data is key to using it for accurate GPP estimates.

  13. Estimating Gross Primary Production in Cropland with High Spatial and Temporal Scale Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Lin, S.; Li, J.; Liu, Q.

    2018-04-01

    Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50 % (R2 = 0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE < 3 gC/m2/day), which has better performance than using MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.

  14. On the spatial heterogeneity of net ecosystem productivity in complex landscapes

    Treesearch

    Ryan E. Emanuel; Diego A. Riveros-Iregui; Brian L. McGlynn; Howard E. Epstein

    2011-01-01

    Micrometeorological flux towers provide spatially integrated estimates of net ecosystem production (NEP) of carbon over areas ranging from several hectares to several square kilometers, but they do so at the expense of spatially explicit information within the footprint of the tower. This finer-scale information is crucial for understanding how physical and biological...

  15. Comparison Study on the Estimation of the Spatial Distribution of Regional Soil Metal(loid)s Pollution Based on Kriging Interpolation and BP Neural Network

    PubMed Central

    Zhou, Shenglu; Su, Quanlong; Yi, Haomin

    2017-01-01

    Soil pollution by metal(loid)s resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid) pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As) and cadmium (Cd) pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE) of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loid)s in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid) pollution. PMID:29278363

  16. On the representation and estimation of spatial uncertainty. [for mobile robot

    NASA Technical Reports Server (NTRS)

    Smith, Randall C.; Cheeseman, Peter

    1987-01-01

    This paper describes a general method for estimating the nominal relationship and expected error (covariance) between coordinate frames representing the relative locations of objects. The frames may be known only indirectly through a series of spatial relationships, each with its associated error, arising from diverse causes, including positioning errors, measurement errors, or tolerances in part dimensions. This estimation method can be used to answer such questions as whether a camera attached to a robot is likely to have a particular reference object in its field of view. The calculated estimates agree well with those from an independent Monte Carlo simulation. The method makes it possible to decide in advance whether an uncertain relationship is known accurately enough for some task and, if not, how much of an improvement in locational knowledge a proposed sensor will provide. The method presented can be generalized to six degrees of freedom and provides a practical means of estimating the relationships (position and orientation) among objects, as well as estimating the uncertainty associated with the relationships.

  17. Evaluating a Local Ensemble Transform Kalman Filter snow cover data assimilation method to estimate SWE within a high-resolution hydrologic modeling framework across Western US mountainous regions

    NASA Astrophysics Data System (ADS)

    Oaida, C. M.; Andreadis, K.; Reager, J. T., II; Famiglietti, J. S.; Levoe, S.

    2017-12-01

    Accurately estimating how much snow water equivalent (SWE) is stored in mountainous regions characterized by complex terrain and snowmelt-driven hydrologic cycles is not only greatly desirable, but also a big challenge. Mountain snowpack exhibits high spatial variability across a broad range of spatial and temporal scales due to a multitude of physical and climatic factors, making it difficult to observe or estimate in its entirety. Combing remotely sensed data and high resolution hydrologic modeling through data assimilation (DA) has the potential to provide a spatially and temporally continuous SWE dataset at horizontal scales that capture sub-grid snow spatial variability and are also relevant to stakeholders such as water resource managers. Here, we present the evaluation of a new snow DA approach that uses a Local Ensemble Transform Kalman Filter (LETKF) in tandem with the Variable Infiltration Capacity macro-scale hydrologic model across the Western United States, at a daily temporal resolution, and a horizontal resolution of 1.75 km x 1.75 km. The LETKF is chosen for its relative simplicity, ease of implementation, and computational efficiency and scalability. The modeling/DA system assimilates daily MODIS Snow Covered Area and Grain Size (MODSCAG) fractional snow cover over, and has been developed to efficiently calculate SWE estimates over extended periods of time and covering large regional-scale areas at relatively high spatial resolution, ultimately producing a snow reanalysis-type dataset. Here we focus on the assessment of SWE produced by the DA scheme over several basins in California's Sierra Nevada Mountain range where Airborne Snow Observatory data is available, during the last five water years (2013-2017), which include both one of the driest and one of the wettest years. Comparison against such a spatially distributed SWE observational product provides a greater understanding of the model's ability to estimate SWE and SWE spatial variability, and highlights under which conditions snow cover DA can add value in estimating SWE.

  18. Statistical and Economic Techniques for Site-specific Nematode Management.

    PubMed

    Liu, Zheng; Griffin, Terry; Kirkpatrick, Terrence L

    2014-03-01

    Recent advances in precision agriculture technologies and spatial statistics allow realistic, site-specific estimation of nematode damage to field crops and provide a platform for the site-specific delivery of nematicides within individual fields. This paper reviews the spatial statistical techniques that model correlations among neighboring observations and develop a spatial economic analysis to determine the potential of site-specific nematicide application. The spatial econometric methodology applied in the context of site-specific crop yield response contributes to closing the gap between data analysis and realistic site-specific nematicide recommendations and helps to provide a practical method of site-specifically controlling nematodes.

  19. Drone based estimation of actual evapotranspiration over different forest types

    NASA Astrophysics Data System (ADS)

    Marzahn, Philip; Gampe, David; Castro, Saulo; Vega-Araya, Mauricio; Sanchez-Azofeifa, Arturo; Ludwig, Ralf

    2017-04-01

    Actual evapotranspiration (Eta) plays an important role in surface-atmosphere interactions. Traditionally, Eta is measured by means of lysimeters, eddy-covariance systems or fiber optics, providing estimates which are spatially restricted to a footprint from a few square meters up to several hectares . In the past, several methods have been developed to derive Eta by means of multi-spectral remote sensing data using thermal and VIS/NIR satellite imagery of the land surface. As such approaches do have their justification on coarser scales, they do not provide Eta information on the fine resolution plant level over large areas which is mandatory for the detection of water stress or tree mortality. In this study, we present a comparison of a drone based assessment of Eta with eddy-covariance measurements over two different forest types - a deciduous forest in Alberta, Canada and a tropical dry forest in Costa Rica. Drone based estimates of Eta were calculated applying the Triangle-Method proposed by Jiang and Islam (1999). The Triangle-Method estimates actual evapotranspiration (Eta) by means of the Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST) provided by two camera systems (MicaSense RedEdge, FLIR TAU2 640) flown simultaneously on an octocopter. . Results indicate a high transferability of the original approach from Jiang and Islam (1999) developed for coarse to medium resolution satellite imagery tothe high resolution drone data, leading to a deviation in Eta estimates of 10% compared to the eddy-covariance measurements. In addition, the spatial footprint of the eddy-covariance measurement can be detected with this approach, by showing the spatial heterogeneities of Eta due to the spatial distribution of different trees and understory vegetation.

  20. A hierarchical model for estimating the spatial distribution and abundance of animals detected by continuous-time recorders

    USGS Publications Warehouse

    Dorazio, Robert; Karanth, K. Ullas

    2017-01-01

    MotivationSeveral spatial capture-recapture (SCR) models have been developed to estimate animal abundance by analyzing the detections of individuals in a spatial array of traps. Most of these models do not use the actual dates and times of detection, even though this information is readily available when using continuous-time recorders, such as microphones or motion-activated cameras. Instead most SCR models either partition the period of trap operation into a set of subjectively chosen discrete intervals and ignore multiple detections of the same individual within each interval, or they simply use the frequency of detections during the period of trap operation and ignore the observed times of detection. Both practices make inefficient use of potentially important information in the data.Model and data analysisWe developed a hierarchical SCR model to estimate the spatial distribution and abundance of animals detected with continuous-time recorders. Our model includes two kinds of point processes: a spatial process to specify the distribution of latent activity centers of individuals within the region of sampling and a temporal process to specify temporal patterns in the detections of individuals. We illustrated this SCR model by analyzing spatial and temporal patterns evident in the camera-trap detections of tigers living in and around the Nagarahole Tiger Reserve in India. We also conducted a simulation study to examine the performance of our model when analyzing data sets of greater complexity than the tiger data.BenefitsOur approach provides three important benefits: First, it exploits all of the information in SCR data obtained using continuous-time recorders. Second, it is sufficiently versatile to allow the effects of both space use and behavior of animals to be specified as functions of covariates that vary over space and time. Third, it allows both the spatial distribution and abundance of individuals to be estimated, effectively providing a species distribution model, even in cases where spatial covariates of abundance are unknown or unavailable. We illustrated these benefits in the analysis of our data, which allowed us to quantify differences between nocturnal and diurnal activities of tigers and to estimate their spatial distribution and abundance across the study area. Our continuous-time SCR model allows an analyst to specify many of the ecological processes thought to be involved in the distribution, movement, and behavior of animals detected in a spatial trapping array of continuous-time recorders. We plan to extend this model to estimate the population dynamics of animals detected during multiple years of SCR surveys.

  1. Comparison of multi-subject ICA methods for analysis of fMRI data

    PubMed Central

    Erhardt, Erik Barry; Rachakonda, Srinivas; Bedrick, Edward; Allen, Elena; Adali, Tülay; Calhoun, Vince D.

    2010-01-01

    Spatial independent component analysis (ICA) applied to functional magnetic resonance imaging (fMRI) data identifies functionally connected networks by estimating spatially independent patterns from their linearly mixed fMRI signals. Several multi-subject ICA approaches estimating subject-specific time courses (TCs) and spatial maps (SMs) have been developed, however there has not yet been a full comparison of the implications of their use. Here, we provide extensive comparisons of four multi-subject ICA approaches in combination with data reduction methods for simulated and fMRI task data. For multi-subject ICA, the data first undergo reduction at the subject and group levels using principal component analysis (PCA). Comparisons of subject-specific, spatial concatenation, and group data mean subject-level reduction strategies using PCA and probabilistic PCA (PPCA) show that computationally intensive PPCA is equivalent to PCA, and that subject-specific and group data mean subject-level PCA are preferred because of well-estimated TCs and SMs. Second, aggregate independent components are estimated using either noise free ICA or probabilistic ICA (PICA). Third, subject-specific SMs and TCs are estimated using back-reconstruction. We compare several direct group ICA (GICA) back-reconstruction approaches (GICA1-GICA3) and an indirect back-reconstruction approach, spatio-temporal regression (STR, or dual regression). Results show the earlier group ICA (GICA1) approximates STR, however STR has contradictory assumptions and may show mixed-component artifacts in estimated SMs. Our evidence-based recommendation is to use GICA3, introduced here, with subject-specific PCA and noise-free ICA, providing the most robust and accurate estimated SMs and TCs in addition to offering an intuitive interpretation. PMID:21162045

  2. Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data.

    PubMed

    Adachi, Minaco; Ito, Akihiko; Yonemura, Seiichiro; Takeuchi, Wataru

    2017-09-15

    Soil respiration is one of the largest carbon fluxes from terrestrial ecosystems. Estimating global soil respiration is difficult because of its high spatiotemporal variability and sensitivity to land-use change. Satellite monitoring provides useful data for estimating the global carbon budget, but few studies have estimated global soil respiration using satellite data. We provide preliminary insights into the estimation of global soil respiration in 2001 and 2009 using empirically derived soil temperature equations for 17 ecosystems obtained by field studies, as well as MODIS climate data and land-use maps at a 4-km resolution. The daytime surface temperature from winter to early summer based on the MODIS data tended to be higher than the field-observed soil temperatures in subarctic and temperate ecosystems. The estimated global soil respiration was 94.8 and 93.8 Pg C yr -1 in 2001 and 2009, respectively. However, the MODIS land-use maps had insufficient spatial resolution to evaluate the effect of land-use change on soil respiration. The spatial variation of soil respiration (Q 10 ) values was higher but its spatial variation was lower in high-latitude areas than in other areas. However, Q 10 in tropical areas was more variable and was not accurately estimated (the values were >7.5 or <1.0) because of the low seasonal variation in soil respiration in tropical ecosystems. To solve these problems, it will be necessary to validate our results using a combination of remote sensing data at higher spatial resolution and field observations for many different ecosystems, and it will be necessary to account for the effects of more soil factors in the predictive equations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Adjusting for sampling variability in sparse data: geostatistical approaches to disease mapping

    PubMed Central

    2011-01-01

    Background Disease maps of crude rates from routinely collected health data indexed at a small geographical resolution pose specific statistical problems due to the sparse nature of the data. Spatial smoothers allow areas to borrow strength from neighboring regions to produce a more stable estimate of the areal value. Geostatistical smoothers are able to quantify the uncertainty in smoothed rate estimates without a high computational burden. In this paper, we introduce a uniform model extension of Bayesian Maximum Entropy (UMBME) and compare its performance to that of Poisson kriging in measures of smoothing strength and estimation accuracy as applied to simulated data and the real data example of HIV infection in North Carolina. The aim is to produce more reliable maps of disease rates in small areas to improve identification of spatial trends at the local level. Results In all data environments, Poisson kriging exhibited greater smoothing strength than UMBME. With the simulated data where the true latent rate of infection was known, Poisson kriging resulted in greater estimation accuracy with data that displayed low spatial autocorrelation, while UMBME provided more accurate estimators with data that displayed higher spatial autocorrelation. With the HIV data, UMBME performed slightly better than Poisson kriging in cross-validatory predictive checks, with both models performing better than the observed data model with no smoothing. Conclusions Smoothing methods have different advantages depending upon both internal model assumptions that affect smoothing strength and external data environments, such as spatial correlation of the observed data. Further model comparisons in different data environments are required to provide public health practitioners with guidelines needed in choosing the most appropriate smoothing method for their particular health dataset. PMID:21978359

  4. Adjusting for sampling variability in sparse data: geostatistical approaches to disease mapping.

    PubMed

    Hampton, Kristen H; Serre, Marc L; Gesink, Dionne C; Pilcher, Christopher D; Miller, William C

    2011-10-06

    Disease maps of crude rates from routinely collected health data indexed at a small geographical resolution pose specific statistical problems due to the sparse nature of the data. Spatial smoothers allow areas to borrow strength from neighboring regions to produce a more stable estimate of the areal value. Geostatistical smoothers are able to quantify the uncertainty in smoothed rate estimates without a high computational burden. In this paper, we introduce a uniform model extension of Bayesian Maximum Entropy (UMBME) and compare its performance to that of Poisson kriging in measures of smoothing strength and estimation accuracy as applied to simulated data and the real data example of HIV infection in North Carolina. The aim is to produce more reliable maps of disease rates in small areas to improve identification of spatial trends at the local level. In all data environments, Poisson kriging exhibited greater smoothing strength than UMBME. With the simulated data where the true latent rate of infection was known, Poisson kriging resulted in greater estimation accuracy with data that displayed low spatial autocorrelation, while UMBME provided more accurate estimators with data that displayed higher spatial autocorrelation. With the HIV data, UMBME performed slightly better than Poisson kriging in cross-validatory predictive checks, with both models performing better than the observed data model with no smoothing. Smoothing methods have different advantages depending upon both internal model assumptions that affect smoothing strength and external data environments, such as spatial correlation of the observed data. Further model comparisons in different data environments are required to provide public health practitioners with guidelines needed in choosing the most appropriate smoothing method for their particular health dataset.

  5. Random vectors and spatial analysis by geostatistics for geotechnical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, D.S.

    1987-08-01

    Geostatistics is extended to the spatial analysis of vector variables by defining the estimation variance and vector variogram in terms of the magnitude of difference vectors. Many random variables in geotechnology are in vectorial terms rather than scalars, and its structural analysis requires those sample variable interpolations to construct and characterize structural models. A better local estimator will result in greater quality of input models; geostatistics can provide such estimators; kriging estimators. The efficiency of geostatistics for vector variables is demonstrated in a case study of rock joint orientations in geological formations. The positive cross-validation encourages application of geostatistics tomore » spatial analysis of random vectors in geoscience as well as various geotechnical fields including optimum site characterization, rock mechanics for mining and civil structures, cavability analysis of block cavings, petroleum engineering, and hydrologic and hydraulic modelings.« less

  6. Optimal estimation of spatially variable recharge and transmissivity fields under steady-state groundwater flow. Part 1. Theory

    NASA Astrophysics Data System (ADS)

    Graham, Wendy D.; Tankersley, Claude D.

    1994-05-01

    Stochastic methods are used to analyze two-dimensional steady groundwater flow subject to spatially variable recharge and transmissivity. Approximate partial differential equations are developed for the covariances and cross-covariances between the random head, transmissivity and recharge fields. Closed-form solutions of these equations are obtained using Fourier transform techniques. The resulting covariances and cross-covariances can be incorporated into a Bayesian conditioning procedure which provides optimal estimates of the recharge, transmissivity and head fields given available measurements of any or all of these random fields. Results show that head measurements contain valuable information for estimating the random recharge field. However, when recharge is treated as a spatially variable random field, the value of head measurements for estimating the transmissivity field can be reduced considerably. In a companion paper, the method is applied to a case study of the Upper Floridan Aquifer in NE Florida.

  7. Analytic score distributions for a spatially continuous tridirectional Monte Carol transport problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, T.E.

    1996-01-01

    The interpretation of the statistical error estimates produced by Monte Carlo transport codes is still somewhat of an art. Empirically, there are variance reduction techniques whose error estimates are almost always reliable, and there are variance reduction techniques whose error estimates are often unreliable. Unreliable error estimates usually result from inadequate large-score sampling from the score distribution`s tail. Statisticians believe that more accurate confidence interval statements are possible if the general nature of the score distribution can be characterized. Here, the analytic score distribution for the exponential transform applied to a simple, spatially continuous Monte Carlo transport problem is provided.more » Anisotropic scattering and implicit capture are included in the theory. In large part, the analytic score distributions that are derived provide the basis for the ten new statistical quality checks in MCNP.« less

  8. Hierarchical Bayesian Model (HBM)-Derived Estimates of Air Quality for 2004 - Annual Report

    EPA Science Inventory

    This report describes EPA's Hierarchical Bayesian model-generated (HBM) estimates of O3 and PM2.5 concentrations throughout the continental United States during the 2004 calendar year. HBM estimates provide the spatial and temporal variance of O3 ...

  9. Factors influencing reporting and harvest probabilities in North American geese

    USGS Publications Warehouse

    Zimmerman, G.S.; Moser, T.J.; Kendall, W.L.; Doherty, P.F.; White, Gary C.; Caswell, D.F.

    2009-01-01

    We assessed variation in reporting probabilities of standard bands among species, populations, harvest locations, and size classes of North American geese to enable estimation of unbiased harvest probabilities. We included reward (US10,20,30,50, or100) and control (0) banded geese from 16 recognized goose populations of 4 species: Canada (Branta canadensis), cackling (B. hutchinsii), Ross's (Chen rossii), and snow geese (C. caerulescens). We incorporated spatially explicit direct recoveries and live recaptures into a multinomial model to estimate reporting, harvest, and band-retention probabilities. We compared various models for estimating harvest probabilities at country (United States vs. Canada), flyway (5 administrative regions), and harvest area (i.e., flyways divided into northern and southern sections) scales. Mean reporting probability of standard bands was 0.73 (95 CI 0.690.77). Point estimates of reporting probabilities for goose populations or spatial units varied from 0.52 to 0.93, but confidence intervals for individual estimates overlapped and model selection indicated that models with species, population, or spatial effects were less parsimonious than those without these effects. Our estimates were similar to recently reported estimates for mallards (Anas platyrhynchos). We provide current harvest probability estimates for these populations using our direct measures of reporting probability, improving the accuracy of previous estimates obtained from recovery probabilities alone. Goose managers and researchers throughout North America can use our reporting probabilities to correct recovery probabilities estimated from standard banding operations for deriving spatially explicit harvest probabilities.

  10. Spatial Interpolation of Rain-field Dynamic Time-Space Evolution in Hong Kong

    NASA Astrophysics Data System (ADS)

    Liu, P.; Tung, Y. K.

    2017-12-01

    Accurate and reliable measurement and prediction of spatial and temporal distribution of rain-field over a wide range of scales are important topics in hydrologic investigations. In this study, geostatistical treatment of precipitation field is adopted. To estimate the rainfall intensity over a study domain with the sample values and the spatial structure from the radar data, the cumulative distribution functions (CDFs) at all unsampled locations were estimated. Indicator Kriging (IK) was used to estimate the exceedance probabilities for different pre-selected cutoff levels and a procedure was implemented for interpolating CDF values between the thresholds that were derived from the IK. Different interpolation schemes of the CDF were proposed and their influences on the performance were also investigated. The performance measures and visual comparison between the observed rain-field and the IK-based estimation suggested that the proposed method can provide fine results of estimation of indicator variables and is capable of producing realistic image.

  11. [Estimating medicinal yield of Seutellaria baicalensis in Beijing-Tianjin-Hebei region based on 3S technology].

    PubMed

    Liu, Jin-xinp; Lu, Heng; Zeng, Yan; Yue, Jian-wei; Meng, Fan-yun; Zhang, Yi-guang

    2012-09-01

    Resources survey of traditional Chinese medicine and reserves estimation are found to be the most important issues for the protection and utilization of traditional Chinese medicine resources, this paper used multi-spatial resolution remote sensing images (RS) , geographic information systems (GIS) and global positioning system (GPS) , to establish Scutellaria resources survey of 3S data platform. Combined with the traditional field survey methods, small-scale habitat types were established based on different skullcap reserve estimation model, which can estimate reserves of the wild Scutellaria in Beijing-Tianjin-Hebei region and improve the estimation accuracy. It can provide an important parameter for the fourth national survey of traditional Chinese medicine resources and traditional Chinese medicine reserves estimates based on 3S technology by multiple spatial scales model.

  12. Evaluating the Impact of Spatial Resolution of Landsat Predictors on the Accuracy of Biomass Models for Large-area Estimation Across the Eastern USA

    NASA Astrophysics Data System (ADS)

    Deo, R. K.; Domke, G. M.; Russell, M.; Woodall, C. W.

    2017-12-01

    Landsat data have been widely used to support strategic forest inventory and management decisions despite the limited success of passive optical remote sensing for accurate estimation of aboveground biomass (AGB). The archive of publicly available Landsat data, available at 30-m spatial resolutions since 1984, has been a valuable resource for cost-effective large-area estimation of AGB to inform national requirements such as for the US national greenhouse gas inventory (NGHGI). In addition, other optical satellite data such as MODIS imagery of wider spatial coverage and higher temporal resolution are enriching the domain of spatial predictors for regional scale mapping of AGB. Because NGHGIs require national scale AGB information and there are tradeoffs in the prediction accuracy versus operational efficiency of Landsat, this study evaluated the impact of various resolutions of Landsat predictors on the accuracy of regional AGB models across three different sites in the eastern USA: Maine, Pennsylvania-New Jersey, and South Carolina. We used recent national forest inventory (NFI) data with numerous Landsat-derived predictors at ten different spatial resolutions ranging from 30 to 1000 m to understand the optimal spatial resolution of the optical data for enhanced spatial inventory of AGB for NGHGI reporting. Ten generic spatial models at different spatial resolutions were developed for all sites and large-area estimates were evaluated (i) at the county-level against the independent designed-based estimates via the US NFI Evalidator tool and (ii) within a large number of strips ( 1 km wide) predicted via LiDAR metrics at a high spatial resolution. The county-level estimates by the Evalidator and Landsat models were statistically equivalent and produced coefficients of determination (R2) above 0.85 that varied with sites and resolution of predictors. The mean and standard deviation of county-level estimates followed increasing and decreasing trends, respectively, with models of decreasing resolutions. The Landsat-based total AGB estimates within the strips against the total AGB obtained using LiDAR metrics did not differ significantly and were within ±15 Mg/ha for each of the sites. We conclude that the optical satellite data at resolutions up to 1000 m provide acceptable accuracy for the US' NGHGI.

  13. Model-based estimators of density and connectivity to inform conservation of spatially structured populations

    USGS Publications Warehouse

    Morin, Dana J.; Fuller, Angela K.; Royle, J. Andrew; Sutherland, Chris

    2017-01-01

    Conservation and management of spatially structured populations is challenging because solutions must consider where individuals are located, but also differential individual space use as a result of landscape heterogeneity. A recent extension of spatial capture–recapture (SCR) models, the ecological distance model, uses spatial encounter histories of individuals (e.g., a record of where individuals are detected across space, often sequenced over multiple sampling occasions), to estimate the relationship between space use and characteristics of a landscape, allowing simultaneous estimation of both local densities of individuals across space and connectivity at the scale of individual movement. We developed two model-based estimators derived from the SCR ecological distance model to quantify connectivity over a continuous surface: (1) potential connectivity—a metric of the connectivity of areas based on resistance to individual movement; and (2) density-weighted connectivity (DWC)—potential connectivity weighted by estimated density. Estimates of potential connectivity and DWC can provide spatial representations of areas that are most important for the conservation of threatened species, or management of abundant populations (i.e., areas with high density and landscape connectivity), and thus generate predictions that have great potential to inform conservation and management actions. We used a simulation study with a stationary trap design across a range of landscape resistance scenarios to evaluate how well our model estimates resistance, potential connectivity, and DWC. Correlation between true and estimated potential connectivity was high, and there was positive correlation and high spatial accuracy between estimated DWC and true DWC. We applied our approach to data collected from a population of black bears in New York, and found that forested areas represented low levels of resistance for black bears. We demonstrate that formal inference about measures of landscape connectivity can be achieved from standard methods of studying animal populations which yield individual encounter history data such as camera trapping. Resulting biological parameters including resistance, potential connectivity, and DWC estimate the spatial distribution and connectivity of the population within a statistical framework, and we outline applications to many possible conservation and management problems.

  14. Digital hydrologic networks supporting applications related to spatially referenced regression modeling

    USGS Publications Warehouse

    Brakebill, John W.; Wolock, David M.; Terziotti, Silvia

    2011-01-01

    Digital hydrologic networks depicting surface-water pathways and their associated drainage catchments provide a key component to hydrologic analysis and modeling. Collectively, they form common spatial units that can be used to frame the descriptions of aquatic and watershed processes. In addition, they provide the ability to simulate and route the movement of water and associated constituents throughout the landscape. Digital hydrologic networks have evolved from derivatives of mapping products to detailed, interconnected, spatially referenced networks of water pathways, drainage areas, and stream and watershed characteristics. These properties are important because they enhance the ability to spatially evaluate factors that affect the sources and transport of water-quality constituents at various scales. SPAtially Referenced Regressions On Watershed attributes (SPARROW), a process-based ⁄ statistical model, relies on a digital hydrologic network in order to establish relations between quantities of monitored contaminant flux, contaminant sources, and the associated physical characteristics affecting contaminant transport. Digital hydrologic networks modified from the River Reach File (RF1) and National Hydrography Dataset (NHD) geospatial datasets provided frameworks for SPARROW in six regions of the conterminous United States. In addition, characteristics of the modified RF1 were used to update estimates of mean-annual streamflow. This produced more current flow estimates for use in SPARROW modeling.

  15. Autocorrelation structure of convective rainfall in semiarid-arid climate derived from high-resolution X-Band radar estimates

    NASA Astrophysics Data System (ADS)

    Marra, Francesco; Morin, Efrat

    2018-02-01

    Small scale rainfall variability is a key factor driving runoff response in fast responding systems, such as mountainous, urban and arid catchments. In this paper, the spatial-temporal autocorrelation structure of convective rainfall is derived with extremely high resolutions (60 m, 1 min) using estimates from an X-Band weather radar recently installed in a semiarid-arid area. The 2-dimensional spatial autocorrelation of convective rainfall fields and the temporal autocorrelation of point-wise and distributed rainfall fields are examined. The autocorrelation structures are characterized by spatial anisotropy, correlation distances 1.5-2.8 km and rarely exceeding 5 km, and time-correlation distances 1.8-6.4 min and rarely exceeding 10 min. The observed spatial variability is expected to negatively affect estimates from rain gauges and microwave links rather than satellite and C-/S-Band radars; conversely, the temporal variability is expected to negatively affect remote sensing estimates rather than rain gauges. The presented results provide quantitative information for stochastic weather generators, cloud-resolving models, dryland hydrologic and agricultural models, and multi-sensor merging techniques.

  16. Training specificity and transfer in time and distance estimation.

    PubMed

    Healy, Alice F; Tack, Lindsay Anderson; Schneider, Vivian I; Barshi, Immanuel

    2015-07-01

    Learning is often specific to the conditions of training, making it important to identify which aspects of the testing environment are crucial to be matched in the training environment. In the present study, we examined training specificity in time and distance estimation tasks that differed only in the focus of processing (FOP). External spatial cues were provided for the distance estimation task and for the time estimation task in one condition, but not in another. The presence of a concurrent alphabet secondary task was manipulated during training and testing in all estimation conditions in Experiment 1. For distance as well as for time estimation in both conditions, training of the primary estimation task was found to be specific to the presence of the secondary task. In Experiments 2 and 3, we examined transfer between one estimation task and another, with no secondary task in either case. When all conditions were equal aside from the FOP instructions, including the presence of external spatial cues, Experiment 2 showed "transfer" between tasks, suggesting that training might not be specific to the FOP. When the external spatial cues were removed from the time estimation task, Experiment 3 showed no transfer between time and distance estimations, suggesting that external task cues influenced the procedures used in the estimation tasks.

  17. A comparison of multi-spectral, multi-angular, and multi-temporal remote sensing datasets for fractional shrub canopy mapping in Arctic Alaska

    USGS Publications Warehouse

    Selkowitz, D.J.

    2010-01-01

    Shrub cover appears to be increasing across many areas of the Arctic tundra biome, and increasing shrub cover in the Arctic has the potential to significantly impact global carbon budgets and the global climate system. For most of the Arctic, however, there is no existing baseline inventory of shrub canopy cover, as existing maps of Arctic vegetation provide little information about the density of shrub cover at a moderate spatial resolution across the region. Remotely-sensed fractional shrub canopy maps can provide this necessary baseline inventory of shrub cover. In this study, we compare the accuracy of fractional shrub canopy (> 0.5 m tall) maps derived from multi-spectral, multi-angular, and multi-temporal datasets from Landsat imagery at 30 m spatial resolution, Moderate Resolution Imaging SpectroRadiometer (MODIS) imagery at 250 m and 500 m spatial resolution, and MultiAngle Imaging Spectroradiometer (MISR) imagery at 275 m spatial resolution for a 1067 km2 study area in Arctic Alaska. The study area is centered at 69 ??N, ranges in elevation from 130 to 770 m, is composed primarily of rolling topography with gentle slopes less than 10??, and is free of glaciers and perennial snow cover. Shrubs > 0.5 m in height cover 2.9% of the study area and are primarily confined to patches associated with specific landscape features. Reference fractional shrub canopy is determined from in situ shrub canopy measurements and a high spatial resolution IKONOS image swath. Regression tree models are constructed to estimate fractional canopy cover at 250 m using different combinations of input data from Landsat, MODIS, and MISR. Results indicate that multi-spectral data provide substantially more accurate estimates of fractional shrub canopy cover than multi-angular or multi-temporal data. Higher spatial resolution datasets also provide more accurate estimates of fractional shrub canopy cover (aggregated to moderate spatial resolutions) than lower spatial resolution datasets, an expected result for a study area where most shrub cover is concentrated in narrow patches associated with rivers, drainages, and slopes. Including the middle infrared bands available from Landsat and MODIS in the regression tree models (in addition to the four standard visible and near-infrared spectral bands) typically results in a slight boost in accuracy. Including the multi-angular red band data available from MISR in the regression tree models, however, typically boosts accuracy more substantially, resulting in moderate resolution fractional shrub canopy estimates approaching the accuracy of estimates derived from the much higher spatial resolution Landsat sensor. Given the poor availability of snow and cloud-free Landsat scenes in many areas of the Arctic and the promising results demonstrated here by the MISR sensor, MISR may be the best choice for large area fractional shrub canopy mapping in the Alaskan Arctic for the period 2000-2009.

  18. Quantitative tradeoffs between spatial, temporal, and thermometric resolution of nonresonant Raman thermometry for dynamic experiments.

    PubMed

    McGrane, Shawn D; Moore, David S; Goodwin, Peter M; Dattelbaum, Dana M

    2014-01-01

    The ratio of Stokes to anti-Stokes nonresonant spontaneous Raman can provide an in situ thermometer that is noncontact, independent of any material specific parameters or calibrations, can be multiplexed spatially with line imaging, and can be time resolved for dynamic measurements. However, spontaneous Raman cross sections are very small, and thermometric measurements are often limited by the amount of laser energy that can be applied without damaging the sample or changing its temperature appreciably. In this paper, we quantitatively detail the tradeoff space between spatial, temporal, and thermometric accuracy measurable with spontaneous Raman. Theoretical estimates are pinned to experimental measurements to form realistic expectations of the resolution tradeoffs appropriate to various experiments. We consider the effects of signal to noise, collection efficiency, laser heating, pulsed laser ablation, and blackbody emission as limiting factors, provide formulae to help choose optimal conditions and provide estimates relevant to planning experiments along with concrete examples for single-shot measurements.

  19. Integrating High-Resolution Datasets to Target Mitigation Efforts for Improving Air Quality and Public Health in Urban Neighborhoods

    PubMed Central

    Shandas, Vivek; Voelkel, Jackson; Rao, Meenakshi; George, Linda

    2016-01-01

    Reducing exposure to degraded air quality is essential for building healthy cities. Although air quality and population vary at fine spatial scales, current regulatory and public health frameworks assess human exposures using county- or city-scales. We build on a spatial analysis technique, dasymetric mapping, for allocating urban populations that, together with emerging fine-scale measurements of air pollution, addresses three objectives: (1) evaluate the role of spatial scale in estimating exposure; (2) identify urban communities that are disproportionately burdened by poor air quality; and (3) estimate reduction in mobile sources of pollutants due to local tree-planting efforts using nitrogen dioxide. Our results show a maximum value of 197% difference between cadastrally-informed dasymetric system (CIDS) and standard estimations of population exposure to degraded air quality for small spatial extent analyses, and a lack of substantial difference for large spatial extent analyses. These results provide the foundation for improving policies for managing air quality, and targeting mitigation efforts to address challenges of environmental justice. PMID:27527205

  20. Linking Air Quality and Watershed Models for Environmental Assessments: Analysis of the Effects of Model-Specific Precipitation Estimates on Calculated Water Flux

    EPA Science Inventory

    Directly linking air quality and watershed models could provide an effective method for estimating spatially-explicit inputs of atmospheric contaminants to watershed biogeochemical models. However, to adequately link air and watershed models for wet deposition estimates, each mod...

  1. Insights into mountain precipitation and snowpack from a basin-scale wireless-sensor network

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Glaser, S.; Bales, R.; Conklin, M.; Rice, R.; Marks, D.

    2017-08-01

    A spatially distributed wireless-sensor network, installed across the 2154 km2 portion of the 5311 km2 American River basin above 1500 m elevation, provided spatial measurements of temperature, relative humidity, and snow depth in the Sierra Nevada, California. The network consisted of 10 sensor clusters, each with 10 measurement nodes, distributed to capture the variability in topography and vegetation cover. The sensor network captured significant spatial heterogeneity in rain versus snow precipitation for water-year 2014, variability that was not apparent in the more limited operational data. Using daily dew-point temperature to track temporal elevational changes in the rain-snow transition, the amount of snow accumulation at each node was used to estimate the fraction of rain versus snow. This resulted in an underestimate of total precipitation below the 0°C dew-point elevation, which averaged 1730 m across 10 precipitation events, indicating that measuring snow does not capture total precipitation. We suggest blending lower elevation rain gauge data with higher-elevation sensor-node data for each event to estimate total precipitation. Blended estimates were on average 15-30% higher than using either set of measurements alone. Using data from the current operational snow-pillow sites gives even lower estimates of basin-wide precipitation. Given the increasing importance of liquid precipitation in a warming climate, a strategy that blends distributed measurements of both liquid and solid precipitation will provide more accurate basin-wide precipitation estimates, plus spatial and temporal patters of snow accumulation and melt in a basin.

  2. Comparison of MODIS and SWAT evapotranspiration over a complex terrain at different spatial scales

    NASA Astrophysics Data System (ADS)

    Abiodun, Olanrewaju O.; Guan, Huade; Post, Vincent E. A.; Batelaan, Okke

    2018-05-01

    In most hydrological systems, evapotranspiration (ET) and precipitation are the largest components of the water balance, which are difficult to estimate, particularly over complex terrain. In recent decades, the advent of remotely sensed data based ET algorithms and distributed hydrological models has provided improved spatially upscaled ET estimates. However, information on the performance of these methods at various spatial scales is limited. This study compares the ET from the MODIS remotely sensed ET dataset (MOD16) with the ET estimates from a SWAT hydrological model on graduated spatial scales for the complex terrain of the Sixth Creek Catchment of the Western Mount Lofty Ranges, South Australia. ET from both models was further compared with the coarser-resolution AWRA-L model at catchment scale. The SWAT model analyses are performed on daily timescales with a 6-year calibration period (2000-2005) and 7-year validation period (2007-2013). Differences in ET estimation between the SWAT and MOD16 methods of up to 31, 19, 15, 11 and 9 % were observed at respectively 1, 4, 9, 16 and 25 km2 spatial resolutions. Based on the results of the study, a spatial scale of confidence of 4 km2 for catchment-scale evapotranspiration is suggested in complex terrain. Land cover differences, HRU parameterisation in AWRA-L and catchment-scale averaging of input climate data in the SWAT semi-distributed model were identified as the principal sources of weaker correlations at higher spatial resolution.

  3. Interpolation between spatial frameworks: an application of process convolution to estimating neighbourhood disease prevalence.

    PubMed

    Congdon, Peter

    2014-04-01

    Health data may be collected across one spatial framework (e.g. health provider agencies), but contrasts in health over another spatial framework (neighbourhoods) may be of policy interest. In the UK, population prevalence totals for chronic diseases are provided for populations served by general practitioner practices, but not for neighbourhoods (small areas of circa 1500 people), raising the question whether data for one framework can be used to provide spatially interpolated estimates of disease prevalence for the other. A discrete process convolution is applied to this end and has advantages when there are a relatively large number of area units in one or other framework. Additionally, the interpolation is modified to take account of the observed neighbourhood indicators (e.g. hospitalisation rates) of neighbourhood disease prevalence. These are reflective indicators of neighbourhood prevalence viewed as a latent construct. An illustrative application is to prevalence of psychosis in northeast London, containing 190 general practitioner practices and 562 neighbourhoods, including an assessment of sensitivity to kernel choice (e.g. normal vs exponential). This application illustrates how a zero-inflated Poisson can be used as the likelihood model for a reflective indicator.

  4. Regional-scale analysis of extreme precipitation from short and fragmented records

    NASA Astrophysics Data System (ADS)

    Libertino, Andrea; Allamano, Paola; Laio, Francesco; Claps, Pierluigi

    2018-02-01

    Rain gauge is the oldest and most accurate instrument for rainfall measurement, able to provide long series of reliable data. However, rain gauge records are often plagued by gaps, spatio-temporal discontinuities and inhomogeneities that could affect their suitability for a statistical assessment of the characteristics of extreme rainfall. Furthermore, the need to discard the shorter series for obtaining robust estimates leads to ignore a significant amount of information which can be essential, especially when large return periods estimates are sought. This work describes a robust statistical framework for dealing with uneven and fragmented rainfall records on a regional spatial domain. The proposed technique, named "patched kriging" allows one to exploit all the information available from the recorded series, independently of their length, to provide extreme rainfall estimates in ungauged areas. The methodology involves the sequential application of the ordinary kriging equations, producing a homogeneous dataset of synthetic series with uniform lengths. In this way, the errors inherent to any regional statistical estimation can be easily represented in the spatial domain and, possibly, corrected. Furthermore, the homogeneity of the obtained series, provides robustness toward local artefacts during the parameter-estimation phase. The application to a case study in the north-western Italy demonstrates the potential of the methodology and provides a significant base for discussing its advantages over previous techniques.

  5. Validation and application of MODIS-derived clean snow albedo and dust radiative forcing

    NASA Astrophysics Data System (ADS)

    Rittger, K. E.; Bryant, A. C.; Seidel, F. C.; Bair, E. H.; Skiles, M.; Goodale, C. E.; Ramirez, P.; Mattmann, C. A.; Dozier, J.; Painter, T.

    2012-12-01

    Snow albedo is an important control on snowmelt. Though albedo evolution of aging snow can be roughly modeled from grain growth, dust and other light absorbing impurities are extrinsic and therefore must be measured. Estimates of clean snow albedo and surface radiative forcing from impurities, which can be inferred from MODIS 500 m surface reflectance products, can provide this driving data for snowmelt models. Here we use MODSCAG (MODIS snow covered area and grain size) to estimate the clean snow albedo and MODDRFS (MODIS dust radiative forcing of snow) to estimate the additional absorbed solar radiation from dust and black carbon. With its finer spatial (20 m) and spectral (10 nm) resolutions, AVIRIS provides a way to estimate the accuracy of MODIS products and understand variability of snow albedo at a finer scale that we explore though a range of topography. The AVIRIS database includes images from late in the accumulation season through the melt season when we are most interested in changes in snow albedo. In addition to the spatial validation, we employ the best estimate of albedo from MODIS in an energy balance reconstruction model to estimate the maximum snow water equivalent. MODDRFS calculates radiative forcing only in pixels that are completely snow-covered, so we spatially interpolate the product to estimate the forcing in all pixels where MODSCAG has given us estimates of clean snow albedo. Comparisons with snow pillows and courses show better agreement when the radiative forcing from absorbing impurities is included in the energy balance reconstruction.

  6. A composite likelihood approach for spatially correlated survival data

    PubMed Central

    Paik, Jane; Ying, Zhiliang

    2013-01-01

    The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory. PMID:24223450

  7. Nonparametric Bayesian models for a spatial covariance.

    PubMed

    Reich, Brian J; Fuentes, Montserrat

    2012-01-01

    A crucial step in the analysis of spatial data is to estimate the spatial correlation function that determines the relationship between a spatial process at two locations. The standard approach to selecting the appropriate correlation function is to use prior knowledge or exploratory analysis, such as a variogram analysis, to select the correct parametric correlation function. Rather that selecting a particular parametric correlation function, we treat the covariance function as an unknown function to be estimated from the data. We propose a flexible prior for the correlation function to provide robustness to the choice of correlation function. We specify the prior for the correlation function using spectral methods and the Dirichlet process prior, which is a common prior for an unknown distribution function. Our model does not require Gaussian data or spatial locations on a regular grid. The approach is demonstrated using a simulation study as well as an analysis of California air pollution data.

  8. A composite likelihood approach for spatially correlated survival data.

    PubMed

    Paik, Jane; Ying, Zhiliang

    2013-01-01

    The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory.

  9. Spatially explicit inference for open populations: estimating demographic parameters from camera-trap studies

    USGS Publications Warehouse

    Gardner, Beth; Reppucci, Juan; Lucherini, Mauro; Royle, J. Andrew

    2010-01-01

    We develop a hierarchical capture–recapture model for demographically open populations when auxiliary spatial information about location of capture is obtained. Such spatial capture–recapture data arise from studies based on camera trapping, DNA sampling, and other situations in which a spatial array of devices records encounters of unique individuals. We integrate an individual-based formulation of a Jolly-Seber type model with recently developed spatially explicit capture–recapture models to estimate density and demographic parameters for survival and recruitment. We adopt a Bayesian framework for inference under this model using the method of data augmentation which is implemented in the software program WinBUGS. The model was motivated by a camera trapping study of Pampas cats Leopardus colocolo from Argentina, which we present as an illustration of the model in this paper. We provide estimates of density and the first quantitative assessment of vital rates for the Pampas cat in the High Andes. The precision of these estimates is poor due likely to the sparse data set. Unlike conventional inference methods which usually rely on asymptotic arguments, Bayesian inferences are valid in arbitrary sample sizes, and thus the method is ideal for the study of rare or endangered species for which small data sets are typical.

  10. Spatially explicit inference for open populations: estimating demographic parameters from camera-trap studies.

    PubMed

    Gardner, Beth; Reppucci, Juan; Lucherini, Mauro; Royle, J Andrew

    2010-11-01

    We develop a hierarchical capture-recapture model for demographically open populations when auxiliary spatial information about location of capture is obtained. Such spatial capture-recapture data arise from studies based on camera trapping, DNA sampling, and other situations in which a spatial array of devices records encounters of unique individuals. We integrate an individual-based formulation of a Jolly-Seber type model with recently developed spatially explicit capture-recapture models to estimate density and demographic parameters for survival and recruitment. We adopt a Bayesian framework for inference under this model using the method of data augmentation which is implemented in the software program WinBUGS. The model was motivated by a camera trapping study of Pampas cats Leopardus colocolo from Argentina, which we present as an illustration of the model in this paper. We provide estimates of density and the first quantitative assessment of vital rates for the Pampas cat in the High Andes. The precision of these estimates is poor due likely to the sparse data set. Unlike conventional inference methods which usually rely on asymptotic arguments, Bayesian inferences are valid in arbitrary sample sizes, and thus the method is ideal for the study of rare or endangered species for which small data sets are typical.

  11. Computational Software for Fitting Seismic Data to Epidemic-Type Aftershock Sequence Models

    NASA Astrophysics Data System (ADS)

    Chu, A.

    2014-12-01

    Modern earthquake catalogs are often analyzed using spatial-temporal point process models such as the epidemic-type aftershock sequence (ETAS) models of Ogata (1998). My work introduces software to implement two of ETAS models described in Ogata (1998). To find the Maximum-Likelihood Estimates (MLEs), my software provides estimates of the homogeneous background rate parameter and the temporal and spatial parameters that govern triggering effects by applying the Expectation-Maximization (EM) algorithm introduced in Veen and Schoenberg (2008). Despite other computer programs exist for similar data modeling purpose, using EM-algorithm has the benefits of stability and robustness (Veen and Schoenberg, 2008). Spatial shapes that are very long and narrow cause difficulties in optimization convergence and problems with flat or multi-modal log-likelihood functions encounter similar issues. My program uses a robust method to preset a parameter to overcome the non-convergence computational issue. In addition to model fitting, the software is equipped with useful tools for examining modeling fitting results, for example, visualization of estimated conditional intensity, and estimation of expected number of triggered aftershocks. A simulation generator is also given with flexible spatial shapes that may be defined by the user. This open-source software has a very simple user interface. The user may execute it on a local computer, and the program also has potential to be hosted online. Java language is used for the software's core computing part and an optional interface to the statistical package R is provided.

  12. Tigers on trails: occupancy modeling for cluster sampling.

    PubMed

    Hines, J E; Nichols, J D; Royle, J A; MacKenzie, D I; Gopalaswamy, A M; Kumar, N Samba; Karanth, K U

    2010-07-01

    Occupancy modeling focuses on inference about the distribution of organisms over space, using temporal or spatial replication to allow inference about the detection process. Inference based on spatial replication strictly requires that replicates be selected randomly and with replacement, but the importance of these design requirements is not well understood. This paper focuses on an increasingly popular sampling design based on spatial replicates that are not selected randomly and that are expected to exhibit Markovian dependence. We develop two new occupancy models for data collected under this sort of design, one based on an underlying Markov model for spatial dependence and the other based on a trap response model with Markovian detections. We then simulated data under the model for Markovian spatial dependence and fit the data to standard occupancy models and to the two new models. Bias of occupancy estimates was substantial for the standard models, smaller for the new trap response model, and negligible for the new spatial process model. We also fit these models to data from a large-scale tiger occupancy survey recently conducted in Karnataka State, southwestern India. In addition to providing evidence of a positive relationship between tiger occupancy and habitat, model selection statistics and estimates strongly supported the use of the model with Markovian spatial dependence. This new model provides another tool for the decomposition of the detection process, which is sometimes needed for proper estimation and which may also permit interesting biological inferences. In addition to designs employing spatial replication, we note the likely existence of temporal Markovian dependence in many designs using temporal replication. The models developed here will be useful either directly, or with minor extensions, for these designs as well. We believe that these new models represent important additions to the suite of modeling tools now available for occupancy estimation in conservation monitoring. More generally, this work represents a contribution to the topic of cluster sampling for situations in which there is a need for specific modeling (e.g., reflecting dependence) for the distribution of the variable(s) of interest among subunits.

  13. Estimation and mapping of wet and dry mercury deposition across northeastern North America

    USGS Publications Warehouse

    Miller, E.K.; Vanarsdale, A.; Keeler, G.J.; Chalmers, A.; Poissant, L.; Kamman, N.C.; Brulotte, R.

    2005-01-01

    Whereas many ecosystem characteristics and processes influence mercury accumulation in higher trophic-level organisms, the mercury flux from the atmosphere to a lake and its watershed is a likely factor in potential risk to biota. Atmospheric deposition clearly affects mercury accumulation in soils and lake sediments. Thus, knowledge of spatial patterns in atmospheric deposition may provide information for assessing the relative risk for ecosystems to exhibit excessive biotic mercury contamination. Atmospheric mercury concentrations in aerosol, vapor, and liquid phases from four observation networks were used to estimate regional surface concentration fields. Statistical models were developed to relate sparsely measured mercury vapor and aerosol concentrations to the more commonly measured mercury concentration in precipitation. High spatial resolution deposition velocities for different phases (precipitation, cloud droplets, aerosols, and reactive gaseous mercury (RGM)) were computed using inferential models. An empirical model was developed to estimate gaseous elemental mercury (GEM) deposition. Spatial patterns of estimated total mercury deposition were complex. Generally, deposition was higher in the southwest and lower in the northeast. Elevation, land cover, and proximity to urban areas modified the general pattern. The estimated net GEM and RGM fluxes were each greater than or equal to wet deposition in many areas. Mercury assimilation by plant foliage may provide a substantial input of methyl-mercury (MeHg) to ecosystems. ?? 2005 Springer Science+Business Media, Inc.

  14. Spatial capture-recapture: a promising method for analyzing data collected using artificial cover objects

    USGS Publications Warehouse

    Sutherland, Chris; Munoz, David; Miller, David A.W.; Grant, Evan H. Campbell

    2016-01-01

    Spatial capture–recapture (SCR) is a relatively recent development in ecological statistics that provides a spatial context for estimating abundance and space use patterns, and improves inference about absolute population density. SCR has been applied to individual encounter data collected noninvasively using methods such as camera traps, hair snares, and scat surveys. Despite the widespread use of capture-based surveys to monitor amphibians and reptiles, there are few applications of SCR in the herpetological literature. We demonstrate the utility of the application of SCR for studies of reptiles and amphibians by analyzing capture–recapture data from Red-Backed Salamanders, Plethodon cinereus, collected using artificial cover boards. Using SCR to analyze spatial encounter histories of marked individuals, we found evidence that density differed little among four sites within the same forest (on average, 1.59 salamanders/m2) and that salamander detection probability peaked in early October (Julian day 278) reflecting expected surface activity patterns of the species. The spatial scale of detectability, a measure of space use, indicates that the home range size for this population of Red-Backed Salamanders in autumn was 16.89 m2. Surveying reptiles and amphibians using artificial cover boards regularly generates spatial encounter history data of known individuals, which can readily be analyzed using SCR methods, providing estimates of absolute density and inference about the spatial scale of habitat use.

  15. Estimating migratory game-bird productivity by integrating age ratio and banding data

    USGS Publications Warehouse

    Zimmerman, G.S.; Link, W.A.; Conroy, M.J.; Sauer, J.R.; Richkus, K.D.; Boomer, G. Scott

    2010-01-01

    Implications: Several national and international management strategies for migratory game birds in North America rely on measures of productivity from harvest survey parts collections, without a justification of the estimator or providing estimates of precision. We derive an estimator of productivity with realistic measures of uncertainty that can be directly incorporated into management plans or ecological studies across large spatial scales.

  16. Replacement cost valuation of Northern Pintail (Anas acuta) subsistence harvest in Arctic and sub-Arctic North America

    USGS Publications Warehouse

    Goldstein, Joshua H.; Thogmartin, Wayne E.; Bagstad, Kenneth J.; Dubovsky, James A.; Mattsson, Brady J.; Semmens, Darius J.; López-Hoffman, Laura; Diffendorfer, James E.

    2014-01-01

    Migratory species provide economically beneficial ecosystem services to people throughout their range, yet often, information is lacking about the magnitude and spatial distribution of these benefits at regional scales. We conducted a case study for Northern Pintails (hereafter pintail) in which we quantified regional and sub-regional economic values of subsistence harvest to indigenous communities in Arctic and sub-Arctic North America. As a first step, we used the replacement cost method to quantify the cost of replacing pintail subsistence harvest with the most similar commercially available protein (chicken). For an estimated annual subsistence harvest of ˜15,000 pintail, our mean estimate of the total replacement cost was ˜$63,000 yr−1 ($2010 USD), with sub-regional values ranging from \\$263 yr−1 to \\$21,930 yr−1. Our results provide an order-of-magnitude, conservative estimate of one component of the regional ecosystem-service values of pintails, providing perspective on how spatially explicit values can inform migratory species conservation.

  17. Estimating Long Term Surface Soil Moisture in the GCIP Area From Satellite Microwave Observations

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Vrije; VandeGriend, Adriaan A.

    2000-01-01

    Soil moisture is an important component of the water and energy balances of the Earth's surface. Furthermore, it has been identified as a parameter of significant potential for improving the accuracy of large-scale land surface-atmosphere interaction models. However, accurate estimates of surface soil moisture are often difficult to make, especially at large spatial scales. Soil moisture is a highly variable land surface parameter, and while point measurements are usually accurate, they are representative only of the immediate site which was sampled. Simple averaging of point values to obtain spatial means often leads to substantial errors. Since remotely sensed observations are already a spatially averaged or areally integrated value, they are ideally suited for measuring land surface parameters, and as such, are a logical input to regional or larger scale land process models. A nine-year database of surface soil moisture is being developed for the Central United States from satellite microwave observations. This region forms much of the GCIP study area, and contains most of the Mississippi, Rio Grande, and Red River drainages. Daytime and nighttime microwave brightness temperatures were observed at a frequency of 6.6 GHz, by the Scanning Multichannel Microwave Radiometer (SMMR), onboard the Nimbus 7 satellite. The life of the SMMR instrument spanned from Nov. 1978 to Aug. 1987. At 6.6 GHz, the instrument provided a spatial resolution of approximately 150 km, and an orbital frequency over any pixel-sized area of about 2 daytime and 2 nighttime passes per week. Ground measurements of surface soil moisture from various locations throughout the study area are used to calibrate the microwave observations. Because ground measurements are usually only single point values, and since the time of satellite coverage does not always coincide with the ground measurements, the soil moisture data were used to calibrate a regional water balance for the top 1, 5, and 10 cm surface layers in order to interpolate daily surface moisture values. Such a climate-based approach is often more appropriate for estimating large-area spatially averaged soil moisture because meteorological data are generally more spatially representative than isolated point measurements of soil moisture. Vegetation radiative transfer characteristics, such as the canopy transmissivity, were estimated from vegetation indices such as the Normalized Difference Vegetation Index (NDVI) and the 37 GHz Microwave Polarization Difference Index (MPDI). Passive microwave remote sensing presents the greatest potential for providing regular spatially representative estimates of surface soil moisture at global scales. Real time estimates should improve weather and climate modelling efforts, while the development of historical data sets will provide necessary information for simulation and validation of long-term climate and global change studies.

  18. Evaluating the influence of spatial resolution of Landsat predictors on the accuracy of biomass models for large-area estimation across the eastern USA

    NASA Astrophysics Data System (ADS)

    Deo, Ram K.; Domke, Grant M.; Russell, Matthew B.; Woodall, Christopher W.; Andersen, Hans-Erik

    2018-05-01

    Aboveground biomass (AGB) estimates for regional-scale forest planning have become cost-effective with the free access to satellite data from sensors such as Landsat and MODIS. However, the accuracy of AGB predictions based on passive optical data depends on spatial resolution and spatial extent of target area as fine resolution (small pixels) data are associated with smaller coverage and longer repeat cycles compared to coarse resolution data. This study evaluated various spatial resolutions of Landsat-derived predictors on the accuracy of regional AGB models at three different sites in the eastern USA: Maine, Pennsylvania-New Jersey, and South Carolina. We combined national forest inventory data with Landsat-derived predictors at spatial resolutions ranging from 30–1000 m to understand the optimal spatial resolution of optical data for large-area (regional) AGB estimation. Ten generic models were developed using the data collected in 2014, 2015 and 2016, and the predictions were evaluated (i) at the county-level against the estimates of the USFS Forest Inventory and Analysis Program which relied on EVALIDator tool and national forest inventory data from the 2009–2013 cycle and (ii) within a large number of strips (~1 km wide) predicted via LiDAR metrics at 30 m spatial resolution. The county-level estimates by the EVALIDator and Landsat models were highly related (R 2 > 0.66), although the R 2 varied significantly across sites and resolution of predictors. The mean and standard deviation of county-level estimates followed increasing and decreasing trends, respectively, with models of coarser resolution. The Landsat-based total AGB estimates were larger than the LiDAR-based total estimates within the strips, however the mean of AGB predictions by LiDAR were mostly within one-standard deviations of the mean predictions obtained from the Landsat-based model at any of the resolutions. We conclude that satellite data at resolutions up to 1000 m provide acceptable accuracy for continental scale analysis of AGB.

  19. N-mixture models for estimating population size from spatially replicated counts

    USGS Publications Warehouse

    Royle, J. Andrew

    2004-01-01

    Spatial replication is a common theme in count surveys of animals. Such surveys often generate sparse count data from which it is difficult to estimate population size while formally accounting for detection probability. In this article, i describe a class of models (n-mixture models) which allow for estimation of population size from such data. The key idea is to view site-specific population sizes, n, as independent random variables distributed according to some mixing distribution (e.g., Poisson). Prior parameters are estimated from the marginal likelihood of the data, having integrated over the prior distribution for n. Carroll and lombard (1985, journal of american statistical association 80, 423-426) proposed a class of estimators based on mixing over a prior distribution for detection probability. Their estimator can be applied in limited settings, but is sensitive to prior parameter values that are fixed a priori. Spatial replication provides additional information regarding the parameters of the prior distribution on n that is exploited by the n-mixture models and which leads to reasonable estimates of abundance from sparse data. A simulation study demonstrates superior operating characteristics (bias, confidence interval coverage) of the n-mixture estimator compared to the caroll and lombard estimator. Both estimators are applied to point count data on six species of birds illustrating the sensitivity to choice of prior on p and substantially different estimates of abundance as a consequence.

  20. Multi-scale assimilation of remotely sensed snow observations for hydrologic estimation

    NASA Astrophysics Data System (ADS)

    Andreadis, K.; Lettenmaier, D.

    2008-12-01

    Data assimilation provides a framework for optimally merging model predictions and remote sensing observations of snow properties (snow cover extent, water equivalent, grain size, melt state), ideally overcoming limitations of both. A synthetic twin experiment is used to evaluate a data assimilation system that would ingest remotely sensed observations from passive microwave and visible wavelength sensors (brightness temperature and snow cover extent derived products, respectively) with the objective of estimating snow water equivalent. Two data assimilation techniques are used, the Ensemble Kalman filter and the Ensemble Multiscale Kalman filter (EnMKF). One of the challenges inherent in such a data assimilation system is the discrepancy in spatial scales between the different types of snow-related observations. The EnMKF represents the sample model error covariance with a tree that relates the system state variables at different locations and scales through a set of parent-child relationships. This provides an attractive framework to efficiently assimilate observations at different spatial scales. This study provides a first assessment of the feasibility of a system that would assimilate observations from multiple sensors (MODIS snow cover and AMSR-E brightness temperatures) and at different spatial scales for snow water equivalent estimation. The relative value of the different types of observations is examined. Additionally, the error characteristics of both model and observations are discussed.

  1. Improved estimation of hydraulic conductivity by combining stochastically simulated hydrofacies with geophysical data.

    PubMed

    Zhu, Lin; Gong, Huili; Chen, Yun; Li, Xiaojuan; Chang, Xiang; Cui, Yijiao

    2016-03-01

    Hydraulic conductivity is a major parameter affecting the output accuracy of groundwater flow and transport models. The most commonly used semi-empirical formula for estimating conductivity is Kozeny-Carman equation. However, this method alone does not work well with heterogeneous strata. Two important parameters, grain size and porosity, often show spatial variations at different scales. This study proposes a method for estimating conductivity distributions by combining a stochastic hydrofacies model with geophysical methods. The Markov chain model with transition probability matrix was adopted to re-construct structures of hydrofacies for deriving spatial deposit information. The geophysical and hydro-chemical data were used to estimate the porosity distribution through the Archie's law. Results show that the stochastic simulated hydrofacies model reflects the sedimentary features with an average model accuracy of 78% in comparison with borehole log data in the Chaobai alluvial fan. The estimated conductivity is reasonable and of the same order of magnitude of the outcomes of the pumping tests. The conductivity distribution is consistent with the sedimentary distributions. This study provides more reliable spatial distributions of the hydraulic parameters for further numerical modeling.

  2. Digital Hydrologic Networks Supporting Applications Related to Spatially Referenced Regression Modeling

    USGS Publications Warehouse

    Brakebill, J.W.; Wolock, D.M.; Terziotti, S.E.

    2011-01-01

    Digital hydrologic networks depicting surface-water pathways and their associated drainage catchments provide a key component to hydrologic analysis and modeling. Collectively, they form common spatial units that can be used to frame the descriptions of aquatic and watershed processes. In addition, they provide the ability to simulate and route the movement of water and associated constituents throughout the landscape. Digital hydrologic networks have evolved from derivatives of mapping products to detailed, interconnected, spatially referenced networks of water pathways, drainage areas, and stream and watershed characteristics. These properties are important because they enhance the ability to spatially evaluate factors that affect the sources and transport of water-quality constituents at various scales. SPAtially Referenced Regressions On Watershed attributes (SPARROW), a process-based/statistical model, relies on a digital hydrologic network in order to establish relations between quantities of monitored contaminant flux, contaminant sources, and the associated physical characteristics affecting contaminant transport. Digital hydrologic networks modified from the River Reach File (RF1) and National Hydrography Dataset (NHD) geospatial datasets provided frameworks for SPARROW in six regions of the conterminous United States. In addition, characteristics of the modified RF1 were used to update estimates of mean-annual streamflow. This produced more current flow estimates for use in SPARROW modeling. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  3. Spatial and temporal study of nitrate concentration in groundwater by means of coregionalization

    USGS Publications Warehouse

    D'Agostino, V.; Greene, E.A.; Passarella, G.; Vurro, M.

    1998-01-01

    Spatial and temporal behavior of hydrochemical parameters in groundwater can be studied using tools provided by geostatistics. The cross-variogram can be used to measure the spatial increments between observations at two given times as a function of distance (spatial structure). Taking into account the existence of such a spatial structure, two different data sets (sampled at two different times), representing concentrations of the same hydrochemical parameter, can be analyzed by cokriging in order to reduce the uncertainty of the estimation. In particular, if one of the two data sets is a subset of the other (that is, an undersampled set), cokriging allows us to study the spatial distribution of the hydrochemical parameter at that time, while also considering the statistical characteristics of the full data set established at a different time. This paper presents an application of cokriging by using temporal subsets to study the spatial distribution of nitrate concentration in the aquifer of the Lucca Plain, central Italy. Three data sets of nitrate concentration in groundwater were collected during three different periods in 1991. The first set was from 47 wells, but the second and the third are undersampled and represent 28 and 27 wells, respectively. Comparing the result of cokriging with ordinary kriging showed an improvement of the uncertainty in terms of reducing the estimation variance. The application of cokriging to the undersampled data sets reduced the uncertainty in estimating nitrate concentration and at the same time decreased the cost of the field sampling and laboratory analysis.Spatial and temporal behavior of hydrochemical parameters in groundwater can be studied using tools provided by geostatistics. The cross-variogram can be used to measure the spatial increments between observations at two given times as a function of distance (spatial structure). Taking into account the existence of such a spatial structure, two different data sets (sampled at two different times), representing concentrations of the same hydrochemical parameter, can be analyzed by cokriging in order to reduce the uncertainty of the estimation. In particular, if one of the two data sets is a subset of the other (that is, an undersampled set), cokriging allows us to study the spatial distribution of the hydrochemical parameter at that time, while also considering the statistical characteristics of the full data set established at a different time. This paper presents an application of cokriging by using temporal subsets to study the spatial distribution of nitrate concentration in the aquifer of the Lucca Plain, central Italy. Three data sets of nitrate concentration in groundwater were collected during three different periods in 1991. The first set was from 47 wells, but the second and the third are undersampled and represent 28 and 27 wells, respectively. Comparing the result of cokriging with ordinary kriging showed an improvement of the uncertainty in terms of reducing the estimation variance. The application of cokriging to the undersampled data sets reduced the uncertainty in estimating nitrate concentration and at the same time decreased the cost of the field sampling and laboratory analysis.

  4. Evaluating spatially explicit burn probabilities for strategic fire management planning

    Treesearch

    C. Miller; M.-A. Parisien; A. A. Ager; M. A. Finney

    2008-01-01

    Spatially explicit information on the probability of burning is necessary for virtually all strategic fire and fuels management planning activities, including conducting wildland fire risk assessments, optimizing fuel treatments, and prevention planning. Predictive models providing a reliable estimate of the annual likelihood of fire at each point on the landscape have...

  5. Integrating resource selection into spatial capture-recapture models for large carnivores

    Treesearch

    K. M. Proffitt; J. F. Goldberg; M. Hebblewhite; R. Russell; B. S. Jimenez; H. S. Robinson; Kristine Pilgrim; Michael Schwartz

    2015-01-01

    Wildlife managers need reliable methods to estimate large carnivore densities and population trends; yet large carnivores are elusive, difficult to detect, and occur at low densities making traditional approaches intractable. Recent advances in spatial capture-recapture (SCR) models have provided new approaches for monitoring trends in wildlife abundance and...

  6. Spatial MEG laterality maps for language: clinical applications in epilepsy.

    PubMed

    D'Arcy, Ryan C N; Bardouille, Timothy; Newman, Aaron J; McWhinney, Sean R; Debay, Drew; Sadler, R Mark; Clarke, David B; Esser, Michael J

    2013-08-01

    Functional imaging is increasingly being used to provide a noninvasive alternative to intracarotid sodium amobarbitol testing (i.e., the Wada test). Although magnetoencephalography (MEG) has shown significant potential in this regard, the resultant output is often reduced to a simplified estimate of laterality. Such estimates belie the richness of functional imaging data and consequently limit the potential value. We present a novel approach that utilizes MEG data to compute "complex laterality vectors" and consequently "laterality maps" for a given function. Language function was examined in healthy controls and in people with epilepsy. When compared with traditional laterality index (LI) approaches, the resultant maps provided critical information about the magnitude and spatial characteristics of lateralized function. Specifically, it was possible to more clearly define low LI scores resulting from strong bilateral activation, high LI scores resulting from weak unilateral activation, and most importantly, the spatial distribution of lateralized activation. We argue that the laterality concept is better presented with the inherent spatial sensitivity of activation maps, rather than being collapsed into a one-dimensional index. Copyright © 2012 Wiley Periodicals, Inc.

  7. Estimating the permanent loss of groundwater storage in the southern San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Smith, R. G.; Knight, R.; Chen, J.; Reeves, J. A.; Zebker, H. A.; Farr, T.; Liu, Z.

    2017-03-01

    In the San Joaquin Valley, California, recent droughts starting in 2007 have increased the pumping of groundwater, leading to widespread subsidence. In the southern portion of the San Joaquin Valley, vertical subsidence as high as 85 cm has been observed between June 2007 and December 2010 using Interferometric Synthetic Aperture Radar (InSAR). This study seeks to map regions where inelastic (not recoverable) deformation occurred during the study period, resulting in permanent compaction and loss of groundwater storage. We estimated the amount of permanent compaction by incorporating multiple data sets: the total deformation derived from InSAR, estimated skeletal-specific storage and hydraulic parameters, geologic information, and measured water levels during our study period. We used two approaches, one that we consider to provide an estimate of the lowest possible amount of inelastic deformation, and one that provides a more reasonable estimate. These two approaches resulted in a spatial distribution of values for the percentage of the total deformation that was inelastic, with the former estimating a spatially averaged value of 54%, and the latter a spatially averaged value of 98%. The former corresponds to the permanent loss of 4.14 × 108 m3 of groundwater storage, or roughly 5% of the volume of groundwater used over the study time period; the latter corresponds to the loss of 7.48 × 108 m3 of groundwater storage, or roughly 9% of the volume of groundwater used. This study demonstrates that a data-driven approach can be used effectively to estimate the permanent loss of groundwater storage.

  8. Estimating floodplain sedimentation in the Laguna de Santa Rosa, Sonoma County, CA

    USGS Publications Warehouse

    Curtis, Jennifer A.; Flint, Lorraine E.; Hupp, Cliff R.

    2013-01-01

    We present a conceptual and analytical framework for predicting the spatial distribution of floodplain sedimentation for the Laguna de Santa Rosa, Sonoma County, CA. We assess the role of the floodplain as a sink for fine-grained sediment and investigate concerns regarding the potential loss of flood storage capacity due to historic sedimentation. We characterized the spatial distribution of sedimentation during a post-flood survey and developed a spatially distributed sediment deposition potential map that highlights zones of floodplain sedimentation. The sediment deposition potential map, built using raster files that describe the spatial distribution of relevant hydrologic and landscape variables, was calibrated using 2 years of measured overbank sedimentation data and verified using longer-term rates determined using dendrochronology. The calibrated floodplain deposition potential relation was used to estimate an average annual floodplain sedimentation rate (3.6 mm/year) for the ~11 km2 floodplain. This study documents the development of a conceptual model of overbank sedimentation, describes a methodology to estimate the potential for various parts of a floodplain complex to accumulate sediment over time, and provides estimates of short and long-term overbank sedimentation rates that can be used for ecosystem management and prioritization of restoration activities.

  9. Local Spatial Obesity Analysis and Estimation Using Online Social Network Sensors.

    PubMed

    Sun, Qindong; Wang, Nan; Li, Shancang; Zhou, Hongyi

    2018-03-15

    Recently, the online social networks (OSNs) have received considerable attentions as a revolutionary platform to offer users massive social interaction among users that enables users to be more involved in their own healthcare. The OSNs have also promoted increasing interests in the generation of analytical, data models in health informatics. This paper aims at developing an obesity identification, analysis, and estimation model, in which each individual user is regarded as an online social network 'sensor' that can provide valuable health information. The OSN-based obesity analytic model requires each sensor node in an OSN to provide associated features, including dietary habit, physical activity, integral/incidental emotions, and self-consciousness. Based on the detailed measurements on the correlation of obesity and proposed features, the OSN obesity analytic model is able to estimate the obesity rate in certain urban areas and the experimental results demonstrate a high success estimation rate. The measurements and estimation experimental findings created by the proposed obesity analytic model show that the online social networks could be used in analyzing the local spatial obesity problems effectively. Copyright © 2018. Published by Elsevier Inc.

  10. Estimating 1970-99 average annual groundwater recharge in Wisconsin using streamflow data

    USGS Publications Warehouse

    Gebert, Warren A.; Walker, John F.; Kennedy, James L.

    2011-01-01

    Average annual recharge in Wisconsin for the period 1970-99 was estimated using streamflow data from U.S. Geological Survey continuous-record streamflow-gaging stations and partial-record sites. Partial-record sites have discharge measurements collected during low-flow conditions. The average annual base flow of a stream divided by the drainage area is a good approximation of the recharge rate; therefore, once average annual base flow is determined recharge can be calculated. Estimates of recharge for nearly 72 percent of the surface area of the State are provided. The results illustrate substantial spatial variability of recharge across the State, ranging from less than 1 inch to more than 12 inches per year. The average basin size for partial-record sites (50 square miles) was less than the average basin size for the gaging stations (305 square miles). Including results for smaller basins reveals a spatial variability that otherwise would be smoothed out using only estimates for larger basins. An error analysis indicates that the techniques used provide base flow estimates with standard errors ranging from 5.4 to 14 percent.

  11. Estimating recharge rates with analytic element models and parameter estimation

    USGS Publications Warehouse

    Dripps, W.R.; Hunt, R.J.; Anderson, M.P.

    2006-01-01

    Quantifying the spatial and temporal distribution of recharge is usually a prerequisite for effective ground water flow modeling. In this study, an analytic element (AE) code (GFLOW) was used with a nonlinear parameter estimation code (UCODE) to quantify the spatial and temporal distribution of recharge using measured base flows as calibration targets. The ease and flexibility of AE model construction and evaluation make this approach well suited for recharge estimation. An AE flow model of an undeveloped watershed in northern Wisconsin was optimized to match median annual base flows at four stream gages for 1996 to 2000 to demonstrate the approach. Initial optimizations that assumed a constant distributed recharge rate provided good matches (within 5%) to most of the annual base flow estimates, but discrepancies of >12% at certain gages suggested that a single value of recharge for the entire watershed is inappropriate. Subsequent optimizations that allowed for spatially distributed recharge zones based on the distribution of vegetation types improved the fit and confirmed that vegetation can influence spatial recharge variability in this watershed. Temporally, the annual recharge values varied >2.5-fold between 1996 and 2000 during which there was an observed 1.7-fold difference in annual precipitation, underscoring the influence of nonclimatic factors on interannual recharge variability for regional flow modeling. The final recharge values compared favorably with more labor-intensive field measurements of recharge and results from studies, supporting the utility of using linked AE-parameter estimation codes for recharge estimation. Copyright ?? 2005 The Author(s).

  12. Soil organic carbon stocks in Alaska estimated with spatial and pedon data

    USGS Publications Warehouse

    Bliss, Norman B.; Maursetter, J.

    2010-01-01

    Temperatures in high-latitude ecosystems are increasing faster than the average rate of global warming, which may lead to a positive feedback for climate change by increasing the respiration rates of soil organic C. If a positive feedback is confirmed, soil C will represent a source of greenhouse gases that is not currently considered in international protocols to regulate C emissions. We present new estimates of the stocks of soil organic C in Alaska, calculated by linking spatial and field data developed by the USDA NRCS. The spatial data are from the State Soil Geographic database (STATSGO), and the field and laboratory data are from the National Soil Characterization Database, also known as the pedon database. The new estimates range from 32 to 53 Pg of soil organic C for Alaska, formed by linking the spatial and field data using the attributes of Soil Taxonomy. For modelers, we recommend an estimation method based on taxonomic subgroups with interpolation for missing areas, which yields an estimate of 48 Pg. This is a substantial increase over a magnitude of 13 Pg estimated from only the STATSGO data as originally distributed in 1994, but the increase reflects different estimation methods and is not a measure of the change in C on the landscape. Pedon samples were collected between 1952 and 2002, so the results do not represent a single point in time. The linked databases provide an improved basis for modeling the impacts of climate change on net ecosystem exchange.

  13. General constraints on sampling wildlife on FIA plots

    USGS Publications Warehouse

    Bailey, L.L.; Sauer, J.R.; Nichols, J.D.; Geissler, P.H.; McRoberts, Ronald E.; Reams, Gregory A.; Van Deusen, Paul C.; McWilliams, William H.; Cieszewski, Chris J.

    2005-01-01

    This paper reviews the constraints to sampling wildlife populations at FIA points. Wildlife sampling programs must have well-defined goals and provide information adequate to meet those goals. Investigators should choose a State variable based on information needs and the spatial sampling scale. We discuss estimation-based methods for three State variables: species richness, abundance, and patch occupancy. All methods incorporate two essential sources of variation: detectability estimation and spatial variation. FIA sampling imposes specific space and time criteria that may need to be adjusted to meet local wildlife objectives.

  14. A computational statistics approach for estimating the spatial range of morphogen gradients

    PubMed Central

    Kanodia, Jitendra S.; Kim, Yoosik; Tomer, Raju; Khan, Zia; Chung, Kwanghun; Storey, John D.; Lu, Hang; Keller, Philipp J.; Shvartsman, Stanislav Y.

    2011-01-01

    A crucial issue in studies of morphogen gradients relates to their range: the distance over which they can act as direct regulators of cell signaling, gene expression and cell differentiation. To address this, we present a straightforward statistical framework that can be used in multiple developmental systems. We illustrate the developed approach by providing a point estimate and confidence interval for the spatial range of the graded distribution of nuclear Dorsal, a transcription factor that controls the dorsoventral pattern of the Drosophila embryo. PMID:22007136

  15. Spatial capture-recapture models for jointly estimating population density and landscape connectivity

    USGS Publications Warehouse

    Royle, J. Andrew; Chandler, Richard B.; Gazenski, Kimberly D.; Graves, Tabitha A.

    2013-01-01

    Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture–recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on “ecological distance,” i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture–recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture–recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.

  16. Spatial capture--recapture models for jointly estimating population density and landscape connectivity.

    PubMed

    Royle, J Andrew; Chandler, Richard B; Gazenski, Kimberly D; Graves, Tabitha A

    2013-02-01

    Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture--recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on "ecological distance," i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture-recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture-recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.

  17. [Estimation of desert vegetation coverage based on multi-source remote sensing data].

    PubMed

    Wan, Hong-Mei; Li, Xia; Dong, Dao-Rui

    2012-12-01

    Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study areaAbstract: Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study area and based on the ground investigation and the multi-source remote sensing data of different resolutions, the estimation models for desert vegetation coverage were built, with the precisions of different estimation methods and models compared. The results showed that with the increasing spatial resolution of remote sensing data, the precisions of the estimation models increased. The estimation precision of the models based on the high, middle-high, and middle-low resolution remote sensing data was 89.5%, 87.0%, and 84.56%, respectively, and the precisions of the remote sensing models were higher than that of vegetation index method. This study revealed the change patterns of the estimation precision of desert vegetation coverage based on different spatial resolution remote sensing data, and realized the quantitative conversion of the parameters and scales among the high, middle, and low spatial resolution remote sensing data of desert vegetation coverage, which would provide direct evidence for establishing and implementing comprehensive remote sensing monitoring scheme for the ecological restoration in the study area.

  18. Factors influencing the spatial extent of mobile source air pollution impacts: a meta-analysis

    PubMed Central

    Zhou, Ying; Levy, Jonathan I

    2007-01-01

    Background There has been growing interest among exposure assessors, epidemiologists, and policymakers in the concept of "hot spots", or more broadly, the "spatial extent" of impacts from traffic-related air pollutants. This review attempts to quantitatively synthesize findings about the spatial extent under various circumstances. Methods We include both the peer-reviewed literature and government reports, and focus on four significant air pollutants: carbon monoxide, benzene, nitrogen oxides, and particulate matter (including both ultrafine particle counts and fine particle mass). From the identified studies, we extracted information about significant factors that would be hypothesized to influence the spatial extent within the study, such as the study type (e.g., monitoring, air dispersion modeling, GIS-based epidemiological studies), focus on concentrations or health risks, pollutant under study, background concentration, emission rate, and meteorological factors, as well as the study's implicit or explicit definition of spatial extent. We supplement this meta-analysis with results from some illustrative atmospheric dispersion modeling. Results We found that pollutant characteristics and background concentrations best explained variability in previously published spatial extent estimates, with a modifying influence of local meteorology, once some extreme values based on health risk estimates were removed from the analysis. As hypothesized, inert pollutants with high background concentrations had the largest spatial extent (often demonstrating no significant gradient), and pollutants formed in near-source chemical reactions (e.g., nitrogen dioxide) had a larger spatial extent than pollutants depleted in near-source chemical reactions or removed through coagulation processes (e.g., nitrogen oxide and ultrafine particles). Our illustrative dispersion model illustrated the complex interplay of spatial extent definitions, emission rates, background concentrations, and meteorological conditions on spatial extent estimates even for non-reactive pollutants. Our findings indicate that, provided that a health risk threshold is not imposed, the spatial extent of impact for mobile sources reviewed in this study is on the order of 100–400 m for elemental carbon or particulate matter mass concentration (excluding background concentration), 200–500 m for nitrogen dioxide and 100–300 m for ultrafine particle counts. Conclusion First, to allow for meaningful comparisons across studies, it is important to state the definition of spatial extent explicitly, including the comparison method, threshold values, and whether background concentration is included. Second, the observation that the spatial extent is generally within a few hundred meters for highway or city roads demonstrates the need for high resolution modeling near the source. Finally, our findings emphasize that policymakers should be able to develop reasonable estimates of the "zone of influence" of mobile sources, provided that they can clarify the pollutant of concern, the general site characteristics, and the underlying definition of spatial extent that they wish to utilize. PMID:17519039

  19. Observations of Ocean Primary Productivity Using MODIS

    NASA Technical Reports Server (NTRS)

    Esaias, Wayne E.; Abbott, Mark R.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Measuring the magnitude and variability of oceanic net primary productivity (NPP) represents a key advancement toward our understanding of the dynamics of marine ecosystems and the role of the ocean in the global carbon cycle. MODIS observations make two new contributions in addition to continuing the bio-optical time series begun with Orbview-2's SeaWiFS sensor. First, MODIS provides weekly estimates of global ocean net primary productivity on weekly and annual time periods, and annual empirical estimates of carbon export production. Second, MODIS provides additional insight into the spatial and temporal variations in photosynthetic efficiency through the direct measurements of solar-stimulated chlorophyll fluorescence. The two different weekly productivity indexes (first developed by Behrenfeld & Falkowski and by Yoder, Ryan and Howard) are used to derive daily productivity as a function of chlorophyll biomass, incident daily surface irradiance, temperature, euphotic depth, and mixed layer depth. Comparisons between these two estimates using both SeaWiFS and MODIS data show significant model differences in spatial distribution after allowance for the different integration depths. Both estimates are strongly dependence on the accuracy of the chlorophyll determination. In addition, an empirical approach is taken on annual scales to estimate global NPP and export production. Estimates of solar stimulated fluorescence efficiency from chlorophyll have been shown to be inversely related to photosynthetic efficiency by Abbott and co-workers. MODIS provides the first global estimates of oceanic chlorophyll fluorescence, providing an important proof of concept. MODIS observations are revealing spatial patterns of fluorescence efficiency which show expected variations with phytoplankton photo-physiological parameters as measured during in-situ surveys. This has opened the way for research into utilizing this information to improve our understanding of oceanic NPP variability. Deriving the ocean bio-optical properties places severe demands on instrument performance (especially band to band precision) and atmospheric correction. Improvements in MODIS instrument characterization and calibration over the first 16 mission months have greatly improved the accuracy of the chlorophyll input fields and FLH, and therefore the estimates of NPP and fluorescence efficiency. Annual estimates now show the oceanic NPP accounts for 40-50% of the global total NPP, with significant interannual variations related to large scale ocean processes. Spatial variations in ocean NPP, and exported production, have significant effects on exchange of CO2 between the ocean and atmosphere. Further work is underway to improve both the primary productivity model functions, and to refine our understanding of the relationships between fluorescence efficiency and NPP estimates. We expect that the MODIS instruments will prove extremely useful in assessing the time dependencies of oceanic carbon uptake and effects of iron enrichment, within the global carbon cycle.

  20. Spatio-temporal distribution of soil-transmitted helminth infections in Brazil.

    PubMed

    Chammartin, Frédérique; Guimarães, Luiz H; Scholte, Ronaldo Gc; Bavia, Mara E; Utzinger, Jürg; Vounatsou, Penelope

    2014-09-18

    In Brazil, preventive chemotherapy targeting soil-transmitted helminthiasis is being scaled-up. Hence, spatially explicit estimates of infection risks providing information about the current situation are needed to guide interventions. Available high-resolution national model-based estimates either rely on analyses of data restricted to a given period of time, or on historical data collected over a longer period. While efforts have been made to take into account the spatial structure of the data in the modelling approach, little emphasis has been placed on the temporal dimension. We extracted georeferenced survey data on the prevalence of infection with soil-transmitted helminths (i.e. Ascaris lumbricoides, hookworm and Trichuris trichiura) in Brazil from the Global Neglected Tropical Diseases (GNTD) database. Selection of the most important predictors of infection risk was carried out using a Bayesian geostatistical approach and temporal models that address non-linearity and correlation of the explanatory variables. The spatial process was estimated through a predictive process approximation. Spatio-temporal models were built on the selected predictors with integrated nested Laplace approximation using stochastic partial differential equations. Our models revealed that, over the past 20 years, the risk of soil-transmitted helminth infection has decreased in Brazil, mainly because of the reduction of A. lumbricoides and hookworm infections. From 2010 onwards, we estimate that the infection prevalences with A. lumbricoides, hookworm and T. trichiura are 3.6%, 1.7% and 1.4%, respectively. We also provide a map highlighting municipalities in need of preventive chemotherapy, based on a predicted soil-transmitted helminth infection risk in excess of 20%. The need for treatments in the school-aged population at the municipality level was estimated at 1.8 million doses of anthelminthic tablets per year. The analysis of the spatio-temporal aspect of the risk of infection with soil-transmitted helminths contributes to a better understanding of the evolution of risk over time. Risk estimates provide the soil-transmitted helminthiasis control programme in Brazil with useful benchmark information for prioritising and improving spatial and temporal targeting of interventions.

  1. Estimating abundance

    USGS Publications Warehouse

    Sutherland, Chris; Royle, Andy

    2016-01-01

    This chapter provides a non-technical overview of ‘closed population capture–recapture’ models, a class of well-established models that are widely applied in ecology, such as removal sampling, covariate models, and distance sampling. These methods are regularly adopted for studies of reptiles, in order to estimate abundance from counts of marked individuals while accounting for imperfect detection. Thus, the chapter describes some classic closed population models for estimating abundance, with considerations for some recent extensions that provide a spatial context for the estimation of abundance, and therefore density. Finally, the chapter suggests some software for use in data analysis, such as the Windows-based program MARK, and provides an example of estimating abundance and density of reptiles using an artificial cover object survey of Slow Worms (Anguis fragilis).

  2. Estimating abundance: Chapter 27

    USGS Publications Warehouse

    Royle, J. Andrew

    2016-01-01

    This chapter provides a non-technical overview of ‘closed population capture–recapture’ models, a class of well-established models that are widely applied in ecology, such as removal sampling, covariate models, and distance sampling. These methods are regularly adopted for studies of reptiles, in order to estimate abundance from counts of marked individuals while accounting for imperfect detection. Thus, the chapter describes some classic closed population models for estimating abundance, with considerations for some recent extensions that provide a spatial context for the estimation of abundance, and therefore density. Finally, the chapter suggests some software for use in data analysis, such as the Windows-based program MARK, and provides an example of estimating abundance and density of reptiles using an artificial cover object survey of Slow Worms (Anguis fragilis).

  3. GIS-based spatial regression and prediction of water quality in river networks: A case study in Iowa

    USGS Publications Warehouse

    Yang, X.; Jin, W.

    2010-01-01

    Nonpoint source pollution is the leading cause of the U.S.'s water quality problems. One important component of nonpoint source pollution control is an understanding of what and how watershed-scale conditions influence ambient water quality. This paper investigated the use of spatial regression to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration in the Cedar River Watershed, Iowa. An Arc Hydro geodatabase was constructed to organize various datasets on the watershed. Spatial regression models were developed to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration and predict NO3NO2-N concentration at unmonitored locations. Unlike the traditional ordinary least square (OLS) method, the spatial regression method incorporates the potential spatial correlation among the observations in its coefficient estimation. Study results show that NO3NO2-N observations in the Cedar River Watershed are spatially correlated, and by ignoring the spatial correlation, the OLS method tends to over-estimate the impacts of watershed characteristics on stream NO3NO2-N concentration. In conjunction with kriging, the spatial regression method not only makes better stream NO3NO2-N concentration predictions than the OLS method, but also gives estimates of the uncertainty of the predictions, which provides useful information for optimizing the design of stream monitoring network. It is a promising tool for better managing and controlling nonpoint source pollution. ?? 2010 Elsevier Ltd.

  4. Spatially Detailed Porosity Prediction From Airborne Electromagnetics and Sparse Borehole Fluid Sampling

    NASA Astrophysics Data System (ADS)

    Macnae, J.; Ley-Cooper, Y.

    2009-05-01

    Sub-surface porosity is of importance in estimating fluid contant and salt-load parameters for hydrological modelling. While sparse boreholes may adequately sample the depth to a sub-horizontal water-table and usually also adequately sample ground-water salinity, they do not provide adequate sampling of the spatial variations in porosity or hydraulic permeability caused by spatial variations in sedimentary and other geological processes.. We show in this presentation that spatially detailed porosity can be estimated by applying Archie's law to conductivity estimates from airborne electromagnetic surveys with interpolated ground-water conductivity values. The prediction was tested on data from the Chowilla flood plain in the Murray-Darling Basin of South Australia. A frequency domain, helicopter-borne electromagnetic system collected data at 6 frequencies and 3 to 4 m spacings on lines spaced 100 m apart. This data was transformed into conductivity-depth sections, from which a 3D bulk-conductivity map could be created with about 30 m spatial resolution and 2 to 5 m vertical depth resolution. For that portion of the volume below the interpolated water-table, we predicted porosity in each cell using Archie's law. Generally, predicted porosities were in the 30 to 50 % range, consistent with expectations for the partially consolidated sediments in the floodplain. Porosities were directly measured on core from eight boreholes in the area, and compared quite well with the predictions. The predicted porosity map was spatially consistent, and when combined with measured salinities in the ground water, was able to provide a detailed 3D map of salt-loads in the saturated zone, and as such contribute to a hazard assessment of the saline threat to the river.

  5. Characterizing the Diurnal Cycle of Land Surface Temperature and Evapotranspiration at High Spatial Resolution Using Thermal Observations from sUAS.

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Drewry, D.; Johnson, W. R.

    2017-12-01

    The surface temperature of plant canopies is an important indicator of the stomatal regulation of plant water use and the associated water flux from plants to atmosphere (evapotranspiration (ET)). Remotely sensed thermal observations using compact, low-cost, lightweight sensors from small unmanned aerial systems (sUAS) have the potential to provide surface temperature (ST) and ET estimates at unprecedented spatial and temporal resolutions, allowing us to characterize the intra-field diurnal variations in canopy ST and ET for a variety of vegetation systems. However, major challenges exist for obtaining accurate surface temperature estimates from low-cost uncooled microbolometer-type sensors. Here we describe the development of calibration methods using thermal chamber experiments, taking into account the ambient optics and sensor temperatures, and applying simple models of spatial non-uniformity correction to the sensor focal-plane-array. We present a framework that can be used to derive accurate surface temperatures using radiometric observations from low-cost sensors, and demonstrate this framework using a sUAS-mounted sensor across a diverse set of calibration and vegetation targets. Further, we demonstrate the use of the Surface Temperature Initiated Closure (STIC) model for computing spatially explicit, high spatial resolution ET estimates across several well-monitored agricultural systems, as driven by sUAS acquired surface temperatures. STIC provides a physically-based surface energy balance framework for the simultaneous retrieval of the surface and atmospheric vapor conductances and surface energy fluxes, by physically integrating radiometric surface temperature information into the Penman-Monteith equation. Results of our analysis over agricultural systems in Ames, IA and Davis, CA demonstrate the power of this approach for quantifying the intra-field spatial variability in the diurnal cycle of plant water use at sub-meter resolutions.

  6. GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA

    NASA Astrophysics Data System (ADS)

    Longuevergne, Laurent; Scanlon, Bridget R.; Wilson, Clark R.

    2010-11-01

    The Gravity Recovery and Climate Experiment (GRACE) satellites provide observations of water storage variation at regional scales. However, when focusing on a region of interest, limited spatial resolution and noise contamination can cause estimation bias and spatial leakage, problems that are exacerbated as the region of interest approaches the GRACE resolution limit of a few hundred km. Reliable estimates of water storage variations in small basins require compromises between competing needs for noise suppression and spatial resolution. The objective of this study was to quantitatively investigate processing methods and their impacts on bias, leakage, GRACE noise reduction, and estimated total error, allowing solution of the trade-offs. Among the methods tested is a recently developed concentration algorithm called spatiospectral localization, which optimizes the basin shape description, taking into account limited spatial resolution. This method is particularly suited to retrieval of basin-scale water storage variations and is effective for small basins. To increase confidence in derived methods, water storage variations were calculated for both CSR (Center for Space Research) and GRGS (Groupe de Recherche de Géodésie Spatiale) GRACE products, which employ different processing strategies. The processing techniques were tested on the intensively monitored High Plains Aquifer (450,000 km2 area), where application of the appropriate optimal processing method allowed retrieval of water storage variations over a portion of the aquifer as small as ˜200,000 km2.

  7. Evaluating single-pass catch as a tool for identifying spatial pattern in fish distribution

    USGS Publications Warehouse

    Bateman, Douglas S.; Gresswell, Robert E.; Torgersen, Christian E.

    2005-01-01

    We evaluate the efficacy of single-pass electrofishing without blocknets as a tool for collecting spatially continuous fish distribution data in headwater streams. We compare spatial patterns in abundance, sampling effort, and length-frequency distributions from single-pass sampling of coastal cutthroat trout (Oncorhynchus clarki clarki) to data obtained from a more precise multiple-pass removal electrofishing method in two mid-sized (500–1000 ha) forested watersheds in western Oregon. Abundance estimates from single- and multiple-pass removal electrofishing were positively correlated in both watersheds, r = 0.99 and 0.86. There were no significant trends in capture probabilities at the watershed scale (P > 0.05). Moreover, among-sample variation in fish abundance was higher than within-sample error in both streams indicating that increased precision of unit-scale abundance estimates would provide less information on patterns of abundance than increasing the fraction of habitat units sampled. In the two watersheds, respectively, single-pass electrofishing captured 78 and 74% of the estimated population of cutthroat trout with 7 and 10% of the effort. At the scale of intermediate-sized watersheds, single-pass electrofishing exhibited a sufficient level of precision to be effective in detecting spatial patterns of cutthroat trout abundance and may be a useful tool for providing the context for investigating fish-habitat relationships at multiple scales.

  8. KERNELHR: A program for estimating animal home ranges

    USGS Publications Warehouse

    Seaman, D.E.; Griffith, B.; Powell, R.A.

    1998-01-01

    Kernel methods are state of the art for estimating animal home-range area and utilization distribution (UD). The KERNELHR program was developed to provide researchers and managers a tool to implement this extremely flexible set of methods with many variants. KERNELHR runs interactively or from the command line on any personal computer (PC) running DOS. KERNELHR provides output of fixed and adaptive kernel home-range estimates, as well as density values in a format suitable for in-depth statistical and spatial analyses. An additional package of programs creates contour files for plotting in geographic information systems (GIS) and estimates core areas of ranges.

  9. ACCURACY OF THE 1992 NATIONAL LAND COVER DATASET AREA ESTIMATES: AN ANALYSIS AT MULTIPLE SPATIAL EXTENTS

    EPA Science Inventory

    Abstract for poster presentation:

    Site-specific accuracy assessments evaluate fine-scale accuracy of land-use/land-cover(LULC) datasets but provide little insight into accuracy of area estimates of LULC

    classes derived from sampling units of varying size. Additiona...

  10. Estimating crop biophysical properties from remote sensing data by inverting linked radiative transfer and ecophysiological models

    USDA-ARS?s Scientific Manuscript database

    Remote sensing technology can rapidly provide spatial information on crop growth status, which ideally could be used to invert radiative transfer models or ecophysiological models for estimating a variety of crop biophysical properties. However, the outcome of the model inversion procedure will be ...

  11. The assessment of mangrove biomass and carbon in West Africa: a spatially explicit analytical framework

    Treesearch

    Wenwu Tang; Wenpeng Feng; Meijuan Jia; Jiyang Shi; Huifang Zuo; Carl C. Trettin

    2015-01-01

    Mangrove forests are highly productive and have large carbon sinks while also providing numerous goods and ecosystem services. However, effective management and conservation of the mangrove forests are often dependent on spatially explicit assessments of the resource. Given the remote and highly dispersed nature of mangroves, estimation of biomass and carbon...

  12. Near surface water content estimation using GPR data: investigations within California vineyards

    NASA Astrophysics Data System (ADS)

    Hubbard, S.; Grote, K.; Lunt, I.; Rubin, Y.

    2003-04-01

    Detailed estimates of water content are necessary for variety of hydrogeological investigations. In viticulture applications, this information is particularly useful for assisting the design of both vineyard layout and efficient irrigation/agrochemical application. However, it is difficult to obtain sufficient information about the spatial variation of water content within the root zone using conventional point or wellbore measurements. We have investigated the applicability of ground penetrating radar (GPR) methods to estimate near surface water content within two California vineyard study sites: the Robert Mondavi Vineyard in Napa County and the Dehlinger Vineyard within Sonoma County. Our research at the winery study sites involves assessing the feasibility of obtaining accurate, non-invasive and dense estimates of water content and the changes in water content over space and time using both groundwave and reflected GPR events. We will present the spatial and temporal estimates of water content obtained from the GPR data at both sites. We will compare our estimates with conventional measurements of water content (obtained using gravimetric, TDR, and neutron probe techniques) as well as with soil texture and plant vigor measurements. Through these comparisons, we will illustrate the potential of GPR for providing reliable and spatially dense water content estimates and the linkages between water content, soil properties and ecosystem responses at the two study sites.

  13. Estimation of Sea Ice Thickness Distributions through the Combination of Snow Depth and Satellite Laser Altimetry Data

    NASA Technical Reports Server (NTRS)

    Kurtz, Nathan T.; Markus, Thorsten; Cavalieri, Donald J.; Sparling, Lynn C.; Krabill, William B.; Gasiewski, Albin J.; Sonntag, John G.

    2009-01-01

    Combinations of sea ice freeboard and snow depth measurements from satellite data have the potential to provide a means to derive global sea ice thickness values. However, large differences in spatial coverage and resolution between the measurements lead to uncertainties when combining the data. High resolution airborne laser altimeter retrievals of snow-ice freeboard and passive microwave retrievals of snow depth taken in March 2006 provide insight into the spatial variability of these quantities as well as optimal methods for combining high resolution satellite altimeter measurements with low resolution snow depth data. The aircraft measurements show a relationship between freeboard and snow depth for thin ice allowing the development of a method for estimating sea ice thickness from satellite laser altimetry data at their full spatial resolution. This method is used to estimate snow and ice thicknesses for the Arctic basin through the combination of freeboard data from ICESat, snow depth data over first-year ice from AMSR-E, and snow depth over multiyear ice from climatological data. Due to the non-linear dependence of heat flux on ice thickness, the impact on heat flux calculations when maintaining the full resolution of the ICESat data for ice thickness estimates is explored for typical winter conditions. Calculations of the basin-wide mean heat flux and ice growth rate using snow and ice thickness values at the 70 m spatial resolution of ICESat are found to be approximately one-third higher than those calculated from 25 km mean ice thickness values.

  14. A New Stratified Sampling Procedure which Decreases Error Estimation of Varroa Mite Number on Sticky Boards.

    PubMed

    Kretzschmar, A; Durand, E; Maisonnasse, A; Vallon, J; Le Conte, Y

    2015-06-01

    A new procedure of stratified sampling is proposed in order to establish an accurate estimation of Varroa destructor populations on sticky bottom boards of the hive. It is based on the spatial sampling theory that recommends using regular grid stratification in the case of spatially structured process. The distribution of varroa mites on sticky board being observed as spatially structured, we designed a sampling scheme based on a regular grid with circles centered on each grid element. This new procedure is then compared with a former method using partially random sampling. Relative error improvements are exposed on the basis of a large sample of simulated sticky boards (n=20,000) which provides a complete range of spatial structures, from a random structure to a highly frame driven structure. The improvement of varroa mite number estimation is then measured by the percentage of counts with an error greater than a given level. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan

    NASA Astrophysics Data System (ADS)

    Bair, Edward H.; Abreu Calfa, Andre; Rittger, Karl; Dozier, Jeff

    2018-05-01

    In the mountains, snowmelt often provides most of the runoff. Operational estimates use imagery from optical and passive microwave sensors, but each has its limitations. An accurate approach, which we validate in Afghanistan and the Sierra Nevada USA, reconstructs spatially distributed snow water equivalent (SWE) by calculating snowmelt backward from a remotely sensed date of disappearance. However, reconstructed SWE estimates are available only retrospectively; they do not provide a forecast. To estimate SWE throughout the snowmelt season, we consider physiographic and remotely sensed information as predictors and reconstructed SWE as the target. The period of analysis matches the AMSR-E radiometer's lifetime from 2003 to 2011, for the months of April through June. The spatial resolution of the predictions is 3.125 km, to match the resolution of a microwave brightness temperature product. Two machine learning techniques - bagged regression trees and feed-forward neural networks - produced similar mean results, with 0-14 % bias and 46-48 mm RMSE on average. Nash-Sutcliffe efficiencies averaged 0.68 for all years. Daily SWE climatology and fractional snow-covered area are the most important predictors. We conclude that these methods can accurately estimate SWE during the snow season in remote mountains, and thereby provide an independent estimate to forecast runoff and validate other methods to assess the snow resource.

  16. Revised spatially distributed global livestock emissions

    NASA Astrophysics Data System (ADS)

    Asrar, G.; Wolf, J.; West, T. O.

    2015-12-01

    Livestock play an important role in agricultural carbon cycling through consumption of biomass and emissions of methane. Quantification and spatial distribution of methane and carbon dioxide produced by livestock is needed to develop bottom-up estimates for carbon monitoring. These estimates serve as stand-alone international emissions estimates, as input to global emissions modeling, and as comparisons or constraints to flux estimates from atmospheric inversion models. Recent results for the US suggest that the 2006 IPCC default coefficients may underestimate livestock methane emissions. In this project, revised coefficients were calculated for cattle and swine in all global regions, based on reported changes in body mass, quality and quantity of feed, milk production, and management of living animals and manure for these regions. New estimates of livestock methane and carbon dioxide emissions were calculated using the revised coefficients and global livestock population data. Spatial distribution of population data and associated fluxes was conducted using the MODIS Land Cover Type 5, version 5.1 (i.e. MCD12Q1 data product), and a previously published downscaling algorithm for reconciling inventory and satellite-based land cover data at 0.05 degree resolution. Preliminary results for 2013 indicate greater emissions than those calculated using the IPCC 2006 coefficients. Global total enteric fermentation methane increased by 6%, while manure management methane increased by 38%, with variation among species and regions resulting in improved spatial distributions of livestock emissions. These new estimates of total livestock methane are comparable to other recently reported studies for the entire US and the State of California. These new regional/global estimates will improve the ability to reconcile top-down and bottom-up estimates of methane production as well as provide updated global estimates for use in development and evaluation of Earth system models.

  17. Estimating population density and connectivity of American mink using spatial capture-recapture

    USGS Publications Warehouse

    Fuller, Angela K.; Sutherland, Christopher S.; Royle, Andy; Hare, Matthew P.

    2016-01-01

    Estimating the abundance or density of populations is fundamental to the conservation and management of species, and as landscapes become more fragmented, maintaining landscape connectivity has become one of the most important challenges for biodiversity conservation. Yet these two issues have never been formally integrated together in a model that simultaneously models abundance while accounting for connectivity of a landscape. We demonstrate an application of using capture–recapture to develop a model of animal density using a least-cost path model for individual encounter probability that accounts for non-Euclidean connectivity in a highly structured network. We utilized scat detection dogs (Canis lupus familiaris) as a means of collecting non-invasive genetic samples of American mink (Neovison vison) individuals and used spatial capture–recapture models (SCR) to gain inferences about mink population density and connectivity. Density of mink was not constant across the landscape, but rather increased with increasing distance from city, town, or village centers, and mink activity was associated with water. The SCR model allowed us to estimate the density and spatial distribution of individuals across a 388 km2 area. The model was used to investigate patterns of space usage and to evaluate covariate effects on encounter probabilities, including differences between sexes. This study provides an application of capture–recapture models based on ecological distance, allowing us to directly estimate landscape connectivity. This approach should be widely applicable to provide simultaneous direct estimates of density, space usage, and landscape connectivity for many species.

  18. Estimating population density and connectivity of American mink using spatial capture-recapture.

    PubMed

    Fuller, Angela K; Sutherland, Chris S; Royle, J Andrew; Hare, Matthew P

    2016-06-01

    Estimating the abundance or density of populations is fundamental to the conservation and management of species, and as landscapes become more fragmented, maintaining landscape connectivity has become one of the most important challenges for biodiversity conservation. Yet these two issues have never been formally integrated together in a model that simultaneously models abundance while accounting for connectivity of a landscape. We demonstrate an application of using capture-recapture to develop a model of animal density using a least-cost path model for individual encounter probability that accounts for non-Euclidean connectivity in a highly structured network. We utilized scat detection dogs (Canis lupus familiaris) as a means of collecting non-invasive genetic samples of American mink (Neovison vison) individuals and used spatial capture-recapture models (SCR) to gain inferences about mink population density and connectivity. Density of mink was not constant across the landscape, but rather increased with increasing distance from city, town, or village centers, and mink activity was associated with water. The SCR model allowed us to estimate the density and spatial distribution of individuals across a 388 km² area. The model was used to investigate patterns of space usage and to evaluate covariate effects on encounter probabilities, including differences between sexes. This study provides an application of capture-recapture models based on ecological distance, allowing us to directly estimate landscape connectivity. This approach should be widely applicable to provide simultaneous direct estimates of density, space usage, and landscape connectivity for many species.

  19. Object recognition and pose estimation of planar objects from range data

    NASA Technical Reports Server (NTRS)

    Pendleton, Thomas W.; Chien, Chiun Hong; Littlefield, Mark L.; Magee, Michael

    1994-01-01

    The Extravehicular Activity Helper/Retriever (EVAHR) is a robotic device currently under development at the NASA Johnson Space Center that is designed to fetch objects or to assist in retrieving an astronaut who may have become inadvertently de-tethered. The EVAHR will be required to exhibit a high degree of intelligent autonomous operation and will base much of its reasoning upon information obtained from one or more three-dimensional sensors that it will carry and control. At the highest level of visual cognition and reasoning, the EVAHR will be required to detect objects, recognize them, and estimate their spatial orientation and location. The recognition phase and estimation of spatial pose will depend on the ability of the vision system to reliably extract geometric features of the objects such as whether the surface topologies observed are planar or curved and the spatial relationships between the component surfaces. In order to achieve these tasks, three-dimensional sensing of the operational environment and objects in the environment will therefore be essential. One of the sensors being considered to provide image data for object recognition and pose estimation is a phase-shift laser scanner. The characteristics of the data provided by this scanner have been studied and algorithms have been developed for segmenting range images into planar surfaces, extracting basic features such as surface area, and recognizing the object based on the characteristics of extracted features. Also, an approach has been developed for estimating the spatial orientation and location of the recognized object based on orientations of extracted planes and their intersection points. This paper presents some of the algorithms that have been developed for the purpose of recognizing and estimating the pose of objects as viewed by the laser scanner, and characterizes the desirability and utility of these algorithms within the context of the scanner itself, considering data quality and noise.

  20. Quantifying aggregated uncertainty in Plasmodium falciparum malaria prevalence and populations at risk via efficient space-time geostatistical joint simulation.

    PubMed

    Gething, Peter W; Patil, Anand P; Hay, Simon I

    2010-04-01

    Risk maps estimating the spatial distribution of infectious diseases are required to guide public health policy from local to global scales. The advent of model-based geostatistics (MBG) has allowed these maps to be generated in a formal statistical framework, providing robust metrics of map uncertainty that enhances their utility for decision-makers. In many settings, decision-makers require spatially aggregated measures over large regions such as the mean prevalence within a country or administrative region, or national populations living under different levels of risk. Existing MBG mapping approaches provide suitable metrics of local uncertainty--the fidelity of predictions at each mapped pixel--but have not been adapted for measuring uncertainty over large areas, due largely to a series of fundamental computational constraints. Here the authors present a new efficient approximating algorithm that can generate for the first time the necessary joint simulation of prevalence values across the very large prediction spaces needed for global scale mapping. This new approach is implemented in conjunction with an established model for P. falciparum allowing robust estimates of mean prevalence at any specified level of spatial aggregation. The model is used to provide estimates of national populations at risk under three policy-relevant prevalence thresholds, along with accompanying model-based measures of uncertainty. By overcoming previously unchallenged computational barriers, this study illustrates how MBG approaches, already at the forefront of infectious disease mapping, can be extended to provide large-scale aggregate measures appropriate for decision-makers.

  1. An Evaluation of the Plant Density Estimator the Point-Centred Quarter Method (PCQM) Using Monte Carlo Simulation.

    PubMed

    Khan, Md Nabiul Islam; Hijbeek, Renske; Berger, Uta; Koedam, Nico; Grueters, Uwe; Islam, S M Zahirul; Hasan, Md Asadul; Dahdouh-Guebas, Farid

    2016-01-01

    In the Point-Centred Quarter Method (PCQM), the mean distance of the first nearest plants in each quadrant of a number of random sample points is converted to plant density. It is a quick method for plant density estimation. In recent publications the estimator equations of simple PCQM (PCQM1) and higher order ones (PCQM2 and PCQM3, which uses the distance of the second and third nearest plants, respectively) show discrepancy. This study attempts to review PCQM estimators in order to find the most accurate equation form. We tested the accuracy of different PCQM equations using Monte Carlo Simulations in simulated (having 'random', 'aggregated' and 'regular' spatial patterns) plant populations and empirical ones. PCQM requires at least 50 sample points to ensure a desired level of accuracy. PCQM with a corrected estimator is more accurate than with a previously published estimator. The published PCQM versions (PCQM1, PCQM2 and PCQM3) show significant differences in accuracy of density estimation, i.e. the higher order PCQM provides higher accuracy. However, the corrected PCQM versions show no significant differences among them as tested in various spatial patterns except in plant assemblages with a strong repulsion (plant competition). If N is number of sample points and R is distance, the corrected estimator of PCQM1 is 4(4N - 1)/(π ∑ R2) but not 12N/(π ∑ R2), of PCQM2 is 4(8N - 1)/(π ∑ R2) but not 28N/(π ∑ R2) and of PCQM3 is 4(12N - 1)/(π ∑ R2) but not 44N/(π ∑ R2) as published. If the spatial pattern of a plant association is random, PCQM1 with a corrected equation estimator and over 50 sample points would be sufficient to provide accurate density estimation. PCQM using just the nearest tree in each quadrant is therefore sufficient, which facilitates sampling of trees, particularly in areas with just a few hundred trees per hectare. PCQM3 provides the best density estimations for all types of plant assemblages including the repulsion process. Since in practice, the spatial pattern of a plant association remains unknown before starting a vegetation survey, for field applications the use of PCQM3 along with the corrected estimator is recommended. However, for sparse plant populations, where the use of PCQM3 may pose practical limitations, the PCQM2 or PCQM1 would be applied. During application of PCQM in the field, care should be taken to summarize the distance data based on 'the inverse summation of squared distances' but not 'the summation of inverse squared distances' as erroneously published.

  2. Comparing Top-down and Bottom-up Estimates of Methane Emissions across Multiple U.S. Basins Provides Insights into National Oil and Gas Emissions and Mitigation Strategies

    NASA Astrophysics Data System (ADS)

    Hamburg, S.; Alvarez, R.; Lyon, D. R.; Zavala-Araiza, D.

    2016-12-01

    Several recent studies quantified regional methane emissions in U.S. oil and gas (O&G) basins using top-down approaches such as airborne mass balance measurements. These studies apportioned total methane emissions to O&G based on hydrocarbon ratios or subtracting bottom-up estimates of other sources. In most studies, top-down estimates of O&G methane emissions exceeded bottom-up emission inventories. An exception is the Barnett Shale Coordinated Campaign, which found agreement between aircraft mass balance estimates and a custom emission inventory. Reconciliation of Barnett Shale O&G emissions depended on two key features: 1) matching the spatial domains of top-down and bottom-up estimates, and 2) accounting for fat-tail sources in site-level emission factors. We construct spatially explicit custom emission inventories for domains with top-down O&G emission estimates in eight major U.S. oil and gas production basins using a variety of data sources including a spatially-allocated U.S. EPA Greenhouse Gas Inventory, the EPA Greenhouse Gas Reporting Program, state emission inventories, and recently published measurement studies. A comparison of top-down and our bottom-up estimates of O&G emissions constrains the gap between these approaches and elucidates regional variability in production-normalized loss rates. A comparison of component-level and site-level emission estimates of production sites in the Barnett Shale region - where comprehensive activity data and emissions estimates are available - indicates that abnormal process conditions contribute about 20% of regional O&G emissions. Combining these two analyses provides insights into the relative importance of different equipment, processes, and malfunctions to emissions in each basin. These data allow us to estimate the U.S. O&G supply chain loss rate, recommend mitigation strategies to reduce emissions from existing infrastructure, and discuss how a similar approach can be applied internationally.

  3. Spatial distribution, sampling precision and survey design optimisation with non-normal variables: The case of anchovy (Engraulis encrasicolus) recruitment in Spanish Mediterranean waters

    NASA Astrophysics Data System (ADS)

    Tugores, M. Pilar; Iglesias, Magdalena; Oñate, Dolores; Miquel, Joan

    2016-02-01

    In the Mediterranean Sea, the European anchovy (Engraulis encrasicolus) displays a key role in ecological and economical terms. Ensuring stock sustainability requires the provision of crucial information, such as species spatial distribution or unbiased abundance and precision estimates, so that management strategies can be defined (e.g. fishing quotas, temporal closure areas or marine protected areas MPA). Furthermore, the estimation of the precision of global abundance at different sampling intensities can be used for survey design optimisation. Geostatistics provide a priori unbiased estimations of the spatial structure, global abundance and precision for autocorrelated data. However, their application to non-Gaussian data introduces difficulties in the analysis in conjunction with low robustness or unbiasedness. The present study applied intrinsic geostatistics in two dimensions in order to (i) analyse the spatial distribution of anchovy in Spanish Western Mediterranean waters during the species' recruitment season, (ii) produce distribution maps, (iii) estimate global abundance and its precision, (iv) analyse the effect of changing the sampling intensity on the precision of global abundance estimates and, (v) evaluate the effects of several methodological options on the robustness of all the analysed parameters. The results suggested that while the spatial structure was usually non-robust to the tested methodological options when working with the original dataset, it became more robust for the transformed datasets (especially for the log-backtransformed dataset). The global abundance was always highly robust and the global precision was highly or moderately robust to most of the methodological options, except for data transformation.

  4. Improved estimation of hydraulic conductivity by combining stochastically simulated hydrofacies with geophysical data

    PubMed Central

    Zhu, Lin; Gong, Huili; Chen, Yun; Li, Xiaojuan; Chang, Xiang; Cui, Yijiao

    2016-01-01

    Hydraulic conductivity is a major parameter affecting the output accuracy of groundwater flow and transport models. The most commonly used semi-empirical formula for estimating conductivity is Kozeny-Carman equation. However, this method alone does not work well with heterogeneous strata. Two important parameters, grain size and porosity, often show spatial variations at different scales. This study proposes a method for estimating conductivity distributions by combining a stochastic hydrofacies model with geophysical methods. The Markov chain model with transition probability matrix was adopted to re-construct structures of hydrofacies for deriving spatial deposit information. The geophysical and hydro-chemical data were used to estimate the porosity distribution through the Archie’s law. Results show that the stochastic simulated hydrofacies model reflects the sedimentary features with an average model accuracy of 78% in comparison with borehole log data in the Chaobai alluvial fan. The estimated conductivity is reasonable and of the same order of magnitude of the outcomes of the pumping tests. The conductivity distribution is consistent with the sedimentary distributions. This study provides more reliable spatial distributions of the hydraulic parameters for further numerical modeling. PMID:26927886

  5. Estimation of Snow Parameters Based on Passive Microwave Remote Sensing and Meteorological Information

    NASA Technical Reports Server (NTRS)

    Tsang, Leung; Hwang, Jenq-Neng

    1996-01-01

    A method to incorporate passive microwave remote sensing measurements within a spatially distributed snow hydrology model to provide estimates of the spatial distribution of Snow Water Equivalent (SWE) as a function of time is implemented. The passive microwave remote sensing measurements are at 25 km resolution. However, in mountain regions the spatial variability of SWE over a 25 km footprint is large due to topographic influences. On the other hand, the snow hydrology model has built-in topographic information and the capability to estimate SWE at a 1 km resolution. In our work, the snow hydrology SWE estimates are updated and corrected using SSM/I passive microwave remote sensing measurements. The method is applied to the Upper Rio Grande River Basin in the mountains of Colorado. The change in prediction of SWE from hydrology modeling with and without updating is compared with measurements from two SNOTEL sites in and near the basin. The results indicate that the method incorporating the remote sensing measurements into the hydrology model is able to more closely estimate the temporal evolution of the measured values of SWE as a function of time.

  6. Small-Area Estimation of Spatial Access to Care and Its Implications for Policy.

    PubMed

    Gentili, Monica; Isett, Kim; Serban, Nicoleta; Swann, Julie

    2015-10-01

    Local or small-area estimates to capture emerging trends across large geographic regions are critical in identifying and addressing community-level health interventions. However, they are often unavailable due to lack of analytic capabilities in compiling and integrating extensive datasets and complementing them with the knowledge about variations in state-level health policies. This study introduces a modeling approach for small-area estimation of spatial access to pediatric primary care that is data "rich" and mathematically rigorous, integrating data and health policy in a systematic way. We illustrate the sensitivity of the model to policy decision making across large geographic regions by performing a systematic comparison of the estimates at the census tract and county levels for Georgia and California. Our results show the proposed approach is able to overcome limitations of other existing models by capturing patient and provider preferences and by incorporating possible changes in health policies. The primary finding is systematic underestimation of spatial access, and inaccurate estimates of disparities across population and across geography at the county level with respect to those at the census tract level with implications on where to focus and which type of interventions to consider.

  7. Approximation of Confidence Limits on Sample Semivariograms From Single Realizations of Spatially Correlated Random Fields

    NASA Astrophysics Data System (ADS)

    Shafer, J. M.; Varljen, M. D.

    1990-08-01

    A fundamental requirement for geostatistical analyses of spatially correlated environmental data is the estimation of the sample semivariogram to characterize spatial correlation. Selecting an underlying theoretical semivariogram based on the sample semivariogram is an extremely important and difficult task that is subject to a great deal of uncertainty. Current standard practice does not involve consideration of the confidence associated with semivariogram estimates, largely because classical statistical theory does not provide the capability to construct confidence limits from single realizations of correlated data, and multiple realizations of environmental fields are not found in nature. The jackknife method is a nonparametric statistical technique for parameter estimation that may be used to estimate the semivariogram. When used in connection with standard confidence procedures, it allows for the calculation of closely approximate confidence limits on the semivariogram from single realizations of spatially correlated data. The accuracy and validity of this technique was verified using a Monte Carlo simulation approach which enabled confidence limits about the semivariogram estimate to be calculated from many synthetically generated realizations of a random field with a known correlation structure. The synthetically derived confidence limits were then compared to jackknife estimates from single realizations with favorable results. Finally, the methodology for applying the jackknife method to a real-world problem and an example of the utility of semivariogram confidence limits were demonstrated by constructing confidence limits on seasonal sample variograms of nitrate-nitrogen concentrations in shallow groundwater in an approximately 12-mi2 (˜30 km2) region in northern Illinois. In this application, the confidence limits on sample semivariograms from different time periods were used to evaluate the significance of temporal change in spatial correlation. This capability is quite important as it can indicate when a spatially optimized monitoring network would need to be reevaluated and thus lead to more robust monitoring strategies.

  8. Evaluation of sliding baseline methods for spatial estimation for cluster detection in the biosurveillance system

    PubMed Central

    Xing, Jian; Burkom, Howard; Moniz, Linda; Edgerton, James; Leuze, Michael; Tokars, Jerome

    2009-01-01

    Background The Centers for Disease Control and Prevention's (CDC's) BioSense system provides near-real time situational awareness for public health monitoring through analysis of electronic health data. Determination of anomalous spatial and temporal disease clusters is a crucial part of the daily disease monitoring task. Our study focused on finding useful anomalies at manageable alert rates according to available BioSense data history. Methods The study dataset included more than 3 years of daily counts of military outpatient clinic visits for respiratory and rash syndrome groupings. We applied four spatial estimation methods in implementations of space-time scan statistics cross-checked in Matlab and C. We compared the utility of these methods according to the resultant background cluster rate (a false alarm surrogate) and sensitivity to injected cluster signals. The comparison runs used a spatial resolution based on the facility zip code in the patient record and a finer resolution based on the residence zip code. Results Simple estimation methods that account for day-of-week (DOW) data patterns yielded a clear advantage both in background cluster rate and in signal sensitivity. A 28-day baseline gave the most robust results for this estimation; the preferred baseline is long enough to remove daily fluctuations but short enough to reflect recent disease trends and data representation. Background cluster rates were lower for the rash syndrome counts than for the respiratory counts, likely because of seasonality and the large scale of the respiratory counts. Conclusion The spatial estimation method should be chosen according to characteristics of the selected data streams. In this dataset with strong day-of-week effects, the overall best detection performance was achieved using subregion averages over a 28-day baseline stratified by weekday or weekend/holiday behavior. Changing the estimation method for particular scenarios involving different spatial resolution or other syndromes can yield further improvement. PMID:19615075

  9. A systematic intercomparison of regional flood frequency analysis models in a simulation framework

    NASA Astrophysics Data System (ADS)

    Ganora, Daniele; Laio, Francesco; Claps, Pierluigi

    2015-04-01

    Regional frequency analysis (RFA) is a well-established methodology to provide an estimate of the flood frequency curve (or other discharge-related variables), based on the fundamental concept of substituting temporal information at a site (no data or short time series) by exploiting observations at other sites (spatial information). Different RFA paradigms exist, depending on the way the information is transferred to the site of interest. Despite the wide use of such methodology, a systematic comparison between these paradigms has not been performed. The aim of this study is to provide a framework wherein carrying out the intercomparison: we thus synthetically generate data through Monte Carlo simulations for a number of (virtual) stations, following a GEV parent distribution; different scenarios can be created to represent different spatial heterogeneity patterns by manipulating the parameters of the parent distribution at each station (e.g. with a linear variation in space of the shape parameter of the GEV). A special case is the homogeneous scenario where each station record is sampled from the same parent distribution. For each scenario and each simulation, different regional models are applied to evaluate the 200-year growth factor at each station. Results are than compared to the exact growth factor of each station, which is known in our virtual world. Considered regional approaches include: (i) a single growth curve for the whole region; (ii) a multiple-region model based on cluster analysis which search for an adequate number of homogeneous subregions; (iii) a Region-of-Influence model which defines a homogeneous subregion for each site; (iv) a spatially-smooth estimation procedure based on linear regressions.. A further benchmark model is the at-site estimate based on the analysis of the local record. A comprehensive analysis of the results of the simulations shows that, if the scenario is homogeneous (no spatial variability), all the regional approaches have comparable performances. Moreover, as expected, regional estimates are much more reliable than the at-site estimates. If the scenario is heterogeneous, the performances of the regional models depend on the pattern of heterogeneity; in general, however, the spatially-smooth regional approach performs better than the others, and its performances improve for increasing record lengths. For heterogeneous scenarios, the at-site estimates appear to be comparably more efficient than in the homogeneous case, and in general less biased than the regional estimates.

  10. Life-history implications of large-scale spatial variation in adult survival of black brant (Branta bernicla nigricans)

    USGS Publications Warehouse

    Sedinger, James S.; Chelgren, Nathan; Lindberg, Mark S.; Obritchkewitch, Tim; Kirk, Morgan T.; Martin, Philip D.; Anderson, Betty A.; Ward, David H.

    2002-01-01

    We used capture-recapture methods to estimate adult survival rates for adult female Black Brant (Branta bernicla nigricans; hereafter “brant”) from three colonies in Alaska, two on the Yukon-Kuskokwim Delta, and one on Alaska's Arctic coast. Costs of migration and reproductive effort varied among those colonies, enabling us to examine variation in survival in relation to variation in these other variables. We used the Barker model in program MARK to estimate true annual survival for brant from the three colonies. Models allowing for spatial variation in survival were among the most parsimonious models but were indistinguishable from a model with no spatial variation. Point estimates of annual survival were slightly higher for brant from the Arctic (0.90 ± 0.036) than for brant from either Tutakoke River (0.85 ± 0.004) or Kokechik Bay (0.86 ± 0.011). Thus, our survival estimates do not support a hypothesis that the cost of longer migrations or harvest experienced by brant from the Arctic reduced their annual survival relative to brant from the Yukon-Kuskokwim Delta. Spatial variation in survival provides weak support for life-history theory because brant from the region with lower reproductive investment had slightly higher survival.

  11. Where can pixel counting area estimates meet user-defined accuracy requirements?

    NASA Astrophysics Data System (ADS)

    Waldner, François; Defourny, Pierre

    2017-08-01

    Pixel counting is probably the most popular way to estimate class areas from satellite-derived maps. It involves determining the number of pixels allocated to a specific thematic class and multiplying it by the pixel area. In the presence of asymmetric classification errors, the pixel counting estimator is biased. The overarching objective of this article is to define the applicability conditions of pixel counting so that the estimates are below a user-defined accuracy target. By reasoning in terms of landscape fragmentation and spatial resolution, the proposed framework decouples the resolution bias and the classifier bias from the overall classification bias. The consequence is that prior to any classification, part of the tolerated bias is already committed due to the choice of the spatial resolution of the imagery. How much classification bias is affordable depends on the joint interaction of spatial resolution and fragmentation. The method was implemented over South Africa for cropland mapping, demonstrating its operational applicability. Particular attention was paid to modeling a realistic sensor's spatial response by explicitly accounting for the effect of its point spread function. The diagnostic capabilities offered by this framework have multiple potential domains of application such as guiding users in their choice of imagery and providing guidelines for space agencies to elaborate the design specifications of future instruments.

  12. Design of an Air Pollution Monitoring Campaign in Beijing for Application to Cohort Health Studies.

    PubMed

    Vedal, Sverre; Han, Bin; Xu, Jia; Szpiro, Adam; Bai, Zhipeng

    2017-12-15

    No cohort studies in China on the health effects of long-term air pollution exposure have employed exposure estimates at the fine spatial scales desirable for cohort studies with individual-level health outcome data. Here we assess an array of modern air pollution exposure estimation approaches for assigning within-city exposure estimates in Beijing for individual pollutants and pollutant sources to individual members of a cohort. Issues considered in selecting specific monitoring data or new monitoring campaigns include: needed spatial resolution, exposure measurement error and its impact on health effect estimates, spatial alignment and compatibility with the cohort, and feasibility and expense. Sources of existing data largely include administrative monitoring data, predictions from air dispersion or chemical transport models and remote sensing (specifically satellite) data. New air monitoring campaigns include additional fixed site monitoring, snapshot monitoring, passive badge or micro-sensor saturation monitoring and mobile monitoring, as well as combinations of these. Each of these has relative advantages and disadvantages. It is concluded that a campaign in Beijing that at least includes a mobile monitoring component, when coupled with currently available spatio-temporal modeling methods, should be strongly considered. Such a campaign is economical and capable of providing the desired fine-scale spatial resolution for pollutants and sources.

  13. Design of an Air Pollution Monitoring Campaign in Beijing for Application to Cohort Health Studies

    PubMed Central

    Vedal, Sverre; Han, Bin; Szpiro, Adam; Bai, Zhipeng

    2017-01-01

    No cohort studies in China on the health effects of long-term air pollution exposure have employed exposure estimates at the fine spatial scales desirable for cohort studies with individual-level health outcome data. Here we assess an array of modern air pollution exposure estimation approaches for assigning within-city exposure estimates in Beijing for individual pollutants and pollutant sources to individual members of a cohort. Issues considered in selecting specific monitoring data or new monitoring campaigns include: needed spatial resolution, exposure measurement error and its impact on health effect estimates, spatial alignment and compatibility with the cohort, and feasibility and expense. Sources of existing data largely include administrative monitoring data, predictions from air dispersion or chemical transport models and remote sensing (specifically satellite) data. New air monitoring campaigns include additional fixed site monitoring, snapshot monitoring, passive badge or micro-sensor saturation monitoring and mobile monitoring, as well as combinations of these. Each of these has relative advantages and disadvantages. It is concluded that a campaign in Beijing that at least includes a mobile monitoring component, when coupled with currently available spatio-temporal modeling methods, should be strongly considered. Such a campaign is economical and capable of providing the desired fine-scale spatial resolution for pollutants and sources. PMID:29244738

  14. Modelling non-Euclidean movement and landscape connectivity in highly structured ecological networks

    USGS Publications Warehouse

    Sutherland, Christopher; Fuller, Angela K.; Royle, J. Andrew

    2015-01-01

    The ecological distance SCR model uses spatially indexed capture-recapture data to estimate how activity patterns are influenced by landscape structure. As well as reducing bias in estimates of abundance, this approach provides biologically realistic representations of home range geometry, and direct information about species-landscape interactions. The incorporation of both structural (landscape) and functional (movement) components of connectivity provides a direct measure of species-specific landscape connectivity.

  15. Controlling for unmeasured confounding and spatial misalignment in long-term air pollution and health studies.

    PubMed

    Lee, Duncan; Sarran, Christophe

    2015-11-01

    The health impact of long-term exposure to air pollution is now routinely estimated using spatial ecological studies, owing to the recent widespread availability of spatial referenced pollution and disease data. However, this areal unit study design presents a number of statistical challenges, which if ignored have the potential to bias the estimated pollution-health relationship. One such challenge is how to control for the spatial autocorrelation present in the data after accounting for the known covariates, which is caused by unmeasured confounding. A second challenge is how to adjust the functional form of the model to account for the spatial misalignment between the pollution and disease data, which causes within-area variation in the pollution data. These challenges have largely been ignored in existing long-term spatial air pollution and health studies, so here we propose a novel Bayesian hierarchical model that addresses both challenges and provide software to allow others to apply our model to their own data. The effectiveness of the proposed model is compared by simulation against a number of state-of-the-art alternatives proposed in the literature and is then used to estimate the impact of nitrogen dioxide and particulate matter concentrations on respiratory hospital admissions in a new epidemiological study in England in 2010 at the local authority level. © 2015 The Authors. Environmetrics published by John Wiley & Sons Ltd.

  16. Estimating true instead of apparent survival using spatial Cormack-Jolly-Seber models

    USGS Publications Warehouse

    Schaub, Michael; Royle, J. Andrew

    2014-01-01

    Spatial CJS models enable study of dispersal and survival independent of study design constraints such as imperfect detection and size of the study area provided that some of the dispersing individuals remain in the study area. We discuss possible extensions of our model: alternative dispersal models and the inclusion of covariates and of a habitat suitability map.

  17. Assessing housing growth when census boundaries change

    Treesearch

    Alexandra D. Syphard; Susan I. Stewart; Jason McKeefry; Roger B. Hammer; Jeremy S. Fried; Sherry Holcomb; Volker C. Radeloff

    2009-01-01

    The US Census provides the primary source of spatially explicit social data, but changing block boundaries complicate analyses of housing growth over time. We compared procedures for reconciling housing density data between 1990 and 2000 census block boundaries in order to assess the sensitivity of analytical methods to estimates of housing growth in Oregon. Estimates...

  18. Joint Estimation of Effective Brain Wave Activation Modes Using EEG/MEG Sensor Arrays and Multimodal MRI Volumes.

    PubMed

    Galinsky, Vitaly L; Martinez, Antigona; Paulus, Martin P; Frank, Lawrence R

    2018-04-13

    In this letter, we present a new method for integration of sensor-based multifrequency bands of electroencephalography and magnetoencephalography data sets into a voxel-based structural-temporal magnetic resonance imaging analysis by utilizing the general joint estimation using entropy regularization (JESTER) framework. This allows enhancement of the spatial-temporal localization of brain function and the ability to relate it to morphological features and structural connectivity. This method has broad implications for both basic neuroscience research and clinical neuroscience focused on identifying disease-relevant biomarkers by enhancing the spatial-temporal resolution of the estimates derived from current neuroimaging modalities, thereby providing a better picture of the normal human brain in basic neuroimaging experiments and variations associated with disease states.

  19. Implementing a combined polar-geostationary algorithm for smoke emissions estimation in near real time

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Schmidt, C. C.; Hoffman, J.; Giglio, L.; Peterson, D. A.

    2013-12-01

    Polar and geostationary satellites are used operationally for fire detection and smoke source estimation by many near-real-time operational users, including operational forecast centers around the globe. The input satellite radiance data are processed by data providers to produce Level-2 and Level -3 fire detection products, but processing these data into spatially and temporally consistent estimates of fire activity requires a substantial amount of additional processing. The most significant processing steps are correction for variable coverage of the satellite observations, and correction for conditions that affect the detection efficiency of the satellite sensors. We describe a system developed by the Naval Research Laboratory (NRL) that uses the full raster information from the entire constellation to diagnose detection opportunities, calculate corrections for factors such as angular dependence of detection efficiency, and generate global estimates of fire activity at spatial and temporal scales suitable for atmospheric modeling. By incorporating these improved fire observations, smoke emissions products, such as NRL's FLAMBE, are able to produce improved estimates of global emissions. This talk provides an overview of the system, demonstrates the achievable improvement over older methods, and describes challenges for near-real-time implementation.

  20. Assessing concentration uncertainty estimates from passive microwave sea ice products

    NASA Astrophysics Data System (ADS)

    Meier, W.; Brucker, L.; Miller, J. A.

    2017-12-01

    Sea ice concentration is an essential climate variable and passive microwave derived estimates of concentration are one of the longest satellite-derived climate records. However, until recently uncertainty estimates were not provided. Numerous validation studies provided insight into general error characteristics, but the studies have found that concentration error varied greatly depending on sea ice conditions. Thus, an uncertainty estimate from each observation is desired, particularly for initialization, assimilation, and validation of models. Here we investigate three sea ice products that include an uncertainty for each concentration estimate: the NASA Team 2 algorithm product, the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF) product, and the NOAA/NSIDC Climate Data Record (CDR) product. Each product estimates uncertainty with a completely different approach. The NASA Team 2 product derives uncertainty internally from the algorithm method itself. The OSI-SAF uses atmospheric reanalysis fields and a radiative transfer model. The CDR uses spatial variability from two algorithms. Each approach has merits and limitations. Here we evaluate the uncertainty estimates by comparing the passive microwave concentration products with fields derived from the NOAA VIIRS sensor. The results show that the relationship between the product uncertainty estimates and the concentration error (relative to VIIRS) is complex. This may be due to the sea ice conditions, the uncertainty methods, as well as the spatial and temporal variability of the passive microwave and VIIRS products.

  1. Obesity and fast food in urban markets: a new approach using geo-referenced micro data.

    PubMed

    Chen, Susan Elizabeth; Florax, Raymond J; Snyder, Samantha D

    2013-07-01

    This paper presents a new method of assessing the relationship between features of the built environment and obesity, particularly in urban areas. Our empirical application combines georeferenced data on the location of fast-food restaurants with data about personal health, behavioral, and neighborhood characteristics. We define a 'local food environment' for every individual utilizing buffers around a person's home address. Individual food landscapes are potentially endogenous because of spatial sorting of the population and food outlets, and the body mass index (BMI) values for individuals living close to each other are likely to be spatially correlated because of observed and unobserved individual and neighborhood effects. The potential biases associated with endogeneity and spatial correlation are handled using spatial econometric estimation techniques. Our application provides quantitative estimates of the effect of proximity to fast-food restaurants on obesity in an urban food market. We also present estimates of a policy simulation that focuses on reducing the density of fast-food restaurants in urban areas. In the simulations, we account for spatial heterogeneity in both the policy instruments and individual neighborhoods and find a small effect for the hypothesized relationships between individual BMI values and the density of fast-food restaurants. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Modelling the spatial distribution of ammonia emissions in the UK.

    PubMed

    Hellsten, S; Dragosits, U; Place, C J; Vieno, M; Dore, A J; Misselbrook, T H; Tang, Y S; Sutton, M A

    2008-08-01

    Ammonia emissions (NH3) are characterised by a high spatial variability at a local scale. When modelling the spatial distribution of NH3 emissions, it is important to provide robust emission estimates, since the model output is used to assess potential environmental impacts, e.g. exceedance of critical loads. The aim of this study was to provide a new, updated spatial NH3 emission inventory for the UK for the year 2000, based on an improved modelling approach and the use of updated input datasets. The AENEID model distributes NH3 emissions from a range of agricultural activities, such as grazing and housing of livestock, storage and spreading of manures, and fertilizer application, at a 1-km grid resolution over the most suitable landcover types. The results of the emission calculation for the year 2000 are analysed and the methodology is compared with a previous spatial emission inventory for 1996.

  3. Robust geostatistical analysis of spatial data

    NASA Astrophysics Data System (ADS)

    Papritz, A.; Künsch, H. R.; Schwierz, C.; Stahel, W. A.

    2012-04-01

    Most of the geostatistical software tools rely on non-robust algorithms. This is unfortunate, because outlying observations are rather the rule than the exception, in particular in environmental data sets. Outlying observations may results from errors (e.g. in data transcription) or from local perturbations in the processes that are responsible for a given pattern of spatial variation. As an example, the spatial distribution of some trace metal in the soils of a region may be distorted by emissions of local anthropogenic sources. Outliers affect the modelling of the large-scale spatial variation, the so-called external drift or trend, the estimation of the spatial dependence of the residual variation and the predictions by kriging. Identifying outliers manually is cumbersome and requires expertise because one needs parameter estimates to decide which observation is a potential outlier. Moreover, inference after the rejection of some observations is problematic. A better approach is to use robust algorithms that prevent automatically that outlying observations have undue influence. Former studies on robust geostatistics focused on robust estimation of the sample variogram and ordinary kriging without external drift. Furthermore, Richardson and Welsh (1995) [2] proposed a robustified version of (restricted) maximum likelihood ([RE]ML) estimation for the variance components of a linear mixed model, which was later used by Marchant and Lark (2007) [1] for robust REML estimation of the variogram. We propose here a novel method for robust REML estimation of the variogram of a Gaussian random field that is possibly contaminated by independent errors from a long-tailed distribution. It is based on robustification of estimating equations for the Gaussian REML estimation. Besides robust estimates of the parameters of the external drift and of the variogram, the method also provides standard errors for the estimated parameters, robustified kriging predictions at both sampled and unsampled locations and kriging variances. The method has been implemented in an R package. Apart from presenting our modelling framework, we shall present selected simulation results by which we explored the properties of the new method. This will be complemented by an analysis of the Tarrawarra soil moisture data set [3].

  4. Spatial surplus production modeling of Atlantic tunas and billfish.

    PubMed

    Carruthers, Thomas R; McAllister, Murdoch K; Taylor, Nathan G

    2011-10-01

    We formulate and simulation-test a spatial surplus production model that provides a basis with which to undertake multispecies, multi-area, stock assessment. Movement between areas is parameterized using a simple gravity model that includes a "residency" parameter that determines the degree of stock mixing among areas. The model is deliberately simple in order to (1) accommodate nontarget species that typically have fewer available data and (2) minimize computational demand to enable simulation evaluation of spatial management strategies. Using this model, we demonstrate that careful consideration of spatial catch and effort data can provide the basis for simple yet reliable spatial stock assessments. If simple spatial dynamics can be assumed, tagging data are not required to reliably estimate spatial distribution and movement. When applied to eight stocks of Atlantic tuna and billfish, the model tracks regional catch data relatively well by approximating local depletions and exchange among high-abundance areas. We use these results to investigate and discuss the implications of using spatially aggregated stock assessment for fisheries in which the distribution of both the population and fishing vary over time.

  5. Estimation of the spatial autocorrelation function: consequences of sampling dynamic populations in space and time

    Treesearch

    Patrick C. Tobin

    2004-01-01

    The estimation of spatial autocorrelation in spatially- and temporally-referenced data is fundamental to understanding an organism's population biology. I used four sets of census field data, and developed an idealized space-time dynamic system, to study the behavior of spatial autocorrelation estimates when a practical method of sampling is employed. Estimates...

  6. Paleohydrologic techniques used to define the spatial occurrence of floods

    USGS Publications Warehouse

    Jarrett, R.D.

    1990-01-01

    Defining the cause and spatial characteristics of floods may be difficult because of limited streamflow and precipitation data. New paleohydrologic techniques that incorporate information from geomorphic, sedimentologic, and botanic studies provide important supplemental information to define homogeneous hydrologic regions. These techniques also help to define the spatial structure of rainstorms and floods and improve regional flood-frequency estimates. The occurrence and the non-occurrence of paleohydrologic evidence of floods, such as flood bars, alluvial fans, and tree scars, provide valuable hydrologic information. The paleohydrologic research to define the spatial characteristics of floods improves the understanding of flood hydrometeorology. This research was used to define the areal extent and contributing drainage area of flash floods in Colorado. Also, paleohydrologic evidence was used to define the spatial boundaries for the Colorado foothills region in terms of the meteorologic cause of flooding and elevation. In general, above 2300 m, peak flows are caused by snowmelt. Below 2300 m, peak flows primarily are caused by rainfall. The foothills region has an upper elevation limit of about 2300 m and a lower elevation limit of about 1500 m. Regional flood-frequency estimates that incorporate the paleohydrologic information indicate that the Big Thompson River flash flood of 1976 had a recurrence interval of approximately 10,000 years. This contrasts markedly with 100 to 300 years determined by using conventional hydrologic analyses. Flood-discharge estimates based on rainfall-runoff methods in the foothills of Colorado result in larger values than those estimated with regional flood-frequency relations, which are based on long-term streamflow data. Preliminary hydrologic and paleohydrologic research indicates that intense rainfall does not occur at higher elevations in other Rocky Mountain states and that the highest elevations for rainfall-producing floods vary by latitude. The study results have implications for floodplain management and design of hydraulic structures in the mountains of Colorado and other Rocky Mountain States. ?? 1990.

  7. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    NASA Astrophysics Data System (ADS)

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-06-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  8. Estimation of peak discharge quantiles for selected annual exceedance probabilities in northeastern Illinois

    USGS Publications Warehouse

    Over, Thomas M.; Saito, Riki J.; Veilleux, Andrea G.; Sharpe, Jennifer B.; Soong, David T.; Ishii, Audrey L.

    2016-06-28

    This report provides two sets of equations for estimating peak discharge quantiles at annual exceedance probabilities (AEPs) of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002 (recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively) for watersheds in Illinois based on annual maximum peak discharge data from 117 watersheds in and near northeastern Illinois. One set of equations was developed through a temporal analysis with a two-step least squares-quantile regression technique that measures the average effect of changes in the urbanization of the watersheds used in the study. The resulting equations can be used to adjust rural peak discharge quantiles for the effect of urbanization, and in this study the equations also were used to adjust the annual maximum peak discharges from the study watersheds to 2010 urbanization conditions.The other set of equations was developed by a spatial analysis. This analysis used generalized least-squares regression to fit the peak discharge quantiles computed from the urbanization-adjusted annual maximum peak discharges from the study watersheds to drainage-basin characteristics. The peak discharge quantiles were computed by using the Expected Moments Algorithm following the removal of potentially influential low floods defined by a multiple Grubbs-Beck test. To improve the quantile estimates, regional skew coefficients were obtained from a newly developed regional skew model in which the skew increases with the urbanized land use fraction. The drainage-basin characteristics used as explanatory variables in the spatial analysis include drainage area, the fraction of developed land, the fraction of land with poorly drained soils or likely water, and the basin slope estimated as the ratio of the basin relief to basin perimeter.This report also provides the following: (1) examples to illustrate the use of the spatial and urbanization-adjustment equations for estimating peak discharge quantiles at ungaged sites and to improve flood-quantile estimates at and near a gaged site; (2) the urbanization-adjusted annual maximum peak discharges and peak discharge quantile estimates at streamgages from 181 watersheds including the 117 study watersheds and 64 additional watersheds in the study region that were originally considered for use in the study but later deemed to be redundant.The urbanization-adjustment equations, spatial regression equations, and peak discharge quantile estimates developed in this study will be made available in the web application StreamStats, which provides automated regression-equation solutions for user-selected stream locations. Figures and tables comparing the observed and urbanization-adjusted annual maximum peak discharge records by streamgage are provided at https://doi.org/10.3133/sir20165050 for download.

  9. Choosing an Appropriate Modelling Framework for Analysing Multispecies Co-culture Cell Biology Experiments.

    PubMed

    Markham, Deborah C; Simpson, Matthew J; Baker, Ruth E

    2015-04-01

    In vitro cell biology assays play a crucial role in informing our understanding of the migratory, proliferative and invasive properties of many cell types in different biological contexts. While mono-culture assays involve the study of a population of cells composed of a single cell type, co-culture assays study a population of cells composed of multiple cell types (or subpopulations of cells). Such co-culture assays can provide more realistic insights into many biological processes including tissue repair, tissue regeneration and malignant spreading. Typically, system parameters, such as motility and proliferation rates, are estimated by calibrating a mathematical or computational model to the observed experimental data. However, parameter estimates can be highly sensitive to the choice of model and modelling framework. This observation motivates us to consider the fundamental question of how we can best choose a model to facilitate accurate parameter estimation for a particular assay. In this work we describe three mathematical models of mono-culture and co-culture assays that include different levels of spatial detail. We study various spatial summary statistics to explore if they can be used to distinguish between the suitability of each model over a range of parameter space. Our results for mono-culture experiments are promising, in that we suggest two spatial statistics that can be used to direct model choice. However, co-culture experiments are far more challenging: we show that these same spatial statistics which provide useful insight into mono-culture systems are insufficient for co-culture systems. Therefore, we conclude that great care ought to be exercised when estimating the parameters of co-culture assays.

  10. Rain radar measurement error estimation using data assimilation in an advection-based nowcasting system

    NASA Astrophysics Data System (ADS)

    Merker, Claire; Ament, Felix; Clemens, Marco

    2017-04-01

    The quantification of measurement uncertainty for rain radar data remains challenging. Radar reflectivity measurements are affected, amongst other things, by calibration errors, noise, blocking and clutter, and attenuation. Their combined impact on measurement accuracy is difficult to quantify due to incomplete process understanding and complex interdependencies. An improved quality assessment of rain radar measurements is of interest for applications both in meteorology and hydrology, for example for precipitation ensemble generation, rainfall runoff simulations, or in data assimilation for numerical weather prediction. Especially a detailed description of the spatial and temporal structure of errors is beneficial in order to make best use of the areal precipitation information provided by radars. Radar precipitation ensembles are one promising approach to represent spatially variable radar measurement errors. We present a method combining ensemble radar precipitation nowcasting with data assimilation to estimate radar measurement uncertainty at each pixel. This combination of ensemble forecast and observation yields a consistent spatial and temporal evolution of the radar error field. We use an advection-based nowcasting method to generate an ensemble reflectivity forecast from initial data of a rain radar network. Subsequently, reflectivity data from single radars is assimilated into the forecast using the Local Ensemble Transform Kalman Filter. The spread of the resulting analysis ensemble provides a flow-dependent, spatially and temporally correlated reflectivity error estimate at each pixel. We will present first case studies that illustrate the method using data from a high-resolution X-band radar network.

  11. A Subspace Pursuit–based Iterative Greedy Hierarchical Solution to the Neuromagnetic Inverse Problem

    PubMed Central

    Babadi, Behtash; Obregon-Henao, Gabriel; Lamus, Camilo; Hämäläinen, Matti S.; Brown, Emery N.; Purdon, Patrick L.

    2013-01-01

    Magnetoencephalography (MEG) is an important non-invasive method for studying activity within the human brain. Source localization methods can be used to estimate spatiotemporal activity from MEG measurements with high temporal resolution, but the spatial resolution of these estimates is poor due to the ill-posed nature of the MEG inverse problem. Recent developments in source localization methodology have emphasized temporal as well as spatial constraints to improve source localization accuracy, but these methods can be computationally intense. Solutions emphasizing spatial sparsity hold tremendous promise, since the underlying neurophysiological processes generating MEG signals are often sparse in nature, whether in the form of focal sources, or distributed sources representing large-scale functional networks. Recent developments in the theory of compressed sensing (CS) provide a rigorous framework to estimate signals with sparse structure. In particular, a class of CS algorithms referred to as greedy pursuit algorithms can provide both high recovery accuracy and low computational complexity. Greedy pursuit algorithms are difficult to apply directly to the MEG inverse problem because of the high-dimensional structure of the MEG source space and the high spatial correlation in MEG measurements. In this paper, we develop a novel greedy pursuit algorithm for sparse MEG source localization that overcomes these fundamental problems. This algorithm, which we refer to as the Subspace Pursuit-based Iterative Greedy Hierarchical (SPIGH) inverse solution, exhibits very low computational complexity while achieving very high localization accuracy. We evaluate the performance of the proposed algorithm using comprehensive simulations, as well as the analysis of human MEG data during spontaneous brain activity and somatosensory stimuli. These studies reveal substantial performance gains provided by the SPIGH algorithm in terms of computational complexity, localization accuracy, and robustness. PMID:24055554

  12. Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area

    NASA Astrophysics Data System (ADS)

    Bechle, Matthew J.; Millet, Dylan B.; Marshall, Julian D.

    2013-04-01

    Remote sensing may be a useful tool for exploring spatial variability of air pollution exposure within an urban area. To evaluate the extent to which satellite data from the Ozone Monitoring Instrument (OMI) can resolve urban-scale gradients in ground-level nitrogen dioxide (NO2) within a large urban area, we compared estimates of surface NO2 concentrations derived from OMI measurements and US EPA ambient monitoring stations. OMI, aboard NASA's Aura satellite, provides daily afternoon (˜13:30 local time) measurements of NO2 tropospheric column abundance. We used scaling factors (surface-to-column ratios) to relate satellite column measurements to ground-level concentrations. We compared 4138 sets of paired data for 25 monitoring stations in the South Coast Air Basin of California for all of 2005. OMI measurements include more data gaps than the ground monitors (60% versus 5% of available data, respectively), owing to cloud contamination and imposed limits on pixel size. The spatial correlation between OMI columns and corrected in situ measurements is strong (r = 0.93 for annual average data), indicating that the within-urban spatial signature of surface NO2 is well resolved by the satellite sensor. Satellite-based surface estimates employing scaling factors from an urban model provide a reliable measure (annual mean bias: -13%; seasonal mean bias: <1% [spring] to -22% [fall]) of fine-scale surface NO2. We also find that OMI provides good spatial density in the study region (average area [km2] per measurement: 730 for the satellite sensor vs. 1100 for the monitors). Our findings indicate that satellite observations of NO2 from the OMI sensor provide a reliable measure of spatial variability in ground-level NO2 exposure for a large urban area.

  13. The validity of flow approximations when simulating catchment-integrated flash floods

    NASA Astrophysics Data System (ADS)

    Bout, B.; Jetten, V. G.

    2018-01-01

    Within hydrological models, flow approximations are commonly used to reduce computation time. The validity of these approximations is strongly determined by flow height, flow velocity and the spatial resolution of the model. In this presentation, the validity and performance of the kinematic, diffusive and dynamic flow approximations are investigated for use in a catchment-based flood model. Particularly, the validity during flood events and for varying spatial resolutions is investigated. The OpenLISEM hydrological model is extended to implement both these flow approximations and channel flooding based on dynamic flow. The flow approximations are used to recreate measured discharge in three catchments, among which is the hydrograph of the 2003 flood event in the Fella river basin. Furthermore, spatial resolutions are varied for the flood simulation in order to investigate the influence of spatial resolution on these flow approximations. Results show that the kinematic, diffusive and dynamic flow approximation provide least to highest accuracy, respectively, in recreating measured discharge. Kinematic flow, which is commonly used in hydrological modelling, substantially over-estimates hydrological connectivity in the simulations with a spatial resolution of below 30 m. Since spatial resolutions of models have strongly increased over the past decades, usage of routed kinematic flow should be reconsidered. The combination of diffusive or dynamic overland flow and dynamic channel flooding provides high accuracy in recreating the 2003 Fella river flood event. Finally, in the case of flood events, spatial modelling of kinematic flow substantially over-estimates hydrological connectivity and flow concentration since pressure forces are removed, leading to significant errors.

  14. Near-field electromagnetic holography for high-resolution analysis of network interactions in neuronal tissue

    PubMed Central

    Kjeldsen, Henrik D.; Kaiser, Marcus; Whittington, Miles A.

    2015-01-01

    Background Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. New method Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. Results The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. Comparison with existing methods The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Conclusions Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the method presented already permits the study of dynamic causal interactions without bias from any prior assumptions on anatomical connectivity. PMID:26026581

  15. Near-field electromagnetic holography for high-resolution analysis of network interactions in neuronal tissue.

    PubMed

    Kjeldsen, Henrik D; Kaiser, Marcus; Whittington, Miles A

    2015-09-30

    Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the method presented already permits the study of dynamic causal interactions without bias from any prior assumptions on anatomical connectivity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Distribution of late Pleistocene ice-rich syngenetic permafrost of the Yedoma Suite in east and central Siberia, Russia

    USGS Publications Warehouse

    Grosse, Guido; Robinson, Joel E.; Bryant, Robin; Taylor, Maxwell D.; Harper, William; DeMasi, Amy; Kyker-Snowman, Emily; Veremeeva, Alexandra; Schirrmeister, Lutz; Harden, Jennifer

    2013-01-01

    This digital database is the product of collaboration between the U.S. Geological Survey, the Geophysical Institute at the University of Alaska, Fairbanks; the Los Altos Hills Foothill College GeoSpatial Technology Certificate Program; the Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany; and the Institute of Physical Chemical and Biological Problems in Soil Science of the Russian Academy of Sciences. The primary goal for creating this digital database is to enhance current estimates of soil organic carbon stored in deep permafrost, in particular the late Pleistocene syngenetic ice-rich permafrost deposits of the Yedoma Suite. Previous studies estimated that Yedoma deposits cover about 1 million square kilometers of a large region in central and eastern Siberia, but these estimates generally are based on maps with scales smaller than 1:10,000,000. Taking into account this large area, it was estimated that Yedoma may store as much as 500 petagrams of soil organic carbon, a large part of which is vulnerable to thaw and mobilization from thermokarst and erosion. To refine assessments of the spatial distribution of Yedoma deposits, we digitized 11 Russian Quaternary geologic maps. Our study focused on extracting geologic units interpreted by us as late Pleistocene ice-rich syngenetic Yedoma deposits based on lithology, ground ice conditions, stratigraphy, and geomorphological and spatial association. These Yedoma units then were merged into a single data layer across map tiles. The spatial database provides a useful update of the spatial distribution of this deposit for an approximately 2.32 million square kilometers land area in Siberia that will (1) serve as a core database for future refinements of Yedoma distribution in additional regions, and (2) provide a starting point to revise the size of deep but thaw-vulnerable permafrost carbon pools in the Arctic based on surface geology and the distribution of cryolithofacies types at high spatial resolution. However, we recognize that the extent of Yedoma deposits presented in this database is not complete for a global assessment, because Yedoma deposits also occur in the Taymyr lowlands and Chukotka, and in parts of Alaska and northwestern Canada.

  17. CYGNSS Surface Wind Observations and Surface Flux Estimates within Low-Latitude Extratropical Cyclones

    NASA Astrophysics Data System (ADS)

    Crespo, J.; Posselt, D. J.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS), launched in December 2016, aims to improve estimates of surface wind speeds over the tropical oceans. While CYGNSS's core mission is to provide better estimates of surface winds within the core of tropical cyclones, previous research has shown that the constellation, with its orbital inclination of 35°, also has the ability to observe numerous extratropical cyclones that form in the lower latitudes. Along with its high spatial and temporal resolution, CYGNSS can provide new insights into how extratropical cyclones develop and evolve, especially in the presence of thick clouds and precipitation. We will demonstrate this by presenting case studies of multiple extratropical cyclones observed by CYGNSS early on in its mission in both Northern and Southern Hemispheres. By using the improved estimates of surface wind speeds from CYGNSS, we can obtain better estimates of surface latent and sensible heat fluxes within and around extratropical cyclones. Surface heat fluxes, driven by surface winds and strong vertical gradients of water vapor and temperature, play a key role in marine cyclogenesis as they increase instability within the boundary layer and may contribute to extreme marine cyclogenesis. In the past, it has been difficult to estimate surface heat fluxes from space borne instruments, as these fluxes cannot be observed directly from space, and deficiencies in spatial coverage and attenuation from clouds and precipitation lead to inaccurate estimates of surface flux components, such as surface wind speeds. While CYGNSS only contributes estimates of surface wind speeds, we can combine this data with other reanalysis and satellite data to provide improved estimates of surface sensible and latent heat fluxes within and around extratropical cyclones and throughout the entire CYGNSS mission.

  18. Long-term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements

    NASA Astrophysics Data System (ADS)

    Chen, J. L.; Wilson, C. R.; Tapley, B. D.; Save, H.; Cretaux, Jean-Francois

    2017-03-01

    We examine recent Caspian Sea level change by using both satellite radar altimetry and satellite gravity data. The altimetry record for 2002-2015 shows a declining level at a rate that is approximately 20 times greater than the rate of global sea level rise. Seasonal fluctuations are also much larger than in the world oceans. With a clearly defined geographic region and dominant signal magnitude, variations in the sea level and associated mass changes provide an excellent way to compare various approaches for processing satellite gravity data. An altimeter time series derived from several successive satellite missions is compared with mass measurements inferred from Gravity Recovery and Climate Experiment (GRACE) data in the form of both spherical harmonic (SH) and mass concentration (mascon) solutions. After correcting for spatial leakage in GRACE SH estimates by constrained forward modeling and accounting for steric and terrestrial water processes, GRACE and altimeter observations are in complete agreement at seasonal and longer time scales, including linear trends. This demonstrates that removal of spatial leakage error in GRACE SH estimates is both possible and critical to improving their accuracy and spatial resolution. Excellent agreement between GRACE and altimeter estimates also provides confirmation of steric Caspian Sea level change estimates. GRACE mascon estimates (both the Jet Propulsion Laboratory (JPL) coastline resolution improvement version 2 solution and the Center for Space Research (CSR) regularized) are also affected by leakage error. After leakage corrections, both JPL and CSR mascon solutions also agree well with altimeter observations. However, accurate quantification of leakage bias in GRACE mascon solutions is a more challenging problem.

  19. Estimating Carbon Storage and Sequestration by Urban Trees at Multiple Spatial Resolutions

    NASA Astrophysics Data System (ADS)

    Wu, J.; Tran, A.; Liao, A.

    2010-12-01

    Urban forests are an important component of urban-suburban environments. Urban trees provide not only a full range of social and psychological benefits to city dwellers, but also valuable ecosystem services to communities, such as removing atmospheric carbon dioxide, improving air quality, and reducing storm water runoff. There is an urgent need for developing strategic conservation plans for environmentally sustainable urban-suburban development based on the scientific understanding of the extent and function of urban forests. However, several challenges remain to accurately quantify various environmental benefits provided by urban trees, among which is to deal with the effect of changing spatial resolution and/or scale. In this study, we intended to examine the uncertainties of carbon storage and sequestration associated with the tree canopy coverage of different spatial resolutions. Multi-source satellite imagery data were acquired for the City of Fullerton, located in Orange County of California. The tree canopy coverage of the study area was classified at three spatial resolutions, ranging from 30 m (Landsat-5 Thematic Mapper), 15 m (Advanced Spaceborne Thermal Emission and Reflection Radiometer), to 2.5 m (QuickBird). We calculated the amount of carbon stored in the trees represented on the individual tree coverage maps and the annual carbon taken up by the trees with a model (i.e., CITYgreen) developed by the U.S. Forest Service. The results indicate that urban trees account for significant proportions of land cover in the study area even with the low spatial resolution data. The estimated carbon fixation benefits vary greatly depending on the details of land use and land cover classification. The extrapolation of estimation from the fine-resolution stand-level to the low-resolution landscape-scale will likely not preserve reasonable accuracy.

  20. Quantifying Sources and Fluxes of Aquatic Carbon in U.S. Streams and Reservoirs Using Spatially Referenced Regression Models

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Smith, R. A.; Alexander, R. B.; Schwarz, G. E.

    2004-12-01

    Organic carbon (OC) is a critical water quality characteristic in riverine systems that is an important component of the aquatic carbon cycle and energy balance. Examples of processes controlled by OC interactions are complexation of trace metals; enhancement of the solubility of hydrophobic organic contaminants; formation of trihalomethanes in drinking water; and absorption of visible and UV radiation. Organic carbon also can have indirect effects on water quality by influencing internal processes of aquatic ecosystems (e.g. photosynthesis and autotrophic and heterotrophic activity). The importance of organic matter dynamics on water quality has been recognized, but challenges remain in quantitatively addressing OC processes over broad spatial scales in a hydrological context. In this study, we apply spatially referenced watershed models (SPARROW) to statistically estimate long-term mean-annual rates of dissolved- and total- organic carbon export in streams and reservoirs across the conterminous United States. We make use of a GIS framework for the analysis, describing sources, transport, and transformations of organic matter from spatial databases providing characterizations of climate, land use, primary productivity, topography, soils, and geology. This approach is useful because it illustrates spatial patterns of organic carbon fluxes in streamflow, highlighting hot spots (e.g., organic-rich environments in the southeastern coastal plain). Further, our simulations provide estimates of the relative contributions to streams from allochthonous and autochthonous sources. We quantify surface water fluxes of OC with estimates of uncertainty in relation to the overall US carbon budget; our simulations highlight that aquatic sources and sinks of OC may be a more significant component of regional carbon cycling than was previously thought. Further, we are using our simulations to explore the potential role of climate and other changes in the terrestrial environment on OC fluxes in aquatic systems.

  1. Spatial capture-recapture models for search-encounter data

    USGS Publications Warehouse

    Royle, J. Andrew; Kery, Marc; Guelat, Jerome

    2011-01-01

    1. Spatial capture–recapture models make use of auxiliary data on capture location to provide density estimates for animal populations. Previously, models have been developed primarily for fixed trap arrays which define the observable locations of individuals by a set of discrete points. 2. Here, we develop a class of models for 'search-encounter' data, i.e. for detections of recognizable individuals in continuous space, not restricted to trap locations. In our hierarchical model, detection probability is related to the average distance between individual location and the survey path. The locations are allowed to change over time owing to movements of individuals, and individual locations are related formally by a model describing individual activity or home range centre which is itself regarded as a latent variable in the model. We provide a Bayesian analysis of the model in WinBUGS, and develop a custom MCMC algorithm in the R language. 3. The model is applied to simulated data and to territory mapping data for the Willow Tit from the Swiss Breeding Bird Survey MHB. While the observed density was 15 territories per nominal 1 km2 plot of unknown effective sample area, the model produced a density estimate of 21∙12 territories per square km (95% posterior interval: 17–26). 4. Spatial capture–recapture models are relevant to virtually all animal population studies that seek to estimate population size or density, yet existing models have been proposed mainly for conventional sampling using arrays of traps. Our model for search-encounter data, where the spatial pattern of searching can be arbitrary and may change over occasions, greatly expands the scope and utility of spatial capture–recapture models.

  2. Daily ambient air pollution metrics for five cities: Evaluation of data-fusion-based estimates and uncertainties

    NASA Astrophysics Data System (ADS)

    Friberg, Mariel D.; Kahn, Ralph A.; Holmes, Heather A.; Chang, Howard H.; Sarnat, Stefanie Ebelt; Tolbert, Paige E.; Russell, Armistead G.; Mulholland, James A.

    2017-06-01

    Spatiotemporal characterization of ambient air pollutant concentrations is increasingly relying on the combination of observations and air quality models to provide well-constrained, spatially and temporally complete pollutant concentration fields. Air quality models, in particular, are attractive, as they characterize the emissions, meteorological, and physiochemical process linkages explicitly while providing continuous spatial structure. However, such modeling is computationally intensive and has biases. The limitations of spatially sparse and temporally incomplete observations can be overcome by blending the data with estimates from a physically and chemically coherent model, driven by emissions and meteorological inputs. We recently developed a data fusion method that blends ambient ground observations and chemical-transport-modeled (CTM) data to estimate daily, spatially resolved pollutant concentrations and associated correlations. In this study, we assess the ability of the data fusion method to produce daily metrics (i.e., 1-hr max, 8-hr max, and 24-hr average) of ambient air pollution that capture spatiotemporal air pollution trends for 12 pollutants (CO, NO2, NOx, O3, SO2, PM10, PM2.5, and five PM2.5 components) across five metropolitan areas (Atlanta, Birmingham, Dallas, Pittsburgh, and St. Louis), from 2002 to 2008. Three sets of comparisons are performed: (1) the CTM concentrations are evaluated for each pollutant and metropolitan domain, (2) the data fusion concentrations are compared with the monitor data, (3) a comprehensive cross-validation analysis against observed data evaluates the quality of the data fusion model simulations across multiple metropolitan domains. The resulting daily spatial field estimates of air pollutant concentrations and uncertainties are not only consistent with observations, emissions, and meteorology, but substantially improve CTM-derived results for nearly all pollutants and all cities, with the exception of NO2 for Birmingham. The greatest improvements occur for O3 and PM2.5. Squared spatiotemporal correlation coefficients range between simulations and observations determined using cross-validation across all cities for air pollutants of secondary and mixed origins are R2 = 0.88-0.93 (O3), 0.81-0.89 (SO4), 0.67-0.83 (PM2.5), 0.52-0.72 (NO3), 0.43-0.80 (NH4), 0.32-0.51 (OC), and 0.14-0.71 (PM10). Results for relatively homogeneous pollutants of secondary origin, tend to be better than those for more spatially heterogeneous (larger spatial gradients) pollutants of primary origin (NOx, CO, SO2 and EC). Generally, background concentrations and spatial concentration gradients reflect interurban airshed complexity and the effects of regional transport, whereas daily spatial pattern variability shows intra-urban consistency in the fused data. With sufficiently high CTM spatial resolution, traffic-related pollutants exhibit gradual concentration gradients that peak toward the urban centers. Ambient pollutant concentration uncertainty estimates for the fused data are both more accurate and smaller than those for either the observations or the model simulations alone.

  3. Reconciling resource utilization and resource selection functions

    USGS Publications Warehouse

    Hooten, Mevin B.; Hanks, Ephraim M.; Johnson, Devin S.; Alldredge, Mat W.

    2013-01-01

    Summary: 1. Analyses based on utilization distributions (UDs) have been ubiquitous in animal space use studies, largely because they are computationally straightforward and relatively easy to employ. Conventional applications of resource utilization functions (RUFs) suggest that estimates of UDs can be used as response variables in a regression involving spatial covariates of interest. 2. It has been claimed that contemporary implementations of RUFs can yield inference about resource selection, although to our knowledge, an explicit connection has not been described. 3. We explore the relationships between RUFs and resource selection functions from a hueristic and simulation perspective. We investigate several sources of potential bias in the estimation of resource selection coefficients using RUFs (e.g. the spatial covariance modelling that is often used in RUF analyses). 4. Our findings illustrate that RUFs can, in fact, serve as approximations to RSFs and are capable of providing inference about resource selection, but only with some modification and under specific circumstances. 5. Using real telemetry data as an example, we provide guidance on which methods for estimating resource selection may be more appropriate and in which situations. In general, if telemetry data are assumed to arise as a point process, then RSF methods may be preferable to RUFs; however, modified RUFs may provide less biased parameter estimates when the data are subject to location error.

  4. Spatio-temporal models of mental processes from fMRI.

    PubMed

    Janoos, Firdaus; Machiraju, Raghu; Singh, Shantanu; Morocz, Istvan Ákos

    2011-07-15

    Understanding the highly complex, spatially distributed and temporally organized phenomena entailed by mental processes using functional MRI is an important research problem in cognitive and clinical neuroscience. Conventional analysis methods focus on the spatial dimension of the data discarding the information about brain function contained in the temporal dimension. This paper presents a fully spatio-temporal multivariate analysis method using a state-space model (SSM) for brain function that yields not only spatial maps of activity but also its temporal structure along with spatially varying estimates of the hemodynamic response. Efficient algorithms for estimating the parameters along with quantitative validations are given. A novel low-dimensional feature-space for representing the data, based on a formal definition of functional similarity, is derived. Quantitative validation of the model and the estimation algorithms is provided with a simulation study. Using a real fMRI study for mental arithmetic, the ability of this neurophysiologically inspired model to represent the spatio-temporal information corresponding to mental processes is demonstrated. Moreover, by comparing the models across multiple subjects, natural patterns in mental processes organized according to different mental abilities are revealed. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Estimates of diffuse phosphorus sources in surface waters of the United States using a spatially referenced watershed model

    USGS Publications Warehouse

    Alexander, R.B.; Smith, R.A.; Schwarz, G.E.

    2004-01-01

    The statistical watershed model SPARROW (SPAtially Referenced Regression On Watershed attributes) was used to estimate the sources and transport of total phosphorus (TP) in surface waters of the United States. We calibrated the model using stream measurements of TP from 336 watersheds of mixed land use and spatial data on topography, soils, stream hydrography, and land use (agriculture, forest, shrub/grass, urban). The model explained 87% of the spatial variability in log transformed stream TP flux (kg yr-1). Predictions of stream yield (kg ha-1 yr-1) were typically within 45% of the observed values at the monitoring sites. The model identified appreciable effects of soils, streams, and reservoirs on TP transport, The estimated aquatic rates of phosphorus removal declined with increasing stream size and rates of water flushing in reservoirs (i.e. areal hydraulic loads). A phosphorus budget for the 2.9 million km2 Mississippi River Basin provides a detailed accounting of TP delivery to streams, the removal of TP in surface waters, and the stream export of TP from major interior watersheds for sources associated with each land-use type. ?? US Government 2004.

  6. Filter bank common spatial patterns in mental workload estimation.

    PubMed

    Arvaneh, Mahnaz; Umilta, Alberto; Robertson, Ian H

    2015-01-01

    EEG-based workload estimation technology provides a real time means of assessing mental workload. Such technology can effectively enhance the performance of the human-machine interaction and the learning process. When designing workload estimation algorithms, a crucial signal processing component is the feature extraction step. Despite several studies on this field, the spatial properties of the EEG signals were mostly neglected. Since EEG inherently has a poor spacial resolution, features extracted individually from each EEG channel may not be sufficiently efficient. This problem becomes more pronounced when we use low-cost but convenient EEG sensors with limited stability which is the case in practical scenarios. To address this issue, in this paper, we introduce a filter bank common spatial patterns algorithm combined with a feature selection method to extract spatio-spectral features discriminating different mental workload levels. To evaluate the proposed algorithm, we carry out a comparative analysis between two representative types of working memory tasks using data recorded from an Emotiv EPOC headset which is a mobile low-cost EEG recording device. The experimental results showed that the proposed spatial filtering algorithm outperformed the state-of-the algorithms in terms of the classification accuracy.

  7. Estimation and impact assessment of input and parameter uncertainty in predicting groundwater flow with a fully distributed model

    NASA Astrophysics Data System (ADS)

    Touhidul Mustafa, Syed Md.; Nossent, Jiri; Ghysels, Gert; Huysmans, Marijke

    2017-04-01

    Transient numerical groundwater flow models have been used to understand and forecast groundwater flow systems under anthropogenic and climatic effects, but the reliability of the predictions is strongly influenced by different sources of uncertainty. Hence, researchers in hydrological sciences are developing and applying methods for uncertainty quantification. Nevertheless, spatially distributed flow models pose significant challenges for parameter and spatially distributed input estimation and uncertainty quantification. In this study, we present a general and flexible approach for input and parameter estimation and uncertainty analysis of groundwater models. The proposed approach combines a fully distributed groundwater flow model (MODFLOW) with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. To avoid over-parameterization, the uncertainty of the spatially distributed model input has been represented by multipliers. The posterior distributions of these multipliers and the regular model parameters were estimated using DREAM. The proposed methodology has been applied in an overexploited aquifer in Bangladesh where groundwater pumping and recharge data are highly uncertain. The results confirm that input uncertainty does have a considerable effect on the model predictions and parameter distributions. Additionally, our approach also provides a new way to optimize the spatially distributed recharge and pumping data along with the parameter values under uncertain input conditions. It can be concluded from our approach that considering model input uncertainty along with parameter uncertainty is important for obtaining realistic model predictions and a correct estimation of the uncertainty bounds.

  8. A Bayesian kriging approach for blending satellite and ground precipitation observations

    USGS Publications Warehouse

    Verdin, Andrew P.; Rajagopalan, Balaji; Kleiber, William; Funk, Christopher C.

    2015-01-01

    Drought and flood management practices require accurate estimates of precipitation. Gauge observations, however, are often sparse in regions with complicated terrain, clustered in valleys, and of poor quality. Consequently, the spatial extent of wet events is poorly represented. Satellite-derived precipitation data are an attractive alternative, though they tend to underestimate the magnitude of wet events due to their dependency on retrieval algorithms and the indirect relationship between satellite infrared observations and precipitation intensities. Here we offer a Bayesian kriging approach for blending precipitation gauge data and the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates for Central America, Colombia, and Venezuela. First, the gauge observations are modeled as a linear function of satellite-derived estimates and any number of other variables—for this research we include elevation. Prior distributions are defined for all model parameters and the posterior distributions are obtained simultaneously via Markov chain Monte Carlo sampling. The posterior distributions of these parameters are required for spatial estimation, and thus are obtained prior to implementing the spatial kriging model. This functional framework is applied to model parameters obtained by sampling from the posterior distributions, and the residuals of the linear model are subject to a spatial kriging model. Consequently, the posterior distributions and uncertainties of the blended precipitation estimates are obtained. We demonstrate this method by applying it to pentadal and monthly total precipitation fields during 2009. The model's performance and its inherent ability to capture wet events are investigated. We show that this blending method significantly improves upon the satellite-derived estimates and is also competitive in its ability to represent wet events. This procedure also provides a means to estimate a full conditional distribution of the “true” observed precipitation value at each grid cell.

  9. Use of multi-temporal UAV-derived imagery for estimating individual tree growth in Pinus pinea stands

    Treesearch

    Juan Guerra-Hernández; Eduardo González-Ferreiro; Vicente Monleon; Sonia Faias; Margarida Tomé; Ramón Díaz-Varela

    2017-01-01

    High spatial resolution imagery provided by unmanned aerial vehicles (UAVs) can yield accurate and efficient estimation of tree dimensions and canopy structural variables at the local scale. We flew a low-cost, lightweight UAV over an experimental Pinus pinea L. plantation (290 trees distributed over 16 ha with different fertirrigation treatments)...

  10. Using Imaging Spectrometry measurements of Ecosystem Composition to constrain Regional Predictions of Carbon, Water and Energy Fluxes

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Bond-Lamberty, B. P.; Huang, M.; Xu, Y.; Stegen, J.

    2016-12-01

    Ecosystem composition is a key attribute of terrestrial ecosystems, influencing the fluxes of carbon, water, and energy between the land surface and the atmosphere. The description of current ecosystem composition has traditionally come from relatively few ground-based inventories of the plant canopy, but are spatially limited and do not provide a comprehensive picture of ecosystem composition at regional or global scales. In this analysis, imaging spectrometry measurements, collected as part of the HyspIRI Preparatory Mission, are used to provide spatially-resolved estimates of plant functional type composition providing an important constraint on terrestrial biosphere model predictions of carbon, water and energy fluxes across the heterogeneous landscapes of the Californian Sierras. These landscapes include oak savannas, mid-elevation mixed pines, fir-cedar forests, and high elevation pines. Our results show that imaging spectrometry measurements can be successfully used to estimate regional-scale variation in ecosystem composition and resulting spatial heterogeneity in patterns of carbon, water and energy fluxes and ecosystem dynamics. Simulations at four flux tower sites within the study region yield patterns of seasonal and inter-annual variation in carbon and water fluxes that have comparable accuracy to simulations initialized from ground-based inventory measurements. Finally, results indicate that during the 2012-2015 Californian drought, regional net carbon fluxes fell by 84%, evaporation and transpiration fluxes fell by 53% and 33% respectively, and sensible heat increase by 51%. This study provides a framework for assimilating near-future global satellite imagery estimates of ecosystem composition with terrestrial biosphere models, constraining and improving their predictions of large-scale ecosystem dynamics and functioning.

  11. Using Imaging Spectrometry measurements of Ecosystem Composition to constrain Regional Predictions of Carbon, Water and Energy Fluxes

    NASA Astrophysics Data System (ADS)

    Antonarakis, A. S.; Bogan, S.; Moorcroft, P. R.

    2017-12-01

    Ecosystem composition is a key attribute of terrestrial ecosystems, influencing the fluxes of carbon, water, and energy between the land surface and the atmosphere. The description of current ecosystem composition has traditionally come from relatively few ground-based inventories of the plant canopy, but are spatially limited and do not provide a comprehensive picture of ecosystem composition at regional or global scales. In this analysis, imaging spectrometry measurements, collected as part of the HyspIRI Preparatory Mission, are used to provide spatially-resolved estimates of plant functional type composition providing an important constraint on terrestrial biosphere model predictions of carbon, water and energy fluxes across the heterogeneous landscapes of the Californian Sierras. These landscapes include oak savannas, mid-elevation mixed pines, fir-cedar forests, and high elevation pines. Our results show that imaging spectrometry measurements can be successfully used to estimate regional-scale variation in ecosystem composition and resulting spatial heterogeneity in patterns of carbon, water and energy fluxes and ecosystem dynamics. Simulations at four flux tower sites within the study region yield patterns of seasonal and inter-annual variation in carbon and water fluxes that have comparable accuracy to simulations initialized from ground-based inventory measurements. Finally, results indicate that during the 2012-2015 Californian drought, regional net carbon fluxes fell by 84%, evaporation and transpiration fluxes fell by 53% and 33% respectively, and sensible heat increase by 51%. This study provides a framework for assimilating near-future global satellite imagery estimates of ecosystem composition with terrestrial biosphere models, constraining and improving their predictions of large-scale ecosystem dynamics and functioning.

  12. A Contemporary Assessment of Lateral Fluxes of Organic Carbon in Inland Waters of the USA and Delivery to Coastal Waters

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Alexander, R. B.; Smith, R. A.; Shih, J.; Schwarz, G. E.

    2010-12-01

    Organic carbon (OC) is a critical water quality characteristic in surface waters, as it is an important component of the energy balance and food chains in freshwater and estuarine aquatic ecosystems, is significant in the mobilization and transport of contaminants along flow paths, and is associated with the formation of known carcinogens in drinking water supplies. The importance of OC dynamics on water quality has been recognized, but challenges remain in quantitatively addressing processes controlling OC fluxes over broad spatial scales in a hydrological context. Here, we: 1) quantified lateral OC fluxes in rivers, streams, and reservoirs across the nation; 2) partitioned how much organic carbon that is stored in lakes, rivers and streams comes from allochthonous sources (produced in the terrestrial landscape) versus autochthonous sources (produced in-stream by primary production); and 3) estimated the delivery of dissolved and total forms of organic carbon to coastal estuaries and embayments. To accomplish this, we developed national-scale models of organic carbon in U.S. surface waters using the spatially referenced regression on watersheds (SPARROW) technique. This approach uses mechanistic formulations, imposes mass balance constraints, and provides a formal parameter estimation structure to statistically estimate sources and fate of OC in terrestrial and aquatic ecosystems. We make use of a GIS based framework to describe sources of organic matter and characteristics of the landscape that affect its fate and transport, from spatial databases providing characterizations of climate, land cover, primary productivity, topography, soils, geology, and water routing. We calibrated and evaluated the model with statistical estimates of organic carbon loads that were observed at 1,125 monitoring stations across the nation. Our results illustrate spatial patterns and magnitudes OC loadings in rivers and reservoirs, highlighting hot spots and suggesting origins of the OC to each location. Further, our results yield quantitative estimates of aquatic OC fluxes for large water regions and for the nation, providing a refined estimate of the role of surface water fluxes of OC in relationship to regional and national carbon budgets. Finally, we are using our simulations to explore the potential role of climate and other changes in the terrestrial environment on OC fluxes in aquatic systems.

  13. Observations and Modelling of Winds and Waves during the Surface Wave Dynamics Experiment. Report 1. Intensive Observation Period IOP-1, 20-31 October 1990

    DTIC Science & Technology

    1993-04-01

    wave buoy provided by SEATEX, Norway (Figure 3). The modified Mills-cross array was designed to provide spatial estimates of the variation in wave, wind... designed for SWADE to examine the wave physics at different spatial and temporal scales, and the usefulness of a nested system. Each grid is supposed to...field specification. SWADE Model This high-resolution grid was designed to simulate the small scale wave physics and to improve and verify the source

  14. Experimental Effects and Individual Differences in Linear Mixed Models: Estimating the Relationship between Spatial, Object, and Attraction Effects in Visual Attention

    PubMed Central

    Kliegl, Reinhold; Wei, Ping; Dambacher, Michael; Yan, Ming; Zhou, Xiaolin

    2011-01-01

    Linear mixed models (LMMs) provide a still underused methodological perspective on combining experimental and individual-differences research. Here we illustrate this approach with two-rectangle cueing in visual attention (Egly et al., 1994). We replicated previous experimental cue-validity effects relating to a spatial shift of attention within an object (spatial effect), to attention switch between objects (object effect), and to the attraction of attention toward the display centroid (attraction effect), also taking into account the design-inherent imbalance of valid and other trials. We simultaneously estimated variance/covariance components of subject-related random effects for these spatial, object, and attraction effects in addition to their mean reaction times (RTs). The spatial effect showed a strong positive correlation with mean RT and a strong negative correlation with the attraction effect. The analysis of individual differences suggests that slow subjects engage attention more strongly at the cued location than fast subjects. We compare this joint LMM analysis of experimental effects and associated subject-related variances and correlations with two frequently used alternative statistical procedures. PMID:21833292

  15. Unbiased estimation of oceanic mean rainfall from satellite borne radiometer measurements

    NASA Technical Reports Server (NTRS)

    Mittal, M. C.

    1981-01-01

    The statistical properties of the radar derived rainfall obtained during the GARP Atlantic Tropical Experiment (GATE) are used to derive quantitative estimates of the spatial and temporal sampling errors associated with estimating rainfall from brightness temperature measurements such as would be obtained from a satelliteborne microwave radiometer employing a practical size antenna aperture. A basis for a method of correcting the so called beam filling problem, i.e., for the effect of nonuniformity of rainfall over the radiometer beamwidth is provided. The method presented employs the statistical properties of the observations themselves without need for physical assumptions beyond those associated with the radiative transfer model. The simulation results presented offer a validation of the estimated accuracy that can be achieved and the graphs included permit evaluation of the effect of the antenna resolution on both the temporal and spatial sampling errors.

  16. Is a matrix exponential specification suitable for the modeling of spatial correlation structures?

    PubMed Central

    Strauß, Magdalena E.; Mezzetti, Maura; Leorato, Samantha

    2018-01-01

    This paper investigates the adequacy of the matrix exponential spatial specifications (MESS) as an alternative to the widely used spatial autoregressive models (SAR). To provide as complete a picture as possible, we extend the analysis to all the main spatial models governed by matrix exponentials comparing them with their spatial autoregressive counterparts. We propose a new implementation of Bayesian parameter estimation for the MESS model with vague prior distributions, which is shown to be precise and computationally efficient. Our implementations also account for spatially lagged regressors. We further allow for location-specific heterogeneity, which we model by including spatial splines. We conclude by comparing the performances of the different model specifications in applications to a real data set and by running simulations. Both the applications and the simulations suggest that the spatial splines are a flexible and efficient way to account for spatial heterogeneities governed by unknown mechanisms. PMID:29492375

  17. Three-dimensional analysis of magnetometer array data

    NASA Technical Reports Server (NTRS)

    Richmond, A. D.; Baumjohann, W.

    1984-01-01

    A technique is developed for mapping magnetic variation fields in three dimensions using data from an array of magnetometers, based on the theory of optimal linear estimation. The technique is applied to data from the Scandinavian Magnetometer Array. Estimates of the spatial power spectra for the internal and external magnetic variations are derived, which in turn provide estimates of the spatial autocorrelation functions of the three magnetic variation components. Statistical errors involved in mapping the external and internal fields are quantified and displayed over the mapping region. Examples of field mapping and of separation into external and internal components are presented. A comparison between the three-dimensional field separation and a two-dimensional separation from a single chain of stations shows that significant differences can arise in the inferred internal component.

  18. Comparing two tools for ecosystem service assessments regarding water resources decisions.

    PubMed

    Dennedy-Frank, P James; Muenich, Rebecca Logsdon; Chaubey, Indrajeet; Ziv, Guy

    2016-07-15

    We present a comparison of two ecohydrologic models commonly used for planning land management to assess the production of hydrologic ecosystem services: the Soil and Water Assessment Tool (SWAT) and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) annual water yield model. We compare these two models at two distinct sites in the US: the Wildcat Creek Watershed in Indiana and the Upper Upatoi Creek Watershed in Georgia. The InVEST and SWAT models provide similar estimates of the spatial distribution of water yield in Wildcat Creek, but very different estimates of the spatial distribution of water yield in Upper Upatoi Creek. The InVEST model may do a poor job estimating the spatial distribution of water yield in the Upper Upatoi Creek Watershed because baseflow provides a significant portion of the site's total water yield, which means that storage dynamics which are not modeled by InVEST may be important. We also compare the ability of these two models, as well as one newly developed set of ecosystem service indices, to deliver useful guidance for land management decisions focused on providing hydrologic ecosystem services in three particular decision contexts: environmental flow ecosystem services, ecosystem services for potable water supply, and ecosystem services for rainfed irrigation. We present a simple framework for selecting models or indices to evaluate hydrologic ecosystem services as a way to formalize where models deliver useful guidance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fine-resolution Modeling of Urban-Energy Systems' Water Footprint in River Networks

    NASA Astrophysics Data System (ADS)

    McManamay, R.; Surendran Nair, S.; Morton, A.; DeRolph, C.; Stewart, R.

    2015-12-01

    Characterizing the interplay between urbanization, energy production, and water resources is essential for ensuring sustainable population growth. In order to balance limited water supplies, competing users must account for their realized and virtual water footprint, i.e. the total direct and indirect amount of water used, respectively. Unfortunately, publicly reported US water use estimates are spatially coarse, temporally static, and completely ignore returns of water to rivers after use. These estimates are insufficient to account for the high spatial and temporal heterogeneity of water budgets in urbanizing systems. Likewise, urbanizing areas are supported by competing sources of energy production, which also have heterogeneous water footprints. Hence, a fundamental challenge of planning for sustainable urban growth and decision-making across disparate policy sectors lies in characterizing inter-dependencies among urban systems, energy producers, and water resources. A modeling framework is presented that provides a novel approach to integrate urban-energy infrastructure into a spatial accounting network that accurately measures water footprints as changes in the quantity and quality of river flows. River networks (RNs), i.e. networks of branching tributaries nested within larger rivers, provide a spatial structure to measure water budgets by modeling hydrology and accounting for use and returns from urbanizing areas and energy producers. We quantify urban-energy water footprints for Atlanta, GA and Knoxville, TN (USA) based on changes in hydrology in RNs. Although water intakes providing supply to metropolitan areas were proximate to metropolitan areas, power plants contributing to energy demand in Knoxville and Atlanta, occurred 30 and 90km outside the metropolitan boundary, respectively. Direct water footprints from urban landcover primarily comprised smaller streams whereas indirect footprints from water supply reservoirs and energy producers included larger river systems. By using projections in urban populations for 2030 and 2050, we estimated scenarios of expansion in water footprints depending on urban growth policies and energy production technology. We provide examples of how this framework can be used to minimize water footprints and impacts to aquatic biodiversity.

  20. Multispectral scanner system parameter study and analysis software system description, volume 2

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator); Mobasseri, B. G.; Wiersma, D. J.; Wiswell, E. R.; Mcgillem, C. D.; Anuta, P. E.

    1978-01-01

    The author has identified the following significant results. The integration of the available methods provided the analyst with the unified scanner analysis package (USAP), the flexibility and versatility of which was superior to many previous integrated techniques. The USAP consisted of three main subsystems; (1) a spatial path, (2) a spectral path, and (3) a set of analytic classification accuracy estimators which evaluated the system performance. The spatial path consisted of satellite and/or aircraft data, data correlation analyzer, scanner IFOV, and random noise model. The output of the spatial path was fed into the analytic classification and accuracy predictor. The spectral path consisted of laboratory and/or field spectral data, EXOSYS data retrieval, optimum spectral function calculation, data transformation, and statistics calculation. The output of the spectral path was fended into the stratified posterior performance estimator.

  1. Measuring Spatial Dependence for Infectious Disease Epidemiology

    PubMed Central

    Grabowski, M. Kate; Cummings, Derek A. T.

    2016-01-01

    Global spatial clustering is the tendency of points, here cases of infectious disease, to occur closer together than expected by chance. The extent of global clustering can provide a window into the spatial scale of disease transmission, thereby providing insights into the mechanism of spread, and informing optimal surveillance and control. Here the authors present an interpretable measure of spatial clustering, τ, which can be understood as a measure of relative risk. When biological or temporal information can be used to identify sets of potentially linked and likely unlinked cases, this measure can be estimated without knowledge of the underlying population distribution. The greater our ability to distinguish closely related (i.e., separated by few generations of transmission) from more distantly related cases, the more closely τ will track the true scale of transmission. The authors illustrate this approach using examples from the analyses of HIV, dengue and measles, and provide an R package implementing the methods described. The statistic presented, and measures of global clustering in general, can be powerful tools for analysis of spatially resolved data on infectious diseases. PMID:27196422

  2. A dynamic spatio-temporal model for spatial data

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin; Walsh, Daniel P.

    2017-01-01

    Analyzing spatial data often requires modeling dependencies created by a dynamic spatio-temporal data generating process. In many applications, a generalized linear mixed model (GLMM) is used with a random effect to account for spatial dependence and to provide optimal spatial predictions. Location-specific covariates are often included as fixed effects in a GLMM and may be collinear with the spatial random effect, which can negatively affect inference. We propose a dynamic approach to account for spatial dependence that incorporates scientific knowledge of the spatio-temporal data generating process. Our approach relies on a dynamic spatio-temporal model that explicitly incorporates location-specific covariates. We illustrate our approach with a spatially varying ecological diffusion model implemented using a computationally efficient homogenization technique. We apply our model to understand individual-level and location-specific risk factors associated with chronic wasting disease in white-tailed deer from Wisconsin, USA and estimate the location the disease was first introduced. We compare our approach to several existing methods that are commonly used in spatial statistics. Our spatio-temporal approach resulted in a higher predictive accuracy when compared to methods based on optimal spatial prediction, obviated confounding among the spatially indexed covariates and the spatial random effect, and provided additional information that will be important for containing disease outbreaks.

  3. Towards real-time diffuse optical tomography for imaging brain functions cooperated with Kalman estimator

    NASA Astrophysics Data System (ADS)

    Wang, Bingyuan; Zhang, Yao; Liu, Dongyuan; Ding, Xuemei; Dan, Mai; Pan, Tiantian; Wang, Yihan; Li, Jiao; Zhou, Zhongxing; Zhang, Limin; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging method to monitor the cerebral hemodynamic through the optical changes measured at the scalp surface. It has played a more and more important role in psychology and medical imaging communities. Real-time imaging of brain function using NIRS makes it possible to explore some sophisticated human brain functions unexplored before. Kalman estimator has been frequently used in combination with modified Beer-Lamber Law (MBLL) based optical topology (OT), for real-time brain function imaging. However, the spatial resolution of the OT is low, hampering the application of OT in exploring some complicated brain functions. In this paper, we develop a real-time imaging method combining diffuse optical tomography (DOT) and Kalman estimator, much improving the spatial resolution. Instead of only presenting one spatially distributed image indicating the changes of the absorption coefficients at each time point during the recording process, one real-time updated image using the Kalman estimator is provided. Its each voxel represents the amplitude of the hemodynamic response function (HRF) associated with this voxel. We evaluate this method using some simulation experiments, demonstrating that this method can obtain more reliable spatial resolution images. Furthermore, a statistical analysis is also conducted to help to decide whether a voxel in the field of view is activated or not.

  4. Spatial Downscaling of TRMM Precipitation using MODIS product in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Cho, H.; Choi, M.

    2013-12-01

    Precipitation is a major driving force in the water cycle. But, it is difficult to provide spatially distributed precipitation data from isolated individual in situ. The Tropical Rainfall Monitoring Mission (TRMM) satellite can provide precipitation data with relatively coarse spatial resolution (0.25° scale) at daily basis. In order to overcome the coarse spatial resolution of TRMM precipitation products, we conducted a downscaling technique using a scaling parameter from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor. In this study, statistical relations between precipitation estimates derived from the TRMM satellite and the normalized difference vegetation index (NDVI) which is obtained from the MODIS sensor in TERRA satellite are found for different spatial scales on the Korean peninsula in northeast Asia. We obtain the downscaled precipitation mapping by regression equation between yearly TRMM precipitations values and annual average NDVI aggregating 1km to 25 degree. The downscaled precipitation is validated using time series of the ground measurements precipitation dataset provided by Korea Meteorological Organization (KMO) from 2002 to 2005. To improve the spatial downscaling of precipitation, we will conduct a study about correlation between precipitation and land surface temperature, perceptible water and other hydrological parameters.

  5. Low is large: spatial location and pitch interact in voice-based body size estimation.

    PubMed

    Pisanski, Katarzyna; Isenstein, Sari G E; Montano, Kelyn J; O'Connor, Jillian J M; Feinberg, David R

    2017-05-01

    The binding of incongruent cues poses a challenge for multimodal perception. Indeed, although taller objects emit sounds from higher elevations, low-pitched sounds are perceptually mapped both to large size and to low elevation. In the present study, we examined how these incongruent vertical spatial cues (up is more) and pitch cues (low is large) to size interact, and whether similar biases influence size perception along the horizontal axis. In Experiment 1, we measured listeners' voice-based judgments of human body size using pitch-manipulated voices projected from a high versus a low, and a right versus a left, spatial location. Listeners associated low spatial locations with largeness for lowered-pitch but not for raised-pitch voices, demonstrating that pitch overrode vertical-elevation cues. Listeners associated rightward spatial locations with largeness, regardless of voice pitch. In Experiment 2, listeners performed the task while sitting or standing, allowing us to examine self-referential cues to elevation in size estimation. Listeners associated vertically low and rightward spatial cues with largeness more for lowered- than for raised-pitch voices. These correspondences were robust to sex (of both the voice and the listener) and head elevation (standing or sitting); however, horizontal correspondences were amplified when participants stood. Moreover, when participants were standing, their judgments of how much larger men's voices sounded than women's increased when the voices were projected from the low speaker. Our results provide novel evidence for a multidimensional spatial mapping of pitch that is generalizable to human voices and that affects performance in an indirect, ecologically relevant spatial task (body size estimation). These findings suggest that crossmodal pitch correspondences evoke both low-level and higher-level cognitive processes.

  6. Spatially Common Sparsity Based Adaptive Channel Estimation and Feedback for FDD Massive MIMO

    NASA Astrophysics Data System (ADS)

    Gao, Zhen; Dai, Linglong; Wang, Zhaocheng; Chen, Sheng

    2015-12-01

    This paper proposes a spatially common sparsity based adaptive channel estimation and feedback scheme for frequency division duplex based massive multi-input multi-output (MIMO) systems, which adapts training overhead and pilot design to reliably estimate and feed back the downlink channel state information (CSI) with significantly reduced overhead. Specifically, a non-orthogonal downlink pilot design is first proposed, which is very different from standard orthogonal pilots. By exploiting the spatially common sparsity of massive MIMO channels, a compressive sensing (CS) based adaptive CSI acquisition scheme is proposed, where the consumed time slot overhead only adaptively depends on the sparsity level of the channels. Additionally, a distributed sparsity adaptive matching pursuit algorithm is proposed to jointly estimate the channels of multiple subcarriers. Furthermore, by exploiting the temporal channel correlation, a closed-loop channel tracking scheme is provided, which adaptively designs the non-orthogonal pilot according to the previous channel estimation to achieve an enhanced CSI acquisition. Finally, we generalize the results of the multiple-measurement-vectors case in CS and derive the Cramer-Rao lower bound of the proposed scheme, which enlightens us to design the non-orthogonal pilot signals for the improved performance. Simulation results demonstrate that the proposed scheme outperforms its counterparts, and it is capable of approaching the performance bound.

  7. A reference dataset for deformable image registration spatial accuracy evaluation using the COPDgene study archive

    NASA Astrophysics Data System (ADS)

    Castillo, Richard; Castillo, Edward; Fuentes, David; Ahmad, Moiz; Wood, Abbie M.; Ludwig, Michelle S.; Guerrero, Thomas

    2013-05-01

    Landmark point-pairs provide a strategy to assess deformable image registration (DIR) accuracy in terms of the spatial registration of the underlying anatomy depicted in medical images. In this study, we propose to augment a publicly available database (www.dir-lab.com) of medical images with large sets of manually identified anatomic feature pairs between breath-hold computed tomography (BH-CT) images for DIR spatial accuracy evaluation. Ten BH-CT image pairs were randomly selected from the COPDgene study cases. Each patient had received CT imaging of the entire thorax in the supine position at one-fourth dose normal expiration and maximum effort full dose inspiration. Using dedicated in-house software, an imaging expert manually identified large sets of anatomic feature pairs between images. Estimates of inter- and intra-observer spatial variation in feature localization were determined by repeat measurements of multiple observers over subsets of randomly selected features. 7298 anatomic landmark features were manually paired between the 10 sets of images. Quantity of feature pairs per case ranged from 447 to 1172. Average 3D Euclidean landmark displacements varied substantially among cases, ranging from 12.29 (SD: 6.39) to 30.90 (SD: 14.05) mm. Repeat registration of uniformly sampled subsets of 150 landmarks for each case yielded estimates of observer localization error, which ranged in average from 0.58 (SD: 0.87) to 1.06 (SD: 2.38) mm for each case. The additions to the online web database (www.dir-lab.com) described in this work will broaden the applicability of the reference data, providing a freely available common dataset for targeted critical evaluation of DIR spatial accuracy performance in multiple clinical settings. Estimates of observer variance in feature localization suggest consistent spatial accuracy for all observers across both four-dimensional CT and COPDgene patient cohorts.

  8. A Comparison of Grizzly Bear Demographic Parameters Estimated from Non-Spatial and Spatial Open Population Capture-Recapture Models.

    PubMed

    Whittington, Jesse; Sawaya, Michael A

    2015-01-01

    Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal's home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786-1.071) for females, 0.844 (0.703-0.975) for males, and 0.882 (0.779-0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758-1.024) for females, 0.825 (0.700-0.948) for males, and 0.863 (0.771-0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth rates suggest that Banff National Park's population of grizzly bears requires continued conservation-oriented management actions.

  9. Spatial scan statistics for detection of multiple clusters with arbitrary shapes.

    PubMed

    Lin, Pei-Sheng; Kung, Yi-Hung; Clayton, Murray

    2016-12-01

    In applying scan statistics for public health research, it would be valuable to develop a detection method for multiple clusters that accommodates spatial correlation and covariate effects in an integrated model. In this article, we connect the concepts of the likelihood ratio (LR) scan statistic and the quasi-likelihood (QL) scan statistic to provide a series of detection procedures sufficiently flexible to apply to clusters of arbitrary shape. First, we use an independent scan model for detection of clusters and then a variogram tool to examine the existence of spatial correlation and regional variation based on residuals of the independent scan model. When the estimate of regional variation is significantly different from zero, a mixed QL estimating equation is developed to estimate coefficients of geographic clusters and covariates. We use the Benjamini-Hochberg procedure (1995) to find a threshold for p-values to address the multiple testing problem. A quasi-deviance criterion is used to regroup the estimated clusters to find geographic clusters with arbitrary shapes. We conduct simulations to compare the performance of the proposed method with other scan statistics. For illustration, the method is applied to enterovirus data from Taiwan. © 2016, The International Biometric Society.

  10. Pan-European household and industrial water demand: regional relevant estimations

    NASA Astrophysics Data System (ADS)

    Bernhard, Jeroen; Reynaud, Arnaud; de Roo, Ad

    2016-04-01

    Sustainable water management is of high importance to provide adequate quality and quantity of water to European households, industries and agriculture. Especially since demographic, economic and climate changes are expected to increase competition for water between these sectors in the future. A shortage of water implies a reduction in welfare of households or damage to economic sectors. This socio-economic component should be incorporated into the decision-making process when developing water allocation schemes, requiring detailed water use information and cost/benefit functions. We now present the results of our study which is focused at providing regionally relevant pan-European water demand and cost-benefit estimations for the household and industry sector. We gathered consistent data on water consumption, water prices and other relevant variables at the highest spatial detail available from national statistical offices and other organizational bodies. This database provides the most detailed up to date picture of present water use and water prices across Europe. The use of homogeneous data allowed us to compare regions and analyze spatial patterns. We applied econometric methods to determine the main determinants of water demand and make a monetary valuation of water for both the domestic and industry sector. This monetary valuation is important to allow water allocation based on economic damage estimates. We also attempted to estimate how population growth, as well as socio-economic and climatic changes impact future water demand up to 2050 using a homogeneous method for all countries. European projections for the identified major drivers of water demand were used to simulate future conditions. Subsequently, water demand functions were applied to estimate future water use and potential economic damage caused by water shortages. We present our results while also providing some estimation of the uncertainty of our predictions.

  11. Spatial analysis of health risk assessment with arsenic intake of drinking water in the LanYang plain

    NASA Astrophysics Data System (ADS)

    Chen, C. F.; Liang, C. P.; Jang, C. S.; Chen, J. S.

    2016-12-01

    Groundwater is one of the most component water resources in Lanyang plain. The groundwater of the Lanyang Plain contains arsenic levels that exceed the current Taiwan Environmental Protection Administration (Taiwan EPA) limit of 10 μg/L. The arsenic of groundwater in some areas of the Lanyang Plain pose great menace for the safe use of groundwater resources. Therefore, poor water quality can adversely impact drinking water uses, leading to human health risks. This study analyzed the potential health risk associated with the ingestion of arsenic-affected groundwater in the arseniasis-endemic Lanyang plain. Geostatistical approach is widely used in spatial variability analysis and distributions of field data with uncertainty. The estimation of spatial distribution of the arsenic contaminant in groundwater is very important in the health risk assessment. This study used indicator kriging (IK) and ordinary kriging (OK) methods to explore the spatial variability of arsenic-polluted parameters. The estimated difference between IK and OK estimates was compared. The extent of arsenic pollution was spatially determined and the Target cancer risk (TR) and dose response were explored when the ingestion of arsenic in groundwater. Thus, a zonal management plan based on safe groundwater use is formulated. The research findings can provide a plan reference of regional water resources supplies for local government administrators and developing groundwater resources in the Lanyang Plain.

  12. Spatially unresolved SED fitting can underestimate galaxy masses: a solution to the missing mass problem

    NASA Astrophysics Data System (ADS)

    Sorba, Robert; Sawicki, Marcin

    2018-05-01

    We perform spatially resolved, pixel-by-pixel Spectral Energy Distribution (SED) fitting on galaxies up to z ˜ 2.5 in the Hubble eXtreme Deep Field (XDF). Comparing stellar mass estimates from spatially resolved and spatially unresolved photometry we find that unresolved masses can be systematically underestimated by factors of up to 5. The ratio of the unresolved to resolved mass measurement depends on the galaxy's specific star formation rate (sSFR): at low sSFRs the bias is small, but above sSFR ˜ 10-9.5 yr-1 the discrepancy increases rapidly such that galaxies with sSFRs ˜ 10-8 yr-1 have unresolved mass estimates of only one-half to one-fifth of the resolved value. This result indicates that stellar masses estimated from spatially unresolved data sets need to be systematically corrected, in some cases by large amounts, and we provide an analytic prescription for applying this correction. We show that correcting stellar mass measurements for this bias changes the normalization and slope of the star-forming main sequence and reduces its intrinsic width; most dramatically, correcting for the mass bias increases the stellar mass density of the Universe at high redshift and can resolve the long-standing discrepancy between the directly measured cosmic SFR density at z ≳ 1 and that inferred from stellar mass densities (`the missing mass problem').

  13. The effects of spatial population dataset choice on estimates of population at risk of disease

    PubMed Central

    2011-01-01

    Background The spatial modeling of infectious disease distributions and dynamics is increasingly being undertaken for health services planning and disease control monitoring, implementation, and evaluation. Where risks are heterogeneous in space or dependent on person-to-person transmission, spatial data on human population distributions are required to estimate infectious disease risks, burdens, and dynamics. Several different modeled human population distribution datasets are available and widely used, but the disparities among them and the implications for enumerating disease burdens and populations at risk have not been considered systematically. Here, we quantify some of these effects using global estimates of populations at risk (PAR) of P. falciparum malaria as an example. Methods The recent construction of a global map of P. falciparum malaria endemicity enabled the testing of different gridded population datasets for providing estimates of PAR by endemicity class. The estimated population numbers within each class were calculated for each country using four different global gridded human population datasets: GRUMP (~1 km spatial resolution), LandScan (~1 km), UNEP Global Population Databases (~5 km), and GPW3 (~5 km). More detailed assessments of PAR variation and accuracy were conducted for three African countries where census data were available at a higher administrative-unit level than used by any of the four gridded population datasets. Results The estimates of PAR based on the datasets varied by more than 10 million people for some countries, even accounting for the fact that estimates of population totals made by different agencies are used to correct national totals in these datasets and can vary by more than 5% for many low-income countries. In many cases, these variations in PAR estimates comprised more than 10% of the total national population. The detailed country-level assessments suggested that none of the datasets was consistently more accurate than the others in estimating PAR. The sizes of such differences among modeled human populations were related to variations in the methods, input resolution, and date of the census data underlying each dataset. Data quality varied from country to country within the spatial population datasets. Conclusions Detailed, highly spatially resolved human population data are an essential resource for planning health service delivery for disease control, for the spatial modeling of epidemics, and for decision-making processes related to public health. However, our results highlight that for the low-income regions of the world where disease burden is greatest, existing datasets display substantial variations in estimated population distributions, resulting in uncertainty in disease assessments that utilize them. Increased efforts are required to gather contemporary and spatially detailed demographic data to reduce this uncertainty, particularly in Africa, and to develop population distribution modeling methods that match the rigor, sophistication, and ability to handle uncertainty of contemporary disease mapping and spread modeling. In the meantime, studies that utilize a particular spatial population dataset need to acknowledge the uncertainties inherent within them and consider how the methods and data that comprise each will affect conclusions. PMID:21299885

  14. Observation-Driven Estimation of the Spatial Variability of 20th Century Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Hamlington, B. D.; Burgos, A.; Thompson, P. R.; Landerer, F. W.; Piecuch, C. G.; Adhikari, S.; Caron, L.; Reager, J. T.; Ivins, E. R.

    2018-03-01

    Over the past two decades, sea level measurements made by satellites have given clear indications of both global and regional sea level rise. Numerous studies have sought to leverage the modern satellite record and available historic sea level data provided by tide gauges to estimate past sea level rise, leading to several estimates for the 20th century trend in global mean sea level in the range between 1 and 2 mm/yr. On regional scales, few attempts have been made to estimate trends over the same time period. This is due largely to the inhomogeneity and quality of the tide gauge network through the 20th century, which render commonly used reconstruction techniques inadequate. Here, a new approach is adopted, integrating data from a select set of tide gauges with prior estimates of spatial structure based on historical sea level forcing information from the major contributing processes over the past century. The resulting map of 20th century regional sea level rise is optimized to agree with the tide gauge-measured trends, and provides an indication of the likely contributions of different sources to regional patterns. Of equal importance, this study demonstrates the sensitivities of this regional trend map to current knowledge and uncertainty of the contributing processes.

  15. Remote rainfall sensing for landslide hazard analysis

    USGS Publications Warehouse

    Wieczorek, Gerald F.; McWreath, Harry; Davenport, Clay

    2001-01-01

    Methods of assessing landslide hazards and providing warnings are becoming more advanced as remote sensing of rainfall provides more detailed temporal and spatial data on rainfall distribution. Two recent landslide disasters are examined noting the potential for using remotely sensed rainfall data for landslide hazard analysis. For the June 27, 1995, storm in Madison County, Virginia, USA, National Weather Service WSR-88D Doppler radar provided rainfall estimates based on a relation between cloud reflectivity and moisture content on a 1 sq. km. resolution every 6 minutes. Ground-based measurements of rainfall intensity and precipitation total, in addition to landslide timing and distribution, were compared with the radar-derived rainfall data. For the December 14-16, 1999, storm in Vargas State, Venezuela, infrared sensing from the GOES-8 satellite of cloud top temperatures provided the basis for NOAA/NESDIS rainfall estimates on a 16 sq. km. resolution every 30 minutes. These rainfall estimates were also compared with ground-based measurements of rainfall and landslide distribution. In both examples, the remotely sensed data either overestimated or underestimated ground-based values by up to a factor of 2. The factors that influenced the accuracy of rainfall data include spatial registration and map projection, as well as prevailing wind direction, cloud orientation, and topography.

  16. Method comparison for forest soil carbon and nitrogen estimates in the Delaware River basin

    Treesearch

    B. Xu; Yude Pan; A.H. Johnson; A.F. Plante

    2016-01-01

    The accuracy of forest soil C and N estimates is hampered by forest soils that are rocky, inaccessible, and spatially heterogeneous. A composite coring technique is the standard method used in Forest Inventory and Analysis, but its accuracy has been questioned. Quantitative soil pits provide direct measurement of rock content and soil mass from a larger, more...

  17. Modeling spatial effects of PM{sub 2.5} on term low birth weight in Los Angeles County

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coker, Eric, E-mail: cokerer@onid.orst.edu; Ghosh, Jokay; Jerrett, Michael

    Air pollution epidemiological studies suggest that elevated exposure to fine particulate matter (PM{sub 2.5}) is associated with higher prevalence of term low birth weight (TLBW). Previous studies have generally assumed the exposure–response of PM{sub 2.5} on TLBW to be the same throughout a large geographical area. Health effects related to PM{sub 2.5} exposures, however, may not be uniformly distributed spatially, creating a need for studies that explicitly investigate the spatial distribution of the exposure–response relationship between individual-level exposure to PM{sub 2.5} and TLBW. Here, we examine the overall and spatially varying exposure–response relationship between PM{sub 2.5} and TLBW throughout urbanmore » Los Angeles (LA) County, California. We estimated PM{sub 2.5} from a combination of land use regression (LUR), aerosol optical depth from remote sensing, and atmospheric modeling techniques. Exposures were assigned to LA County individual pregnancies identified from electronic birth certificates between the years 1995-2006 (N=1,359,284) provided by the California Department of Public Health. We used a single pollutant multivariate logistic regression model, with multilevel spatially structured and unstructured random effects set in a Bayesian framework to estimate global and spatially varying pollutant effects on TLBW at the census tract level. Overall, increased PM{sub 2.5} level was associated with higher prevalence of TLBW county-wide. The spatial random effects model, however, demonstrated that the exposure–response for PM{sub 2.5} and TLBW was not uniform across urban LA County. Rather, the magnitude and certainty of the exposure–response estimates for PM{sub 2.5} on log odds of TLBW were greatest in the urban core of Central and Southern LA County census tracts. These results suggest that the effects may be spatially patterned, and that simply estimating global pollutant effects obscures disparities suggested by spatial patterns of effects. Studies that incorporate spatial multilevel modeling with random coefficients allow us to identify areas where air pollutant effects on adverse birth outcomes may be most severe and policies to further reduce air pollution might be most effective. - Highlights: • We model the spatial dependency of PM{sub 2.5} effects on term low birth weight (TLBW). • PM{sub 2.5} effects on TLBW are shown to vary spatially across urban LA County. • Modeling spatial dependency of PM{sub 2.5} health effects may identify effect 'hotspots'. • Birth outcomes studies should consider the spatial dependency of PM{sub 2.5} effects.« less

  18. Deriving Continuous Fields of Tree Cover at 1-m over the Continental United States From the National Agriculture Imagery Program (NAIP) Imagery to Reduce Uncertainties in Forest Carbon Stock Estimation

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Basu, S.; Mukhopadhyay, S.; Michaelis, A.; Milesi, C.; Votava, P.; Nemani, R. R.

    2013-12-01

    An unresolved issue with coarse-to-medium resolution satellite-based forest carbon mapping over regional to continental scales is the high level of uncertainty in above ground biomass (AGB) estimates caused by the absence of forest cover information at a high enough spatial resolution (current spatial resolution is limited to 30-m). To put confidence in existing satellite-derived AGB density estimates, it is imperative to create continuous fields of tree cover at a sufficiently high resolution (e.g. 1-m) such that large uncertainties in forested area are reduced. The proposed work will provide means to reduce uncertainty in present satellite-derived AGB maps and Forest Inventory and Analysis (FIA) based regional estimates. Our primary objective will be to create Very High Resolution (VHR) estimates of tree cover at a spatial resolution of 1-m for the Continental United States using all available National Agriculture Imaging Program (NAIP) color-infrared imagery from 2010 till 2012. We will leverage the existing capabilities of the NASA Earth Exchange (NEX) high performance computing and storage facilities. The proposed 1-m tree cover map can be further aggregated to provide percent tree cover at any medium-to-coarse resolution spatial grid, which will aid in reducing uncertainties in AGB density estimation at the respective grid and overcome current limitations imposed by medium-to-coarse resolution land cover maps. We have implemented a scalable and computationally-efficient parallelized framework for tree-cover delineation - the core components of the algorithm [that] include a feature extraction process, a Statistical Region Merging image segmentation algorithm and a classification algorithm based on Deep Belief Network and a Feedforward Backpropagation Neural Network algorithm. An initial pilot exercise has been performed over the state of California (~11,000 scenes) to create a wall-to-wall 1-m tree cover map and the classification accuracy has been assessed. Results show an improvement in accuracy of tree-cover delineation as compared to existing forest cover maps from NLCD, especially over fragmented, heterogeneous and urban landscapes. Estimates of VHR tree cover will complement and enhance the accuracy of present remote-sensing based AGB modeling approaches and forest inventory based estimates at both national and local scales. A requisite step will be to characterize the inherent uncertainties in tree cover estimates and propagate them to estimate AGB.

  19. Quantification of effective plant rooting depth: advancing global hydrological modelling

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Donohue, R. J.; McVicar, T.

    2017-12-01

    Plant rooting depth (Zr) is a key parameter in hydrological and biogeochemical models, yet the global spatial distribution of Zr is largely unknown due to the difficulties in its direct measurement. Moreover, Zr observations are usually only representative of a single plant or several plants, which can differ greatly from the effective Zr over a modelling unit (e.g., catchment or grid-box). Here, we provide a global parameterization of an analytical Zr model that balances the marginal carbon cost and benefit of deeper roots, and produce a climatological (i.e., 1982-2010 average) global Zr map. To test the Zr estimates, we apply the estimated Zr in a highly transparent hydrological model (i.e., the Budyko-Choudhury-Porporato (BCP) model) to estimate mean annual actual evapotranspiration (E) across the globe. We then compare the estimated E with both water balance-based E observations at 32 major catchments and satellite grid-box retrievals across the globe. Our results show that the BCP model, when implemented with Zr estimated herein, optimally reproduced the spatial pattern of E at both scales and provides improved model outputs when compared to BCP model results from two already existing global Zr datasets. These results suggest that our Zr estimates can be effectively used in state-of-the-art hydrological models, and potentially biogeochemical models, where the determination of Zr currently largely relies on biome type-based look-up tables.

  20. Population density estimated from locations of individuals on a passive detector array

    USGS Publications Warehouse

    Efford, Murray G.; Dawson, Deanna K.; Borchers, David L.

    2009-01-01

    The density of a closed population of animals occupying stable home ranges may be estimated from detections of individuals on an array of detectors, using newly developed methods for spatially explicit capture–recapture. Likelihood-based methods provide estimates for data from multi-catch traps or from devices that record presence without restricting animal movement ("proximity" detectors such as camera traps and hair snags). As originally proposed, these methods require multiple sampling intervals. We show that equally precise and unbiased estimates may be obtained from a single sampling interval, using only the spatial pattern of detections. This considerably extends the range of possible applications, and we illustrate the potential by estimating density from simulated detections of bird vocalizations on a microphone array. Acoustic detection can be defined as occurring when received signal strength exceeds a threshold. We suggest detection models for binary acoustic data, and for continuous data comprising measurements of all signals above the threshold. While binary data are often sufficient for density estimation, modeling signal strength improves precision when the microphone array is small.

  1. Optimal estimation of spatially variable recharge and transmissivity fields under steady-state groundwater flow. Part 2. Case study

    NASA Astrophysics Data System (ADS)

    Graham, Wendy D.; Neff, Christina R.

    1994-05-01

    The first-order analytical solution of the inverse problem for estimating spatially variable recharge and transmissivity under steady-state groundwater flow, developed in Part 1 is applied to the Upper Floridan Aquifer in NE Florida. Parameters characterizing the statistical structure of the log-transmissivity and head fields are estimated from 152 measurements of transmissivity and 146 measurements of hydraulic head available in the study region. Optimal estimates of the recharge, transmissivity and head fields are produced throughout the study region by conditioning on the nearest 10 available transmissivity measurements and the nearest 10 available head measurements. Head observations are shown to provide valuable information for estimating both the transmissivity and the recharge fields. Accurate numerical groundwater model predictions of the aquifer flow system are obtained using the optimal transmissivity and recharge fields as input parameters, and the optimal head field to define boundary conditions. For this case study, both the transmissivity field and the uncertainty of the transmissivity field prediction are poorly estimated, when the effects of random recharge are neglected.

  2. Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods

    DOE PAGES

    Wainwright, Haruko M.; Liljedahl, Anna K.; Dafflon, Baptiste; ...

    2017-04-03

    This paper compares and integrates different strategies to characterize the variability of end-of-winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic Alaska. Snow depth was measured using in situ snow depth probes and estimated using ground-penetrating radar (GPR) surveys and the photogrammetric detection and ranging (phodar) technique with an unmanned aerial system (UAS). We found that GPR data provided high-precision estimates of snow depth (RMSE=2.9cm), with a spatial sampling of 10cm along transects. Phodar-based approaches provided snow depth estimates in a less laborious manner compared to GPR and probing, while yielding a high precision (RMSE=6.0cm) andmore » a fine spatial sampling (4cm×4cm). We then investigated the spatial variability of snow depth and its correlation to micro- and macrotopography using the snow-free lidar digital elevation map (DEM) and the wavelet approach. We found that the end-of-winter snow depth was highly variable over short (several meter) distances, and the variability was correlated with microtopography. Microtopographic lows (i.e., troughs and centers of low-centered polygons) were filled in with snow, which resulted in a smooth and even snow surface following macrotopography. We developed and implemented a Bayesian approach to integrate the snow-free lidar DEM and multiscale measurements (probe and GPR) as well as the topographic correlation for estimating snow depth over the landscape. Our approach led to high-precision estimates of snow depth (RMSE=6.0cm), at 0.5m resolution and over the lidar domain (750m×700m).« less

  3. Water flux characterization through hydraulic head and temperature data assimilation: Numerical modeling and sandbox experiments

    NASA Astrophysics Data System (ADS)

    Ju, Lei; Zhang, Jiangjiang; Chen, Cheng; Wu, Laosheng; Zeng, Lingzao

    2018-03-01

    Spatial distribution of groundwater recharge/discharge fluxes has an important impact on mass and energy exchanges in shallow streambeds. During the last two decades, extensive studies have been devoted to the quantification of one-dimensional (1-D) vertical exchange fluxes. Nevertheless, few studies were conducted to characterize two-dimensional (2-D) heterogeneous flux fields that commonly exist in real-world cases. In this study, we used an iterative ensemble smoother (IES) to quantify the spatial distribution of 2-D exchange fluxes by assimilating hydraulic head and temperature measurements. Four assimilation scenarios corresponding to different potential field applications were tested. In the first three scenarios, the heterogeneous hydraulic conductivity fields were first inferred from hydraulic head and/or temperature measurements, and then the flux fields were derived through Darcy's law using the estimated conductivity fields. In the fourth scenario, the flux fields were estimated directly from the temperature measurements, which is more efficient and especially suitable for the situation that a complete knowledge of flow boundary conditions is unavailable. We concluded that, the best estimation could be achieved through jointly assimilating hydraulic head and temperature measurements, and temperature data were superior to the head data when they were used independently. Overall, the IES method provided more robust and accurate vertical flux estimations than those given by the widely used analytical solution-based methods. Furthermore, IES gave reasonable uncertainty estimations, which were unavailable in traditional methods. Since temperature can be accurately monitored with high spatial and temporal resolutions, the coupling of heat tracing techniques and IES provides promising potential in quantifying complex exchange fluxes under field conditions.

  4. Developing a 30-m grassland productivity estimation map for central Nebraska using 250-m MODIS and 30-m Landsat-8 observations

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.

    2015-01-01

    Accurately estimating aboveground vegetation biomass productivity is essential for local ecosystem assessment and best land management practice. Satellite-derived growing season time-integrated Normalized Difference Vegetation Index (GSN) has been used as a proxy for vegetation biomass productivity. A 250-m grassland biomass productivity map for the Greater Platte River Basin had been developed based on the relationship between Moderate Resolution Imaging Spectroradiometer (MODIS) GSN and Soil Survey Geographic (SSURGO) annual grassland productivity. However, the 250-m MODIS grassland biomass productivity map does not capture detailed ecological features (or patterns) and may result in only generalized estimation of the regional total productivity. Developing a high or moderate spatial resolution (e.g., 30-m) productivity map to better understand the regional detailed vegetation condition and ecosystem services is preferred. The 30-m Landsat data provide spatial detail for characterizing human-scale processes and have been successfully used for land cover and land change studies. The main goal of this study is to develop a 30-m grassland biomass productivity estimation map for central Nebraska, leveraging 250-m MODIS GSN and 30-m Landsat data. A rule-based piecewise regression GSN model based on MODIS and Landsat (r = 0.91) was developed, and a 30-m MODIS equivalent GSN map was generated. Finally, a 30-m grassland biomass productivity estimation map, which provides spatially detailed ecological features and conditions for central Nebraska, was produced. The resulting 30-m grassland productivity map was generally supported by the SSURGO biomass production map and will be useful for regional ecosystem study and local land management practices.

  5. Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wainwright, Haruko M.; Liljedahl, Anna K.; Dafflon, Baptiste

    This paper compares and integrates different strategies to characterize the variability of end-of-winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic Alaska. Snow depth was measured using in situ snow depth probes and estimated using ground-penetrating radar (GPR) surveys and the photogrammetric detection and ranging (phodar) technique with an unmanned aerial system (UAS). We found that GPR data provided high-precision estimates of snow depth (RMSE=2.9cm), with a spatial sampling of 10cm along transects. Phodar-based approaches provided snow depth estimates in a less laborious manner compared to GPR and probing, while yielding a high precision (RMSE=6.0cm) andmore » a fine spatial sampling (4cm×4cm). We then investigated the spatial variability of snow depth and its correlation to micro- and macrotopography using the snow-free lidar digital elevation map (DEM) and the wavelet approach. We found that the end-of-winter snow depth was highly variable over short (several meter) distances, and the variability was correlated with microtopography. Microtopographic lows (i.e., troughs and centers of low-centered polygons) were filled in with snow, which resulted in a smooth and even snow surface following macrotopography. We developed and implemented a Bayesian approach to integrate the snow-free lidar DEM and multiscale measurements (probe and GPR) as well as the topographic correlation for estimating snow depth over the landscape. Our approach led to high-precision estimates of snow depth (RMSE=6.0cm), at 0.5m resolution and over the lidar domain (750m×700m).« less

  6. Ionospheric tomography by gradient-enhanced kriging with STEC measurements and ionosonde characteristics

    NASA Astrophysics Data System (ADS)

    Minkwitz, David; van den Boogaart, Karl Gerald; Gerzen, Tatjana; Hoque, Mainul; Hernández-Pajares, Manuel

    2016-11-01

    The estimation of the ionospheric electron density by kriging is based on the optimization of a parametric measurement covariance model. First, the extension of kriging with slant total electron content (STEC) measurements based on a spatial covariance to kriging with a spatial-temporal covariance model, assimilating STEC data of a sliding window, is presented. Secondly, a novel tomography approach by gradient-enhanced kriging (GEK) is developed. Beyond the ingestion of STEC measurements, GEK assimilates ionosonde characteristics, providing peak electron density measurements as well as gradient information. Both approaches deploy the 3-D electron density model NeQuick as a priori information and estimate the covariance parameter vector within a maximum likelihood estimation for the dedicated tomography time stamp. The methods are validated in the European region for two periods covering quiet and active ionospheric conditions. The kriging with spatial and spatial-temporal covariance model is analysed regarding its capability to reproduce STEC, differential STEC and foF2. Therefore, the estimates are compared to the NeQuick model results, the 2-D TEC maps of the International GNSS Service and the DLR's Ionospheric Monitoring and Prediction Center, and in the case of foF2 to two independent ionosonde stations. Moreover, simulated STEC and ionosonde measurements are used to investigate the electron density profiles estimated by the GEK in comparison to a kriging with STEC only. The results indicate a crucial improvement in the initial guess by the developed methods and point out the potential compensation for a bias in the peak height hmF2 by means of GEK.

  7. Using High Resolution Commercial Satellite Imagery to Quantify Spatial Features of Urban Areas and their Relationship to Quality of Life Indicators in Accra, Ghana

    NASA Astrophysics Data System (ADS)

    Sandborn, A.; Engstrom, R.; Yu, Q.

    2014-12-01

    Mapping urban areas via satellite imagery is an important task for detecting and anticipating land cover and land use change at multiple scales. As developing countries experience substantial urban growth and expansion, remotely sensed based estimates of population and quality of life indicators can provide timely and spatially explicit information to researchers and planners working to determine how cities are changing. In this study, we use commercial high spatial resolution satellite imagery in combination with fine resolution census data to determine the ability of using remotely sensed data to reveal the spatial patterns of quality of life in Accra, Ghana. Traditionally, spectral characteristics are used on a per-pixel basis to determine land cover; however, in this study, we test a new methodology that quantifies spatial characteristics using a variety of spatial features observed in the imagery to determine the properties of an urban area. The spatial characteristics used in this study include histograms of oriented gradients, PanTex, Fourier transform, and line support regions. These spatial features focus on extracting structural and textural patterns of built-up areas, such as homogeneous building orientations and straight line indices. Information derived from aggregating the descriptive statistics of the spatial features at both the fine-resolution census unit and the larger neighborhood level are then compared to census derived quality of life indicators including information about housing, education, and population estimates. Preliminary results indicate that there are correlations between straight line indices and census data including available electricity and literacy rates. Results from this study will be used to determine if this methodology provides a new and improved way to measure a city structure in developing cities and differentiate between residential and commercial land use zones, as well as formal versus informal housing areas.

  8. Optimization of planar PIV-based pressure estimates in laminar and turbulent wakes

    NASA Astrophysics Data System (ADS)

    McClure, Jeffrey; Yarusevych, Serhiy

    2017-05-01

    The performance of four pressure estimation techniques using Eulerian material acceleration estimates from planar, two-component Particle Image Velocimetry (PIV) data were evaluated in a bluff body wake. To allow for the ground truth comparison of the pressure estimates, direct numerical simulations of flow over a circular cylinder were used to obtain synthetic velocity fields. Direct numerical simulations were performed for Re_D = 100, 300, and 1575, spanning laminar, transitional, and turbulent wake regimes, respectively. A parametric study encompassing a range of temporal and spatial resolutions was performed for each Re_D. The effect of random noise typical of experimental velocity measurements was also evaluated. The results identified optimal temporal and spatial resolutions that minimize the propagation of random and truncation errors to the pressure field estimates. A model derived from linear error propagation through the material acceleration central difference estimators was developed to predict these optima, and showed good agreement with the results from common pressure estimation techniques. The results of the model are also shown to provide acceptable first-order approximations for sampling parameters that reduce error propagation when Lagrangian estimations of material acceleration are employed. For pressure integration based on planar PIV, the effect of flow three-dimensionality was also quantified, and shown to be most pronounced at higher Reynolds numbers downstream of the vortex formation region, where dominant vortices undergo substantial three-dimensional deformations. The results of the present study provide a priori recommendations for the use of pressure estimation techniques from experimental PIV measurements in vortex dominated laminar and turbulent wake flows.

  9. Optimal HRF and smoothing parameters for fMRI time series within an autoregressive modeling framework.

    PubMed

    Galka, Andreas; Siniatchkin, Michael; Stephani, Ulrich; Groening, Kristina; Wolff, Stephan; Bosch-Bayard, Jorge; Ozaki, Tohru

    2010-12-01

    The analysis of time series obtained by functional magnetic resonance imaging (fMRI) may be approached by fitting predictive parametric models, such as nearest-neighbor autoregressive models with exogeneous input (NNARX). As a part of the modeling procedure, it is possible to apply instantaneous linear transformations to the data. Spatial smoothing, a common preprocessing step, may be interpreted as such a transformation. The autoregressive parameters may be constrained, such that they provide a response behavior that corresponds to the canonical haemodynamic response function (HRF). We present an algorithm for estimating the parameters of the linear transformations and of the HRF within a rigorous maximum-likelihood framework. Using this approach, an optimal amount of both the spatial smoothing and the HRF can be estimated simultaneously for a given fMRI data set. An example from a motor-task experiment is discussed. It is found that, for this data set, weak, but non-zero, spatial smoothing is optimal. Furthermore, it is demonstrated that activated regions can be estimated within the maximum-likelihood framework.

  10. Modelling hen harrier dynamics to inform human-wildlife conflict resolution: a spatially-realistic, individual-based approach.

    PubMed

    Heinonen, Johannes P M; Palmer, Stephen C F; Redpath, Steve M; Travis, Justin M J

    2014-01-01

    Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus) population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions.

  11. Modelling Hen Harrier Dynamics to Inform Human-Wildlife Conflict Resolution: A Spatially-Realistic, Individual-Based Approach

    PubMed Central

    Heinonen, Johannes P. M.; Palmer, Stephen C. F.; Redpath, Steve M.; Travis, Justin M. J.

    2014-01-01

    Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus) population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions. PMID:25405860

  12. A Tensor-Based Subspace Approach for Bistatic MIMO Radar in Spatial Colored Noise

    PubMed Central

    Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang

    2014-01-01

    In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method. PMID:24573313

  13. Assimilating a decade of hydrometeorological ship measurements across the North American Great Lakes

    NASA Astrophysics Data System (ADS)

    Fries, K. J.; Kerkez, B.

    2015-12-01

    We use a decade of measurements made by the Volunteer Observing Ships (VOS) program on the North American Great Lakes to derive spatial estimates of over-lake air temperature, sea surface temperature, dewpoint, and wind speed. This Lagrangian data set, which annually comprises over 200,000 point observations from over 80,000 ship reports across a 244,000 square kilometer study area, is assimilated using a Gaussian Process machine learning algorithm. This algorithm classifies a model for each hydrometeorological variable using a combination of latitudes, longitudes, seasons of the year, as well as predictions made by the National Digital Forecast Database (NDFD) and Great Lakes Coastal Forecasting System (GLCFS) operational models. We show that our data-driven method significantly improves the spatial and temporal estimation of overlake hydrometeorological variables, while simultaneously providing uncertainty estimates that can be used to improve historical and future predictions on dense spatial and temporal scales. This method stands to improve the prediction of water levels on the Great Lakes, which comprise over 90% of America's surface fresh water, and impact the lives of millions of people living in the basin.

  14. A tensor-based subspace approach for bistatic MIMO radar in spatial colored noise.

    PubMed

    Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang

    2014-02-25

    In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method.

  15. Quantifying biological integrity of California sage scrub communities using plant life-form cover.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, Y.; Stow, D. A.; Franklin, J.

    2010-01-01

    The California sage scrub (CSS) community type in California's Mediterranean-type ecosystems supports a large number of rare, threatened, and endangered species, and is critically degraded and endangered. Monitoring ecological variables that provide information about community integrity is vital to conserving these biologically diverse communities. Fractional cover of true shrub, subshrub, herbaceous vegetation, and bare ground should fill information gaps between generalized vegetation type maps and detailed field-based plot measurements of species composition and provide an effective means for quantifying CSS community integrity. Remote sensing is the only tool available for estimating spatially comprehensive fractional cover over large extent, and fractionalmore » cover of plant life-form types is one of the measures of vegetation state that is most amenable to remote sensing. The use of remote sensing does not eliminate the need for either field surveying or vegetation type mapping; rather it will likely require a combination of approaches to reliably estimate life-form cover and to provide comprehensive information for communities. According to our review and synthesis, life-form fractional cover has strong potential for providing ecologically meaningful intermediate-scale information, which is unattainable from vegetation type maps and species-level field measurements. Thus, we strongly recommend incorporating fractional cover of true shrub, subshrub, herb, and bare ground in CSS community monitoring methods. Estimating life-form cover at a 25 m x 25 m spatial scale using remote sensing would be an appropriate approach for initial implementation. Investigation of remote sensing techniques and an appropriate spatial scale; collaboration of resource managers, biologists, and remote sensing specialists, and refinement of protocols are essential for integrating life-form fractional cover mapping into strategies for sustainable long-term CSS community management.« less

  16. ACID RAIN MODELING

    EPA Science Inventory

    This paper provides an overview of existing statistical methodologies for the estimation of site-specific and regional trends in wet deposition. The interaction of atmospheric processes and emissions tend to produce wet deposition data patterns that show large spatial and tempora...

  17. Spatial Prediction and Optimized Sampling Design for Sodium Concentration in Groundwater

    PubMed Central

    Shabbir, Javid; M. AbdEl-Salam, Nasser; Hussain, Tajammal

    2016-01-01

    Sodium is an integral part of water, and its excessive amount in drinking water causes high blood pressure and hypertension. In the present paper, spatial distribution of sodium concentration in drinking water is modeled and optimized sampling designs for selecting sampling locations is calculated for three divisions in Punjab, Pakistan. Universal kriging and Bayesian universal kriging are used to predict the sodium concentrations. Spatial simulated annealing is used to generate optimized sampling designs. Different estimation methods (i.e., maximum likelihood, restricted maximum likelihood, ordinary least squares, and weighted least squares) are used to estimate the parameters of the variogram model (i.e, exponential, Gaussian, spherical and cubic). It is concluded that Bayesian universal kriging fits better than universal kriging. It is also observed that the universal kriging predictor provides minimum mean universal kriging variance for both adding and deleting locations during sampling design. PMID:27683016

  18. Functional Nonlinear Mixed Effects Models For Longitudinal Image Data

    PubMed Central

    Luo, Xinchao; Zhu, Lixing; Kong, Linglong; Zhu, Hongtu

    2015-01-01

    Motivated by studying large-scale longitudinal image data, we propose a novel functional nonlinear mixed effects modeling (FN-MEM) framework to model the nonlinear spatial-temporal growth patterns of brain structure and function and their association with covariates of interest (e.g., time or diagnostic status). Our FNMEM explicitly quantifies a random nonlinear association map of individual trajectories. We develop an efficient estimation method to estimate the nonlinear growth function and the covariance operator of the spatial-temporal process. We propose a global test and a simultaneous confidence band for some specific growth patterns. We conduct Monte Carlo simulation to examine the finite-sample performance of the proposed procedures. We apply FNMEM to investigate the spatial-temporal dynamics of white-matter fiber skeletons in a national database for autism research. Our FNMEM may provide a valuable tool for charting the developmental trajectories of various neuropsychiatric and neurodegenerative disorders. PMID:26213453

  19. Delineating Hydrofacies Spatial Distribution by Integrating Ensemble Data Assimilation and Indicator Geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xuehang; Chen, Xingyuan; Ye, Ming

    2015-07-01

    This study develops a new framework of facies-based data assimilation for characterizing spatial distribution of hydrofacies and estimating their associated hydraulic properties. This framework couples ensemble data assimilation with transition probability-based geostatistical model via a parameterization based on a level set function. The nature of ensemble data assimilation makes the framework efficient and flexible to be integrated with various types of observation data. The transition probability-based geostatistical model keeps the updated hydrofacies distributions under geological constrains. The framework is illustrated by using a two-dimensional synthetic study that estimates hydrofacies spatial distribution and permeability in each hydrofacies from transient head data.more » Our results show that the proposed framework can characterize hydrofacies distribution and associated permeability with adequate accuracy even with limited direct measurements of hydrofacies. Our study provides a promising starting point for hydrofacies delineation in complex real problems.« less

  20. Spatially resolved, in situ potential measurements through porous electrodes as applied to fuel cells.

    PubMed

    Hess, Katherine C; Epting, William K; Litster, Shawn

    2011-12-15

    We report the development and use of a microstructured electrode scaffold (MES) to make spatially resolved, in situ, electrolyte potential measurements through the thickness of a polymer electrolyte fuel cell (PEFC) electrode. This new approach uses a microfabricated apparatus to analyze the coupled transport and electrochemical phenomena in porous electrodes at the microscale. In this study, the MES allows the fuel cell to run under near-standard operating conditions, while providing electrolyte potential measurements at discrete distances through the electrode's thickness. Here we use spatial distributions of electrolyte potential to evaluate the effects of Ohmic and mass transport resistances on the through-plane reaction distribution for various operating conditions. Additionally, we use the potential distributions to estimate the ionic conductivity of the electrode. Our results indicate the in situ conductivity is higher than typically estimated for PEFC electrodes based on bulk polymer electrolyte membrane (PEM) conductivity.

  1. Cortical dipole imaging using truncated total least squares considering transfer matrix error.

    PubMed

    Hori, Junichi; Takeuchi, Kosuke

    2013-01-01

    Cortical dipole imaging has been proposed as a method to visualize electroencephalogram in high spatial resolution. We investigated the inverse technique of cortical dipole imaging using a truncated total least squares (TTLS). The TTLS is a regularization technique to reduce the influence from both the measurement noise and the transfer matrix error caused by the head model distortion. The estimation of the regularization parameter was also investigated based on L-curve. The computer simulation suggested that the estimation accuracy was improved by the TTLS compared with Tikhonov regularization. The proposed method was applied to human experimental data of visual evoked potentials. We confirmed the TTLS provided the high spatial resolution of cortical dipole imaging.

  2. A tesselated probabilistic representation for spatial robot perception and navigation

    NASA Technical Reports Server (NTRS)

    Elfes, Alberto

    1989-01-01

    The ability to recover robust spatial descriptions from sensory information and to efficiently utilize these descriptions in appropriate planning and problem-solving activities are crucial requirements for the development of more powerful robotic systems. Traditional approaches to sensor interpretation, with their emphasis on geometric models, are of limited use for autonomous mobile robots operating in and exploring unknown and unstructured environments. Here, researchers present a new approach to robot perception that addresses such scenarios using a probabilistic tesselated representation of spatial information called the Occupancy Grid. The Occupancy Grid is a multi-dimensional random field that maintains stochastic estimates of the occupancy state of each cell in the grid. The cell estimates are obtained by interpreting incoming range readings using probabilistic models that capture the uncertainty in the spatial information provided by the sensor. A Bayesian estimation procedure allows the incremental updating of the map using readings taken from several sensors over multiple points of view. An overview of the Occupancy Grid framework is given, and its application to a number of problems in mobile robot mapping and navigation are illustrated. It is argued that a number of robotic problem-solving activities can be performed directly on the Occupancy Grid representation. Some parallels are drawn between operations on Occupancy Grids and related image processing operations.

  3. Spatial design and strength of spatial signal: Effects on covariance estimation

    USGS Publications Warehouse

    Irvine, Kathryn M.; Gitelman, Alix I.; Hoeting, Jennifer A.

    2007-01-01

    In a spatial regression context, scientists are often interested in a physical interpretation of components of the parametric covariance function. For example, spatial covariance parameter estimates in ecological settings have been interpreted to describe spatial heterogeneity or “patchiness” in a landscape that cannot be explained by measured covariates. In this article, we investigate the influence of the strength of spatial dependence on maximum likelihood (ML) and restricted maximum likelihood (REML) estimates of covariance parameters in an exponential-with-nugget model, and we also examine these influences under different sampling designs—specifically, lattice designs and more realistic random and cluster designs—at differing intensities of sampling (n=144 and 361). We find that neither ML nor REML estimates perform well when the range parameter and/or the nugget-to-sill ratio is large—ML tends to underestimate the autocorrelation function and REML produces highly variable estimates of the autocorrelation function. The best estimates of both the covariance parameters and the autocorrelation function come under the cluster sampling design and large sample sizes. As a motivating example, we consider a spatial model for stream sulfate concentration.

  4. Multi-Point Measurements to Characterize Radiation Belt Electron Precipitation Loss

    NASA Astrophysics Data System (ADS)

    Blum, L. W.

    2017-12-01

    Multipoint measurements in the inner magnetosphere allow the spatial and temporal evolution of various particle populations and wave modes to be disentangled. To better characterize and quantify radiation belt precipitation loss, we utilize multi-point measurements both to study precipitating electrons directly as well as the potential drivers of this loss process. Magnetically conjugate CubeSat and balloon measurements are combined to estimate of the temporal and spatial characteristics of dusk-side precipitation features and quantify loss due to these events. To then understand the drivers of precipitation events, and what determines their spatial structure, we utilize measurements from the dual Van Allen Probes to estimate spatial and temporal scales of various wave modes in the inner magnetosphere, and compare these to precipitation characteristics. The structure, timing, and spatial extent of waves are compared to those of MeV electron precipitation during a few individual events to determine when and where EMIC waves cause radiation belt electron precipitation. Magnetically conjugate measurements provide observational support of the theoretical picture of duskside interaction of EMIC waves and MeV electrons leading to radiation belt loss. Finally, understanding the drivers controlling the spatial scales of wave activity in the inner magnetosphere is critical for uncovering the underlying physics behind the wave generation as well as for better predicting where and when waves will be present. Again using multipoint measurements from the Van Allen Probes, we estimate the spatial and temporal extents and evolution of plasma structures and their gradients in the inner magnetosphere, to better understand the drivers of magnetospheric wave characteristic scales. In particular, we focus on EMIC waves and the plasma parameters important for their growth, namely cold plasma density and cool and warm ion density, anisotropy, and composition.

  5. Multiscale spatial and temporal estimation of the b-value

    NASA Astrophysics Data System (ADS)

    García-Hernández, R.; D'Auria, L.; Barrancos, J.; Padilla, G.

    2017-12-01

    The estimation of the spatial and temporal variations of the Gutenberg-Richter b-value is of great importance in different seismological applications. One of the problems affecting its estimation is the heterogeneous distribution of the seismicity which makes its estimate strongly dependent upon the selected spatial and/or temporal scale. This is especially important in volcanoes where dense clusters of earthquakes often overlap the background seismicity. Proposed solutions for estimating temporal variations of the b-value include considering equally spaced time intervals or variable intervals having an equal number of earthquakes. Similar approaches have been proposed to image the spatial variations of this parameter as well.We propose a novel multiscale approach, based on the method of Ogata and Katsura (1993), allowing a consistent estimation of the b-value regardless of the considered spatial and/or temporal scales. Our method, named MUST-B (MUltiscale Spatial and Temporal characterization of the B-value), basically consists in computing estimates of the b-value at multiple temporal and spatial scales, extracting for a give spatio-temporal point a statistical estimator of the value, as well as and indication of the characteristic spatio-temporal scale. This approach includes also a consistent estimation of the completeness magnitude (Mc) and of the uncertainties over both b and Mc.We applied this method to example datasets for volcanic (Tenerife, El Hierro) and tectonic areas (Central Italy) as well as an example application at global scale.

  6. Characterization and modelling of the spatially- and spectrally-varying point-spread function in hyperspectral imaging systems for computational correction of axial optical aberrations

    NASA Astrophysics Data System (ADS)

    Špiclin, Žiga; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2012-03-01

    Spatial resolution of hyperspectral imaging systems can vary significantly due to axial optical aberrations that originate from wavelength-induced index-of-refraction variations of the imaging optics. For systems that have a broad spectral range, the spatial resolution will vary significantly both with respect to the acquisition wavelength and with respect to the spatial position within each spectral image. Variations of the spatial resolution can be effectively characterized as part of the calibration procedure by a local image-based estimation of the pointspread function (PSF) of the hyperspectral imaging system. The estimated PSF can then be used in the image deconvolution methods to improve the spatial resolution of the spectral images. We estimated the PSFs from the spectral images of a line grid geometric caliber. From individual line segments of the line grid, the PSF was obtained by a non-parametric estimation procedure that used an orthogonal series representation of the PSF. By using the non-parametric estimation procedure, the PSFs were estimated at different spatial positions and at different wavelengths. The variations of the spatial resolution were characterized by the radius and the fullwidth half-maximum of each PSF and by the modulation transfer function, computed from images of USAF1951 resolution target. The estimation and characterization of the PSFs and the image deconvolution based spatial resolution enhancement were tested on images obtained by a hyperspectral imaging system with an acousto-optic tunable filter in the visible spectral range. The results demonstrate that the spatial resolution of the acquired spectral images can be significantly improved using the estimated PSFs and image deconvolution methods.

  7. Integrating geographic information systems and remote sensing with spatial econometric and mixed logit models for environmental valuation

    NASA Astrophysics Data System (ADS)

    Wells, Aaron Raymond

    This research focuses on the Emory and Obed Watersheds in the Cumberland Plateau in Central Tennessee and the Lower Hatchie River Watershed in West Tennessee. A framework based on market and nonmarket valuation techniques was used to empirically estimate economic values for environmental amenities and negative externalities in these areas. The specific techniques employed include a variation of hedonic pricing and discrete choice conjoint analysis (i.e., choice modeling), in addition to geographic information systems (GIS) and remote sensing. Microeconomic models of agent behavior, including random utility theory and profit maximization, provide the principal theoretical foundation linking valuation techniques and econometric models. The generalized method of moments estimator for a first-order spatial autoregressive function and mixed logit models are the principal econometric methods applied within the framework. The dissertation is subdivided into three separate chapters written in a manuscript format. The first chapter provides the necessary theoretical and mathematical conditions that must be satisfied in order for a forest amenity enhancement program to be implemented. These conditions include utility, value, and profit maximization. The second chapter evaluates the effect of forest land cover and information about future land use change on respondent preferences and willingness to pay for alternative hypothetical forest amenity enhancement options. Land use change information and the amount of forest land cover significantly influenced respondent preferences, choices, and stated willingness to pay. Hicksian welfare estimates for proposed enhancement options ranged from 57.42 to 25.53, depending on the policy specification, information level, and econometric model. The third chapter presents economic values for negative externalities associated with channelization that affect the productivity and overall market value of forested wetlands. Results of robust, generalized moments estimation of a double logarithmic first-order spatial autoregressive error model (inverse distance weights with spatial dependence up to 1500m) indicate that the implicit cost of damages to forested wetlands caused by channelization equaled -$5,438 ha-1. Collectively, the results of this dissertation provide economic measures of the damages to and benefits of environmental assets, help private landowners and policy makers identify the amenity attributes preferred by the public, and improve the management of natural resources.

  8. A Comparison of Grizzly Bear Demographic Parameters Estimated from Non-Spatial and Spatial Open Population Capture-Recapture Models

    PubMed Central

    Whittington, Jesse; Sawaya, Michael A.

    2015-01-01

    Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal’s home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786–1.071) for females, 0.844 (0.703–0.975) for males, and 0.882 (0.779–0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758–1.024) for females, 0.825 (0.700–0.948) for males, and 0.863 (0.771–0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth rates suggest that Banff National Park’s population of grizzly bears requires continued conservation-oriented management actions. PMID:26230262

  9. A comparison of correlation-length estimation methods for the objective analysis of surface pollutants at Environment and Climate Change Canada.

    PubMed

    Ménard, Richard; Deshaies-Jacques, Martin; Gasset, Nicolas

    2016-09-01

    An objective analysis is one of the main components of data assimilation. By combining observations with the output of a predictive model we combine the best features of each source of information: the complete spatial and temporal coverage provided by models, with a close representation of the truth provided by observations. The process of combining observations with a model output is called an analysis. To produce an analysis requires the knowledge of observation and model errors, as well as its spatial correlation. This paper is devoted to the development of methods of estimation of these error variances and the characteristic length-scale of the model error correlation for its operational use in the Canadian objective analysis system. We first argue in favor of using compact support correlation functions, and then introduce three estimation methods: the Hollingsworth-Lönnberg (HL) method in local and global form, the maximum likelihood method (ML), and the [Formula: see text] diagnostic method. We perform one-dimensional (1D) simulation studies where the error variance and true correlation length are known, and perform an estimation of both error variances and correlation length where both are non-uniform. We show that a local version of the HL method can capture accurately the error variances and correlation length at each observation site, provided that spatial variability is not too strong. However, the operational objective analysis requires only a single and globally valid correlation length. We examine whether any statistics of the local HL correlation lengths could be a useful estimate, or whether other global estimation methods such as by the global HL, ML, or [Formula: see text] should be used. We found in both 1D simulation and using real data that the ML method is able to capture physically significant aspects of the correlation length, while most other estimates give unphysical and larger length-scale values. This paper describes a proposed improvement of the objective analysis of surface pollutants at Environment and Climate Change Canada (formerly known as Environment Canada). Objective analyses are essentially surface maps of air pollutants that are obtained by combining observations with an air quality model output, and are thought to provide a complete and more accurate representation of the air quality. The highlight of this study is an analysis of methods to estimate the model (or background) error correlation length-scale. The error statistics are an important and critical component to the analysis scheme.

  10. Parameterizing a Large-scale Water Balance Model in Regions with Sparse Data: The Tigris-Euphrates River Basins as an Example

    NASA Astrophysics Data System (ADS)

    Flint, A. L.; Flint, L. E.

    2010-12-01

    The characterization of hydrologic response to current and future climates is of increasing importance to many countries around the world that rely heavily on changing and uncertain water supplies. Large-scale models that can calculate a spatially distributed water balance and elucidate groundwater recharge and surface water flows for large river basins provide a basis of estimates of changes due to future climate projections. Unfortunately many regions in the world have very sparse data for parameterization or calibration of hydrologic models. For this study, the Tigris and Euphrates River basins were used for the development of a regional water balance model at 180-m spatial scale, using the Basin Characterization Model, to estimate historical changes in groundwater recharge and surface water flows in the countries of Turkey, Syria, Iraq, Iran, and Saudi Arabia. Necessary input parameters include precipitation, air temperature, potential evapotranspiration (PET), soil properties and thickness, and estimates of bulk permeability from geologic units. Data necessary for calibration includes snow cover, reservoir volumes (from satellite data and historic, pre-reservoir elevation data) and streamflow measurements. Global datasets for precipitation, air temperature, and PET were available at very large spatial scales (50 km) through the world scale databases, finer scale WorldClim climate data, and required downscaling to fine scales for model input. Soils data were available through world scale soil maps but required parameterization on the basis of textural data to estimate soil hydrologic properties. Soil depth was interpreted from geomorphologic interpretation and maps of quaternary deposits, and geologic materials were categorized from generalized geologic maps of each country. Estimates of bedrock permeability were made on the basis of literature and data on driller’s logs and adjusted during calibration of the model to streamflow measurements where available. Results of historical water balance calculations throughout the Tigris and Euphrates River basins will be shown along with details of processing input data to provide spatial continuity and downscaling. Basic water availability analysis for recharge and runoff is readily available from a determinisitic solar radiation energy balance model and a global potential evapotranspiration model and global estimates of precipitation and air temperature. Future climate estimates can be readily applied to the same water and energy balance models to evaluate future water availability for countries around the globe.

  11. A new framework for estimating return levels using regional frequency analysis

    NASA Astrophysics Data System (ADS)

    Winter, Hugo; Bernardara, Pietro; Clegg, Georgina

    2017-04-01

    We propose a new framework for incorporating more spatial and temporal information into the estimation of extreme return levels. Currently, most studies use extreme value models applied to data from a single site; an approach which is inefficient statistically and leads to return level estimates that are less physically realistic. We aim to highlight the benefits that could be obtained by using methodology based upon regional frequency analysis as opposed to classic single site extreme value analysis. This motivates a shift in thinking, which permits the evaluation of local and regional effects and makes use of the wide variety of data that are now available on high temporal and spatial resolutions. The recent winter storms over the UK during the winters of 2013-14 and 2015-16, which have caused wide-ranging disruption and damaged important infrastructure, provide the main motivation for the current work. One of the most impactful natural hazards is flooding, which is often initiated by extreme precipitation. In this presentation, we focus on extreme rainfall, but shall discuss other meteorological variables alongside potentially damaging hazard combinations. To understand the risks posed by extreme precipitation, we need reliable statistical models which can be used to estimate quantities such as the T-year return level, i.e. the level which is expected to be exceeded once every T-years. Extreme value theory provides the main collection of statistical models that can be used to estimate the risks posed by extreme precipitation events. Broadly, at a single site, a statistical model is fitted to exceedances of a high threshold and the model is used to extrapolate to levels beyond the range of the observed data. However, when we have data at many sites over a spatial domain, fitting a separate model for each separate site makes little sense and it would be better if we could incorporate all this information to improve the reliability of return level estimates. Here, we use the regional frequency analysis approach to define homogeneous regions which are affected by the same storms. Extreme value models are then fitted to the data pooled from across a region. We find that this approach leads to more spatially consistent return level estimates with reduced uncertainty bounds.

  12. Estimating Oceanic Primary Production Using Vertical Irradiance and Chlorophyll Profiles from Ocean Gliders in the North Atlantic.

    PubMed

    Hemsley, Victoria S; Smyth, Timothy J; Martin, Adrian P; Frajka-Williams, Eleanor; Thompson, Andrew F; Damerell, Gillian; Painter, Stuart C

    2015-10-06

    An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope ((13)C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements.

  13. Application of a Monte Carlo framework with bootstrapping for quantification of uncertainty in baseline map of carbon emissions from deforestation in Tropical Regions

    Treesearch

    William Salas; Steve Hagen

    2013-01-01

    This presentation will provide an overview of an approach for quantifying uncertainty in spatial estimates of carbon emission from land use change. We generate uncertainty bounds around our final emissions estimate using a randomized, Monte Carlo (MC)-style sampling technique. This approach allows us to combine uncertainty from different sources without making...

  14. Fusion of multi-source remote sensing data for agriculture monitoring tasks

    NASA Astrophysics Data System (ADS)

    Skakun, S.; Franch, B.; Vermote, E.; Roger, J. C.; Becker Reshef, I.; Justice, C. O.; Masek, J. G.; Murphy, E.

    2016-12-01

    Remote sensing data is essential source of information for enabling monitoring and quantification of crop state at global and regional scales. Crop mapping, state assessment, area estimation and yield forecasting are the main tasks that are being addressed within GEO-GLAM. Efficiency of agriculture monitoring can be improved when heterogeneous multi-source remote sensing datasets are integrated. Here, we present several case studies of utilizing MODIS, Landsat-8 and Sentinel-2 data along with meteorological data (growing degree days - GDD) for winter wheat yield forecasting, mapping and area estimation. Archived coarse spatial resolution data, such as MODIS, VIIRS and AVHRR, can provide daily global observations that coupled with statistical data on crop yield can enable the development of empirical models for timely yield forecasting at national level. With the availability of high-temporal and high spatial resolution Landsat-8 and Sentinel-2A imagery, course resolution empirical yield models can be downscaled to provide yield estimates at regional and field scale. In particular, we present the case study of downscaling the MODIS CMG based generalized winter wheat yield forecasting model to high spatial resolution data sets, namely harmonized Landsat-8 - Sentinel-2A surface reflectance product (HLS). Since the yield model requires corresponding in season crop masks, we propose an automatic approach to extract winter crop maps from MODIS NDVI and MERRA2 derived GDD using Gaussian mixture model (GMM). Validation for the state of Kansas (US) and Ukraine showed that the approach can yield accuracies > 90% without using reference (ground truth) data sets. Another application of yearly derived winter crop maps is their use for stratification purposes within area frame sampling for crop area estimation. In particular, one can simulate the dependence of error (coefficient of variation) on the number of samples and strata size. This approach was used for estimating the area of winter crops in Ukraine for 2013-2016. The GMM-GDD approach is further extended for HLS data to provide automatic winter crop mapping at 30 m resolution for crop yield model and area estimation. In case of persistent cloudiness, addition of Sentinel-1A synthetic aperture radar (SAR) images is explored for automatic winter crop mapping.

  15. Spatial irregularities in Jupiter's upper ionosphere observed by Voyager radio occultations

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.; Tyler, G. L.

    1982-01-01

    Radio scintillations (at 3.6 and 13 cm) produced by scattering from ionospheric irregularities during the Voyager occultations are interpreted using a weak-scattering theory. Least squares solutions for ionospheric parameters derived from the observed fluctuation spectra yield estimates of (1) the axial ratio, (2) angular orientation of the anisotropic irregularities, (3) the power law exponent of the spatial spectrum of irregularities, and (4) the magnitude of the spatial variations in electron density. It is shown that the measured angular orientation of the anisotropic irregularities indicates magnetic field direction and may provide a basis for refining Jovian magnetic field models.

  16. Use of generalized linear models and digital data in a forest inventory of Northern Utah

    USGS Publications Warehouse

    Moisen, Gretchen G.; Edwards, Thomas C.

    1999-01-01

    Forest inventories, like those conducted by the Forest Service's Forest Inventory and Analysis Program (FIA) in the Rocky Mountain Region, are under increased pressure to produce better information at reduced costs. Here we describe our efforts in Utah to merge satellite-based information with forest inventory data for the purposes of reducing the costs of estimates of forest population totals and providing spatial depiction of forest resources. We illustrate how generalized linear models can be used to construct approximately unbiased and efficient estimates of population totals while providing a mechanism for prediction in space for mapping of forest structure. We model forest type and timber volume of five tree species groups as functions of a variety of predictor variables in the northern Utah mountains. Predictor variables include elevation, aspect, slope, geographic coordinates, as well as vegetation cover types based on satellite data from both the Advanced Very High Resolution Radiometer (AVHRR) and Thematic Mapper (TM) platforms. We examine the relative precision of estimates of area by forest type and mean cubic-foot volumes under six different models, including the traditional double sampling for stratification strategy. Only very small gains in precision were realized through the use of expensive photointerpreted or TM-based data for stratification, while models based on topography and spatial coordinates alone were competitive. We also compare the predictive capability of the models through various map accuracy measures. The models including the TM-based vegetation performed best overall, while topography and spatial coordinates alone provided substantial information at very low cost.

  17. Data Compression With Application to Geo-Location

    DTIC Science & Technology

    2010-08-01

    wireless sensor network requires the estimation of time-difference-of-arrival (TDOA) parameters using data collected by a set of spatially separated sensors. Compressing the data that is shared among the sensors can provide tremendous savings in terms of the energy and transmission latency. Traditional MSE and perceptual based data compression schemes fail to accurately capture the effects of compression on the TDOA estimation task; therefore, it is necessary to investigate compression algorithms suitable for TDOA parameter estimation. This thesis explores the

  18. Spatial probabilistic pulsatility model for enhancing photoplethysmographic imaging systems

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Clausi, David A.; Wong, Alexander

    2016-11-01

    Photoplethysmographic imaging (PPGI) is a widefield noncontact biophotonic technology able to remotely monitor cardiovascular function over anatomical areas. Although spatial context can provide insight into physiologically relevant sampling locations, existing PPGI systems rely on coarse spatial averaging with no anatomical priors for assessing arterial pulsatility. Here, we developed a continuous probabilistic pulsatility model for importance-weighted blood pulse waveform extraction. Using a data-driven approach, the model was constructed using a 23 participant sample with a large demographic variability (11/12 female/male, age 11 to 60 years, BMI 16.4 to 35.1 kg·m-2). Using time-synchronized ground-truth blood pulse waveforms, spatial correlation priors were computed and projected into a coaligned importance-weighted Cartesian space. A modified Parzen-Rosenblatt kernel density estimation method was used to compute the continuous resolution-agnostic probabilistic pulsatility model. The model identified locations that consistently exhibited pulsatility across the sample. Blood pulse waveform signals extracted with the model exhibited significantly stronger temporal correlation (W=35,p<0.01) and spectral SNR (W=31,p<0.01) compared to uniform spatial averaging. Heart rate estimation was in strong agreement with true heart rate [r2=0.9619, error (μ,σ)=(0.52,1.69) bpm].

  19. Cost-effective sampling of (137)Cs-derived net soil redistribution: part 2 - estimating the spatial mean change over time.

    PubMed

    Chappell, A; Li, Y; Yu, H Q; Zhang, Y Z; Li, X Y

    2015-06-01

    The caesium-137 ((137)Cs) technique for estimating net, time-integrated soil redistribution by the processes of wind, water and tillage is increasingly being used with repeated sampling to form a baseline to evaluate change over small (years to decades) timeframes. This interest stems from knowledge that since the 1950s soil redistribution has responded dynamically to different phases of land use change and management. Currently, there is no standard approach to detect change in (137)Cs-derived net soil redistribution and thereby identify the driving forces responsible for change. We outline recent advances in space-time sampling in the soil monitoring literature which provide a rigorous statistical and pragmatic approach to estimating the change over time in the spatial mean of environmental properties. We apply the space-time sampling framework, estimate the minimum detectable change of net soil redistribution and consider the information content and cost implications of different sampling designs for a study area in the Chinese Loess Plateau. Three phases (1954-1996, 1954-2012 and 1996-2012) of net soil erosion were detectable and attributed to well-documented historical change in land use and management practices in the study area and across the region. We recommend that the design for space-time sampling is considered carefully alongside cost-effective use of the spatial mean to detect and correctly attribute cause of change over time particularly across spatial scales of variation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Extrapolating active layer thickness measurements across Arctic polygonal terrain using LiDAR and NDVI data sets.

    PubMed

    Gangodagamage, Chandana; Rowland, Joel C; Hubbard, Susan S; Brumby, Steven P; Liljedahl, Anna K; Wainwright, Haruko; Wilson, Cathy J; Altmann, Garrett L; Dafflon, Baptiste; Peterson, John; Ulrich, Craig; Tweedie, Craig E; Wullschleger, Stan D

    2014-08-01

    Landscape attributes that vary with microtopography, such as active layer thickness ( ALT ), are labor intensive and difficult to document effectively through in situ methods at kilometer spatial extents, thus rendering remotely sensed methods desirable. Spatially explicit estimates of ALT can provide critically needed data for parameterization, initialization, and evaluation of Arctic terrestrial models. In this work, we demonstrate a new approach using high-resolution remotely sensed data for estimating centimeter-scale ALT in a 5 km 2 area of ice-wedge polygon terrain in Barrow, Alaska. We use a simple regression-based, machine learning data-fusion algorithm that uses topographic and spectral metrics derived from multisensor data (LiDAR and WorldView-2) to estimate ALT (2 m spatial resolution) across the study area. Comparison of the ALT estimates with ground-based measurements, indicates the accuracy (r 2  = 0.76, RMSE ±4.4 cm) of the approach. While it is generally accepted that broad climatic variability associated with increasing air temperature will govern the regional averages of ALT , consistent with prior studies, our findings using high-resolution LiDAR and WorldView-2 data, show that smaller-scale variability in ALT is controlled by local eco-hydro-geomorphic factors. This work demonstrates a path forward for mapping ALT at high spatial resolution and across sufficiently large regions for improved understanding and predictions of coupled dynamics among permafrost, hydrology, and land-surface processes from readily available remote sensing data.

  1. Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps.

    PubMed

    Mitchard, Edward Ta; Saatchi, Sassan S; Baccini, Alessandro; Asner, Gregory P; Goetz, Scott J; Harris, Nancy L; Brown, Sandra

    2013-10-26

    Mapping the aboveground biomass of tropical forests is essential both for implementing conservation policy and reducing uncertainties in the global carbon cycle. Two medium resolution (500 m - 1000 m) pantropical maps of vegetation biomass have been recently published, and have been widely used by sub-national and national-level activities in relation to Reducing Emissions from Deforestation and forest Degradation (REDD+). Both maps use similar input data layers, and are driven by the same spaceborne LiDAR dataset providing systematic forest height and canopy structure estimates, but use different ground datasets for calibration and different spatial modelling methodologies. Here, we compare these two maps to each other, to the FAO's Forest Resource Assessment (FRA) 2010 country-level data, and to a high resolution (100 m) biomass map generated for a portion of the Colombian Amazon. We find substantial differences between the two maps, in particular in central Amazonia, the Congo basin, the south of Papua New Guinea, the Miombo woodlands of Africa, and the dry forests and savannas of South America. There is little consistency in the direction of the difference. However, when the maps are aggregated to the country or biome scale there is greater agreement, with differences cancelling out to a certain extent. When comparing country level biomass stocks, the two maps agree with each other to a much greater extent than to the FRA 2010 estimates. In the Colombian Amazon, both pantropical maps estimate higher biomass than the independent high resolution map, but show a similar spatial distribution of this biomass. Biomass mapping has progressed enormously over the past decade, to the stage where we can produce globally consistent maps of aboveground biomass. We show that there are still large uncertainties in these maps, in particular in areas with little field data. However, when used at a regional scale, different maps appear to converge, suggesting we can provide reasonable stock estimates when aggregated over large regions. Therefore we believe the largest uncertainties for REDD+ activities relate to the spatial distribution of biomass and to the spatial pattern of forest cover change, rather than to total globally or nationally summed carbon density.

  2. Observability of global rivers with future SWOT observations

    NASA Astrophysics Data System (ADS)

    Fisher, Colby; Pan, Ming; Wood, Eric

    2017-04-01

    The Surface Water and Ocean Topography (SWOT) mission is designed to provide global observations of water surface elevation and slope from which river discharge can be estimated using a data assimilation system. This mission will provide increased spatial and temporal coverage compared to current altimeters, with an expected accuracy for water level elevations of 10 cm on rivers greater than 100 m wide. Within the 21-day repeat cycle, a river reach will be observed 2-4 times on average. Due to the relationship between the basin orientation and the orbit, these observations are not evenly distributed in time, which will impact the derived discharge values. There is, then, a need for a better understanding of how the mission will observe global river basins. In this study, we investigate how SWOT will observe global river basins and how the temporal and spatial sampling impacts the discharge estimated from assimilation. SWOT observations can be assimilated using the Inverse Streamflow Routing (ISR) model of Pan and Wood [2013] with a fixed interval Kalman smoother. Previous work has shown that the ISR assimilation method can be used to reproduce the spatial and temporal dynamics of discharge within many global basins: however, this performance was strongly impacted by the spatial and temporal availability of discharge observations. In this study, we apply the ISR method to 32 global basins with different geometries and crossing patterns for the future orbit, assimilating theoretical SWOT-retrieved "gauges". Results show that the model performance varies significantly across basins and is driven by the orientation, flow distance, and travel time in each. Based on these properties, we quantify the "observability" of each basin and relate this to the performance of the assimilation. Applying this metric globally to a large variety of basins we can gain a better understanding of the impact that SWOT observations may have across basin scales. By determining the availability of SWOT observations in this manner, hydrologic data assimilation approaches like ISR can be optimized to provide useful discharge estimates in sparsely gauged regions where spatially and temporally consistent discharge records are most valuable. Pan, M; Wood, E F 2013 Inverse streamflow routing, HESS 17(11):4577-4588

  3. DOA-informed source extraction in the presence of competing talkers and background noise

    NASA Astrophysics Data System (ADS)

    Taseska, Maja; Habets, Emanuël A. P.

    2017-12-01

    A desired speech signal in hands-free communication systems is often degraded by noise and interfering speech. Even though the number and locations of the interferers are often unknown in practice, it is justified to assume in certain applications that the direction-of-arrival (DOA) of the desired source is approximately known. Using the known DOA, fixed spatial filters such as the delay-and-sum beamformer can be steered to extract the desired source. However, it is well-known that fixed data-independent spatial filters do not provide sufficient reduction of directional interferers. Instead, the DOA information can be used to estimate the statistics of the desired and the undesired signals and to compute optimal data-dependent spatial filters. One way the DOA is exploited for optimal spatial filtering in the literature, is by designing DOA-based narrowband detectors to determine whether a desired or an undesired signal is dominant at each time-frequency (TF) bin. Subsequently, the statistics of the desired and the undesired signals can be estimated during the TF bins where the respective signal is dominant. In a similar manner, a Gaussian signal model-based detector which does not incorporate DOA information has been used in scenarios where the undesired signal consists of stationary background noise. However, when the undesired signal is non-stationary, resulting for example from interfering speakers, such a Gaussian signal model-based detector is unable to robustly distinguish desired from undesired speech. To this end, we propose a DOA model-based detector to determine the dominant source at each TF bin and estimate the desired and undesired signal statistics. We demonstrate that data-dependent spatial filters that use the statistics estimated by the proposed framework achieve very good undesired signal reduction, even when using only three microphones.

  4. Modeling spatial-temporal dynamics of global wetlands: comprehensive evaluation of a new sub-grid TOPMODEL parameterization and uncertainties

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Zimmermann, N. E.; Poulter, B.

    2015-11-01

    Simulations of the spatial-temporal dynamics of wetlands are key to understanding the role of wetland biogeochemistry under past and future climate variability. Hydrologic inundation models, such as TOPMODEL, are based on a fundamental parameter known as the compound topographic index (CTI) and provide a computationally cost-efficient approach to simulate wetland dynamics at global scales. However, there remains large discrepancy in the implementations of TOPMODEL in land-surface models (LSMs) and thus their performance against observations. This study describes new improvements to TOPMODEL implementation and estimates of global wetland dynamics using the LPJ-wsl dynamic global vegetation model (DGVM), and quantifies uncertainties by comparing three digital elevation model products (HYDRO1k, GMTED, and HydroSHEDS) at different spatial resolution and accuracy on simulated inundation dynamics. In addition, we found that calibrating TOPMODEL with a benchmark wetland dataset can help to successfully delineate the seasonal and interannual variations of wetlands, as well as improve the spatial distribution of wetlands to be consistent with inventories. The HydroSHEDS DEM, using a river-basin scheme for aggregating the CTI, shows best accuracy for capturing the spatio-temporal dynamics of wetlands among the three DEM products. The estimate of global wetland potential/maximum is ∼ 10.3 Mkm2 (106 km2), with a mean annual maximum of ∼ 5.17 Mkm2 for 1980-2010. This study demonstrates the feasibility to capture spatial heterogeneity of inundation and to estimate seasonal and interannual variations in wetland by coupling a hydrological module in LSMs with appropriate benchmark datasets. It additionally highlights the importance of an adequate investigation of topographic indices for simulating global wetlands and shows the opportunity to converge wetland estimates across LSMs by identifying the uncertainty associated with existing wetland products.

  5. Worldwide estimation of river concentrations of any chemical originating from sewage-treatment plants using dilution factors.

    PubMed

    Keller, Virginie D J; Williams, Richard J; Lofthouse, Caryn; Johnson, Andrew C

    2014-02-01

    Dilution factors are a critical component in estimating concentrations of so-called "down-the-drain" chemicals (e.g., pharmaceuticals) in rivers. The present study estimated the temporal and spatial variability of dilution factors around the world using geographically referenced data sets at 0.5° × 0.5° resolution. Domestic wastewater effluents were derived from national per capita domestic water use estimates and gridded population. Monthly and annual river flows were estimated by accumulating runoff estimates using topographically derived flow directions. National statistics, including the median and interquartile range, were generated to quantify dilution factors. Spatial variability of the dilution factor was found to be considerable; for example, there are 4 orders of magnitude in annual median dilution factor between Canada and Morocco. Temporal variability within a country can also be substantial; in India, there are up to 9 orders of magnitude between median monthly dilution factors. These national statistics provide a global picture of the temporal and spatial variability of dilution factors and, hence, of the potential exposure to down-the-drain chemicals. The present methodology has potential for a wide international community (including decision makers and pharmaceutical companies) to assess relative exposure to down-the-drain chemicals released by human pollution in rivers and, thus, target areas of potentially high risk. © 2013 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

  6. Spatially Estimating Disturbance of Harbor Seals (Phoca vitulina)

    PubMed Central

    Jansen, John K.; Brady, Gavin M.; Ver Hoef, Jay M.; Boveng, Peter L.

    2015-01-01

    Tidewater glacial fjords in Alaska provide habitat for some of the largest aggregations of harbor seals (Phoca vitulina), with calved ice serving as platforms for birthing and nursing pups, molting, and resting. These fjords have also been popular destinations for tour ships for more than a century, with dramatic increases in vessel traffic since the 1980s. Seals on ice are known to flush into the water when approached by tour ships, but estimating the exposure to disturbance across populations is difficult. Using aerial transect sampling while simultaneously tracking vessel movements, we estimated the spatial overlap between seals on ice and cruise ships in Disenchantment Bay, Alaska, USA. By integrating previously estimated rates of disturbance as a function of distance with an ‘intensity surface’ modeled spatially from seal locations in the surveys, we calculated probabilities of seals flushing during three separate ship visits. By combining our estimate of seals flushed with a modeled estimate of the total fjord population, we predict that up to 14% of the seals (up to 11% of pups) hauled out would have flushed into the water, depending on the route taken by ships relative to seal aggregations. Such high potential for broad-scale disturbance by single vessels (when up to 4 ships visit per day) was unexpected and underscores the need to 1) better understand long-term effects of disturbance; 2) regularly monitor populations exposed to high vessel traffic; and 3) develop conservation measures to reduce seal-ship overlap. PMID:26132083

  7. Estimates of nitrate loads and yields from groundwater to streams in the Chesapeake Bay watershed based on land use and geology

    USGS Publications Warehouse

    Terziotti, Silvia; Capel, Paul D.; Tesoriero, Anthony J.; Hopple, Jessica A.; Kronholm, Scott C.

    2018-03-07

    The water quality of the Chesapeake Bay may be adversely affected by dissolved nitrate carried in groundwater discharge to streams. To estimate the concentrations, loads, and yields of nitrate from groundwater to streams for the Chesapeake Bay watershed, a regression model was developed based on measured nitrate concentrations from 156 small streams with watersheds less than 500 square miles (mi2 ) at baseflow. The regression model has three predictive variables: geologic unit, percent developed land, and percent agricultural land. Comparisons of estimated and actual values within geologic units were closely matched. The coefficient of determination (R2 ) for the model was 0.6906. The model was used to calculate baseflow nitrate concentrations at over 83,000 National Hydrography Dataset Plus Version 2 catchments and aggregated to 1,966 total 12-digit hydrologic units in the Chesapeake Bay watershed. The modeled output geospatial data layers provided estimated annual loads and yields of nitrate from groundwater into streams. The spatial distribution of annual nitrate yields from groundwater estimated by this method was compared to the total watershed yields of all sources estimated from a Chesapeake Bay SPAtially Referenced Regressions On Watershed attributes (SPARROW) water-quality model. The comparison showed similar spatial patterns. The regression model for groundwater contribution had similar but lower yields, suggesting that groundwater is an important source of nitrogen for streams in the Chesapeake Bay watershed.

  8. Spatial Distribution of Hydrologic Ecosystem Service Estimates: Comparing Two Models

    NASA Astrophysics Data System (ADS)

    Dennedy-Frank, P. J.; Ghile, Y.; Gorelick, S.; Logsdon, R. A.; Chaubey, I.; Ziv, G.

    2014-12-01

    We compare estimates of the spatial distribution of water quantity provided (annual water yield) from two ecohydrologic models: the widely-used Soil and Water Assessment Tool (SWAT) and the much simpler water models from the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) toolbox. These two models differ significantly in terms of complexity, timescale of operation, effort, and data required for calibration, and so are often used in different management contexts. We compare two study sites in the US: the Wildcat Creek Watershed (2083 km2) in Indiana, a largely agricultural watershed in a cold aseasonal climate, and the Upper Upatoi Creek Watershed (876 km2) in Georgia, a mostly forested watershed in a temperate aseasonal climate. We evaluate (1) quantitative estimates of water yield to explore how well each model represents this process, and (2) ranked estimates of water yield to indicate how useful the models are for management purposes where other social and financial factors may play significant roles. The SWAT and InVEST models provide very similar estimates of the water yield of individual subbasins in the Wildcat Creek Watershed (Pearson r = 0.92, slope = 0.89), and a similar ranking of the relative water yield of those subbasins (Spearman r = 0.86). However, the two models provide relatively different estimates of the water yield of individual subbasins in the Upper Upatoi Watershed (Pearson r = 0.25, slope = 0.14), and very different ranking of the relative water yield of those subbasins (Spearman r = -0.10). The Upper Upatoi watershed has a significant baseflow contribution due to its sandy, well-drained soils. InVEST's simple seasonality terms, which assume no change in storage over the time of the model run, may not accurately estimate water yield processes when baseflow provides such a strong contribution. Our results suggest that InVEST users take care in situations where storage changes are significant.

  9. Seasonal and Non-seasonal Sea Level Variations by Exchange of Water with Land Hydrology

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Au, A. Y.

    2004-01-01

    The global ocean exchanges a large amount of water, seasonally or non-seasonally, with land hydrology. Apart from the long-term melting of ice sheets and glaciers, the water is exchanged directly as land runoff R, and indirectly via atmosphere in the form of precipitation minus evapo-transpiration P-E. On land, the hydrological budget balance is soil moisture S = P-E-R. The runoff R has been difficult to monitor; but now by combining the following two data sets one can obtain a global estimate, subject to the spatial and temporal resolutions afforded by the data: (1) The space gravity mission GRACE yields monthly S estimate on a spatial scale larger than approx. 1000 km over the last 2.5 years; (2) The atmospheric circulation model output, such as from NCEP, provides proxy estimates for P-E at monthly and approx. 200 km resolutions. We will discuss these estimates and the effects on the global ocean water budget and hence sea level.

  10. Estimation of improved resolution soil moisture in vegetated areas using passive AMSR-E data

    NASA Astrophysics Data System (ADS)

    Moradizadeh, Mina; Saradjian, Mohammad R.

    2018-03-01

    Microwave remote sensing provides a unique capability for soil parameter retrievals. Therefore, various soil parameters estimation models have been developed using brightness temperature (BT) measured by passive microwave sensors. Due to the low resolution of satellite microwave radiometer data, the main goal of this study is to develop a downscaling approach to improve the spatial resolution of soil moisture estimates with the use of higher resolution visible/infrared sensor data. Accordingly, after the soil parameters have been obtained using Simultaneous Land Parameters Retrieval Model algorithm, the downscaling method has been applied to the soil moisture estimations that have been validated against in situ soil moisture data. Advance Microwave Scanning Radiometer-EOS BT data in Soil Moisture Experiment 2003 region in the south and north of Oklahoma have been used to this end. Results illustrated that the soil moisture variability is effectively captured at 5 km spatial scales without a significant degradation of the accuracy.

  11. Water demand-supply analysis in a large spatial area based on the processes of evapotranspiration and runoff

    PubMed Central

    Maruyama, Toshisuke

    2007-01-01

    To estimate the amount of evapotranspiration in a river basin, the “short period water balance method” was formulated. Then, by introducing the “complementary relationship method,” the amount of evapotranspiration was estimated seasonally, and with reasonable accuracy, for both small and large areas. Moreover, to accurately estimate river discharge in the low water season, the “weighted statistical unit hydrograph method” was proposed and a procedure for the calculation of the unit hydrograph was developed. Also, a new model, based on the “equivalent roughness method,” was successfully developed for the estimation of flood runoff from newly reclaimed farmlands. Based on the results of this research, a “composite reservoir model” was formulated to analyze the repeated use of irrigation water in large spatial areas. The application of this model to a number of watershed areas provided useful information with regard to the realities of water demand-supply systems in watersheds predominately dedicated to paddy fields, in Japan. PMID:24367144

  12. The role of spatial aggregation in forensic entomology.

    PubMed

    Fiene, Justin G; Sword, Gregory A; Van Laerhoven, Sherah L; Tarone, Aaron M

    2014-01-01

    A central concept in forensic entomology is that arthropod succession on carrion is predictable and can be used to estimate the postmortem interval (PMI) of human remains. However, most studies have reported significant variation in successional patterns, particularly among replicate carcasses, which has complicated estimates of PMIs. Several forensic entomology researchers have proposed that further integration of ecological and evolutionary theory in forensic entomology could help advance the application of succession data for producing PMI estimates. The purpose of this essay is to draw attention to the role of spatial aggregation of arthropods among carrion resources as a potentially important aspect to consider for understanding and predicting the assembly of arthropods on carrion over time. We review ecological literature related to spatial aggregation of arthropods among patchy and ephemeral resources, such as carrion, and when possible integrate these results with published forensic literature. We show that spatial aggregation of arthropods across resources is commonly reported and has been used to provide fundamental insight for understanding regional and local patterns of arthropod diversity and coexistence. Moreover, two suggestions are made for conducting future research. First, because intraspecific aggregation affects species frequency distributions across carcasses, data from replicate carcasses should not be combined, but rather statistically quantified to generate occurrence probabilities. Second, we identify a need for studies that tease apart the degree to which community assembly on carrion is spatially versus temporally structured, which will aid in developing mechanistic hypotheses on the ecological factors shaping community assembly on carcasses.

  13. Spatial capture-recapture models allowing Markovian transience or dispersal

    USGS Publications Warehouse

    Royle, J. Andrew; Fuller, Angela K.; Sutherland, Chris

    2016-01-01

    Spatial capture–recapture (SCR) models are a relatively recent development in quantitative ecology, and they are becoming widely used to model density in studies of animal populations using camera traps, DNA sampling and other methods which produce spatially explicit individual encounter information. One of the core assumptions of SCR models is that individuals possess home ranges that are spatially stationary during the sampling period. For many species, this assumption is unlikely to be met and, even for species that are typically territorial, individuals may disperse or exhibit transience at some life stages. In this paper we first conduct a simulation study to evaluate the robustness of estimators of density under ordinary SCR models when dispersal or transience is present in the population. Then, using both simulated and real data, we demonstrate that such models can easily be described in the BUGS language providing a practical framework for their analysis, which allows us to evaluate movement dynamics of species using capture–recapture data. We find that while estimators of density are extremely robust, even to pathological levels of movement (e.g., complete transience), the estimator of the spatial scale parameter of the encounter probability model is confounded with the dispersal/transience scale parameter. Thus, use of ordinary SCR models to make inferences about density is feasible, but interpretation of SCR model parameters in relation to movement should be avoided. Instead, when movement dynamics are of interest, such dynamics should be parameterized explicitly in the model.

  14. Summary of groundwater-recharge estimates for Pennsylvania

    USGS Publications Warehouse

    Stuart O. Reese,; Risser, Dennis W.

    2010-01-01

    Groundwater recharge is water that infiltrates through the subsurface to the zone of saturation beneath the water table. Because recharge is a difficult parameter to quantify, it is typically estimated from measurements of other parameters like streamflow and precipitation. This report provides a general overview of processes affecting recharge in Pennsylvania and presents estimates of recharge rates from studies at various scales.The most common method for estimating recharge in Pennsylvania has been to estimate base flow from measurements of streamflow and assume that base flow (expressed in inches over the basin) approximates recharge. Statewide estimates of mean annual groundwater recharge were developed by relating base flow to basin characteristics of HUC10 watersheds (a fifth-level classification that uses 10 digits to define unique hydrologic units) using a regression equation. The regression analysis indicated that mean annual precipitation, average daily maximum temperature, percent of sand in soil, percent of carbonate rock in the watershed, and average stream-channel slope were significant factors in the explaining the variability of groundwater recharge across the Commonwealth.Several maps are included in this report to illustrate the principal factors affecting recharge and provide additional information about the spatial distribution of recharge in Pennsylvania. The maps portray the patterns of precipitation, temperature, prevailing winds across Pennsylvania’s varied physiography; illustrate the error associated with recharge estimates; and show the spatial variability of recharge as a percent of precipitation. National, statewide, regional, and local values of recharge, based on numerous studies, are compiled to allow comparison of estimates from various sources. Together these plates provide a synopsis of groundwater-recharge estimations and factors in Pennsylvania.Areas that receive the most recharge are typically those that get the most rainfall, have favorable surface conditions for infiltration, and are less susceptible to the influences of high temperatures, and thus, evapotranspiration. Areas that have less recharge in Pennsylvania are typically those with less precipitation, less permeable soils, and higher temperatures that are conducive to greater rates of evapotranspiration.

  15. Spatial Statistical Data Fusion (SSDF)

    NASA Technical Reports Server (NTRS)

    Braverman, Amy J.; Nguyen, Hai M.; Cressie, Noel

    2013-01-01

    As remote sensing for scientific purposes has transitioned from an experimental technology to an operational one, the selection of instruments has become more coordinated, so that the scientific community can exploit complementary measurements. However, tech nological and scientific heterogeneity across devices means that the statistical characteristics of the data they collect are different. The challenge addressed here is how to combine heterogeneous remote sensing data sets in a way that yields optimal statistical estimates of the underlying geophysical field, and provides rigorous uncertainty measures for those estimates. Different remote sensing data sets may have different spatial resolutions, different measurement error biases and variances, and other disparate characteristics. A state-of-the-art spatial statistical model was used to relate the true, but not directly observed, geophysical field to noisy, spatial aggregates observed by remote sensing instruments. The spatial covariances of the true field and the covariances of the true field with the observations were modeled. The observations are spatial averages of the true field values, over pixels, with different measurement noise superimposed. A kriging framework is used to infer optimal (minimum mean squared error and unbiased) estimates of the true field at point locations from pixel-level, noisy observations. A key feature of the spatial statistical model is the spatial mixed effects model that underlies it. The approach models the spatial covariance function of the underlying field using linear combinations of basis functions of fixed size. Approaches based on kriging require the inversion of very large spatial covariance matrices, and this is usually done by making simplifying assumptions about spatial covariance structure that simply do not hold for geophysical variables. In contrast, this method does not require these assumptions, and is also computationally much faster. This method is fundamentally different than other approaches to data fusion for remote sensing data because it is inferential rather than merely descriptive. All approaches combine data in a way that minimizes some specified loss function. Most of these are more or less ad hoc criteria based on what looks good to the eye, or some criteria that relate only to the data at hand.

  16. A simple daily soil-water balance model for estimating the spatial and temporal distribution of groundwater recharge in temperate humid areas

    USGS Publications Warehouse

    Dripps, W.R.; Bradbury, K.R.

    2007-01-01

    Quantifying the spatial and temporal distribution of natural groundwater recharge is usually a prerequisite for effective groundwater modeling and management. As flow models become increasingly utilized for management decisions, there is an increased need for simple, practical methods to delineate recharge zones and quantify recharge rates. Existing models for estimating recharge distributions are data intensive, require extensive parameterization, and take a significant investment of time in order to establish. The Wisconsin Geological and Natural History Survey (WGNHS) has developed a simple daily soil-water balance (SWB) model that uses readily available soil, land cover, topographic, and climatic data in conjunction with a geographic information system (GIS) to estimate the temporal and spatial distribution of groundwater recharge at the watershed scale for temperate humid areas. To demonstrate the methodology and the applicability and performance of the model, two case studies are presented: one for the forested Trout Lake watershed of north central Wisconsin, USA and the other for the urban-agricultural Pheasant Branch Creek watershed of south central Wisconsin, USA. Overall, the SWB model performs well and presents modelers and planners with a practical tool for providing recharge estimates for modeling and water resource planning purposes in humid areas. ?? Springer-Verlag 2007.

  17. The design of sampling transects for characterizing water quality in estuaries

    USGS Publications Warehouse

    Jassby, A.D.; Cole, B.E.; Cloern, J.E.

    1997-01-01

    The high spatial variability of estuaries poses a challenge for characterizing estuarine water quality. This problem was examined by conducting monthly high-resolution transects for several water quality variables (chlorophyll a, suspended particulate matter and salinity) in San Francisco Bay (California, U.S.A.). Using these data, six different ways of choosing station locations along a transect, in order to estimate mean conditions, were compared. In addition, 11 approaches to estimating the variance of the transect mean when stations are equally spaced were compared, and the relationship between variance of the estimated transect mean and number of stations was determined. The results provide guidelines for sampling along the axis of an estuary: (1) Choose as many equally-spaced stations as practical; (2) estimate the variance of the mean y?? by var (y??)=(1/10n2)??(j=2)/(n) (y(j)-y(j-1)2, where y1,...,y(n) are the measurements at the n stations; and (3) attain the desired precision by adjusting the number of stations according to var(y??)???1/n2. The inverse power of 2 in the last step is a consequence of the underlying spatial correlation structure in San Francisco Bay; more studies of spatial structure at other estuaries are needed to determine the generality of this relationship.

  18. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome.

    PubMed

    Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre

    2015-01-01

    Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate "wall-to-wall" remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution.

  19. Fourier phase in Fourier-domain optical coherence tomography.

    PubMed

    Uttam, Shikhar; Liu, Yang

    2015-12-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided.

  20. Water Quality Sensing and Spatio-Temporal Monitoring Structure with Autocorrelation Kernel Methods.

    PubMed

    Vizcaíno, Iván P; Carrera, Enrique V; Muñoz-Romero, Sergio; Cumbal, Luis H; Rojo-Álvarez, José Luis

    2017-10-16

    Pollution on water resources is usually analyzed with monitoring campaigns, which consist of programmed sampling, measurement, and recording of the most representative water quality parameters. These campaign measurements yields a non-uniform spatio-temporal sampled data structure to characterize complex dynamics phenomena. In this work, we propose an enhanced statistical interpolation method to provide water quality managers with statistically interpolated representations of spatial-temporal dynamics. Specifically, our proposal makes efficient use of the a priori available information of the quality parameter measurements through Support Vector Regression (SVR) based on Mercer's kernels. The methods are benchmarked against previously proposed methods in three segments of the Machángara River and one segment of the San Pedro River in Ecuador, and their different dynamics are shown by statistically interpolated spatial-temporal maps. The best interpolation performance in terms of mean absolute error was the SVR with Mercer's kernel given by either the Mahalanobis spatial-temporal covariance matrix or by the bivariate estimated autocorrelation function. In particular, the autocorrelation kernel provides with significant improvement of the estimation quality, consistently for all the six water quality variables, which points out the relevance of including a priori knowledge of the problem.

  1. Water Quality Sensing and Spatio-Temporal Monitoring Structure with Autocorrelation Kernel Methods

    PubMed Central

    Vizcaíno, Iván P.; Muñoz-Romero, Sergio; Cumbal, Luis H.

    2017-01-01

    Pollution on water resources is usually analyzed with monitoring campaigns, which consist of programmed sampling, measurement, and recording of the most representative water quality parameters. These campaign measurements yields a non-uniform spatio-temporal sampled data structure to characterize complex dynamics phenomena. In this work, we propose an enhanced statistical interpolation method to provide water quality managers with statistically interpolated representations of spatial-temporal dynamics. Specifically, our proposal makes efficient use of the a priori available information of the quality parameter measurements through Support Vector Regression (SVR) based on Mercer’s kernels. The methods are benchmarked against previously proposed methods in three segments of the Machángara River and one segment of the San Pedro River in Ecuador, and their different dynamics are shown by statistically interpolated spatial-temporal maps. The best interpolation performance in terms of mean absolute error was the SVR with Mercer’s kernel given by either the Mahalanobis spatial-temporal covariance matrix or by the bivariate estimated autocorrelation function. In particular, the autocorrelation kernel provides with significant improvement of the estimation quality, consistently for all the six water quality variables, which points out the relevance of including a priori knowledge of the problem. PMID:29035333

  2. Joint Assimilation of SMOS Brightness Temperature and GRACE Terrestrial Water Storage Observations for Improved Soil Moisture Estimation

    NASA Technical Reports Server (NTRS)

    Girotto, Manuela; Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Rodell, Matthew

    2017-01-01

    Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0 - 5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.

  3. Joint assimilation of SMOS brightness temperature and GRACE terrestrial water storage observations for improved soil moisture estimation

    NASA Astrophysics Data System (ADS)

    Girotto, M.; Reichle, R. H.; De Lannoy, G.; Rodell, M.

    2017-12-01

    Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0-5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.

  4. Burn severity mapping using simulation modeling and satellite imagery

    Treesearch

    Eva C. Karau; Robert E. Keane

    2010-01-01

    Although burn severity maps derived from satellite imagery provide a landscape view of fire impacts, fire effects simulation models can provide spatial fire severity estimates and add a biotic context in which to interpret severity. In this project, we evaluated two methods of mapping burn severity in the context of rapid post-fire assessment for four wildfires in...

  5. Modeling regional-scale wildland fire emissions with the wildland fire emissions information system

    Treesearch

    Nancy H.F. French; Donald McKenzie; Tyler Erickson; Benjamin Koziol; Michael Billmire; K. Endsley; Naomi K.Y. Scheinerman; Liza Jenkins; Mary E. Miller; Roger Ottmar; Susan Prichard

    2014-01-01

    As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire. The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent...

  6. Development of improved wildfire smoke exposure estimates for health studies in the western U.S.

    NASA Astrophysics Data System (ADS)

    Ivey, C.; Holmes, H.; Loria Salazar, S. M.; Pierce, A.; Liu, C.

    2016-12-01

    Wildfire smoke exposure is a significant health concern in the western U.S. because large wildfires have increased in size and frequency over the past four years due to drought conditions. The transport phenomena in complex terrain and timing of the wildfire emissions make the smoke plumes difficult to simulate using conventional air quality models. Monitoring data can be used to estimate exposure metrics, but in rural areas the monitoring networks are too sparse to calculate wildfire exposure metrics for the entire population in a region. Satellite retrievals provide global, spatiotemporal air quality information and are used to track pollution plumes, estimate human exposures, model emissions, and determine sources (i.e., natural versus anthropogenic) in regulatory applications. Particulate matter (PM) exposures can be estimated using columnar aerosol optical depth (AOD), where satellite AOD retrievals serve as a spatial surrogate to simulate surface PM gradients. These exposure models have been successfully used in health effects studies in the eastern U.S. where complex mountainous terrain and surface reflectance do not limit AOD retrival from satellites. Using results from a chemical transport model (CTM) is another effective method to determine spatial gradients of pollutants. However, the CTM does not adequately capture the temporal and spatial distribution of wildfire smoke plumes. By combining the spatiotemporal pollutant fields from both satellite retrievals and CTM results with ground based pollutant observations the spatial wildfire smoke exposure model can be improved. This work will address the challenge of understanding the spatiotemporal distributions of pollutant concentrations to model human exposures of wildfire smoke in regions with complex terrain, where meteorological conditions as well as emission sources significantly influence the spatial distribution of pollutants. The focus will be on developing models to enhance exposure estimates of elevated PM and ozone concentrations from wildfire smoke plumes in the western U.S.

  7. Robust Angle Estimation for MIMO Radar with the Coexistence of Mutual Coupling and Colored Noise.

    PubMed

    Wang, Junxiang; Wang, Xianpeng; Xu, Dingjie; Bi, Guoan

    2018-03-09

    This paper deals with joint estimation of direction-of-departure (DOD) and direction-of- arrival (DOA) in bistatic multiple-input multiple-output (MIMO) radar with the coexistence of unknown mutual coupling and spatial colored noise by developing a novel robust covariance tensor-based angle estimation method. In the proposed method, a third-order tensor is firstly formulated for capturing the multidimensional nature of the received data. Then taking advantage of the temporal uncorrelated characteristic of colored noise and the banded complex symmetric Toeplitz structure of the mutual coupling matrices, a novel fourth-order covariance tensor is constructed for eliminating the influence of both spatial colored noise and mutual coupling. After a robust signal subspace estimation is obtained by using the higher-order singular value decomposition (HOSVD) technique, the rotational invariance technique is applied to achieve the DODs and DOAs. Compared with the existing HOSVD-based subspace methods, the proposed method can provide superior angle estimation performance and automatically jointly perform the DODs and DOAs. Results from numerical experiments are presented to verify the effectiveness of the proposed method.

  8. Robust Angle Estimation for MIMO Radar with the Coexistence of Mutual Coupling and Colored Noise

    PubMed Central

    Wang, Junxiang; Wang, Xianpeng; Xu, Dingjie; Bi, Guoan

    2018-01-01

    This paper deals with joint estimation of direction-of-departure (DOD) and direction-of- arrival (DOA) in bistatic multiple-input multiple-output (MIMO) radar with the coexistence of unknown mutual coupling and spatial colored noise by developing a novel robust covariance tensor-based angle estimation method. In the proposed method, a third-order tensor is firstly formulated for capturing the multidimensional nature of the received data. Then taking advantage of the temporal uncorrelated characteristic of colored noise and the banded complex symmetric Toeplitz structure of the mutual coupling matrices, a novel fourth-order covariance tensor is constructed for eliminating the influence of both spatial colored noise and mutual coupling. After a robust signal subspace estimation is obtained by using the higher-order singular value decomposition (HOSVD) technique, the rotational invariance technique is applied to achieve the DODs and DOAs. Compared with the existing HOSVD-based subspace methods, the proposed method can provide superior angle estimation performance and automatically jointly perform the DODs and DOAs. Results from numerical experiments are presented to verify the effectiveness of the proposed method. PMID:29522499

  9. Selecting a spatial resolution for estimation of per-field green leaf area index

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Williamson, H. Dawn

    1988-01-01

    For any application of multispectral scanner (MSS) data, a user is faced with a number of choices concerning the characteristics of the data; one of these is their spatial resolution. A pilot study was undertaken to determine the spatial resolution that would be optimal for the per-field estimation of green leaf area index (GLAI) in grassland. By reference to empirically-derived data from three areas of grassland, the suitable spatial resolution was hypothesized to lie in the lower portion of a 2-18 m range. To estimate per-field GLAI, airborne MSS data were collected at spatial resolutions of 2 m, 5 m and 10 m. The highest accuracies of per-field GLAI estimation were achieved using MSS data with spatial resolutions of 2 m and 5 m.

  10. Upscaling Ameriflux observations to assess drought impacts on gross primary productivity across the Southwest

    NASA Astrophysics Data System (ADS)

    Barnes, M.; Moore, D. J.; Scott, R. L.; MacBean, N.; Ponce-Campos, G. E.; Breshears, D. D.

    2017-12-01

    Both satellite observations and eddy covariance estimates provide crucial information about the Earth's carbon, water and energy cycles. Continuous measurements from flux towers facilitate exploration of the exchange of carbon dioxide, water and energy between the land surface and the atmosphere at fine temporal and spatial scales, while satellite observations can fill in the large spatial gaps of in-situ measurements and provide long-term temporal continuity. The Southwest (Southwest United States and Northwest Mexico) and other semi-arid regions represent a key uncertainty in interannual variability in carbon uptake. Comparisons of existing global upscaled gross primary production (GPP) products with flux tower data at sites across the Southwest show widespread mischaracterization of seasonality in vegetation carbon uptake, resulting in large (up to 200%) errors in annual carbon uptake estimates. Here, remotely sensed and distributed meteorological inputs are used to upscale GPP estimates from 25 Ameriflux towers across the Southwest to the regional scale using a machine learning approach. Our random forest model incorporates two novel features that improve the spatial and temporal variability in GPP. First, we incorporate a multi-scalar drought index at multiple timescales to account for differential seasonality between ecosystem types. Second, our machine learning algorithm was trained on twenty five ecologically diverse sites to optimize both the monthly variability in and the seasonal cycle of GPP. The product and its components will be used to examine drought impacts on terrestrial carbon cycling across the Southwest including the effects of drought seasonality and on carbon uptake. Our spatially and temporally continuous upscaled GPP product drawing from both ground and satellite data over the Southwest region helps us understand linkages between the carbon and water cycles in semi-arid ecosystems and informs predictions of vegetation response to future climate conditions.

  11. Advancing the detection of steady-state visual evoked potentials in brain-computer interfaces.

    PubMed

    Abu-Alqumsan, Mohammad; Peer, Angelika

    2016-06-01

    Spatial filtering has proved to be a powerful pre-processing step in detection of steady-state visual evoked potentials and boosted typical detection rates both in offline analysis and online SSVEP-based brain-computer interface applications. State-of-the-art detection methods and the spatial filters used thereby share many common foundations as they all build upon the second order statistics of the acquired Electroencephalographic (EEG) data, that is, its spatial autocovariance and cross-covariance with what is assumed to be a pure SSVEP response. The present study aims at highlighting the similarities and differences between these methods. We consider the canonical correlation analysis (CCA) method as a basis for the theoretical and empirical (with real EEG data) analysis of the state-of-the-art detection methods and the spatial filters used thereby. We build upon the findings of this analysis and prior research and propose a new detection method (CVARS) that combines the power of the canonical variates and that of the autoregressive spectral analysis in estimating the signal and noise power levels. We found that the multivariate synchronization index method and the maximum contrast combination method are variations of the CCA method. All three methods were found to provide relatively unreliable detections in low signal-to-noise ratio (SNR) regimes. CVARS and the minimum energy combination methods were found to provide better estimates for different SNR levels. Our theoretical and empirical results demonstrate that the proposed CVARS method outperforms other state-of-the-art detection methods when used in an unsupervised fashion. Furthermore, when used in a supervised fashion, a linear classifier learned from a short training session is able to estimate the hidden user intention, including the idle state (when the user is not attending to any stimulus), rapidly, accurately and reliably.

  12. Lidar-based multinomial classification algorithms for tropical forest degradation status: Implications for biomass estimation

    NASA Astrophysics Data System (ADS)

    Duffy, P.; Keller, M.; Longo, M.; Morton, D. C.; dos-Santos, M. N.; Pinagé, E. R.

    2017-12-01

    There is an urgent need to quantify the effects of land use and land cover change on carbon stocks in tropical forests to support REDD+ policies and improve characterization of global carbon budgets. This need is underscored by the fact that the variability in forest biomass estimates from global forest carbon maps is artificially low relative to estimates generated from forest inventory and high-resolution airborne lidar data. Both deforestation and degradation processes (e.g. logging, fire, and fragmentation) affect carbon fluxes at varying spatial and temporal scales. While the spatial extent and impact of deforestation has been relatively well characterized, the quantification of degradation processes is still poorly constrained. In the Brazilian Amazon, the largest source of uncertainty in CO2 emissions estimates is data on changes in tropical forest carbon stocks through time, followed closely by incomplete information on the carbon losses from forest degradation. In this work, we present a method for classifying the degradation status of tropical forests using higher order moments (skewness and kurtosis) of lidar return distributions aggregated at grids with resolution ranging from 50 m to 250 m. Across multiple spatial resolutions, we quantify the strength of the functional relationship between the lidar returns and the classification based on historical time series of Landsat imagery. Our results show that the higher order moments of the lidar return distributions provide sufficient information to build multinomial models that accurately classify the landscape into intact, logged, and burned forests. Model fit improved with coarser spatial resolution with Kappa statistics of 0.70 at 50 m, and 0.77 at 250 m. In addition, multi-class AUC was estimated as 0.87 at 50 m, and 0.95 at 250 m. This classification provides important information regarding the applicability of the use of lidar data for regional monitoring of recent logging, as well as the trajectory of the carbon budget. Differentiating between the biomass changes associated with deforestation and degradation processes is critical for accurate accounting of disturbance impacts on carbon cycling within the Brazilian Amazon and global tropical forests.

  13. Monthly Fossil-Fuel CO2 Emissions: Isomass of Emissions Gridded by One Degree Latitude by One Degree Longitude (1950 - 2007) (V. 2010)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6290 U.S.A.; Marland, G. [Research Institute for Environment, Energy, and Economics Appalachian State University Boone, NC 28608-2131 USA

    2010-01-01

    The basic data provided in these data files are derived from time series of Global, Regional, and National Fossil-Fuel CO2 Emissions (http://cdiac.ess-dive.lbl.gov/trends/emis/overview_2013.html), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signature (del 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996) for years prior to 1990 and a variable population distribution for later years (Andres et al. 2016). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production). The monthly, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  14. Predicting the spatial extent of liquefaction from geospatial and earthquake specific parameters

    USGS Publications Warehouse

    Zhu, Jing; Baise, Laurie G.; Thompson, Eric M.; Wald, David J.; Knudsen, Keith L.; Deodatis, George; Ellingwood, Bruce R.; Frangopol, Dan M.

    2014-01-01

    The spatially extensive damage from the 2010-2011 Christchurch, New Zealand earthquake events are a reminder of the need for liquefaction hazard maps for anticipating damage from future earthquakes. Liquefaction hazard mapping as traditionally relied on detailed geologic mapping and expensive site studies. These traditional techniques are difficult to apply globally for rapid response or loss estimation. We have developed a logistic regression model to predict the probability of liquefaction occurrence in coastal sedimentary areas as a function of simple and globally available geospatial features (e.g., derived from digital elevation models) and standard earthquake-specific intensity data (e.g., peak ground acceleration). Some of the geospatial explanatory variables that we consider are taken from the hydrology community, which has a long tradition of using remotely sensed data as proxies for subsurface parameters. As a result of using high resolution, remotely-sensed, and spatially continuous data as a proxy for important subsurface parameters such as soil density and soil saturation, and by using a probabilistic modeling framework, our liquefaction model inherently includes the natural spatial variability of liquefaction occurrence and provides an estimate of spatial extent of liquefaction for a given earthquake. To provide a quantitative check on how the predicted probabilities relate to spatial extent of liquefaction, we report the frequency of observed liquefaction features within a range of predicted probabilities. The percentage of liquefaction is the areal extent of observed liquefaction within a given probability contour. The regional model and the results show that there is a strong relationship between the predicted probability and the observed percentage of liquefaction. Visual inspection of the probability contours for each event also indicates that the pattern of liquefaction is well represented by the model.

  15. Avoiding pitfalls in estimating heritability with the common options approach

    PubMed Central

    Danchin, Etienne; Wajnberg, Eric; Wagner, Richard H.

    2014-01-01

    In many circumstances, heritability estimates are subject to two potentially interacting pitfalls: the spatial and the regression to the mean (RTM) fallacies. The spatial fallacy occurs when the set of potential movement options differs among individuals according to where individuals depart. The RTM fallacy occurs when extreme measurements are followed by measurements that are closer to the mean. We simulated data from the largest published heritability study of a behavioural trait, colony size choice, to examine the operation of the two fallacies. We found that spurious heritabilities are generated under a wide range of conditions both in experimental and correlative estimates of heritability. Classically designed cross-foster experiments can actually increase the frequency of spurious heritabilities. Simulations showed that experiments providing all individuals with the identical set of options, such as by fostering all offspring in the same breeding location, are immune to the two pitfalls. PMID:24865284

  16. The challenge of estimating the SWOT signal and error spectra over the Ocean and its applications to CalVal and state estimation problems

    NASA Astrophysics Data System (ADS)

    Ubelmann, C.; Gerald, D.

    2016-12-01

    The SWOT data validation will be a first challenge after launch, as the nature of the measurement, in particular the two-dimensionality at short spatial scales, is new in altimetry. If the comparison with independent observations may be locally possible, a validation of the full signal and error spectrum will be challenging. However, some recent analyses in simulations have shown the possibility to separate the geophysical signals from the spatially coherent instrumental errors in the spectral space, through cross-spectral analysis. These results suggest that rapidly after launch, the instrument error canl be spectrally separated providing some validations and insights on the Ocean energy spectrum, as well as optimal calibrations. Beyond CalVal, such spectral computations will be also essential for producing high-level Ocean estimates (two and three dimensional Ocean state reconstructions).

  17. Similarity recognition of online data curves based on dynamic spatial time warping for the estimation of lithium-ion battery capacity

    NASA Astrophysics Data System (ADS)

    Tao, Laifa; Lu, Chen; Noktehdan, Azadeh

    2015-10-01

    Battery capacity estimation is a significant recent challenge given the complex physical and chemical processes that occur within batteries and the restrictions on the accessibility of capacity degradation data. In this study, we describe an approach called dynamic spatial time warping, which is used to determine the similarities of two arbitrary curves. Unlike classical dynamic time warping methods, this approach can maintain the invariance of curve similarity to the rotations and translations of curves, which is vital in curve similarity search. Moreover, it utilizes the online charging or discharging data that are easily collected and do not require special assumptions. The accuracy of this approach is verified using NASA battery datasets. Results suggest that the proposed approach provides a highly accurate means of estimating battery capacity at less time cost than traditional dynamic time warping methods do for different individuals and under various operating conditions.

  18. Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude - 2016

    DOE Data Explorer

    Andres, R.J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marland, G. [Appalachian State University, Boone, NC (United States)

    2016-01-01

    The monthly, fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  19. Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude - 2015

    DOE Data Explorer

    Andres, R.J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marland, J. [Appalachian State University, Boone, NC (United States)

    2015-01-01

    The monthly, fossil-fuel CO2 emissions estimates from 1950-2011 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2015), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  20. Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (1950 - 2010) (V.2010)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Research Institute for Environment, Energy and Economics Appalachian State University Boone, North Carolina 28608 U.S.A.

    2010-01-01

    The monthly, fossil-fuel CO2 emissions estimates from 1950-2010 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2013), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  1. Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (V. 2011) (1950 - 2010)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, Thomas A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA_; Marland, G. [Research Institute for Environment, Energy and Economics Appalachian State University Boone, North Carolina 28608 U.S.A.

    2011-01-01

    The monthly, fossil-fuel CO2 emissions estimates from 1950-2010 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2013), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  2. Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude - 2013

    DOE Data Explorer

    Andres, R. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marland, G. [Appalachain State University, Boone, NC (United States)

    1996-01-01

    The monthly, fossil-fuel CO2 emissions estimates from 1950-2010 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2013), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  3. Modeling spatial patterns of soil respiration in maize fields from vegetation and soil property factors with the use of remote sensing and geographical information system.

    PubMed

    Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng

    2014-01-01

    To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m(-2) s(-1). The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China.

  4. Modeling Spatial Patterns of Soil Respiration in Maize Fields from Vegetation and Soil Property Factors with the Use of Remote Sensing and Geographical Information System

    PubMed Central

    Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng

    2014-01-01

    To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m−2 s−1. The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China. PMID:25157827

  5. Investigatigating inter-/intra-annual variability of surface hydrology at northern high latitude from spaceborne measurements

    NASA Astrophysics Data System (ADS)

    Kang, K.; Duguay, C. R.

    2014-12-01

    Lakes encompass a large part of the surface cover in the northern boreal and tundra areas of northern Canada and are therefore a significant component of the terrestrial hydrological system. To understand the hydrologic cycle over subarctic and arctic landscapes, estimating surface parameters such as surface net radiation, soil moisture, and surface albedo is important. Although ground-based field measurements provide a good temporal resolution, these data provide a limited spatial representation and are often restricted to the summer period (from June to August), and few surface-based stations are located in high-latitude regions. In this respect, spaceborne remote sensing provides the means to monitor surface hydrology and to estimate components of the surface energy balance with reasonable spatial and temporal resolutions required for hydrological investigations, as well as for providing more spatially representative lake-relevant information than available from in situ measurements. The primary objective of this study is to quantify the sources of temporal and spatial variability in surface albedo over subarctic wetland from satellite derived albedo measurements in the Hudson Bay Lowlands near Churchill, Manitoba. The spatial variability in albedo within each land-cover type is investigated through optical satellite imagery from Landsat-5 Thematic Mapper, Landsat-7 Enhanced Thematic Mapper Plus, and Landsat-8 Operational Land Imager obtained in different seasons from spring into fall (April and October) over a 30-year period (1984-2013). These data allowed for an examination of the spatial variability of surface albedo under relatively dry and wet summer conditions (i.e. 1984, 1998 versus 1991, 2005). A detailed analysis of Landsat-derived surface albedo (ranging from 0.09 to 0.15) conducted in the Churchill region for August is inversely related to surface water fraction calculated from Landsat images. Preliminary analysis of surface albedo observed between July and August are 0.10 to 0.15, and vary due to differences in meteorological parameters such as rainfall, surface moisture and surface air temperature. Overall, spaceborne optical data are an invaluable source for investigating changes and variability in surface albedo in relation to surface hydrology over subarctic regions.

  6. Estimating global per-capita carbon emissions with VIIRS nighttime lights satellite data

    NASA Astrophysics Data System (ADS)

    Jasmin, T.; Desai, A. R.; Pierce, R. B.

    2015-12-01

    With the launch of the Suomi National Polar-orbiting Partnership (NPP) satellite in November 2011, we now have nighttime lights remote sensing capability vastly improved over the predecessor Defense Meteorological Satellite Program (DMSP), owing to improved spatial and radiometric resolution provided by the Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night Band (DNB) along with technology improvements in data transfer, processing, and storage. This development opens doors for improving novel scientific applications utilizing remotely sensed low-level visible light, for purposes ranging from estimating population to inferring factors relating to economic development. For example, the success of future international agreements to reduce greenhouse gas emissions will be dependent on mechanisms to monitor remotely for compliance. Here, we discuss implementation and evaluation of the VRCE system (VIIRS Remote Carbon Estimates), developed at the University of Wisconsin-Madison, which provides monthly independent, unbiased estimates of per-capita carbon emissions. Cloud-free global composites of Earth nocturnal lighting are generated from VIIRS DNB at full spatial resolution (750 meter). A population equation is derived from a linear regression of DNB radiance sums at state level to U.S. Census data. CO2 emissions are derived from a linear regression of VIIRS DNB radiance sums to U.S. Department of Energy emission estimates. Regional coefficients for factors such as percentage of energy use from renewable sources are factored in, and together these equations are used to generate per-capita CO2 emission estimates at the country level.

  7. Predicting spatial spread of rabies in skunk populations using surveillance data reported by the public

    PubMed Central

    Streicker, Daniel G.; Fischer, Justin W.; VerCauteren, Kurt C.; Gilbert, Amy T.

    2017-01-01

    Background Prevention and control of wildlife disease invasions relies on the ability to predict spatio-temporal dynamics and understand the role of factors driving spread rates, such as seasonality and transmission distance. Passive disease surveillance (i.e., case reports by public) is a common method of monitoring emergence of wildlife diseases, but can be challenging to interpret due to spatial biases and limitations in data quantity and quality. Methodology/Principal findings We obtained passive rabies surveillance data from dead striped skunks (Mephitis mephitis) in an epizootic in northern Colorado, USA. We developed a dynamic patch-occupancy model which predicts spatio-temporal spreading while accounting for heterogeneous sampling. We estimated the distance travelled per transmission event, direction of invasion, rate of spatial spread, and effects of infection density and season. We also estimated mean transmission distance and rates of spatial spread using a phylogeographic approach on a subsample of viral sequences from the same epizootic. Both the occupancy and phylogeographic approaches predicted similar rates of spatio-temporal spread. Estimated mean transmission distances were 2.3 km (95% Highest Posterior Density (HPD95): 0.02, 11.9; phylogeographic) and 3.9 km (95% credible intervals (CI95): 1.4, 11.3; occupancy). Estimated rates of spatial spread in km/year were: 29.8 (HPD95: 20.8, 39.8; phylogeographic, branch velocity, homogenous model), 22.6 (HPD95: 15.3, 29.7; phylogeographic, diffusion rate, homogenous model) and 21.1 (CI95: 16.7, 25.5; occupancy). Initial colonization probability was twice as high in spring relative to fall. Conclusions/Significance Skunk-to-skunk transmission was primarily local (< 4 km) suggesting that if interventions were needed, they could be applied at the wave front. Slower viral invasions of skunk rabies in western USA compared to a similar epizootic in raccoons in the eastern USA implies host species or landscape factors underlie the dynamics of rabies invasions. Our framework provides a straightforward method for estimating rates of spatial spread of wildlife diseases. PMID:28759576

  8. Camera traps and mark-resight models: The value of ancillary data for evaluating assumptions

    USGS Publications Warehouse

    Parsons, Arielle W.; Simons, Theodore R.; Pollock, Kenneth H.; Stoskopf, Michael K.; Stocking, Jessica J.; O'Connell, Allan F.

    2015-01-01

    Unbiased estimators of abundance and density are fundamental to the study of animal ecology and critical for making sound management decisions. Capture–recapture models are generally considered the most robust approach for estimating these parameters but rely on a number of assumptions that are often violated but rarely validated. Mark-resight models, a form of capture–recapture, are well suited for use with noninvasive sampling methods and allow for a number of assumptions to be relaxed. We used ancillary data from continuous video and radio telemetry to evaluate the assumptions of mark-resight models for abundance estimation on a barrier island raccoon (Procyon lotor) population using camera traps. Our island study site was geographically closed, allowing us to estimate real survival and in situ recruitment in addition to population size. We found several sources of bias due to heterogeneity of capture probabilities in our study, including camera placement, animal movement, island physiography, and animal behavior. Almost all sources of heterogeneity could be accounted for using the sophisticated mark-resight models developed by McClintock et al. (2009b) and this model generated estimates similar to a spatially explicit mark-resight model previously developed for this population during our study. Spatially explicit capture–recapture models have become an important tool in ecology and confer a number of advantages; however, non-spatial models that account for inherent individual heterogeneity may perform nearly as well, especially where immigration and emigration are limited. Non-spatial models are computationally less demanding, do not make implicit assumptions related to the isotropy of home ranges, and can provide insights with respect to the biological traits of the local population.

  9. Unbounding the mental number line—new evidence on children's spatial representation of numbers

    PubMed Central

    Link, Tanja; Huber, Stefan; Nuerk, Hans-Christoph; Moeller, Korbinian

    2014-01-01

    Number line estimation (i.e., indicating the position of a given number on a physical line) is a standard assessment of children's spatial representation of number magnitude. Importantly, there is an ongoing debate on the question in how far the bounded task version with start and endpoint given (e.g., 0 and 100) might induce specific estimation strategies and thus may not allow for unbiased inferences on the underlying representation. Recently, a new unbounded version of the task was suggested with only the start point and a unit fixed (e.g., the distance from 0 to 1). In adults this task provided a less biased index of the spatial representation of number magnitude. Yet, so far there are no children data available for the unbounded number line estimation task. Therefore, we conducted a cross-sectional study on primary school children performing both, the bounded and the unbounded version of the task. We observed clear evidence for systematic strategic influences (i.e., the consideration of reference points) in the bounded number line estimation task for children older than grade two whereas there were no such indications for the unbounded version for any one of the age groups. In summary, the current data corroborate the unbounded number line estimation task to be a valuable tool for assessing children's spatial representation of number magnitude in a systematic and unbiased manner. Yet, similar results for the bounded and the unbounded version of the task for first- and second-graders may indicate that both versions of the task might assess the same underlying representation for relatively younger children—at least in number ranges familiar to the children assessed. This is of particular importance for inferences about the nature and development of children's magnitude representation. PMID:24478734

  10. Hybrid Air Quality Modeling Approach For Use in the Near ...

    EPA Pesticide Factsheets

    The Near-road EXposures to Urban air pollutant Study (NEXUS) investigated whether children with asthma living in close proximity to major roadways in Detroit, MI, (particularly near roadways with high diesel traffic) have greater health impacts associated with exposure to air pollutants than those living farther away. A major challenge in such health and exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related air pollutants and adverse health outcomes. This paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associated with local variations of emissions and meteorology, were estimated using a combination of the AERMOD and R-LINE dispersion models, local emission source information from the National Emissions Inventory, detailed road network locations and traffic activity, and meteorological data from the Detroit City Airport. The regional background contribution was estimated using a combination of the Community Multiscale Air Quality (CMAQ) model and the Space/Time Ordinary Kriging (STOK) model. To capture the near-road pollutant gradients, refined “mini-grids” of model recep

  11. A quick earthquake disaster loss assessment method supported by dasymetric data for emergency response in China

    NASA Astrophysics Data System (ADS)

    Xu, Jinghai; An, Jiwen; Nie, Gaozong

    2016-04-01

    Improving earthquake disaster loss estimation speed and accuracy is one of the key factors in effective earthquake response and rescue. The presentation of exposure data by applying a dasymetric map approach has good potential for addressing this issue. With the support of 30'' × 30'' areal exposure data (population and building data in China), this paper presents a new earthquake disaster loss estimation method for emergency response situations. This method has two phases: a pre-earthquake phase and a co-earthquake phase. In the pre-earthquake phase, we pre-calculate the earthquake loss related to different seismic intensities and store them in a 30'' × 30'' grid format, which has several stages: determining the earthquake loss calculation factor, gridding damage probability matrices, calculating building damage and calculating human losses. Then, in the co-earthquake phase, there are two stages of estimating loss: generating a theoretical isoseismal map to depict the spatial distribution of the seismic intensity field; then, using the seismic intensity field to extract statistics of losses from the pre-calculated estimation data. Thus, the final loss estimation results are obtained. The method is validated by four actual earthquakes that occurred in China. The method not only significantly improves the speed and accuracy of loss estimation but also provides the spatial distribution of the losses, which will be effective in aiding earthquake emergency response and rescue. Additionally, related pre-calculated earthquake loss estimation data in China could serve to provide disaster risk analysis before earthquakes occur. Currently, the pre-calculated loss estimation data and the two-phase estimation method are used by the China Earthquake Administration.

  12. Validating GEOV3 LAI, FAPAR and vegetation cover estimates derived from PROBA-V observations at 333m over Europe

    NASA Astrophysics Data System (ADS)

    Camacho, Fernando; Sánchez, Jorge; Lacaze, Roselyne; Weiss, Marie; Baret, Frédéric; Verger, Aleixandre; Smets, Bruno; Latorre, Consuelo

    2016-04-01

    The Copernicus Global Land Service (http://land.copernicus.eu/global/) is delivering surface biophysical products derived from satellite observations at global scale. Fifteen years of LAI, FAPAR, and vegetation cover (FCOVER) products among other indicators have been generated from SPOT/VGT observations at 1 km spatial resolution (named GEOV1, GEOV2). The continuity of the service since the end of SPOT/VGT mission (May, 2014) is achieved thanks to PROBA-V, which offers observations at a finer spatial resolution (1/3 km). In the context of the FP7 ImagineS project (http://fp7-imagines.eu/), a new algorithm (Weiss et al., this conference), adapted to PROBA-V spectral and spatial characteristics, was designed to provide vegetation products (named GEOV3) as consistent as possible with GEOV1 and GEOV2 whilst providing near real-time estimates required by some users. It is based on neural network techniques completed with a data filtering and smoothing process. The near real-time estimates are improved through a consolidation period of six dekads during which observations are accumulated every new dekad. The validation of these products is mandatory to provide associated uncertainties for efficient use of this source of information. This work presents an early validation over Europe of the GEOV3 LAI, FAPAR and vegetation cover (FCOVER) products derived from PROBA-V observation at 333 m and 10-days frequency during the year 2014. The validation has been conducted in agreement with the CEOS LPV best practices for global LAI products. Several performance criteria were investigated for the several GEOV3 modes (near real-time, and successive consolidated estimates) including completeness, spatial and temporal consistency, precision and accuracy. The spatial and temporal consistency was evaluated using as reference PROBA-V GEOV1 and MODC5 1 km similar products using a network of 153 validation sites over Europe (EUVAL). The accuracy was assessed with concomitant data collected in the ImagineS project over six cropland sites located in Spain, Italy, Ukraine and Tunisia and non-concomitant data over forest sites made available through the CEOS OLIVE cal/val tool. The ground data was estimated from digital hemispherical photography following a well-established protocol over a sampling unit, and then sampling unit values were up-scaled using Landsat-8 imagery and a robust linear regression algorithm. The accuracy was estimated at 333m over regions of 20x20 km2, and at 1 km over areas of 3x3 km2 in order to compare with GEOV1 and MODIS satellite products. Our results show that GEOV3 presents good quality in most of the examined criteria, even if the near real-time estimates show a much lower precision and temporal stability in some biomes. However, after only two dekads the GEOV3 estimate becomes very stable. We observed a slight positive bias at the start of the season in croplands and deciduous forest, mainly, that could be introduced due to the smoothing process. The comparison with ground measurements showed that, overall, the accuracy was good for LAI (RMSE=0.7) and FAPAR (RMSE=0.05) with no bias in the estimates, whilst FCOVER shows a systematic overestimation of about 0.12 units.

  13. Evaluation of spatial and spatiotemporal estimation methods in simulation of precipitation variability patterns

    NASA Astrophysics Data System (ADS)

    Bayat, Bardia; Zahraie, Banafsheh; Taghavi, Farahnaz; Nasseri, Mohsen

    2013-08-01

    Identification of spatial and spatiotemporal precipitation variations plays an important role in different hydrological applications such as missing data estimation. In this paper, the results of Bayesian maximum entropy (BME) and ordinary kriging (OK) are compared for modeling spatial and spatiotemporal variations of annual precipitation with and without incorporating elevation variations. The study area of this research is Namak Lake watershed located in the central part of Iran with an area of approximately 90,000 km2. The BME and OK methods have been used to model the spatial and spatiotemporal variations of precipitation in this watershed, and their performances have been evaluated using cross-validation statistics. The results of the case study have shown the superiority of BME over OK in both spatial and spatiotemporal modes. The results have shown that BME estimates are less biased and more accurate than OK. The improvements in the BME estimates are mostly related to incorporating hard and soft data in the estimation process, which resulted in more detailed and reliable results. Estimation error variance for BME results is less than OK estimations in the study area in both spatial and spatiotemporal modes.

  14. Quantifying stream thermal regimes at management-pertinent scales: combining thermal infrared and stationary stream temperature data in a novel modeling framework.

    USGS Publications Warehouse

    Vatland, Shane J.; Gresswell, Robert E.; Poole, Geoffrey C.

    2015-01-01

    Accurately quantifying stream thermal regimes can be challenging because stream temperatures are often spatially and temporally heterogeneous. In this study, we present a novel modeling framework that combines stream temperature data sets that are continuous in either space or time. Specifically, we merged the fine spatial resolution of thermal infrared (TIR) imagery with hourly data from 10 stationary temperature loggers in a 100 km portion of the Big Hole River, MT, USA. This combination allowed us to estimate summer thermal conditions at a relatively fine spatial resolution (every 100 m of stream length) over a large extent of stream (100 km of stream) during during the warmest part of the summer. Rigorous evaluation, including internal validation, external validation with spatially continuous instream temperature measurements collected from a Langrangian frame of reference, and sensitivity analyses, suggests the model was capable of accurately estimating longitudinal patterns in summer stream temperatures for this system Results revealed considerable spatial and temporal heterogeneity in summer stream temperatures and highlighted the value of assessing thermal regimes at relatively fine spatial and temporal scales. Preserving spatial and temporal variability and structure in abiotic stream data provides a critical foundation for understanding the dynamic, multiscale habitat needs of mobile stream organisms. Similarly, enhanced understanding of spatial and temporal variation in dynamic water quality attributes, including temporal sequence and spatial arrangement, can guide strategic placement of monitoring equipment that will subsequently capture variation in environmental conditions directly pertinent to research and management objectives.

  15. Ensemble Kalman filter inference of spatially-varying Manning's n coefficients in the coastal ocean

    NASA Astrophysics Data System (ADS)

    Siripatana, Adil; Mayo, Talea; Knio, Omar; Dawson, Clint; Maître, Olivier Le; Hoteit, Ibrahim

    2018-07-01

    Ensemble Kalman (EnKF) filtering is an established framework for large scale state estimation problems. EnKFs can also be used for state-parameter estimation, using the so-called "Joint-EnKF" approach. The idea is simply to augment the state vector with the parameters to be estimated and assign invariant dynamics for the time evolution of the parameters. In this contribution, we investigate the efficiency of the Joint-EnKF for estimating spatially-varying Manning's n coefficients used to define the bottom roughness in the Shallow Water Equations (SWEs) of a coastal ocean model. Observation System Simulation Experiments (OSSEs) are conducted using the ADvanced CIRCulation (ADCIRC) model, which solves a modified form of the Shallow Water Equations. A deterministic EnKF, the Singular Evolutive Interpolated Kalman (SEIK) filter, is used to estimate a vector of Manning's n coefficients defined at the model nodal points by assimilating synthetic water elevation data. It is found that with reasonable ensemble size (O (10)) , the filter's estimate converges to the reference Manning's field. To enhance performance, we have further reduced the dimension of the parameter search space through a Karhunen-Loéve (KL) expansion. We have also iterated on the filter update step to better account for the nonlinearity of the parameter estimation problem. We study the sensitivity of the system to the ensemble size, localization scale, dimension of retained KL modes, and number of iterations. The performance of the proposed framework in term of estimation accuracy suggests that a well-tuned Joint-EnKF provides a promising robust approach to infer spatially varying seabed roughness parameters in the context of coastal ocean modeling.

  16. Downscaling Satellite Land Surface Temperatures in Urban Regions for Surface Energy Balance Study and Heat Index Development

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Bah, A.; Prakash, S.; Nouri, N.; Blake, R.

    2017-12-01

    A great percentage of the world's population reside in urban areas that are exposed to the threats of global and regional climate changes and associated extreme weather events. Among them, urban heat islands have significant health and economic impacts due to higher thermal gradients of impermeable surfaces in urban regions compared to their surrounding rural areas. Therefore, accurate characterization of the surface energy balance in urban regions are required to predict these extreme events. High spatial resolution Land surface temperature (LST) in the scale of street level in the cities can provide wealth of information to study surface energy balance and eventually providing a reliable heat index. In this study, we estimate high-resolution LST maps using combination of LandSat 8 and infrared based satellite products such as Moderate Resolution Imaging Spectroradiometer (MODIS) and newly launched Geostationary Operational Environmental Satellite-R Series (GOES-R). Landsat 8 provides higher spatial resolution (30 m) estimates of skin temperature every 16 days. However, MODIS and GOES-R have lower spatial resolution (1km and 4km respectively) with much higher temporal resolution. Several statistical downscaling methods were investigated to provide high spatiotemporal LST maps in urban regions. The results reveal that statistical methods such as Principal Component Analysis (PCA) can provide reliable estimations of LST downscaling with 2K accuracy. Other methods also were tried including aggregating (up-scaling) the high-resolution data to a coarse one to examine the limitations and to build the model. Additionally, we deployed flux towers over distinct materials such as concrete, asphalt, and rooftops in New York City to monitor the sensible and latent heat fluxes through eddy covariance method. To account for the incoming and outgoing radiation, a 4-component radiometer is used that can observe both incoming and outgoing longwave and shortwave radiation. This enables us to accurately build the relationship between LST, air temperature, and the heat index in the future.

  17. Experiments with central-limit properties of spatial samples from locally covariant random fields

    USGS Publications Warehouse

    Barringer, T.H.; Smith, T.E.

    1992-01-01

    When spatial samples are statistically dependent, the classical estimator of sample-mean standard deviation is well known to be inconsistent. For locally dependent samples, however, consistent estimators of sample-mean standard deviation can be constructed. The present paper investigates the sampling properties of one such estimator, designated as the tau estimator of sample-mean standard deviation. In particular, the asymptotic normality properties of standardized sample means based on tau estimators are studied in terms of computer experiments with simulated sample-mean distributions. The effects of both sample size and dependency levels among samples are examined for various value of tau (denoting the size of the spatial kernel for the estimator). The results suggest that even for small degrees of spatial dependency, the tau estimator exhibits significantly stronger normality properties than does the classical estimator of standardized sample means. ?? 1992.

  18. A review of surface energy balance models for estimating actual evapotranspiration with remote sensing at high spatiotemporal resolution over large extents

    USGS Publications Warehouse

    McShane, Ryan R.; Driscoll, Katelyn P.; Sando, Roy

    2017-09-27

    Many approaches have been developed for measuring or estimating actual evapotranspiration (ETa), and research over many years has led to the development of remote sensing methods that are reliably reproducible and effective in estimating ETa. Several remote sensing methods can be used to estimate ETa at the high spatial resolution of agricultural fields and the large extent of river basins. More complex remote sensing methods apply an analytical approach to ETa estimation using physically based models of varied complexity that require a combination of ground-based and remote sensing data, and are grounded in the theory behind the surface energy balance model. This report, funded through cooperation with the International Joint Commission, provides an overview of selected remote sensing methods used for estimating water consumed through ETa and focuses on Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC) and Operational Simplified Surface Energy Balance (SSEBop), two energy balance models for estimating ETa that are currently applied successfully in the United States. The METRIC model can produce maps of ETa at high spatial resolution (30 meters using Landsat data) for specific areas smaller than several hundred square kilometers in extent, an improvement in practice over methods used more generally at larger scales. Many studies validating METRIC estimates of ETa against measurements from lysimeters have shown model accuracies on daily to seasonal time scales ranging from 85 to 95 percent. The METRIC model is accurate, but the greater complexity of METRIC results in greater data requirements, and the internalized calibration of METRIC leads to greater skill required for implementation. In contrast, SSEBop is a simpler model, having reduced data requirements and greater ease of implementation without a substantial loss of accuracy in estimating ETa. The SSEBop model has been used to produce maps of ETa over very large extents (the conterminous United States) using lower spatial resolution (1 kilometer) Moderate Resolution Imaging Spectroradiometer (MODIS) data. Model accuracies ranging from 80 to 95 percent on daily to annual time scales have been shown in numerous studies that validated ETa estimates from SSEBop against eddy covariance measurements. The METRIC and SSEBop models can incorporate low and high spatial resolution data from MODIS and Landsat, but the high spatiotemporal resolution of ETa estimates using Landsat data over large extents takes immense computing power. Cloud computing is providing an opportunity for processing an increasing amount of geospatial “big data” in a decreasing period of time. For example, Google Earth EngineTM has been used to implement METRIC with automated calibration for regional-scale estimates of ETa using Landsat data. The U.S. Geological Survey also is using Google Earth EngineTM to implement SSEBop for estimating ETa in the United States at a continental scale using Landsat data.

  19. The Improvement of Spatial-Temporal PM2.5 Resolution in Taiwan by Using Data Assimilation Method

    NASA Astrophysics Data System (ADS)

    Lin, Yong-Qing; Lin, Yuan-Chien

    2017-04-01

    Forecasting air pollution concentration, e.g., the concentration of PM2.5, is of great significance to protect human health and the environment. Accurate prediction of PM2.5 concentrations is limited in number and the data quality of air quality monitoring stations. The spatial and temporal variations of PM2.5 concentrations are measured by 76 National Air Quality Monitoring Stations (built by the TW-EPA) in Taiwan. The National Air Quality Monitoring Stations are costly and scarce because of the highly precise instrument and their size. Therefore, many places still out of the range of National Air Quality Monitoring Stations. Recently, there are an enormous number of portable air quality sensors called "AirBox" developed jointly by the Taiwan government and a private company. By virtue of its price and portative, the AirBox can provide higher resolution of space-time PM2.5 measurement. However, the spatiotemporal distribution and data quality are different between AirBox and National Air Quality Monitoring Stations. To integrate the heterogeneous PM2.5 data, the data assimilation method should be performed before further analysis. In this study, we propose a data assimilation method based on Ensemble Kalman Filter (EnKF), which is a variant of classic Kalman Filter, can be used to combine additional heterogeneous data from different source while modeling to improve the estimation of spatial-temporal PM2.5 concentration. The assimilation procedure uses the advantages of the two kinds of heterogeneous data and merges them to produce the final estimation. The results have shown that by combining AirBox PM2.5 data as additional information in our model based EnKF can bring the better estimation of spatial-temporal PM2.5 concentration and improve the it's space-time resolution. Under the approach proposed in this study, higher spatial-temporal resoultion could provide a very useful information for a better spatial-temporal data analysis and further environmental management, such as air pollution source localization and micro-scale air pollution analysis. Keywords: PM2.5, Data Assimilation, Ensemble Kalman Filter, Air Quality

  20. Ensemble-Based Parameter Estimation in a Coupled GCM Using the Adaptive Spatial Average Method

    DOE PAGES

    Liu, Y.; Liu, Z.; Zhang, S.; ...

    2014-05-29

    Ensemble-based parameter estimation for a climate model is emerging as an important topic in climate research. And for a complex system such as a coupled ocean–atmosphere general circulation model, the sensitivity and response of a model variable to a model parameter could vary spatially and temporally. An adaptive spatial average (ASA) algorithm is proposed to increase the efficiency of parameter estimation. Refined from a previous spatial average method, the ASA uses the ensemble spread as the criterion for selecting “good” values from the spatially varying posterior estimated parameter values; these good values are then averaged to give the final globalmore » uniform posterior parameter. In comparison with existing methods, the ASA parameter estimation has a superior performance: faster convergence and enhanced signal-to-noise ratio.« less

  1. Use of UAS remote sensing data to estimate crop ET at high spatial resolution

    USDA-ARS?s Scientific Manuscript database

    Estimation of the spatial distribution of evapotranspiration (ET) based on remotely sensed imagery has become useful for managing water in irrigated agricultural at various spatial scales. However, data acquired by conventional satellites (Landsat, ASTER, etc.) lack the spatial resolution to capture...

  2. SMAP Level 4 Surface and Root Zone Soil Moisture

    NASA Technical Reports Server (NTRS)

    Reichle, R.; De Lannoy, G.; Liu, Q.; Ardizzone, J.; Kimball, J.; Koster, R.

    2017-01-01

    The SMAP Level 4 soil moisture (L4_SM) product provides global estimates of surface and root zone soil moisture, along with other land surface variables and their error estimates. These estimates are obtained through assimilation of SMAP brightness temperature observations into the Goddard Earth Observing System (GEOS-5) land surface model. The L4_SM product is provided at 9 km spatial and 3-hourly temporal resolution and with about 2.5 day latency. The soil moisture and temperature estimates in the L4_SM product are validated against in situ observations. The L4_SM product meets the required target uncertainty of 0.04 m(exp. 3)m(exp. -3), measured in terms of unbiased root-mean-square-error, for both surface and root zone soil moisture.

  3. Evaluation of the spatial variability of soil water content at the spatial resolution of SMAP data products : case studies in Italy and Morocco

    NASA Astrophysics Data System (ADS)

    Menenti, Massimo; Akdim, Nadia; Alfieri, Silvia Maria; Labbassi, Kamal; De Lorenzi, Francesca; Bonfante, Antonello; Basile, Angelo

    2014-05-01

    Frequent and contiguous observations of soil water content such as the ones to be provided by SMAP are potentially useful to improve distributed models of soil water balance. This requires matching of observations and model estimates provided both sample spatial patterns consistently. The spatial resolution of SMAP soil water content data products ranges from 3 km X 3 km to 40 km X 40 km. Even the highest spatial resolution may not be sufficient to capture the spatial variability due to terrain, soil properties and precipitation. We have evaluated the SMAP spatial resolution against spatial variability of soil water content in two Mediterranean landscapes: a hilly area dominated by vineyards and olive orchards in Central Italy and a large irrigation schemes (Doukkala) in Morocco. The "Valle Telesina" is a 20,000 ha complex landscape located in South Italy in the Campania region, which has a complex geology and geomorphology and it is characterised by an E-W elongated graben where the Calore river flows. The main crops are grapevine (6,448 ha) and olive (3,390 ha). Soil information was mainly derived from an existing soil map at 1:50 000 scale (Terribile et al., 1996). The area includes 47 SMUs (Soil Mapping Units) and about 60 soil typological units (STUs). (Bonfante et al., 2011). In Doukkala, the soil water retention and unsaturated capillary conductivity were estimated from grain size distribution of a number of samples (22 pilot points, each one sampled in 3 horizons of 20cm), and combined with a soil map. The land use classification was carried out using a NDVI time series at high spatial resolution (Landsat TM and SPOT HRV). We have calculated soil water content for each soil unit in each area in response to several climate cases generating daily maps of soil water content at different depths. To reproduce spatial sampling by SMAP we have filtered these spatial patterns by calculating box averages with grid sizes of 1 km X 1 km and 5 km X 5 km. We have repeated this procedure for soil water content in the 0 to 5 cm and 0 to 10 cm depths. For each case we have compared the variance of filtered soil water content with the expected accuracy of SMAP soil water content. The two areas are very different as regards morphology and soil formation. The Valle Telesina is characterized by a very significant variability of soil hydrological properties leading to complex patterns in soil water content. Contrariwise, the soil properties estimated for all soil mapping units in the Dhoukkala collapse into just two pairs of water retention and hydraulic conductivity characteristics, leading to smoother patterns of soil water content.

  4. Spatial variability in land-atmosphere coupling strength at the ARM Southern Great Plains site under different cloud regimes

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Xie, S.; Zhang, Y.

    2016-12-01

    The paucity of land/soil observations is a long-standing limitation for land-atmosphere (LA) coupling studies, in particular for estimating the spatial variability in the coupling strengths. Spatially dense atmospheric radiation measurement (ARM) sites deployed at the U.S. Southern Great Plains (SGP) covers a wide range of vegetation, surface, and soil types, and thus allow us to observe the spatial patterns of LA coupling. The upcoming "super site" at SGP will facilitate these studies at even finer scales. While many previous studies have focused only on the observations from the central facility (CF) site or the domain mean from multiple sites, in the present work we examine the robustness of many key surface and land observations (e.g., radiation, turbulence fluxes, soil moisture, etc.) at extended sites besides the CF site for a decade. The coupling strengths are estimated with temporal covariations between important variables. We subsample the data to different categories based on different cloud regimes (e.g., clear sky, shallow cumulus, and deep cumulus. These cloud regimes are strongly impacted by local factors. The spatial variability of coupling strengths at different ARM sites is assessed with respect to dominant drivers (i.e., vegetation, land type, etc.). The results of this study will provide insights for improving the representation of LA coupling in climate models by providing observational constraints to parameterizations, e.g., shallow convective schemes. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-698523

  5. Estimation of Spatial Trends in LAI in Heterogeneous Semi-arid Ecosystems using Full Waveform Lidar

    NASA Astrophysics Data System (ADS)

    Glenn, N. F.; Ilangakoon, N.; Spaete, L.; Dashti, H.

    2017-12-01

    Leaf area index (LAI) is a key structural trait that is defined by the plant functional type (PFT) and controlled by prevailing climate- and human-driven ecosystem stresses. Estimates of LAI using remote sensing techniques are limited by the uncertainties of vegetation inter and intra-gap fraction estimates; this is especially the case in sparse, low stature vegetated ecosystems. Small footprint full waveform lidar digitizes the total amount of return energy with the direction information as a near continuous waveform at a high vertical resolution (1 ns). Thus waveform lidar provides additional data matrices to capture vegetation gaps as well as PFTs that can be used to constrain the uncertainties of LAI estimates. In this study, we calculated a radiometrically calibrated full waveform parameter called backscatter cross section, along with other data matrices from the waveform to estimate vegetation gaps across plots (10 m x 10 m) in a semi-arid ecosystem in the western US. The LAI was then estimated using empirical relationships with directional gap fraction. Full waveform-derived gap fraction based LAI showed a high correlation with field observed shrub LAI (R2 = 0.66, RMSE = 0.24) compared to discrete return lidar based LAI (R2 = 0.01, RMSE = 0.5). The data matrices derived from full waveform lidar classified a number of deciduous and evergreen tree species, shrub species, and bare ground with an overall accuracy of 89% at 10 m. A similar analysis was performed at 1m with overall accuracy of 80%. The next step is to use these relationships to map the PFTs LAI at 10 m spatial scale across the larger study regions. The results show the exciting potential of full waveform lidar to identify plant functional types and LAI in low-stature vegetation dominated semi-arid ecosystems, an ecosystem in which many other remote sensing techniques fail. These results can be used to assess ecosystem state, habitat suitability as well as to constrain model uncertainties in vegetation dynamic models with a combination of other remote sensing techniques. Multi-spatial resolution (1 m and 10 m) studies provide basic information on the applicability and detection thresholds of future global satellite sensors designed at coarser spatial resolutions (e.g. GEDI, ICESat-2) in semi-arid ecosystems.

  6. Predicting boundary shear stress and sediment transport over bed forms

    USGS Publications Warehouse

    McLean, S.R.; Wolfe, S.R.; Nelson, J.M.

    1999-01-01

    To estimate bed-load sediment transport rates in flows over bed forms such as ripples and dunes, spatially averaged velocity profiles are frequently used to predict mean boundary shear stress. However, such averaging obscures the complex, nonlinear interaction of wake decay, boundary-layer development, and topographically induced acceleration downstream of flow separation and often leads to inaccurate estimates of boundary stress, particularly skin friction, which is critically important in predicting bed-load transport rates. This paper presents an alternative methodology for predicting skin friction over 2D bed forms. The approach is based on combining the equations describing the mechanics of the internal boundary layer with semiempirical structure functions to predict the velocity at the crest of a bedform, where the flow is most similar to a uniform boundary layer. Significantly, the methodology is directed toward making specific predictions only at the bed-form crest, and as a result it avoids the difficulty and questionable validity of spatial averaging. The model provides an accurate estimate of the skin friction at the crest where transport rates are highest. Simple geometric constraints can be used to derive the mean transport rates as long as bed load is dominant.To estimate bed-load sediment transport rates in flows over bed forms such as ripples and dunes, spatially averaged velocity profiles are frequently used to predict mean boundary shear stress. However, such averaging obscures the complex, nonlinear interaction of wake decay, boundary-layer development, and topographically induced acceleration downstream of flow separation and often leads to inaccurate estimates of boundary stress, particularly skin friction, which is critically important in predicting bed-load transport rates. This paper presents an alternative methodology for predicting skin friction over 2D bed forms. The approach is based on combining the equations describing the mechanics of the internal boundary layer with semiempirical structure functions to predict the velocity at the crest of a bedform, where the flow is most similar to a uniform boundary layer. Significantly, the methodology is directed toward making specific predictions only at the bed-form crest, and as a result it avoids the difficulty and questionable validity of spatial averaging. The model provides an accurate estimate of the skin friction at the crest where transport rates are highest. Simple geometric constraints can be used to derive the mean transport rates as long as bed load is dominant.

  7. Scheduling policies of intelligent sensors and sensor/actuators in flexible structures

    NASA Astrophysics Data System (ADS)

    Demetriou, Michael A.; Potami, Raffaele

    2006-03-01

    In this note, we revisit the problem of actuator/sensor placement in large civil infrastructures and flexible space structures within the context of spatial robustness. The positioning of these devices becomes more important in systems employing wireless sensor and actuator networks (WSAN) for improved control performance and for rapid failure detection. The ability of the sensing and actuating devices to possess the property of spatial robustness results in reduced control energy and therefore the spatial distribution of disturbances is integrated into the location optimization measures. In our studies, the structure under consideration is a flexible plate clamped at all sides. First, we consider the case of sensor placement and the optimization scheme attempts to produce those locations that minimize the effects of the spatial distribution of disturbances on the state estimation error; thus the sensor locations produce state estimators with minimized disturbance-to-error transfer function norms. A two-stage optimization procedure is employed whereby one first considers the open loop system and the spatial distribution of disturbances is found that produces the maximal effects on the entire open loop state. Once this "worst" spatial distribution of disturbances is found, the optimization scheme subsequently finds the locations that produce state estimators with minimum transfer function norms. In the second part, we consider the collocated actuator/sensor pairs and the optimization scheme produces those locations that result in compensators with the smallest norms of the disturbance-to-state transfer functions. Going a step further, an intelligent control scheme is presented which, at each time interval, activates a subset of the actuator/sensor pairs in order provide robustness against spatiotemporally moving disturbances and minimize power consumption by keeping some sensor/actuators in sleep mode.

  8. Tomographic digital subtraction angiography for lung perfusion estimation in rodents.

    PubMed

    Badea, Cristian T; Hedlund, Laurence W; De Lin, Ming; Mackel, Julie S Boslego; Samei, Ehsan; Johnson, G Allan

    2007-05-01

    In vivo measurements of perfusion present a challenge to existing small animal imaging techniques such as magnetic resonance microscopy, micro computed tomography, micro positron emission tomography, and microSPECT, due to combined requirements for high spatial and temporal resolution. We demonstrate the use of tomographic digital subtraction angiography (TDSA) for estimation of perfusion in small animals. TDSA augments conventional digital subtraction angiography (DSA) by providing three-dimensional spatial information using tomosynthesis algorithms. TDSA is based on the novel paradigm that the same time density curves can be reproduced in a number of consecutive injections of microL volumes of contrast at a series of different angles of rotation. The capabilities of TDSA are established in studies on lung perfusion in rats. Using an imaging system developed in-house, we acquired data for four-dimensional (4D) imaging with temporal resolution of 140 ms, in-plane spatial resolution of 100 microm, and slice thickness on the order of millimeters. Based on a structured experimental approach, we optimized TDSA imaging providing a good trade-off between slice thickness, the number of injections, contrast to noise, and immunity to artifacts. Both DSA and TDSA images were used to create parametric maps of perfusion. TDSA imaging has potential application in a number of areas where functional perfusion measurements in 4D can provide valuable insight into animal models of disease and response to therapeutics.

  9. Multiple indicator cokriging with application to optimal sampling for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Pardo-Igúzquiza, Eulogio; Dowd, Peter A.

    2005-02-01

    A probabilistic solution to the problem of spatial interpolation of a variable at an unsampled location consists of estimating the local cumulative distribution function (cdf) of the variable at that location from values measured at neighbouring locations. As this distribution is conditional to the data available at neighbouring locations it incorporates the uncertainty of the value of the variable at the unsampled location. Geostatistics provides a non-parametric solution to such problems via the various forms of indicator kriging. In a least squares sense indicator cokriging is theoretically the best estimator but in practice its use has been inhibited by problems such as an increased number of violations of order relations constraints when compared with simpler forms of indicator kriging. In this paper, we describe a methodology and an accompanying computer program for estimating a vector of indicators by simple indicator cokriging, i.e. simultaneous estimation of the cdf for K different thresholds, {F(u,zk),k=1,…,K}, by solving a unique cokriging system for each location at which an estimate is required. This approach produces a variance-covariance matrix of the estimated vector of indicators which is used to fit a model to the estimated local cdf by logistic regression. This model is used to correct any violations of order relations and automatically ensures that all order relations are satisfied, i.e. the estimated cumulative distribution function, F^(u,zk), is such that: F^(u,zk)∈[0,1],∀zk,andF^(u,zk)⩽F^(u,z)forzk

  10. Uncertainty in Random Forests: What does it mean in a spatial context?

    NASA Astrophysics Data System (ADS)

    Klump, Jens; Fouedjio, Francky

    2017-04-01

    Geochemical surveys are an important part of exploration for mineral resources and in environmental studies. The samples and chemical analyses are often laborious and difficult to obtain and therefore come at a high cost. As a consequence, these surveys are characterised by datasets with large numbers of variables but relatively few data points when compared to conventional big data problems. With more remote sensing platforms and sensor networks being deployed, large volumes of auxiliary data of the surveyed areas are becoming available. The use of these auxiliary data has the potential to improve the prediction of chemical element concentrations over the whole study area. Kriging is a well established geostatistical method for the prediction of spatial data but requires significant pre-processing and makes some basic assumptions about the underlying distribution of the data. Some machine learning algorithms, on the other hand, may require less data pre-processing and are non-parametric. In this study we used a dataset provided by Kirkwood et al. [1] to explore the potential use of Random Forest in geochemical mapping. We chose Random Forest because it is a well understood machine learning method and has the advantage that it provides us with a measure of uncertainty. By comparing Random Forest to Kriging we found that both methods produced comparable maps of estimated values for our variables of interest. Kriging outperformed Random Forest for variables of interest with relatively strong spatial correlation. The measure of uncertainty provided by Random Forest seems to be quite different to the measure of uncertainty provided by Kriging. In particular, the lack of spatial context can give misleading results in areas without ground truth data. In conclusion, our preliminary results show that the model driven approach in geostatistics gives us more reliable estimates for our target variables than Random Forest for variables with relatively strong spatial correlation. However, in cases of weak spatial correlation Random Forest, as a nonparametric method, may give the better results once we have a better understanding of the meaning of its uncertainty measures in a spatial context. References [1] Kirkwood, C., M. Cave, D. Beamish, S. Grebby, and A. Ferreira (2016), A machine learning approach to geochemical mapping, Journal of Geochemical Exploration, 163, 28-40, doi:10.1016/j.gexplo.2016.05.003.

  11. Spatial variability effects on precision and power of forage yield estimation

    USDA-ARS?s Scientific Manuscript database

    Spatial analyses of yield trials are important, as they adjust cultivar means for spatial variation and improve the statistical precision of yield estimation. While the relative efficiency of spatial analysis has been frequently reported in several yield trials, its application on long-term forage y...

  12. Assessing Satellite-Based Fire Data for use in the National Emissions Inventory

    NASA Technical Reports Server (NTRS)

    Soja, Amber J.; Al-Saadi, Jassim; Giglio, Louis; Randall, Dave; Kittaka, Chieko; Pouliot, George; Kordzi, Joseph J.; Raffuse, Sean; Pace, Thompson G.; Pierce, Thomas E.; hide

    2009-01-01

    Biomass burning is significant to emission estimates because: (1) it can be a major contributor of particulate matter and other pollutants; (2) it is one of the most poorly documented of all sources; (3) it can adversely affect human health; and (4) it has been identified as a significant contributor to climate change through feedbacks with the radiation budget. Additionally, biomass burning can be a significant contributor to a regions inability to achieve the National Ambient Air Quality Standards for PM 2.5 and ozone, particularly on the top 20% worst air quality days. The United States does not have a standard methodology to track fire occurrence or area burned, which are essential components to estimating fire emissions. Satellite imagery is available almost instantaneously and has great potential to enhance emission estimates and their timeliness. This investigation compares satellite-derived fire data to ground-based data to assign statistical error and helps provide confidence in these data. The largest fires are identified by all satellites and their spatial domain is accurately sensed. MODIS provides enhanced spatial and temporal information, and GOES ABBA data are able to capture more small agricultural fires. A methodology is presented that combines these satellite data in Near-Real-Time to produce a product that captures 81 to 92% of the total area burned by wildfire, prescribed, agricultural and rangeland burning. Each satellite possesses distinct temporal and spatial capabilities that permit the detection of unique fires that could be omitted if using data from only one satellite.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Richard O.

    The application of statistics to environmental pollution monitoring studies requires a knowledge of statistical analysis methods particularly well suited to pollution data. This book fills that need by providing sampling plans, statistical tests, parameter estimation procedure techniques, and references to pertinent publications. Most of the statistical techniques are relatively simple, and examples, exercises, and case studies are provided to illustrate procedures. The book is logically divided into three parts. Chapters 1, 2, and 3 are introductory chapters. Chapters 4 through 10 discuss field sampling designs and Chapters 11 through 18 deal with a broad range of statistical analysis procedures. Somemore » statistical techniques given here are not commonly seen in statistics book. For example, see methods for handling correlated data (Sections 4.5 and 11.12), for detecting hot spots (Chapter 10), and for estimating a confidence interval for the mean of a lognormal distribution (Section 13.2). Also, Appendix B lists a computer code that estimates and tests for trends over time at one or more monitoring stations using nonparametric methods (Chapters 16 and 17). Unfortunately, some important topics could not be included because of their complexity and the need to limit the length of the book. For example, only brief mention could be made of time series analysis using Box-Jenkins methods and of kriging techniques for estimating spatial and spatial-time patterns of pollution, although multiple references on these topics are provided. Also, no discussion of methods for assessing risks from environmental pollution could be included.« less

  14. sGD: software for estimating spatially explicit indices of genetic diversity.

    PubMed

    Shirk, A J; Cushman, S A

    2011-09-01

    Anthropogenic landscape changes have greatly reduced the population size, range and migration rates of many terrestrial species. The small local effective population size of remnant populations favours loss of genetic diversity leading to reduced fitness and adaptive potential, and thus ultimately greater extinction risk. Accurately quantifying genetic diversity is therefore crucial to assessing the viability of small populations. Diversity indices are typically calculated from the multilocus genotypes of all individuals sampled within discretely defined habitat patches or larger regional extents. Importantly, discrete population approaches do not capture the clinal nature of populations genetically isolated by distance or landscape resistance. Here, we introduce spatial Genetic Diversity (sGD), a new spatially explicit tool to estimate genetic diversity based on grouping individuals into potentially overlapping genetic neighbourhoods that match the population structure, whether discrete or clinal. We compared the estimates and patterns of genetic diversity using patch or regional sampling and sGD on both simulated and empirical populations. When the population did not meet the assumptions of an island model, we found that patch and regional sampling generally overestimated local heterozygosity, inbreeding and allelic diversity. Moreover, sGD revealed fine-scale spatial heterogeneity in genetic diversity that was not evident with patch or regional sampling. These advantages should provide a more robust means to evaluate the potential for genetic factors to influence the viability of clinal populations and guide appropriate conservation plans. © 2011 Blackwell Publishing Ltd.

  15. Landscape scale measures of steelhead (Oncorhynchus mykiss) bioenergetic growth rate potential in Lake Michigan and comparison with angler catch rates

    USGS Publications Warehouse

    Hook, T.O.; Rutherford, E.S.; Brines, Shannon J.; Geddes, C.A.; Mason, D.M.; Schwab, D.J.; Fleischer, G.W.

    2004-01-01

    The relative quality of a habitat can influence fish consumption, growth, mortality, and production. In order to quantify habitat quality, several authors have combined bioenergetic and foraging models to generate spatially explicit estimates of fish growth rate potential (GRP). However, the capacity of GRP to reflect the spatial distributions of fishes over large areas has not been fully evaluated. We generated landscape scale estimates of steelhead (Oncorhynchus mykiss) GRP throughout Lake Michigan for 1994-1996, and used these estimates to test the hypotheses that GRP is a good predictor of spatial patterns of steelhead catch rates. We used surface temperatures (measured with AVHRR satellite imagery) and acoustically measured steelhead prey densities (alewife, Alosa pseudoharengus) as inputs for the GRP model. Our analyses demonstrate that potential steelhead growth rates in Lake Michigan are highly variable in both space and time. Steelhead GRP tended to increase with latitude, and mean GRP was much higher during September 1995, compared to 1994 and 1996. In addition, our study suggests that landscape scale measures of GRP are not good predictors of steelhead catch rates throughout Lake Michigan, but may provide an index of interannual variation in system-wide habitat quality.

  16. Linking Meteorology, Air Quality Models and Observations to ...

    EPA Pesticide Factsheets

    Epidemiologic studies are critical in establishing the association between exposure to air pollutants and adverse health effects. Results of epidemiologic studies are used by U.S. EPA in developing air quality standards to protect the public from the health effects of air pollutants. A major challenge in environmental epidemiology is adequate exposure characterization. Numerous health studies have used measurements from a few central-site ambient monitors to characterize air pollution exposures. Relying solely on central-site ambient monitors does not account for the spatial-heterogeneity of ambient air pollution patterns, the temporal variability in ambient concentrations, nor the influence of infiltration and indoor sources. Central-site monitoring becomes even more problematic for certain air pollutants that exhibit significant spatial heterogeneity. Statistical interpolation techniques and passive monitoring methods can provide additional spatial resolution in ambient concentration estimates. In addition, spatio-temporal models, which integrate GIS data and other factors, such as meteorology, have also been developed to produce more resolved estimates of ambient concentrations. Models, such as the Community Multi-Scale Air Quality (CMAQ) model, estimate ambient concentrations by combining information on meteorology, source emissions, and chemical-fate and transport. Hybrid modeling approaches, which integrate regional scale models with local scale dispersion

  17. A mapping and monitoring assessment of the Philippines' mangrove forests from 1990 to 2010

    USGS Publications Warehouse

    Long, Jordan; Napton, Darrell; Giri, Chandra; Graesser, Jordan

    2014-01-01

    Information on the present condition and spatiotemporal dynamics of mangrove forests is needed for land-change studies and integrated natural resources planning and management. Although several national mangrove estimates for the Philippines exist, information is unavailable at sufficient spatial and thematic detail for change analysis. Historical and contemporary mangrove distribution maps of the Philippines for 1990 and 2010 were prepared at nominal 30-m spatial resolution using Landsat satellite data. Image classification was performed using a supervised decision tree classification approach. Additionally, decadal land-cover change maps from 1990 to 2010 were prepared to depict changes in mangrove area. Total mangrove area decreased 10.5% from 1990 to 2010. Comparison of estimates produced from this study with selected historical mangrove area estimates revealed that total mangrove area decreased by approximately half (51.8%) from 1918 to 2010. This study provides the most current and reliable data regarding the Philippines mangrove area and spatial distribution and delineates where and when mangrove change has occurred in recent decades. The results from this study are useful for developing conservation strategies, biodiversity loss mitigation efforts, and future monitoring and analysis.

  18. Spatial analysis of groundwater levels using Fuzzy Logic and geostatistical tools

    NASA Astrophysics Data System (ADS)

    Theodoridou, P. G.; Varouchakis, E. A.; Karatzas, G. P.

    2017-12-01

    The spatial variability evaluation of the water table of an aquifer provides useful information in water resources management plans. Geostatistical methods are often employed to map the free surface of an aquifer. In geostatistical analysis using Kriging techniques the selection of the optimal variogram is very important for the optimal method performance. This work compares three different criteria to assess the theoretical variogram that fits to the experimental one: the Least Squares Sum method, the Akaike Information Criterion and the Cressie's Indicator. Moreover, variable distance metrics such as the Euclidean, Minkowski, Manhattan, Canberra and Bray-Curtis are applied to calculate the distance between the observation and the prediction points, that affects both the variogram calculation and the Kriging estimator. A Fuzzy Logic System is then applied to define the appropriate neighbors for each estimation point used in the Kriging algorithm. The two criteria used during the Fuzzy Logic process are the distance between observation and estimation points and the groundwater level value at each observation point. The proposed techniques are applied to a data set of 250 hydraulic head measurements distributed over an alluvial aquifer. The analysis showed that the Power-law variogram model and Manhattan distance metric within ordinary kriging provide the best results when the comprehensive geostatistical analysis process is applied. On the other hand, the Fuzzy Logic approach leads to a Gaussian variogram model and significantly improves the estimation performance. The two different variogram models can be explained in terms of a fractional Brownian motion approach and of aquifer behavior at local scale. Finally, maps of hydraulic head spatial variability and of predictions uncertainty are constructed for the area with the two different approaches comparing their advantages and drawbacks.

  19. Landscape Level Carbon and Water Balances and Agricultural Production in Mountainous Terrain of the Haean Basin, South Korea

    NASA Astrophysics Data System (ADS)

    Lee, B.; Geyer, R.; Seo, B.; Lindner, S.; Walther, G.; Tenhunen, J. D.

    2009-12-01

    The process-based spatial simulation model PIXGRO was used to estimate gross primary production, ecosystem respiration, net ecosystem CO2 exchange and water use by forest and crop fields of Haean Basin, South Korea at landscape scale. Simulations are run for individual years from early spring to late fall, providing estimates for dry land crops and rice paddies with respect to carbon gain, biomass and leaf area development, allocation of photoproducts to the belowground ecosystem compartment, and harvest yields. In the case of deciduous oak forests, gas exchange is estimated, but spatial simulation of growth over the single annual cycles is not included. Spatial parameterization of the model is derived for forest LAI based on remote sensing, for forest and cropland fluxes via eddy covariance and chamber studies, for soil characteristics by generalization from spatial surveys, for climate drivers by generalizing observations at ca. 20 monitoring stations distributed throughout the basin and along the elevation gradient from 500 to 1000 m, and for incident radiation via modelling of the radiation components in complex terrain. Validation of the model is being carried out at point scale based on comparison of model output at selected locations with observations as well as with known trends in ecosystem response documented in the literature. The resulting modelling tool is useful for estimation of ecosystem services at landscape scale, first expressed as kg ha-1 crop yield, but via future cooperative studies also in terms of monetary gain to individual farms and farming cooperatives applying particular management strategies.

  20. An Improved GRACE Terrestrial Water Storage Assimilation System For Estimating Large-Scale Soil Moisture and Shallow Groundwater

    NASA Astrophysics Data System (ADS)

    Girotto, M.; De Lannoy, G. J. M.; Reichle, R. H.; Rodell, M.

    2015-12-01

    The Gravity Recovery And Climate Experiment (GRACE) mission is unique because it provides highly accurate column integrated estimates of terrestrial water storage (TWS) variations. Major limitations of GRACE-based TWS observations are related to their monthly temporal and coarse spatial resolution (around 330 km at the equator), and to the vertical integration of the water storage components. These challenges can be addressed through data assimilation. To date, it is still not obvious how best to assimilate GRACE-TWS observations into a land surface model, in order to improve hydrological variables, and many details have yet to be worked out. This presentation discusses specific recent features of the assimilation of gridded GRACE-TWS data into the NASA Goddard Earth Observing System (GEOS-5) Catchment land surface model to improve soil moisture and shallow groundwater estimates at the continental scale. The major recent advancements introduced by the presented work with respect to earlier systems include: 1) the assimilation of gridded GRACE-TWS data product with scaling factors that are specifically derived for data assimilation purposes only; 2) the assimilation is performed through a 3D assimilation scheme, in which reasonable spatial and temporal error standard deviations and correlations are exploited; 3) the analysis step uses an optimized calculation and application of the analysis increments; 4) a poor-man's adaptive estimation of a spatially variable measurement error. This work shows that even if they are characterized by a coarse spatial and temporal resolution, the observed column integrated GRACE-TWS data have potential for improving our understanding of soil moisture and shallow groundwater variations.

  1. Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage

    PubMed Central

    2013-01-01

    The U.S. has been providing national-scale estimates of forest carbon (C) stocks and stock change to meet United Nations Framework Convention on Climate Change (UNFCCC) reporting requirements for years. Although these currently are provided as national estimates by pool and year to meet greenhouse gas monitoring requirements, there is growing need to disaggregate these estimates to finer scales to enable strategic forest management and monitoring activities focused on various ecosystem services such as C storage enhancement. Through application of a nearest-neighbor imputation approach, spatially extant estimates of forest C density were developed for the conterminous U.S. using the U.S.’s annual forest inventory. Results suggest that an existing forest inventory plot imputation approach can be readily modified to provide raster maps of C density across a range of pools (e.g., live tree to soil organic carbon) and spatial scales (e.g., sub-county to biome). Comparisons among imputed maps indicate strong regional differences across C pools. The C density of pools closely related to detrital input (e.g., dead wood) is often highest in forests suffering from recent mortality events such as those in the northern Rocky Mountains (e.g., beetle infestations). In contrast, live tree carbon density is often highest on the highest quality forest sites such as those found in the Pacific Northwest. Validation results suggest strong agreement between the estimates produced from the forest inventory plots and those from the imputed maps, particularly when the C pool is closely associated with the imputation model (e.g., aboveground live biomass and live tree basal area), with weaker agreement for detrital pools (e.g., standing dead trees). Forest inventory imputed plot maps provide an efficient and flexible approach to monitoring diverse C pools at national (e.g., UNFCCC) and regional scales (e.g., Reducing Emissions from Deforestation and Forest Degradation projects) while allowing timely incorporation of empirical data (e.g., annual forest inventory). PMID:23305341

  2. An Empirical Bayes Approach to Spatial Analysis

    NASA Technical Reports Server (NTRS)

    Morris, C. N.; Kostal, H.

    1983-01-01

    Multi-channel LANDSAT data are collected in several passes over agricultural areas during the growing season. How empirical Bayes modeling can be used to develop crop identification and discrimination techniques that account for spatial correlation in such data is considered. The approach models the unobservable parameters and the data separately, hoping to take advantage of the fact that the bulk of spatial correlation lies in the parameter process. The problem is then framed in terms of estimating posterior probabilities of crop types for each spatial area. Some empirical Bayes spatial estimation methods are used to estimate the logits of these probabilities.

  3. Crop biomass and evapotranspiration estimation using SPOT and Formosat-2 Data

    NASA Astrophysics Data System (ADS)

    Veloso, Amanda; Demarez, Valérie; Ceschia, Eric; Claverie, Martin

    2013-04-01

    The use of crop models allows simulating plant development, growth and yield under different environmental and management conditions. When combined with high spatial and temporal resolution remote sensing data, these models provide new perspectives for crop monitoring at regional scale. We propose here an approach to estimate time courses of dry aboveground biomass, yield and evapotranspiration (ETR) for summer (maize, sunflower) and winter crops (wheat) by assimilating Green Area Index (GAI) data, obtained from satellite observations, into a simple crop model. Only high spatial resolution and gap-free satellite time series can provide enough information for efficient crop monitoring applications. The potential of remote sensing data is often limited by cloud cover and/or gaps in observation. Data from different sensor systems need then to be combined. For this work, we employed a unique set of Formosat-2 and SPOT images (164 images) and in-situ measurements, acquired from 2006 to 2010 in southwest France. Among the several land surface biophysical variables accessible from satellite observations, the GAI is the one that has a key role in soil-plant-atmosphere interactions and in biomass accumulation process. Many methods have been developed to relate GAI to optical remote sensing signal. Here, seasonal dynamics of remotely sensed GAI were estimated by applying a method based on the inversion of a radiative transfer model using artificial neural networks. The modelling approach is based on the Simple Algorithm for Yield and Evapotranspiration estimate (SAFYE) model, which couples the FAO-56 model with an agro-meteorological model, based on Monteith's light-use efficiency theory. The SAFYE model is a daily time step crop model that simulates time series of GAI, dry aboveground biomass, grain yield and ETR. Crop and soil model parameters were determined using both in-situ measurements and values found in the literature. Phenological parameters were calibrated by the assimilation of the remotely sensed GAI time series. The calibration process led to accurate spatial estimates of GAI, ETR as well as of biomass and yield over the study area (24 km x 24 km window). The results highlight the interest of using a combined approach (crop model coupled with high spatial and temporal resolution remote sensing data) for the estimation of agronomical variables. At local scale, the model reproduced correctly the biomass production and ETR for summer crops (with relative RMSE of 29% and 35%, respectively). At regional scale, estimated yield and water requirement for irrigation were compared to regional statistics of yield and irrigation inventories provided by the local water agency. Results showed good agreements for inter-annual dynamics of yield estimates. Differences between water requirement for irrigation and actual supply were lower than 10% and inter-annual variability was well represented as well. The work, initially focused on summer crops, is being adapted to winter crops.

  4. Essays on the Impacts of Geography and Institutions on Access to Energy and Public Infrastructure Services

    NASA Astrophysics Data System (ADS)

    Archibong, Belinda

    While previous literature has emphasized the importance of energy and public infrastructure services for economic development, questions surrounding the implications of unequal spatial distribution in access to these resources remain, particularly in the developing country context. This dissertation provides evidence on the nature, origins and implications of this distribution uniting three strands of research from the development and political economy, regional science and energy economics fields. The dissertation unites three papers on the nature of spatial inequality of access to energy and infrastructure with further implications for conflict risk , the historical institutional and biogeographical determinants of current distribution of access to energy and public infrastructure services and the response of households to fuel price changes over time. Chapter 2 uses a novel survey dataset to provide evidence for spatial clustering of public infrastructure non-functionality at schools by geopolitical zone in Nigeria with further implications for armed conflict risk in the region. Chapter 3 investigates the drivers of the results in chapter 2, exploiting variation in the spatial distribution of precolonial institutions and geography in the region, to provide evidence for the long-term impacts of these factors on current heterogeneity of access to public services. Chapter 4 addresses the policy implications of energy access, providing the first multi-year evidence on firewood demand elasticities in India, using the spatial variation in prices for estimation.

  5. Multi-scale occupancy estimation and modelling using multiple detection methods

    USGS Publications Warehouse

    Nichols, James D.; Bailey, Larissa L.; O'Connell, Allan F.; Talancy, Neil W.; Grant, Evan H. Campbell; Gilbert, Andrew T.; Annand, Elizabeth M.; Husband, Thomas P.; Hines, James E.

    2008-01-01

    Occupancy estimation and modelling based on detection–nondetection data provide an effective way of exploring change in a species’ distribution across time and space in cases where the species is not always detected with certainty. Today, many monitoring programmes target multiple species, or life stages within a species, requiring the use of multiple detection methods. When multiple methods or devices are used at the same sample sites, animals can be detected by more than one method.We develop occupancy models for multiple detection methods that permit simultaneous use of data from all methods for inference about method-specific detection probabilities. Moreover, the approach permits estimation of occupancy at two spatial scales: the larger scale corresponds to species’ use of a sample unit, whereas the smaller scale corresponds to presence of the species at the local sample station or site.We apply the models to data collected on two different vertebrate species: striped skunks Mephitis mephitis and red salamanders Pseudotriton ruber. For striped skunks, large-scale occupancy estimates were consistent between two sampling seasons. Small-scale occupancy probabilities were slightly lower in the late winter/spring when skunks tend to conserve energy, and movements are limited to males in search of females for breeding. There was strong evidence of method-specific detection probabilities for skunks. As anticipated, large- and small-scale occupancy areas completely overlapped for red salamanders. The analyses provided weak evidence of method-specific detection probabilities for this species.Synthesis and applications. Increasingly, many studies are utilizing multiple detection methods at sampling locations. The modelling approach presented here makes efficient use of detections from multiple methods to estimate occupancy probabilities at two spatial scales and to compare detection probabilities associated with different detection methods. The models can be viewed as another variation of Pollock's robust design and may be applicable to a wide variety of scenarios where species occur in an area but are not always near the sampled locations. The estimation approach is likely to be especially useful in multispecies conservation programmes by providing efficient estimates using multiple detection devices and by providing device-specific detection probability estimates for use in survey design.

  6. Estimates of Global Rangeland Net Primary Productivity and its Consumption Based on Climate and Livestock Distribution Data

    NASA Astrophysics Data System (ADS)

    Asrar, G.; Wolf, J.; Rafique, R.; West, T. O.; Ogle, S. M.

    2016-12-01

    Rangelands play an important role in providing ecosystem services such as food, forage, and fuels in many parts of the world. The net primary productivity (NPP), a difference between CO2 fixed by plants and CO2 lost to autotrophic respiration, is a good indicator of the productivity of rangeland ecosystems, and their contribution to the cycling of carbon in the Earth system. In this study, we estimated the NPP of global rangelands, the consumption thereof by grazing livestock, and associated uncertainties, to better understand and quantify the contribution of rangelands to land-based carbon storage. We estimated rangeland NPP using mean annual precipitation data from Climate Research Unit (CRU), and a regression model based on global observations (Del Grosso et al., 2008). Spatial distributions of annual livestock consumption of rangeland NPP (Wolf et al., 2015) were combined with gridded annual rangeland NPP for the years 2000 - 2011. The uncertainty analysis of these estimates was conducted using a Monte Carlo approach. The rangeland NPP estimates with associated uncertainties were also compared with the total modeled GPP estimates obtained from vegetation dynamic model simulations. Our results showed that mean above-ground NPP of rangelands is 1017.5 MgC/km2, while mean below-ground NPP is 847.6 MgC/km2. The total rangeland NPP represents a significant portion of the total NPP of the terrestrial ecosystem. The livestock area requirements used to geographically distribute livestock spatially are based on optimal pasturage and are low relative to area requirements on less productive land. Even so, ca. 90% of annual livestock consumption of rangeland NPP were met with no adjustment of livestock distributions. Moreover, the results of this study allowed us to explicitly quantify the temporal and spatial variations of rangeland NPP under different climatic conditions. Uncertainty analysis was helpful in identifying the strength and weakness of the methods used to estimate rangeland NPP. Overall, the results from this study are useful in quantifying the contribution of rangelands to the carbon cycle and for providing geospatially distributed carbon fluxes associated with the production and consumption of rangeland biomass.

  7. A model for the characterization of the spatial properties in vestibular neurons

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Bush, G. A.; Perachio, A. A.

    1992-01-01

    Quantitative study of the static and dynamic response properties of some otolith-sensitive neurons has been difficult in the past partly because their responses to different linear acceleration vectors exhibited no "null" plane and a dependence of phase on stimulus orientation. The theoretical formulation of the response ellipse provides a quantitative way to estimate the spatio-temporal properties of such neurons. Its semi-major axis gives the direction of the polarization vector (i.e., direction of maximal sensitivity) and it estimates the neuronal response for stimulation along that direction. In addition, the semi-minor axis of the ellipse provides an estimate of the neuron's maximal sensitivity in the "null" plane. In this paper, extracellular recordings from otolith-sensitive vestibular nuclei neurons in decerebrate rats were used to demonstrate the practical application of the method. The experimentally observed gain and phase dependence on the orientation angle of the acceleration vector in a head-horizontal plane was described and satisfactorily fit by the response ellipse model. In addition, the model satisfactorily fits neuronal responses in three-dimensions and unequivocally demonstrates that the response ellipse formulation is the general approach to describe quantitatively the spatial properties of vestibular neurons.

  8. Modelling Geomechanical Heterogeneity of Rock Masses Using Direct and Indirect Geostatistical Conditional Simulation Methods

    NASA Astrophysics Data System (ADS)

    Eivazy, Hesameddin; Esmaieli, Kamran; Jean, Raynald

    2017-12-01

    An accurate characterization and modelling of rock mass geomechanical heterogeneity can lead to more efficient mine planning and design. Using deterministic approaches and random field methods for modelling rock mass heterogeneity is known to be limited in simulating the spatial variation and spatial pattern of the geomechanical properties. Although the applications of geostatistical techniques have demonstrated improvements in modelling the heterogeneity of geomechanical properties, geostatistical estimation methods such as Kriging result in estimates of geomechanical variables that are not fully representative of field observations. This paper reports on the development of 3D models for spatial variability of rock mass geomechanical properties using geostatistical conditional simulation method based on sequential Gaussian simulation. A methodology to simulate the heterogeneity of rock mass quality based on the rock mass rating is proposed and applied to a large open-pit mine in Canada. Using geomechanical core logging data collected from the mine site, a direct and an indirect approach were used to model the spatial variability of rock mass quality. The results of the two modelling approaches were validated against collected field data. The study aims to quantify the risks of pit slope failure and provides a measure of uncertainties in spatial variability of rock mass properties in different areas of the pit.

  9. The role of environmental variables in structuring landscape-scale species distributions in seafloor habitats.

    PubMed

    Kraan, Casper; Aarts, Geert; Van der Meer, Jaap; Piersma, Theunis

    2010-06-01

    Ongoing statistical sophistication allows a shift from describing species' spatial distributions toward statistically disentangling the possible roles of environmental variables in shaping species distributions. Based on a landscape-scale benthic survey in the Dutch Wadden Sea, we show the merits of spatially explicit generalized estimating equations (GEE). The intertidal macrozoobenthic species, Macoma balthica, Cerastoderma edule, Marenzelleria viridis, Scoloplos armiger, Corophium volutator, and Urothoe poseidonis served as test cases, with median grain-size and inundation time as typical environmental explanatory variables. GEEs outperformed spatially naive generalized linear models (GLMs), and removed much residual spatial structure, indicating the importance of median grain-size and inundation time in shaping landscape-scale species distributions in the intertidal. GEE regression coefficients were smaller than those attained with GLM, and GEE standard errors were larger. The best fitting GEE for each species was used to predict species' density in relation to median grain-size and inundation time. Although no drastic changes were noted compared to previous work that described habitat suitability for benthic fauna in the Wadden Sea, our predictions provided more detailed and unbiased estimates of the determinants of species-environment relationships. We conclude that spatial GEEs offer the necessary methodological advances to further steps toward linking pattern to process.

  10. A Spatial Poisson Hurdle Model for Exploring Geographic Variation in Emergency Department Visits

    PubMed Central

    Neelon, Brian; Ghosh, Pulak; Loebs, Patrick F.

    2012-01-01

    Summary We develop a spatial Poisson hurdle model to explore geographic variation in emergency department (ED) visits while accounting for zero inflation. The model consists of two components: a Bernoulli component that models the probability of any ED use (i.e., at least one ED visit per year), and a truncated Poisson component that models the number of ED visits given use. Together, these components address both the abundance of zeros and the right-skewed nature of the nonzero counts. The model has a hierarchical structure that incorporates patient- and area-level covariates, as well as spatially correlated random effects for each areal unit. Because regions with high rates of ED use are likely to have high expected counts among users, we model the spatial random effects via a bivariate conditionally autoregressive (CAR) prior, which introduces dependence between the components and provides spatial smoothing and sharing of information across neighboring regions. Using a simulation study, we show that modeling the between-component correlation reduces bias in parameter estimates. We adopt a Bayesian estimation approach, and the model can be fit using standard Bayesian software. We apply the model to a study of patient and neighborhood factors influencing emergency department use in Durham County, North Carolina. PMID:23543242

  11. Generalized estimators of avian abundance from count survey data

    USGS Publications Warehouse

    Royle, J. Andrew

    2004-01-01

    I consider modeling avian abundance from spatially referenced bird count data collected according to common protocols such as capture?recapture, multiple observer, removal sampling and simple point counts. Small sample sizes and large numbers of parameters have motivated many analyses that disregard the spatial indexing of the data, and thus do not provide an adequate treatment of spatial structure. I describe a general framework for modeling spatially replicated data that regards local abundance as a random process, motivated by the view that the set of spatially referenced local populations (at the sample locations) constitute a metapopulation. Under this view, attention can be focused on developing a model for the variation in local abundance independent of the sampling protocol being considered. The metapopulation model structure, when combined with the data generating model, define a simple hierarchical model that can be analyzed using conventional methods. The proposed modeling framework is completely general in the sense that broad classes of metapopulation models may be considered, site level covariates on detection and abundance may be considered, and estimates of abundance and related quantities may be obtained for sample locations, groups of locations, unsampled locations. Two brief examples are given, the first involving simple point counts, and the second based on temporary removal counts. Extension of these models to open systems is briefly discussed.

  12. A Patch Density Recommendation based on Convergence Studies for Vehicle Panel Vibration Response resulting from Excitation by a Diffuse Acoustic Field

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Hunt, Ron

    2013-01-01

    Fluid structural interaction problems that estimate panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. Even when the analyst elects to use a fitted function for the spatial correlation an error may be introduced if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Both qualitative and quantitative illustrations evaluating the adequacy of different patch density assumptions to approximate the fitted spatial correlation function are provided. The actual response of a typical vehicle panel system is then evaluated in a convergence study where the patch density assumptions are varied over the same finite element model. The convergence study results are presented illustrating the impact resulting from a poor choice of patch density. The fitted correlation function used in this study represents a Diffuse Acoustic Field (DAF) excitation of the panel to produce vibration response.

  13. Spatially-explicit models of global tree density.

    PubMed

    Glick, Henry B; Bettigole, Charlie; Maynard, Daniel S; Covey, Kristofer R; Smith, Jeffrey R; Crowther, Thomas W

    2016-08-16

    Remote sensing and geographic analysis of woody vegetation provide means of evaluating the distribution of natural resources, patterns of biodiversity and ecosystem structure, and socio-economic drivers of resource utilization. While these methods bring geographic datasets with global coverage into our day-to-day analytic spheres, many of the studies that rely on these strategies do not capitalize on the extensive collection of existing field data. We present the methods and maps associated with the first spatially-explicit models of global tree density, which relied on over 420,000 forest inventory field plots from around the world. This research is the result of a collaborative effort engaging over 20 scientists and institutions, and capitalizes on an array of analytical strategies. Our spatial data products offer precise estimates of the number of trees at global and biome scales, but should not be used for local-level estimation. At larger scales, these datasets can contribute valuable insight into resource management, ecological modelling efforts, and the quantification of ecosystem services.

  14. Super-Resolution Reconstruction of Remote Sensing Images Using Multifractal Analysis

    PubMed Central

    Hu, Mao-Gui; Wang, Jin-Feng; Ge, Yong

    2009-01-01

    Satellite remote sensing (RS) is an important contributor to Earth observation, providing various kinds of imagery every day, but low spatial resolution remains a critical bottleneck in a lot of applications, restricting higher spatial resolution analysis (e.g., intra-urban). In this study, a multifractal-based super-resolution reconstruction method is proposed to alleviate this problem. The multifractal characteristic is common in Nature. The self-similarity or self-affinity presented in the image is useful to estimate details at larger and smaller scales than the original. We first look for the presence of multifractal characteristics in the images. Then we estimate parameters of the information transfer function and noise of the low resolution image. Finally, a noise-free, spatial resolution-enhanced image is generated by a fractal coding-based denoising and downscaling method. The empirical case shows that the reconstructed super-resolution image performs well in detail enhancement. This method is not only useful for remote sensing in investigating Earth, but also for other images with multifractal characteristics. PMID:22291530

  15. A power comparison of generalized additive models and the spatial scan statistic in a case-control setting.

    PubMed

    Young, Robin L; Weinberg, Janice; Vieira, Verónica; Ozonoff, Al; Webster, Thomas F

    2010-07-19

    A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM) which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. The GAM permutation testing methods provide a regression-based alternative to the spatial scan statistic. Across all hypotheses examined in this research, the GAM methods had competing or greater power estimates and sensitivities exceeding that of the spatial scan statistic.

  16. A power comparison of generalized additive models and the spatial scan statistic in a case-control setting

    PubMed Central

    2010-01-01

    Background A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM) which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. Results This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. Conclusions The GAM permutation testing methods provide a regression-based alternative to the spatial scan statistic. Across all hypotheses examined in this research, the GAM methods had competing or greater power estimates and sensitivities exceeding that of the spatial scan statistic. PMID:20642827

  17. Improving Evapotranspiration Estimates Using Multi-Platform Remote Sensing

    NASA Astrophysics Data System (ADS)

    Knipper, Kyle; Hogue, Terri; Franz, Kristie; Scott, Russell

    2016-04-01

    Understanding the linkages between energy and water cycles through evapotranspiration (ET) is uniquely challenging given its dependence on a range of climatological parameters and surface/atmospheric heterogeneity. A number of methods have been developed to estimate ET either from primarily remote-sensing observations, in-situ measurements, or a combination of the two. However, the scale of many of these methods may be too large to provide needed information about the spatial and temporal variability of ET that can occur over regions with acute or chronic land cover change and precipitation driven fluxes. The current study aims to improve the spatial and temporal variability of ET utilizing only satellite-based observations by incorporating a potential evapotranspiration (PET) methodology with satellite-based down-scaled soil moisture estimates in southern Arizona, USA. Initially, soil moisture estimates from AMSR2 and SMOS are downscaled to 1km through a triangular relationship between MODIS land surface temperature (MYD11A1), vegetation indices (MOD13Q1/MYD13Q1), and brightness temperature. Downscaled soil moisture values are then used to scale PET to actual ET (AET) at a daily, 1km resolution. Derived AET estimates are compared to observed flux tower estimates, the North American Land Data Assimilation System (NLDAS) model output (i.e. Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model, Mosiac Model, and Noah Model simulations), the Operational Simplified Surface Energy Balance Model (SSEBop), and a calibrated empirical ET model created specifically for the region. Preliminary results indicate a strong increase in correlation when incorporating the downscaling technique to original AMSR2 and SMOS soil moisture values, with the added benefit of being able to decipher small scale heterogeneity in soil moisture (riparian versus desert grassland). AET results show strong correlations with relatively low error and bias when compared to flux tower estimates. In addition, AET results show improved bias to those reported by SSEBop, with similar correlations and errors when compared to the empirical ET model. Spatial patterns of estimated AET display patterns representative of the basin's elevation and vegetation characteristics, with improved spatial resolution and temporal heterogeneity when compared to previous models.

  18. Effect of random errors in planar PIV data on pressure estimation in vortex dominated flows

    NASA Astrophysics Data System (ADS)

    McClure, Jeffrey; Yarusevych, Serhiy

    2015-11-01

    The sensitivity of pressure estimation techniques from Particle Image Velocimetry (PIV) measurements to random errors in measured velocity data is investigated using the flow over a circular cylinder as a test case. Direct numerical simulations are performed for ReD = 100, 300 and 1575, spanning laminar, transitional, and turbulent wake regimes, respectively. A range of random errors typical for PIV measurements is applied to synthetic PIV data extracted from numerical results. A parametric study is then performed using a number of common pressure estimation techniques. Optimal temporal and spatial resolutions are derived based on the sensitivity of the estimated pressure fields to the simulated random error in velocity measurements, and the results are compared to an optimization model derived from error propagation theory. It is shown that the reductions in spatial and temporal scales at higher Reynolds numbers leads to notable changes in the optimal pressure evaluation parameters. The effect of smaller scale wake structures is also quantified. The errors in the estimated pressure fields are shown to depend significantly on the pressure estimation technique employed. The results are used to provide recommendations for the use of pressure and force estimation techniques from experimental PIV measurements in vortex dominated laminar and turbulent wake flows.

  19. Estimating Prediction Uncertainty from Geographical Information System Raster Processing: A User's Manual for the Raster Error Propagation Tool (REPTool)

    USGS Publications Warehouse

    Gurdak, Jason J.; Qi, Sharon L.; Geisler, Michael L.

    2009-01-01

    The U.S. Geological Survey Raster Error Propagation Tool (REPTool) is a custom tool for use with the Environmental System Research Institute (ESRI) ArcGIS Desktop application to estimate error propagation and prediction uncertainty in raster processing operations and geospatial modeling. REPTool is designed to introduce concepts of error and uncertainty in geospatial data and modeling and provide users of ArcGIS Desktop a geoprocessing tool and methodology to consider how error affects geospatial model output. Similar to other geoprocessing tools available in ArcGIS Desktop, REPTool can be run from a dialog window, from the ArcMap command line, or from a Python script. REPTool consists of public-domain, Python-based packages that implement Latin Hypercube Sampling within a probabilistic framework to track error propagation in geospatial models and quantitatively estimate the uncertainty of the model output. Users may specify error for each input raster or model coefficient represented in the geospatial model. The error for the input rasters may be specified as either spatially invariant or spatially variable across the spatial domain. Users may specify model output as a distribution of uncertainty for each raster cell. REPTool uses the Relative Variance Contribution method to quantify the relative error contribution from the two primary components in the geospatial model - errors in the model input data and coefficients of the model variables. REPTool is appropriate for many types of geospatial processing operations, modeling applications, and related research questions, including applications that consider spatially invariant or spatially variable error in geospatial data.

  20. Short-term spatial and temporal variability in greenhouse gas fluxes in riparian zones.

    PubMed

    Vidon, P; Marchese, S; Welsh, M; McMillan, S

    2015-08-01

    Recent research indicates that riparian zones have the potential to contribute significant amounts of greenhouse gases (GHG: N2O, CO2, CH4) to the atmosphere. Yet, the short-term spatial and temporal variability in GHG emission in these systems is poorly understood. Using two transects of three static chambers at two North Carolina agricultural riparian zones (one restored, one unrestored), we show that estimates of the average GHG flux at the site scale can vary by one order of magnitude depending on whether the mean or the median is used as a measure of central tendency. Because the median tends to mute the effect of outlier points (hot spots and hot moments), we propose that both must be reported or that other more advanced spatial averaging techniques (e.g., kriging, area-weighted average) should be used to estimate GHG fluxes at the site scale. Results also indicate that short-term temporal variability in GHG fluxes (a few days) under seemingly constant temperature and hydrological conditions can be as large as spatial variability at the site scale, suggesting that the scientific community should rethink sampling protocols for GHG at the soil-atmosphere interface to include repeated measures over short periods of time at select chambers to estimate GHG emissions in the field. Although recent advances in technology provide tools to address these challenges, their cost is often too high for widespread implementation. Until technology improves, sampling design strategies will need to be carefully considered to balance cost, time, and spatial and temporal representativeness of measurements.

  1. Modeling spatial-temporal dynamics of global wetlands: Comprehensive evaluation of a new sub-grid TOPMODEL parameterization and uncertainties

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Zimmermann, N. E.; Poulter, B.

    2015-12-01

    Simulations of the spatial-temporal dynamics of wetlands is key to understanding the role of wetland biogeochemistry under past and future climate variability. Hydrologic inundation models, such as TOPMODEL, are based on a fundamental parameter known as the compound topographic index (CTI) and provide a computationally cost-efficient approach to simulate global wetland dynamics. However, there remains large discrepancy in the implementations of TOPMODEL in land-surface models (LSMs) and thus their performance against observations. This study describes new improvements to TOPMODEL implementation and estimates of global wetland dynamics using the LPJ-wsl DGVM, and quantifies uncertainties by comparing three digital elevation model products (HYDRO1k, GMTED, and HydroSHEDS) at different spatial resolution and accuracy on simulated inundation dynamics. We found that calibrating TOPMODEL with a benchmark dataset can help to successfully predict the seasonal and interannual variations of wetlands, as well as improve the spatial distribution of wetlands to be consistent with inventories. The HydroSHEDS DEM, using a river-basin scheme for aggregating the CTI, shows best accuracy for capturing the spatio-temporal dynamics of wetland among three DEM products. This study demonstrates the feasibility to capture spatial heterogeneity of inundation and to estimate seasonal and interannual variations in wetland by coupling a hydrological module in LSMs with appropriate benchmark datasets. It additionally highlight the importance of an adequate understanding of topographic indices for simulating global wetlands and show the opportunity to converge wetland estimations in LSMs by identifying the uncertainty associated with existing wetland products.

  2. Estimating Function Approaches for Spatial Point Processes

    NASA Astrophysics Data System (ADS)

    Deng, Chong

    Spatial point pattern data consist of locations of events that are often of interest in biological and ecological studies. Such data are commonly viewed as a realization from a stochastic process called spatial point process. To fit a parametric spatial point process model to such data, likelihood-based methods have been widely studied. However, while maximum likelihood estimation is often too computationally intensive for Cox and cluster processes, pairwise likelihood methods such as composite likelihood, Palm likelihood usually suffer from the loss of information due to the ignorance of correlation among pairs. For many types of correlated data other than spatial point processes, when likelihood-based approaches are not desirable, estimating functions have been widely used for model fitting. In this dissertation, we explore the estimating function approaches for fitting spatial point process models. These approaches, which are based on the asymptotic optimal estimating function theories, can be used to incorporate the correlation among data and yield more efficient estimators. We conducted a series of studies to demonstrate that these estmating function approaches are good alternatives to balance the trade-off between computation complexity and estimating efficiency. First, we propose a new estimating procedure that improves the efficiency of pairwise composite likelihood method in estimating clustering parameters. Our approach combines estimating functions derived from pairwise composite likeli-hood estimation and estimating functions that account for correlations among the pairwise contributions. Our method can be used to fit a variety of parametric spatial point process models and can yield more efficient estimators for the clustering parameters than pairwise composite likelihood estimation. We demonstrate its efficacy through a simulation study and an application to the longleaf pine data. Second, we further explore the quasi-likelihood approach on fitting second-order intensity function of spatial point processes. However, the original second-order quasi-likelihood is barely feasible due to the intense computation and high memory requirement needed to solve a large linear system. Motivated by the existence of geometric regular patterns in the stationary point processes, we find a lower dimension representation of the optimal weight function and propose a reduced second-order quasi-likelihood approach. Through a simulation study, we show that the proposed method not only demonstrates superior performance in fitting the clustering parameter but also merits in the relaxation of the constraint of the tuning parameter, H. Third, we studied the quasi-likelihood type estimating funciton that is optimal in a certain class of first-order estimating functions for estimating the regression parameter in spatial point process models. Then, by using a novel spectral representation, we construct an implementation that is computationally much more efficient and can be applied to more general setup than the original quasi-likelihood method.

  3. Improving Soil Moisture Estimation through the Joint Assimilation of SMOS and GRACE Satellite Observations

    NASA Technical Reports Server (NTRS)

    Girotto, Manuela

    2018-01-01

    Observations from recent soil moisture dedicated missions (e.g. SMOS or SMAP) have been used in innovative data assimilation studies to provide global high spatial (i.e., approximately10-40 km) and temporal resolution (i.e., daily) soil moisture profile estimates from microwave brightness temperature observations. These missions are only sensitive to near-surface soil moisture 0-5 cm). In contrast, the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage (TWS) column but, it is characterized by low spatial (i.e., 150,000 km2) and temporal (i.e., monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). In this presentation I will review benefits and drawbacks associated to the assimilation of both types of observations. In particular, I will illustrate the benefits and drawbacks of their joint assimilation for the purpose of improving the entire profile of soil moisture (i.e., surface and deeper water storages).

  4. Spatial Analysis of Air Quality Monitor Data in China, Japan, and South Korea

    NASA Astrophysics Data System (ADS)

    Rohde, Robert

    2016-04-01

    In 2015, Berkeley Earth published a widely-reported study concluding that air pollution contributes to 1.6 million deaths per year in China. This presentation will provide an update on that work with additional data for China and new analysis for South Korea and Japan. In China, two years of data from more than 1500 monitoring stations allows local trends to be estimated. Preliminary review indicates a trend towards improving air quality across most of China with decreasing emissions at most major population centers. Such improvements are consistent with tightening emissions standards and the decreasing usage of coal. In addition, new spatial analysis has been applied to ~900 monitoring sites in Japan and ~120 sites in South Korea. This new analysis provides information on air quality, pollutant source distributions, and implied mortality in these countries. Finally, boundary crossing fluxes in South Korea and Japan have been used to estimate the fraction of air pollution in Japan and South Korea that has being imported from sources in China.

  5. Spatially explicit population estimates for black bears based on cluster sampling

    USGS Publications Warehouse

    Humm, J.; McCown, J. Walter; Scheick, B.K.; Clark, Joseph D.

    2017-01-01

    We estimated abundance and density of the 5 major black bear (Ursus americanus) subpopulations (i.e., Eglin, Apalachicola, Osceola, Ocala-St. Johns, Big Cypress) in Florida, USA with spatially explicit capture-mark-recapture (SCR) by extracting DNA from hair samples collected at barbed-wire hair sampling sites. We employed a clustered sampling configuration with sampling sites arranged in 3 × 3 clusters spaced 2 km apart within each cluster and cluster centers spaced 16 km apart (center to center). We surveyed all 5 subpopulations encompassing 38,960 km2 during 2014 and 2015. Several landscape variables, most associated with forest cover, helped refine density estimates for the 5 subpopulations we sampled. Detection probabilities were affected by site-specific behavioral responses coupled with individual capture heterogeneity associated with sex. Model-averaged bear population estimates ranged from 120 (95% CI = 59–276) bears or a mean 0.025 bears/km2 (95% CI = 0.011–0.44) for the Eglin subpopulation to 1,198 bears (95% CI = 949–1,537) or 0.127 bears/km2 (95% CI = 0.101–0.163) for the Ocala-St. Johns subpopulation. The total population estimate for our 5 study areas was 3,916 bears (95% CI = 2,914–5,451). The clustered sampling method coupled with information on land cover was efficient and allowed us to estimate abundance across extensive areas that would not have been possible otherwise. Clustered sampling combined with spatially explicit capture-recapture methods has the potential to provide rigorous population estimates for a wide array of species that are extensive and heterogeneous in their distribution.

  6. Spatial multi-criteria decision analysis to predict suitability for African swine fever endemicity in Africa

    PubMed Central

    2014-01-01

    Background African swine fever (ASF) is endemic in several countries of Africa and may pose a risk to all pig producing areas on the continent. Official ASF reporting is often rare and there remains limited awareness of the continent-wide distribution of the disease. In the absence of accurate ASF outbreak data and few quantitative studies on the epidemiology of the disease in Africa, we used spatial multi-criteria decision analysis (MCDA) to derive predictions of the continental distribution of suitability for ASF persistence in domestic pig populations as part of sylvatic or domestic transmission cycles. In order to incorporate the uncertainty in the relative importance of different criteria in defining suitability, we modelled decisions within the MCDA framework using a stochastic approach. The predictive performance of suitability estimates was assessed via a partial ROC analysis using ASF outbreak data reported to the OIE since 2005. Results Outputs from the spatial MCDA indicate that large areas of sub-Saharan Africa may be suitable for ASF persistence as part of either domestic or sylvatic transmission cycles. Areas with high suitability for pig to pig transmission (‘domestic cycles’) were estimated to occur throughout sub-Saharan Africa, whilst areas with high suitability for introduction from wildlife reservoirs (‘sylvatic cycles’) were found predominantly in East, Central and Southern Africa. Based on average AUC ratios from the partial ROC analysis, the predictive ability of suitability estimates for domestic cycles alone was considerably higher than suitability estimates for sylvatic cycles alone, or domestic and sylvatic cycles in combination. Conclusions This study provides the first standardised estimates of the distribution of suitability for ASF transmission associated with domestic and sylvatic cycles in Africa. We provide further evidence for the utility of knowledge-driven risk mapping in animal health, particularly in data-sparse environments. PMID:24406022

  7. The global blue-sky albedo change between 2000 - 2015 seen from MODIS

    NASA Astrophysics Data System (ADS)

    Chrysoulakis, N.; Mitraka, Z.; Gorelick, N.

    2016-12-01

    The land surface albedo is a critical physical variable, which influences the Earth's climate by affecting the energy budget and distribution in the Earth-atmosphere system. Blue-sky albedo estimates provide a quantitative means for better constraining global and regional scale climate models. The Moderate Resolution Imaging Spectroradiometer (MODIS) albedo product includes parameters for the estimation of both the directional-hemispherical surface reflectance (black-sky albedo) and the bi-hemispherical surface reflectance (white-sky albedo). This dataset was used here for the blue-sky albedo estimation over the globe on an 8-day basis at 0.5 km spatial resolution for the whole time period covered by MODIS acquisitions (i.e. 2000 until today). To estimate the blue-sky albedo, the fraction of the diffused radiation is needed, a function of the Aerosol Optical Thickness (AOT). Required AOT information was acquired from the MODIS AOT product at 1̊ × 1̊ spatial resolution. Since the blue-sky albedo depends on the solar zenith angle (SZA), the 8-day mean blue-sky albedo values were computed as averages of the corresponding values for the representative SZAs covering the 24-hour day. The estimated blue-sky albedo time series was analyzed to capture changes during the 15 period. All computation were performed using the Google Earth Engine (GEE). The GEE provided access to all the MODIS products needed for the analysis without the need of searching or downloading. Moreover, the combination of MODIS products in both temporal and spatial terms was fast and effecting using the GEE API (Application Program Interface). All the products covering the globe and for the time period of 15 years were processed via a single collection. Most importantly, GEE allowed for including the calculation of SZAs covering the 24-hour day which improves the quality of the overall product. The 8-day global products of land surface albedo are available through http://www.rslab.gr/downloads.html

  8. Estimates of reservoir methane emissions based on a spatially ...

    EPA Pesticide Factsheets

    Global estimates of methane (CH4) emissions from reservoirs are poorly constrained, partly due to the challenges of accounting for intra-reservoir spatial variability. Reservoir-scale emission rates are often estimated by extrapolating from measurement made at a few locations; however, error and bias associated with this approach can be large and difficult to quantify. Here we use a generalized random tessellation survey (GRTS) design to generate estimates of central tendency and variance at multiple spatial scales in a reservoir. GRTS survey designs are probabilistic and spatially balanced which eliminates bias associated with expert judgment in site selection. GRTS surveys also allow for variance estimates that account for spatial pattern in emission rates. Total CH4 emission rates (i.e. sum of ebullition and diffusive emissions) were 4.8 (±2.1), 33.0 (±10.7), and 8.3 (±2.2) mg CH4 m-2 h-1 in open-waters, tributary associated areas, and the entire reservoir for the period in August 2014 during which 115 sites were sampled across an 7.98 km2 reservoir in Southwestern, Ohio, USA. Tributary areas occupy 12% of the reservoir surface, but were the source of 41% of total CH4 emissions, highlighting the importance of riverine-lacustrine transition zones. Ebullition accounted for >90% of CH4 emission at all spatial scales. Confidence interval estimates that incorporated spatial pattern in CH4 emissions were up to 29% narrower than when spatial independence

  9. Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States.

    PubMed

    Eggo, Rosalind M; Cauchemez, Simon; Ferguson, Neil M

    2011-02-06

    There is still limited understanding of key determinants of spatial spread of influenza. The 1918 pandemic provides an opportunity to elucidate spatial determinants of spread on a large scale. To better characterize the spread of the 1918 major wave, we fitted a range of city-to-city transmission models to mortality data collected for 246 population centres in England and Wales and 47 cities in the US. Using a gravity model for city-to-city contacts, we explored the effect of population size and distance on the spread of disease and tested assumptions regarding density dependence in connectivity between cities. We employed Bayesian Markov Chain Monte Carlo methods to estimate parameters of the model for population, infectivity, distance and density dependence. We inferred the most likely transmission trees for both countries. For England and Wales, a model that estimated the degree of density dependence in connectivity between cities was preferable by deviance information criterion comparison. Early in the major wave, long distance infective interactions predominated, with local infection events more likely as the epidemic became widespread. For the US, with fewer more widely dispersed cities, statistical power was lacking to estimate population size dependence or the degree of density dependence, with the preferred model depending on distance only. We find that parameters estimated from the England and Wales dataset can be applied to the US data with no likelihood penalty.

  10. Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States

    PubMed Central

    Eggo, Rosalind M.; Cauchemez, Simon; Ferguson, Neil M.

    2011-01-01

    There is still limited understanding of key determinants of spatial spread of influenza. The 1918 pandemic provides an opportunity to elucidate spatial determinants of spread on a large scale. To better characterize the spread of the 1918 major wave, we fitted a range of city-to-city transmission models to mortality data collected for 246 population centres in England and Wales and 47 cities in the US. Using a gravity model for city-to-city contacts, we explored the effect of population size and distance on the spread of disease and tested assumptions regarding density dependence in connectivity between cities. We employed Bayesian Markov Chain Monte Carlo methods to estimate parameters of the model for population, infectivity, distance and density dependence. We inferred the most likely transmission trees for both countries. For England and Wales, a model that estimated the degree of density dependence in connectivity between cities was preferable by deviance information criterion comparison. Early in the major wave, long distance infective interactions predominated, with local infection events more likely as the epidemic became widespread. For the US, with fewer more widely dispersed cities, statistical power was lacking to estimate population size dependence or the degree of density dependence, with the preferred model depending on distance only. We find that parameters estimated from the England and Wales dataset can be applied to the US data with no likelihood penalty. PMID:20573630

  11. Neuro-genetic non-invasive temperature estimation: intensity and spatial prediction.

    PubMed

    Teixeira, César A; Ruano, M Graça; Ruano, António E; Pereira, Wagner C A

    2008-06-01

    The existence of proper non-invasive temperature estimators is an essential aspect when thermal therapy applications are envisaged. These estimators must be good predictors to enable temperature estimation at different operational situations, providing better control of the therapeutic instrumentation. In this work, radial basis functions artificial neural networks were constructed to access temperature evolution on an ultrasound insonated medium. The employed models were radial basis functions neural networks with external dynamics induced by their inputs. Both the most suited set of model inputs and number of neurons in the network were found using the multi-objective genetic algorithm. The neural models were validated in two situations: the operating ones, as used in the construction of the network; and in 11 unseen situations. The new data addressed two new spatial locations and a new intensity level, assessing the intensity and space prediction capacity of the proposed model. Good performance was obtained during the validation process both in terms of the spatial points considered and whenever the new intensity level was within the range of applied intensities. A maximum absolute error of 0.5 degrees C+/-10% (0.5 degrees C is the gold-standard threshold in hyperthermia/diathermia) was attained with low computationally complex models. The results confirm that the proposed neuro-genetic approach enables foreseeing temperature propagation, in connection to intensity and space parameters, thus enabling the assessment of different operating situations with proper temperature resolution.

  12. A heteroskedastic error covariance matrix estimator using a first-order conditional autoregressive Markov simulation for deriving asympotical efficient estimates from ecological sampled Anopheles arabiensis aquatic habitat covariates

    PubMed Central

    Jacob, Benjamin G; Griffith, Daniel A; Muturi, Ephantus J; Caamano, Erick X; Githure, John I; Novak, Robert J

    2009-01-01

    Background Autoregressive regression coefficients for Anopheles arabiensis aquatic habitat models are usually assessed using global error techniques and are reported as error covariance matrices. A global statistic, however, will summarize error estimates from multiple habitat locations. This makes it difficult to identify where there are clusters of An. arabiensis aquatic habitats of acceptable prediction. It is therefore useful to conduct some form of spatial error analysis to detect clusters of An. arabiensis aquatic habitats based on uncertainty residuals from individual sampled habitats. In this research, a method of error estimation for spatial simulation models was demonstrated using autocorrelation indices and eigenfunction spatial filters to distinguish among the effects of parameter uncertainty on a stochastic simulation of ecological sampled Anopheles aquatic habitat covariates. A test for diagnostic checking error residuals in an An. arabiensis aquatic habitat model may enable intervention efforts targeting productive habitats clusters, based on larval/pupal productivity, by using the asymptotic distribution of parameter estimates from a residual autocovariance matrix. The models considered in this research extends a normal regression analysis previously considered in the literature. Methods Field and remote-sampled data were collected during July 2006 to December 2007 in Karima rice-village complex in Mwea, Kenya. SAS 9.1.4® was used to explore univariate statistics, correlations, distributions, and to generate global autocorrelation statistics from the ecological sampled datasets. A local autocorrelation index was also generated using spatial covariance parameters (i.e., Moran's Indices) in a SAS/GIS® database. The Moran's statistic was decomposed into orthogonal and uncorrelated synthetic map pattern components using a Poisson model with a gamma-distributed mean (i.e. negative binomial regression). The eigenfunction values from the spatial configuration matrices were then used to define expectations for prior distributions using a Markov chain Monte Carlo (MCMC) algorithm. A set of posterior means were defined in WinBUGS 1.4.3®. After the model had converged, samples from the conditional distributions were used to summarize the posterior distribution of the parameters. Thereafter, a spatial residual trend analyses was used to evaluate variance uncertainty propagation in the model using an autocovariance error matrix. Results By specifying coefficient estimates in a Bayesian framework, the covariate number of tillers was found to be a significant predictor, positively associated with An. arabiensis aquatic habitats. The spatial filter models accounted for approximately 19% redundant locational information in the ecological sampled An. arabiensis aquatic habitat data. In the residual error estimation model there was significant positive autocorrelation (i.e., clustering of habitats in geographic space) based on log-transformed larval/pupal data and the sampled covariate depth of habitat. Conclusion An autocorrelation error covariance matrix and a spatial filter analyses can prioritize mosquito control strategies by providing a computationally attractive and feasible description of variance uncertainty estimates for correctly identifying clusters of prolific An. arabiensis aquatic habitats based on larval/pupal productivity. PMID:19772590

  13. Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.

    PubMed

    Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J

    2010-12-01

    Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies conservation planning. Journal compilation © 2010 Society for Conservation Biology. No claim to original US government works.

  14. Estimation of the high-spatial-resolution variability in extreme wind speeds for forestry applications

    NASA Astrophysics Data System (ADS)

    Venäläinen, Ari; Laapas, Mikko; Pirinen, Pentti; Horttanainen, Matti; Hyvönen, Reijo; Lehtonen, Ilari; Junila, Päivi; Hou, Meiting; Peltola, Heli M.

    2017-07-01

    The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In Finland, a forested country, over 50 % of the current bioeconomy relies on the sustainable management and utilization of forest resources. Wind storms are a major risk that forests are exposed to and high-spatial-resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. In this paper, we examine the feasibility of the wind multiplier approach for downscaling of maximum wind speed, using 20 m spatial resolution CORINE land-use dataset and high-resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum wind speed was obtained from the ERA-Interim reanalyzed data. Using a geospatial re-mapping technique the data were downscaled to 26 meteorological station locations to represent very diverse environments. Applying a comparison, we find that the downscaled 10-year return levels represent 66 % of the observed variation among the stations examined. In addition, the spatial variation in wind-multiplier-downscaled 10-year return level wind was compared with the WAsP model-simulated wind. The heterogeneous test area was situated in northern Finland, and it was found that the major features of the spatial variation were similar, but in some locations, there were relatively large differences. The results indicate that the wind multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations with the highest forest wind damage risks. It can also be used to provide the necessary wind climate information for wind damage risk model calculations, thus making it possible to estimate the probability of predicted threshold wind speeds for wind damage and consequently the probability (and amount) of wind damage for certain forest stand configurations.

  15. Representing spatial structure through maps and language: Lord of the Rings encodes the spatial structure of middle Earth.

    PubMed

    Louwerse, Max M; Benesh, Nick

    2012-01-01

    Spatial mental representations can be derived from linguistic and non-linguistic sources of information. This study tested whether these representations could be formed from statistical linguistic frequencies of city names, and to what extent participants differed in their performance when they estimated spatial locations from language or maps. In a computational linguistic study, we demonstrated that co-occurrences of cities in Tolkien's Lord of the Rings trilogy and The Hobbit predicted the authentic longitude and latitude of those cities in Middle Earth. In a human study, we showed that human spatial estimates of the location of cities were very similar regardless of whether participants read Tolkien's texts or memorized a map of Middle Earth. However, text-based location estimates obtained from statistical linguistic frequencies better predicted the human text-based estimates than the human map-based estimates. These findings suggest that language encodes spatial structure of cities, and that human cognitive map representations can come from implicit statistical linguistic patterns, from explicit non-linguistic perceptual information, or from both. Copyright © 2012 Cognitive Science Society, Inc.

  16. Documentation of the U.S. Geological Survey Stress and Sediment Mobility Database

    USGS Publications Warehouse

    Dalyander, P. Soupy; Butman, Bradford; Sherwood, Christopher R.; Signell, Richard P.

    2012-01-01

    The U.S. Geological Survey Sea Floor Stress and Sediment Mobility Database contains estimates of bottom stress and sediment mobility for the U.S. continental shelf. This U.S. Geological Survey database provides information that is needed to characterize sea floor ecosystems and evaluate areas for human use. The estimates contained in the database are designed to spatially and seasonally resolve the general characteristics of bottom stress over the U.S. continental shelf and to estimate sea floor mobility by comparing critical stress thresholds based on observed sediment texture data to the modeled stress. This report describes the methods used to make the bottom stress and mobility estimates, statistics used to characterize stress and mobility, data validation procedures, and the metadata for each dataset and provides information on how to access the database online.

  17. Spatially explicit dynamic N-mixture models

    USGS Publications Warehouse

    Zhao, Qing; Royle, Andy; Boomer, G. Scott

    2017-01-01

    Knowledge of demographic parameters such as survival, reproduction, emigration, and immigration is essential to understand metapopulation dynamics. Traditionally the estimation of these demographic parameters requires intensive data from marked animals. The development of dynamic N-mixture models makes it possible to estimate demographic parameters from count data of unmarked animals, but the original dynamic N-mixture model does not distinguish emigration and immigration from survival and reproduction, limiting its ability to explain important metapopulation processes such as movement among local populations. In this study we developed a spatially explicit dynamic N-mixture model that estimates survival, reproduction, emigration, local population size, and detection probability from count data under the assumption that movement only occurs among adjacent habitat patches. Simulation studies showed that the inference of our model depends on detection probability, local population size, and the implementation of robust sampling design. Our model provides reliable estimates of survival, reproduction, and emigration when detection probability is high, regardless of local population size or the type of sampling design. When detection probability is low, however, our model only provides reliable estimates of survival, reproduction, and emigration when local population size is moderate to high and robust sampling design is used. A sensitivity analysis showed that our model is robust against the violation of the assumption that movement only occurs among adjacent habitat patches, suggesting wide applications of this model. Our model can be used to improve our understanding of metapopulation dynamics based on count data that are relatively easy to collect in many systems.

  18. Examining Temporal Sample Scale and Model Choice with Spatial Capture-Recapture Models in the Common Leopard Panthera pardus.

    PubMed

    Goldberg, Joshua F; Tempa, Tshering; Norbu, Nawang; Hebblewhite, Mark; Mills, L Scott; Wangchuk, Tshewang R; Lukacs, Paul

    2015-01-01

    Many large carnivores occupy a wide geographic distribution, and face threats from habitat loss and fragmentation, poaching, prey depletion, and human wildlife-conflicts. Conservation requires robust techniques for estimating population densities and trends, but the elusive nature and low densities of many large carnivores make them difficult to detect. Spatial capture-recapture (SCR) models provide a means for handling imperfect detectability, while linking population estimates to individual movement patterns to provide more accurate estimates than standard approaches. Within this framework, we investigate the effect of different sample interval lengths on density estimates, using simulations and a common leopard (Panthera pardus) model system. We apply Bayesian SCR methods to 89 simulated datasets and camera-trapping data from 22 leopards captured 82 times during winter 2010-2011 in Royal Manas National Park, Bhutan. We show that sample interval length from daily, weekly, monthly or quarterly periods did not appreciably affect median abundance or density, but did influence precision. We observed the largest gains in precision when moving from quarterly to shorter intervals. We therefore recommend daily sampling intervals for monitoring rare or elusive species where practicable, but note that monthly or quarterly sample periods can have similar informative value. We further develop a novel application of Bayes factors to select models where multiple ecological factors are integrated into density estimation. Our simulations demonstrate that these methods can help identify the "true" explanatory mechanisms underlying the data. Using this method, we found strong evidence for sex-specific movement distributions in leopards, suggesting that sexual patterns of space-use influence density. This model estimated a density of 10.0 leopards/100 km2 (95% credibility interval: 6.25-15.93), comparable to contemporary estimates in Asia. These SCR methods provide a guide to monitor and observe the effect of management interventions on leopards and other species of conservation interest.

  19. Examining Temporal Sample Scale and Model Choice with Spatial Capture-Recapture Models in the Common Leopard Panthera pardus

    PubMed Central

    Goldberg, Joshua F.; Tempa, Tshering; Norbu, Nawang; Hebblewhite, Mark; Mills, L. Scott; Wangchuk, Tshewang R.; Lukacs, Paul

    2015-01-01

    Many large carnivores occupy a wide geographic distribution, and face threats from habitat loss and fragmentation, poaching, prey depletion, and human wildlife-conflicts. Conservation requires robust techniques for estimating population densities and trends, but the elusive nature and low densities of many large carnivores make them difficult to detect. Spatial capture-recapture (SCR) models provide a means for handling imperfect detectability, while linking population estimates to individual movement patterns to provide more accurate estimates than standard approaches. Within this framework, we investigate the effect of different sample interval lengths on density estimates, using simulations and a common leopard (Panthera pardus) model system. We apply Bayesian SCR methods to 89 simulated datasets and camera-trapping data from 22 leopards captured 82 times during winter 2010–2011 in Royal Manas National Park, Bhutan. We show that sample interval length from daily, weekly, monthly or quarterly periods did not appreciably affect median abundance or density, but did influence precision. We observed the largest gains in precision when moving from quarterly to shorter intervals. We therefore recommend daily sampling intervals for monitoring rare or elusive species where practicable, but note that monthly or quarterly sample periods can have similar informative value. We further develop a novel application of Bayes factors to select models where multiple ecological factors are integrated into density estimation. Our simulations demonstrate that these methods can help identify the “true” explanatory mechanisms underlying the data. Using this method, we found strong evidence for sex-specific movement distributions in leopards, suggesting that sexual patterns of space-use influence density. This model estimated a density of 10.0 leopards/100 km2 (95% credibility interval: 6.25–15.93), comparable to contemporary estimates in Asia. These SCR methods provide a guide to monitor and observe the effect of management interventions on leopards and other species of conservation interest. PMID:26536231

  20. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate.

    PubMed

    Beer, Christian; Reichstein, Markus; Tomelleri, Enrico; Ciais, Philippe; Jung, Martin; Carvalhais, Nuno; Rödenbeck, Christian; Arain, M Altaf; Baldocchi, Dennis; Bonan, Gordon B; Bondeau, Alberte; Cescatti, Alessandro; Lasslop, Gitta; Lindroth, Anders; Lomas, Mark; Luyssaert, Sebastiaan; Margolis, Hank; Oleson, Keith W; Roupsard, Olivier; Veenendaal, Elmar; Viovy, Nicolas; Williams, Christopher; Woodward, F Ian; Papale, Dario

    2010-08-13

    Terrestrial gross primary production (GPP) is the largest global CO(2) flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 +/- 8 petagrams of carbon per year (Pg C year(-1)) using eddy covariance flux data and various diagnostic models. Tropical forests and savannahs account for 60%. GPP over 40% of the vegetated land is associated with precipitation. State-of-the-art process-oriented biosphere models used for climate predictions exhibit a large between-model variation of GPP's latitudinal patterns and show higher spatial correlations between GPP and precipitation, suggesting the existence of missing processes or feedback mechanisms which attenuate the vegetation response to climate. Our estimates of spatially distributed GPP and its covariation with climate can help improve coupled climate-carbon cycle process models.

  1. Towards realistic Holocene land cover scenarios: integration of archaeological, palynological and geomorphological records and comparison to global land cover scenarios.

    NASA Astrophysics Data System (ADS)

    De Brue, Hanne; Verstraeten, Gert; Broothaerts, Nils; Notebaert, Bastiaan

    2016-04-01

    Accurate and spatially explicit landscape reconstructions for distinct time periods in human history are essential for the quantification of the effect of anthropogenic land cover changes on, e.g., global biogeochemical cycles, ecology, and geomorphic processes, and to improve our understanding of interaction between humans and the environment in general. A long-term perspective covering Mid and Late Holocene land use changes is recommended in this context, as it provides a baseline to evaluate human impact in more recent periods. Previous efforts to assess the evolution and intensity of agricultural land cover in past centuries or millennia have predominantly focused on palynological records. An increasing number of quantitative techniques has been developed during the last two decades to transfer palynological data to land cover estimates. However, these techniques have to deal with equifinality issues and, furthermore, do not sufficiently allow to reconstruct spatial patterns of past land cover. On the other hand, several continental and global databases of historical anthropogenic land cover changes based on estimates of global population and the required agricultural land per capita have been developed in the past decennium. However, at such long temporal and spatial scales, reconstruction of past anthropogenic land cover intensities and spatial patterns necessarily involves many uncertainties and assumptions as well. Here, we present a novel approach that combines archaeological, palynological and geomorphological data for the Dijle catchment in the central Belgium Loess Belt in order to arrive at more realistic Holocene land cover histories. Multiple land cover scenarios (> 60.000) are constructed using probabilistic rules and used as input into a sediment delivery model (WaTEM/SEDEM). Model outcomes are confronted with a detailed geomorphic dataset on Holocene sediment fluxes and with REVEALS based estimates of vegetation cover using palynological data from six alluvial sites. This comparison drastically reduces the number of realistic land cover scenarios for various cultural periods. REVEALS based land cover histories provide more accurate estimates of Holocene sediment fluxes compared to global land cover scenarios (KK10 and HYDE 3.1). Both global land cover scenarios produce erroneous results when applied at their original coarse scale resolution. However, spatially allocating KK10 land cover data to a finer spatial resolution increases its performance, whereas this is not the case for HYDE 3.1. Results suggest that KK10 also offers a more realistic history of human impact than HYDE 3.1 although it overestimates human impact in the Belgian Loess Belt prior to the Roman Age, whereas it underestimates human impact from the Medieval Period onwards.

  2. Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations

    USGS Publications Warehouse

    Day-Lewis, F. D.; Singha, K.; Binley, A.M.

    2005-01-01

    Geophysical imaging has traditionally provided qualitative information about geologic structure; however, there is increasing interest in using petrophysical models to convert tomograms to quantitative estimates of hydrogeologic, mechanical, or geochemical parameters of interest (e.g., permeability, porosity, water content, and salinity). Unfortunately, petrophysical estimation based on tomograms is complicated by limited and variable image resolution, which depends on (1) measurement physics (e.g., electrical conduction or electromagnetic wave propagation), (2) parameterization and regularization, (3) measurement error, and (4) spatial variability. We present a framework to predict how core-scale relations between geophysical properties and hydrologic parameters are altered by the inversion, which produces smoothly varying pixel-scale estimates. We refer to this loss of information as "correlation loss." Our approach upscales the core-scale relation to the pixel scale using the model resolution matrix from the inversion, random field averaging, and spatial statistics of the geophysical property. Synthetic examples evaluate the utility of radar travel time tomography (RTT) and electrical-resistivity tomography (ERT) for estimating water content. This work provides (1) a framework to assess tomograms for geologic parameter estimation and (2) insights into the different patterns of correlation loss for ERT and RTT. Whereas ERT generally performs better near boreholes, RTT performs better in the interwell region. Application of petrophysical models to the tomograms in our examples would yield misleading estimates of water content. Although the examples presented illustrate the problem of correlation loss in the context of near-surface geophysical imaging, our results have clear implications for quantitative analysis of tomograms for diverse geoscience applications. Copyright 2005 by the American Geophysical Union.

  3. Spatiotemporal interpolation of discharge across a river network by using synthetic SWOT satellite data

    NASA Astrophysics Data System (ADS)

    Paiva, Rodrigo C. D.; Durand, Michael T.; Hossain, Faisal

    2015-01-01

    Recent efforts have sought to estimate river discharge and other surface water-related quantities using spaceborne sensors, with better spatial coverage but worse temporal sampling as compared with in situ measurements. The Surface Water and Ocean Topography (SWOT) mission will provide river discharge estimates globally from space. However, questions on how to optimally use the spatially distributed but asynchronous satellite observations to generate continuous fields still exist. This paper presents a statistical model (River Kriging-RK), for estimating discharge time series in a river network in the context of the SWOT mission. RK uses discharge estimates at different locations and times to produce a continuous field using spatiotemporal kriging. A key component of RK is the space-time river discharge covariance, which was derived analytically from the diffusive wave approximation of Saint Venant's equations. The RK covariance also accounts for the loss of correlation at confluences. The model performed well in a case study on Ganges-Brahmaputra-Meghna (GBM) River system in Bangladesh using synthetic SWOT observations. The correlation model reproduced empirically derived values. RK (R2=0.83) outperformed other kriging-based methods (R2=0.80), as well as a simple time series linear interpolation (R2=0.72). RK was used to combine discharge from SWOT and in situ observations, improving estimates when the latter is included (R2=0.91). The proposed statistical concepts may eventually provide a feasible framework to estimate continuous discharge time series across a river network based on SWOT data, other altimetry missions, and/or in situ data.

  4. The issues of current rainfall estimation techniques in mountain natural multi-hazard investigation

    NASA Astrophysics Data System (ADS)

    Zhuo, Lu; Han, Dawei; Chen, Ningsheng; Wang, Tao

    2017-04-01

    Mountain hazards (e.g., landslides, debris flows, and floods) induced by rainfall are complex phenomena that require good knowledge of rainfall representation at different spatiotemporal scales. This study reveals rainfall estimation from gauges is rather unrepresentative over a large spatial area in mountain regions. As a result, the conventional practice of adopting the triggering threshold for hazard early warning purposes is insufficient. The main reason is because of the huge orographic influence on rainfall distribution. Modern rainfall estimation methods such as numerical weather prediction modelling and remote sensing utilising radar from the space or on land are able to provide spatially more representative rainfall information in mountain areas. But unlike rain gauges, they only indirectly provide rainfall measurements. Remote sensing suffers from many sources of errors such as weather conditions, attenuation and sampling methods, while numerical weather prediction models suffer from spatiotemporal and amplitude errors depending on the model physics, dynamics, and model configuration. A case study based on Sichuan, China is used to illustrate the significant difference among the three aforementioned rainfall estimation methods. We argue none of those methods can be relied on individually, and the challenge is on how to make the full utilisation of the three methods conjunctively because each of them only provides partial information. We propose that a data fusion approach should be adopted based on the Bayesian inference method. However such an approach requires the uncertainty information from all those estimation techniques which still need extensive research. We hope this study will raise the awareness of this important issue and highlight the knowledge gap that should be filled in so that such a challenging problem could be tackled collectively by the community.

  5. Independent evaluation of the SNODAS snow depth product using regional-scale lidar-derived measurements

    NASA Astrophysics Data System (ADS)

    Hedrick, A.; Marshall, H.-P.; Winstral, A.; Elder, K.; Yueh, S.; Cline, D.

    2015-01-01

    Repeated light detection and ranging (lidar) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km2 lidar-derived data set of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the conterminous United States. Independent validation data are scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation data set with substantial geographic coverage. Within 12 distinctive 500 × 500 m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 lidar acquisitions. This supplied a data set for constraining the uncertainty of upscaled lidar estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled lidar snow depths were then compared to the SNODAS estimates over the entire study area for the dates of the lidar flights. The remotely sensed snow depths provided a more spatially continuous comparison data set and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between lidar observations and SNODAS estimates were most drastic, providing insight into the causal influences of natural processes on model uncertainty.

  6. Comparing Different Approaches for Mapping Urban Vegetation Cover from Landsat ETM+ Data: A Case Study on Brussels

    PubMed Central

    Van de Voorde, Tim; Vlaeminck, Jeroen; Canters, Frank

    2008-01-01

    Urban growth and its related environmental problems call for sustainable urban management policies to safeguard the quality of urban environments. Vegetation plays an important part in this as it provides ecological, social, health and economic benefits to a city's inhabitants. Remotely sensed data are of great value to monitor urban green and despite the clear advantages of contemporary high resolution images, the benefits of medium resolution data should not be discarded. The objective of this research was to estimate fractional vegetation cover from a Landsat ETM+ image with sub-pixel classification, and to compare accuracies obtained with multiple stepwise regression analysis, linear spectral unmixing and multi-layer perceptrons (MLP) at the level of meaningful urban spatial entities. Despite the small, but nevertheless statistically significant differences at pixel level between the alternative approaches, the spatial pattern of vegetation cover and estimation errors is clearly distinctive at neighbourhood level. At this spatially aggregated level, a simple regression model appears to attain sufficient accuracy. For mapping at a spatially more detailed level, the MLP seems to be the most appropriate choice. Brightness normalisation only appeared to affect the linear models, especially the linear spectral unmixing. PMID:27879914

  7. Air Quality Modeling in Support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    EPA Science Inventory

    A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related a...

  8. Spatial patch occupancy patterns of the Lower Keys marsh rabbit

    USGS Publications Warehouse

    Eaton, Mitchell J.; Hughes, Phillip T.; Nichols, James D.; Morkill, Anne; Anderson, Chad

    2011-01-01

    Reliable estimates of presence or absence of a species can provide substantial information on management questions related to distribution and habitat use but should incorporate the probability of detection to reduce bias. We surveyed for the endangered Lower Keys marsh rabbit (Sylvilagus palustris hefneri) in habitat patches on 5 Florida Key islands, USA, to estimate occupancy and detection probabilities. We derived detection probabilities using spatial replication of plots and evaluated hypotheses that patch location (coastal or interior) and patch size influence occupancy and detection. Results demonstrate that detection probability, given rabbits were present, was <0.5 and suggest that naïve estimates (i.e., estimates without consideration of imperfect detection) of patch occupancy are negatively biased. We found that patch size and location influenced probability of occupancy but not detection. Our findings will be used by Refuge managers to evaluate population trends of Lower Keys marsh rabbits from historical data and to guide management decisions for species recovery. The sampling and analytical methods we used may be useful for researchers and managers of other endangered lagomorphs and cryptic or fossorial animals occupying diverse habitats.

  9. Assessment of spatial variation of risks in small populations.

    PubMed Central

    Riggan, W B; Manton, K G; Creason, J P; Woodbury, M A; Stallard, E

    1991-01-01

    Often environmental hazards are assessed by examining the spatial variation of disease-specific mortality or morbidity rates. These rates, when estimated for small local populations, can have a high degree of random variation or uncertainty associated with them. If those rate estimates are used to prioritize environmental clean-up actions or to allocate resources, then those decisions may be influenced by this high degree of uncertainty. Unfortunately, the effect of this uncertainty is not to add "random noise" into the decision-making process, but to systematically bias action toward the smallest populations where uncertainty is greatest and where extreme high and low rate deviations are most likely to be manifest by chance. We present a statistical procedure for adjusting rate estimates for differences in variability due to differentials in local area population sizes. Such adjustments produce rate estimates for areas that have better properties than the unadjusted rates for use in making statistically based decisions about the entire set of areas. Examples are provided for county variation in bladder, stomach, and lung cancer mortality rates for U.S. white males for the period 1970 to 1979. PMID:1820268

  10. Methods for Combination of GRACE Gravimetry and ICESat Altimetry over Antarctica on Monthly Timescales

    NASA Astrophysics Data System (ADS)

    Hardy, R. A.; Nerem, R. S.; Wiese, D. N.

    2017-12-01

    Gravity and surface elevation change data altimetry provide different perspectives on mass variability in Antarctica. In anticipation of the concurrent operation of the successors of GRACE and ICESat, GRACE Follow-On and ICESat-2, we approach the problem of combining these data for enhanced spatial resolution and disaggregation of Antarctica's major mass transport processes. Using elevation changes gathered from over 500 million overlapping ICESat laser shot pairs between 2003 and 2009, we construct gridded models of Antarctic elevation change for each ICESat operational period. Comparing these elevation grids with temporally registered JPL RL05M mascon solutions, we exploit the relationship between surface mass flux and elevation change to inform estimates of effective surface density. These density estimates enable solutions for glacial isostatic adjustment and monthly estimates of surface mass change. These are used alongside spatial statistics from both the data and models of surface mass balance to produce enhanced estimates of Antarctic mass balance. We validate our solutions by modeling the effects of elastic loading and GIA from these solutions on the vertical motion of Antarctica's GNSS sites.

  11. Using optimal transport theory to estimate transition probabilities in metapopulation dynamics

    USGS Publications Warehouse

    Nichols, Jonathan M.; Spendelow, Jeffrey A.; Nichols, James D.

    2017-01-01

    This work considers the estimation of transition probabilities associated with populations moving among multiple spatial locations based on numbers of individuals at each location at two points in time. The problem is generally underdetermined as there exists an extremely large number of ways in which individuals can move from one set of locations to another. A unique solution therefore requires a constraint. The theory of optimal transport provides such a constraint in the form of a cost function, to be minimized in expectation over the space of possible transition matrices. We demonstrate the optimal transport approach on marked bird data and compare to the probabilities obtained via maximum likelihood estimation based on marked individuals. It is shown that by choosing the squared Euclidean distance as the cost, the estimated transition probabilities compare favorably to those obtained via maximum likelihood with marked individuals. Other implications of this cost are discussed, including the ability to accurately interpolate the population's spatial distribution at unobserved points in time and the more general relationship between the cost and minimum transport energy.

  12. Fourier phase in Fourier-domain optical coherence tomography

    PubMed Central

    Uttam, Shikhar; Liu, Yang

    2015-01-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided. PMID:26831383

  13. Remote sensing of ecosystem health: opportunities, challenges, and future perspectives.

    PubMed

    Li, Zhaoqin; Xu, Dandan; Guo, Xulin

    2014-11-07

    Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges.

  14. Estimating evaporation with thermal UAV data and two-source energy balance models

    NASA Astrophysics Data System (ADS)

    Hoffmann, H.; Nieto, H.; Jensen, R.; Guzinski, R.; Zarco-Tejada, P.; Friborg, T.

    2016-02-01

    Estimating evaporation is important when managing water resources and cultivating crops. Evaporation can be estimated using land surface heat flux models and remotely sensed land surface temperatures (LST), which have recently become obtainable in very high resolution using lightweight thermal cameras and Unmanned Aerial Vehicles (UAVs). In this study a thermal camera was mounted on a UAV and applied into the field of heat fluxes and hydrology by concatenating thermal images into mosaics of LST and using these as input for the two-source energy balance (TSEB) modelling scheme. Thermal images are obtained with a fixed-wing UAV overflying a barley field in western Denmark during the growing season of 2014 and a spatial resolution of 0.20 m is obtained in final LST mosaics. Two models are used: the original TSEB model (TSEB-PT) and a dual-temperature-difference (DTD) model. In contrast to the TSEB-PT model, the DTD model accounts for the bias that is likely present in remotely sensed LST. TSEB-PT and DTD have already been well tested, however only during sunny weather conditions and with satellite images serving as thermal input. The aim of this study is to assess whether a lightweight thermal camera mounted on a UAV is able to provide data of sufficient quality to constitute as model input and thus attain accurate and high spatial and temporal resolution surface energy heat fluxes, with special focus on latent heat flux (evaporation). Furthermore, this study evaluates the performance of the TSEB scheme during cloudy and overcast weather conditions, which is feasible due to the low data retrieval altitude (due to low UAV flying altitude) compared to satellite thermal data that are only available during clear-sky conditions. TSEB-PT and DTD fluxes are compared and validated against eddy covariance measurements and the comparison shows that both TSEB-PT and DTD simulations are in good agreement with eddy covariance measurements, with DTD obtaining the best results. The DTD model provides results comparable to studies estimating evaporation with similar experimental setups, but with LST retrieved from satellites instead of a UAV. Further, systematic irrigation patterns on the barley field provide confidence in the veracity of the spatially distributed evaporation revealed by model output maps. Lastly, this study outlines and discusses the thermal UAV image processing that results in mosaics suited for model input. This study shows that the UAV platform and the lightweight thermal camera provide high spatial and temporal resolution data valid for model input and for other potential applications requiring high-resolution and consistent LST.

  15. Brazilian spatial dynamics in the long term (1872-2000): ``path dependency'' or ``reversal of fortune''?

    NASA Astrophysics Data System (ADS)

    Monasterio, Leonardo Monteiro

    2010-03-01

    This paper analyzes the spatial dynamics of Brazilian regional inequalities between 1872 and 2000 using contemporary tools. The first part of the paper provides new estimates of income per capita in 1872 by municipality using census and electoral information on income by occupation. The level of analysis is the Minimum Comparable Areas 1872-2000 developed by Reis et al. (Áreas mínimas comparáveis para os períodos intercensitários de 1872 a 2000, 2007). These areas are the least aggregation of adjacent municipalities required to allow consistent geographic area comparisons between census years. In the second section of the paper, Exploratory Spatial Data Analysis, Markov chains and stochastic kernel techniques (spatially conditioned) are applied to the dataset. The results suggest that, in broad terms, the spatial pattern of income distribution in Brazil during that period of time has remained stable.

  16. A generalized spatiotemporal covariance model for stationary background in analysis of MEG data.

    PubMed

    Plis, S M; Schmidt, D M; Jun, S C; Ranken, D M

    2006-01-01

    Using a noise covariance model based on a single Kronecker product of spatial and temporal covariance in the spatiotemporal analysis of MEG data was demonstrated to provide improvement in the results over that of the commonly used diagonal noise covariance model. In this paper we present a model that is a generalization of all of the above models. It describes models based on a single Kronecker product of spatial and temporal covariance as well as more complicated multi-pair models together with any intermediate form expressed as a sum of Kronecker products of spatial component matrices of reduced rank and their corresponding temporal covariance matrices. The model provides a framework for controlling the tradeoff between the described complexity of the background and computational demand for the analysis using this model. Ways to estimate the value of the parameter controlling this tradeoff are also discussed.

  17. Radar-raingauge data combination techniques: a revision and analysis of their suitability for urban hydrology.

    PubMed

    Wang, Li-Pen; Ochoa-Rodríguez, Susana; Simões, Nuno Eduardo; Onof, Christian; Maksimović, Cedo

    2013-01-01

    The applicability of the operational radar and raingauge networks for urban hydrology is insufficient. Radar rainfall estimates provide a good description of the spatiotemporal variability of rainfall; however, their accuracy is in general insufficient. It is therefore necessary to adjust radar measurements using raingauge data, which provide accurate point rainfall information. Several gauge-based radar rainfall adjustment techniques have been developed and mainly applied at coarser spatial and temporal scales; however, their suitability for small-scale urban hydrology is seldom explored. In this paper a review of gauge-based adjustment techniques is first provided. After that, two techniques, respectively based upon the ideas of mean bias reduction and error variance minimisation, were selected and tested using as case study an urban catchment (∼8.65 km(2)) in North-East London. The radar rainfall estimates of four historical events (2010-2012) were adjusted using in situ raingauge estimates and the adjusted rainfall fields were applied to the hydraulic model of the study area. The results show that both techniques can effectively reduce mean bias; however, the technique based upon error variance minimisation can in general better reproduce the spatial and temporal variability of rainfall, which proved to have a significant impact on the subsequent hydraulic outputs. This suggests that error variance minimisation based methods may be more appropriate for urban-scale hydrological applications.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, S

    A database was generated of estimates of geographically referenced carbon densities of forest vegetation in tropical Southeast Asia for 1980. A geographic information system (GIS) was used to incorporate spatial databases of climatic, edaphic, and geomorphological indices and vegetation to estimate potential (i.e., in the absence of human intervention and natural disturbance) carbon densities of forests. The resulting map was then modified to estimate actual 1980 carbon density as a function of population density and climatic zone. The database covers the following 13 countries: Bangladesh, Brunei, Cambodia (Campuchea), India, Indonesia, Laos, Malaysia, Myanmar (Burma), Nepal, the Philippines, Sri Lanka, Thailand,more » and Vietnam. The data sets within this database are provided in three file formats: ARC/INFOTM exported integer grids, ASCII (American Standard Code for Information Interchange) files formatted for raster-based GIS software packages, and generic ASCII files with x, y coordinates for use with non-GIS software packages. This database includes ten ARC/INFO exported integer grid files (five with the pixel size 3.75 km x 3.75 km and five with the pixel size 0.25 degree longitude x 0.25 degree latitude) and 27 ASCII files. The first ASCII file contains the documentation associated with this database. Twenty-four of the ASCII files were generated by means of the ARC/INFO GRIDASCII command and can be used by most raster-based GIS software packages. The 24 files can be subdivided into two groups of 12 files each. These files contain real data values representing actual carbon and potential carbon density in Mg C/ha (1 megagram = 10{sup 6} grams) and integer-coded values for country name, Weck's Climatic Index, ecofloristic zone, elevation, forest or non-forest designation, population density, mean annual precipitation, slope, soil texture, and vegetation classification. One set of 12 files contains these data at a spatial resolution of 3.75 km, whereas the other set of 12 files has a spatial resolution of 0.25 degree. The remaining two ASCII data files combine all of the data from the 24 ASCII data files into 2 single generic data files. The first file has a spatial resolution of 3.75 km, and the second has a resolution of 0.25 degree. Both files also provide a grid-cell identification number and the longitude and latitude of the center-point of each grid cell. The 3.75-km data in this numeric data package yield an actual total carbon estimate of 42.1 Pg (1 petagram = 10{sup 15} grams) and a potential carbon estimate of 73.6 Pg; whereas the 0.25-degree data produced an actual total carbon estimate of 41.8 Pg and a total potential carbon estimate of 73.9 Pg. Fortran and SAS{trademark} access codes are provided to read the ASCII data files, and ARC/INFO and ARCVIEW command syntax are provided to import the ARC/INFO exported integer grid files. The data files and this documentation are available without charge on a variety of media and via the Internet from the Carbon Dioxide Information Analysis Center (CDIAC).« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, S.

    A database was generated of estimates of geographically referenced carbon densities of forest vegetation in tropical Southeast Asia for 1980. A geographic information system (GIS) was used to incorporate spatial databases of climatic, edaphic, and geomorphological indices and vegetation to estimate potential (i.e., in the absence of human intervention and natural disturbance) carbon densities of forests. The resulting map was then modified to estimate actual 1980 carbon density as a function of population density and climatic zone. The database covers the following 13 countries: Bangladesh, Brunei, Cambodia (Campuchea), India, Indonesia, Laos, Malaysia, Myanmar (Burma), Nepal, the Philippines, Sri Lanka, Thailand,more » and Vietnam. The data sets within this database are provided in three file formats: ARC/INFO{trademark} exported integer grids, ASCII (American Standard Code for Information Interchange) files formatted for raster-based GIS software packages, and generic ASCII files with x, y coordinates for use with non-GIS software packages. This database includes ten ARC/INFO exported integer grid files (five with the pixel size 3.75 km x 3.75 km and five with the pixel size 0.25 degree longitude x 0.25 degree latitude) and 27 ASCII files. The first ASCII file contains the documentation associated with this database. Twenty-four of the ASCII files were generated by means of the ARC/INFO GRIDASCII command and can be used by most raster-based GIS software packages. The 24 files can be subdivided into two groups of 12 files each. These files contain real data values representing actual carbon and potential carbon density in Mg C/ha (1 megagram = 10{sup 6} grams) and integer- coded values for country name, Weck's Climatic Index, ecofloristic zone, elevation, forest or non-forest designation, population density, mean annual precipitation, slope, soil texture, and vegetation classification. One set of 12 files contains these data at a spatial resolution of 3.75 km, whereas the other set of 12 files has a spatial resolution of 0.25 degree. The remaining two ASCII data files combine all of the data from the 24 ASCII data files into 2 single generic data files. The first file has a spatial resolution of 3.75 km, and the second has a resolution of 0.25 degree. Both files also provide a grid-cell identification number and the longitude and latitude of the centerpoint of each grid cell. The 3.75-km data in this numeric data package yield an actual total carbon estimate of 42.1 Pg (1 petagram = 10{sup 15} grams) and a potential carbon estimate of 73.6 Pg; whereas the 0.25-degree data produced an actual total carbon estimate of 41.8 Pg and a total potential carbon estimate of 73.9 Pg. Fortran and SASTM access codes are provided to read the ASCII data files, and ARC/INFO and ARCVIEW command syntax are provided to import the ARC/INFO exported integer grid files. The data files and this documentation are available without charge on a variety of media and via the Internet from the Carbon Dioxide Information Analysis Center (CDIAC).« less

  20. Ecosystem services impacts associated with environmental ...

    EPA Pesticide Factsheets

    Nitrogen release to the environment from human activities can have important and costly impacts on human health, recreation, transportation, fisheries, and ecosystem health. Recent efforts to quantify these damage costs have identified annual damages associated with reactive nitrogen release to the EU and US in the hundreds of billions of US dollars (USD). The general approach used to estimate these damages associated with reactive nitrogen are derived from a variety of methods to estimate economic damages, for example, impacts to human respiratory health in terms of hospital visits and mortality, willingness to pay to improve a water body and costs to replace or treat drinking water systems affected by nitrate or cyanotoxin contamination. These values are then extrapolated to other areas to develop the damage cost estimates that are probably best seen as potential damage costs, particularly for aquatic ecosystems. We seek to provide an additional verification of these potential damages using data assembled by the US EPA for case studies of measured costs of nutrient impacts across the US from 2000-2012. We compare the spatial distribution and the magnitude of these costs with the spatial distribution and magnitude of costs from HUC8 watershed units across the US by Sobota et al. (2015). We anticipate that this analysis will provide a ground truthing of existing damage cost estimates, and continue to support the incorporation of cost and benefit informatio

  1. Quantifying the water storage volume of major aquifers in the US

    NASA Astrophysics Data System (ADS)

    Jame, S. A.; Bowling, L. C.

    2017-12-01

    Groundwater is one of our most valuable natural resources which affects not only the food and energy nexus, but ecosystem and human health, through the availability of drinking water. Quantification of current groundwater storage is not only required to better understand groundwater flow and its role in the hydrologic cycle, but also sustainable use. In this study, a new high resolution map (5' minutes) of groundwater properties is created for US major aquifers to provide an estimate of total groundwater storage. The estimation was done using information on the spatial extent of the principal aquifers of the US from the USGS Groundwater Atlas, the average porosity of different hydrolithologic groups and the current saturated thickness of each aquifer. Saturated thickness varies within aquifers, and has been calculated by superimposing current water-table contour maps over the base aquifer altitude provided by USGS. The average saturated thickness has been computed by interpolating available data on saturated thickness for an aquifer using the kriging method. Total storage of aquifers in each cell was then calculated by multiplying the spatial extent, porosity, and thickness of the saturated layer. The resulting aquifer storage estimates was compared with current groundwater withdrawal rates to produce an estimate of how many years' worth of water are stored in the aquifers. The resulting storage map will serve as a national dataset for stakeholders to make decisions for sustainable use of groundwater.

  2. The formulation and estimation of a spatial skew-normal generalized ordered-response model.

    DOT National Transportation Integrated Search

    2016-06-01

    This paper proposes a new spatial generalized ordered response model with skew-normal kernel error terms and an : associated estimation method. It contributes to the spatial analysis field by allowing a flexible and parametric skew-normal : distribut...

  3. Separate first- and second-order processing is supported by spatial summation estimates at the fovea and eccentrically.

    PubMed

    Sukumar, Subash; Waugh, Sarah J

    2007-03-01

    We estimated spatial summation areas for the detection of luminance-modulated (LM) and contrast-modulated (CM) blobs at the fovea, 2.5, 5 and 10 deg eccentrically. Gaussian profiles were added or multiplied to binary white noise to create LM and CM blob stimuli and these were used to psychophysically estimate detection thresholds and spatial summation areas. The results reveal significantly larger summation areas for detecting CM than LM blobs across eccentricity. These differences are comparable to receptive field size estimates made in V1 and V2. They support the notion that separate spatial processing occurs for the detection of LM and CM stimuli.

  4. Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation.

    PubMed

    Qin, Changbo; Jia, Yangwen; Su, Z; Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen

    2008-07-29

    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems.

  5. Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation

    PubMed Central

    Qin, Changbo; Jia, Yangwen; Su, Z.(Bob); Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen

    2008-01-01

    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems. PMID:27879946

  6. Geostatistics, remote sensing and precision farming.

    PubMed

    Mulla, D J

    1997-01-01

    Precision farming is possible today because of advances in farming technology, procedures for mapping and interpolating spatial patterns, and geographic information systems for overlaying and interpreting several soil, landscape and crop attributes. The key component of precision farming is the map showing spatial patterns in field characteristics. Obtaining information for this map is often achieved by soil sampling. This approach, however, can be cost-prohibitive for grain crops. Soil sampling strategies can be simplified by use of auxiliary data provided by satellite or aerial photo imagery. This paper describes geostatistical methods for estimating spatial patterns in soil organic matter, soil test phosphorus and wheat grain yield from a combination of Thematic Mapper imaging and soil sampling.

  7. Performance Evaluation of EnKF-based Hydrogeological Site Characterization using Color Coherent Vectors

    NASA Astrophysics Data System (ADS)

    Moslehi, M.; de Barros, F.

    2017-12-01

    Complexity of hydrogeological systems arises from the multi-scale heterogeneity and insufficient measurements of their underlying parameters such as hydraulic conductivity and porosity. An inadequate characterization of hydrogeological properties can significantly decrease the trustworthiness of numerical models that predict groundwater flow and solute transport. Therefore, a variety of data assimilation methods have been proposed in order to estimate hydrogeological parameters from spatially scarce data by incorporating the governing physical models. In this work, we propose a novel framework for evaluating the performance of these estimation methods. We focus on the Ensemble Kalman Filter (EnKF) approach that is a widely used data assimilation technique. It reconciles multiple sources of measurements to sequentially estimate model parameters such as the hydraulic conductivity. Several methods have been used in the literature to quantify the accuracy of the estimations obtained by EnKF, including Rank Histograms, RMSE and Ensemble Spread. However, these commonly used methods do not regard the spatial information and variability of geological formations. This can cause hydraulic conductivity fields with very different spatial structures to have similar histograms or RMSE. We propose a vision-based approach that can quantify the accuracy of estimations by considering the spatial structure embedded in the estimated fields. Our new approach consists of adapting a new metric, Color Coherent Vectors (CCV), to evaluate the accuracy of estimated fields achieved by EnKF. CCV is a histogram-based technique for comparing images that incorporate spatial information. We represent estimated fields as digital three-channel images and use CCV to compare and quantify the accuracy of estimations. The sensitivity of CCV to spatial information makes it a suitable metric for assessing the performance of spatial data assimilation techniques. Under various factors of data assimilation methods such as number, layout, and type of measurements, we compare the performance of CCV with other metrics such as RMSE. By simulating hydrogeological processes using estimated and true fields, we observe that CCV outperforms other existing evaluation metrics.

  8. Sampling design optimization for spatial functions

    USGS Publications Warehouse

    Olea, R.A.

    1984-01-01

    A new procedure is presented for minimizing the sampling requirements necessary to estimate a mappable spatial function at a specified level of accuracy. The technique is based on universal kriging, an estimation method within the theory of regionalized variables. Neither actual implementation of the sampling nor universal kriging estimations are necessary to make an optimal design. The average standard error and maximum standard error of estimation over the sampling domain are used as global indices of sampling efficiency. The procedure optimally selects those parameters controlling the magnitude of the indices, including the density and spatial pattern of the sample elements and the number of nearest sample elements used in the estimation. As an illustration, the network of observation wells used to monitor the water table in the Equus Beds of Kansas is analyzed and an improved sampling pattern suggested. This example demonstrates the practical utility of the procedure, which can be applied equally well to other spatial sampling problems, as the procedure is not limited by the nature of the spatial function. ?? 1984 Plenum Publishing Corporation.

  9. Post-fire reconstructions of fire intensity from fire severity data: quantifying the role of spatial variability of fire intensity on forest dynamics

    NASA Astrophysics Data System (ADS)

    Baker, Patrick; Oborne, Lisa

    2015-04-01

    Large, high-intensity fires have direct and long-lasting effects on forest ecosystems and present a serious threat to human life and property. However, even within the most catastrophic fires there is important variability in local-scale intensity that has important ramifications for forest mortality and regeneration. Quantifying this variability is difficult due to the rarity of catastrophic fire events, the extreme conditions at the time of the fires, and their large spatial extent. Instead fire severity is typically measured or estimated from observed patterns of vegetation mortality; however, differences in species- and size-specific responses to fires often makes fire severity a poor proxy for fire intensity. We developed a statistical method using simple, plot-based measurements of individual tree mortality to simultaneously estimate plot-level fire intensity and species-specific mortality patterns as a function of tree size. We applied our approach to an area of forest burned in the catastrophic Black Saturday fires that occurred near Melbourne, Australia, in February 2009. Despite being the most devastating fire in the past 70 years and our plots being located in the area that experienced some of the most intense fires in the 350,000 ha fire complex, we found that the estimated fire intensity was highly variable at multiple spatial scales. All eight tree species in our study differed in their susceptibility to fire-induced mortality, particularly among the largest size classes. We also found that seedling height and species richness of the post-fire seedling communities were both positively correlated with fire intensity. Spatial variability in disturbance intensity has important, but poorly understood, consequences for the short- and long-term dynamics of forests in the wake of catastrophic wildfires. Our study provides a tool to estimate fire intensity after a fire has passed, allowing new opportunities for linking spatial variability in fire intensity to forest ecosystem dynamics.

  10. Horvitz-Thompson survey sample methods for estimating large-scale animal abundance

    USGS Publications Warehouse

    Samuel, M.D.; Garton, E.O.

    1994-01-01

    Large-scale surveys to estimate animal abundance can be useful for monitoring population status and trends, for measuring responses to management or environmental alterations, and for testing ecological hypotheses about abundance. However, large-scale surveys may be expensive and logistically complex. To ensure resources are not wasted on unattainable targets, the goals and uses of each survey should be specified carefully and alternative methods for addressing these objectives always should be considered. During survey design, the impoflance of each survey error component (spatial design, propofiion of detected animals, precision in detection) should be considered carefully to produce a complete statistically based survey. Failure to address these three survey components may produce population estimates that are inaccurate (biased low), have unrealistic precision (too precise) and do not satisfactorily meet the survey objectives. Optimum survey design requires trade-offs in these sources of error relative to the costs of sampling plots and detecting animals on plots, considerations that are specific to the spatial logistics and survey methods. The Horvitz-Thompson estimators provide a comprehensive framework for considering all three survey components during the design and analysis of large-scale wildlife surveys. Problems of spatial and temporal (especially survey to survey) heterogeneity in detection probabilities have received little consideration, but failure to account for heterogeneity produces biased population estimates. The goal of producing unbiased population estimates is in conflict with the increased variation from heterogeneous detection in the population estimate. One solution to this conflict is to use an MSE-based approach to achieve a balance between bias reduction and increased variation. Further research is needed to develop methods that address spatial heterogeneity in detection, evaluate the effects of temporal heterogeneity on survey objectives and optimize decisions related to survey bias and variance. Finally, managers and researchers involved in the survey design process must realize that obtaining the best survey results requires an interactive and recursive process of survey design, execution, analysis and redesign. Survey refinements will be possible as further knowledge is gained on the actual abundance and distribution of the population and on the most efficient techniques for detection animals.

  11. Integrating flood modelling in a hydrological catchment model: flow approximations and spatial resolution.

    NASA Astrophysics Data System (ADS)

    van den Bout, Bastian; Jetten, Victor

    2017-04-01

    Within hydrological models, flow approximations are commonly used to reduce computation time. The validity of these approximations is strongly determined by flow height, flow velocity, the spatial resolution of the model, and by the manner in which flow routing is implemented. The assumptions of these approximations can furthermore limit emergent behavior, and influence flow behavior under space-time scaling. In this presentation, the validity and performance of the kinematic, diffusive and dynamic flow approximations are investigated for use in a catchment-based flood model. Particularly, the validity during flood events and for varying spatial resolutions is investigated. The OpenLISEM hydrological model is extended to implement these flow approximations and channel flooding based on dynamic flow. The kinematic routing uses a predefined converging flow network, the diffusive and dynamic routing uses a 2D flow solution over a DEM. The channel flow in all cases is a 1D kinematic wave approximation. The flow approximations are used to recreate measured discharge in three catchments of different size in China, Spain and Italy, among which is the hydrograph of the 2003 flood event in the Fella river basin (Italy). Furthermore, spatial resolutions are varied for the flood simulation in order to investigate the influence of spatial resolution on these flow approximations. Results show that the kinematic, diffusive and dynamic flow approximation provide least to highest accuracy, respectively, in recreating measured temporal variation of the discharge. Kinematic flow, which is commonly used in hydrological modelling, substantially over-estimates hydrological connectivity in the simulations with a spatial resolution of below 30 meters. Since spatial resolutions of models have strongly increased over the past decades, usage of routed kinematic flow should be reconsidered. In the case of flood events, spatial modelling of kinematic flow substantially over-estimates hydrological connectivity and flow concentration, leading to significant errors. The combination of diffusive or dynamic overland flow and dynamic channel flooding provides high accuracy in recreating the 2003 Fella river flood event. Finally, flow approximations substantially influenced the predictive potential of the (flash) flood model.

  12. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome

    PubMed Central

    Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre

    2015-01-01

    Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate “wall-to-wall” remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution. PMID:26402522

  13. NASA Land Information System (LIS) Water Availability to Support Reclamation ET Estimation

    NASA Technical Reports Server (NTRS)

    Toll, David; Arsenault, Kristi; Pinheiro, Ana; Peters-Lidard, Christa; Houser, Paul; Kumar, Sujay; Engman, Ted; Nigro, Joe; Triggs, Jonathan

    2005-01-01

    The U.S. Bureau of Reclamation identified the remote sensing of evapotranspiration (ET) as an important water flux for study and designated a test site in the Lower Colorado River basin. A consortium of groups will work together with the goal to develop more accurate and cost effective techniques using the enhanced spatial and temporal coverage afforded by remote sensing. ET is a critical water loss flux where improved estimation should lead to better management of Reclamation responsibilities. There are several areas where NASA satellite and modeling data may be useful to meet Reclamation's objectives for improved ET estimation. In this paper we outline one possible contribution to use NASA's data integration capability of the Land Information System (LIS) to provide a merger of observational (in situ and satellite) with physical process models to provide estimates of ET and other water availability outputs (e.g., runoff, soil moisture) retrospectively, in near real-time, and also providing short-term predictions.

  14. Direct Regularized Estimation of Retinal Vascular Oxygen Tension Based on an Experimental Model

    PubMed Central

    Yildirim, Isa; Ansari, Rashid; Yetik, I. Samil; Shahidi, Mahnaz

    2014-01-01

    Phosphorescence lifetime imaging is commonly used to generate oxygen tension maps of retinal blood vessels by classical least squares (LS) estimation method. A spatial regularization method was later proposed and provided improved results. However, both methods obtain oxygen tension values from the estimates of intermediate variables, and do not yield an optimum estimate of oxygen tension values, due to their nonlinear dependence on the ratio of intermediate variables. In this paper, we provide an improved solution by devising a regularized direct least squares (RDLS) method that exploits available knowledge in studies that provide models of oxygen tension in retinal arteries and veins, unlike the earlier regularized LS approach where knowledge about intermediate variables is limited. The performance of the proposed RDLS method is evaluated by investigating and comparing the bias, variance, oxygen tension maps, 1-D profiles of arterial oxygen tension, and mean absolute error with those of earlier methods, and its superior performance both quantitatively and qualitatively is demonstrated. PMID:23732915

  15. Detecting and Quantifying Forest Change: The Potential of Existing C- and X-Band Radar Datasets.

    PubMed

    Tanase, Mihai A; Ismail, Ismail; Lowell, Kim; Karyanto, Oka; Santoro, Maurizio

    2015-01-01

    This paper evaluates the opportunity provided by global interferometric radar datasets for monitoring deforestation, degradation and forest regrowth in tropical and semi-arid environments. The paper describes an easy to implement method for detecting forest spatial changes and estimating their magnitude. The datasets were acquired within space-borne high spatial resolutions radar missions at near-global scales thus being significant for monitoring systems developed under the United Framework Convention on Climate Change (UNFCCC). The approach presented in this paper was tested in two areas located in Indonesia and Australia. Forest change estimation was based on differences between a reference dataset acquired in February 2000 by the Shuttle Radar Topography Mission (SRTM) and TanDEM-X mission (TDM) datasets acquired in 2011 and 2013. The synergy between SRTM and TDM datasets allowed not only identifying changes in forest extent but also estimating their magnitude with respect to the reference through variations in forest height.

  16. Annual Fossil-Fuel CO2 Emissions: Isomass of Emissions Gridded by One Degree Latitude by One Degree Longitude (1751 - 2009) (V. 2012)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, Thomas A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marlad, Greg [Appalachian State University, Boone, NC (USA)

    2012-01-01

    The annual, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1751-2009 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2012) and references therein. The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  17. Determination of forest fuels characteristics in mortality-affected Pinus forests using integrated hyperspectral and ALS data

    NASA Astrophysics Data System (ADS)

    Romero Ramirez, Francisco J.; Navarro-Cerrillo, Rafael Mª.; Varo-Martínez, Mª. Ángeles; Quero, Jose Luis; Doerr, Stefan; Hernández-Clemente, Rocío

    2018-06-01

    Widespread tree mortality caused by forest decline in recent decades has raised concern among forest managers about how to assess forest fuels in these conditions. To investigate this question, we developed and tested an objective, consistent approach to the characterization of canopy fuel metrics - such as fuel load (FL), live fuel moisture content (LFMC), and live-dead ratio (LDR) - by integrating airborne laser scanning (ALS) and hyperspectral data to produce more-accurate estimates at the stand level. Regression models were developed for Pinus sylvestris and P. nigra stands representative of pine plantations in southern Spain, using field data acquired for different spatial fuel types and distributions as well as high resolution airborne hyperspectral data (AHS) and ALS datasets. Strong relationships were found between ALS and FL using a density of 2 points m-2 (R2 = 0.64) and between LFMC and Temperature/NDVI index at a spatial resolution of 5 m (R2 = 0.91). The red edge normalized index provided the highest separability (Jeffries-Matusita distance = 1.83) between types of LDR. The plot-aggregate ALS and AHS metrics performed better at spatial resolutions of 5 m and 2 points m-2 than at other scales. Cartography of the estimations of FL, LFMC, and LDR made using the empirical models from the ALS and AHS data showed a mean FL value of 65.87 Mg ha-1, an average LFMC content of 57.51%, and 30.75% of the surface classified as dead fuel (≥60% defoliation). The results suggest that our remote sensing approach could improve the estimation of canopy fuels characteristics at higher spatial resolutions as well as estimations of fuel cartography, to assist the planning and management of fuel reduction treatments.

  18. Trading Speed and Accuracy by Coding Time: A Coupled-circuit Cortical Model

    PubMed Central

    Standage, Dominic; You, Hongzhi; Wang, Da-Hui; Dorris, Michael C.

    2013-01-01

    Our actions take place in space and time, but despite the role of time in decision theory and the growing acknowledgement that the encoding of time is crucial to behaviour, few studies have considered the interactions between neural codes for objects in space and for elapsed time during perceptual decisions. The speed-accuracy trade-off (SAT) provides a window into spatiotemporal interactions. Our hypothesis is that temporal coding determines the rate at which spatial evidence is integrated, controlling the SAT by gain modulation. Here, we propose that local cortical circuits are inherently suited to the relevant spatial and temporal coding. In simulations of an interval estimation task, we use a generic local-circuit model to encode time by ‘climbing’ activity, seen in cortex during tasks with a timing requirement. The model is a network of simulated pyramidal cells and inhibitory interneurons, connected by conductance synapses. A simple learning rule enables the network to quickly produce new interval estimates, which show signature characteristics of estimates by experimental subjects. Analysis of network dynamics formally characterizes this generic, local-circuit timing mechanism. In simulations of a perceptual decision task, we couple two such networks. Network function is determined only by spatial selectivity and NMDA receptor conductance strength; all other parameters are identical. To trade speed and accuracy, the timing network simply learns longer or shorter intervals, driving the rate of downstream decision processing by spatially non-selective input, an established form of gain modulation. Like the timing network's interval estimates, decision times show signature characteristics of those by experimental subjects. Overall, we propose, demonstrate and analyse a generic mechanism for timing, a generic mechanism for modulation of decision processing by temporal codes, and we make predictions for experimental verification. PMID:23592967

  19. Estimating front-wave velocity of infectious diseases: a simple, efficient method applied to bluetongue.

    PubMed

    Pioz, Maryline; Guis, Hélène; Calavas, Didier; Durand, Benoît; Abrial, David; Ducrot, Christian

    2011-04-20

    Understanding the spatial dynamics of an infectious disease is critical when attempting to predict where and how fast the disease will spread. We illustrate an approach using a trend-surface analysis (TSA) model combined with a spatial error simultaneous autoregressive model (SAR(err) model) to estimate the speed of diffusion of bluetongue (BT), an infectious disease of ruminants caused by bluetongue virus (BTV) and transmitted by Culicoides. In a first step to gain further insight into the spatial transmission characteristics of BTV serotype 8, we used 2007-2008 clinical case reports in France and TSA modelling to identify the major directions and speed of disease diffusion. We accounted for spatial autocorrelation by combining TSA with a SAR(err) model, which led to a trend SAR(err) model. Overall, BT spread from north-eastern to south-western France. The average trend SAR(err)-estimated velocity across the country was 5.6 km/day. However, velocities differed between areas and time periods, varying between 2.1 and 9.3 km/day. For more than 83% of the contaminated municipalities, the trend SAR(err)-estimated velocity was less than 7 km/day. Our study was a first step in describing the diffusion process for BT in France. To our knowledge, it is the first to show that BT spread in France was primarily local and consistent with the active flight of Culicoides and local movements of farm animals. Models such as the trend SAR(err) models are powerful tools to provide information on direction and speed of disease diffusion when the only data available are date and location of cases.

  20. Smooth individual level covariates adjustment in disease mapping.

    PubMed

    Huque, Md Hamidul; Anderson, Craig; Walton, Richard; Woolford, Samuel; Ryan, Louise

    2018-05-01

    Spatial models for disease mapping should ideally account for covariates measured both at individual and area levels. The newly available "indiCAR" model fits the popular conditional autoregresssive (CAR) model by accommodating both individual and group level covariates while adjusting for spatial correlation in the disease rates. This algorithm has been shown to be effective but assumes log-linear associations between individual level covariates and outcome. In many studies, the relationship between individual level covariates and the outcome may be non-log-linear, and methods to track such nonlinearity between individual level covariate and outcome in spatial regression modeling are not well developed. In this paper, we propose a new algorithm, smooth-indiCAR, to fit an extension to the popular conditional autoregresssive model that can accommodate both linear and nonlinear individual level covariate effects while adjusting for group level covariates and spatial correlation in the disease rates. In this formulation, the effect of a continuous individual level covariate is accommodated via penalized splines. We describe a two-step estimation procedure to obtain reliable estimates of individual and group level covariate effects where both individual and group level covariate effects are estimated separately. This distributed computing framework enhances its application in the Big Data domain with a large number of individual/group level covariates. We evaluate the performance of smooth-indiCAR through simulation. Our results indicate that the smooth-indiCAR method provides reliable estimates of all regression and random effect parameters. We illustrate our proposed methodology with an analysis of data on neutropenia admissions in New South Wales (NSW), Australia. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Evaluation of MODIS aerosol optical depth for semi­-arid environments in complex terrain

    NASA Astrophysics Data System (ADS)

    Holmes, H.; Loria Salazar, S. M.; Panorska, A. K.; Arnott, W. P.; Barnard, J.

    2015-12-01

    The use of satellite remote sensing to estimate spatially resolved ground level air pollutant concentrations is increasing due to advancements in remote sensing technology and the limited number of surface observations. Satellite retrievals provide global, spatiotemporal air quality information and are used to track plumes, estimate human exposures, model emissions, and determine sources (i.e., natural versus anthropogenic) in regulatory applications. Ground level PM2.5 concentrations can be estimated using columnar aerosol optical depth (AOD) from MODIS, where the satellite retrieval serves as a spatial surrogate to simulate surface PM2.5 gradients. The spatial statistical models and MODIS AOD retrieval algorithms have been evaluated for the dark, vegetated eastern US, while the semi-arid western US continues to be an understudied region with associated complexity due to heterogeneous emissions, smoke from wildfires, and complex terrain. The objective of this work is to evaluate the uncertainty of MODIS AOD retrievals by comparing with columnar AOD and surface PM2.5 measurements from AERONET and EPA networks. Data is analyzed from multiple stations in California and Nevada for three years where four major wildfires occurred. Results indicate that MODIS retrievals fail to estimate column-integrated aerosol pollution in the summer months. This is further investigated by quantifying the statistical relationships between MODIS AOD, AERONET AOD, and surface PM2.5 concentrations. Data analysis indicates that the distribution of MODIS AOD is significantly (p<0.05) different than AERONET AOD. Further, using the results of distributional and association analysis the impacts of MODIS AOD uncertainties on the spatial gradients are evaluated. Additionally, the relationships between these uncertainties and physical parameters in the retrieval algorithm (e.g., surface reflectance, Ångström Extinction Exponent) are discussed.

  2. The Argos-CLS Kalman Filter: Error Structures and State-Space Modelling Relative to Fastloc GPS Data.

    PubMed

    Lowther, Andrew D; Lydersen, Christian; Fedak, Mike A; Lovell, Phil; Kovacs, Kit M

    2015-01-01

    Understanding how an animal utilises its surroundings requires its movements through space to be described accurately. Satellite telemetry is the only means of acquiring movement data for many species however data are prone to varying amounts of spatial error; the recent application of state-space models (SSMs) to the location estimation problem have provided a means to incorporate spatial errors when characterising animal movements. The predominant platform for collecting satellite telemetry data on free-ranging animals, Service Argos, recently provided an alternative Doppler location estimation algorithm that is purported to be more accurate and generate a greater number of locations that its predecessor. We provide a comprehensive assessment of this new estimation process performance on data from free-ranging animals relative to concurrently collected Fastloc GPS data. Additionally, we test the efficacy of three readily-available SSM in predicting the movement of two focal animals. Raw Argos location estimates generated by the new algorithm were greatly improved compared to the old system. Approximately twice as many Argos locations were derived compared to GPS on the devices used. Root Mean Square Errors (RMSE) for each optimal SSM were less than 4.25 km with some producing RMSE of less than 2.50 km. Differences in the biological plausibility of the tracks between the two focal animals used to investigate the utility of SSM highlights the importance of considering animal behaviour in movement studies. The ability to reprocess Argos data collected since 2008 with the new algorithm should permit questions of animal movement to be revisited at a finer resolution.

  3. Geostatistical Modeling of Sediment Abundance in a Heterogeneous Basalt Aquifer at the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Welhan, John A.; Farabaugh, Renee L.; Merrick, Melissa J.; Anderson, Steven R.

    2007-01-01

    The spatial distribution of sediment in the eastern Snake River Plain aquifer was evaluated and modeled to improve the parameterization of hydraulic conductivity (K) for a subregional-scale ground-water flow model being developed by the U.S. Geological Survey. The aquifer is hosted within a layered series of permeable basalts within which intercalated beds of fine-grained sediment constitute local confining units. These sediments have K values as much as six orders of magnitude lower than the most permeable basalt, and previous flow-model calibrations have shown that hydraulic conductivity is sensitive to the proportion of intercalated sediment. Stratigraphic data in the form of sediment thicknesses from 333 boreholes in and around the Idaho National Laboratory were evaluated as grouped subsets of lithologic units (composite units) corresponding to their relative time-stratigraphic position. The results indicate that median sediment abundances of the stratigraphic units below the water table are statistically invariant (stationary) in a spatial sense and provide evidence of stationarity across geologic time, as well. Based on these results, the borehole data were kriged as two-dimensional spatial data sets representing the sediment content of the layers that discretize the ground-water flow model in the uppermost 300 feet of the aquifer. Multiple indicator kriging (mIK) was used to model the geographic distribution of median sediment abundance within each layer by defining the local cumulative frequency distribution (CFD) of sediment via indicator variograms defined at multiple thresholds. The mIK approach is superior to ordinary kriging because it provides a statistically best estimate of sediment abundance (the local median) drawn from the distribution of local borehole data, independent of any assumption of normality. A methodology is proposed for delineating and constraining the assignment of hydraulic conductivity zones for parameter estimation, based on the locally estimated CFDs and relative kriging uncertainty. A kriging-based methodology improves the spatial resolution of hydraulic property zones that can be considered during parameter estimation and should improve calibration performance and sensitivity by more accurately reflecting the nuances of sediment distribution within the aquifer.

  4. Hybrid Air Quality Modeling Approach for use in the Hear-road Exposures to Urban air pollutant Study(NEXUS)

    EPA Science Inventory

    The paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associa...

  5. Microwave Soil Moisture Retrieval Under Trees Using a Modified Tau-Omega Model

    USDA-ARS?s Scientific Manuscript database

    IPAD is to provide timely and accurate estimates of global crop conditions for use in up-to-date commodity intelligence reports. A crucial requirement of these global crop yield forecasts is the regional characterization of surface and sub-surface soil moisture. However, due to the spatial heterogen...

  6. Evapotranspiration estimates derived using multi-platform remote sensing in a semiarid region

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration (ET) is a key component of the water balance, especially in arid and semiarid regions. The current study takes advantage of spatially-distributed, near real-time information provided by satellite remote sensing to develop a regional scale ET product derived from remotely-sensed ob...

  7. Tracking MODIS NDVI time series to estimate fuel accumulation

    Treesearch

    Kellie A. Uyeda; Douglas A. Stow; Philip J. Riggan

    2015-01-01

    Patterns of post-fire recovery in southern California chaparral shrublands are important for understanding fuel available for future fires. Satellite remote sensing provides an opportunity to examine these patterns over large spatial extents and at high temporal resolution. The relatively limited temporal range of satellite remote sensing products has previously...

  8. Microphytobenthos potential productivity estimated in three tidal embayments of the San Francisco Bay system

    USGS Publications Warehouse

    Guarini, Jean-Marc; Cloern, James E.; Edmunds, Jody L.; Gros, Philippe

    2002-01-01

    In this paper we describe a three-step procedure to infer the spatial heterogeneity in microphytobenthos primary productivity at the scale of tidal estuaries and embayments. The first step involves local measurement of the carbon assimilation rate of benthic microalgae to determine the parameters of the photosynthesis-irradiance (P-E) curves (using non-linear optimization methods). In the next step, a resampling technique is used to rebuild pseudo-sampling distributions of the local productivity estimates; these provide error estimates for determining the significance level of differences between sites. The third step combines the previous results with deterministic models of tidal elevation and solar irradiance to compute mean and variance of the daily areal primary productivity over an entire intertidal mudflat area within each embayment. This scheme was applied on three different intertidal mudflat regions of the San Francisco Bay estuary during autumn 1998. Microphytobenthos productivity exhibits strong (ca. 3-fold) significant differences among the major sub-basins of San Francisco Bay. This spatial heterogeneity is attributed to two main causes: significant differences in the photosynthetic competence (P-E parameters) of the microphytobenthos in the different sub-basins, and spatial differences in the phase shifts between the tidal and solar cycles controlling the exposure of intertidal areas to sunlight. The procedure is general and can be used in other estuaries to assess the magnitude and patterns of spatial variability of microphytobenthos productivity at the level of the ecosystems.

  9. Microphytobenthic potential productivity estimated in three tidal embayments of the San Francisco Bay: A comparative study

    USGS Publications Warehouse

    Guarini, J.-M.; Cloern, James E.; Edmunds, J.

    2002-01-01

    In this paper we describe a three-step procedure to infer the spatial heterogeneity in microphytobenthos primary productivity at the scale of tidal estuaries and embayments. The first step involves local measurement of the carbon assimilation rate of benthic microalgae to determine the parameters of the photosynthesis-irradiance (P-E) curves (using non-linear optimization methods). In the next step, a resampling technique is used to rebuild pseudo-sampling distributions of the local productivity estimates; these provide error estimates for determining the significance level of differences between sites. The third step combines the previous results with deterministic models of tidal elevation and solar irradiance to compute mean and variance of the daily areal primary productivity over an entire intertidal mudflat area within each embayment. This scheme was applied on three different intertidal mudflat regions of the San Francisco Bay estuary during autumn 1998. Microphytobenthos productivity exhibits strong (ca. 3-fold) significant differences among the major sub-basins of San Francisco Bay. This spatial heterogeneity is attributed to two main causes: significant differences in the photosynthetic competence (P-E parameters) of the microphytobenthos in the different sub-basins, and spatial differences in the phase shifts between the tidal and solar cycles controlling the exposure of intertidal areas to sunlight. The procedure is general and can be used in other estuaries to assess the magnitude and patterns of spatial variability of microphytobenthos productivity at the level of the ecosystems.

  10. Scintillometer networks for calibration and validation of energy balance and soil moisture remote sensing algorithms

    NASA Astrophysics Data System (ADS)

    Hendrickx, Jan M. H.; Kleissl, Jan; Gómez Vélez, Jesús D.; Hong, Sung-ho; Fábrega Duque, José R.; Vega, David; Moreno Ramírez, Hernán A.; Ogden, Fred L.

    2007-04-01

    Accurate estimation of sensible and latent heat fluxes as well as soil moisture from remotely sensed satellite images poses a great challenge. Yet, it is critical to face this challenge since the estimation of spatial and temporal distributions of these parameters over large areas is impossible using only ground measurements. A major difficulty for the calibration and validation of operational remote sensing methods such as SEBAL, METRIC, and ALEXI is the ground measurement of sensible heat fluxes at a scale similar to the spatial resolution of the remote sensing image. While the spatial length scale of remote sensing images covers a range from 30 m (LandSat) to 1000 m (MODIS) direct methods to measure sensible heat fluxes such as eddy covariance (EC) only provide point measurements at a scale that may be considerably smaller than the estimate obtained from a remote sensing method. The Large Aperture scintillometer (LAS) flux footprint area is larger (up to 5000 m long) and its spatial extent better constraint than that of EC systems. Therefore, scintillometers offer the unique possibility of measuring the vertical flux of sensible heat averaged over areas comparable with several pixels of a satellite image (up to about 40 Landsat thermal pixels or about 5 MODIS thermal pixels). The objective of this paper is to present our experiences with an existing network of seven scintillometers in New Mexico and a planned network of three scintillometers in the humid tropics of Panama and Colombia.

  11. Sampling scales define occupancy and underlying occupancy-abundance relationships in animals.

    PubMed

    Steenweg, Robin; Hebblewhite, Mark; Whittington, Jesse; Lukacs, Paul; McKelvey, Kevin

    2018-01-01

    Occupancy-abundance (OA) relationships are a foundational ecological phenomenon and field of study, and occupancy models are increasingly used to track population trends and understand ecological interactions. However, these two fields of ecological inquiry remain largely isolated, despite growing appreciation of the importance of integration. For example, using occupancy models to infer trends in abundance is predicated on positive OA relationships. Many occupancy studies collect data that violate geographical closure assumptions due to the choice of sampling scales and application to mobile organisms, which may change how occupancy and abundance are related. Little research, however, has explored how different occupancy sampling designs affect OA relationships. We develop a conceptual framework for understanding how sampling scales affect the definition of occupancy for mobile organisms, which drives OA relationships. We explore how spatial and temporal sampling scales, and the choice of sampling unit (areal vs. point sampling), affect OA relationships. We develop predictions using simulations, and test them using empirical occupancy data from remote cameras on 11 medium-large mammals. Surprisingly, our simulations demonstrate that when using point sampling, OA relationships are unaffected by spatial sampling grain (i.e., cell size). In contrast, when using areal sampling (e.g., species atlas data), OA relationships are affected by spatial grain. Furthermore, OA relationships are also affected by temporal sampling scales, where the curvature of the OA relationship increases with temporal sampling duration. Our empirical results support these predictions, showing that at any given abundance, the spatial grain of point sampling does not affect occupancy estimates, but longer surveys do increase occupancy estimates. For rare species (low occupancy), estimates of occupancy will quickly increase with longer surveys, even while abundance remains constant. Our results also clearly demonstrate that occupancy for mobile species without geographical closure is not true occupancy. The independence of occupancy estimates from spatial sampling grain depends on the sampling unit. Point-sampling surveys can, however, provide unbiased estimates of occupancy for multiple species simultaneously, irrespective of home-range size. The use of occupancy for trend monitoring needs to explicitly articulate how the chosen sampling scales define occupancy and affect the occupancy-abundance relationship. © 2017 by the Ecological Society of America.

  12. Spatial Inference for Distributed Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Braverman, A. J.; Katzfuss, M.; Nguyen, H.

    2014-12-01

    Remote sensing data are inherently spatial, and a substantial portion of their value for scientific analyses derives from the information they can provide about spatially dependent processes. Geophysical variables such as atmopsheric temperature, cloud properties, humidity, aerosols and carbon dioxide all exhibit spatial patterns, and satellite observations can help us learn about the physical mechanisms driving them. However, remote sensing observations are often noisy and incomplete, so inferring properties of true geophysical fields from them requires some care. These data can also be massive, which is both a blessing and a curse: using more data drives uncertainties down, but also drives costs up, particularly when data are stored on different computers or in different physical locations. In this talk I will discuss a methodology for spatial inference on massive, distributed data sets that does not require moving large volumes of data. The idea is based on a combination of ideas including modeling spatial covariance structures with low-rank covariance matrices, and distributed estimation in sensor or wireless networks.

  13. Curvature from Strong Gravitational Lensing: A Spatially Closed Universe or Systematics?

    NASA Astrophysics Data System (ADS)

    Li, Zhengxiang; Ding, Xuheng; Wang, Guo-Jian; Liao, Kai; Zhu, Zong-Hong

    2018-02-01

    Model-independent constraints on the spatial curvature are not only closely related to important problems, such as the evolution of the universe and properties of dark energy, but also provide a test of the validity of the fundamental Copernican principle. In this paper, with the distance sum rule in the Friedmann–Lemaître–Robertson–Walker metric, we achieve model-independent measurements of the spatial curvature from the latest type Ia supernovae and strong gravitational lensing (SGL) observations. We find that a spatially closed universe is preferred. Moreover, by considering different kinds of velocity dispersion and subsamples, we study possible factors that might affect model-independent estimations for the spatial curvature from SGL observations. It is suggested that the combination of observational data from different surveys might cause a systematic bias, and the tension between the spatially flat universe and SGL observations is alleviated when the subsample only from the Sloan Lens ACS Survey is used or a more complex treatment for the density profile of lenses is considered.

  14. What Do They Have in Common? Physical Drivers of Streamflow Spatial Correlation and Prediction of Flow Regimes at Ungauged Locations in the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Betterle, A.; Schirmer, M.; Botter, G.

    2017-12-01

    Streamflow dynamics strongly influence anthropogenic activities and the ecological functions of riverine and riparian habitats. However, the widespread lack of direct discharge measurements often challenges the set-up of conscious and effective decision-making processes, including droughts and floods protection, water resources management and river restoration practices. By characterizing the spatial correlation of daily streamflow timeseries at two arbitrary locations, this study provides a method to evaluate how spatially variable catchment-scale hydrological process affects the resulting streamflow dynamics along and across river systems. In particular, streamflow spatial correlation is described analytically as a function of morphological, climatic and vegetation properties in the contributing catchments, building on a joint probabilistic description of flow dynamics at pairs of outlets. The approach enables an explicit linkage between similarities of flow dynamics and spatial patterns of hydrologically relevant features of climate and landscape. Therefore, the method is suited to explore spatial patterns of streamflow dynamics across geomorphoclimatic gradients. In particular, we show how the streamflow correlation can be used at the continental scale to individuate catchment pairs with similar hydrological dynamics, thereby providing a useful tool for the estimate of flow duration curves in poorly gauged areas.

  15. Selective sweeps in growing microbial colonies

    NASA Astrophysics Data System (ADS)

    Korolev, Kirill S.; Müller, Melanie J. I.; Karahan, Nilay; Murray, Andrew W.; Hallatschek, Oskar; Nelson, David R.

    2012-04-01

    Evolutionary experiments with microbes are a powerful tool to study mutations and natural selection. These experiments, however, are often limited to the well-mixed environments of a test tube or a chemostat. Since spatial organization can significantly affect evolutionary dynamics, the need is growing for evolutionary experiments in spatially structured environments. The surface of a Petri dish provides such an environment, but a more detailed understanding of microbial growth on Petri dishes is necessary to interpret such experiments. We formulate a simple deterministic reaction-diffusion model, which successfully predicts the spatial patterns created by two competing species during colony expansion. We also derive the shape of these patterns analytically without relying on microscopic details of the model. In particular, we find that the relative fitness of two microbial strains can be estimated from the logarithmic spirals created by selective sweeps. The theory is tested with strains of the budding yeast Saccharomyces cerevisiae for spatial competitions with different initial conditions and for a range of relative fitnesses. The reaction-diffusion model also connects the microscopic parameters like growth rates and diffusion constants with macroscopic spatial patterns and predicts the relationship between fitness in liquid cultures and on Petri dishes, which we confirmed experimentally. Spatial sector patterns therefore provide an alternative fitness assay to the commonly used liquid culture fitness assays.

  16. Spatial averaging errors in creating hemispherical reflectance (albedo) maps from directional reflectance data

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Kerber, A. G.; Sellers, P. J.

    1993-01-01

    Spatial averaging errors which may occur when creating hemispherical reflectance maps for different cover types from direct nadir technique to estimate the hemispherical reflectance are assessed by comparing the results with those obtained with a knowledge-based system called VEG (Kimes et al., 1991, 1992). It was found that hemispherical reflectance errors provided by using VEG are much less than those using the direct nadir techniques, depending on conditions. Suggestions are made concerning sampling and averaging strategies for creating hemispherical reflectance maps for photosynthetic, carbon cycle, and climate change studies.

  17. Validation of Satellite Retrieved Land Surface Variables

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman; Susskind, Joel

    1999-01-01

    The effective use of satellite observations of the land surface is limited by the lack of high spatial resolution ground data sets for validation of satellite products. Recent large scale field experiments include FIFE, HAPEX-Sahel and BOREAS which provide us with data sets that have large spatial coverage and long time coverage. It is the objective of this paper to characterize the difference between the satellite estimates and the ground observations. This study and others along similar lines will help us in utilization of satellite retrieved data in large scale modeling studies.

  18. Radiometric Calibration Assessment of Commercial High Spatial Resolution Multispectral Image Products

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara; Aaron, David; Thome, Kurtis

    2006-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can better understand their properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, satellite at-sensor radiance values were compared to those estimated by each independent team member to determine the sensor's radiometric accuracy. The combined results of this evaluation provide the user community with an independent assessment of these commercially available high spatial resolution sensors' absolute calibration values.

  19. Quantifying Organic Matter in Surface Waters of the United States and Delivery to the Coastal Zone

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Alexander, R. B.; Smith, R. A.; Shih, J.

    2012-12-01

    Organic carbon (OC) is a critical water quality characteristic in surface waters. It is an important component of the energy balance and food chains in freshwater and estuarine aquatic ecosystems, is significant in the mobilization and transport of contaminants along flow paths, and is associated with the formation of known carcinogens in drinking water supplies. The importance of OC dynamics on water quality has been recognized, but challenges remain in quantitatively addressing processes controlling OC fluxes over broad spatial scales in a hydrological context, and considering upstream-downstream linkages along flow paths. Here, we: 1) quantified lateral OC fluxes in rivers, streams, and reservoirs across the nation from headwaters to the coasts; 2) partitioned how much organic carbon that is stored in lakes, rivers and streams comes from allochthonous sources (produced in the terrestrial landscape) versus autochthonous sources (produced in-stream by primary production); 3) estimated the delivery of dissolved and total forms of organic carbon to coastal estuaries and embayments; and 4) considered seasonal factors affecting the temporal variation in OC responses. To accomplish this, we developed national-scale models of organic carbon in U.S. surface waters using the spatially referenced regression on watersheds (SPARROW) technique. The modeling approach uses mechanistic formulations, imposes mass balance constraints, and provides a formal parameter estimation structure to statistically estimate sources and fate of OC in terrestrial and aquatic ecosystems. We calibrated and evaluated the model with statistical estimates of OC loads that were observed at a network of monitoring stations across the nation, and further explored factors controlling seasonal dynamics of OC based on these long term monitoring data. Our results illustrate spatial patterns and magnitudes OC loadings in rivers, highlighting hot spots and suggesting origins of the OC to each location. Further, our results yield quantitative estimates of aquatic OC fluxes for large water regions and for the nation, providing a refined estimate of the role of surface water fluxes of OC in relationship to regional and national carbon budgets. Finally, we are using our simulations to explore the role of OC in relation to other nutrients in contributing to acidification and eutrophication of coastal waters.

  20. Development of a MODIS-Derived Surface Albedo Data Set: An Improved Model Input for Processing the NSRDB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maclaurin, Galen; Sengupta, Manajit; Xie, Yu

    A significant source of bias in the transposition of global horizontal irradiance to plane-of-array (POA) irradiance arises from inaccurate estimations of surface albedo. The current physics-based model used to produce the National Solar Radiation Database (NSRDB) relies on model estimations of surface albedo from a reanalysis climatalogy produced at relatively coarse spatial resolution compared to that of the NSRDB. As an input to spectral decomposition and transposition models, more accurate surface albedo data from remotely sensed imagery at finer spatial resolutions would improve accuracy in the final product. The National Renewable Energy Laboratory (NREL) developed an improved white-sky (bi-hemispherical reflectance)more » broadband (0.3-5.0 ..mu..m) surface albedo data set for processing the NSRDB from two existing data sets: a gap-filled albedo product and a daily snow cover product. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellites have provided high-quality measurements of surface albedo at 30 arc-second spatial resolution and 8-day temporal resolution since 2001. The high spatial and temporal resolutions and the temporal coverage of the MODIS sensor will allow for improved modeling of POA irradiance in the NSRDB. However, cloud and snow cover interfere with MODIS observations of ground surface albedo, and thus they require post-processing. The MODIS production team applied a gap-filling methodology to interpolate observations obscured by clouds or ephemeral snow. This approach filled pixels with ephemeral snow cover because the 8-day temporal resolution is too coarse to accurately capture the variability of snow cover and its impact on albedo estimates. However, for this project, accurate representation of daily snow cover change is important in producing the NSRDB. Therefore, NREL also used the Integrated Multisensor Snow and Ice Mapping System data set, which provides daily snow cover observations of the Northern Hemisphere for the temporal extent of the NSRDB (1998-2015). We provide a review of validation studies conducted on these two products and describe the methodology developed by NREL to remap the data products to the NSRDB grid and integrate them into a seamless daily data set.« less

  1. Patient-specific estimation of spatially variant image noise for a pinhole cardiac SPECT camera.

    PubMed

    Cuddy-Walsh, Sarah G; Wells, R Glenn

    2018-05-01

    New single photon emission computed tomography (SPECT) cameras using fixed pinhole collimation are increasingly popular. Pinhole collimators are known to have variable sensitivity with distance and angle from the pinhole aperture. It follows that pinhole SPECT systems will also have spatially variant sensitivity and hence spatially variant image noise. The objective of this study was to develop and validate a rapid method for analytically estimating a map of the noise magnitude in a reconstructed image using data from a single clinical acquisition. The projected voxel (PV) noise estimation method uses a modified forward projector with attenuation effects to estimate the number of photons detected from each voxel in the field-of-view. We approximate the noise for each voxel as the standard deviation of a Poisson distribution with a mean equal to the number of detected photons. An empirical formula is used to address scaling discrepancies caused by image reconstruction. Calibration coefficients are determined for the PV method by comparing it with noise measured from a nonparametrically bootstrapped set of images of a spherical uniformly filled Tc-99m water phantom. Validation studies compare PV noise estimates with bootstrapped measured noise for 31 patient images (5 min, 340 MBq, 99m Tc-tetrofosmin rest study). Bland-Altman analysis shows R 2 correlations ≥70% between the PV-estimated and -measured image noise. For the 31 patient cardiac images, the PV noise estimate has an average bias of 0.1% compared to bootstrapped noise and have a coefficient of variation (CV) ≤ 17%. The bootstrap approach to noise measurement requires 5 h of computation for each image, whereas the PV noise estimate requires only 64 s. In cardiac images, image noise due to attenuation and camera sensitivity varies on average from 4% at the apex to 9% in the basal posterior region of the heart. The standard deviation between 15 healthy patient study images (including physiological variability in the population) ranges from 6% to 16.5% over the length of the heart. The PV method provides a rapid estimate for spatially variant patient-specific image noise magnitude in a pinhole-collimated dedicated cardiac SPECT camera with a bias of -0.3% and better than 83% precision. © 2018 American Association of Physicists in Medicine.

  2. Uncertainty estimates of altimetric Global Mean Sea Level timeseries

    NASA Astrophysics Data System (ADS)

    Scharffenberg, Martin; Hemming, Michael; Stammer, Detlef

    2016-04-01

    An attempt is being presented concerned with providing uncertainty measures for global mean sea level time series. For this purpose sea surface height (SSH) fields, simulated by the high resolution STORM/NCEP model for the period 1993 - 2010, were subsampled along altimeter tracks and processed similar to techniques used by five working groups to estimate GMSL. Results suggest that the spatial and temporal resolution have a substantial impact on GMSL estimates. Major impacts can especially result from the interpolation technique or the treatment of SSH outliers and easily lead to artificial temporal variability in the resulting time series.

  3. Asymptotics of nonparametric L-1 regression models with dependent data

    PubMed Central

    ZHAO, ZHIBIAO; WEI, YING; LIN, DENNIS K.J.

    2013-01-01

    We investigate asymptotic properties of least-absolute-deviation or median quantile estimates of the location and scale functions in nonparametric regression models with dependent data from multiple subjects. Under a general dependence structure that allows for longitudinal data and some spatially correlated data, we establish uniform Bahadur representations for the proposed median quantile estimates. The obtained Bahadur representations provide deep insights into the asymptotic behavior of the estimates. Our main theoretical development is based on studying the modulus of continuity of kernel weighted empirical process through a coupling argument. Progesterone data is used for an illustration. PMID:24955016

  4. Estimates of Monthly Ground-Water Recharge to the Yakima River Basin Aquifer System, Washington, 1960-2001, for Current Land-Use and Land-Cover Conditions

    USGS Publications Warehouse

    Vaccaro, J.J.; Olsen, T.D.

    2007-01-01

    Unique ID grid with a unique value per Hydrologic Response Unit (HRU) per basin in reference to the estimated ground-water recharge for current conditions in the Yakima Basin Aquifer System, (USGS report SIR 2007-5007). Total 78,144 unique values. This grid made it easy to provide estimates of monthly ground-water recharge for water years 1960-2001in an electronic format for water managers, planners, and hydrologists, that could be related back to a spatially referenced grid by the unique ID.

  5. Evaluation of satellite and simulated rainfall products for hydrological applications in the Notwane catchment, Botswana

    NASA Astrophysics Data System (ADS)

    Kenabatho, P. K.; Parida, B. P.; Moalafhi, D. B.

    2017-08-01

    In semi-arid catchments, hydrological modeling, water resources planning and management are hampered by insufficient spatial rainfall data which is usually derived from limited rain gauge networks. Satellite products are potential candidates to augment the limited spatial rainfall data in these areas. In this paper, the utility of the Tropical Rainfall Measuring Mission (TRMM) product (3B42 v7) is evaluated using data from the Notwane catchment in Botswana. In addition, rainfall simulations obtained from a multi-site stochastic rainfall model based on the generalised linear models (GLMs) were used as additional spatial rainfall estimates. These rainfall products were compared to the observed rainfall data obtained from six (6) rainfall stations available in the catchment for the period 1998-2012. The results show that in general the two approaches produce reasonable spatial rainfall estimates. However, the TRMM products provided better spatial rainfall estimates compared to the GLM rainfall outputs on an average, as more than 90% of the monthly rainfall variations were explained by the TRMM compared to 80% from the GLMs. However, there is still uncertainty associated mainly with limited rainfall stations, and the inability of the two products to capture unusually high rainfall values in the data sets. Despite this observation, rainfall indices computed to further assess the daily rainfall products (i.e. rainfall occurrence and amounts, length of dry spells) were adequately represented by the TRMM data compared to the GLMs. Performance from the GLMs is expected to improve with addition of further rainfall predictors. A combination of these rainfall products allows for reasonable spatial rainfall estimates and temporal (short term future) rainfall simulations from the TRMM and GLMs, respectively. The results have significant implications on water resources planning and management in the catchment which has, for the past three years, been experiencing prolonged droughts as shown by the drying of Gaborone dam (currently at a record low of 1.6% full), which is the main source of water supply to the city of Gaborone and neighbouring townships in Botswana.

  6. Monitoring survival rates of landbirds at varying spatial scales: An application of the MAPS Program

    USGS Publications Warehouse

    Rosenberg, D.K.; DeSante, D.F.; Hines, J.E.; Bonney, Rick; Pashley, David N.; Cooper, Robert; Niles, Larry

    2000-01-01

    Survivorship is a primary demographic parameter affecting population dynamics, and thus trends in species abundance. The Monitoring Avian Productivity and Survivorship (MAPS) program is a cooperative effort designed to monitor landbird demographic parameters. A principle goal of MAPS is to estimate annual survivorship and identify spatial patterns and temporal trends in these rates. We evaluated hypotheses of spatial patterns in survival rates among a collection of neighboring sampling sites, such as within national forests, among biogeographic provinces, and between breeding populations that winter in either Central or South America, and compared these geographic-specific models to a model of a common survival rate among all sampling sites. We used data collected during 1992-1995 from Swainson's Thrush (Cathorus ustulatus) populations in the western region of the United States. We evaluated the ability to detect spatial and temporal patterns of survivorship with simulated data. We found weak evidence of spatial differences in survival rates at the local scale of 'location,' which typically contained 3 mist-netting stations. There was little evidence of differences in survival rates among biogeographic provinces or between populations that winter in either Central or South America. When data were pooled for a regional estimate of survivorship, the percent relative bias due to pooling 'locations' was 12 years of monitoring. Detection of spatial patterns and temporal trends in survival rates from local to regional scales will provide important information for management and future research directed toward conservation of landbirds.

  7. Comparison of estimation methods for creating small area rates of acute myocardial infarction among Medicare beneficiaries in California.

    PubMed

    Yasaitis, Laura C; Arcaya, Mariana C; Subramanian, S V

    2015-09-01

    Creating local population health measures from administrative data would be useful for health policy and public health monitoring purposes. While a wide range of options--from simple spatial smoothers to model-based methods--for estimating such rates exists, there are relatively few side-by-side comparisons, especially not with real-world data. In this paper, we compare methods for creating local estimates of acute myocardial infarction rates from Medicare claims data. A Bayesian Monte Carlo Markov Chain estimator that incorporated spatial and local random effects performed best, followed by a method-of-moments spatial Empirical Bayes estimator. As the former is more complicated and time-consuming, spatial linear Empirical Bayes methods may represent a good alternative for non-specialist investigators. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Estimating black bear density using DNA data from hair snares

    USGS Publications Warehouse

    Gardner, B.; Royle, J. Andrew; Wegan, M.T.; Rainbolt, R.E.; Curtis, P.D.

    2010-01-01

    DNA-based mark-recapture has become a methodological cornerstone of research focused on bear species. The objective of such studies is often to estimate population size; however, doing so is frequently complicated by movement of individual bears. Movement affects the probability of detection and the assumption of closure of the population required in most models. To mitigate the bias caused by movement of individuals, population size and density estimates are often adjusted using ad hoc methods, including buffering the minimum polygon of the trapping array. We used a hierarchical, spatial capturerecapture model that contains explicit components for the spatial-point process that governs the distribution of individuals and their exposure to (via movement), and detection by, traps. We modeled detection probability as a function of each individual's distance to the trap and an indicator variable for previous capture to account for possible behavioral responses. We applied our model to a 2006 hair-snare study of a black bear (Ursus americanus) population in northern New York, USA. Based on the microsatellite marker analysis of collected hair samples, 47 individuals were identified. We estimated mean density at 0.20 bears/km2. A positive estimate of the indicator variable suggests that bears are attracted to baited sites; therefore, including a trap-dependence covariate is important when using bait to attract individuals. Bayesian analysis of the model was implemented in WinBUGS, and we provide the model specification. The model can be applied to any spatially organized trapping array (hair snares, camera traps, mist nests, etc.) to estimate density and can also account for heterogeneity and covariate information at the trap or individual level. ?? The Wildlife Society.

  9. A multistate dynamic site occupancy model for spatially aggregated sessile communities

    USGS Publications Warehouse

    Fukaya, Keiichi; Royle, J. Andrew; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi

    2017-01-01

    Estimation of transition probabilities of sessile communities seems easy in principle but may still be difficult in practice because resampling error (i.e. a failure to resample exactly the same location at fixed points) may cause significant estimation bias. Previous studies have developed novel analytical methods to correct for this estimation bias. However, they did not consider the local structure of community composition induced by the aggregated distribution of organisms that is typically observed in sessile assemblages and is very likely to affect observations.We developed a multistate dynamic site occupancy model to estimate transition probabilities that accounts for resampling errors associated with local community structure. The model applies a nonparametric multivariate kernel smoothing methodology to the latent occupancy component to estimate the local state composition near each observation point, which is assumed to determine the probability distribution of data conditional on the occurrence of resampling error.By using computer simulations, we confirmed that an observation process that depends on local community structure may bias inferences about transition probabilities. By applying the proposed model to a real data set of intertidal sessile communities, we also showed that estimates of transition probabilities and of the properties of community dynamics may differ considerably when spatial dependence is taken into account.Results suggest the importance of accounting for resampling error and local community structure for developing management plans that are based on Markovian models. Our approach provides a solution to this problem that is applicable to broad sessile communities. It can even accommodate an anisotropic spatial correlation of species composition, and may also serve as a basis for inferring complex nonlinear ecological dynamics.

  10. Comparison of machine-learning methods for above-ground biomass estimation based on Landsat imagery

    NASA Astrophysics Data System (ADS)

    Wu, Chaofan; Shen, Huanhuan; Shen, Aihua; Deng, Jinsong; Gan, Muye; Zhu, Jinxia; Xu, Hongwei; Wang, Ke

    2016-07-01

    Biomass is one significant biophysical parameter of a forest ecosystem, and accurate biomass estimation on the regional scale provides important information for carbon-cycle investigation and sustainable forest management. In this study, Landsat satellite imagery data combined with field-based measurements were integrated through comparisons of five regression approaches [stepwise linear regression, K-nearest neighbor, support vector regression, random forest (RF), and stochastic gradient boosting] with two different candidate variable strategies to implement the optimal spatial above-ground biomass (AGB) estimation. The results suggested that RF algorithm exhibited the best performance by 10-fold cross-validation with respect to R2 (0.63) and root-mean-square error (26.44 ton/ha). Consequently, the map of estimated AGB was generated with a mean value of 89.34 ton/ha in northwestern Zhejiang Province, China, with a similar pattern to the distribution mode of local forest species. This research indicates that machine-learning approaches associated with Landsat imagery provide an economical way for biomass estimation. Moreover, ensemble methods using all candidate variables, especially for Landsat images, provide an alternative for regional biomass simulation.

  11. A new gridded on-road CO2 emissions inventory for the United States, 1980-2011

    NASA Astrophysics Data System (ADS)

    Gately, C.; Hutyra, L.; Sue Wing, I.

    2013-12-01

    On-road transportation is responsible for 28% of all U.S. fossil fuel CO2 emissions. However, mapping vehicle emissions at regional scales is challenging due to data limitations. Existing emission inventories have used spatial proxies such as population and road density to downscale national or state level data, which may introduce errors where the proxy variables and actual emissions are weakly correlated. We have developed a national on-road emissions inventory product based on roadway-level traffic data obtained from the Highway Performance Monitoring System. We produce annual estimates of on-road CO2 emissions at a 1km spatial resolution for the contiguous United States for the years 1980 through 2011. For the year 2011 we also produce an hourly emissions product at the 1km scale using hourly traffic volumes from hundreds of automated traffic counters across the country. National on-road emissions rose at roughly 2% per year from 1980 to 2006, with emissions peaking at 1.71 Tg CO2 in 2007. However, while national emissions have declined 6% since the peak, we observe considerable regional variation in emissions trends post-2007. While many states show stable or declining on-road emissions, several states and metropolitan areas in the Midwest, mountain west and south had emissions increases of 3-10% from 2008 to 2011. Our emissions estimates are consistent with state-reported totals of gasoline and diesel fuel consumption. This is in contrast to on-road CO2 emissions estimated by the Emissions Database of Global Atmospheric Research (EDGAR), which we show to be inconsistent in matching on-road emissions to published fuel consumption at the scale of U.S. states, due to the non-linear relationships between emissions and EDGAR's chosen spatial proxies at these scales. Since our emissions estimates were generated independent of population density and other demographic data, we were able to conduct a panel regression analysis to estimate the relationship between these variables and on-road CO2 at various spatial scales. In the case of Massachusetts we find a non-linear relationship between emissions and population density indicating that increasing density resulted in increased emissions when density is less than 2000 persons-km-2. These results highlight the value of using an emissions inventory with high spatial and temporal resolution. At coarser spatial scales, much of the variation in population density and on-road emissions between towns is lost due to aggregation. The high spatial resolution and broad temporal scope of our CO2 estimates provides a basis for analyses to support emissions monitoring, verification and mitigation policies at regional, state and local scale.

  12. Robust geostatistical analysis of spatial data

    NASA Astrophysics Data System (ADS)

    Papritz, Andreas; Künsch, Hans Rudolf; Schwierz, Cornelia; Stahel, Werner A.

    2013-04-01

    Most of the geostatistical software tools rely on non-robust algorithms. This is unfortunate, because outlying observations are rather the rule than the exception, in particular in environmental data sets. Outliers affect the modelling of the large-scale spatial trend, the estimation of the spatial dependence of the residual variation and the predictions by kriging. Identifying outliers manually is cumbersome and requires expertise because one needs parameter estimates to decide which observation is a potential outlier. Moreover, inference after the rejection of some observations is problematic. A better approach is to use robust algorithms that prevent automatically that outlying observations have undue influence. Former studies on robust geostatistics focused on robust estimation of the sample variogram and ordinary kriging without external drift. Furthermore, Richardson and Welsh (1995) proposed a robustified version of (restricted) maximum likelihood ([RE]ML) estimation for the variance components of a linear mixed model, which was later used by Marchant and Lark (2007) for robust REML estimation of the variogram. We propose here a novel method for robust REML estimation of the variogram of a Gaussian random field that is possibly contaminated by independent errors from a long-tailed distribution. It is based on robustification of estimating equations for the Gaussian REML estimation (Welsh and Richardson, 1997). Besides robust estimates of the parameters of the external drift and of the variogram, the method also provides standard errors for the estimated parameters, robustified kriging predictions at both sampled and non-sampled locations and kriging variances. Apart from presenting our modelling framework, we shall present selected simulation results by which we explored the properties of the new method. This will be complemented by an analysis a data set on heavy metal contamination of the soil in the vicinity of a metal smelter. Marchant, B.P. and Lark, R.M. 2007. Robust estimation of the variogram by residual maximum likelihood. Geoderma 140: 62-72. Richardson, A.M. and Welsh, A.H. 1995. Robust restricted maximum likelihood in mixed linear models. Biometrics 51: 1429-1439. Welsh, A.H. and Richardson, A.M. 1997. Approaches to the robust estimation of mixed models. In: Handbook of Statistics Vol. 15, Elsevier, pp. 343-384.

  13. The Variable Grid Method, an Approach for the Simultaneous Visualization and Assessment of Spatial Trends and Uncertainty

    NASA Astrophysics Data System (ADS)

    Rose, K.; Glosser, D.; Bauer, J. R.; Barkhurst, A.

    2015-12-01

    The products of spatial analyses that leverage the interpolation of sparse, point data to represent continuous phenomena are often presented without clear explanations of the uncertainty associated with the interpolated values. As a result, there is frequently insufficient information provided to effectively support advanced computational analyses and individual research and policy decisions utilizing these results. This highlights the need for a reliable approach capable of quantitatively producing and communicating spatial data analyses and their inherent uncertainties for a broad range of uses. To address this need, we have developed the Variable Grid Method (VGM), and associated Python tool, which is a flexible approach that can be applied to a variety of analyses and use case scenarios where users need a method to effectively study, evaluate, and analyze spatial trends and patterns while communicating the uncertainty in the underlying spatial datasets. The VGM outputs a simultaneous visualization representative of the spatial data analyses and quantification of underlying uncertainties, which can be calculated using data related to sample density, sample variance, interpolation error, uncertainty calculated from multiple simulations, etc. We will present examples of our research utilizing the VGM to quantify key spatial trends and patterns for subsurface data interpolations and their uncertainties and leverage these results to evaluate storage estimates and potential impacts associated with underground injection for CO2 storage and unconventional resource production and development. The insights provided by these examples identify how the VGM can provide critical information about the relationship between uncertainty and spatial data that is necessary to better support their use in advance computation analyses and informing research, management and policy decisions.

  14. Use of spatial capture-recapture modeling and DNA data to estimate densities of elusive animals

    USGS Publications Warehouse

    Kery, Marc; Gardner, Beth; Stoeckle, Tabea; Weber, Darius; Royle, J. Andrew

    2011-01-01

    Assessment of abundance, survival, recruitment rates, and density (i.e., population assessment) is especially challenging for elusive species most in need of protection (e.g., rare carnivores). Individual identification methods, such as DNA sampling, provide ways of studying such species efficiently and noninvasively. Additionally, statistical methods that correct for undetected animals and account for locations where animals are captured are available to efficiently estimate density and other demographic parameters. We collected hair samples of European wildcat (Felis silvestris) from cheek-rub lure sticks, extracted DNA from the samples, and identified each animals' genotype. To estimate the density of wildcats, we used Bayesian inference in a spatial capture-recapture model. We used WinBUGS to fit a model that accounted for differences in detection probability among individuals and seasons and between two lure arrays. We detected 21 individual wildcats (including possible hybrids) 47 times. Wildcat density was estimated at 0.29/km2 (SE 0.06), and 95% of the activity of wildcats was estimated to occur within 1.83 km from their home-range center. Lures located systematically were associated with a greater number of detections than lures placed in a cell on the basis of expert opinion. Detection probability of individual cats was greatest in late March. Our model is a generalized linear mixed model; hence, it can be easily extended, for instance, to incorporate trap- and individual-level covariates. We believe that the combined use of noninvasive sampling techniques and spatial capture-recapture models will improve population assessments, especially for rare and elusive animals.

  15. cBathy: A robust algorithm for estimating nearshore bathymetry

    USGS Publications Warehouse

    Plant, Nathaniel G.; Holman, Rob; Holland, K. Todd

    2013-01-01

    A three-part algorithm is described and tested to provide robust bathymetry maps based solely on long time series observations of surface wave motions. The first phase consists of frequency-dependent characterization of the wave field in which dominant frequencies are estimated by Fourier transform while corresponding wave numbers are derived from spatial gradients in cross-spectral phase over analysis tiles that can be small, allowing high-spatial resolution. Coherent spatial structures at each frequency are extracted by frequency-dependent empirical orthogonal function (EOF). In phase two, depths are found that best fit weighted sets of frequency-wave number pairs. These are subsequently smoothed in time in phase 3 using a Kalman filter that fills gaps in coverage and objectively averages new estimates of variable quality with prior estimates. Objective confidence intervals are returned. Tests at Duck, NC, using 16 surveys collected over 2 years showed a bias and root-mean-square (RMS) error of 0.19 and 0.51 m, respectively but were largest near the offshore limits of analysis (roughly 500 m from the camera) and near the steep shoreline where analysis tiles mix information from waves, swash and static dry sand. Performance was excellent for small waves but degraded somewhat with increasing wave height. Sand bars and their small-scale alongshore variability were well resolved. A single ground truth survey from a dissipative, low-sloping beach (Agate Beach, OR) showed similar errors over a region that extended several kilometers from the camera and reached depths of 14 m. Vector wave number estimates can also be incorporated into data assimilation models of nearshore dynamics.

  16. Risk assessment of groundwater level variability using variable Kriging methods

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2015-04-01

    Assessment of the water table level spatial variability in aquifers provides useful information regarding optimal groundwater management. This information becomes more important in basins where the water table level has fallen significantly. The spatial variability of the water table level in this work is estimated based on hydraulic head measured during the wet period of the hydrological year 2007-2008, in a sparsely monitored basin in Crete, Greece, which is of high socioeconomic and agricultural interest. Three Kriging-based methodologies are elaborated in Matlab environment to estimate the spatial variability of the water table level in the basin. The first methodology is based on the Ordinary Kriging approach, the second involves auxiliary information from a Digital Elevation Model in terms of Residual Kriging and the third methodology calculates the probability of the groundwater level to fall below a predefined minimum value that could cause significant problems in groundwater resources availability, by means of Indicator Kriging. The Box-Cox methodology is applied to normalize both the data and the residuals for improved prediction results. In addition, various classical variogram models are applied to determine the spatial dependence of the measurements. The Matérn model proves to be the optimal, which in combination with Kriging methodologies provides the most accurate cross validation estimations. Groundwater level and probability maps are constructed to examine the spatial variability of the groundwater level in the basin and the associated risk that certain locations exhibit regarding a predefined minimum value that has been set for the sustainability of the basin's groundwater resources. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the protection of surface water and groundwater in the coastal zone', (2013 - 2015). Varouchakis, E. A. and D. T. Hristopulos (2013). "Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables." Advances in Water Resources 52: 34-49. Kitanidis, P. K. (1997). Introduction to geostatistics, Cambridge: University Press.

  17. Sampling design for spatially distributed hydrogeologic and environmental processes

    USGS Publications Warehouse

    Christakos, G.; Olea, R.A.

    1992-01-01

    A methodology for the design of sampling networks over space is proposed. The methodology is based on spatial random field representations of nonhomogeneous natural processes, and on optimal spatial estimation techniques. One of the most important results of random field theory for physical sciences is its rationalization of correlations in spatial variability of natural processes. This correlation is extremely important both for interpreting spatially distributed observations and for predictive performance. The extent of site sampling and the types of data to be collected will depend on the relationship of subsurface variability to predictive uncertainty. While hypothesis formulation and initial identification of spatial variability characteristics are based on scientific understanding (such as knowledge of the physics of the underlying phenomena, geological interpretations, intuition and experience), the support offered by field data is statistically modelled. This model is not limited by the geometric nature of sampling and covers a wide range in subsurface uncertainties. A factorization scheme of the sampling error variance is derived, which possesses certain atttactive properties allowing significant savings in computations. By means of this scheme, a practical sampling design procedure providing suitable indices of the sampling error variance is established. These indices can be used by way of multiobjective decision criteria to obtain the best sampling strategy. Neither the actual implementation of the in-situ sampling nor the solution of the large spatial estimation systems of equations are necessary. The required values of the accuracy parameters involved in the network design are derived using reference charts (readily available for various combinations of data configurations and spatial variability parameters) and certain simple yet accurate analytical formulas. Insight is gained by applying the proposed sampling procedure to realistic examples related to sampling problems in two dimensions. ?? 1992.

  18. Estimating Soil Moisture at High Spatial Resolution with Three Radiometric Satellite Products: A Study from a South-Eastern Australian Catchment

    NASA Astrophysics Data System (ADS)

    Senanayake, I. P.; Yeo, I. Y.; Tangdamrongsub, N.; Willgoose, G. R.; Hancock, G. R.; Wells, T.; Fang, B.; Lakshmi, V.

    2017-12-01

    Long-term soil moisture datasets at high spatial resolution are important in agricultural, hydrological, and climatic applications. The soil moisture estimates can be achieved using satellite remote sensing observations. However, the satellite soil moisture data are typically available at coarse spatial resolutions ( several tens of km), therefore require further downscaling. Different satellite soil moisture products have to be conjointly employed in developing a consistent time-series of high resolution soil moisture, while the discrepancies amongst different satellite retrievals need to be resolved. This study aims to downscale three different satellite soil moisture products, the Soil Moisture and Ocean Salinity (SMOS, 25 km), the Soil Moisture Active Passive (SMAP, 36 km) and the SMAP-Enhanced (9 km), and to conduct an inter-comparison of the downscaled results. The downscaling approach is developed based on the relationship between the diurnal temperature difference and the daily mean soil moisture content. The approach is applied to two sub-catchments (Krui and Merriwa River) of the Goulburn River catchment in the Upper Hunter region (NSW, Australia) to estimate soil moisture at 1 km resolution for 2015. The three coarse spatial resolution soil moisture products and their downscaled results will be validated with the in-situ observations obtained from the Scaling and Assimilation of Soil Moisture and Streamflow (SASMAS) network. The spatial and temporal patterns of the downscaled results will also be analysed. This study will provide the necessary insights for data selection and bias corrections to maintain the consistency of a long-term high resolution soil moisture dataset. The results will assist in developing a time-series of high resolution soil moisture data over the south-eastern Australia.

  19. Fine-Scale Mapping by Spatial Risk Distribution Modeling for Regional Malaria Endemicity and Its Implications under the Low-to-Moderate Transmission Setting in Western Cambodia

    PubMed Central

    Okami, Suguru; Kohtake, Naohiko

    2016-01-01

    The disease burden of malaria has decreased as malaria elimination efforts progress. The mapping approach that uses spatial risk distribution modeling needs some adjustment and reinvestigation in accordance with situational changes. Here we applied a mathematical modeling approach for standardized morbidity ratio (SMR) calculated by annual parasite incidence using routinely aggregated surveillance reports, environmental data such as remote sensing data, and non-environmental anthropogenic data to create fine-scale spatial risk distribution maps of western Cambodia. Furthermore, we incorporated a combination of containment status indicators into the model to demonstrate spatial heterogeneities of the relationship between containment status and risks. The explanatory model was fitted to estimate the SMR of each area (adjusted Pearson correlation coefficient R2 = 0.774; Akaike information criterion AIC = 149.423). A Bayesian modeling framework was applied to estimate the uncertainty of the model and cross-scale predictions. Fine-scale maps were created by the spatial interpolation of estimated SMRs at each village. Compared with geocoded case data, corresponding predicted values showed conformity [Spearman’s rank correlation r = 0.662 in the inverse distance weighed interpolation and 0.645 in ordinal kriging (95% confidence intervals of 0.414–0.827 and 0.368–0.813, respectively), Welch’s t-test; Not significant]. The proposed approach successfully explained regional malaria risks and fine-scale risk maps were created under low-to-moderate malaria transmission settings where reinvestigations of existing risk modeling approaches were needed. Moreover, different representations of simulated outcomes of containment status indicators for respective areas provided useful insights for tailored interventional planning, considering regional malaria endemicity. PMID:27415623

  20. Evaluating population expansion of black bears using spatial capture-recapture

    USGS Publications Warehouse

    Sun, Catherine C.; Fuller, Angela K.; Hare, Matthew P.; Hurst, Jeremy E.

    2017-01-01

    The population of American black bears (Ursus americanus) in southern New York, USA has been growing and expanding in range since the 1990s. This has motivated a need to anticipate future patterns of range expansion. We conducted a non-invasive, genetic, spatial capture-recapture (SCR) study to estimate black bear density and identify spatial patterns of population density that are potentially associated with range expansion. We collected hair samples in a 2,519-km2 study area in southern New York with barbed-wire hair snares and identified individuals and measured genetic diversity using 7 microsatellite loci and 1 sex-linked marker. We estimated a mean density of black bears in the region of 13.7 bears/100 km2, and detected a slight latitudinal gradient in density consistent with the documented range expansion. However, elevation and the amounts of forest, crop, and developed landcover types did not influence density, suggesting that bears are using a diversity of resources in this heterogeneous landscape outside their previously described distribution. These results provide the first robust baseline estimates for population density and distribution associated with different landcover types in the expanded bear range. Further, genetic diversity was comparable to that of non-expanding black bear populations in the eastern United States, and in combination with the latitudinal density gradient, suggest that the study area is not at the colonizing front of the range expansion. In addition, the diversity of landcover types used by bears in the study area implies a possible lack of constraints for further northern expansion of the black bear range. Our non-invasive, genetic, spatial capture-recapture approach has utility for studying populations of other species that may be expanding in range because SCR allows for the testing of explicit, spatial ecological hypotheses. 

  1. Determining the spatial variability of wetland soil bulk density, organic matter, and the conversion factor between organic matter and organic carbon across coastal Louisiana, U.S.A.

    USGS Publications Warehouse

    Wang, Hongqing; Piazza, Sarai C.; Sharp, Leigh A.; Stagg, Camille L.; Couvillion, Brady R.; Steyer, Gregory D.; McGinnis, Thomas E.

    2016-01-01

    Soil bulk density (BD), soil organic matter (SOM) content, and a conversion factor between SOM and soil organic carbon (SOC) are often used in estimating SOC sequestration and storage. Spatial variability in BD, SOM, and the SOM–SOC conversion factor affects the ability to accurately estimate SOC sequestration, storage, and the benefits (e.g., land building area and vertical accretion) associated with wetland restoration efforts, such as marsh creation and sediment diversions. There are, however, only a few studies that have examined large-scale spatial variability in BD, SOM, and SOM–SOC conversion factors in coastal wetlands. In this study, soil cores, distributed across the entire coastal Louisiana (approximately 14,667 km2) were used to examine the regional-scale spatial variability in BD, SOM, and the SOM–SOC conversion factor. Soil cores for BD and SOM analyses were collected during 2006–09 from 331 spatially well-distributed sites in the Coastwide Reference Monitoring System network. Soil cores for the SOM–SOC conversion factor analysis were collected from 15 sites across coastal Louisiana during 2006–07. Results of a split-plot analysis of variance with incomplete block design indicated that BD and SOM varied significantly at a landscape level, defined by both hydrologic basins and vegetation types. Vertically, BD and SOM varied significantly among different vegetation types. The SOM–SOC conversion factor also varied significantly at the landscape level. This study provides critical information for the assessment of the role of coastal wetlands in large regional carbon budgets and the estimation of carbon credits from coastal restoration.

  2. Pragmatic estimation of a spatio-temporal air quality model with irregular monitoring data

    NASA Astrophysics Data System (ADS)

    Sampson, Paul D.; Szpiro, Adam A.; Sheppard, Lianne; Lindström, Johan; Kaufman, Joel D.

    2011-11-01

    Statistical analyses of health effects of air pollution have increasingly used GIS-based covariates for prediction of ambient air quality in "land use" regression models. More recently these spatial regression models have accounted for spatial correlation structure in combining monitoring data with land use covariates. We present a flexible spatio-temporal modeling framework and pragmatic, multi-step estimation procedure that accommodates essentially arbitrary patterns of missing data with respect to an ideally complete space by time matrix of observations on a network of monitoring sites. The methodology incorporates a model for smooth temporal trends with coefficients varying in space according to Partial Least Squares regressions on a large set of geographic covariates and nonstationary modeling of spatio-temporal residuals from these regressions. This work was developed to provide spatial point predictions of PM 2.5 concentrations for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) using irregular monitoring data derived from the AQS regulatory monitoring network and supplemental short-time scale monitoring campaigns conducted to better predict intra-urban variation in air quality. We demonstrate the interpretation and accuracy of this methodology in modeling data from 2000 through 2006 in six U.S. metropolitan areas and establish a basis for likelihood-based estimation.

  3. An evaluation of potential sampling locations in a reservoir with emphasis on conserved spatial correlation structure.

    PubMed

    Yenilmez, Firdes; Düzgün, Sebnem; Aksoy, Aysegül

    2015-01-01

    In this study, kernel density estimation (KDE) was coupled with ordinary two-dimensional kriging (OK) to reduce the number of sampling locations in measurement and kriging of dissolved oxygen (DO) concentrations in Porsuk Dam Reservoir (PDR). Conservation of the spatial correlation structure in the DO distribution was a target. KDE was used as a tool to aid in identification of the sampling locations that would be removed from the sampling network in order to decrease the total number of samples. Accordingly, several networks were generated in which sampling locations were reduced from 65 to 10 in increments of 4 or 5 points at a time based on kernel density maps. DO variograms were constructed, and DO values in PDR were kriged. Performance of the networks in DO estimations were evaluated through various error metrics, standard error maps (SEM), and whether the spatial correlation structure was conserved or not. Results indicated that smaller number of sampling points resulted in loss of information in regard to spatial correlation structure in DO. The minimum representative sampling points for PDR was 35. Efficacy of the sampling location selection method was tested against the networks generated by experts. It was shown that the evaluation approach proposed in this study provided a better sampling network design in which the spatial correlation structure of DO was sustained for kriging.

  4. Inter-comparison of interpolated background nitrogen dioxide concentrations across Greater Manchester, UK

    NASA Astrophysics Data System (ADS)

    Lindley, S. J.; Walsh, T.

    There are many modelling methods dedicated to the estimation of spatial patterns in pollutant concentrations, each with their distinctive advantages and disadvantages. The derivation of a surface of air quality values from monitoring data alone requires the conversion of point-based data from a limited number of monitoring stations to a continuous surface using interpolation. Since interpolation techniques involve the estimation of data at un-sampled points based on calculated relationships between data measured at a number of known sample points, they are subject to some uncertainty, both in terms of the values estimated and their spatial distribution. These uncertainties, which are incorporated into many empirical and semi-empirical mapping methodologies, could be recognised in any further usage of the data and also in the assessment of the extent of an exceedence of an air quality standard and the degree of exposure this may represent. There is a wide range of available interpolation techniques and the differences in the characteristics of these result in variations in the output surfaces estimated from the same set of input points. The work presented in this paper provides an examination of uncertainties through the application of a number of interpolation techniques available in standard GIS packages to a case study nitrogen dioxide data set for the Greater Manchester conurbation in northern England. The implications of the use of different techniques are discussed through application to hourly concentrations during an air quality episode and annual average concentrations in 2001. Patterns of concentrations demonstrate considerable differences in the estimated spatial pattern of maxima as the combined effects of chemical processes, topography and meteorology. In the case of air quality episodes, the considerable spatial variability of concentrations results in large uncertainties in the surfaces produced but these uncertainties vary widely from area to area. In view of the uncertainties with classical techniques research is ongoing to develop alternative methods which should in time help improve the suite of tools available to air quality managers.

  5. Remote sensing investigations of wetland biomass and productivity for global biosystems research

    NASA Technical Reports Server (NTRS)

    Harkisky, M.; Klemas, V.

    1983-01-01

    Monitoring biomass of wetlands ecosystems can provide information on net primary production and on the chemical and physical status of wetland soils relative to anaerobic microbial transformation of key elements. Multispectral remote sensing techniques successfully estimated macrophytic biomass in wetlands systems. Regression models developed from ground spectral data for predicting Spartina alterniflora biomass over an entire growing season include seasonal variations in biomass density and illumination intensity. An independent set of biomass and spectral data were collected and the standing crop biomass and net primary productivity were estimated. The improved spatial, radiometric and spectral resolution of th LANDSAT-4 Thematic Mapper over the LANDSAT MSS can greatly enhance multispectral techniques for estimating wetlands biomass over large areas. These techniques can provide the biomass data necessary for global ecology studies.

  6. Method to optimize patch size based on spatial frequency response in image rendering of the light field

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Yanan; Zhu, Zhenhao; Su, Jinhui

    2018-05-01

    A focused plenoptic camera can effectively transform angular and spatial information to yield a refocused rendered image with high resolution. However, choosing a proper patch size poses a significant problem for the image-rendering algorithm. By using a spatial frequency response measurement, a method to obtain a suitable patch size is presented. By evaluating the spatial frequency response curves, the optimized patch size can be obtained quickly and easily. Moreover, the range of depth over which images can be rendered without artifacts can be estimated. Experiments show that the results of the image rendered based on frequency response measurement are in accordance with the theoretical calculation, which indicates that this is an effective way to determine the patch size. This study may provide support to light-field image rendering.

  7. A high time and spatial resolution MRPC designed for muon tomography

    NASA Astrophysics Data System (ADS)

    Shi, L.; Wang, Y.; Huang, X.; Wang, X.; Zhu, W.; Li, Y.; Cheng, J.

    2014-12-01

    A prototype of cosmic muon scattering tomography system has been set up in Tsinghua University in Beijing. Multi-gap Resistive Plate Chamber (MRPC) is used in the system to get the muon tracks. Compared with other detectors, MRPC can not only provide the track but also the Time of Flight (ToF) between two detectors which can estimate the energy of particles. To get a more accurate track and higher efficiency of the tomography system, a new type of high time and two-dimensional spatial resolution MRPC has been developed. A series of experiments have been done to measure the efficiency, time resolution and spatial resolution. The results show that the efficiency can reach 95% and its time resolution is around 65 ps. The cluster size is around 4 and the spatial resolution can reach 200 μ m.

  8. Advancing the detection of steady-state visual evoked potentials in brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Abu-Alqumsan, Mohammad; Peer, Angelika

    2016-06-01

    Objective. Spatial filtering has proved to be a powerful pre-processing step in detection of steady-state visual evoked potentials and boosted typical detection rates both in offline analysis and online SSVEP-based brain-computer interface applications. State-of-the-art detection methods and the spatial filters used thereby share many common foundations as they all build upon the second order statistics of the acquired Electroencephalographic (EEG) data, that is, its spatial autocovariance and cross-covariance with what is assumed to be a pure SSVEP response. The present study aims at highlighting the similarities and differences between these methods. Approach. We consider the canonical correlation analysis (CCA) method as a basis for the theoretical and empirical (with real EEG data) analysis of the state-of-the-art detection methods and the spatial filters used thereby. We build upon the findings of this analysis and prior research and propose a new detection method (CVARS) that combines the power of the canonical variates and that of the autoregressive spectral analysis in estimating the signal and noise power levels. Main results. We found that the multivariate synchronization index method and the maximum contrast combination method are variations of the CCA method. All three methods were found to provide relatively unreliable detections in low signal-to-noise ratio (SNR) regimes. CVARS and the minimum energy combination methods were found to provide better estimates for different SNR levels. Significance. Our theoretical and empirical results demonstrate that the proposed CVARS method outperforms other state-of-the-art detection methods when used in an unsupervised fashion. Furthermore, when used in a supervised fashion, a linear classifier learned from a short training session is able to estimate the hidden user intention, including the idle state (when the user is not attending to any stimulus), rapidly, accurately and reliably.

  9. On-Orbit Lunar Modulation Transfer Function Measurements for the Moderate Resolution Imaging Spectroradiometer

    NASA Technical Reports Server (NTRS)

    Choi, Taeyong; Xiong, Xiaoxiong; Wang, Zhipeng

    2013-01-01

    Spatial quality of an imaging sensor can be estimated by evaluating its modulation transfer function (MTF) from many different sources such as a sharp edge, a pulse target, or bar patterns with different spatial frequencies. These well-defined targets are frequently used for prelaunch laboratory tests, providing very reliable and accurate MTF measurements. A laboratory-quality edge input source was included in the spatial-mode operation of the Spectroradiometric Calibration Assembly (SRCA), which is one of the onboard calibrators of the Moderate Resolution Imaging Spectroradiometer (MODIS). Since not all imaging satellites have such an instrument, SRCA MTF estimations can be used as a reference for an on-orbit lunar MTF algorithm and results. In this paper, the prelaunch spatial quality characterization process from the Integrated Alignment Collimator and SRCA is briefly discussed. Based on prelaunch MTF calibration using the SRCA, a lunar MTF algorithm is developed and applied to the lifetime on-orbit Terra and Aqua MODIS lunar collections. In each lunar collection, multiple scan-directionMoon-to-background transition profiles are aligned by the subpixel edge locations from a parametric Fermi function fit. Corresponding accumulated edge profiles are filtered and interpolated to obtain the edge spread function (ESF). The MTF is calculated by applying a Fourier transformation on the line spread function through a simple differentiation of the ESF. The lifetime lunar MTF results are analyzed and filtered by a relationship with the Sun-Earth-MODIS angle. Finally, the filtered lunarMTF values are compared to the SRCA MTF results. This comparison provides the level of accuracy for on-orbit MTF estimations validated through prelaunch SRCA measurements. The lunar MTF values had larger uncertainty than the SRCA MTF results; however, the ratio mean of lunarMTF fit and SRCA MTF values is within 2% in the 250- and 500-m bands. Based on the MTF measurement uncertainty range, the suggested lunar MTF algorithm can be applied to any on-orbit imaging sensor with lunar calibration capability.

  10. Improved algorithm for estimating optical properties of food and biological materials using spatially-resolved diffuse reflectance

    USDA-ARS?s Scientific Manuscript database

    In this research, the inverse algorithm for estimating optical properties of food and biological materials from spatially-resolved diffuse reflectance was optimized in terms of data smoothing, normalization and spatial region of reflectance profile for curve fitting. Monte Carlo simulation was used ...

  11. Inference methods for spatial variation in species richness and community composition when not all species are detected

    USGS Publications Warehouse

    Nichols, J.D.; Boulinier, T.; Hines, J.E.; Pollock, K.H.; Sauer, J.R.

    1998-01-01

    Inferences about spatial variation in species richness and community composition are important both to ecological hypotheses about the structure and function of communities and to community-level conservation and management. Few sampling programs for animal communities provide censuses, and usually some species present. We present estimators useful for drawing inferences about comparative species richness and composition between different sampling locations when not all species are detected in sampling efforts. Based on capture-recapture models using the robust design, our methods estimate relative species richness, proportion of species in one location that are also found in another, and number of species found in one location but not in another. The methods use data on the presence or absence of each species at different sampling occasions (or locations) to estimate the number of species not detected at any occasions (or locations). This approach permits estimation of the number of species in the sampled community and in subsets of the community useful for estimating the fraction of species shared by two communities. We provide an illustration of our estimation methods by comparing bird species richness and composition in two locations sampled by routes of the North American Breeding Bird Survey. In this example analysis, the two locations (an associated bird communities) represented different levels of urbanization. Estimates of relative richness, proportion of shared species, and number of species present on one route but not the other indicated that the route with the smaller fraction of urban area had greater richness and a larer number of species that were not found on the more urban route than vice versa. We developed a software package, COMDYN, for computing estimates based on the methods. Because these estimation methods explicitly deal with sampling in which not all species are detected, we recommend their use for addressing questions about species richness and community composition.

  12. Quantification of histone modification ChIP-seq enrichment for data mining and machine learning applications

    PubMed Central

    2011-01-01

    Background The advent of ChIP-seq technology has made the investigation of epigenetic regulatory networks a computationally tractable problem. Several groups have applied statistical computing methods to ChIP-seq datasets to gain insight into the epigenetic regulation of transcription. However, methods for estimating enrichment levels in ChIP-seq data for these computational studies are understudied and variable. Since the conclusions drawn from these data mining and machine learning applications strongly depend on the enrichment level inputs, a comparison of estimation methods with respect to the performance of statistical models should be made. Results Various methods were used to estimate the gene-wise ChIP-seq enrichment levels for 20 histone methylations and the histone variant H2A.Z. The Multivariate Adaptive Regression Splines (MARS) algorithm was applied for each estimation method using the estimation of enrichment levels as predictors and gene expression levels as responses. The methods used to estimate enrichment levels included tag counting and model-based methods that were applied to whole genes and specific gene regions. These methods were also applied to various sizes of estimation windows. The MARS model performance was assessed with the Generalized Cross-Validation Score (GCV). We determined that model-based methods of enrichment estimation that spatially weight enrichment based on average patterns provided an improvement over tag counting methods. Also, methods that included information across the entire gene body provided improvement over methods that focus on a specific sub-region of the gene (e.g., the 5' or 3' region). Conclusion The performance of data mining and machine learning methods when applied to histone modification ChIP-seq data can be improved by using data across the entire gene body, and incorporating the spatial distribution of enrichment. Refinement of enrichment estimation ultimately improved accuracy of model predictions. PMID:21834981

  13. Solutions for the diurnally forced advection-diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds from temperature time series

    NASA Astrophysics Data System (ADS)

    Luce, C.; Tonina, D.; Gariglio, F. P.; Applebee, R.

    2012-12-01

    Differences in the diurnal variations of temperature at different depths in streambed sediments are commonly used for estimating vertical fluxes of water in the streambed. We applied spatial and temporal rescaling of the advection-diffusion equation to derive two new relationships that greatly extend the kinds of information that can be derived from streambed temperature measurements. The first equation provides a direct estimate of the Peclet number from the amplitude decay and phase delay information. The analytical equation is explicit (e.g. no numerical root-finding is necessary), and invertable. The thermal front velocity can be estimated from the Peclet number when the thermal diffusivity is known. The second equation allows for an independent estimate of the thermal diffusivity directly from the amplitude decay and phase delay information. Several improvements are available with the new information. The first equation uses a ratio of the amplitude decay and phase delay information; thus Peclet number calculations are independent of depth. The explicit form also makes it somewhat faster and easier to calculate estimates from a large number of sensors or multiple positions along one sensor. Where current practice requires a priori estimation of streambed thermal diffusivity, the new approach allows an independent calculation, improving precision of estimates. Furthermore, when many measurements are made over space and time, expectations of the spatial correlation and temporal invariance of thermal diffusivity are valuable for validation of measurements. Finally, the closed-form explicit solution allows for direct calculation of propagation of uncertainties in error measurements and parameter estimates, providing insight about error expectations for sensors placed at different depths in different environments as a function of surface temperature variation amplitudes. The improvements are expected to increase the utility of temperature measurement methods for studying groundwater-surface water interactions across space and time scales. We discuss the theoretical implications of the new solutions supported by examples with data for illustration and validation.

  14. Near Real-time GNSS-based Ionospheric Model using Expanded Kriging in the East Asia Region

    NASA Astrophysics Data System (ADS)

    Choi, P. H.; Bang, E.; Lee, J.

    2016-12-01

    Many applications which utilize radio waves (e.g. navigation, communications, and radio sciences) are influenced by the ionosphere. The technology to provide global ionospheric maps (GIM) which show ionospheric Total Electron Content (TEC) has been progressed by processing GNSS data. However, the GIMs have limited spatial resolution (e.g. 2.5° in latitude and 5° in longitude), because they are generated using globally-distributed and thus relatively sparse GNSS reference station networks. This study presents a near real-time and high spatial resolution TEC model over East Asia by using ionospheric observables from both International GNSS Service (IGS) and local GNSS networks and the expanded kriging method. New signals from multi-constellation (e.g,, GPS L5, Galileo E5) were also used to generate high-precision TEC estimates. The newly proposed estimation method is based on the universal kriging interpolation technique, but integrates TEC data from previous epochs to those from the current epoch to improve the TEC estimation performance by increasing ionospheric observability. To propagate previous measurements to the current epoch, we implemented a Kalman filter whose dynamic model was derived by using the first-order Gauss-Markov process which characterizes temporal ionospheric changes under the nominal ionospheric conditions. Along with the TEC estimates at grids, the method generates the confidence bounds on the estimates using resulting estimation covariance. We also suggest to classify the confidence bounds into several categories to allow users to recognize the quality levels of TEC estimates according to the requirements for user's applications. This paper examines the performance of the proposed method by obtaining estimation results for both nominal and disturbed ionospheric conditions, and compares these results to those provided by GIM of the NASA Jet propulsion Laboratory. In addition, the estimation results based on the expanded kriging method are compared to the results from the universal kriging method for both nominal and disturbed ionospheric conditions.

  15. Soil respiration across a permafrost transition zone: spatial structure and environmental correlates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stegen, James C.; Anderson, Carolyn G.; Bond-Lamberty, Ben

    Soil respiration is a key ecosystem function whereby shifts in respiration rates can shift systems from carbon sinks to sources. Soil respiration in permafrost-associated systems is particularly important given climate change driven permafrost thaw that leads to significant uncertainty in resulting ecosystem carbon dynamics. Here we characterize the spatial structure and environmental drivers of soil respiration across a permafrost transition zone. We find that soil respiration is characterized by a non-linear threshold that occurs at active-layer depths greater than 140 cm. We also find that within each season, tree basal area is a dominant driver of soil respiration regardless of spatial scale, but onlymore » in spatial domains with significant spatial variability in basal area. Our analyses further show that spatial variation (the coefficient of variation) and mean-variance power-law scaling of soil respiration in our boreal system are consistent with previous work in other ecosystems (e.g., tropical forests) and in population ecology, respectively. Comparing our results to those in other ecosystems suggests that temporally stable features such as tree-stand structure are often primary drivers of spatial variation in soil respiration. If so, this provides an opportunity to better estimate the magnitude and spatial variation in soil respiration through remote sensing. Finally, combining such an approach with broader knowledge of thresholding behavior – here related to active layer depth – would provide empirical constraints on models aimed at predicting ecosystem responses to ongoing permafrost thaw.« less

  16. Soil respiration across a permafrost transition zone: spatial structure and environmental correlates

    DOE PAGES

    Stegen, James C.; Anderson, Carolyn G.; Bond-Lamberty, Ben; ...

    2017-09-28

    Soil respiration is a key ecosystem function whereby shifts in respiration rates can shift systems from carbon sinks to sources. Soil respiration in permafrost-associated systems is particularly important given climate change driven permafrost thaw that leads to significant uncertainty in resulting ecosystem carbon dynamics. Here we characterize the spatial structure and environmental drivers of soil respiration across a permafrost transition zone. We find that soil respiration is characterized by a non-linear threshold that occurs at active-layer depths greater than 140 cm. We also find that within each season, tree basal area is a dominant driver of soil respiration regardless of spatial scale, but onlymore » in spatial domains with significant spatial variability in basal area. Our analyses further show that spatial variation (the coefficient of variation) and mean-variance power-law scaling of soil respiration in our boreal system are consistent with previous work in other ecosystems (e.g., tropical forests) and in population ecology, respectively. Comparing our results to those in other ecosystems suggests that temporally stable features such as tree-stand structure are often primary drivers of spatial variation in soil respiration. If so, this provides an opportunity to better estimate the magnitude and spatial variation in soil respiration through remote sensing. Finally, combining such an approach with broader knowledge of thresholding behavior – here related to active layer depth – would provide empirical constraints on models aimed at predicting ecosystem responses to ongoing permafrost thaw.« less

  17. Soil respiration across a permafrost transition zone: spatial structure and environmental correlates

    NASA Astrophysics Data System (ADS)

    Stegen, James C.; Anderson, Carolyn G.; Bond-Lamberty, Ben; Crump, Alex R.; Chen, Xingyuan; Hess, Nancy

    2017-09-01

    Soil respiration is a key ecosystem function whereby shifts in respiration rates can shift systems from carbon sinks to sources. Soil respiration in permafrost-associated systems is particularly important given climate change driven permafrost thaw that leads to significant uncertainty in resulting ecosystem carbon dynamics. Here we characterize the spatial structure and environmental drivers of soil respiration across a permafrost transition zone. We find that soil respiration is characterized by a non-linear threshold that occurs at active-layer depths greater than 140 cm. We also find that within each season, tree basal area is a dominant driver of soil respiration regardless of spatial scale, but only in spatial domains with significant spatial variability in basal area. Our analyses further show that spatial variation (the coefficient of variation) and mean-variance power-law scaling of soil respiration in our boreal system are consistent with previous work in other ecosystems (e.g., tropical forests) and in population ecology, respectively. Comparing our results to those in other ecosystems suggests that temporally stable features such as tree-stand structure are often primary drivers of spatial variation in soil respiration. If so, this provides an opportunity to better estimate the magnitude and spatial variation in soil respiration through remote sensing. Combining such an approach with broader knowledge of thresholding behavior - here related to active layer depth - would provide empirical constraints on models aimed at predicting ecosystem responses to ongoing permafrost thaw.

  18. Peak-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.

  19. Spatial-altitudinal and temporal variation of Degree Day Factors (DDFs) in the Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Attaullah, Haleema; Masud, Tabinda; Khan, Mujahid

    2017-04-01

    Melt contribution from snow and ice in the Hindukush-Karakoram-Himalayan (HKH) region could account for more than 80% of annual river flows in the Upper Indus Basin (UIB). Increase or decrease in precipitation, energy input and glacier reserves can significantly affect water resources of this region. Therefore improved hydrological modelling and accurate future water resources prediction are vital for food production and hydro-power generation for millions of people living downstream, and are intensively needed. In mountain regions Degree Day Factors (DDFs) significantly vary on spatial and altitudinal basis, and are primary inputs of temperature-based hydrological modelling. However previous studies have used different DDFs as calibration parameters without due attention to the physical meaning of the values employed, and these estimates possess significant variability and uncertainty. This study provides estimates of DDFs for various altitudinal zones in the UIB at sub-basin level. Snow, clean ice and ice with debris cover bear different melt rates (or DDFs), therefore areally-averaged DDFs based on snow, clean and debris-covered ice classes in various altitudinal zones have been estimated for all sub-basins of the UIB. Zonal estimates of DDFs in the current study are significantly different from earlier adopted DDFs, hence suggest a revisit of previous hydrological modelling studies. DDFs presented in current study have been validated by using Snowmelt Runoff Model (SRM) in various sub-basins with good Nash Sutcliffe coefficients (R2 > 0.85) and low volumetric errors (Dv<10%). DDFs and methods provided in the current study can be used in future improved hydrological modelling and to provide accurate predictions of future river flows changes. The methodology used for estimation of DDFs is robust, and can be adopted to produce such estimates in other regions of the, particularly in the nearby other HKH basins.

  20. Quantifying spatial and temporal patterns of flow intermittency using spatially contiguous runoff data

    NASA Astrophysics Data System (ADS)

    Yu (于松延), Songyan; Bond, Nick R.; Bunn, Stuart E.; Xu, Zongxue; Kennard, Mark J.

    2018-04-01

    River channel drying caused by intermittent stream flow is a widely-recognized factor shaping stream ecosystems. There is a strong need to quantify the distribution of intermittent streams across catchments to inform management. However, observational gauge networks provide only point estimates of streamflow variation. Increasingly, this limitation is being overcome through the use of spatially contiguous estimates of the terrestrial water-balance, which can also assist in estimating runoff and streamflow at large-spatial scales. Here we proposed an approach to quantifying spatial and temporal variation in monthly flow intermittency throughout river networks in eastern Australia. We aggregated gridded (5 × 5 km) monthly water-balance data with a hierarchically nested catchment dataset to simulate catchment runoff accumulation throughout river networks from 1900 to 2016. We also predicted zero flow duration for the entire river network by developing a robust predictive model relating measured zero flow duration (% months) to environmental predictor variables (based on 43 stream gauges). We then combined these datasets by using the predicted zero flow duration from the regression model to determine appropriate 'zero' flow thresholds for the modelled discharge data, which varied spatially across the catchments examined. Finally, based on modelled discharge data and identified actual zero flow thresholds, we derived summary metrics describing flow intermittency across the catchment (mean flow duration and coefficient-of-variation in flow permanence from 1900 to 2016). We also classified the relative degree of flow intermittency annually to characterise temporal variation in flow intermittency. Results showed that the degree of flow intermittency varied substantially across streams in eastern Australia, ranging from perennial streams flowing permanently (11-12 months) to strongly intermittent streams flowing 4 months or less of year. Results also showed that the temporal extent of flow intermittency varied dramatically inter-annually from 1900 to 2016, with the proportion of intermittent (weakly and strongly intermittent) streams ranging in length from 3% to nearly 100% of the river network, but there was no evidence of an increasing trend towards flow intermittency over this period. Our approach to generating spatially explicit and catchment-wide estimates of streamflow intermittency can facilitate improved ecological understanding and management of intermittent streams in Australia and around the world.

  1. Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks

    NASA Astrophysics Data System (ADS)

    Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.

    2015-03-01

    The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which is to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.

  2. Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks

    NASA Astrophysics Data System (ADS)

    Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.

    2014-11-01

    The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which are to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.

  3. Spatially continuous interpolation of water stage and water depths using the Everglades depth estimation network (EDEN)

    USGS Publications Warehouse

    Pearlstine, Leonard; Higer, Aaron; Palaseanu, Monica; Fujisaki, Ikuko; Mazzotti, Frank

    2007-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level monitoring, ground-elevation modeling, and water-surface modeling that provides scientists and managers with current (2000-present), online water-stage and water-depth information for the entire freshwater portion of the Greater Everglades. Continuous daily spatial interpolations of the EDEN network stage data are presented on a 400-square-meter grid spacing. EDEN offers a consistent and documented dataset that can be used by scientists and managers to (1) guide large-scale field operations, (2) integrate hydrologic and ecological responses, and (3) support biological and ecological assessments that measure ecosystem responses to the implementation of the Comprehensive Everglades Restoration Plan (CERP) The target users are biologists and ecologists examining trophic level responses to hydrodynamic changes in the Everglades.

  4. Using Remotely Sensed Information for Near Real-Time Landslide Hazard Assessment

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Adler, Robert; Peters-Lidard, Christa

    2013-01-01

    The increasing availability of remotely sensed precipitation and surface products provides a unique opportunity to explore how landslide susceptibility and hazard assessment may be approached at larger spatial scales with higher resolution remote sensing products. A prototype global landslide hazard assessment framework has been developed to evaluate how landslide susceptibility and satellite-derived precipitation estimates can be used to identify potential landslide conditions in near-real time. Preliminary analysis of this algorithm suggests that forecasting errors are geographically variable due to the resolution and accuracy of the current susceptibility map and the application of satellite-based rainfall estimates. This research is currently working to improve the algorithm through considering higher spatial and temporal resolution landslide susceptibility information and testing different rainfall triggering thresholds, antecedent rainfall scenarios, and various surface products at regional and global scales.

  5. Annual Fossil-Fuel CO2 Emissions: Uncertainty of Emissions Gridded by On Degree Latitude by One Degree Longitude (1950-2013) (V. 2016)

    DOE Data Explorer

    Andres, R. J. [CDIAC; Boden, T. A. [CDIAC

    2016-01-01

    The annual, gridded fossil-fuel CO2 emissions uncertainty estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016). Andres et al. (2016) describes the basic methodology in estimating the uncertainty in the (gridded fossil fuel data product ). This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty.

  6. Monthly Fossil-Fuel CO2 Emissions: Uncertainty of Emissions Gridded by On Degree Latitude by One Degree Longitude (Uncertainties, V.2016)

    DOE Data Explorer

    Andres, J.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-01

    The monthly, gridded fossil-fuel CO2 emissions uncertainty estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016). Andres et al. (2016) describes the basic methodology in estimating the uncertainty in the (gridded fossil fuel data product ). This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty.

  7. The Satellite View of Extra-Tropical Stratosphere-Troposphere Exchange and the UT/LS

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2004-01-01

    This talk will review satellite studies which have helped define the UT/LS and stratosphere-troposphere exchange. Satellites have provided a global perspective but have had limited temporal and spatial measurements for stratosphere-troposphere exchange (STE) studies. Nonetheless, long lived tracer measurements from satellites can be used as proxies for age-of-air can thus provide estimates of mixing and transport processes in the UT/LS. These measurements can be compared to model estimates of the mean age-of-air and trace gas fluxes providing an important model diagnostic. With the launch of EOS Aura, the potential for satellite trace gas measurements of the lower-most stratosphere and STE is significantly improved, and Aura s mission will be briefly described.

  8. Estimation of Orbital Neutron Detector Spatial Resolution by Systematic Shifting of Differential Topographic Masks

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Livengood, T.; Starr, R. D.; Evans, L. G.; Mazarico, E.; Smith, D. E.

    2012-01-01

    We present a method and preliminary results related to determining the spatial resolution of orbital neutron detectors using epithermal maps and differential topographic masks. Our technique is similar to coded aperture imaging methods for optimizing photonic signals in telescopes [I]. In that approach photon masks with known spatial patterns in a telescope aperature are used to systematically restrict incoming photons which minimizes interference and enhances photon signal to noise. Three orbital neutron detector systems with different stated spatial resolutions are evaluated. The differing spatial resolutions arise due different orbital altitudes and the use of neutron collimation techniques. 1) The uncollimated Lunar Prospector Neutron Spectrometer (LPNS) system has spatial resolution of 45km FWHM from approx. 30km altitude mission phase [2]. The Lunar Rennaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) with two detectors at 50km altitude evaluated here: 2) the collimated 10km FWHM spatial resolution detector CSETN and 3) LEND's collimated Sensor for Epithermal Neutrons (SETN). Thus providing two orbital altitudes to study factors of: uncollimated vs collimated and two average altitudes for their effect on fields-of-view.

  9. Spatial Pattern of Standing Timber Value across the Brazilian Amazon

    PubMed Central

    Ahmed, Sadia E.; Ewers, Robert M.

    2012-01-01

    The Amazon is a globally important system, providing a host of ecosystem services from climate regulation to food sources. It is also home to a quarter of all global diversity. Large swathes of forest are removed each year, and many models have attempted to predict the spatial patterns of this forest loss. The spatial patterns of deforestation are determined largely by the patterns of roads that open access to frontier areas and expansion of the road network in the Amazon is largely determined by profit seeking logging activities. Here we present predictions for the spatial distribution of standing value of timber across the Amazon. We show that the patterns of timber value reflect large-scale ecological gradients, determining the spatial distribution of functional traits of trees which are, in turn, correlated with timber values. We expect that understanding the spatial patterns of timber value across the Amazon will aid predictions of logging movements and thus predictions of potential future road developments. These predictions in turn will be of great use in estimating the spatial patterns of deforestation in this globally important biome. PMID:22590520

  10. Observer variability in estimating numbers: An experiment

    USGS Publications Warehouse

    Erwin, R.M.

    1982-01-01

    Census estimates of bird populations provide an essential framework for a host of research and management questions. However, with some exceptions, the reliability of numerical estimates and the factors influencing them have received insufficient attention. Independent of the problems associated with habitat type, weather conditions, cryptic coloration, ete., estimates may vary widely due only to intrinsic differences in observers? abilities to estimate numbers. Lessons learned in the field of perceptual psychology may be usefully applied to 'real world' problems in field ornithology. Based largely on dot discrimination tests in the laboratory, it was found that numerical abundance, density of objects, spatial configuration, color, background, and other variables influence individual accuracy in estimating numbers. The primary purpose of the present experiment was to assess the effects of observer, prior experience, and numerical range on accuracy in estimating numbers of waterfowl from black-and-white photographs. By using photographs of animals rather than black dots, I felt the results could be applied more meaningfully to field situations. Further, reinforcement was provided throughout some experiments to examine the influence of training on accuracy.

  11. Ocean heat content estimation from in situ observations at the National Centers for Environmental Information: Improvements and Uncertainties

    NASA Astrophysics Data System (ADS)

    Boyer, T.; Locarnini, R. A.; Mishonov, A. V.; Reagan, J. R.; Seidov, D.; Zweng, M.; Levitus, S.

    2017-12-01

    Ocean heat uptake is the major factor in sequestering the Earth's Energy Imbalance (EEI). Since 2000, the National Centers for Environmental Information (NCEI) have been estimating historical ocean heat content (OHC) changes back to the 1950s, as well as monitoring recent OHC. Over these years, through worldwide community efforts, methods of calculating OHC have substantially improved. Similarly, estimation of the uncertainty of ocean heat content calculations provide new insight into how well EEI estimates can be constrained using in situ measurements and models. The changing ocean observing system, especially with the near-global year-round coverage afforded by Argo, has also allowed more confidence in regional and global OHC estimates and provided a benchmark for better understanding of historical OHC changes. NCEI is incorporating knowledge gained through these global efforts into the basic methods, instrument bias corrections, uncertainty measurements, and temporal and spatial resolution capabilities of historic OHC change estimation and recent monitoring. The nature of these improvements and their consequences for estimation of OHC in relation to the EEI will be discussed.

  12. A Hybrid Approach for Estimating Total Deposition in the ...

    EPA Pesticide Factsheets

    Atmospheric deposition of nitrogen and sulfur causes many deleterious effects on ecosystems including acidification and excess eutrophication. Assessments to support development of strategies to mitigate these effects require spatially and temporally continuous values of nitrogen and sulfur deposition. In the U.S., national monitoring networks exist that provide values of wet and dry deposition at discrete locations. While wet deposition can be interpolated between the monitoring locations, dry deposition cannot. Additionally, monitoring networks do not measure the complete suite of chemicals that contribute to total sulfur and nitrogen deposition. Regional air quality models provide spatially continuous values of deposition of monitored species as well as important unmeasured species. However, air quality modeling values are not generally available for an extended continuous time period. Air quality modeling results may also be biased for some chemical species. We developed a novel approach for estimating dry deposition using data from monitoring networks such as the Clean Air Status and Trends Network (CASTNET), the National Atmospheric Deposition Program (NADP) Ammonia Monitoring Network (AMoN), and the Southeastern Aerosol Research and Characterization (SEARCH) network and modeled data from the Community Multiscale Air Quality (CMAQ) model. These dry deposition values estimates are then combined with wet deposition values from the NADP National Trends Networ

  13. Insights for empirically modeling evapotranspiration influenced by riparian and upland vegetation in semiarid regions

    USGS Publications Warehouse

    Bunting, Daniel P.; Kurc, Shirley A.; Glenn, Edward P.; Nagler, Pamela L.; Scott, Russell L.

    2014-01-01

    Water resource managers aim to ensure long-term water supplies for increasing human populations. Evapotranspiration (ET) is a key component of the water balance and accurate estimates are important to quantify safe allocations to humans while supporting environmental needs. Scaling up ET measurements from small spatial scales has been problematic due to spatiotemporal variability. Remote sensing products provide spatially distributed data that account for seasonal climate and vegetation variability. We used MODIS products [i.e., Enhanced Vegetation Index (EVI) and nighttime land surface temperatures (LSTn)] to create empirical ET models calibrated using measured ET from three riparian-influenced and two upland, water-limited flux tower sites. Results showed that combining all sites introduced systematic bias, so we developed separate models to estimate riparian and upland ET. While EVI and LSTn were the main drivers for ET in riparian sites, precipitation replaced LSTn as the secondary driver of ET in upland sites. Riparian ET was successfully modeled using an inverse exponential approach (r2 = 0.92) while upland ET was adequately modeled using a multiple linear regression approach (r2 = 0.77). These models can be used in combination to estimate ET at basin scales provided each region is classified and precipitation data is available.

  14. Predicting the geographic distribution of a species from presence-only data subject to detection errors

    USGS Publications Warehouse

    Dorazio, Robert M.

    2012-01-01

    Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point-process models and binary-regression models for case-augmented surveys provide consistent estimators of a species’ geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point-process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence-only sample sizes. Analyses of presence-only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site-occupancy analyses of detections and nondetections of these species.

  15. A Novel Hybrid Approach for Estimating Total Deposition in ...

    EPA Pesticide Factsheets

    Atmospheric deposition of nitrogen and sulfur causes many deleterious effects on ecosystems including acidification and excess eutrophication. Assessments to support development of strategies to mitigate these effects require spatially and temporally continuous values of nitrogen and sulfur deposition. In the U.S., national monitoring networks exist that provide values of wet and dry deposition at discrete locations. While wet deposition can be interpolated between the monitoring locations, dry deposition cannot. Additionally, monitoring networks do not measure the complete suite of chemicals that contribute to total sulfur and nitrogen deposition. Regional air quality models provide spatially continuous values of deposition of monitored species as well as important unmeasured species. However, air quality modeling values are not generally available for an extended continuous time period. Air quality modeling results may also be biased for some chemical species. We developed a novel approach for estimating dry deposition using data from monitoring networks such as the Clean Air Status and Trends Network (CASTNET), the National Atmospheric Deposition Program (NADP) Ammonia Monitoring Network (AMoN), and the Southeastern Aerosol Research and Characterization (SEARCH) network and modeled data from the Community Multiscale Air Quality (CMAQ) model. These dry deposition values estimates are then combined with wet deposition values from the NADP National Trends Networ

  16. Estimating the prevalence of 26 health-related indicators at neighbourhood level in the Netherlands using structured additive regression.

    PubMed

    van de Kassteele, Jan; Zwakhals, Laurens; Breugelmans, Oscar; Ameling, Caroline; van den Brink, Carolien

    2017-07-01

    Local policy makers increasingly need information on health-related indicators at smaller geographic levels like districts or neighbourhoods. Although more large data sources have become available, direct estimates of the prevalence of a health-related indicator cannot be produced for neighbourhoods for which only small samples or no samples are available. Small area estimation provides a solution, but unit-level models for binary-valued outcomes that can handle both non-linear effects of the predictors and spatially correlated random effects in a unified framework are rarely encountered. We used data on 26 binary-valued health-related indicators collected on 387,195 persons in the Netherlands. We associated the health-related indicators at the individual level with a set of 12 predictors obtained from national registry data. We formulated a structured additive regression model for small area estimation. The model captured potential non-linear relations between the predictors and the outcome through additive terms in a functional form using penalized splines and included a term that accounted for spatially correlated heterogeneity between neighbourhoods. The registry data were used to predict individual outcomes which in turn are aggregated into higher geographical levels, i.e. neighbourhoods. We validated our method by comparing the estimated prevalences with observed prevalences at the individual level and by comparing the estimated prevalences with direct estimates obtained by weighting methods at municipality level. We estimated the prevalence of the 26 health-related indicators for 415 municipalities, 2599 districts and 11,432 neighbourhoods in the Netherlands. We illustrate our method on overweight data and show that there are distinct geographic patterns in the overweight prevalence. Calibration plots show that the estimated prevalences agree very well with observed prevalences at the individual level. The estimated prevalences agree reasonably well with the direct estimates at the municipal level. Structured additive regression is a useful tool to provide small area estimates in a unified framework. We are able to produce valid nationwide small area estimates of 26 health-related indicators at neighbourhood level in the Netherlands. The results can be used for local policy makers to make appropriate health policy decisions.

  17. A spatial panel ordered-response model with application to the analysis of urban land-use development intensity patterns

    NASA Astrophysics Data System (ADS)

    Ferdous, Nazneen; Bhat, Chandra R.

    2013-01-01

    This paper proposes and estimates a spatial panel ordered-response probit model with temporal autoregressive error terms to analyze changes in urban land development intensity levels over time. Such a model structure maintains a close linkage between the land owner's decision (unobserved to the analyst) and the land development intensity level (observed by the analyst) and accommodates spatial interactions between land owners that lead to spatial spillover effects. In addition, the model structure incorporates spatial heterogeneity as well as spatial heteroscedasticity. The resulting model is estimated using a composite marginal likelihood (CML) approach that does not require any simulation machinery and that can be applied to data sets of any size. A simulation exercise indicates that the CML approach recovers the model parameters very well, even in the presence of high spatial and temporal dependence. In addition, the simulation results demonstrate that ignoring spatial dependency and spatial heterogeneity when both are actually present will lead to bias in parameter estimation. A demonstration exercise applies the proposed model to examine urban land development intensity levels using parcel-level data from Austin, Texas.

  18. Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Tian, Siyuan; Tregoning, Paul; Renzullo, Luigi J.; van Dijk, Albert I. J. M.; Walker, Jeffrey P.; Pauwels, Valentijn R. N.; Allgeyer, Sébastien

    2017-03-01

    The accuracy of global water balance estimates is limited by the lack of observations at large scale and the uncertainties of model simulations. Global retrievals of terrestrial water storage (TWS) change and soil moisture (SM) from satellites provide an opportunity to improve model estimates through data assimilation. However, combining these two data sets is challenging due to the disparity in temporal and spatial resolution at both vertical and horizontal scale. For the first time, TWS observations from the Gravity Recovery and Climate Experiment (GRACE) and near-surface SM observations from the Soil Moisture and Ocean Salinity (SMOS) were jointly assimilated into a water balance model using the Ensemble Kalman Smoother from January 2010 to December 2013 for the Australian continent. The performance of joint assimilation was assessed against open-loop model simulations and the assimilation of either GRACE TWS anomalies or SMOS SM alone. The SMOS-only assimilation improved SM estimates but reduced the accuracy of groundwater and TWS estimates. The GRACE-only assimilation improved groundwater estimates but did not always produce accurate estimates of SM. The joint assimilation typically led to more accurate water storage profile estimates with improved surface SM, root-zone SM, and groundwater estimates against in situ observations. The assimilation successfully downscaled GRACE-derived integrated water storage horizontally and vertically into individual water stores at the same spatial scale as the model and SMOS, and partitioned monthly averaged TWS into daily estimates. These results demonstrate that satellite TWS and SM measurements can be jointly assimilated to produce improved water balance component estimates.

  19. Estimates of reservoir methane emissions based on a spatially balanced probabilistic-survey

    EPA Science Inventory

    Global estimates of methane (CH4) emissions from reservoirs are poorly constrained, partly due to the challenges of accounting for intra-reservoir spatial variability. Reservoir-scale emission rates are often estimated by extrapolating from measurement made at a few locations; h...

  20. Localised estimates and spatial mapping of poverty incidence in the state of Bihar in India—An application of small area estimation techniques

    PubMed Central

    Aditya, Kaustav; Sud, U. C.

    2018-01-01

    Poverty affects many people, but the ramifications and impacts affect all aspects of society. Information about the incidence of poverty is therefore an important parameter of the population for policy analysis and decision making. In order to provide specific, targeted solutions when addressing poverty disadvantage small area statistics are needed. Surveys are typically designed and planned to produce reliable estimates of population characteristics of interest mainly at higher geographic area such as national and state level. Sample sizes are usually not large enough to provide reliable estimates for disaggregated analysis. In many instances estimates are required for areas of the population for which the survey providing the data was unplanned. Then, for areas with small sample sizes, direct survey estimation of population characteristics based only on the data available from the particular area tends to be unreliable. This paper describes an application of small area estimation (SAE) approach to improve the precision of estimates of poverty incidence at district level in the State of Bihar in India by linking data from the Household Consumer Expenditure Survey 2011–12 of NSSO and the Population Census 2011. The results show that the district level estimates generated by SAE method are more precise and representative. In contrast, the direct survey estimates based on survey data alone are less stable. PMID:29879202

Top