Probabilistic Graphical Model Representation in Phylogenetics
Höhna, Sebastian; Heath, Tracy A.; Boussau, Bastien; Landis, Michael J.; Ronquist, Fredrik; Huelsenbeck, John P.
2014-01-01
Recent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing the need for new approaches to statistical model representation and software development. Clear communication and representation of the chosen model is crucial for: (i) reproducibility of an analysis, (ii) model development, and (iii) software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for beginners and nonspecialists to grasp complex phylogenetic models, including their assumptions and parameter/variable dependencies. Graphical modeling is a unifying framework that has gained in popularity in the statistical literature in recent years. The core idea is to break complex models into conditionally independent distributions. The strength lies in the comprehensibility, flexibility, and adaptability of this formalism, and the large body of computational work based on it. Graphical models are well-suited to teach statistical models, to facilitate communication among phylogeneticists and in the development of generic software for simulation and statistical inference. Here, we provide an introduction to graphical models for phylogeneticists and extend the standard graphical model representation to the realm of phylogenetics. We introduce a new graphical model component, tree plates, to capture the changing structure of the subgraph corresponding to a phylogenetic tree. We describe a range of phylogenetic models using the graphical model framework and introduce modules to simplify the representation of standard components in large and complex models. Phylogenetic model graphs can be readily used in simulation, maximum likelihood inference, and Bayesian inference using, for example, Metropolis–Hastings or Gibbs sampling of the posterior distribution. [Computation; graphical models; inference; modularization; statistical phylogenetics; tree plate.] PMID:24951559
Bullinaria, John A; Levy, Joseph P
2012-09-01
In a previous article, we presented a systematic computational study of the extraction of semantic representations from the word-word co-occurrence statistics of large text corpora. The conclusion was that semantic vectors of pointwise mutual information values from very small co-occurrence windows, together with a cosine distance measure, consistently resulted in the best representations across a range of psychologically relevant semantic tasks. This article extends that study by investigating the use of three further factors--namely, the application of stop-lists, word stemming, and dimensionality reduction using singular value decomposition (SVD)--that have been used to provide improved performance elsewhere. It also introduces an additional semantic task and explores the advantages of using a much larger corpus. This leads to the discovery and analysis of improved SVD-based methods for generating semantic representations (that provide new state-of-the-art performance on a standard TOEFL task) and the identification and discussion of problems and misleading results that can arise without a full systematic study.
Statistical representation of multiphase flow
NASA Astrophysics Data System (ADS)
Subramaniam
2000-11-01
The relationship between two common statistical representations of multiphase flow, namely, the single--point Eulerian statistical representation of two--phase flow (D. A. Drew, Ann. Rev. Fluid Mech. (15), 1983), and the Lagrangian statistical representation of a spray using the dropet distribution function (F. A. Williams, Phys. Fluids 1 (6), 1958) is established for spherical dispersed--phase elements. This relationship is based on recent work which relates the droplet distribution function to single--droplet pdfs starting from a Liouville description of a spray (Subramaniam, Phys. Fluids 10 (12), 2000). The Eulerian representation, which is based on a random--field model of the flow, is shown to contain different statistical information from the Lagrangian representation, which is based on a point--process model. The two descriptions are shown to be simply related for spherical, monodisperse elements in statistically homogeneous two--phase flow, whereas such a simple relationship is precluded by the inclusion of polydispersity and statistical inhomogeneity. The common origin of these two representations is traced to a more fundamental statistical representation of a multiphase flow, whose concepts derive from a theory for dense sprays recently proposed by Edwards (Atomization and Sprays 10 (3--5), 2000). The issue of what constitutes a minimally complete statistical representation of a multiphase flow is resolved.
Holliday, Jeffrey J; Turnbull, Rory; Eychenne, Julien
2017-10-01
This article presents K-SPAN (Korean Surface Phonetics and Neighborhoods), a database of surface phonetic forms and several measures of phonological neighborhood density for 63,836 Korean words. Currently publicly available Korean corpora are limited by the fact that they only provide orthographic representations in Hangeul, which is problematic since phonetic forms in Korean cannot be reliably predicted from orthographic forms. We describe the method used to derive the surface phonetic forms from a publicly available orthographic corpus of Korean, and report on several statistics calculated using this database; namely, segment unigram frequencies, which are compared to previously reported results, along with segment-based and syllable-based neighborhood density statistics for three types of representation: an "orthographic" form, which is a quasi-phonological representation, a "conservative" form, which maintains all known contrasts, and a "modern" form, which represents the pronunciation of contemporary Seoul Korean. These representations are rendered in an ASCII-encoded scheme, which allows users to query the corpus without having to read Korean orthography, and permits the calculation of a wide range of phonological measures.
Eu, Byung Chan
2008-09-07
In the traditional theories of irreversible thermodynamics and fluid mechanics, the specific volume and molar volume have been interchangeably used for pure fluids, but in this work we show that they should be distinguished from each other and given distinctive statistical mechanical representations. In this paper, we present a general formula for the statistical mechanical representation of molecular domain (volume or space) by using the Voronoi volume and its mean value that may be regarded as molar domain (volume) and also the statistical mechanical representation of volume flux. By using their statistical mechanical formulas, the evolution equations of volume transport are derived from the generalized Boltzmann equation of fluids. Approximate solutions of the evolution equations of volume transport provides kinetic theory formulas for the molecular domain, the constitutive equations for molar domain (volume) and volume flux, and the dissipation of energy associated with volume transport. Together with the constitutive equation for the mean velocity of the fluid obtained in a previous paper, the evolution equations for volume transport not only shed a fresh light on, and insight into, irreversible phenomena in fluids but also can be applied to study fluid flow problems in a manner hitherto unavailable in fluid dynamics and irreversible thermodynamics. Their roles in the generalized hydrodynamics will be considered in the sequel.
Software for the Integration of Multiomics Experiments in Bioconductor.
Ramos, Marcel; Schiffer, Lucas; Re, Angela; Azhar, Rimsha; Basunia, Azfar; Rodriguez, Carmen; Chan, Tiffany; Chapman, Phil; Davis, Sean R; Gomez-Cabrero, David; Culhane, Aedin C; Haibe-Kains, Benjamin; Hansen, Kasper D; Kodali, Hanish; Louis, Marie S; Mer, Arvind S; Riester, Markus; Morgan, Martin; Carey, Vince; Waldron, Levi
2017-11-01
Multiomics experiments are increasingly commonplace in biomedical research and add layers of complexity to experimental design, data integration, and analysis. R and Bioconductor provide a generic framework for statistical analysis and visualization, as well as specialized data classes for a variety of high-throughput data types, but methods are lacking for integrative analysis of multiomics experiments. The MultiAssayExperiment software package, implemented in R and leveraging Bioconductor software and design principles, provides for the coordinated representation of, storage of, and operation on multiple diverse genomics data. We provide the unrestricted multiple 'omics data for each cancer tissue in The Cancer Genome Atlas as ready-to-analyze MultiAssayExperiment objects and demonstrate in these and other datasets how the software simplifies data representation, statistical analysis, and visualization. The MultiAssayExperiment Bioconductor package reduces major obstacles to efficient, scalable, and reproducible statistical analysis of multiomics data and enhances data science applications of multiple omics datasets. Cancer Res; 77(21); e39-42. ©2017 AACR . ©2017 American Association for Cancer Research.
Summary statistics in auditory perception.
McDermott, Josh H; Schemitsch, Michael; Simoncelli, Eero P
2013-04-01
Sensory signals are transduced at high resolution, but their structure must be stored in a more compact format. Here we provide evidence that the auditory system summarizes the temporal details of sounds using time-averaged statistics. We measured discrimination of 'sound textures' that were characterized by particular statistical properties, as normally result from the superposition of many acoustic features in auditory scenes. When listeners discriminated examples of different textures, performance improved with excerpt duration. In contrast, when listeners discriminated different examples of the same texture, performance declined with duration, a paradoxical result given that the information available for discrimination grows with duration. These results indicate that once these sounds are of moderate length, the brain's representation is limited to time-averaged statistics, which, for different examples of the same texture, converge to the same values with increasing duration. Such statistical representations produce good categorical discrimination, but limit the ability to discern temporal detail.
Visualizing Teacher Education as a Complex System: A Nested Simplex System Approach
ERIC Educational Resources Information Center
Ludlow, Larry; Ell, Fiona; Cochran-Smith, Marilyn; Newton, Avery; Trefcer, Kaitlin; Klein, Kelsey; Grudnoff, Lexie; Haigh, Mavis; Hill, Mary F.
2017-01-01
Our purpose is to provide an exploratory statistical representation of initial teacher education as a complex system comprised of dynamic influential elements. More precisely, we reveal what the system looks like for differently-positioned teacher education stakeholders based on our framework for gathering, statistically analyzing, and graphically…
Feldman, Jonathan M.; Serebrisky, Denise; Spray, Amanda
2012-01-01
Background Causes of children’s asthma health disparities are complex. Parents’ asthma illness representations may play a role. Purpose The study aims to test a theoretically based, multi-factorial model for ethnic disparities in children’s acute asthma visits through parental illness representations. Methods Structural equation modeling investigated the association of parental asthma illness representations, sociodemographic characteristics, health care provider factors, and social–environmental context with children’s acute asthma visits among 309 White, Puerto Rican, and African American families was conducted. Results Forty-five percent of the variance in illness representations and 30% of the variance in acute visits were accounted for. Statistically significant differences in illness representations were observed by ethnic group. Approximately 30% of the variance in illness representations was explained for whites, 23% for African Americans, and 26% for Puerto Ricans. The model accounted for >30% of the variance in acute visits for African Americans and Puerto Ricans but only 19% for the whites. Conclusion The model provides preliminary support that ethnic heterogeneity in asthma illness representations affects children’s health outcomes. PMID:22160799
Representation of Probability Density Functions from Orbit Determination using the Particle Filter
NASA Technical Reports Server (NTRS)
Mashiku, Alinda K.; Garrison, James; Carpenter, J. Russell
2012-01-01
Statistical orbit determination enables us to obtain estimates of the state and the statistical information of its region of uncertainty. In order to obtain an accurate representation of the probability density function (PDF) that incorporates higher order statistical information, we propose the use of nonlinear estimation methods such as the Particle Filter. The Particle Filter (PF) is capable of providing a PDF representation of the state estimates whose accuracy is dependent on the number of particles or samples used. For this method to be applicable to real case scenarios, we need a way of accurately representing the PDF in a compressed manner with little information loss. Hence we propose using the Independent Component Analysis (ICA) as a non-Gaussian dimensional reduction method that is capable of maintaining higher order statistical information obtained using the PF. Methods such as the Principal Component Analysis (PCA) are based on utilizing up to second order statistics, hence will not suffice in maintaining maximum information content. Both the PCA and the ICA are applied to two scenarios that involve a highly eccentric orbit with a lower apriori uncertainty covariance and a less eccentric orbit with a higher a priori uncertainty covariance, to illustrate the capability of the ICA in relation to the PCA.
Visual shape perception as Bayesian inference of 3D object-centered shape representations.
Erdogan, Goker; Jacobs, Robert A
2017-11-01
Despite decades of research, little is known about how people visually perceive object shape. We hypothesize that a promising approach to shape perception is provided by a "visual perception as Bayesian inference" framework which augments an emphasis on visual representation with an emphasis on the idea that shape perception is a form of statistical inference. Our hypothesis claims that shape perception of unfamiliar objects can be characterized as statistical inference of 3D shape in an object-centered coordinate system. We describe a computational model based on our theoretical framework, and provide evidence for the model along two lines. First, we show that, counterintuitively, the model accounts for viewpoint-dependency of object recognition, traditionally regarded as evidence against people's use of 3D object-centered shape representations. Second, we report the results of an experiment using a shape similarity task, and present an extensive evaluation of existing models' abilities to account for the experimental data. We find that our shape inference model captures subjects' behaviors better than competing models. Taken as a whole, our experimental and computational results illustrate the promise of our approach and suggest that people's shape representations of unfamiliar objects are probabilistic, 3D, and object-centered. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Statistically optimal perception and learning: from behavior to neural representations
Fiser, József; Berkes, Pietro; Orbán, Gergő; Lengyel, Máté
2010-01-01
Human perception has recently been characterized as statistical inference based on noisy and ambiguous sensory inputs. Moreover, suitable neural representations of uncertainty have been identified that could underlie such probabilistic computations. In this review, we argue that learning an internal model of the sensory environment is another key aspect of the same statistical inference procedure and thus perception and learning need to be treated jointly. We review evidence for statistically optimal learning in humans and animals, and reevaluate possible neural representations of uncertainty based on their potential to support statistically optimal learning. We propose that spontaneous activity can have a functional role in such representations leading to a new, sampling-based, framework of how the cortex represents information and uncertainty. PMID:20153683
Implicit Wiener series analysis of epileptic seizure recordings.
Barbero, Alvaro; Franz, Matthias; van Drongelen, Wim; Dorronsoro, José R; Schölkopf, Bernhard; Grosse-Wentrup, Moritz
2009-01-01
Implicit Wiener series are a powerful tool to build Volterra representations of time series with any degree of non-linearity. A natural question is then whether higher order representations yield more useful models. In this work we shall study this question for ECoG data channel relationships in epileptic seizure recordings, considering whether quadratic representations yield more accurate classifiers than linear ones. To do so we first show how to derive statistical information on the Volterra coefficient distribution and how to construct seizure classification patterns over that information. As our results illustrate, a quadratic model seems to provide no advantages over a linear one. Nevertheless, we shall also show that the interpretability of the implicit Wiener series provides insights into the inter-channel relationships of the recordings.
Student's Conceptions in Statistical Graph's Interpretation
ERIC Educational Resources Information Center
Kukliansky, Ida
2016-01-01
Histograms, box plots and cumulative distribution graphs are popular graphic representations for statistical distributions. The main research question that this study focuses on is how college students deal with interpretation of these statistical graphs when translating graphical representations into analytical concepts in descriptive statistics.…
Distinct encoding of risk and value in economic choice between multiple risky options☆
Wright, Nicholas D.; Symmonds, Mkael; Dolan, Raymond J.
2013-01-01
Neural encoding of value-based stimuli is suggested to involve representations of summary statistics, including risk and expected value (EV). A more complex, but ecologically more common, context is when multiple risky options are evaluated together. However, it is unknown whether encoding related to option evaluation in these situations involves similar principles. Here we employed fMRI during a task that parametrically manipulated EV and risk in two simultaneously presented lotteries, both of which contained either gains or losses. We found representations of EV in medial prefrontal cortex and anterior insula, an encoding that was dependent on which option was chosen (i.e. chosen and unchosen EV) and whether the choice was over gains or losses. Parietal activity reflected whether the riskier or surer option was selected, whilst activity in a network of regions that also included parietal cortex reflected both combined risk and difference in risk for the two options. Our findings provide support for the idea that summary statistics underpin a representation of value-based stimuli, and further that these summary statistics undergo distinct forms of encoding. PMID:23684860
Morphological representation of order-statistics filters.
Charif-Chefchaouni, M; Schonfeld, D
1995-01-01
We propose a comprehensive theory for the morphological bounds on order-statistics filters (and their repeated iterations). Conditions are derived for morphological openings and closings to serve as bounds (lower and upper, respectively) on order-statistics filters (and their repeated iterations). Under various assumptions, morphological open-closings and close-openings are also shown to serve as (tighter) bounds (lower and upper, respectively) on iterations of order-statistics filters. Simulations of the application of the results presented to image restoration are finally provided.
Mathematical Representation Ability by Using Project Based Learning on the Topic of Statistics
NASA Astrophysics Data System (ADS)
Widakdo, W. A.
2017-09-01
Seeing the importance of the role of mathematics in everyday life, mastery of the subject areas of mathematics is a must. Representation ability is one of the fundamental ability that used in mathematics to make connection between abstract idea with logical thinking to understanding mathematics. Researcher see the lack of mathematical representation and try to find alternative solution to dolve it by using project based learning. This research use literature study from some books and articles in journals to see the importance of mathematical representation abiliy in mathemtics learning and how project based learning able to increase this mathematical representation ability on the topic of Statistics. The indicators for mathematical representation ability in this research classifies namely visual representation (picture, diagram, graph, or table); symbolize representation (mathematical statement. Mathematical notation, numerical/algebra symbol) and verbal representation (written text). This article explain about why project based learning able to influence student’s mathematical representation by using some theories in cognitive psychology, also showing the example of project based learning that able to use in teaching statistics, one of mathematics topic that very useful to analyze data.
From innervation density to tactile acuity: 1. Spatial representation.
Brown, Paul B; Koerber, H Richard; Millecchia, Ronald
2004-06-11
We tested the hypothesis that the population receptive field representation (a superposition of the excitatory receptive field areas of cells responding to a tactile stimulus) provides spatial information sufficient to mediate one measure of static tactile acuity. In psychophysical tests, two-point discrimination thresholds on the hindlimbs of adult cats varied as a function of stimulus location and orientation, as they do in humans. A statistical model of the excitatory low threshold mechanoreceptive fields of spinocervical, postsynaptic dorsal column and spinothalamic tract neurons was used to simulate the population receptive field representations in this neural population of the one- and two-point stimuli used in the psychophysical experiments. The simulated and observed thresholds were highly correlated. Simulated and observed thresholds' relations to physiological and anatomical variables such as stimulus location and orientation, receptive field size and shape, map scale, and innervation density were strikingly similar. Simulated and observed threshold variations with receptive field size and map scale obeyed simple relationships predicted by the signal detection model, and were statistically indistinguishable from each other. The population receptive field representation therefore contains information sufficient for this discrimination.
Structure-Specific Statistical Mapping of White Matter Tracts
Yushkevich, Paul A.; Zhang, Hui; Simon, Tony; Gee, James C.
2008-01-01
We present a new model-based framework for the statistical analysis of diffusion imaging data associated with specific white matter tracts. The framework takes advantage of the fact that several of the major white matter tracts are thin sheet-like structures that can be effectively modeled by medial representations. The approach involves segmenting major tracts and fitting them with deformable geometric medial models. The medial representation makes it possible to average and combine tensor-based features along directions locally perpendicular to the tracts, thus reducing data dimensionality and accounting for errors in normalization. The framework enables the analysis of individual white matter structures, and provides a range of possibilities for computing statistics and visualizing differences between cohorts. The framework is demonstrated in a study of white matter differences in pediatric chromosome 22q11.2 deletion syndrome. PMID:18407524
1979-10-01
racism " even before the Vietnam casualty statistics received attention in the national news media. In...409 In theory , then, a highly unrepresentative (in statistical terms) force could be an "approximately representative" force. Depending on the balance...of Army representation." The six-month project appeared at the outset to be a well-defined, strictly "objective," statistical evaluation of
Probability of Detection (POD) as a statistical model for the validation of qualitative methods.
Wehling, Paul; LaBudde, Robert A; Brunelle, Sharon L; Nelson, Maria T
2011-01-01
A statistical model is presented for use in validation of qualitative methods. This model, termed Probability of Detection (POD), harmonizes the statistical concepts and parameters between quantitative and qualitative method validation. POD characterizes method response with respect to concentration as a continuous variable. The POD model provides a tool for graphical representation of response curves for qualitative methods. In addition, the model allows comparisons between candidate and reference methods, and provides calculations of repeatability, reproducibility, and laboratory effects from collaborative study data. Single laboratory study and collaborative study examples are given.
The extraction and integration framework: a two-process account of statistical learning.
Thiessen, Erik D; Kronstein, Alexandra T; Hufnagle, Daniel G
2013-07-01
The term statistical learning in infancy research originally referred to sensitivity to transitional probabilities. Subsequent research has demonstrated that statistical learning contributes to infant development in a wide array of domains. The range of statistical learning phenomena necessitates a broader view of the processes underlying statistical learning. Learners are sensitive to a much wider range of statistical information than the conditional relations indexed by transitional probabilities, including distributional and cue-based statistics. We propose a novel framework that unifies learning about all of these kinds of statistical structure. From our perspective, learning about conditional relations outputs discrete representations (such as words). Integration across these discrete representations yields sensitivity to cues and distributional information. To achieve sensitivity to all of these kinds of statistical structure, our framework combines processes that extract segments of the input with processes that compare across these extracted items. In this framework, the items extracted from the input serve as exemplars in long-term memory. The similarity structure of those exemplars in long-term memory leads to the discovery of cues and categorical structure, which guides subsequent extraction. The extraction and integration framework provides a way to explain sensitivity to both conditional statistical structure (such as transitional probabilities) and distributional statistical structure (such as item frequency and variability), and also a framework for thinking about how these different aspects of statistical learning influence each other. 2013 APA, all rights reserved
Application of 2D graphic representation of protein sequence based on Huffman tree method.
Qi, Zhao-Hui; Feng, Jun; Qi, Xiao-Qin; Li, Ling
2012-05-01
Based on Huffman tree method, we propose a new 2D graphic representation of protein sequence. This representation can completely avoid loss of information in the transfer of data from a protein sequence to its graphic representation. The method consists of two parts. One is about the 0-1 codes of 20 amino acids by Huffman tree with amino acid frequency. The amino acid frequency is defined as the statistical number of an amino acid in the analyzed protein sequences. The other is about the 2D graphic representation of protein sequence based on the 0-1 codes. Then the applications of the method on ten ND5 genes and seven Escherichia coli strains are presented in detail. The results show that the proposed model may provide us with some new sights to understand the evolution patterns determined from protein sequences and complete genomes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Probability density cloud as a geometrical tool to describe statistics of scattered light.
Yaitskova, Natalia
2017-04-01
First-order statistics of scattered light is described using the representation of the probability density cloud, which visualizes a two-dimensional distribution for complex amplitude. The geometric parameters of the cloud are studied in detail and are connected to the statistical properties of phase. The moment-generating function for intensity is obtained in a closed form through these parameters. An example of exponentially modified normal distribution is provided to illustrate the functioning of this geometrical approach.
Problem Representation and Academic Performance in Statistics
ERIC Educational Resources Information Center
Li, Jun
2014-01-01
The purpose of this study was to examine the relationship between problem representation and academic performance in statistics. A specially-designed triad judgment task was administered through SurveyMonkey, an online survey service. Participants were 162 high school graduates who took the AP Statistics Examination in the spring of 2013. Results…
Erdogan, Goker; Yildirim, Ilker; Jacobs, Robert A.
2015-01-01
People learn modality-independent, conceptual representations from modality-specific sensory signals. Here, we hypothesize that any system that accomplishes this feat will include three components: a representational language for characterizing modality-independent representations, a set of sensory-specific forward models for mapping from modality-independent representations to sensory signals, and an inference algorithm for inverting forward models—that is, an algorithm for using sensory signals to infer modality-independent representations. To evaluate this hypothesis, we instantiate it in the form of a computational model that learns object shape representations from visual and/or haptic signals. The model uses a probabilistic grammar to characterize modality-independent representations of object shape, uses a computer graphics toolkit and a human hand simulator to map from object representations to visual and haptic features, respectively, and uses a Bayesian inference algorithm to infer modality-independent object representations from visual and/or haptic signals. Simulation results show that the model infers identical object representations when an object is viewed, grasped, or both. That is, the model’s percepts are modality invariant. We also report the results of an experiment in which different subjects rated the similarity of pairs of objects in different sensory conditions, and show that the model provides a very accurate account of subjects’ ratings. Conceptually, this research significantly contributes to our understanding of modality invariance, an important type of perceptual constancy, by demonstrating how modality-independent representations can be acquired and used. Methodologically, it provides an important contribution to cognitive modeling, particularly an emerging probabilistic language-of-thought approach, by showing how symbolic and statistical approaches can be combined in order to understand aspects of human perception. PMID:26554704
The Statistics of Visual Representation
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.
2002-01-01
The experience of retinex image processing has prompted us to reconsider fundamental aspects of imaging and image processing. Foremost is the idea that a good visual representation requires a non-linear transformation of the recorded (approximately linear) image data. Further, this transformation appears to converge on a specific distribution. Here we investigate the connection between numerical and visual phenomena. Specifically the questions explored are: (1) Is there a well-defined consistent statistical character associated with good visual representations? (2) Does there exist an ideal visual image? And (3) what are its statistical properties?
O'Sullivan, Finbarr; Muzi, Mark; Spence, Alexander M; Mankoff, David M; O'Sullivan, Janet N; Fitzgerald, Niall; Newman, George C; Krohn, Kenneth A
2009-06-01
Kinetic analysis is used to extract metabolic information from dynamic positron emission tomography (PET) uptake data. The theory of indicator dilutions, developed in the seminal work of Meier and Zierler (1954), provides a probabilistic framework for representation of PET tracer uptake data in terms of a convolution between an arterial input function and a tissue residue. The residue is a scaled survival function associated with tracer residence in the tissue. Nonparametric inference for the residue, a deconvolution problem, provides a novel approach to kinetic analysis-critically one that is not reliant on specific compartmental modeling assumptions. A practical computational technique based on regularized cubic B-spline approximation of the residence time distribution is proposed. Nonparametric residue analysis allows formal statistical evaluation of specific parametric models to be considered. This analysis needs to properly account for the increased flexibility of the nonparametric estimator. The methodology is illustrated using data from a series of cerebral studies with PET and fluorodeoxyglucose (FDG) in normal subjects. Comparisons are made between key functionals of the residue, tracer flux, flow, etc., resulting from a parametric (the standard two-compartment of Phelps et al. 1979) and a nonparametric analysis. Strong statistical evidence against the compartment model is found. Primarily these differences relate to the representation of the early temporal structure of the tracer residence-largely a function of the vascular supply network. There are convincing physiological arguments against the representations implied by the compartmental approach but this is the first time that a rigorous statistical confirmation using PET data has been reported. The compartmental analysis produces suspect values for flow but, notably, the impact on the metabolic flux, though statistically significant, is limited to deviations on the order of 3%-4%. The general advantage of the nonparametric residue analysis is the ability to provide a valid kinetic quantitation in the context of studies where there may be heterogeneity or other uncertainty about the accuracy of a compartmental model approximation of the tissue residue.
Use of model calibration to achieve high accuracy in analysis of computer networks
Frogner, Bjorn; Guarro, Sergio; Scharf, Guy
2004-05-11
A system and method are provided for creating a network performance prediction model, and calibrating the prediction model, through application of network load statistical analyses. The method includes characterizing the measured load on the network, which may include background load data obtained over time, and may further include directed load data representative of a transaction-level event. Probabilistic representations of load data are derived to characterize the statistical persistence of the network performance variability and to determine delays throughout the network. The probabilistic representations are applied to the network performance prediction model to adapt the model for accurate prediction of network performance. Certain embodiments of the method and system may be used for analysis of the performance of a distributed application characterized as data packet streams.
AIC identifies optimal representation of longitudinal dietary variables.
VanBuren, John; Cavanaugh, Joseph; Marshall, Teresa; Warren, John; Levy, Steven M
2017-09-01
The Akaike Information Criterion (AIC) is a well-known tool for variable selection in multivariable modeling as well as a tool to help identify the optimal representation of explanatory variables. However, it has been discussed infrequently in the dental literature. The purpose of this paper is to demonstrate the use of AIC in determining the optimal representation of dietary variables in a longitudinal dental study. The Iowa Fluoride Study enrolled children at birth and dental examinations were conducted at ages 5, 9, 13, and 17. Decayed or filled surfaces (DFS) trend clusters were created based on age 13 DFS counts and age 13-17 DFS increments. Dietary intake data (water, milk, 100 percent-juice, and sugar sweetened beverages) were collected semiannually using a food frequency questionnaire. Multinomial logistic regression models were fit to predict DFS cluster membership (n=344). Multiple approaches could be used to represent the dietary data including averaging across all collected surveys or over different shorter time periods to capture age-specific trends or using the individual time points of dietary data. AIC helped identify the optimal representation. Averaging data for all four dietary variables for the whole period from age 9.0 to 17.0 provided a better representation in the multivariable full model (AIC=745.0) compared to other methods assessed in full models (AICs=750.6 for age 9 and 9-13 increment dietary measurements and AIC=762.3 for age 9, 13, and 17 individual measurements). The results illustrate that AIC can help researchers identify the optimal way to summarize information for inclusion in a statistical model. The method presented here can be used by researchers performing statistical modeling in dental research. This method provides an alternative approach for assessing the propriety of variable representation to significance-based procedures, which could potentially lead to improved research in the dental community. © 2017 American Association of Public Health Dentistry.
Sharing brain mapping statistical results with the neuroimaging data model
Maumet, Camille; Auer, Tibor; Bowring, Alexander; Chen, Gang; Das, Samir; Flandin, Guillaume; Ghosh, Satrajit; Glatard, Tristan; Gorgolewski, Krzysztof J.; Helmer, Karl G.; Jenkinson, Mark; Keator, David B.; Nichols, B. Nolan; Poline, Jean-Baptiste; Reynolds, Richard; Sochat, Vanessa; Turner, Jessica; Nichols, Thomas E.
2016-01-01
Only a tiny fraction of the data and metadata produced by an fMRI study is finally conveyed to the community. This lack of transparency not only hinders the reproducibility of neuroimaging results but also impairs future meta-analyses. In this work we introduce NIDM-Results, a format specification providing a machine-readable description of neuroimaging statistical results along with key image data summarising the experiment. NIDM-Results provides a unified representation of mass univariate analyses including a level of detail consistent with available best practices. This standardized representation allows authors to relay methods and results in a platform-independent regularized format that is not tied to a particular neuroimaging software package. Tools are available to export NIDM-Result graphs and associated files from the widely used SPM and FSL software packages, and the NeuroVault repository can import NIDM-Results archives. The specification is publically available at: http://nidm.nidash.org/specs/nidm-results.html. PMID:27922621
NASA Astrophysics Data System (ADS)
Renner, Timothy
2011-12-01
A C++ framework was constructed with the explicit purpose of systematically generating string models using the Weakly Coupled Free Fermionic Heterotic String (WCFFHS) method. The software, optimized for speed, generality, and ease of use, has been used to conduct preliminary systematic investigations of WCFFHS vacua. Documentation for this framework is provided in the Appendix. After an introduction to theoretical and computational aspects of WCFFHS model building, a study of ten-dimensional WCFFHS models is presented. Degeneracies among equivalent expressions of each of the known models are investigated and classified. A study of more phenomenologically realistic four-dimensional models based on the well known "NAHE" set is then presented, with statistics being reported on gauge content, matter representations, and space-time supersymmetries. The final study is a parallel to the NAHE study in which a variation of the NAHE set is systematically extended and examined statistically. Special attention is paid to models with "mirroring"---identical observable and hidden sector gauge groups and matter representations.
Learning Midlevel Auditory Codes from Natural Sound Statistics.
Młynarski, Wiktor; McDermott, Josh H
2018-03-01
Interaction with the world requires an organism to transform sensory signals into representations in which behaviorally meaningful properties of the environment are made explicit. These representations are derived through cascades of neuronal processing stages in which neurons at each stage recode the output of preceding stages. Explanations of sensory coding may thus involve understanding how low-level patterns are combined into more complex structures. To gain insight into such midlevel representations for sound, we designed a hierarchical generative model of natural sounds that learns combinations of spectrotemporal features from natural stimulus statistics. In the first layer, the model forms a sparse convolutional code of spectrograms using a dictionary of learned spectrotemporal kernels. To generalize from specific kernel activation patterns, the second layer encodes patterns of time-varying magnitude of multiple first-layer coefficients. When trained on corpora of speech and environmental sounds, some second-layer units learned to group similar spectrotemporal features. Others instantiate opponency between distinct sets of features. Such groupings might be instantiated by neurons in the auditory cortex, providing a hypothesis for midlevel neuronal computation.
The non-equilibrium allele frequency spectrum in a Poisson random field framework.
Kaj, Ingemar; Mugal, Carina F
2016-10-01
In population genetic studies, the allele frequency spectrum (AFS) efficiently summarizes genome-wide polymorphism data and shapes a variety of allele frequency-based summary statistics. While existing theory typically features equilibrium conditions, emerging methodology requires an analytical understanding of the build-up of the allele frequencies over time. In this work, we use the framework of Poisson random fields to derive new representations of the non-equilibrium AFS for the case of a Wright-Fisher population model with selection. In our approach, the AFS is a scaling-limit of the expectation of a Poisson stochastic integral and the representation of the non-equilibrium AFS arises in terms of a fixation time probability distribution. The known duality between the Wright-Fisher diffusion process and a birth and death process generalizing Kingman's coalescent yields an additional representation. The results carry over to the setting of a random sample drawn from the population and provide the non-equilibrium behavior of sample statistics. Our findings are consistent with and extend a previous approach where the non-equilibrium AFS solves a partial differential forward equation with a non-traditional boundary condition. Moreover, we provide a bridge to previous coalescent-based work, and hence tie several frameworks together. Since frequency-based summary statistics are widely used in population genetics, for example, to identify candidate loci of adaptive evolution, to infer the demographic history of a population, or to improve our understanding of the underlying mechanics of speciation events, the presented results are potentially useful for a broad range of topics. Copyright © 2016 Elsevier Inc. All rights reserved.
Granger Causality Testing with Intensive Longitudinal Data.
Molenaar, Peter C M
2018-06-01
The availability of intensive longitudinal data obtained by means of ambulatory assessment opens up new prospects for prevention research in that it allows the derivation of subject-specific dynamic networks of interacting variables by means of vector autoregressive (VAR) modeling. The dynamic networks thus obtained can be subjected to Granger causality testing in order to identify causal relations among the observed time-dependent variables. VARs have two equivalent representations: standard and structural. Results obtained with Granger causality testing depend upon which representation is chosen, yet no criteria exist on which this important choice can be based. A new equivalent representation is introduced called hybrid VARs with which the best representation can be chosen in a data-driven way. Partial directed coherence, a frequency-domain statistic for Granger causality testing, is shown to perform optimally when based on hybrid VARs. An application to real data is provided.
Amin, Noopur; Gastpar, Michael; Theunissen, Frédéric E.
2013-01-01
Previous research has shown that postnatal exposure to simple, synthetic sounds can affect the sound representation in the auditory cortex as reflected by changes in the tonotopic map or other relatively simple tuning properties, such as AM tuning. However, their functional implications for neural processing in the generation of ethologically-based perception remain unexplored. Here we examined the effects of noise-rearing and social isolation on the neural processing of communication sounds such as species-specific song, in the primary auditory cortex analog of adult zebra finches. Our electrophysiological recordings reveal that neural tuning to simple frequency-based synthetic sounds is initially established in all the laminae independent of patterned acoustic experience; however, we provide the first evidence that early exposure to patterned sound statistics, such as those found in native sounds, is required for the subsequent emergence of neural selectivity for complex vocalizations and for shaping neural spiking precision in superficial and deep cortical laminae, and for creating efficient neural representations of song and a less redundant ensemble code in all the laminae. Our study also provides the first causal evidence for ‘sparse coding’, such that when the statistics of the stimuli were changed during rearing, as in noise-rearing, that the sparse or optimal representation for species-specific vocalizations disappeared. Taken together, these results imply that a layer-specific differential development of the auditory cortex requires patterned acoustic input, and a specialized and robust sensory representation of complex communication sounds in the auditory cortex requires a rich acoustic and social environment. PMID:23630587
Mental Representation of Circuit Diagrams: Individual Differences in Procedural Knowledge.
1983-12-01
operation. One may know, for example, that a transformer serves to change the voltage of an AC supply, that a particular combination of transitors acts as a...and error measures with respect to overall performance. Even if a large 3-1-- sample could provide statistically significant differences between skill
Multiple time-scales and the developmental dynamics of social systems
Flack, Jessica C.
2012-01-01
To build a theory of social complexity, we need to understand how aggregate social properties arise from individual interaction rules. Here, I review a body of work on the developmental dynamics of pigtailed macaque social organization and conflict management that provides insight into the mechanistic causes of multi-scale social systems. In this model system coarse-grained, statistical representations of collective dynamics are more predictive of the future state of the system than the constantly in-flux behavioural patterns at the individual level. The data suggest that individuals can perceive and use these representations for strategical decision-making. As an interaction history accumulates the coarse-grained representations consolidate. This constrains individual behaviour and provides the foundations for new levels of organization. The time-scales on which these representations change impact whether the consolidating higher-levels can be modified by individuals and collectively. The time-scales appear to be a function of the ‘coarseness’ of the representations and the character of the collective dynamics over which they are averages. The data suggest that an advantage of multiple timescales is that they allow social systems to balance tradeoffs between predictability and adaptability. I briefly discuss the implications of these findings for cognition, social niche construction and the evolution of new levels of organization in biological systems. PMID:22641819
Multiple time-scales and the developmental dynamics of social systems.
Flack, Jessica C
2012-07-05
To build a theory of social complexity, we need to understand how aggregate social properties arise from individual interaction rules. Here, I review a body of work on the developmental dynamics of pigtailed macaque social organization and conflict management that provides insight into the mechanistic causes of multi-scale social systems. In this model system coarse-grained, statistical representations of collective dynamics are more predictive of the future state of the system than the constantly in-flux behavioural patterns at the individual level. The data suggest that individuals can perceive and use these representations for strategical decision-making. As an interaction history accumulates the coarse-grained representations consolidate. This constrains individual behaviour and provides the foundations for new levels of organization. The time-scales on which these representations change impact whether the consolidating higher-levels can be modified by individuals and collectively. The time-scales appear to be a function of the 'coarseness' of the representations and the character of the collective dynamics over which they are averages. The data suggest that an advantage of multiple timescales is that they allow social systems to balance tradeoffs between predictability and adaptability. I briefly discuss the implications of these findings for cognition, social niche construction and the evolution of new levels of organization in biological systems.
Robust algebraic image enhancement for intelligent control systems
NASA Technical Reports Server (NTRS)
Lerner, Bao-Ting; Morrelli, Michael
1993-01-01
Robust vision capability for intelligent control systems has been an elusive goal in image processing. The computationally intensive techniques a necessary for conventional image processing make real-time applications, such as object tracking and collision avoidance difficult. In order to endow an intelligent control system with the needed vision robustness, an adequate image enhancement subsystem capable of compensating for the wide variety of real-world degradations, must exist between the image capturing and the object recognition subsystems. This enhancement stage must be adaptive and must operate with consistency in the presence of both statistical and shape-based noise. To deal with this problem, we have developed an innovative algebraic approach which provides a sound mathematical framework for image representation and manipulation. Our image model provides a natural platform from which to pursue dynamic scene analysis, and its incorporation into a vision system would serve as the front-end to an intelligent control system. We have developed a unique polynomial representation of gray level imagery and applied this representation to develop polynomial operators on complex gray level scenes. This approach is highly advantageous since polynomials can be manipulated very easily, and are readily understood, thus providing a very convenient environment for image processing. Our model presents a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets.
Statistical Representations of Track Geometry : Volume I, Text.
DOT National Transportation Integrated Search
1980-03-31
Mathematical representations of railroad track geometry variations are derived from time series analyses of track measurements. Since the majority of track is free of anomalies (turnouts, crossings, bridges, etc.), representation of anomaly-free trac...
External Representations for Data Distributions: In Search of Cognitive Fit
ERIC Educational Resources Information Center
Lem, Stephanie; Onghana, Patrick; Verschaffel, Lieven; Van Dooren, Wim
2013-01-01
Data distributions can be represented using different external representations, such as histograms and boxplots. Although the role of external representations has been extensively studied in mathematics, this is less the case in statistics. This study helps to fill this gap by systematically varying the representation that accompanies a task…
Three Strategies for the Critical Use of Statistical Methods in Psychological Research
ERIC Educational Resources Information Center
Campitelli, Guillermo; Macbeth, Guillermo; Ospina, Raydonal; Marmolejo-Ramos, Fernando
2017-01-01
We present three strategies to replace the null hypothesis statistical significance testing approach in psychological research: (1) visual representation of cognitive processes and predictions, (2) visual representation of data distributions and choice of the appropriate distribution for analysis, and (3) model comparison. The three strategies…
GrDHP: a general utility function representation for dual heuristic dynamic programming.
Ni, Zhen; He, Haibo; Zhao, Dongbin; Xu, Xin; Prokhorov, Danil V
2015-03-01
A general utility function representation is proposed to provide the required derivable and adjustable utility function for the dual heuristic dynamic programming (DHP) design. Goal representation DHP (GrDHP) is presented with a goal network being on top of the traditional DHP design. This goal network provides a general mapping between the system states and the derivatives of the utility function. With this proposed architecture, we can obtain the required derivatives of the utility function directly from the goal network. In addition, instead of a fixed predefined utility function in literature, we conduct an online learning process for the goal network so that the derivatives of the utility function can be adaptively tuned over time. We provide the control performance of both the proposed GrDHP and the traditional DHP approaches under the same environment and parameter settings. The statistical simulation results and the snapshot of the system variables are presented to demonstrate the improved learning and controlling performance. We also apply both approaches to a power system example to further demonstrate the control capabilities of the GrDHP approach.
The semantic representation of prejudice and stereotypes.
Bhatia, Sudeep
2017-07-01
We use a theory of semantic representation to study prejudice and stereotyping. Particularly, we consider large datasets of newspaper articles published in the United States, and apply latent semantic analysis (LSA), a prominent model of human semantic memory, to these datasets to learn representations for common male and female, White, African American, and Latino names. LSA performs a singular value decomposition on word distribution statistics in order to recover word vector representations, and we find that our recovered representations display the types of biases observed in human participants using tasks such as the implicit association test. Importantly, these biases are strongest for vector representations with moderate dimensionality, and weaken or disappear for representations with very high or very low dimensionality. Moderate dimensional LSA models are also the best at learning race, ethnicity, and gender-based categories, suggesting that social category knowledge, acquired through dimensionality reduction on word distribution statistics, can facilitate prejudiced and stereotyped associations. Copyright © 2017 Elsevier B.V. All rights reserved.
Determinants of Linear Judgment: A Meta-Analysis of Lens Model Studies
ERIC Educational Resources Information Center
Karelaia, Natalia; Hogarth, Robin M.
2008-01-01
The mathematical representation of E. Brunswik's (1952) lens model has been used extensively to study human judgment and provides a unique opportunity to conduct a meta-analysis of studies that covers roughly 5 decades. Specifically, the authors analyzed statistics of the "lens model equation" (L. R. Tucker, 1964) associated with 249 different…
Stochastic Analysis and Design of Heterogeneous Microstructural Materials System
NASA Astrophysics Data System (ADS)
Xu, Hongyi
Advanced materials system refers to new materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to superior properties over the conventional materials. To accelerate the development of new advanced materials system, the objective of this dissertation is to develop a computational design framework and the associated techniques for design automation of microstructure materials systems, with an emphasis on addressing the uncertainties associated with the heterogeneity of microstructural materials. Five key research tasks are identified: design representation, design evaluation, design synthesis, material informatics and uncertainty quantification. Design representation of microstructure includes statistical characterization and stochastic reconstruction. This dissertation develops a new descriptor-based methodology, which characterizes 2D microstructures using descriptors of composition, dispersion and geometry. Statistics of 3D descriptors are predicted based on 2D information to enable 2D-to-3D reconstruction. An efficient sequential reconstruction algorithm is developed to reconstruct statistically equivalent random 3D digital microstructures. In design evaluation, a stochastic decomposition and reassembly strategy is developed to deal with the high computational costs and uncertainties induced by material heterogeneity. The properties of Representative Volume Elements (RVE) are predicted by stochastically reassembling SVE elements with stochastic properties into a coarse representation of the RVE. In design synthesis, a new descriptor-based design framework is developed, which integrates computational methods of microstructure characterization and reconstruction, sensitivity analysis, Design of Experiments (DOE), metamodeling and optimization the enable parametric optimization of the microstructure for achieving the desired material properties. Material informatics is studied to efficiently reduce the dimension of microstructure design space. This dissertation develops a machine learning-based methodology to identify the key microstructure descriptors that highly impact properties of interest. In uncertainty quantification, a comparative study on data-driven random process models is conducted to provide guidance for choosing the most accurate model in statistical uncertainty quantification. Two new goodness-of-fit metrics are developed to provide quantitative measurements of random process models' accuracy. The benefits of the proposed methods are demonstrated by the example of designing the microstructure of polymer nanocomposites. This dissertation provides material-generic, intelligent modeling/design methodologies and techniques to accelerate the process of analyzing and designing new microstructural materials system.
Decoding and disrupting left midfusiform gyrus activity during word reading
Hirshorn, Elizabeth A.; Ward, Michael J.; Fiez, Julie A.; Ghuman, Avniel Singh
2016-01-01
The nature of the visual representation for words has been fiercely debated for over 150 y. We used direct brain stimulation, pre- and postsurgical behavioral measures, and intracranial electroencephalography to provide support for, and elaborate upon, the visual word form hypothesis. This hypothesis states that activity in the left midfusiform gyrus (lmFG) reflects visually organized information about words and word parts. In patients with electrodes placed directly in their lmFG, we found that disrupting lmFG activity through stimulation, and later surgical resection in one of the patients, led to impaired perception of whole words and letters. Furthermore, using machine-learning methods to analyze the electrophysiological data from these electrodes, we found that information contained in early lmFG activity was consistent with an orthographic similarity space. Finally, the lmFG contributed to at least two distinguishable stages of word processing, an early stage that reflects gist-level visual representation sensitive to orthographic statistics, and a later stage that reflects more precise representation sufficient for the individuation of orthographic word forms. These results provide strong support for the visual word form hypothesis and demonstrate that across time the lmFG is involved in multiple stages of orthographic representation. PMID:27325763
Decoding and disrupting left midfusiform gyrus activity during word reading.
Hirshorn, Elizabeth A; Li, Yuanning; Ward, Michael J; Richardson, R Mark; Fiez, Julie A; Ghuman, Avniel Singh
2016-07-19
The nature of the visual representation for words has been fiercely debated for over 150 y. We used direct brain stimulation, pre- and postsurgical behavioral measures, and intracranial electroencephalography to provide support for, and elaborate upon, the visual word form hypothesis. This hypothesis states that activity in the left midfusiform gyrus (lmFG) reflects visually organized information about words and word parts. In patients with electrodes placed directly in their lmFG, we found that disrupting lmFG activity through stimulation, and later surgical resection in one of the patients, led to impaired perception of whole words and letters. Furthermore, using machine-learning methods to analyze the electrophysiological data from these electrodes, we found that information contained in early lmFG activity was consistent with an orthographic similarity space. Finally, the lmFG contributed to at least two distinguishable stages of word processing, an early stage that reflects gist-level visual representation sensitive to orthographic statistics, and a later stage that reflects more precise representation sufficient for the individuation of orthographic word forms. These results provide strong support for the visual word form hypothesis and demonstrate that across time the lmFG is involved in multiple stages of orthographic representation.
Social workers' and nurses' illness representations about Alzheimer disease: an exploratory study.
Shinan-Altman, Shiri; Werner, Perla; Cohen, Miri
2014-01-01
Professionals' perceptions of patients' diseases (illness representations) are a major factor influencing the quality of treatment they provide. The aim of the study was to examine and compare Alzheimer disease (AD) illness representations among 2 main professional groups involved in the care of Alzheimer patients. A total of 327 nurses and social workers in Israel were asked to report their cognitive representations (dimensions of identity, cause, timeline, consequences, control, coherence, timeline cycle) and emotional representations. Knowledge about AD, demographic, and occupational characteristics were also obtained. Participants perceived AD as a chronic disease associated with severe consequences. Statistically significant differences were found between the groups, as nurses attributed psychological reasons to AD more than the social workers. Nevertheless, social workers perceived AD as more chronic with severe consequences compared with the nurses. Despite some resemblance, there were differences between the social workers and nurses regarding AD illness representations. Therefore, continuing to distribute materials to professionals regarding AD is recommended, with attention to the unique characteristics of each professional group. Furthermore, the findings encourage the development of training and support programs that will not only deal with the organizational and instrumental levels of treating AD patients but also with the assessment and consequences of professionals' illness representations.
Advances in visual representation of molecular potentials.
Du, Qi-Shi; Huang, Ri-Bo; Chou, Kuo-Chen
2010-06-01
The recent advances in visual representations of molecular properties in 3D space are summarized, and their applications in molecular modeling study and rational drug design are introduced. The visual representation methods provide us with detailed insights into protein-ligand interactions, and hence can play a major role in elucidating the structure or reactivity of a biomolecular system. Three newly developed computation and visualization methods for studying the physical and chemical properties of molecules are introduced, including their electrostatic potential, lipophilicity potential and excess chemical potential. The newest application examples of visual representations in structure-based rational drug are presented. The 3D electrostatic potentials, calculated using the empirical method (EM-ESP), in which the classical Coulomb equation and traditional atomic partial changes are discarded, are highly consistent with the results by the higher level quantum chemical method. The 3D lipophilicity potentials, computed by the heuristic molecular lipophilicity potential method based on the principles of quantum mechanics and statistical mechanics, are more accurate and reliable than those by using the traditional empirical methods. The 3D excess chemical potentials, derived by the reference interaction site model-hypernetted chain theory, provide a new tool for computational chemistry and molecular modeling. For structure-based drug design, the visual representations of molecular properties will play a significant role in practical applications. It is anticipated that the new advances in computational chemistry will stimulate the development of molecular modeling methods, further enriching the visual representation techniques for rational drug design, as well as other relevant fields in life science.
Interpreting Association from Graphical Displays
ERIC Educational Resources Information Center
Fitzallen, Noleine
2016-01-01
Research that has explored students' interpretations of graphical representations has not extended to include how students apply understanding of particular statistical concepts related to one graphical representation to interpret different representations. This paper reports on the way in which students' understanding of covariation, evidenced…
Automated objective characterization of visual field defects in 3D
NASA Technical Reports Server (NTRS)
Fink, Wolfgang (Inventor)
2006-01-01
A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern is displayed to the patient on an electronic display device and the patient's responses to the visual field test pattern are recorded. A visual field representation is generated from the patient's responses. The visual field representation is then used as an input into a variety of automated diagnostic processes. In one process, the visual field representation is used to generate a statistical description of the rapidity of change of a patient's visual field at the boundary of a visual field defect. In another process, the area of a visual field defect is calculated using the visual field representation. In another process, the visual field representation is used to generate a statistical description of the volume of a patient's visual field defect.
Interpretations of Boxplots: Helping Middle School Students to Think outside the Box
ERIC Educational Resources Information Center
Edwards, Thomas G.; Özgün-Koca, Asli; Barr, John
2017-01-01
Boxplots are statistical representations for organizing and displaying data that are relatively easy to create with a five-number summary. However, boxplots are not as easy to understand, interpret, or connect with other statistical representations of the same data. We worked at two different schools with 259 middle school students who constructed…
Models and Muddles in Human Ecology: An Examination of High School Crime Rates. Report No. 255.
ERIC Educational Resources Information Center
Gottfredson, Gary D.
Recent research in the human ecological tradition has made increasing use of causal modeling in the search for understanding of aggregate-level social processes. This approach has great appeal because it helps make hypotheses explicit, provides a convenient way to structure the application of statistical controls, allows the representation of…
Dresp-Langley, Birgitta
2011-01-01
Scientific studies have shown that non-conscious stimuli and representations influence information processing during conscious experience. In the light of such evidence, questions about potential functional links between non-conscious brain representations and conscious experience arise. This article discusses neural model capable of explaining how statistical learning mechanisms in dedicated resonant circuits could generate specific temporal activity traces of non-conscious representations in the brain. How reentrant signaling, top-down matching, and statistical coincidence of such activity traces may lead to the progressive consolidation of temporal patterns that constitute the neural signatures of conscious experience in networks extending across large distances beyond functionally specialized brain regions is then explained. PMID:24962683
A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinitskiy, Anton V.; Voth, Gregory A., E-mail: gavoth@uchicago.edu
2015-09-07
Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman’s imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionistmore » perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.« less
A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals.
Sinitskiy, Anton V; Voth, Gregory A
2015-09-07
Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman's imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.
Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet
Rolls, Edmund T.
2012-01-01
Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus. PMID:22723777
Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet.
Rolls, Edmund T
2012-01-01
Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.
Activities Using The State of the World Atlas, 7th Edition
ERIC Educational Resources Information Center
Hegelbach, Peter; Haakenson, Dean; Starbird, Caroline
2004-01-01
This book is designed to accompany The State of the World Atlas, 7th Edition. The State of the World Atlas and this workbook provide a frame of reference for the changing pattern of world events. Students will become familiar with different statistical representations of the world, from birth rates to HIV/AIDS infections rates; from world…
ERIC Educational Resources Information Center
Salverda, Anne Pier
2016-01-01
Lieberman, Borovsky, Hatrak, and Mayberry (2015) used a modified version of the visual-world paradigm to examine the real-time processing of signs in American Sign Language. They examined the activation of phonological and semantic competitors in native signers and late-learning signers and concluded that their results provide evidence that the…
ERIC Educational Resources Information Center
Czujko, Roman; Ivie, Rachel; Stith, James H.
2008-01-01
This paper presents data covering the representation of African Americans among physics and geoscience degree recipients at each stage of the educational system. The data were collected by several statistical agencies and are here provided in far more detail than has ever been available before. By placing all the data in one place, this paper…
ERIC Educational Resources Information Center
Koparan, Timur; Güven, Bülent
2015-01-01
The point of this study is to define the effect of project-based learning approach on 8th Grade secondary-school students' statistical literacy levels for data representation. To achieve this goal, a test which consists of 12 open-ended questions in accordance with the views of experts was developed. Seventy 8th grade secondary-school students, 35…
Zhang, Qin; Yao, Quanying
2018-05-01
The dynamic uncertain causality graph (DUCG) is a newly presented framework for uncertain causality representation and probabilistic reasoning. It has been successfully applied to online fault diagnoses of large, complex industrial systems, and decease diagnoses. This paper extends the DUCG to model more complex cases than what could be previously modeled, e.g., the case in which statistical data are in different groups with or without overlap, and some domain knowledge and actions (new variables with uncertain causalities) are introduced. In other words, this paper proposes to use -mode, -mode, and -mode of the DUCG to model such complex cases and then transform them into either the standard -mode or the standard -mode. In the former situation, if no directed cyclic graph is involved, the transformed result is simply a Bayesian network (BN), and existing inference methods for BNs can be applied. In the latter situation, an inference method based on the DUCG is proposed. Examples are provided to illustrate the methodology.
Sensory processing patterns predict the integration of information held in visual working memory.
Lowe, Matthew X; Stevenson, Ryan A; Wilson, Kristin E; Ouslis, Natasha E; Barense, Morgan D; Cant, Jonathan S; Ferber, Susanne
2016-02-01
Given the limited resources of visual working memory, multiple items may be remembered as an averaged group or ensemble. As a result, local information may be ill-defined, but these ensemble representations provide accurate diagnostics of the natural world by combining gist information with item-level information held in visual working memory. Some neurodevelopmental disorders are characterized by sensory processing profiles that predispose individuals to avoid or seek-out sensory stimulation, fundamentally altering their perceptual experience. Here, we report such processing styles will affect the computation of ensemble statistics in the general population. We identified stable adult sensory processing patterns to demonstrate that individuals with low sensory thresholds who show a greater proclivity to engage in active response strategies to prevent sensory overstimulation are less likely to integrate mean size information across a set of similar items and are therefore more likely to be biased away from the mean size representation of an ensemble display. We therefore propose the study of ensemble processing should extend beyond the statistics of the display, and should also consider the statistics of the observer. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Koparan, Timur; Güven, Bülent
2015-07-01
The point of this study is to define the effect of project-based learning approach on 8th Grade secondary-school students' statistical literacy levels for data representation. To achieve this goal, a test which consists of 12 open-ended questions in accordance with the views of experts was developed. Seventy 8th grade secondary-school students, 35 in the experimental group and 35 in the control group, took this test twice, one before the application and one after the application. All the raw scores were turned into linear points by using the Winsteps 3.72 modelling program that makes the Rasch analysis and t-tests, and an ANCOVA analysis was carried out with the linear points. Depending on the findings, it was concluded that the project-based learning approach increases students' level of statistical literacy for data representation. Students' levels of statistical literacy before and after the application were shown through the obtained person-item maps.
NASA Astrophysics Data System (ADS)
Orović, Irena; Stanković, Srdjan; Amin, Moeness
2013-05-01
A modified robust two-dimensional compressive sensing algorithm for reconstruction of sparse time-frequency representation (TFR) is proposed. The ambiguity function domain is assumed to be the domain of observations. The two-dimensional Fourier bases are used to linearly relate the observations to the sparse TFR, in lieu of the Wigner distribution. We assume that a set of available samples in the ambiguity domain is heavily corrupted by an impulsive type of noise. Consequently, the problem of sparse TFR reconstruction cannot be tackled using standard compressive sensing optimization algorithms. We introduce a two-dimensional L-statistics based modification into the transform domain representation. It provides suitable initial conditions that will produce efficient convergence of the reconstruction algorithm. This approach applies sorting and weighting operations to discard an expected amount of samples corrupted by noise. The remaining samples serve as observations used in sparse reconstruction of the time-frequency signal representation. The efficiency of the proposed approach is demonstrated on numerical examples that comprise both cases of monocomponent and multicomponent signals.
Insight into others' minds: spatio-temporal representations by intrinsic frame of reference.
Sun, Yanlong; Wang, Hongbin
2014-01-01
Recent research has seen a growing interest in connections between domains of spatial and social cognition. Much evidence indicates that processes of representing space in distinct frames of reference (FOR) contribute to basic spatial abilities as well as sophisticated social abilities such as tracking other's intention and belief. Argument remains, however, that belief reasoning in social domain requires an innately dedicated system and cannot be reduced to low-level encoding of spatial relationships. Here we offer an integrated account advocating the critical roles of spatial representations in intrinsic frame of reference. By re-examining the results from a spatial task (Tamborello etal., 2012) and a false-belief task (Onishi and Baillargeon, 2005), we argue that spatial and social abilities share a common origin at the level of spatio-temporal association and predictive learning, where multiple FOR-based representations provide the basic building blocks for efficient and flexible partitioning of the environmental statistics. We also discuss neuroscience evidence supporting these mechanisms. We conclude that FOR-based representations may bridge the conceptual as well as the implementation gaps between the burgeoning fields of social and spatial cognition.
Incremental Implicit Learning of Bundles of Statistical Patterns
Qian, Ting; Jaeger, T. Florian; Aslin, Richard N.
2016-01-01
Forming an accurate representation of a task environment often takes place incrementally as the information relevant to learning the representation only unfolds over time. This incremental nature of learning poses an important problem: it is usually unclear whether a sequence of stimuli consists of only a single pattern, or multiple patterns that are spliced together. In the former case, the learner can directly use each observed stimulus to continuously revise its representation of the task environment. In the latter case, however, the learner must first parse the sequence of stimuli into different bundles, so as to not conflate the multiple patterns. We created a video-game statistical learning paradigm and investigated 1) whether learners without prior knowledge of the existence of multiple “stimulus bundles” — subsequences of stimuli that define locally coherent statistical patterns — could detect their presence in the input, and 2) whether learners are capable of constructing a rich representation that encodes the various statistical patterns associated with bundles. By comparing human learning behavior to the predictions of three computational models, we find evidence that learners can handle both tasks successfully. In addition, we discuss the underlying reasons for why the learning of stimulus bundles occurs even when such behavior may seem irrational. PMID:27639552
Robust kernel representation with statistical local features for face recognition.
Yang, Meng; Zhang, Lei; Shiu, Simon Chi-Keung; Zhang, David
2013-06-01
Factors such as misalignment, pose variation, and occlusion make robust face recognition a difficult problem. It is known that statistical features such as local binary pattern are effective for local feature extraction, whereas the recently proposed sparse or collaborative representation-based classification has shown interesting results in robust face recognition. In this paper, we propose a novel robust kernel representation model with statistical local features (SLF) for robust face recognition. Initially, multipartition max pooling is used to enhance the invariance of SLF to image registration error. Then, a kernel-based representation model is proposed to fully exploit the discrimination information embedded in the SLF, and robust regression is adopted to effectively handle the occlusion in face images. Extensive experiments are conducted on benchmark face databases, including extended Yale B, AR (A. Martinez and R. Benavente), multiple pose, illumination, and expression (multi-PIE), facial recognition technology (FERET), face recognition grand challenge (FRGC), and labeled faces in the wild (LFW), which have different variations of lighting, expression, pose, and occlusions, demonstrating the promising performance of the proposed method.
Towards Web-based representation and processing of health information
Gao, Sheng; Mioc, Darka; Yi, Xiaolun; Anton, Francois; Oldfield, Eddie; Coleman, David J
2009-01-01
Background There is great concern within health surveillance, on how to grapple with environmental degradation, rapid urbanization, population mobility and growth. The Internet has emerged as an efficient way to share health information, enabling users to access and understand data at their fingertips. Increasingly complex problems in the health field require increasingly sophisticated computer software, distributed computing power, and standardized data sharing. To address this need, Web-based mapping is now emerging as an important tool to enable health practitioners, policy makers, and the public to understand spatial health risks, population health trends and vulnerabilities. Today several web-based health applications generate dynamic maps; however, for people to fully interpret the maps they need data source description and the method used in the data analysis or statistical modeling. For the representation of health information through Web-mapping applications, there still lacks a standard format to accommodate all fixed (such as location) and variable (such as age, gender, health outcome, etc) indicators in the representation of health information. Furthermore, net-centric computing has not been adequately applied to support flexible health data processing and mapping online. Results The authors of this study designed a HEalth Representation XML (HERXML) schema that consists of the semantic (e.g., health activity description, the data sources description, the statistical methodology used for analysis), geometric, and cartographical representations of health data. A case study has been carried on the development of web application and services within the Canadian Geospatial Data Infrastructure (CGDI) framework for community health programs of the New Brunswick Lung Association. This study facilitated the online processing, mapping and sharing of health information, with the use of HERXML and Open Geospatial Consortium (OGC) services. It brought a new solution in better health data representation and initial exploration of the Web-based processing of health information. Conclusion The designed HERXML has been proven to be an appropriate solution in supporting the Web representation of health information. It can be used by health practitioners, policy makers, and the public in disease etiology, health planning, health resource management, health promotion and health education. The utilization of Web-based processing services in this study provides a flexible way for users to select and use certain processing functions for health data processing and mapping via the Web. This research provides easy access to geospatial and health data in understanding the trends of diseases, and promotes the growth and enrichment of the CGDI in the public health sector. PMID:19159445
Ensemble Kalman filters for dynamical systems with unresolved turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grooms, Ian, E-mail: grooms@cims.nyu.edu; Lee, Yoonsang; Majda, Andrew J.
Ensemble Kalman filters are developed for turbulent dynamical systems where the forecast model does not resolve all the active scales of motion. Coarse-resolution models are intended to predict the large-scale part of the true dynamics, but observations invariably include contributions from both the resolved large scales and the unresolved small scales. The error due to the contribution of unresolved scales to the observations, called ‘representation’ or ‘representativeness’ error, is often included as part of the observation error, in addition to the raw measurement error, when estimating the large-scale part of the system. It is here shown how stochastic superparameterization (amore » multiscale method for subgridscale parameterization) can be used to provide estimates of the statistics of the unresolved scales. In addition, a new framework is developed wherein small-scale statistics can be used to estimate both the resolved and unresolved components of the solution. The one-dimensional test problem from dispersive wave turbulence used here is computationally tractable yet is particularly difficult for filtering because of the non-Gaussian extreme event statistics and substantial small scale turbulence: a shallow energy spectrum proportional to k{sup −5/6} (where k is the wavenumber) results in two-thirds of the climatological variance being carried by the unresolved small scales. Because the unresolved scales contain so much energy, filters that ignore the representation error fail utterly to provide meaningful estimates of the system state. Inclusion of a time-independent climatological estimate of the representation error in a standard framework leads to inaccurate estimates of the large-scale part of the signal; accurate estimates of the large scales are only achieved by using stochastic superparameterization to provide evolving, large-scale dependent predictions of the small-scale statistics. Again, because the unresolved scales contain so much energy, even an accurate estimate of the large-scale part of the system does not provide an accurate estimate of the true state. By providing simultaneous estimates of both the large- and small-scale parts of the solution, the new framework is able to provide accurate estimates of the true system state.« less
LaBudde, Robert A; Harnly, James M
2012-01-01
A qualitative botanical identification method (BIM) is an analytical procedure that returns a binary result (1 = Identified, 0 = Not Identified). A BIM may be used by a buyer, manufacturer, or regulator to determine whether a botanical material being tested is the same as the target (desired) material, or whether it contains excessive nontarget (undesirable) material. The report describes the development and validation of studies for a BIM based on the proportion of replicates identified, or probability of identification (POI), as the basic observed statistic. The statistical procedures proposed for data analysis follow closely those of the probability of detection, and harmonize the statistical concepts and parameters between quantitative and qualitative method validation. Use of POI statistics also harmonizes statistical concepts for botanical, microbiological, toxin, and other analyte identification methods that produce binary results. The POI statistical model provides a tool for graphical representation of response curves for qualitative methods, reporting of descriptive statistics, and application of performance requirements. Single collaborator and multicollaborative study examples are given.
Counting women's work in the agricultural census of Nepal: a report.
Joshi, S
2000-01-01
Like many national statistical surveys, the Agricultural Census of Nepal does not reflect the actual contribution of women's work in agriculture. Inadequacies in conceptualization, definition of terms and data gathering methods result in undervaluation and underrepresentation of women's work. This study of 124 Newar households in the Lubhu Village Development Committee, Kathmandu Valley, provides a statistical representation of women's roles in agricultural operations and household activities by assessing the actual extent of their work. After analyzing the gender division of labor, the study concludes that women's work in agriculture and household activities is significantly higher than men's work.
Can power-law scaling and neuronal avalanches arise from stochastic dynamics?
Touboul, Jonathan; Destexhe, Alain
2010-02-11
The presence of self-organized criticality in biology is often evidenced by a power-law scaling of event size distributions, which can be measured by linear regression on logarithmic axes. We show here that such a procedure does not necessarily mean that the system exhibits self-organized criticality. We first provide an analysis of multisite local field potential (LFP) recordings of brain activity and show that event size distributions defined as negative LFP peaks can be close to power-law distributions. However, this result is not robust to change in detection threshold, or when tested using more rigorous statistical analyses such as the Kolmogorov-Smirnov test. Similar power-law scaling is observed for surrogate signals, suggesting that power-law scaling may be a generic property of thresholded stochastic processes. We next investigate this problem analytically, and show that, indeed, stochastic processes can produce spurious power-law scaling without the presence of underlying self-organized criticality. However, this power-law is only apparent in logarithmic representations, and does not survive more rigorous analysis such as the Kolmogorov-Smirnov test. The same analysis was also performed on an artificial network known to display self-organized criticality. In this case, both the graphical representations and the rigorous statistical analysis reveal with no ambiguity that the avalanche size is distributed as a power-law. We conclude that logarithmic representations can lead to spurious power-law scaling induced by the stochastic nature of the phenomenon. This apparent power-law scaling does not constitute a proof of self-organized criticality, which should be demonstrated by more stringent statistical tests.
Vessel, Edward A; Biederman, Irving; Subramaniam, Suresh; Greene, Michelle R
2016-07-01
An L-vertex, the point at which two contours coterminate, provides highly reliable evidence that a surface terminates at that vertex, thus providing the strongest constraint on the extraction of shape from images (Guzman, 1968). Such vertices are pervasive in our visual world but the importance of a statistical regularity about them has been underappreciated: The contours defining the vertex are (almost) always of the same direction of contrast with respect to the background (i.e., both darker or both lighter). Here we show that when the two contours are of different directions of contrast, the capacity of the L-vertex to signal the termination of a surface, as reflected in object recognition, is markedly reduced. Although image statistics have been implicated in determining the connectivity in the earliest cortical visual stage (V1) and in grouping during visual search, this finding provides evidence that such statistics are involved in later stages where object representations are derived from two-dimensional images.
ERIC Educational Resources Information Center
Gazeley, Louise; Dunne, Máiréad
2013-01-01
Exclusion from school is a disciplinary sanction used in English schools to manage behaviour by limiting a young person's attendance at school and the over-representation of Black pupils in national exclusions statistics has been a long-standing cause of concern. This paper reports on the findings of a small-scale, qualitative study that explored…
Vendrell, Oriol; Brill, Michael; Gatti, Fabien; Lauvergnat, David; Meyer, Hans-Dieter
2009-06-21
Quantum dynamical calculations are reported for the zero point energy, several low-lying vibrational states, and the infrared spectrum of the H(5)O(2)(+) cation. The calculations are performed by the multiconfiguration time-dependent Hartree (MCTDH) method. A new vector parametrization based on a mixed Jacobi-valence description of the system is presented. With this parametrization the potential energy surface coupling is reduced with respect to a full Jacobi description, providing a better convergence of the n-mode representation of the potential. However, new coupling terms appear in the kinetic energy operator. These terms are derived and discussed. A mode-combination scheme based on six combined coordinates is used, and the representation of the 15-dimensional potential in terms of a six-combined mode cluster expansion including up to some 7-dimensional grids is discussed. A statistical analysis of the accuracy of the n-mode representation of the potential at all orders is performed. Benchmark, fully converged results are reported for the zero point energy, which lie within the statistical uncertainty of the reference diffusion Monte Carlo result for this system. Some low-lying vibrationally excited eigenstates are computed by block improved relaxation, illustrating the applicability of the approach to large systems. Benchmark calculations of the linear infrared spectrum are provided, and convergence with increasing size of the time-dependent basis and as a function of the order of the n-mode representation is studied. The calculations presented here make use of recent developments in the parallel version of the MCTDH code, which are briefly discussed. We also show that the infrared spectrum can be computed, to a very good approximation, within D(2d) symmetry, instead of the G(16) symmetry used before, in which the complete rotation of one water molecule with respect to the other is allowed, thus simplifying the dynamical problem.
Face-space architectures: evidence for the use of independent color-based features.
Nestor, Adrian; Plaut, David C; Behrmann, Marlene
2013-07-01
The concept of psychological face space lies at the core of many theories of face recognition and representation. To date, much of the understanding of face space has been based on principal component analysis (PCA); the structure of the psychological space is thought to reflect some important aspects of a physical face space characterized by PCA applications to face images. In the present experiments, we investigated alternative accounts of face space and found that independent component analysis provided the best fit to human judgments of face similarity and identification. Thus, our results challenge an influential approach to the study of human face space and provide evidence for the role of statistically independent features in face encoding. In addition, our findings support the use of color information in the representation of facial identity, and we thus argue for the inclusion of such information in theoretical and computational constructs of face space.
Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude
2016-01-01
The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108
Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude
2016-06-10
The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.
The Victor C++ library for protein representation and advanced manipulation.
Hirsh, Layla; Piovesan, Damiano; Giollo, Manuel; Ferrari, Carlo; Tosatto, Silvio C E
2015-04-01
Protein sequence and structure representation and manipulation require dedicated software libraries to support methods of increasing complexity. Here, we describe the VIrtual Constrution TOol for pRoteins (Victor) C++ library, an open source platform dedicated to enabling inexperienced users to develop advanced tools and gathering contributions from the community. The provided application examples cover statistical energy potentials, profile-profile sequence alignments and ab initio loop modeling. Victor was used over the last 15 years in several publications and optimized for efficiency. It is provided as a GitHub repository with source files and unit tests, plus extensive online documentation, including a Wiki with help files and tutorials, examples and Doxygen documentation. The C++ library and online documentation, distributed under a GPL license are available from URL: http://protein.bio.unipd.it/victor/. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sereno, Anne B.; Lehky, Sidney R.
2011-01-01
Although the representation of space is as fundamental to visual processing as the representation of shape, it has received relatively little attention from neurophysiological investigations. In this study we characterize representations of space within visual cortex, and examine how they differ in a first direct comparison between dorsal and ventral subdivisions of the visual pathways. Neural activities were recorded in anterior inferotemporal cortex (AIT) and lateral intraparietal cortex (LIP) of awake behaving monkeys, structures associated with the ventral and dorsal visual pathways respectively, as a stimulus was presented at different locations within the visual field. In spatially selective cells, we find greater modulation of cell responses in LIP with changes in stimulus position. Further, using a novel population-based statistical approach (namely, multidimensional scaling), we recover the spatial map implicit within activities of neural populations, allowing us to quantitatively compare the geometry of neural space with physical space. We show that a population of spatially selective LIP neurons, despite having large receptive fields, is able to almost perfectly reconstruct stimulus locations within a low-dimensional representation. In contrast, a population of AIT neurons, despite each cell being spatially selective, provide less accurate low-dimensional reconstructions of stimulus locations. They produce instead only a topologically (categorically) correct rendition of space, which nevertheless might be critical for object and scene recognition. Furthermore, we found that the spatial representation recovered from population activity shows greater translation invariance in LIP than in AIT. We suggest that LIP spatial representations may be dimensionally isomorphic with 3D physical space, while in AIT spatial representations may reflect a more categorical representation of space (e.g., “next to” or “above”). PMID:21344010
ERIC Educational Resources Information Center
Braham, Hana Manor; Ben-Zvi, Dani
2017-01-01
A fundamental aspect of statistical inference is representation of real-world data using statistical models. This article analyzes students' articulations of statistical models and modeling during their first steps in making informal statistical inferences. An integrated modeling approach (IMA) was designed and implemented to help students…
Deformation in Metallic Glass: Connecting Atoms to Continua
NASA Astrophysics Data System (ADS)
Hinkle, Adam R.; Falk, Michael L.; Rycroft, Chris H.; Shields, Michael D.
Metallic glasses like other amorphous solids experience strain localization as the primary mode of failure. However, the development of continuum constitutive laws which provide a quantitative description of disorder and mechanical deformation remains an open challenge. Recent progress has shown the necessity of accurately capturing fluctuations in material structure, in particular the statistical changes in potential energy of the atomic constituents during the non-equilibrium process of applied shear. Here we directly cross-compare molecular dynamics shear simulations of a ZrCu glass with continuum shear transformation zone (STZ) theory representations. We present preliminary results for a methodology to coarse-grain detailed molecular dynamics data with the goal of initializing a continuum representation in the STZ theory. NSF Grants Awards 1107838, 1408685, and 0801471.
Visual feature extraction from voxel-weighted averaging of stimulus images in 2 fMRI studies.
Hart, Corey B; Rose, William J
2013-11-01
Multiple studies have provided evidence for distributed object representation in the brain, with several recent experiments leveraging basis function estimates for partial image reconstruction from fMRI data. Using a novel combination of statistical decomposition, generalized linear models, and stimulus averaging on previously examined image sets and Bayesian regression of recorded fMRI activity during presentation of these data sets, we identify a subset of relevant voxels that appear to code for covarying object features. Using a technique we term "voxel-weighted averaging," we isolate image filters that these voxels appear to implement. The results, though very cursory, appear to have significant implications for hierarchical and deep-learning-type approaches toward the understanding of neural coding and representation.
Agner, Shannon C; Xu, Jun; Madabhushi, Anant
2013-03-01
Segmentation of breast lesions on dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) is the first step in lesion diagnosis in a computer-aided diagnosis framework. Because manual segmentation of such lesions is both time consuming and highly susceptible to human error and issues of reproducibility, an automated lesion segmentation method is highly desirable. Traditional automated image segmentation methods such as boundary-based active contour (AC) models require a strong gradient at the lesion boundary. Even when region-based terms are introduced to an AC model, grayscale image intensities often do not allow for clear definition of foreground and background region statistics. Thus, there is a need to find alternative image representations that might provide (1) strong gradients at the margin of the object of interest (OOI); and (2) larger separation between intensity distributions and region statistics for the foreground and background, which are necessary to halt evolution of the AC model upon reaching the border of the OOI. In this paper, the authors introduce a spectral embedding (SE) based AC (SEAC) for lesion segmentation on breast DCE-MRI. SE, a nonlinear dimensionality reduction scheme, is applied to the DCE time series in a voxelwise fashion to reduce several time point images to a single parametric image where every voxel is characterized by the three dominant eigenvectors. This parametric eigenvector image (PrEIm) representation allows for better capture of image region statistics and stronger gradients for use with a hybrid AC model, which is driven by both boundary and region information. They compare SEAC to ACs that employ fuzzy c-means (FCM) and principal component analysis (PCA) as alternative image representations. Segmentation performance was evaluated by boundary and region metrics as well as comparing lesion classification using morphological features from SEAC, PCA+AC, and FCM+AC. On a cohort of 50 breast DCE-MRI studies, PrEIm yielded overall better region and boundary-based statistics compared to the original DCE-MR image, FCM, and PCA based image representations. Additionally, SEAC outperformed a hybrid AC applied to both PCA and FCM image representations. Mean dice similarity coefficient (DSC) for SEAC was significantly better (DSC = 0.74 ± 0.21) than FCM+AC (DSC = 0.50 ± 0.32) and similar to PCA+AC (DSC = 0.73 ± 0.22). Boundary-based metrics of mean absolute difference and Hausdorff distance followed the same trends. Of the automated segmentation methods, breast lesion classification based on morphologic features derived from SEAC segmentation using a support vector machine classifier also performed better (AUC = 0.67 ± 0.05; p < 0.05) than FCM+AC (AUC = 0.50 ± 0.07), and PCA+AC (AUC = 0.49 ± 0.07). In this work, we presented SEAC, an accurate, general purpose AC segmentation tool that could be applied to any imaging domain that employs time series data. SE allows for projection of time series data into a PrEIm representation so that every voxel is characterized by the dominant eigenvectors, capturing the global and local time-intensity curve similarities in the data. This PrEIm allows for the calculation of strong tensor gradients and better region statistics than the original image intensities or alternative image representations such as PCA and FCM. The PrEIm also allows for building a more accurate hybrid AC scheme.
Statistical representation of a spray as a point process
NASA Astrophysics Data System (ADS)
Subramaniam, S.
2000-10-01
The statistical representation of a spray as a finite point process is investigated. One objective is to develop a better understanding of how single-point statistical information contained in descriptions such as the droplet distribution function (ddf), relates to the probability density functions (pdfs) associated with the droplets themselves. Single-point statistical information contained in the droplet distribution function (ddf) is shown to be related to a sequence of single surrogate-droplet pdfs, which are in general different from the physical single-droplet pdfs. It is shown that the ddf contains less information than the fundamental single-point statistical representation of the spray, which is also described. The analysis shows which events associated with the ensemble of spray droplets can be characterized by the ddf, and which cannot. The implications of these findings for the ddf approach to spray modeling are discussed. The results of this study also have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single-point statistics such as the droplet number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets. Implications of these findings for large eddy simulations of multiphase flows are also discussed.
Constructing Noise-Invariant Representations of Sound in the Auditory Pathway
Rabinowitz, Neil C.; Willmore, Ben D. B.; King, Andrew J.; Schnupp, Jan W. H.
2013-01-01
Identifying behaviorally relevant sounds in the presence of background noise is one of the most important and poorly understood challenges faced by the auditory system. An elegant solution to this problem would be for the auditory system to represent sounds in a noise-invariant fashion. Since a major effect of background noise is to alter the statistics of the sounds reaching the ear, noise-invariant representations could be promoted by neurons adapting to stimulus statistics. Here we investigated the extent of neuronal adaptation to the mean and contrast of auditory stimulation as one ascends the auditory pathway. We measured these forms of adaptation by presenting complex synthetic and natural sounds, recording neuronal responses in the inferior colliculus and primary fields of the auditory cortex of anaesthetized ferrets, and comparing these responses with a sophisticated model of the auditory nerve. We find that the strength of both forms of adaptation increases as one ascends the auditory pathway. To investigate whether this adaptation to stimulus statistics contributes to the construction of noise-invariant sound representations, we also presented complex, natural sounds embedded in stationary noise, and used a decoding approach to assess the noise tolerance of the neuronal population code. We find that the code for complex sounds in the periphery is affected more by the addition of noise than the cortical code. We also find that noise tolerance is correlated with adaptation to stimulus statistics, so that populations that show the strongest adaptation to stimulus statistics are also the most noise-tolerant. This suggests that the increase in adaptation to sound statistics from auditory nerve to midbrain to cortex is an important stage in the construction of noise-invariant sound representations in the higher auditory brain. PMID:24265596
ERIC Educational Resources Information Center
Bull, Elizabeth Kay
The goal of this study was to find a way to quantify three criteria of representational quality, described by Greeno, so that it would be possible to examine statistically the relationship between representational quality and other variables related to problem solution. The sample consisted of 18 college students, 84 percent of whom had…
ERIC Educational Resources Information Center
Hsu, Yu-Chang
2009-01-01
Students in the Science, Technology, Engineering, and Mathematics (STEM) fields are confronted with multiple external representations (MERs) in their learning materials. The ability to learn from and communicate with these MERs requires not only that students comprehend each representation individually but also that students recognize how the…
Decoding the future from past experience: learning shapes predictions in early visual cortex.
Luft, Caroline D B; Meeson, Alan; Welchman, Andrew E; Kourtzi, Zoe
2015-05-01
Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex. Copyright © 2015 the American Physiological Society.
Steganalysis of recorded speech
NASA Astrophysics Data System (ADS)
Johnson, Micah K.; Lyu, Siwei; Farid, Hany
2005-03-01
Digital audio provides a suitable cover for high-throughput steganography. At 16 bits per sample and sampled at a rate of 44,100 Hz, digital audio has the bit-rate to support large messages. In addition, audio is often transient and unpredictable, facilitating the hiding of messages. Using an approach similar to our universal image steganalysis, we show that hidden messages alter the underlying statistics of audio signals. Our statistical model begins by building a linear basis that captures certain statistical properties of audio signals. A low-dimensional statistical feature vector is extracted from this basis representation and used by a non-linear support vector machine for classification. We show the efficacy of this approach on LSB embedding and Hide4PGP. While no explicit assumptions about the content of the audio are made, our technique has been developed and tested on high-quality recorded speech.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarocki, John Charles; Zage, David John; Fisher, Andrew N.
LinkShop is a software tool for applying the method of Linkography to the analysis time-sequence data. LinkShop provides command line, web, and application programming interfaces (API) for input and processing of time-sequence data, abstraction models, and ontologies. The software creates graph representations of the abstraction model, ontology, and derived linkograph. Finally, the tool allows the user to perform statistical measurements of the linkograph and refine the ontology through direct manipulation of the linkograph.
2011-10-01
inconsistency in the representation of the dataset. RST provides a mathematical tool for representing and reasoning about vagueness and inconsistency. Its...use of various mathematical , statistical and soft computing methodologies with the objective of identifying meaningful relationships between condition...Evidence-based Medicine and Health Outcomes Research, University of South Florida, Tampa, FL 2Department of Mathematics , Indiana University Northwest, Gary
Population Representation in the Military Services, Fiscal Year 1992
1993-10-01
accessions and members. Chapter 1 provides a summary of military social composition issues since the inception of the all- volunteer force. The chapter...intelligent, well-educated volunteers , representing all socioeconomic groups. Chapter 8 concludes with a focus on the future. This report will contribute...Selected Statistics for FY 1992 NPS Accessions by Region, Division, and State with Civilians 18-24 Years Old ............. 2-26 3.1 Parents Who Are
Protein Structure Classification and Loop Modeling Using Multiple Ramachandran Distributions.
Najibi, Seyed Morteza; Maadooliat, Mehdi; Zhou, Lan; Huang, Jianhua Z; Gao, Xin
2017-01-01
Recently, the study of protein structures using angular representations has attracted much attention among structural biologists. The main challenge is how to efficiently model the continuous conformational space of the protein structures based on the differences and similarities between different Ramachandran plots. Despite the presence of statistical methods for modeling angular data of proteins, there is still a substantial need for more sophisticated and faster statistical tools to model the large-scale circular datasets. To address this need, we have developed a nonparametric method for collective estimation of multiple bivariate density functions for a collection of populations of protein backbone angles. The proposed method takes into account the circular nature of the angular data using trigonometric spline which is more efficient compared to existing methods. This collective density estimation approach is widely applicable when there is a need to estimate multiple density functions from different populations with common features. Moreover, the coefficients of adaptive basis expansion for the fitted densities provide a low-dimensional representation that is useful for visualization, clustering, and classification of the densities. The proposed method provides a novel and unique perspective to two important and challenging problems in protein structure research: structure-based protein classification and angular-sampling-based protein loop structure prediction.
Progress with modeling activity landscapes in drug discovery.
Vogt, Martin
2018-04-19
Activity landscapes (ALs) are representations and models of compound data sets annotated with a target-specific activity. In contrast to quantitative structure-activity relationship (QSAR) models, ALs aim at characterizing structure-activity relationships (SARs) on a large-scale level encompassing all active compounds for specific targets. The popularity of AL modeling has grown substantially with the public availability of large activity-annotated compound data sets. AL modeling crucially depends on molecular representations and similarity metrics used to assess structural similarity. Areas covered: The concepts of AL modeling are introduced and its basis in quantitatively assessing molecular similarity is discussed. The different types of AL modeling approaches are introduced. AL designs can broadly be divided into three categories: compound-pair based, dimensionality reduction, and network approaches. Recent developments for each of these categories are discussed focusing on the application of mathematical, statistical, and machine learning tools for AL modeling. AL modeling using chemical space networks is covered in more detail. Expert opinion: AL modeling has remained a largely descriptive approach for the analysis of SARs. Beyond mere visualization, the application of analytical tools from statistics, machine learning and network theory has aided in the sophistication of AL designs and provides a step forward in transforming ALs from descriptive to predictive tools. To this end, optimizing representations that encode activity relevant features of molecules might prove to be a crucial step.
On the performance of metrics to predict quality in point cloud representations
NASA Astrophysics Data System (ADS)
Alexiou, Evangelos; Ebrahimi, Touradj
2017-09-01
Point clouds are a promising alternative for immersive representation of visual contents. Recently, an increased interest has been observed in the acquisition, processing and rendering of this modality. Although subjective and objective evaluations are critical in order to assess the visual quality of media content, they still remain open problems for point cloud representation. In this paper we focus our efforts on subjective quality assessment of point cloud geometry, subject to typical types of impairments such as noise corruption and compression-like distortions. In particular, we propose a subjective methodology that is closer to real-life scenarios of point cloud visualization. The performance of the state-of-the-art objective metrics is assessed by considering the subjective scores as the ground truth. Moreover, we investigate the impact of adopting different test methodologies by comparing them. Advantages and drawbacks of every approach are reported, based on statistical analysis. The results and conclusions of this work provide useful insights that could be considered in future experimentation.
Donato, Gianluca; Bartlett, Marian Stewart; Hager, Joseph C.; Ekman, Paul; Sejnowski, Terrence J.
2010-01-01
The Facial Action Coding System (FACS) [23] is an objective method for quantifying facial movement in terms of component actions. This system is widely used in behavioral investigations of emotion, cognitive processes, and social interaction. The coding is presently performed by highly trained human experts. This paper explores and compares techniques for automatically recognizing facial actions in sequences of images. These techniques include analysis of facial motion through estimation of optical flow; holistic spatial analysis, such as principal component analysis, independent component analysis, local feature analysis, and linear discriminant analysis; and methods based on the outputs of local filters, such as Gabor wavelet representations and local principal components. Performance of these systems is compared to naive and expert human subjects. Best performances were obtained using the Gabor wavelet representation and the independent component representation, both of which achieved 96 percent accuracy for classifying 12 facial actions of the upper and lower face. The results provide converging evidence for the importance of using local filters, high spatial frequencies, and statistical independence for classifying facial actions. PMID:21188284
Staudacher, Erich M.; Huetteroth, Wolf; Schachtner, Joachim; Daly, Kevin C.
2009-01-01
A central problem facing studies of neural encoding in sensory systems is how to accurately quantify the extent of spatial and temporal responses. In this study, we take advantage of the relatively simple and stereotypic neural architecture found in invertebrates. We combine standard electrophysiological techniques, recently developed population analysis techniques, and novel anatomical methods to form an innovative 4-dimensional view of odor output representations in the antennal lobe of the moth Manduca sexta. This novel approach allows quantification of olfactory responses of characterized neurons with spike time resolution. Additionally, arbitrary integration windows can be used for comparisons with other methods such as imaging. By assigning statistical significance to changes in neuronal firing, this method can visualize activity across the entire antennal lobe. The resulting 4-dimensional representation of antennal lobe output complements imaging and multi-unit experiments yet provides a more comprehensive and accurate view of glomerular activation patterns in spike time resolution. PMID:19464513
A wavelet-based statistical analysis of FMRI data: I. motivation and data distribution modeling.
Dinov, Ivo D; Boscardin, John W; Mega, Michael S; Sowell, Elizabeth L; Toga, Arthur W
2005-01-01
We propose a new method for statistical analysis of functional magnetic resonance imaging (fMRI) data. The discrete wavelet transformation is employed as a tool for efficient and robust signal representation. We use structural magnetic resonance imaging (MRI) and fMRI to empirically estimate the distribution of the wavelet coefficients of the data both across individuals and spatial locations. An anatomical subvolume probabilistic atlas is used to tessellate the structural and functional signals into smaller regions each of which is processed separately. A frequency-adaptive wavelet shrinkage scheme is employed to obtain essentially optimal estimations of the signals in the wavelet space. The empirical distributions of the signals on all the regions are computed in a compressed wavelet space. These are modeled by heavy-tail distributions because their histograms exhibit slower tail decay than the Gaussian. We discovered that the Cauchy, Bessel K Forms, and Pareto distributions provide the most accurate asymptotic models for the distribution of the wavelet coefficients of the data. Finally, we propose a new model for statistical analysis of functional MRI data using this atlas-based wavelet space representation. In the second part of our investigation, we will apply this technique to analyze a large fMRI dataset involving repeated presentation of sensory-motor response stimuli in young, elderly, and demented subjects.
The development of principled connections and kind representations.
Haward, Paul; Wagner, Laura; Carey, Susan; Prasada, Sandeep
2018-07-01
Kind representations draw an important distinction between properties that are understood as existing in instances of a kind by virtue of their being the kind of thing they are and properties that are not understood in this manner. For example, the property of barking for the kind dog is understood as being had by dogs by virtue of the fact that they are dogs. These properties are said to have a principled connection to the kind. In contrast, the property of wearing a collar is not understood as existing in instances by virtue of their being dogs, despite the fact that a large percentage of dogs wear collars. Such properties are said to have a statistical connection to the kind. Two experiments tested two signatures of principled connections in 4-7 year olds and adults: (i) that principled connections license normative expectations (e.g., we judge there to be something wrong with a dog that does not bark), and (ii) that principled connections license formal explanations which explain the existence of a property by reference to the kind (e.g., that barks because it is a dog). Experiment 1 showed that both the children and adults have normative expectations for properties that have a principled connection to a kind, but not those that have a mere statistical connection to a kind. Experiment 2 showed that both children and adults are more likely to provide a formal explanation when explaining the existence of properties with a principled connection to a kind than properties with statistical connections to their kinds. Both experiments showed no effect of age (over ages 4, 7, and adulthood) on the extent to which participants differentiated principled and statistical connections. We discuss the implications of the results for theories of conceptual representation and for the structure of explanation. Copyright © 2018 Elsevier B.V. All rights reserved.
Multidimensional Analysis of Linguistic Networks
NASA Astrophysics Data System (ADS)
Araújo, Tanya; Banisch, Sven
Network-based approaches play an increasingly important role in the analysis of data even in systems in which a network representation is not immediately apparent. This is particularly true for linguistic networks, which use to be induced from a linguistic data set for which a network perspective is only one out of several options for representation. Here we introduce a multidimensional framework for network construction and analysis with special focus on linguistic networks. Such a framework is used to show that the higher is the abstraction level of network induction, the harder is the interpretation of the topological indicators used in network analysis. Several examples are provided allowing for the comparison of different linguistic networks as well as to networks in other fields of application of network theory. The computation and the intelligibility of some statistical indicators frequently used in linguistic networks are discussed. It suggests that the field of linguistic networks, by applying statistical tools inspired by network studies in other domains, may, in its current state, have only a limited contribution to the development of linguistic theory.
The Existence of Smooth Densities for the Prediction, Filtering and Smoothing Problems
1990-12-20
128 - 139. [14] With D. COLWELL and P.E. KOPP, Martingale representation and hedging policies. Stochastic Processes and Applications. (Accepted) [5j...Martingale Representation and Hedging Policies David B. COLWELL Robert J. ELLIOTT P. Ekkehard KOPP* Department of Statistics and Applied Probability...is determined by elementary methods in the Markov situation. Applications to hedging portfolios in finance are described. martingale representation
Direct Measurements of the Convective Recycling of the Upper Troposphere
NASA Technical Reports Server (NTRS)
Bertram, Timothy H.; Perring, Anne E.; Wooldridge, Paul J.; Crounse, John D.; Kwan, Alan J.; Wennberg, Paul O.; Scheuer, Eric; Dibb, Jack; Avery, Melody; Sachse, Glen;
2007-01-01
We present a statistical representation of the aggregate effects of deep convection on the chemistry and dynamics of the Upper Troposphere (UT) based on direct aircraft observations of the chemical composition of the UT over the Eastern United States and Canada during summer. These measurements provide new and unique observational constraints on the chemistry occurring downwind of convection and the rate at which air in the UT is recycled, previously only the province of model analyses. These results provide quantitative measures that can be used to evaluate global climate and chemistry models.
Combining Statistics and Physics to Improve Climate Downscaling
NASA Astrophysics Data System (ADS)
Gutmann, E. D.; Eidhammer, T.; Arnold, J.; Nowak, K.; Clark, M. P.
2017-12-01
Getting useful information from climate models is an ongoing problem that has plagued climate science and hydrologic prediction for decades. While it is possible to develop statistical corrections for climate models that mimic current climate almost perfectly, this does not necessarily guarantee that future changes are portrayed correctly. In contrast, convection permitting regional climate models (RCMs) have begun to provide an excellent representation of the regional climate system purely from first principles, providing greater confidence in their change signal. However, the computational cost of such RCMs prohibits the generation of ensembles of simulations or long time periods, thus limiting their applicability for hydrologic applications. Here we discuss a new approach combining statistical corrections with physical relationships for a modest computational cost. We have developed the Intermediate Complexity Atmospheric Research model (ICAR) to provide a climate and weather downscaling option that is based primarily on physics for a fraction of the computational requirements of a traditional regional climate model. ICAR also enables the incorporation of statistical adjustments directly within the model. We demonstrate that applying even simple corrections to precipitation while the model is running can improve the simulation of land atmosphere feedbacks in ICAR. For example, by incorporating statistical corrections earlier in the modeling chain, we permit the model physics to better represent the effect of mountain snowpack on air temperature changes.
Signal Sampling for Efficient Sparse Representation of Resting State FMRI Data
Ge, Bao; Makkie, Milad; Wang, Jin; Zhao, Shijie; Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhang, Shu; Zhang, Wei; Han, Junwei; Guo, Lei; Liu, Tianming
2015-01-01
As the size of brain imaging data such as fMRI grows explosively, it provides us with unprecedented and abundant information about the brain. How to reduce the size of fMRI data but not lose much information becomes a more and more pressing issue. Recent literature studies tried to deal with it by dictionary learning and sparse representation methods, however, their computation complexities are still high, which hampers the wider application of sparse representation method to large scale fMRI datasets. To effectively address this problem, this work proposes to represent resting state fMRI (rs-fMRI) signals of a whole brain via a statistical sampling based sparse representation. First we sampled the whole brain’s signals via different sampling methods, then the sampled signals were aggregate into an input data matrix to learn a dictionary, finally this dictionary was used to sparsely represent the whole brain’s signals and identify the resting state networks. Comparative experiments demonstrate that the proposed signal sampling framework can speed-up by ten times in reconstructing concurrent brain networks without losing much information. The experiments on the 1000 Functional Connectomes Project further demonstrate its effectiveness and superiority. PMID:26646924
Invariant visual object recognition: a model, with lighting invariance.
Rolls, Edmund T; Stringer, Simon M
2006-01-01
How are invariant representations of objects formed in the visual cortex? We describe a neurophysiological and computational approach which focusses on a feature hierarchy model in which invariant representations can be built by self-organizing learning based on the statistics of the visual input. The model can use temporal continuity in an associative synaptic learning rule with a short term memory trace, and/or it can use spatial continuity in Continuous Transformation learning. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and in this paper we show also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in for example spatial and object search tasks. The model has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene.
NASA Astrophysics Data System (ADS)
Lopez, Benjamin; Croiset, Nolwenn; Laurence, Gourcy
2014-05-01
The Water Framework Directive 2006/11/CE (WFD) on the protection of groundwater against pollution and deterioration asks Member States to identify significant and sustained upward trends in all bodies or groups of bodies of groundwater that are characterised as being at risk in accordance with Annex II to Directive 2000/60/EC. The Directive indicates that the procedure for the identification of significant and sustained upward trends must be based on a statistical method. Moreover, for significant increases of concentrations of pollutants, trend reversals are identified as being necessary. This means to be able to identify significant trend reversals. A specific tool, named HYPE, has been developed in order to help stakeholders working on groundwater trend assessment. The R encoded tool HYPE provides statistical analysis of groundwater time series. It follows several studies on the relevancy of the use of statistical tests on groundwater data series (Lopez et al., 2011) and other case studies on the thematic (Bourgine et al., 2012). It integrates the most powerful and robust statistical tests for hydrogeological applications. HYPE is linked to the French national database on groundwater data (ADES). So monitoring data gathered by the Water Agencies can be directly processed. HYPE has two main modules: - a characterisation module, which allows to visualize time series. HYPE calculates the main statistical characteristics and provides graphical representations; - a trend module, which identifies significant breaks, trends and trend reversals in time series, providing result table and graphical representation (cf figure). Additional modules are also implemented to identify regional and seasonal trends and to sample time series in a relevant way. HYPE has been used successfully in 2012 by the French Water Agencies to satisfy requirements of the WFD, concerning characterization of groundwater bodies' qualitative status and evaluation of the risk of non-achievement of good status. Bourgine B. et al. 2012, Ninth International Geostatistics Congress, Oslo, Norway June 11 - 15. Lopez B. et al. 2011, Final Report BRGM/RP-59515-FR. 166p.
Zhou, Xiangrong; Xu, Rui; Hara, Takeshi; Hirano, Yasushi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Kido, Shoji; Fujita, Hiroshi
2014-07-01
The shapes of the inner organs are important information for medical image analysis. Statistical shape modeling provides a way of quantifying and measuring shape variations of the inner organs in different patients. In this study, we developed a universal scheme that can be used for building the statistical shape models for different inner organs efficiently. This scheme combines the traditional point distribution modeling with a group-wise optimization method based on a measure called minimum description length to provide a practical means for 3D organ shape modeling. In experiments, the proposed scheme was applied to the building of five statistical shape models for hearts, livers, spleens, and right and left kidneys by use of 50 cases of 3D torso CT images. The performance of these models was evaluated by three measures: model compactness, model generalization, and model specificity. The experimental results showed that the constructed shape models have good "compactness" and satisfied the "generalization" performance for different organ shape representations; however, the "specificity" of these models should be improved in the future.
Image statistics underlying natural texture selectivity of neurons in macaque V4
Okazawa, Gouki; Tajima, Satohiro; Komatsu, Hidehiko
2015-01-01
Our daily visual experiences are inevitably linked to recognizing the rich variety of textures. However, how the brain encodes and differentiates a plethora of natural textures remains poorly understood. Here, we show that many neurons in macaque V4 selectively encode sparse combinations of higher-order image statistics to represent natural textures. We systematically explored neural selectivity in a high-dimensional texture space by combining texture synthesis and efficient-sampling techniques. This yielded parameterized models for individual texture-selective neurons. The models provided parsimonious but powerful predictors for each neuron’s preferred textures using a sparse combination of image statistics. As a whole population, the neuronal tuning was distributed in a way suitable for categorizing textures and quantitatively predicts human ability to discriminate textures. Together, we suggest that the collective representation of visual image statistics in V4 plays a key role in organizing the natural texture perception. PMID:25535362
The visual system’s internal model of the world
Lee, Tai Sing
2015-01-01
The Bayesian paradigm has provided a useful conceptual theory for understanding perceptual computation in the brain. While the detailed neural mechanisms of Bayesian inference are not fully understood, recent computational and neurophysiological works have illuminated the underlying computational principles and representational architecture. The fundamental insights are that the visual system is organized as a modular hierarchy to encode an internal model of the world, and that perception is realized by statistical inference based on such internal model. In this paper, I will discuss and analyze the varieties of representational schemes of these internal models and how they might be used to perform learning and inference. I will argue for a unified theoretical framework for relating the internal models to the observed neural phenomena and mechanisms in the visual cortex. PMID:26566294
Evidence for a Global Sampling Process in Extraction of Summary Statistics of Item Sizes in a Set.
Tokita, Midori; Ueda, Sachiyo; Ishiguchi, Akira
2016-01-01
Several studies have shown that our visual system may construct a "summary statistical representation" over groups of visual objects. Although there is a general understanding that human observers can accurately represent sets of a variety of features, many questions on how summary statistics, such as an average, are computed remain unanswered. This study investigated sampling properties of visual information used by human observers to extract two types of summary statistics of item sets, average and variance. We presented three models of ideal observers to extract the summary statistics: a global sampling model without sampling noise, global sampling model with sampling noise, and limited sampling model. We compared the performance of an ideal observer of each model with that of human observers using statistical efficiency analysis. Results suggest that summary statistics of items in a set may be computed without representing individual items, which makes it possible to discard the limited sampling account. Moreover, the extraction of summary statistics may not necessarily require the representation of individual objects with focused attention when the sets of items are larger than 4.
Australian Indigenous Higher Education: Politics, Policy and Representation
ERIC Educational Resources Information Center
Wilson, Katie; Wilks, Judith
2015-01-01
The growth of Aboriginal and Torres Strait Islander participation in Australian higher education from 1959 to the present is notable statistically, but below population parity. Distinct patterns in government policy-making and programme development, inconsistent funding and political influences, together with Indigenous representation during the…
FUNSTAT and statistical image representations
NASA Technical Reports Server (NTRS)
Parzen, E.
1983-01-01
General ideas of functional statistical inference analysis of one sample and two samples, univariate and bivariate are outlined. ONESAM program is applied to analyze the univariate probability distributions of multi-spectral image data.
Prediction of protein secondary structure content for the twilight zone sequences.
Homaeian, Leila; Kurgan, Lukasz A; Ruan, Jishou; Cios, Krzysztof J; Chen, Ke
2007-11-15
Secondary protein structure carries information about local structural arrangements, which include three major conformations: alpha-helices, beta-strands, and coils. Significant majority of successful methods for prediction of the secondary structure is based on multiple sequence alignment. However, multiple alignment fails to provide accurate results when a sequence comes from the twilight zone, that is, it is characterized by low (<30%) homology. To this end, we propose a novel method for prediction of secondary structure content through comprehensive sequence representation, called PSSC-core. The method uses a multiple linear regression model and introduces a comprehensive feature-based sequence representation to predict amount of helices and strands for sequences from the twilight zone. The PSSC-core method was tested and compared with two other state-of-the-art prediction methods on a set of 2187 twilight zone sequences. The results indicate that our method provides better predictions for both helix and strand content. The PSSC-core is shown to provide statistically significantly better results when compared with the competing methods, reducing the prediction error by 5-7% for helix and 7-9% for strand content predictions. The proposed feature-based sequence representation uses a comprehensive set of physicochemical properties that are custom-designed for each of the helix and strand content predictions. It includes composition and composition moment vectors, frequency of tetra-peptides associated with helical and strand conformations, various property-based groups like exchange groups, chemical groups of the side chains and hydrophobic group, auto-correlations based on hydrophobicity, side-chain masses, hydropathy, and conformational patterns for beta-sheets. The PSSC-core method provides an alternative for predicting the secondary structure content that can be used to validate and constrain results of other structure prediction methods. At the same time, it also provides useful insight into design of successful protein sequence representations that can be used in developing new methods related to prediction of different aspects of the secondary protein structure. (c) 2007 Wiley-Liss, Inc.
The Web as an educational tool for/in learning/teaching bioinformatics statistics.
Oliver, J; Pisano, M E; Alonso, T; Roca, P
2005-12-01
Statistics provides essential tool in Bioinformatics to interpret the results of a database search or for the management of enormous amounts of information provided from genomics, proteomics and metabolomics. The goal of this project was the development of a software tool that would be as simple as possible to demonstrate the use of the Bioinformatics statistics. Computer Simulation Methods (CSMs) developed using Microsoft Excel were chosen for their broad range of applications, immediate and easy formula calculation, immediate testing and easy graphics representation, and of general use and acceptance by the scientific community. The result of these endeavours is a set of utilities which can be accessed from the following URL: http://gmein.uib.es/bioinformatica/statistics. When tested on students with previous coursework with traditional statistical teaching methods, the general opinion/overall consensus was that Web-based instruction had numerous advantages, but traditional methods with manual calculations were also needed for their theory and practice. Once having mastered the basic statistical formulas, Excel spreadsheets and graphics were shown to be very useful for trying many parameters in a rapid fashion without having to perform tedious calculations. CSMs will be of great importance for the formation of the students and professionals in the field of bioinformatics, and for upcoming applications of self-learning and continuous formation.
Modeling and replicating statistical topology and evidence for CMB nonhomogeneity
Agami, Sarit
2017-01-01
Under the banner of “big data,” the detection and classification of structure in extremely large, high-dimensional, data sets are two of the central statistical challenges of our times. Among the most intriguing new approaches to this challenge is “TDA,” or “topological data analysis,” one of the primary aims of which is providing nonmetric, but topologically informative, preanalyses of data which make later, more quantitative, analyses feasible. While TDA rests on strong mathematical foundations from topology, in applications, it has faced challenges due to difficulties in handling issues of statistical reliability and robustness, often leading to an inability to make scientific claims with verifiable levels of statistical confidence. We propose a methodology for the parametric representation, estimation, and replication of persistence diagrams, the main diagnostic tool of TDA. The power of the methodology lies in the fact that even if only one persistence diagram is available for analysis—the typical case for big data applications—the replications permit conventional statistical hypothesis testing. The methodology is conceptually simple and computationally practical, and provides a broadly effective statistical framework for persistence diagram TDA analysis. We demonstrate the basic ideas on a toy example, and the power of the parametric approach to TDA modeling in an analysis of cosmic microwave background (CMB) nonhomogeneity. PMID:29078301
Characterizing psychopathy using DSM-5 personality traits.
Strickland, Casey M; Drislane, Laura E; Lucy, Megan; Krueger, Robert F; Patrick, Christopher J
2013-06-01
Despite its importance historically and contemporarily, psychopathy is not recognized in the current Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revised (DSM-IV-TR). Its closest counterpart, antisocial personality disorder, includes strong representation of behavioral deviance symptoms but weak representation of affective-interpersonal features considered central to psychopathy. The current study evaluated the extent to which psychopathy and its distinctive facets, indexed by the Triarchic Psychopathy Measure, can be assessed effectively using traits from the dimensional model of personality pathology developed for DSM-5, operationalized by the Personality Inventory for DSM-5 (PID-5). Results indicate that (a) facets of psychopathy entailing impulsive externalization and callous aggression are well-represented by traits from the PID-5 considered relevant to antisocial personality disorder, and (b) the boldness facet of psychopathy can be effectively captured using additional PID-5 traits. These findings provide evidence that the dimensional model of personality pathology embodied in the PID-5 provides effective trait-based coverage of psychopathy and its facets.
Schoolchildren's Social Representations on Bullying Causes
ERIC Educational Resources Information Center
Thornberg, Robert
2010-01-01
The aim of the present study is to investigate schoolchildren's social representations on the causes of bullying. Individual qualitative interviews were conducted with 56 schoolchildren recruited from five elementary schools in Sweden. Mixed methods (grounded theory as well as descriptive statistic methods) were used to analyze data. According to…
Statistical Aspects of Coherent States of the Higgs Algebra
NASA Astrophysics Data System (ADS)
Shreecharan, T.; Kumar, M. Naveen
2018-04-01
We construct and study various aspects of coherent states of a polynomial angular momentum algebra. The coherent states are constructed using a new unitary representation of the nonlinear algebra. The new representation involves a parameter γ that shifts the eigenvalues of the diagonal operator J 0.
Ghanbari, Yasser; Smith, Alex R.; Schultz, Robert T.; Verma, Ragini
2014-01-01
Diffusion tensor imaging (DTI) offers rich insights into the physical characteristics of white matter (WM) fiber tracts and their development in the brain, facilitating a network representation of brain’s traffic pathways. Such a network representation of brain connectivity has provided a novel means of investigating brain changes arising from pathology, development or aging. The high dimensionality of these connectivity networks necessitates the development of methods that identify the connectivity building blocks or sub-network components that characterize the underlying variation in the population. In addition, the projection of the subject networks into the basis set provides a low dimensional representation of it, that teases apart different sources of variation in the sample, facilitating variation-specific statistical analysis. We propose a unified framework of non-negative matrix factorization and graph embedding for learning sub-network patterns of connectivity by their projective non-negative decomposition into a reconstructive basis set, as well as, additional basis sets representing variational sources in the population like age and pathology. The proposed framework is applied to a study of diffusion-based connectivity in subjects with autism that shows localized sparse sub-networks which mostly capture the changes related to pathology and developmental variations. PMID:25037933
NASA Technical Reports Server (NTRS)
Mashiku, Alinda; Garrison, James L.; Carpenter, J. Russell
2012-01-01
The tracking of space objects requires frequent and accurate monitoring for collision avoidance. As even collision events with very low probability are important, accurate prediction of collisions require the representation of the full probability density function (PDF) of the random orbit state. Through representing the full PDF of the orbit state for orbit maintenance and collision avoidance, we can take advantage of the statistical information present in the heavy tailed distributions, more accurately representing the orbit states with low probability. The classical methods of orbit determination (i.e. Kalman Filter and its derivatives) provide state estimates based on only the second moments of the state and measurement errors that are captured by assuming a Gaussian distribution. Although the measurement errors can be accurately assumed to have a Gaussian distribution, errors with a non-Gaussian distribution could arise during propagation between observations. Moreover, unmodeled dynamics in the orbit model could introduce non-Gaussian errors into the process noise. A Particle Filter (PF) is proposed as a nonlinear filtering technique that is capable of propagating and estimating a more complete representation of the state distribution as an accurate approximation of a full PDF. The PF uses Monte Carlo runs to generate particles that approximate the full PDF representation. The PF is applied in the estimation and propagation of a highly eccentric orbit and the results are compared to the Extended Kalman Filter and Splitting Gaussian Mixture algorithms to demonstrate its proficiency.
A Statistical Test of Walrasian Equilibrium by Means of Complex Networks Theory
NASA Astrophysics Data System (ADS)
Bargigli, Leonardo; Viaggiu, Stefano; Lionetto, Andrea
2016-10-01
We represent an exchange economy in terms of statistical ensembles for complex networks by introducing the concept of market configuration. This is defined as a sequence of nonnegative discrete random variables {w_{ij}} describing the flow of a given commodity from agent i to agent j. This sequence can be arranged in a nonnegative matrix W which we can regard as the representation of a weighted and directed network or digraph G. Our main result consists in showing that general equilibrium theory imposes highly restrictive conditions upon market configurations, which are in most cases not fulfilled by real markets. An explicit example with reference to the e-MID interbank credit market is provided.
NASA Technical Reports Server (NTRS)
Kim, Hakil; Swain, Philip H.
1990-01-01
An axiomatic approach to intervalued (IV) probabilities is presented, where the IV probability is defined by a pair of set-theoretic functions which satisfy some pre-specified axioms. On the basis of this approach representation of statistical evidence and combination of multiple bodies of evidence are emphasized. Although IV probabilities provide an innovative means for the representation and combination of evidential information, they make the decision process rather complicated. It entails more intelligent strategies for making decisions. The development of decision rules over IV probabilities is discussed from the viewpoint of statistical pattern recognition. The proposed method, so called evidential reasoning method, is applied to the ground-cover classification of a multisource data set consisting of Multispectral Scanner (MSS) data, Synthetic Aperture Radar (SAR) data, and digital terrain data such as elevation, slope, and aspect. By treating the data sources separately, the method is able to capture both parametric and nonparametric information and to combine them. Then the method is applied to two separate cases of classifying multiband data obtained by a single sensor. In each case a set of multiple sources is obtained by dividing the dimensionally huge data into smaller and more manageable pieces based on the global statistical correlation information. By a divide-and-combine process, the method is able to utilize more features than the conventional maximum likelihood method.
Evaluating Common Item Block Options When Faced with Practical Constraints
ERIC Educational Resources Information Center
Wolkowitz, Amanda; Davis-Becker, Susan
2015-01-01
This study evaluates the impact of common item characteristics on the outcome of equating in credentialing examinations when traditionally recommended representation is not possible. This research used real data sets from several credentialing exams to test the impact of content representation, item statistics, and number of common items on…
Integrating Experiential and Distributional Data to Learn Semantic Representations
ERIC Educational Resources Information Center
Andrews, Mark; Vigliocco, Gabriella; Vinson, David
2009-01-01
The authors identify 2 major types of statistical data from which semantic representations can be learned. These are denoted as "experiential data" and "distributional data". Experiential data are derived by way of experience with the physical world and comprise the sensory-motor data obtained through sense receptors. Distributional data, by…
Incorporating linguistic knowledge for learning distributed word representations.
Wang, Yan; Liu, Zhiyuan; Sun, Maosong
2015-01-01
Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining.
Incorporating Linguistic Knowledge for Learning Distributed Word Representations
Wang, Yan; Liu, Zhiyuan; Sun, Maosong
2015-01-01
Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining. PMID:25874581
The HTM Spatial Pooler-A Neocortical Algorithm for Online Sparse Distributed Coding.
Cui, Yuwei; Ahmad, Subutai; Hawkins, Jeff
2017-01-01
Hierarchical temporal memory (HTM) provides a theoretical framework that models several key computational principles of the neocortex. In this paper, we analyze an important component of HTM, the HTM spatial pooler (SP). The SP models how neurons learn feedforward connections and form efficient representations of the input. It converts arbitrary binary input patterns into sparse distributed representations (SDRs) using a combination of competitive Hebbian learning rules and homeostatic excitability control. We describe a number of key properties of the SP, including fast adaptation to changing input statistics, improved noise robustness through learning, efficient use of cells, and robustness to cell death. In order to quantify these properties we develop a set of metrics that can be directly computed from the SP outputs. We show how the properties are met using these metrics and targeted artificial simulations. We then demonstrate the value of the SP in a complete end-to-end real-world HTM system. We discuss the relationship with neuroscience and previous studies of sparse coding. The HTM spatial pooler represents a neurally inspired algorithm for learning sparse representations from noisy data streams in an online fashion.
Louwerse, Max M; Benesh, Nick
2012-01-01
Spatial mental representations can be derived from linguistic and non-linguistic sources of information. This study tested whether these representations could be formed from statistical linguistic frequencies of city names, and to what extent participants differed in their performance when they estimated spatial locations from language or maps. In a computational linguistic study, we demonstrated that co-occurrences of cities in Tolkien's Lord of the Rings trilogy and The Hobbit predicted the authentic longitude and latitude of those cities in Middle Earth. In a human study, we showed that human spatial estimates of the location of cities were very similar regardless of whether participants read Tolkien's texts or memorized a map of Middle Earth. However, text-based location estimates obtained from statistical linguistic frequencies better predicted the human text-based estimates than the human map-based estimates. These findings suggest that language encodes spatial structure of cities, and that human cognitive map representations can come from implicit statistical linguistic patterns, from explicit non-linguistic perceptual information, or from both. Copyright © 2012 Cognitive Science Society, Inc.
Bootstrapping in a language of thought: a formal model of numerical concept learning.
Piantadosi, Steven T; Tenenbaum, Joshua B; Goodman, Noah D
2012-05-01
In acquiring number words, children exhibit a qualitative leap in which they transition from understanding a few number words, to possessing a rich system of interrelated numerical concepts. We present a computational framework for understanding this inductive leap as the consequence of statistical inference over a sufficiently powerful representational system. We provide an implemented model that is powerful enough to learn number word meanings and other related conceptual systems from naturalistic data. The model shows that bootstrapping can be made computationally and philosophically well-founded as a theory of number learning. Our approach demonstrates how learners may combine core cognitive operations to build sophisticated representations during the course of development, and how this process explains observed developmental patterns in number word learning. Copyright © 2011 Elsevier B.V. All rights reserved.
Daltrozzo, Jerome; Conway, Christopher M.
2014-01-01
Statistical-sequential learning (SL) is the ability to process patterns of environmental stimuli, such as spoken language, music, or one’s motor actions, that unfold in time. The underlying neurocognitive mechanisms of SL and the associated cognitive representations are still not well understood as reflected by the heterogeneity of the reviewed cognitive models. The purpose of this review is: (1) to provide a general overview of the primary models and theories of SL, (2) to describe the empirical research – with a focus on the event-related potential (ERP) literature – in support of these models while also highlighting the current limitations of this research, and (3) to present a set of new lines of ERP research to overcome these limitations. The review is articulated around three descriptive dimensions in relation to SL: the level of abstractness of the representations learned through SL, the effect of the level of attention and consciousness on SL, and the developmental trajectory of SL across the life-span. We conclude with a new tentative model that takes into account these three dimensions and also point to several promising new lines of SL research. PMID:24994975
NASA Astrophysics Data System (ADS)
Simoni, Daniele; Lengani, Davide; Guida, Roberto
2016-09-01
The transition process of the boundary layer growing over a flat plate with pressure gradient simulating the suction side of a low-pressure turbine blade and elevated free-stream turbulence intensity level has been analyzed by means of PIV and hot-wire measurements. A detailed view of the instantaneous flow field in the wall-normal plane highlights the physics characterizing the complex process leading to the formation of large-scale coherent structures during breaking down of the ordered motion of the flow, thus generating randomized oscillations (i.e., turbulent spots). This analysis gives the basis for the development of a new procedure aimed at determining the intermittency function describing (statistically) the transition process. To this end, a wavelet-based method has been employed for the identification of the large-scale structures created during the transition process. Successively, a probability density function of these events has been defined so that an intermittency function is deduced. This latter strictly corresponds to the intermittency function of the transitional flow computed trough a classic procedure based on hot-wire data. The agreement between the two procedures in the intermittency shape and spot production rate proves the capability of the method in providing the statistical representation of the transition process. The main advantages of the procedure here proposed concern with its applicability to PIV data; it does not require a threshold level to discriminate first- and/or second-order time-derivative of hot-wire time traces (that makes the method not influenced by the operator); and it provides a clear evidence of the connection between the flow physics and the statistical representation of transition based on theory of turbulent spot propagation.
Sparse approximation of currents for statistics on curves and surfaces.
Durrleman, Stanley; Pennec, Xavier; Trouvé, Alain; Ayache, Nicholas
2008-01-01
Computing, processing, visualizing statistics on shapes like curves or surfaces is a real challenge with many applications ranging from medical image analysis to computational geometry. Modelling such geometrical primitives with currents avoids feature-based approach as well as point-correspondence method. This framework has been proved to be powerful to register brain surfaces or to measure geometrical invariants. However, if the state-of-the-art methods perform efficiently pairwise registrations, new numerical schemes are required to process groupwise statistics due to an increasing complexity when the size of the database is growing. Statistics such as mean and principal modes of a set of shapes often have a heavy and highly redundant representation. We propose therefore to find an adapted basis on which mean and principal modes have a sparse decomposition. Besides the computational improvement, this sparse representation offers a way to visualize and interpret statistics on currents. Experiments show the relevance of the approach on 34 sets of 70 sulcal lines and on 50 sets of 10 meshes of deep brain structures.
An Algebraic Implicitization and Specialization of Minimum KL-Divergence Models
NASA Astrophysics Data System (ADS)
Dukkipati, Ambedkar; Manathara, Joel George
In this paper we study representation of KL-divergence minimization, in the cases where integer sufficient statistics exists, using tools from polynomial algebra. We show that the estimation of parametric statistical models in this case can be transformed to solving a system of polynomial equations. In particular, we also study the case of Kullback-Csisźar iteration scheme. We present implicit descriptions of these models and show that implicitization preserves specialization of prior distribution. This result leads us to a Gröbner bases method to compute an implicit representation of minimum KL-divergence models.
ERIC Educational Resources Information Center
Richardson, William H., Jr.
2006-01-01
Computational precision is sometimes given short shrift in a first programming course. Treating this topic requires discussing integer and floating-point number representations and inaccuracies that may result from their use. An example of a moderately simple programming problem from elementary statistics was examined. It forced students to…
The Federal Bureau of Investigation Needs Better Representation of Women and Minorities.
ERIC Educational Resources Information Center
Comptroller General of the U.S., Washington, DC.
This paper examines the state of employment opportunities for women and minorities in the Federal Bureau of Investigation (FBI). Statistics are presented to illustrate the low representation of women and minorities in professional positions within the FBI and suggestions are made for improving the employment status of these groups. Major areas…
Female Representation in the Higher Education of Geography in Hungary. Symposium
ERIC Educational Resources Information Center
Timar, Judit; Jelenszkyne, Ildiko Fabian
2004-01-01
This paper charts the changing female representation in the higher education of geography, connecting it with the faltering development of feminist geography in Hungary. The transition from socialism to capitalism has compounded gender inequalities while many of the relevant statistical data display gender blindness. Gender issues fail to form a…
Recurrence plot statistics and the effect of embedding
NASA Astrophysics Data System (ADS)
March, T. K.; Chapman, S. C.; Dendy, R. O.
2005-01-01
Recurrence plots provide a graphical representation of the recurrent patterns in a timeseries, the quantification of which is a relatively new field. Here we derive analytical expressions which relate the values of key statistics, notably determinism and entropy of line length distribution, to the correlation sum as a function of embedding dimension. These expressions are obtained by deriving the transformation which generates an embedded recurrence plot from an unembedded plot. A single unembedded recurrence plot thus provides the statistics of all possible embedded recurrence plots. If the correlation sum scales exponentially with embedding dimension, we show that these statistics are determined entirely by the exponent of the exponential. This explains the results of Iwanski and Bradley [J.S. Iwanski, E. Bradley, Recurrence plots of experimental data: to embed or not to embed? Chaos 8 (1998) 861-871] who found that certain recurrence plot statistics are apparently invariant to embedding dimension for certain low-dimensional systems. We also examine the relationship between the mutual information content of two timeseries and the common recurrent structure seen in their recurrence plots. This allows time-localized contributions to mutual information to be visualized. This technique is demonstrated using geomagnetic index data; we show that the AU and AL geomagnetic indices share half their information, and find the timescale on which mutual features appear.
Cox process representation and inference for stochastic reaction-diffusion processes
NASA Astrophysics Data System (ADS)
Schnoerr, David; Grima, Ramon; Sanguinetti, Guido
2016-05-01
Complex behaviour in many systems arises from the stochastic interactions of spatially distributed particles or agents. Stochastic reaction-diffusion processes are widely used to model such behaviour in disciplines ranging from biology to the social sciences, yet they are notoriously difficult to simulate and calibrate to observational data. Here we use ideas from statistical physics and machine learning to provide a solution to the inverse problem of learning a stochastic reaction-diffusion process from data. Our solution relies on a non-trivial connection between stochastic reaction-diffusion processes and spatio-temporal Cox processes, a well-studied class of models from computational statistics. This connection leads to an efficient and flexible algorithm for parameter inference and model selection. Our approach shows excellent accuracy on numeric and real data examples from systems biology and epidemiology. Our work provides both insights into spatio-temporal stochastic systems, and a practical solution to a long-standing problem in computational modelling.
A web-portal for interactive data exploration, visualization, and hypothesis testing
Bartsch, Hauke; Thompson, Wesley K.; Jernigan, Terry L.; Dale, Anders M.
2014-01-01
Clinical research studies generate data that need to be shared and statistically analyzed by their participating institutions. The distributed nature of research and the different domains involved present major challenges to data sharing, exploration, and visualization. The Data Portal infrastructure was developed to support ongoing research in the areas of neurocognition, imaging, and genetics. Researchers benefit from the integration of data sources across domains, the explicit representation of knowledge from domain experts, and user interfaces providing convenient access to project specific data resources and algorithms. The system provides an interactive approach to statistical analysis, data mining, and hypothesis testing over the lifetime of a study and fulfills a mandate of public sharing by integrating data sharing into a system built for active data exploration. The web-based platform removes barriers for research and supports the ongoing exploration of data. PMID:24723882
Efficient summary statistical representation when change localization fails.
Haberman, Jason; Whitney, David
2011-10-01
People are sensitive to the summary statistics of the visual world (e.g., average orientation/speed/facial expression). We readily derive this information from complex scenes, often without explicit awareness. Given the fundamental and ubiquitous nature of summary statistical representation, we tested whether this kind of information is subject to the attentional constraints imposed by change blindness. We show that information regarding the summary statistics of a scene is available despite limited conscious access. In a novel experiment, we found that while observers can suffer from change blindness (i.e., not localize where change occurred between two views of the same scene), observers could nevertheless accurately report changes in the summary statistics (or "gist") about the very same scene. In the experiment, observers saw two successively presented sets of 16 faces that varied in expression. Four of the faces in the first set changed from one emotional extreme (e.g., happy) to another (e.g., sad) in the second set. Observers performed poorly when asked to locate any of the faces that changed (change blindness). However, when asked about the ensemble (which set was happier, on average), observer performance remained high. Observers were sensitive to the average expression even when they failed to localize any specific object change. That is, even when observers could not locate the very faces driving the change in average expression between the two sets, they nonetheless derived a precise ensemble representation. Thus, the visual system may be optimized to process summary statistics in an efficient manner, allowing it to operate despite minimal conscious access to the information presented.
Statistics for People Who (Think They) Hate Statistics. Third Edition
ERIC Educational Resources Information Center
Salkind, Neil J.
2007-01-01
This text teaches an often intimidating and difficult subject in a way that is informative, personable, and clear. The author takes students through various statistical procedures, beginning with correlation and graphical representation of data and ending with inferential techniques and analysis of variance. In addition, the text covers SPSS, and…
Predicting perceptual quality of images in realistic scenario using deep filter banks
NASA Astrophysics Data System (ADS)
Zhang, Weixia; Yan, Jia; Hu, Shiyong; Ma, Yang; Deng, Dexiang
2018-03-01
Classical image perceptual quality assessment models usually resort to natural scene statistic methods, which are based on an assumption that certain reliable statistical regularities hold on undistorted images and will be corrupted by introduced distortions. However, these models usually fail to accurately predict degradation severity of images in realistic scenarios since complex, multiple, and interactive authentic distortions usually appear on them. We propose a quality prediction model based on convolutional neural network. Quality-aware features extracted from filter banks of multiple convolutional layers are aggregated into the image representation. Furthermore, an easy-to-implement and effective feature selection strategy is used to further refine the image representation and finally a linear support vector regression model is trained to map image representation into images' subjective perceptual quality scores. The experimental results on benchmark databases present the effectiveness and generalizability of the proposed model.
NASA Astrophysics Data System (ADS)
Torres Irribarra, D.; Freund, R.; Fisher, W.; Wilson, M.
2015-02-01
Computer-based, online assessments modelled, designed, and evaluated for adaptively administered invariant measurement are uniquely suited to defining and maintaining traceability to standardized units in education. An assessment of this kind is embedded in the Assessing Data Modeling and Statistical Reasoning (ADM) middle school mathematics curriculum. Diagnostic information about middle school students' learning of statistics and modeling is provided via computer-based formative assessments for seven constructs that comprise a learning progression for statistics and modeling from late elementary through the middle school grades. The seven constructs are: Data Display, Meta-Representational Competence, Conceptions of Statistics, Chance, Modeling Variability, Theory of Measurement, and Informal Inference. The end product is a web-delivered system built with Ruby on Rails for use by curriculum development teams working with classroom teachers in designing, developing, and delivering formative assessments. The online accessible system allows teachers to accurately diagnose students' unique comprehension and learning needs in a common language of real-time assessment, logging, analysis, feedback, and reporting.
Scharfenberger, Christian; Wong, Alexander; Clausi, David A
2015-01-01
We propose a simple yet effective structure-guided statistical textural distinctiveness approach to salient region detection. Our method uses a multilayer approach to analyze the structural and textural characteristics of natural images as important features for salient region detection from a scale point of view. To represent the structural characteristics, we abstract the image using structured image elements and extract rotational-invariant neighborhood-based textural representations to characterize each element by an individual texture pattern. We then learn a set of representative texture atoms for sparse texture modeling and construct a statistical textural distinctiveness matrix to determine the distinctiveness between all representative texture atom pairs in each layer. Finally, we determine saliency maps for each layer based on the occurrence probability of the texture atoms and their respective statistical textural distinctiveness and fuse them to compute a final saliency map. Experimental results using four public data sets and a variety of performance evaluation metrics show that our approach provides promising results when compared with existing salient region detection approaches.
Chang, Cheng; Xu, Kaikun; Guo, Chaoping; Wang, Jinxia; Yan, Qi; Zhang, Jian; He, Fuchu; Zhu, Yunping
2018-05-22
Compared with the numerous software tools developed for identification and quantification of -omics data, there remains a lack of suitable tools for both downstream analysis and data visualization. To help researchers better understand the biological meanings in their -omics data, we present an easy-to-use tool, named PANDA-view, for both statistical analysis and visualization of quantitative proteomics data and other -omics data. PANDA-view contains various kinds of analysis methods such as normalization, missing value imputation, statistical tests, clustering and principal component analysis, as well as the most commonly-used data visualization methods including an interactive volcano plot. Additionally, it provides user-friendly interfaces for protein-peptide-spectrum representation of the quantitative proteomics data. PANDA-view is freely available at https://sourceforge.net/projects/panda-view/. 1987ccpacer@163.com and zhuyunping@gmail.com. Supplementary data are available at Bioinformatics online.
NASA Technical Reports Server (NTRS)
Tamayo, Tak Chai
1987-01-01
Quality of software not only is vital to the successful operation of the space station, it is also an important factor in establishing testing requirements, time needed for software verification and integration as well as launching schedules for the space station. Defense of management decisions can be greatly strengthened by combining engineering judgments with statistical analysis. Unlike hardware, software has the characteristics of no wearout and costly redundancies, thus making traditional statistical analysis not suitable in evaluating reliability of software. A statistical model was developed to provide a representation of the number as well as types of failures occur during software testing and verification. From this model, quantitative measure of software reliability based on failure history during testing are derived. Criteria to terminate testing based on reliability objectives and methods to estimate the expected number of fixings required are also presented.
Yang, Yi; Tokita, Midori; Ishiguchi, Akira
2018-01-01
A number of studies revealed that our visual system can extract different types of summary statistics, such as the mean and variance, from sets of items. Although the extraction of such summary statistics has been studied well in isolation, the relationship between these statistics remains unclear. In this study, we explored this issue using an individual differences approach. Observers viewed illustrations of strawberries and lollypops varying in size or orientation and performed four tasks in a within-subject design, namely mean and variance discrimination tasks with size and orientation domains. We found that the performances in the mean and variance discrimination tasks were not correlated with each other and demonstrated that extractions of the mean and variance are mediated by different representation mechanisms. In addition, we tested the relationship between performances in size and orientation domains for each summary statistic (i.e. mean and variance) and examined whether each summary statistic has distinct processes across perceptual domains. The results illustrated that statistical summary representations of size and orientation may share a common mechanism for representing the mean and possibly for representing variance. Introspections for each observer performing the tasks were also examined and discussed.
A non-linear dimension reduction methodology for generating data-driven stochastic input models
NASA Astrophysics Data System (ADS)
Ganapathysubramanian, Baskar; Zabaras, Nicholas
2008-06-01
Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space Rn. An isometric mapping F from M to a low-dimensional, compact, connected set A⊂Rd(d≪n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology by constructing low-dimensional input stochastic models to represent thermal diffusivity in two-phase microstructures. This model is used in analyzing the effect of topological variations of two-phase microstructures on the evolution of temperature in heat conduction processes.
Eguchi, Akihiro; Mender, Bedeho M. W.; Evans, Benjamin D.; Humphreys, Glyn W.; Stringer, Simon M.
2015-01-01
Neurons in successive stages of the primate ventral visual pathway encode the spatial structure of visual objects. In this paper, we investigate through computer simulation how these cell firing properties may develop through unsupervised visually-guided learning. Individual neurons in the model are shown to exploit statistical regularity and temporal continuity of the visual inputs during training to learn firing properties that are similar to neurons in V4 and TEO. Neurons in V4 encode the conformation of boundary contour elements at a particular position within an object regardless of the location of the object on the retina, while neurons in TEO integrate information from multiple boundary contour elements. This representation goes beyond mere object recognition, in which neurons simply respond to the presence of a whole object, but provides an essential foundation from which the brain is subsequently able to recognize the whole object. PMID:26300766
Maladaptively high and low openness: the case for experiential permeability.
Piedmont, Ralph L; Sherman, Martin F; Sherman, Nancy C
2012-12-01
The domain of Openness within the Five-Factor Model (FFM) has received inconsistent support as a source for maladaptive personality functioning, at least when the latter is confined to the disorders of personality included within the American Psychiatric Association's (APA) Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR; APA, ). However, an advantage of the FFM relative to the DSM-IV-TR is that the former was developed to provide a reasonably comprehensive description of general personality structure. Rather than suggest that the FFM is inadequate because the DSM-IV-TR lacks much representation of Openness, it might be just as reasonable to suggest that the DSM-IV-TR is inadequate because it lacks an adequate representation of maladaptive variants of both high and low Openness. This article discusses the development and validation of a measure of these maladaptive variants, the Experiential Permeability Inventory. © 2012 The Authors. Journal of Personality © 2012, Wiley Periodicals, Inc.
Familiarity promotes the blurring of self and other in the neural representation of threat
Beckes, Lane; Hasselmo, Karen
2013-01-01
Neurobiological investigations of empathy often support an embodied simulation account. Using functional magnetic resonance imaging (fMRI), we monitored statistical associations between brain activations indicating self-focused threat to those indicating threats to a familiar friend or an unfamiliar stranger. Results in regions such as the anterior insula, putamen and supramarginal gyrus indicate that self-focused threat activations are robustly correlated with friend-focused threat activations but not stranger-focused threat activations. These results suggest that one of the defining features of human social bonding may be increasing levels of overlap between neural representations of self and other. This article presents a novel and important methodological approach to fMRI empathy studies, which informs how differences in brain activation can be detected in such studies and how covariate approaches can provide novel and important information regarding the brain and empathy. PMID:22563005
Graham, Daniel J; Field, David J
2008-01-01
Two recent studies suggest that natural scenes and paintings show similar statistical properties. But does the content or region of origin of an artwork affect its statistical properties? We addressed this question by having judges place paintings from a large, diverse collection of paintings into one of three subject-matter categories using a forced-choice paradigm. Basic statistics for images whose caterogization was agreed by all judges showed no significant differences between those judged to be 'landscape' and 'portrait/still-life', but these two classes differed from paintings judged to be 'abstract'. All categories showed basic spatial statistical regularities similar to those typical of natural scenes. A test of the full painting collection (140 images) with respect to the works' place of origin (provenance) showed significant differences between Eastern works and Western ones, differences which we find are likely related to the materials and the choice of background color. Although artists deviate slightly from reproducing natural statistics in abstract art (compared to representational art), the great majority of human art likely shares basic statistical limitations. We argue that statistical regularities in art are rooted in the need to make art visible to the eye, not in the inherent aesthetic value of natural-scene statistics, and we suggest that variability in spatial statistics may be generally imposed by manufacture.
38 CFR 14.632 - Standards of conduct for persons providing representation before the Department
Code of Federal Regulations, 2013 CFR
2013-07-01
... the knowledge, skill, thoroughness, and preparation necessary for the representation. This includes... persons providing representation before the Department 14.632 Section 14.632 Pensions, Bonuses, and... Representation of Department of Veterans Affairs Claimants; Recognition of Organizations, Accredited...
38 CFR 14.632 - Standards of conduct for persons providing representation before the Department
Code of Federal Regulations, 2011 CFR
2011-07-01
... the knowledge, skill, thoroughness, and preparation necessary for the representation. This includes... persons providing representation before the Department 14.632 Section 14.632 Pensions, Bonuses, and... Representation of Department of Veterans Affairs Claimants; Recognition of Organizations, Accredited...
38 CFR 14.632 - Standards of conduct for persons providing representation before the Department
Code of Federal Regulations, 2014 CFR
2014-07-01
... the knowledge, skill, thoroughness, and preparation necessary for the representation. This includes... persons providing representation before the Department 14.632 Section 14.632 Pensions, Bonuses, and... Representation of Department of Veterans Affairs Claimants; Recognition of Organizations, Accredited...
38 CFR 14.632 - Standards of conduct for persons providing representation before the Department
Code of Federal Regulations, 2010 CFR
2010-07-01
... the knowledge, skill, thoroughness, and preparation necessary for the representation. This includes... persons providing representation before the Department 14.632 Section 14.632 Pensions, Bonuses, and... Representation of Department of Veterans Affairs Claimants; Recognition of Organizations, Accredited...
38 CFR 14.632 - Standards of conduct for persons providing representation before the Department
Code of Federal Regulations, 2012 CFR
2012-07-01
... the knowledge, skill, thoroughness, and preparation necessary for the representation. This includes... persons providing representation before the Department 14.632 Section 14.632 Pensions, Bonuses, and... Representation of Department of Veterans Affairs Claimants; Recognition of Organizations, Accredited...
Attributing Meanings to Representations of Data: The Case of Statistical Process Control
ERIC Educational Resources Information Center
Hoyles, Celia; Bakker, Arthur; Kent, Phillip; Noss, Richard
2007-01-01
This article is concerned with the meanings that employees in industry attribute to representations of data and the contingencies of these meanings in context. Our primary concern is to more precisely characterize how the context of the industrial process is constitutive of the meaning of graphs of data derived from this process. We draw on data…
Feature Statistics Modulate the Activation of Meaning during Spoken Word Processing
ERIC Educational Resources Information Center
Devereux, Barry J.; Taylor, Kirsten I.; Randall, Billi; Geertzen, Jeroen; Tyler, Lorraine K.
2016-01-01
Understanding spoken words involves a rapid mapping from speech to conceptual representations. One distributed feature-based conceptual account assumes that the statistical characteristics of concepts' features--the number of concepts they occur in ("distinctiveness/sharedness") and likelihood of co-occurrence ("correlational…
Randomizing bipartite networks: the case of the World Trade Web.
Saracco, Fabio; Di Clemente, Riccardo; Gabrielli, Andrea; Squartini, Tiziano
2015-06-01
Within the last fifteen years, network theory has been successfully applied both to natural sciences and to socioeconomic disciplines. In particular, bipartite networks have been recognized to provide a particularly insightful representation of many systems, ranging from mutualistic networks in ecology to trade networks in economy, whence the need of a pattern detection-oriented analysis in order to identify statistically-significant structural properties. Such an analysis rests upon the definition of suitable null models, i.e. upon the choice of the portion of network structure to be preserved while randomizing everything else. However, quite surprisingly, little work has been done so far to define null models for real bipartite networks. The aim of the present work is to fill this gap, extending a recently-proposed method to randomize monopartite networks to bipartite networks. While the proposed formalism is perfectly general, we apply our method to the binary, undirected, bipartite representation of the World Trade Web, comparing the observed values of a number of structural quantities of interest with the expected ones, calculated via our randomization procedure. Interestingly, the behavior of the World Trade Web in this new representation is strongly different from the monopartite analogue, showing highly non-trivial patterns of self-organization.
The validity of multiphase DNS initialized on the basis of single--point statistics
NASA Astrophysics Data System (ADS)
Subramaniam, Shankar
1999-11-01
A study of the point--process statistical representation of a spray reveals that single--point statistical information contained in the droplet distribution function (ddf) is related to a sequence of single surrogate--droplet pdf's, which are in general different from the physical single--droplet pdf's. The results of this study have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single--point statistics such as the average number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets.
Statistical Learning of Two Artificial Languages Presented Successively: How Conscious?
Franco, Ana; Cleeremans, Axel; Destrebecqz, Arnaud
2011-01-01
Statistical learning is assumed to occur automatically and implicitly, but little is known about the extent to which the representations acquired over training are available to conscious awareness. In this study, we focus on whether the knowledge acquired in a statistical learning situation is available to conscious control. Participants were first exposed to an artificial language presented auditorily. Immediately thereafter, they were exposed to a second artificial language. Both languages were composed of the same corpus of syllables and differed only in the transitional probabilities. We first determined that both languages were equally learnable (Experiment 1) and that participants could learn the two languages and differentiate between them (Experiment 2). Then, in Experiment 3, we used an adaptation of the Process-Dissociation Procedure (Jacoby, 1991) to explore whether participants could consciously manipulate the acquired knowledge. Results suggest that statistical information can be used to parse and differentiate between two different artificial languages, and that the resulting representations are available to conscious control. PMID:21960981
NASA Astrophysics Data System (ADS)
Chodera, John D.; Noé, Frank
2010-09-01
Discrete-state Markov (or master equation) models provide a useful simplified representation for characterizing the long-time statistical evolution of biomolecules in a manner that allows direct comparison with experiments as well as the elucidation of mechanistic pathways for an inherently stochastic process. A vital part of meaningful comparison with experiment is the characterization of the statistical uncertainty in the predicted experimental measurement, which may take the form of an equilibrium measurement of some spectroscopic signal, the time-evolution of this signal following a perturbation, or the observation of some statistic (such as the correlation function) of the equilibrium dynamics of a single molecule. Without meaningful error bars (which arise from both approximation and statistical error), there is no way to determine whether the deviations between model and experiment are statistically meaningful. Previous work has demonstrated that a Bayesian method that enforces microscopic reversibility can be used to characterize the statistical component of correlated uncertainties in state-to-state transition probabilities (and functions thereof) for a model inferred from molecular simulation data. Here, we extend this approach to include the uncertainty in observables that are functions of molecular conformation (such as surrogate spectroscopic signals) characterizing each state, permitting the full statistical uncertainty in computed spectroscopic experiments to be assessed. We test the approach in a simple model system to demonstrate that the computed uncertainties provide a useful indicator of statistical variation, and then apply it to the computation of the fluorescence autocorrelation function measured for a dye-labeled peptide previously studied by both experiment and simulation.
Kather, Jakob Nikolas; Marx, Alexander; Reyes-Aldasoro, Constantino Carlos; Schad, Lothar R; Zöllner, Frank Gerrit; Weis, Cleo-Aron
2015-08-07
Blood vessels in solid tumors are not randomly distributed, but are clustered in angiogenic hotspots. Tumor microvessel density (MVD) within these hotspots correlates with patient survival and is widely used both in diagnostic routine and in clinical trials. Still, these hotspots are usually subjectively defined. There is no unbiased, continuous and explicit representation of tumor vessel distribution in histological whole slide images. This shortcoming distorts angiogenesis measurements and may account for ambiguous results in the literature. In the present study, we describe and evaluate a new method that eliminates this bias and makes angiogenesis quantification more objective and more efficient. Our approach involves automatic slide scanning, automatic image analysis and spatial statistical analysis. By comparing a continuous MVD function of the actual sample to random point patterns, we introduce an objective criterion for hotspot detection: An angiogenic hotspot is defined as a clustering of blood vessels that is very unlikely to occur randomly. We evaluate the proposed method in N=11 images of human colorectal carcinoma samples and compare the results to a blinded human observer. For the first time, we demonstrate the existence of statistically significant hotspots in tumor images and provide a tool to accurately detect these hotspots.
2013-03-01
information ex- traction and learning from data. First of all, it admits sufficient statistics and therefore, provides the means for selecting good models...readily found since the Kullback -Liebler divergence can be used to ascertain distances between PDFs for various hypothesis testing scenarios. We...t1, t2) Information content of T2 (x) is D(pryj,IJ2(tl, t2)11Pryj,!J2=0(tl, t2)) = reduction in distance to true PDF where D(p1llp2) is Kullback
Creation of a virtual cutaneous tissue bank
NASA Astrophysics Data System (ADS)
LaFramboise, William A.; Shah, Sujal; Hoy, R. W.; Letbetter, D.; Petrosko, P.; Vennare, R.; Johnson, Peter C.
2000-04-01
Cellular and non-cellular constituents of skin contain fundamental morphometric features and structural patterns that correlate with tissue function. High resolution digital image acquisitions performed using an automated system and proprietary software to assemble adjacent images and create a contiguous, lossless, digital representation of individual microscope slide specimens. Serial extraction, evaluation and statistical analysis of cutaneous feature is performed utilizing an automated analysis system, to derive normal cutaneous parameters comprising essential structural skin components. Automated digital cutaneous analysis allows for fast extraction of microanatomic dat with accuracy approximating manual measurement. The process provides rapid assessment of feature both within individual specimens and across sample populations. The images, component data, and statistical analysis comprise a bioinformatics database to serve as an architectural blueprint for skin tissue engineering and as a diagnostic standard of comparison for pathologic specimens.
Non-Gaussian statistics and optical rogue waves in stimulated Raman scattering.
Monfared, Yashar E; Ponomarenko, Sergey A
2017-03-20
We explore theoretically and numerically optical rogue wave formation in stimulated Raman scattering inside a hydrogen filled hollow core photonic crystal fiber. We assume a weak noisy Stokes pulse input and explicitly construct the input Stokes pulse ensemble using the coherent mode representation of optical coherence theory, thereby providing a link between optical coherence and rogue wave theories. We show that the Stokes pulse peak power probability distribution function (PDF) acquires a long tail in the limit of nearly incoherent input Stokes pulses. We demonstrate a clear link between the PDF tail magnitude and the source coherence time. Thus, the latter can serve as a convenient parameter to control the former. We explain our findings qualitatively using the concepts of statistical granularity and global degree of coherence.
EvolQG - An R package for evolutionary quantitative genetics
Melo, Diogo; Garcia, Guilherme; Hubbe, Alex; Assis, Ana Paula; Marroig, Gabriel
2016-01-01
We present an open source package for performing evolutionary quantitative genetics analyses in the R environment for statistical computing. Evolutionary theory shows that evolution depends critically on the available variation in a given population. When dealing with many quantitative traits this variation is expressed in the form of a covariance matrix, particularly the additive genetic covariance matrix or sometimes the phenotypic matrix, when the genetic matrix is unavailable and there is evidence the phenotypic matrix is sufficiently similar to the genetic matrix. Given this mathematical representation of available variation, the \\textbf{EvolQG} package provides functions for calculation of relevant evolutionary statistics; estimation of sampling error; corrections for this error; matrix comparison via correlations, distances and matrix decomposition; analysis of modularity patterns; and functions for testing evolutionary hypotheses on taxa diversification. PMID:27785352
Altmann, Gerry T M
2017-01-05
Statistical approaches to emergent knowledge have tended to focus on the process by which experience of individual episodes accumulates into generalizable experience across episodes. However, there is a seemingly opposite, but equally critical, process that such experience affords: the process by which, from a space of types (e.g. onions-a semantic class that develops through exposure to individual episodes involving individual onions), we can perceive or create, on-the-fly, a specific token (a specific onion, perhaps one that is chopped) in the absence of any prior perceptual experience with that specific token. This article reviews a selection of statistical learning studies that lead to the speculation that this process-the generation, on the basis of semantic memory, of a novel episodic representation-is itself an instance of a statistical, in fact associative, process. The article concludes that the same processes that enable statistical abstraction across individual episodes to form semantic memories also enable the generation, from those semantic memories, of representations that correspond to individual tokens, and of novel episodic facts about those tokens. Statistical learning is a window onto these deeper processes that underpin cognition.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).
Yang, Yi; Tokita, Midori; Ishiguchi, Akira
2018-01-01
A number of studies revealed that our visual system can extract different types of summary statistics, such as the mean and variance, from sets of items. Although the extraction of such summary statistics has been studied well in isolation, the relationship between these statistics remains unclear. In this study, we explored this issue using an individual differences approach. Observers viewed illustrations of strawberries and lollypops varying in size or orientation and performed four tasks in a within-subject design, namely mean and variance discrimination tasks with size and orientation domains. We found that the performances in the mean and variance discrimination tasks were not correlated with each other and demonstrated that extractions of the mean and variance are mediated by different representation mechanisms. In addition, we tested the relationship between performances in size and orientation domains for each summary statistic (i.e. mean and variance) and examined whether each summary statistic has distinct processes across perceptual domains. The results illustrated that statistical summary representations of size and orientation may share a common mechanism for representing the mean and possibly for representing variance. Introspections for each observer performing the tasks were also examined and discussed. PMID:29399318
Inferring brain-computational mechanisms with models of activity measurements
Diedrichsen, Jörn
2016-01-01
High-resolution functional imaging is providing increasingly rich measurements of brain activity in animals and humans. A major challenge is to leverage such data to gain insight into the brain's computational mechanisms. The first step is to define candidate brain-computational models (BCMs) that can perform the behavioural task in question. We would then like to infer which of the candidate BCMs best accounts for measured brain-activity data. Here we describe a method that complements each BCM by a measurement model (MM), which simulates the way the brain-activity measurements reflect neuronal activity (e.g. local averaging in functional magnetic resonance imaging (fMRI) voxels or sparse sampling in array recordings). The resulting generative model (BCM-MM) produces simulated measurements. To avoid having to fit the MM to predict each individual measurement channel of the brain-activity data, we compare the measured and predicted data at the level of summary statistics. We describe a novel particular implementation of this approach, called probabilistic representational similarity analysis (pRSA) with MMs, which uses representational dissimilarity matrices (RDMs) as the summary statistics. We validate this method by simulations of fMRI measurements (locally averaging voxels) based on a deep convolutional neural network for visual object recognition. Results indicate that the way the measurements sample the activity patterns strongly affects the apparent representational dissimilarities. However, modelling of the measurement process can account for these effects, and different BCMs remain distinguishable even under substantial noise. The pRSA method enables us to perform Bayesian inference on the set of BCMs and to recognize the data-generating model in each case. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574316
Wu, Guosheng; Robertson, Daniel H; Brooks, Charles L; Vieth, Michal
2003-10-01
The influence of various factors on the accuracy of protein-ligand docking is examined. The factors investigated include the role of a grid representation of protein-ligand interactions, the initial ligand conformation and orientation, the sampling rate of the energy hyper-surface, and the final minimization. A representative docking method is used to study these factors, namely, CDOCKER, a molecular dynamics (MD) simulated-annealing-based algorithm. A major emphasis in these studies is to compare the relative performance and accuracy of various grid-based approximations to explicit all-atom force field calculations. In these docking studies, the protein is kept rigid while the ligands are treated as fully flexible and a final minimization step is used to refine the docked poses. A docking success rate of 74% is observed when an explicit all-atom representation of the protein (full force field) is used, while a lower accuracy of 66-76% is observed for grid-based methods. All docking experiments considered a 41-member protein-ligand validation set. A significant improvement in accuracy (76 vs. 66%) for the grid-based docking is achieved if the explicit all-atom force field is used in a final minimization step to refine the docking poses. Statistical analysis shows that even lower-accuracy grid-based energy representations can be effectively used when followed with full force field minimization. The results of these grid-based protocols are statistically indistinguishable from the detailed atomic dockings and provide up to a sixfold reduction in computation time. For the test case examined here, improving the docking accuracy did not necessarily enhance the ability to estimate binding affinities using the docked structures. Copyright 2003 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Merner, Laura
2014-01-01
This report examines the representation of Hispanics among bachelor's degree recipients in the physical sciences and engineering in the US. Hispanics have been increasing their representation across the physical sciences and engineering at an outstanding rate. More broadly, from 2002-2012 there has been a significant increase in…
Adaptation to stimulus statistics in the perception and neural representation of auditory space.
Dahmen, Johannes C; Keating, Peter; Nodal, Fernando R; Schulz, Andreas L; King, Andrew J
2010-06-24
Sensory systems are known to adapt their coding strategies to the statistics of their environment, but little is still known about the perceptual implications of such adjustments. We investigated how auditory spatial processing adapts to stimulus statistics by presenting human listeners and anesthetized ferrets with noise sequences in which interaural level differences (ILD) rapidly fluctuated according to a Gaussian distribution. The mean of the distribution biased the perceived laterality of a subsequent stimulus, whereas the distribution's variance changed the listeners' spatial sensitivity. The responses of neurons in the inferior colliculus changed in line with these perceptual phenomena. Their ILD preference adjusted to match the stimulus distribution mean, resulting in large shifts in rate-ILD functions, while their gain adapted to the stimulus variance, producing pronounced changes in neural sensitivity. Our findings suggest that processing of auditory space is geared toward emphasizing relative spatial differences rather than the accurate representation of absolute position.
Finite Element Analysis of Reverberation Chambers
NASA Technical Reports Server (NTRS)
Bunting, Charles F.; Nguyen, Duc T.
2000-01-01
The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.
NASA Astrophysics Data System (ADS)
Wood, Lorelei
Chemistry as a subject is difficult to learn and understand, due in part to the specific language used by practitioners in their professional and scientific communications. The language and ways of representing chemical interactions have been grouped into three modes of representation used by chemistry instructors, and ultimately by students in understanding the discipline. The first of these three modes of representation is the symbolic mode, which uses a standard set of rules for chemical nomenclature set out by the IUPAC. The second mode of representation is that of microscopic, which depicts chemical compounds as discrete units made up of atoms and molecules, with a particular ratio of atoms to a molecule or formula unit. The third mode of representation is macroscopic, what can be seen, experienced, or measured directly, like ice melting or a color change during a chemical reaction. Recent evidence suggests that chemistry instructors can assist their students in making the connections between the modes of representation by incorporating all three modes into their teaching and discussions, and overtly connecting the modes during instruction. In this research, chemistry teachers at the community college level were observed over the course of an entire semester, to evaluate their instructional use of mode of representation. The students of these teachers were tested prior to and after a semester's worth of instruction, and changes in the basic chemistry conceptual knowledge of these students were compared. Additionally, a subset of the overall population that was pre- and post-tested was interviewed at length using demonstrations of chemical phenomenon that students were asked to translate using all three modes of representation. Analysis of the instruction of three community college teachers shows there were significant differences among these teachers in their instructional use of mode of representation. Additionally, the students of these three teachers had differential and statistically significant achievement over the course of the semester. This research supports results of other similar studies, as well as providing some unexpected results from the students involved.
The Effect of Sexual Experience on the Social Representation of Sex in Portuguese Young Adults.
Gomes, Alexandra; Nunes, Cristina
2014-04-26
This study aimed to observe the effect of sexual experience on the social representation of sex in Portuguese young adults. According to social representation theory, the central core of the social representation should be the same in all individuals that share a common social ground, however differences should be found in the peripheral system. It was used a free evocation task to assess the social representation of sex in Portuguese individuals aging between 18 and 25 years old. Nine hundred and sixty individuals were grouped by their sexual experience and condom use habits. A prototypical analysis was conducted to assess the structure of the social representation and statistical differences were analyzed using the qui-square independency test to search for an association between the structure and the group evoking it. The results supported the hypothesis of a common central core for all groups that shows a romanticized vision of sex. The differences found in the peripheral system suggest that sexual experience affects the representation of sex in a way that seems clearer to these individuals the necessity of protection when it comes to sex.
COMPADRE: an R and web resource for pathway activity analysis by component decompositions.
Ramos-Rodriguez, Roberto-Rafael; Cuevas-Diaz-Duran, Raquel; Falciani, Francesco; Tamez-Peña, Jose-Gerardo; Trevino, Victor
2012-10-15
The analysis of biological networks has become essential to study functional genomic data. Compadre is a tool to estimate pathway/gene sets activity indexes using sub-matrix decompositions for biological networks analyses. The Compadre pipeline also includes one of the direct uses of activity indexes to detect altered gene sets. For this, the gene expression sub-matrix of a gene set is decomposed into components, which are used to test differences between groups of samples. This procedure is performed with and without differentially expressed genes to decrease false calls. During this process, Compadre also performs an over-representation test. Compadre already implements four decomposition methods [principal component analysis (PCA), Isomaps, independent component analysis (ICA) and non-negative matrix factorization (NMF)], six statistical tests (t- and f-test, SAM, Kruskal-Wallis, Welch and Brown-Forsythe), several gene sets (KEGG, BioCarta, Reactome, GO and MsigDB) and can be easily expanded. Our simulation results shown in Supplementary Information suggest that Compadre detects more pathways than over-representation tools like David, Babelomics and Webgestalt and less false positives than PLAGE. The output is composed of results from decomposition and over-representation analyses providing a more complete biological picture. Examples provided in Supplementary Information show the utility, versatility and simplicity of Compadre for analyses of biological networks. Compadre is freely available at http://bioinformatica.mty.itesm.mx:8080/compadre. The R package is also available at https://sourceforge.net/p/compadre.
The capacity limitations of orientation summary statistics
Attarha, Mouna; Moore, Cathleen M.
2015-01-01
The simultaneous–sequential method was used to test the processing capacity of establishing mean orientation summaries. Four clusters of oriented Gabor patches were presented in the peripheral visual field. One of the clusters had a mean orientation that was tilted either left or right while the mean orientations of the other three clusters were roughly vertical. All four clusters were presented at the same time in the simultaneous condition whereas the clusters appeared in temporal subsets of two in the sequential condition. Performance was lower when the means of all four clusters had to be processed concurrently than when only two had to be processed in the same amount of time. The advantage for establishing fewer summaries at a given time indicates that the processing of mean orientation engages limited-capacity processes (Experiment 1). This limitation cannot be attributed to crowding, low target-distractor discriminability, or a limited-capacity comparison process (Experiments 2 and 3). In contrast to the limitations of establishing multiple summary representations, establishing a single summary representation unfolds without interference (Experiment 4). When interpreted in the context of recent work on the capacity of summary statistics, these findings encourage reevaluation of the view that early visual perception consists of summary statistic representations that unfold independently across multiple areas of the visual field. PMID:25810160
Bremer, Peer-Timo; Weber, Gunther; Tierny, Julien; Pascucci, Valerio; Day, Marcus S; Bell, John B
2011-09-01
Large-scale simulations are increasingly being used to study complex scientific and engineering phenomena. As a result, advanced visualization and data analysis are also becoming an integral part of the scientific process. Often, a key step in extracting insight from these large simulations involves the definition, extraction, and evaluation of features in the space and time coordinates of the solution. However, in many applications, these features involve a range of parameters and decisions that will affect the quality and direction of the analysis. Examples include particular level sets of a specific scalar field, or local inequalities between derived quantities. A critical step in the analysis is to understand how these arbitrary parameters/decisions impact the statistical properties of the features, since such a characterization will help to evaluate the conclusions of the analysis as a whole. We present a new topological framework that in a single-pass extracts and encodes entire families of possible features definitions as well as their statistical properties. For each time step we construct a hierarchical merge tree a highly compact, yet flexible feature representation. While this data structure is more than two orders of magnitude smaller than the raw simulation data it allows us to extract a set of features for any given parameter selection in a postprocessing step. Furthermore, we augment the trees with additional attributes making it possible to gather a large number of useful global, local, as well as conditional statistic that would otherwise be extremely difficult to compile. We also use this representation to create tracking graphs that describe the temporal evolution of the features over time. Our system provides a linked-view interface to explore the time-evolution of the graph interactively alongside the segmentation, thus making it possible to perform extensive data analysis in a very efficient manner. We demonstrate our framework by extracting and analyzing burning cells from a large-scale turbulent combustion simulation. In particular, we show how the statistical analysis enabled by our techniques provides new insight into the combustion process.
Semantics based approach for analyzing disease-target associations.
Kaalia, Rama; Ghosh, Indira
2016-08-01
A complex disease is caused by heterogeneous biological interactions between genes and their products along with the influence of environmental factors. There have been many attempts for understanding the cause of these diseases using experimental, statistical and computational methods. In the present work the objective is to address the challenge of representation and integration of information from heterogeneous biomedical aspects of a complex disease using semantics based approach. Semantic web technology is used to design Disease Association Ontology (DAO-db) for representation and integration of disease associated information with diabetes as the case study. The functional associations of disease genes are integrated using RDF graphs of DAO-db. Three semantic web based scoring algorithms (PageRank, HITS (Hyperlink Induced Topic Search) and HITS with semantic weights) are used to score the gene nodes on the basis of their functional interactions in the graph. Disease Association Ontology for Diabetes (DAO-db) provides a standard ontology-driven platform for describing genes, proteins, pathways involved in diabetes and for integrating functional associations from various interaction levels (gene-disease, gene-pathway, gene-function, gene-cellular component and protein-protein interactions). An automatic instance loader module is also developed in present work that helps in adding instances to DAO-db on a large scale. Our ontology provides a framework for querying and analyzing the disease associated information in the form of RDF graphs. The above developed methodology is used to predict novel potential targets involved in diabetes disease from the long list of loose (statistically associated) gene-disease associations. Copyright © 2016 Elsevier Inc. All rights reserved.
Water Quality Sensing and Spatio-Temporal Monitoring Structure with Autocorrelation Kernel Methods.
Vizcaíno, Iván P; Carrera, Enrique V; Muñoz-Romero, Sergio; Cumbal, Luis H; Rojo-Álvarez, José Luis
2017-10-16
Pollution on water resources is usually analyzed with monitoring campaigns, which consist of programmed sampling, measurement, and recording of the most representative water quality parameters. These campaign measurements yields a non-uniform spatio-temporal sampled data structure to characterize complex dynamics phenomena. In this work, we propose an enhanced statistical interpolation method to provide water quality managers with statistically interpolated representations of spatial-temporal dynamics. Specifically, our proposal makes efficient use of the a priori available information of the quality parameter measurements through Support Vector Regression (SVR) based on Mercer's kernels. The methods are benchmarked against previously proposed methods in three segments of the Machángara River and one segment of the San Pedro River in Ecuador, and their different dynamics are shown by statistically interpolated spatial-temporal maps. The best interpolation performance in terms of mean absolute error was the SVR with Mercer's kernel given by either the Mahalanobis spatial-temporal covariance matrix or by the bivariate estimated autocorrelation function. In particular, the autocorrelation kernel provides with significant improvement of the estimation quality, consistently for all the six water quality variables, which points out the relevance of including a priori knowledge of the problem.
Water Quality Sensing and Spatio-Temporal Monitoring Structure with Autocorrelation Kernel Methods
Vizcaíno, Iván P.; Muñoz-Romero, Sergio; Cumbal, Luis H.
2017-01-01
Pollution on water resources is usually analyzed with monitoring campaigns, which consist of programmed sampling, measurement, and recording of the most representative water quality parameters. These campaign measurements yields a non-uniform spatio-temporal sampled data structure to characterize complex dynamics phenomena. In this work, we propose an enhanced statistical interpolation method to provide water quality managers with statistically interpolated representations of spatial-temporal dynamics. Specifically, our proposal makes efficient use of the a priori available information of the quality parameter measurements through Support Vector Regression (SVR) based on Mercer’s kernels. The methods are benchmarked against previously proposed methods in three segments of the Machángara River and one segment of the San Pedro River in Ecuador, and their different dynamics are shown by statistically interpolated spatial-temporal maps. The best interpolation performance in terms of mean absolute error was the SVR with Mercer’s kernel given by either the Mahalanobis spatial-temporal covariance matrix or by the bivariate estimated autocorrelation function. In particular, the autocorrelation kernel provides with significant improvement of the estimation quality, consistently for all the six water quality variables, which points out the relevance of including a priori knowledge of the problem. PMID:29035333
Universal sequence map (USM) of arbitrary discrete sequences
2002-01-01
Background For over a decade the idea of representing biological sequences in a continuous coordinate space has maintained its appeal but not been fully realized. The basic idea is that any sequence of symbols may define trajectories in the continuous space conserving all its statistical properties. Ideally, such a representation would allow scale independent sequence analysis – without the context of fixed memory length. A simple example would consist on being able to infer the homology between two sequences solely by comparing the coordinates of any two homologous units. Results We have successfully identified such an iterative function for bijective mappingψ of discrete sequences into objects of continuous state space that enable scale-independent sequence analysis. The technique, named Universal Sequence Mapping (USM), is applicable to sequences with an arbitrary length and arbitrary number of unique units and generates a representation where map distance estimates sequence similarity. The novel USM procedure is based on earlier work by these and other authors on the properties of Chaos Game Representation (CGR). The latter enables the representation of 4 unit type sequences (like DNA) as an order free Markov Chain transition table. The properties of USM are illustrated with test data and can be verified for other data by using the accompanying web-based tool:http://bioinformatics.musc.edu/~jonas/usm/. Conclusions USM is shown to enable a statistical mechanics approach to sequence analysis. The scale independent representation frees sequence analysis from the need to assume a memory length in the investigation of syntactic rules. PMID:11895567
NASA Astrophysics Data System (ADS)
Goodman, Joseph W.
2000-07-01
The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research
A Virtual Study of Grid Resolution on Experiments of a Highly-Resolved Turbulent Plume
NASA Astrophysics Data System (ADS)
Maisto, Pietro M. F.; Marshall, Andre W.; Gollner, Michael J.; Fire Protection Engineering Department Collaboration
2017-11-01
An accurate representation of sub-grid scale turbulent mixing is critical for modeling fire plumes and smoke transport. In this study, PLIF and PIV diagnostics are used with the saltwater modeling technique to provide highly-resolved instantaneous field measurements in unconfined turbulent plumes useful for statistical analysis, physical insight, and model validation. The effect of resolution was investigated employing a virtual interrogation window (of varying size) applied to the high-resolution field measurements. Motivated by LES low-pass filtering concepts, the high-resolution experimental data in this study can be analyzed within the interrogation windows (i.e. statistics at the sub-grid scale) and on interrogation windows (i.e. statistics at the resolved scale). A dimensionless resolution threshold (L/D*) criterion was determined to achieve converged statistics on the filtered measurements. Such a criterion was then used to establish the relative importance between large and small-scale turbulence phenomena while investigating specific scales for the turbulent flow. First order data sets start to collapse at a resolution of 0.3D*, while for second and higher order statistical moments the interrogation window size drops down to 0.2D*.
Hilgers, Ralf-Dieter; Bogdan, Malgorzata; Burman, Carl-Fredrik; Dette, Holger; Karlsson, Mats; König, Franz; Male, Christoph; Mentré, France; Molenberghs, Geert; Senn, Stephen
2018-05-11
IDeAl (Integrated designs and analysis of small population clinical trials) is an EU funded project developing new statistical design and analysis methodologies for clinical trials in small population groups. Here we provide an overview of IDeAl findings and give recommendations to applied researchers. The description of the findings is broken down by the nine scientific IDeAl work packages and summarizes results from the project's more than 60 publications to date in peer reviewed journals. In addition, we applied text mining to evaluate the publications and the IDeAl work packages' output in relation to the design and analysis terms derived from in the IRDiRC task force report on small population clinical trials. The results are summarized, describing the developments from an applied viewpoint. The main result presented here are 33 practical recommendations drawn from the work, giving researchers a comprehensive guidance to the improved methodology. In particular, the findings will help design and analyse efficient clinical trials in rare diseases with limited number of patients available. We developed a network representation relating the hot topics developed by the IRDiRC task force on small population clinical trials to IDeAl's work as well as relating important methodologies by IDeAl's definition necessary to consider in design and analysis of small-population clinical trials. These network representation establish a new perspective on design and analysis of small-population clinical trials. IDeAl has provided a huge number of options to refine the statistical methodology for small-population clinical trials from various perspectives. A total of 33 recommendations developed and related to the work packages help the researcher to design small population clinical trial. The route to improvements is displayed in IDeAl-network representing important statistical methodological skills necessary to design and analysis of small-population clinical trials. The methods are ready for use.
78 FR 60015 - Proposed Policy Guidance on Metropolitan Planning Organization Representation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
...), Public Law 112-141, that require representation by providers of public transportation in each... October 1, 2014. The purpose of this guidance is to assist MPOs and providers of public transportation in...)(2)(B), which require representation by providers of public transportation in each MPO that serves an...
A Statistical Representation of Pyrotechnic Igniter Output
NASA Astrophysics Data System (ADS)
Guo, Shuyue; Cooper, Marcia
2017-06-01
The output of simplified pyrotechnic igniters for research investigations is statistically characterized by monitoring the post-ignition external flow field with Schlieren imaging. Unique to this work is a detailed quantification of all measurable manufacturing parameters (e.g., bridgewire length, charge cavity dimensions, powder bed density) and associated shock-motion variability in the tested igniters. To demonstrate experimental precision of the recorded Schlieren images and developed image processing methodologies, commercial exploding bridgewires using wires of different parameters were tested. Finally, a statistically-significant population of manufactured igniters were tested within the Schlieren arrangement resulting in a characterization of the nominal output. Comparisons between the variances measured throughout the manufacturing processes and the calculated output variance provide insight into the critical device phenomena that dominate performance. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.
Multiple Sparse Representations Classification
Plenge, Esben; Klein, Stefan S.; Niessen, Wiro J.; Meijering, Erik
2015-01-01
Sparse representations classification (SRC) is a powerful technique for pixelwise classification of images and it is increasingly being used for a wide variety of image analysis tasks. The method uses sparse representation and learned redundant dictionaries to classify image pixels. In this empirical study we propose to further leverage the redundancy of the learned dictionaries to achieve a more accurate classifier. In conventional SRC, each image pixel is associated with a small patch surrounding it. Using these patches, a dictionary is trained for each class in a supervised fashion. Commonly, redundant/overcomplete dictionaries are trained and image patches are sparsely represented by a linear combination of only a few of the dictionary elements. Given a set of trained dictionaries, a new patch is sparse coded using each of them, and subsequently assigned to the class whose dictionary yields the minimum residual energy. We propose a generalization of this scheme. The method, which we call multiple sparse representations classification (mSRC), is based on the observation that an overcomplete, class specific dictionary is capable of generating multiple accurate and independent estimates of a patch belonging to the class. So instead of finding a single sparse representation of a patch for each dictionary, we find multiple, and the corresponding residual energies provides an enhanced statistic which is used to improve classification. We demonstrate the efficacy of mSRC for three example applications: pixelwise classification of texture images, lumen segmentation in carotid artery magnetic resonance imaging (MRI), and bifurcation point detection in carotid artery MRI. We compare our method with conventional SRC, K-nearest neighbor, and support vector machine classifiers. The results show that mSRC outperforms SRC and the other reference methods. In addition, we present an extensive evaluation of the effect of the main mSRC parameters: patch size, dictionary size, and sparsity level. PMID:26177106
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kogalovskii, M.R.
This paper presents a review of problems related to statistical database systems, which are wide-spread in various fields of activity. Statistical databases (SDB) are referred to as databases that consist of data and are used for statistical analysis. Topics under consideration are: SDB peculiarities, properties of data models adequate for SDB requirements, metadata functions, null-value problems, SDB compromise protection problems, stored data compression techniques, and statistical data representation means. Also examined is whether the present Database Management Systems (DBMS) satisfy the SDB requirements. Some actual research directions in SDB systems are considered.
GeneTools--application for functional annotation and statistical hypothesis testing.
Beisvag, Vidar; Jünge, Frode K R; Bergum, Hallgeir; Jølsum, Lars; Lydersen, Stian; Günther, Clara-Cecilie; Ramampiaro, Heri; Langaas, Mette; Sandvik, Arne K; Laegreid, Astrid
2006-10-24
Modern biology has shifted from "one gene" approaches to methods for genomic-scale analysis like microarray technology, which allow simultaneous measurement of thousands of genes. This has created a need for tools facilitating interpretation of biological data in "batch" mode. However, such tools often leave the investigator with large volumes of apparently unorganized information. To meet this interpretation challenge, gene-set, or cluster testing has become a popular analytical tool. Many gene-set testing methods and software packages are now available, most of which use a variety of statistical tests to assess the genes in a set for biological information. However, the field is still evolving, and there is a great need for "integrated" solutions. GeneTools is a web-service providing access to a database that brings together information from a broad range of resources. The annotation data are updated weekly, guaranteeing that users get data most recently available. Data submitted by the user are stored in the database, where it can easily be updated, shared between users and exported in various formats. GeneTools provides three different tools: i) NMC Annotation Tool, which offers annotations from several databases like UniGene, Entrez Gene, SwissProt and GeneOntology, in both single- and batch search mode. ii) GO Annotator Tool, where users can add new gene ontology (GO) annotations to genes of interest. These user defined GO annotations can be used in further analysis or exported for public distribution. iii) eGOn, a tool for visualization and statistical hypothesis testing of GO category representation. As the first GO tool, eGOn supports hypothesis testing for three different situations (master-target situation, mutually exclusive target-target situation and intersecting target-target situation). An important additional function is an evidence-code filter that allows users, to select the GO annotations for the analysis. GeneTools is the first "all in one" annotation tool, providing users with a rapid extraction of highly relevant gene annotation data for e.g. thousands of genes or clones at once. It allows a user to define and archive new GO annotations and it supports hypothesis testing related to GO category representations. GeneTools is freely available through www.genetools.no
Students' Appreciation of Expectation and Variation as a Foundation for Statistical Understanding
ERIC Educational Resources Information Center
Watson, Jane M.; Callingham, Rosemary A.; Kelly, Ben A.
2007-01-01
This study presents the results of a partial credit Rasch analysis of in-depth interview data exploring statistical understanding of 73 school students in 6 contextual settings. The use of Rasch analysis allowed the exploration of a single underlying variable across contexts, which included probability sampling, representation of temperature…
Using Microsoft Excel[R] to Calculate Descriptive Statistics and Create Graphs
ERIC Educational Resources Information Center
Carr, Nathan T.
2008-01-01
Descriptive statistics and appropriate visual representations of scores are important for all test developers, whether they are experienced testers working on large-scale projects, or novices working on small-scale local tests. Many teachers put in charge of testing projects do not know "why" they are important, however, and are utterly convinced…
Applications of Dirac's Delta Function in Statistics
ERIC Educational Resources Information Center
Khuri, Andre
2004-01-01
The Dirac delta function has been used successfully in mathematical physics for many years. The purpose of this article is to bring attention to several useful applications of this function in mathematical statistics. Some of these applications include a unified representation of the distribution of a function (or functions) of one or several…
The Effects of Measurement Error on Statistical Models for Analyzing Change. Final Report.
ERIC Educational Resources Information Center
Dunivant, Noel
The results of six major projects are discussed including a comprehensive mathematical and statistical analysis of the problems caused by errors of measurement in linear models for assessing change. In a general matrix representation of the problem, several new analytic results are proved concerning the parameters which affect bias in…
Proceedings of the NASA Workshop on Surface Fitting
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr. (Principal Investigator)
1982-01-01
Surface fitting techniques and their utilization are addressed. Surface representation, approximation, and interpolation are discussed. Along with statistical estimation problems associated with surface fitting.
The Centre for Speech, Language and the Brain (CSLB) concept property norms.
Devereux, Barry J; Tyler, Lorraine K; Geertzen, Jeroen; Randall, Billi
2014-12-01
Theories of the representation and processing of concepts have been greatly enhanced by models based on information available in semantic property norms. This information relates both to the identity of the features produced in the norms and to their statistical properties. In this article, we introduce a new and large set of property norms that are designed to be a more flexible tool to meet the demands of many different disciplines interested in conceptual knowledge representation, from cognitive psychology to computational linguistics. As well as providing all features listed by 2 or more participants, we also show the considerable linguistic variation that underlies each normalized feature label and the number of participants who generated each variant. Our norms are highly comparable with the largest extant set (McRae, Cree, Seidenberg, & McNorgan, 2005) in terms of the number and distribution of features. In addition, we show how the norms give rise to a coherent category structure. We provide these norms in the hope that the greater detail available in the Centre for Speech, Language and the Brain norms should further promote the development of models of conceptual knowledge. The norms can be downloaded at www.csl.psychol.cam.ac.uk/propertynorms.
Creating 3D visualizations of MRI data: A brief guide.
Madan, Christopher R
2015-01-01
While magnetic resonance imaging (MRI) data is itself 3D, it is often difficult to adequately present the results papers and slides in 3D. As a result, findings of MRI studies are often presented in 2D instead. A solution is to create figures that include perspective and can convey 3D information; such figures can sometimes be produced by standard functional magnetic resonance imaging (fMRI) analysis packages and related specialty programs. However, many options cannot provide functionality such as visualizing activation clusters that are both cortical and subcortical (i.e., a 3D glass brain), the production of several statistical maps with an identical perspective in the 3D rendering, or animated renderings. Here I detail an approach for creating 3D visualizations of MRI data that satisfies all of these criteria. Though a 3D 'glass brain' rendering can sometimes be difficult to interpret, they are useful in showing a more overall representation of the results, whereas the traditional slices show a more local view. Combined, presenting both 2D and 3D representations of MR images can provide a more comprehensive view of the study's findings.
Creating 3D visualizations of MRI data: A brief guide
Madan, Christopher R.
2015-01-01
While magnetic resonance imaging (MRI) data is itself 3D, it is often difficult to adequately present the results papers and slides in 3D. As a result, findings of MRI studies are often presented in 2D instead. A solution is to create figures that include perspective and can convey 3D information; such figures can sometimes be produced by standard functional magnetic resonance imaging (fMRI) analysis packages and related specialty programs. However, many options cannot provide functionality such as visualizing activation clusters that are both cortical and subcortical (i.e., a 3D glass brain), the production of several statistical maps with an identical perspective in the 3D rendering, or animated renderings. Here I detail an approach for creating 3D visualizations of MRI data that satisfies all of these criteria. Though a 3D ‘glass brain’ rendering can sometimes be difficult to interpret, they are useful in showing a more overall representation of the results, whereas the traditional slices show a more local view. Combined, presenting both 2D and 3D representations of MR images can provide a more comprehensive view of the study’s findings. PMID:26594340
Multilinear Graph Embedding: Representation and Regularization for Images.
Chen, Yi-Lei; Hsu, Chiou-Ting
2014-02-01
Given a set of images, finding a compact and discriminative representation is still a big challenge especially when multiple latent factors are hidden in the way of data generation. To represent multifactor images, although multilinear models are widely used to parameterize the data, most methods are based on high-order singular value decomposition (HOSVD), which preserves global statistics but interprets local variations inadequately. To this end, we propose a novel method, called multilinear graph embedding (MGE), as well as its kernelization MKGE to leverage the manifold learning techniques into multilinear models. Our method theoretically links the linear, nonlinear, and multilinear dimensionality reduction. We also show that the supervised MGE encodes informative image priors for image regularization, provided that an image is represented as a high-order tensor. From our experiments on face and gait recognition, the superior performance demonstrates that MGE better represents multifactor images than classic methods, including HOSVD and its variants. In addition, the significant improvement in image (or tensor) completion validates the potential of MGE for image regularization.
Deconstructing risk: Separable encoding of variance and skewness in the brain
Symmonds, Mkael; Wright, Nicholas D.; Bach, Dominik R.; Dolan, Raymond J.
2011-01-01
Risky choice entails a need to appraise all possible outcomes and integrate this information with individual risk preference. Risk is frequently quantified solely by statistical variance of outcomes, but here we provide evidence that individuals’ choice behaviour is sensitive to both dispersion (variance) and asymmetry (skewness) of outcomes. Using a novel behavioural paradigm in humans, we independently manipulated these ‘summary statistics’ while scanning subjects with fMRI. We show that a behavioural sensitivity to variance and skewness is mirrored in neuroanatomically dissociable representations of these quantities, with parietal cortex showing sensitivity to the former and prefrontal cortex and ventral striatum to the latter. Furthermore, integration of these objective risk metrics with subjective risk preference is expressed in a subject-specific coupling between neural activity and choice behaviour in anterior insula. Our findings show that risk is neither monolithic from a behavioural nor neural perspective and its decomposition is evident both in distinct behavioural preferences and in segregated underlying brain representations. PMID:21763444
A Web Terminology Server Using UMLS for the Description of Medical Procedures
Burgun, Anita; Denier, Patrick; Bodenreider, Olivier; Botti, Geneviève; Delamarre, Denis; Pouliquen, Bruno; Oberlin, Philippe; Lévéque, Jean M.; Lukacs, Bertrand; Kohler, François; Fieschi, Marius; Le Beux, Pierre
1997-01-01
Abstract The Model for Assistance in the Orientation of a User within Coding Systems (MAOUSSC) project has been designed to provide a representation for medical and surgical procedures that allows several applications to be developed from several viewpoints. It is based on a conceptual model, a controlled set of terms, and Web server development. The design includes the UMLS knowledge sources associated with additional knowledge about medico-surgical procedures. The model was implemented using a relational database. The authors developed a complete interface for the Web presentation, with the intermediary layer being written in PERL. The server has been used for the representation of medico-surgical procedures that occur in the discharge summaries of the national survey of hospital activities that is performed by the French Health Statistics Agency in order to produce inpatient profiles. The authors describe the current status of the MAOUSSC server and discuss their interest in using such a server to assist in the coordination of terminology tasks and in the sharing of controlled terminologies. PMID:9292841
NASA Astrophysics Data System (ADS)
Ivanova, Violeta M.; Sousa, Rita; Murrihy, Brian; Einstein, Herbert H.
2014-06-01
This paper presents results from research conducted at MIT during 2010-2012 on modeling of natural rock fracture systems with the GEOFRAC three-dimensional stochastic model. Following a background summary of discrete fracture network models and a brief introduction of GEOFRAC, the paper provides a thorough description of the newly developed mathematical and computer algorithms for fracture intensity, aperture, and intersection representation, which have been implemented in MATLAB. The new methods optimize, in particular, the representation of fracture intensity in terms of cumulative fracture area per unit volume, P32, via the Poisson-Voronoi Tessellation of planes into polygonal fracture shapes. In addition, fracture apertures now can be represented probabilistically or deterministically whereas the newly implemented intersection algorithms allow for computing discrete pathways of interconnected fractures. In conclusion, results from a statistical parametric study, which was conducted with the enhanced GEOFRAC model and the new MATLAB-based Monte Carlo simulation program FRACSIM, demonstrate how fracture intensity, size, and orientations influence fracture connectivity.
Soneson, Charlotte; Fontes, Magnus
2012-01-01
Analysis of multivariate data sets from, for example, microarray studies frequently results in lists of genes which are associated with some response of interest. The biological interpretation is often complicated by the statistical instability of the obtained gene lists, which may partly be due to the functional redundancy among genes, implying that multiple genes can play exchangeable roles in the cell. In this paper, we use the concept of exchangeability of random variables to model this functional redundancy and thereby account for the instability. We present a flexible framework to incorporate the exchangeability into the representation of lists. The proposed framework supports straightforward comparison between any 2 lists. It can also be used to generate new more stable gene rankings incorporating more information from the experimental data. Using 2 microarray data sets, we show that the proposed method provides more robust gene rankings than existing methods with respect to sampling variations, without compromising the biological significance of the rankings.
Network analysis for the visualization and analysis of qualitative data.
Pokorny, Jennifer J; Norman, Alex; Zanesco, Anthony P; Bauer-Wu, Susan; Sahdra, Baljinder K; Saron, Clifford D
2018-03-01
We present a novel manner in which to visualize the coding of qualitative data that enables representation and analysis of connections between codes using graph theory and network analysis. Network graphs are created from codes applied to a transcript or audio file using the code names and their chronological location. The resulting network is a representation of the coding data that characterizes the interrelations of codes. This approach enables quantification of qualitative codes using network analysis and facilitates examination of associations of network indices with other quantitative variables using common statistical procedures. Here, as a proof of concept, we applied this method to a set of interview transcripts that had been coded in 2 different ways and the resultant network graphs were examined. The creation of network graphs allows researchers an opportunity to view and share their qualitative data in an innovative way that may provide new insights and enhance transparency of the analytical process by which they reach their conclusions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Duration estimates within a modality are integrated sub-optimally
Cai, Ming Bo; Eagleman, David M.
2015-01-01
Perceived duration can be influenced by various properties of sensory stimuli. For example, visual stimuli of higher temporal frequency are perceived to last longer than those of lower temporal frequency. How does the brain form a representation of duration when each of two simultaneously presented stimuli influences perceived duration in different way? To answer this question, we investigated the perceived duration of a pair of dynamic visual stimuli of different temporal frequencies in comparison to that of a single visual stimulus of either low or high temporal frequency. We found that the duration representation of simultaneously occurring visual stimuli is best described by weighting the estimates of duration based on each individual stimulus. However, the weighting performance deviates from the prediction of statistically optimal integration. In addition, we provided a Bayesian account to explain a difference in the apparent sensitivity of the psychometric curves introduced by the order in which the two stimuli are displayed in a two-alternative forced-choice task. PMID:26321965
A non-linear dimension reduction methodology for generating data-driven stochastic input models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganapathysubramanian, Baskar; Zabaras, Nicholas
Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem ofmore » manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space R{sup n}. An isometric mapping F from M to a low-dimensional, compact, connected set A is contained in R{sup d}(d<
Teichert, Gregory H.; Gunda, N. S. Harsha; Rudraraju, Shiva; ...
2016-12-18
Free energies play a central role in many descriptions of equilibrium and non-equilibrium properties of solids. Continuum partial differential equations (PDEs) of atomic transport, phase transformations and mechanics often rely on first and second derivatives of a free energy function. The stability, accuracy and robustness of numerical methods to solve these PDEs are sensitive to the particular functional representations of the free energy. In this communication we investigate the influence of different representations of thermodynamic data on phase field computations of diffusion and two-phase reactions in the solid state. First-principles statistical mechanics methods were used to generate realistic free energymore » data for HCP titanium with interstitially dissolved oxygen. While Redlich-Kister polynomials have formed the mainstay of thermodynamic descriptions of multi-component solids, they require high order terms to fit oscillations in chemical potentials around phase transitions. Here, we demonstrate that high fidelity fits to rapidly fluctuating free energy functions are obtained with spline functions. As a result, spline functions that are many degrees lower than Redlich-Kister polynomials provide equal or superior fits to chemical potential data and, when used in phase field computations, result in solution times approaching an order of magnitude speed up relative to the use of Redlich-Kister polynomials.« less
NASA Astrophysics Data System (ADS)
Hirst, Jonathan D.; King, Ross D.; Sternberg, Michael J. E.
1994-08-01
One of the largest available data sets for developing a quantitative structure-activity relationship (QSAR) — the inhibition of dihydrofolate reductase (DHFR) by 2,4-diamino-6,6-dimethyl-5-phenyl-dihydrotriazine derivatives — has been used for a sixfold cross-validation trial of neural networks, inductive logic programming (ILP) and linear regression. No statistically significant difference was found between the predictive capabilities of the methods. However, the representation of molecules by attributes, which is integral to the ILP approach, provides understandable rules about drug-receptor interactions.
The hippocampus and exploration: dynamically evolving behavior and neural representations
Johnson, Adam; Varberg, Zachary; Benhardus, James; Maahs, Anthony; Schrater, Paul
2012-01-01
We develop a normative statistical approach to exploratory behavior called information foraging. Information foraging highlights the specific processes that contribute to active, rather than passive, exploration and learning. We hypothesize that the hippocampus plays a critical role in active exploration through directed information foraging by supporting a set of processes that allow an individual to determine where to sample. By examining these processes, we show how information directed information foraging provides a formal theoretical explanation for the common hippocampal substrates of constructive memory, vicarious trial and error behavior, schema-based facilitation of memory performance, and memory consolidation. PMID:22848196
Andersen, Lau M
2018-01-01
An important aim of an analysis pipeline for magnetoencephalographic (MEG) data is that it allows for the researcher spending maximal effort on making the statistical comparisons that will answer his or her questions. The example question being answered here is whether the so-called beta rebound differs between novel and repeated stimulations. Two analyses are presented: going from individual sensor space representations to, respectively, an across-group sensor space representation and an across-group source space representation. The data analyzed are neural responses to tactile stimulations of the right index finger in a group of 20 healthy participants acquired from an Elekta Neuromag System. The processing steps covered for the first analysis are MaxFiltering the raw data, defining, preprocessing and epoching the data, cleaning the data, finding and removing independent components related to eye blinks, eye movements and heart beats, calculating participants' individual evoked responses by averaging over epoched data and subsequently removing the average response from single epochs, calculating a time-frequency representation and baselining it with non-stimulation trials and finally calculating a grand average, an across-group sensor space representation. The second analysis starts from the grand average sensor space representation and after identification of the beta rebound the neural origin is imaged using beamformer source reconstruction. This analysis covers reading in co-registered magnetic resonance images, segmenting the data, creating a volume conductor, creating a forward model, cutting out MEG data of interest in the time and frequency domains, getting Fourier transforms and estimating source activity with a beamformer model where power is expressed relative to MEG data measured during periods of non-stimulation. Finally, morphing the source estimates onto a common template and performing group-level statistics on the data are covered. Functions for saving relevant figures in an automated and structured manner are also included. The protocol presented here can be applied to any research protocol where the emphasis is on source reconstruction of induced responses where the underlying sources are not coherent.
The impact on midlevel vision of statistically optimal divisive normalization in V1.
Coen-Cagli, Ruben; Schwartz, Odelia
2013-07-15
The first two areas of the primate visual cortex (V1, V2) provide a paradigmatic example of hierarchical computation in the brain. However, neither the functional properties of V2 nor the interactions between the two areas are well understood. One key aspect is that the statistics of the inputs received by V2 depend on the nonlinear response properties of V1. Here, we focused on divisive normalization, a canonical nonlinear computation that is observed in many neural areas and modalities. We simulated V1 responses with (and without) different forms of surround normalization derived from statistical models of natural scenes, including canonical normalization and a statistically optimal extension that accounted for image nonhomogeneities. The statistics of the V1 population responses differed markedly across models. We then addressed how V2 receptive fields pool the responses of V1 model units with different tuning. We assumed this is achieved by learning without supervision a linear representation that removes correlations, which could be accomplished with principal component analysis. This approach revealed V2-like feature selectivity when we used the optimal normalization and, to a lesser extent, the canonical one but not in the absence of both. We compared the resulting two-stage models on two perceptual tasks; while models encompassing V1 surround normalization performed better at object recognition, only statistically optimal normalization provided systematic advantages in a task more closely matched to midlevel vision, namely figure/ground judgment. Our results suggest that experiments probing midlevel areas might benefit from using stimuli designed to engage the computations that characterize V1 optimality.
Internal representations reveal cultural diversity in expectations of facial expressions of emotion.
Jack, Rachael E; Caldara, Roberto; Schyns, Philippe G
2012-02-01
Facial expressions have long been considered the "universal language of emotion." Yet consistent cultural differences in the recognition of facial expressions contradict such notions (e.g., R. E. Jack, C. Blais, C. Scheepers, P. G. Schyns, & R. Caldara, 2009). Rather, culture--as an intricate system of social concepts and beliefs--could generate different expectations (i.e., internal representations) of facial expression signals. To investigate, they used a powerful psychophysical technique (reverse correlation) to estimate the observer-specific internal representations of the 6 basic facial expressions of emotion (i.e., happy, surprise, fear, disgust, anger, and sad) in two culturally distinct groups (i.e., Western Caucasian [WC] and East Asian [EA]). Using complementary statistical image analyses, cultural specificity was directly revealed in these representations. Specifically, whereas WC internal representations predominantly featured the eyebrows and mouth, EA internal representations showed a preference for expressive information in the eye region. Closer inspection of the EA observer preference revealed a surprising feature: changes of gaze direction, shown primarily among the EA group. For the first time, it is revealed directly that culture can finely shape the internal representations of common facial expressions of emotion, challenging notions of a biologically hardwired "universal language of emotion."
Modeling the Development of Audiovisual Cue Integration in Speech Perception
Getz, Laura M.; Nordeen, Elke R.; Vrabic, Sarah C.; Toscano, Joseph C.
2017-01-01
Adult speech perception is generally enhanced when information is provided from multiple modalities. In contrast, infants do not appear to benefit from combining auditory and visual speech information early in development. This is true despite the fact that both modalities are important to speech comprehension even at early stages of language acquisition. How then do listeners learn how to process auditory and visual information as part of a unified signal? In the auditory domain, statistical learning processes provide an excellent mechanism for acquiring phonological categories. Is this also true for the more complex problem of acquiring audiovisual correspondences, which require the learner to integrate information from multiple modalities? In this paper, we present simulations using Gaussian mixture models (GMMs) that learn cue weights and combine cues on the basis of their distributional statistics. First, we simulate the developmental process of acquiring phonological categories from auditory and visual cues, asking whether simple statistical learning approaches are sufficient for learning multi-modal representations. Second, we use this time course information to explain audiovisual speech perception in adult perceivers, including cases where auditory and visual input are mismatched. Overall, we find that domain-general statistical learning techniques allow us to model the developmental trajectory of audiovisual cue integration in speech, and in turn, allow us to better understand the mechanisms that give rise to unified percepts based on multiple cues. PMID:28335558
Modeling the Development of Audiovisual Cue Integration in Speech Perception.
Getz, Laura M; Nordeen, Elke R; Vrabic, Sarah C; Toscano, Joseph C
2017-03-21
Adult speech perception is generally enhanced when information is provided from multiple modalities. In contrast, infants do not appear to benefit from combining auditory and visual speech information early in development. This is true despite the fact that both modalities are important to speech comprehension even at early stages of language acquisition. How then do listeners learn how to process auditory and visual information as part of a unified signal? In the auditory domain, statistical learning processes provide an excellent mechanism for acquiring phonological categories. Is this also true for the more complex problem of acquiring audiovisual correspondences, which require the learner to integrate information from multiple modalities? In this paper, we present simulations using Gaussian mixture models (GMMs) that learn cue weights and combine cues on the basis of their distributional statistics. First, we simulate the developmental process of acquiring phonological categories from auditory and visual cues, asking whether simple statistical learning approaches are sufficient for learning multi-modal representations. Second, we use this time course information to explain audiovisual speech perception in adult perceivers, including cases where auditory and visual input are mismatched. Overall, we find that domain-general statistical learning techniques allow us to model the developmental trajectory of audiovisual cue integration in speech, and in turn, allow us to better understand the mechanisms that give rise to unified percepts based on multiple cues.
Chen, Shuhang; Liu, Huafeng; Shi, Pengcheng; Chen, Yunmei
2015-01-21
Accurate and robust reconstruction of the radioactivity concentration is of great importance in positron emission tomography (PET) imaging. Given the Poisson nature of photo-counting measurements, we present a reconstruction framework that integrates sparsity penalty on a dictionary into a maximum likelihood estimator. Patch-sparsity on a dictionary provides the regularization for our effort, and iterative procedures are used to solve the maximum likelihood function formulated on Poisson statistics. Specifically, in our formulation, a dictionary could be trained on CT images, to provide intrinsic anatomical structures for the reconstructed images, or adaptively learned from the noisy measurements of PET. Accuracy of the strategy with very promising application results from Monte-Carlo simulations, and real data are demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnett, R.A.
A major goal of the Analysis of Large Data Sets (ALDS) research project at Pacific Northwest Laboratory (PNL) is to provide efficient data organization, storage, and access capabilities for statistical applications involving large amounts of data. As part of the effort to achieve this goal, a self-describing binary (SDB) data file structure has been designed and implemented together with a set of basic data manipulation functions and supporting SDB data access routines. Logical and physical data descriptors are stored in SDB files preceding the data values. SDB files thus provide a common data representation for interfacing diverse software components. Thismore » paper describes the various types of data descriptors and data structures permitted by the file design. Data buffering, file segmentation, and a segment overflow handler are also discussed.« less
Jung, Wonmo; Bülthoff, Isabelle; Armann, Regine G M
2017-11-01
The brain can only attend to a fraction of all the information that is entering the visual system at any given moment. One way of overcoming the so-called bottleneck of selective attention (e.g., J. M. Wolfe, Võ, Evans, & Greene, 2011) is to make use of redundant visual information and extract summarized statistical information of the whole visual scene. Such ensemble representation occurs for low-level features of textures or simple objects, but it has also been reported for complex high-level properties. While the visual system has, for example, been shown to compute summary representations of facial expression, gender, or identity, it is less clear whether perceptual input from all parts of the visual field contributes equally to the ensemble percept. Here we extend the line of ensemble-representation research into the realm of race and look at the possibility that ensemble perception relies on weighting visual information differently depending on its origin from either the fovea or the visual periphery. We find that observers can judge the mean race of a set of faces, similar to judgments of mean emotion from faces and ensemble representations in low-level domains of visual processing. We also find that while peripheral faces seem to be taken into account for the ensemble percept, far more weight is given to stimuli presented foveally than peripherally. Whether this precision weighting of information stems from differences in the accuracy with which the visual system processes information across the visual field or from statistical inferences about the world needs to be determined by further research.
Exploring College Students' Mental Representations of Inferential Statistics
ERIC Educational Resources Information Center
Lavigne, Nancy C.; Salkind, Sara J.; Yan, Jie
2008-01-01
We report a case study that explored how three college students mentally represented the knowledge they held of inferential statistics, how this knowledge was connected, and how it was applied in two problem solving situations. A concept map task and two problem categorization tasks were used along with interviews to gather the data. We found that…
ERIC Educational Resources Information Center
Ryan, Catherine Agnes
2012-01-01
The public school superintendent is the least progressive position in education at integrating women and balancing the scales of equitable representation. Statistical data indicates there are far fewer females than males serving as superintendents. Current statistics show women make up: 1) over 70 percent of all public school educators; 2) nearly…
Effects of Concept Mapping Strategy on Learning Performance in Business and Economics Statistics
ERIC Educational Resources Information Center
Chiou, Chei-Chang
2009-01-01
A concept map (CM) is a hierarchically arranged, graphic representation of the relationships among concepts. Concept mapping (CMING) is the process of constructing a CM. This paper examines whether a CMING strategy can be useful in helping students to improve their learning performance in a business and economics statistics course. A single…
Thanawattano, Chusak; Pongthornseri, Ronachai; Anan, Chanawat; Dumnin, Songphon; Bhidayasiri, Roongroj
2015-11-04
Parkinson's disease (PD) and essential tremor (ET) are the two most common movement disorders but the rate of misdiagnosis rate in these disorders is high due to similar characteristics of tremor. The purpose of the study is to present: (a) a solution to identify PD and ET patients by using the novel measurement of tremor signal variations while performing the resting task, (b) the improvement of the differentiation of PD from ET patients can be obtained by using the ratio of the novel measurement while performing two specific tasks. 35 PD and 22 ET patients were asked to participate in the study. They were asked to wear a 6-axis inertial sensor on his/her index finger of the tremor dominant hand and perform three tasks including kinetic, postural and resting tasks. Each task required 10 s to complete. The angular rate signal measured during the performance of these tasks was band-pass filtered and transformed into a two-dimensional representation. The ratio of the ellipse area covering 95 % of this two-dimensional representation of different tasks was investigated and the two best tasks were selected for the purpose of differentiation. The ellipse area of two-dimensional representation of the resting task of PD and ET subjects are statistically significantly different (p < 0.05). Furthermore, the fluctuation ratio, defined as a ratio of the ellipse area of two-dimensional representation of resting to kinetic tremor, of PD subjects were statistically significantly higher than ET subjects in all axes (p = 0.0014, 0.0011 and 0.0001 for x, y and z-axis, respectively). The validation shows that the proposed method provides 100 % sensitivity, specificity and accuracy of the discrimination in the 5 subjects in the validation group. While the method would have to be validated with a larger number of subjects, these preliminary results show the feasibility of the approach. This study provides the novel measurement of tremor variation in time domain termed 'temporal fluctuation'. The temporal fluctuation of the resting task can be used to discriminate PD from ET subjects. The ratio of the temporal fluctuation of the resting task to the kinetic task improves the reliability of the discrimination. While the method is powerful, it is also simple so it could be applied on low resource platforms such as smart phones and watches which are commonly equipped with inertial sensors.
NASA Technical Reports Server (NTRS)
Yijun, Huang; Guochen, Yu; Hong, Sun
1996-01-01
It is well known that the quantum Yang-Baxter equations (QYBE) play an important role in various theoretical and mathematical physics, such as completely integrable system in (1 + 1)-dimensions, exactly solvable models in statistical mechanics, the quantum inverse scattering method and the conformal field theories in 2-dimensions. Recently, much remarkable progress has been made in constructing the solutions of the QYBE associated with the representations of lie algebras. It is shown that for some cases except the standard solutions, there also exist new solutions, but the others have not non-standard solutions. In this paper by employing the weight conservation and the diagrammatic techniques we show that the solution associated with the 10-D representations of SU (4) are standard alone.
With age comes representational wisdom in social signals.
van Rijsbergen, Nicola; Jaworska, Katarzyna; Rousselet, Guillaume A; Schyns, Philippe G
2014-12-01
In an increasingly aging society, age has become a foundational dimension of social grouping broadly targeted by advertising and governmental policies. However, perception of old age induces mainly strong negative social biases. To characterize their cognitive and perceptual foundations, we modeled the mental representations of faces associated with three age groups (young age, middle age, and old age), in younger and older participants. We then validated the accuracy of each mental representation of age with independent validators. Using statistical image processing, we identified the features of mental representations that predict perceived age. Here, we show that whereas younger people mentally dichotomize aging into two groups, themselves (younger) and others (older), older participants faithfully represent the features of young age, middle age, and old age, with richer representations of all considered ages. Our results demonstrate that, contrary to popular public belief, older minds depict socially relevant information more accurately than their younger counterparts. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Insight and search in Katona's five-square problem.
Ollinger, Michael; Jones, Gary; Knoblich, Günther
2014-01-01
Insights are often productive outcomes of human thinking. We provide a cognitive model that explains insight problem solving by the interplay of problem space search and representational change, whereby the problem space is constrained or relaxed based on the problem representation. By introducing different experimental conditions that either constrained the initial search space or helped solvers to initiate a representational change, we investigated the interplay of problem space search and representational change in Katona's five-square problem. Testing 168 participants, we demonstrated that independent hints relating to the initial search space and to representational change had little effect on solution rates. However, providing both hints caused a significant increase in solution rates. Our results show the interplay between problem space search and representational change in insight problem solving: The initial problem space can be so large that people fail to encounter impasse, but even when representational change is achieved the resulting problem space can still provide a major obstacle to finding the solution.
Poincaré resonances and the limits of trajectory dynamics.
Petrosky, T; Prigogine, I
1993-01-01
In previous papers we have shown that the elimination of the resonance divergences in large Poincare systems leads to complex irreducible spectral representations for the Liouville-von Neumann operator. Complex means that time symmetry is broken and irreducibility means that this representation is implementable only by statistical ensembles and not by trajectories. We consider in this paper classical potential scattering. Our theory applies to persistent scattering. Numerical simulations show quantitative agreement with our predictions. PMID:11607428
Analysis of Alternatives in System Capability Satisficing for Effective Acquisition
2011-04-30
Technology. He received his BS in Actuarial Science from Universidad Nacional Autónoma de México, MS in Statistics, and MS and PhD in Industrial and Systems...one can view this metric (ITRLfk(i)) as “subsystem” measurement of this technology integrates within the system. In a mathematical representation...that this new metric should be a function of the different ITRLs of each technology, or in a mathematical representation: SRL_Cfk=f(ITRLfk(1), ITRLfk
Basic statistics with Microsoft Excel: a review.
Divisi, Duilio; Di Leonardo, Gabriella; Zaccagna, Gino; Crisci, Roberto
2017-06-01
The scientific world is enriched daily with new knowledge, due to new technologies and continuous discoveries. The mathematical functions explain the statistical concepts particularly those of mean, median and mode along with those of frequency and frequency distribution associated to histograms and graphical representations, determining elaborative processes on the basis of the spreadsheet operations. The aim of the study is to highlight the mathematical basis of statistical models that regulate the operation of spreadsheets in Microsoft Excel.
Basic statistics with Microsoft Excel: a review
Di Leonardo, Gabriella; Zaccagna, Gino; Crisci, Roberto
2017-01-01
The scientific world is enriched daily with new knowledge, due to new technologies and continuous discoveries. The mathematical functions explain the statistical concepts particularly those of mean, median and mode along with those of frequency and frequency distribution associated to histograms and graphical representations, determining elaborative processes on the basis of the spreadsheet operations. The aim of the study is to highlight the mathematical basis of statistical models that regulate the operation of spreadsheets in Microsoft Excel. PMID:28740690
Evaluation of Deep Learning Representations of Spatial Storm Data
NASA Astrophysics Data System (ADS)
Gagne, D. J., II; Haupt, S. E.; Nychka, D. W.
2017-12-01
The spatial structure of a severe thunderstorm and its surrounding environment provide useful information about the potential for severe weather hazards, including tornadoes, hail, and high winds. Statistics computed over the area of a storm or from the pre-storm environment can provide descriptive information but fail to capture structural information. Because the storm environment is a complex, high-dimensional space, identifying methods to encode important spatial storm information in a low-dimensional form should aid analysis and prediction of storms by statistical and machine learning models. Principal component analysis (PCA), a more traditional approach, transforms high-dimensional data into a set of linearly uncorrelated, orthogonal components ordered by the amount of variance explained by each component. The burgeoning field of deep learning offers two potential approaches to this problem. Convolutional Neural Networks are a supervised learning method for transforming spatial data into a hierarchical set of feature maps that correspond with relevant combinations of spatial structures in the data. Generative Adversarial Networks (GANs) are an unsupervised deep learning model that uses two neural networks trained against each other to produce encoded representations of spatial data. These different spatial encoding methods were evaluated on the prediction of severe hail for a large set of storm patches extracted from the NCAR convection-allowing ensemble. Each storm patch contains information about storm structure and the near-storm environment. Logistic regression and random forest models were trained using the PCA and GAN encodings of the storm data and were compared against the predictions from a convolutional neural network. All methods showed skill over climatology at predicting the probability of severe hail. However, the verification scores among the methods were very similar and the predictions were highly correlated. Further evaluations are being performed to determine how the choice of input variables affects the results.
A polygon soup representation for free viewpoint video
NASA Astrophysics Data System (ADS)
Colleu, T.; Pateux, S.; Morin, L.; Labit, C.
2010-02-01
This paper presents a polygon soup representation for multiview data. Starting from a sequence of multi-view video plus depth (MVD) data, the proposed representation takes into account, in a unified manner, different issues such as compactness, compression, and intermediate view synthesis. The representation is built in two steps. First, a set of 3D quads is extracted using a quadtree decomposition of the depth maps. Second, a selective elimination of the quads is performed in order to reduce inter-view redundancies and thus provide a compact representation. Moreover, the proposed methodology for extracting the representation allows to reduce ghosting artifacts. Finally, an adapted compression technique is proposed that limits coding artifacts. The results presented on two real sequences show that the proposed representation provides a good trade-off between rendering quality and data compactness.
Statistical Study of the Properties of Magnetosheath Lion Roars using MMS observations
NASA Astrophysics Data System (ADS)
Giagkiozis, S.; Wilson, L. B., III
2017-12-01
Intense whistler-mode waves of very short duration are frequently encountered in the magnetosheath. These emissions have been linked to mirror mode waves and the Earth's bow shock. They can efficiently transfer energy between different plasma populations. These electromagnetic waves are commonly referred to as Lion roars (LR), due to the sound generated when the signals are sonified. They are generally observed during dips of the magnetic field that are anti-correlated with increases of density. Using MMS data, we have identified more than 1750 individual LR burst intervals. Each emission was band-pass filtered and further split into >35,000 subintervals, for which the direction of propagation and the polarization were calculated. The analysis of subinterval properties provides a more accurate representation of their true nature than the more commonly used time- and frequency-averaged dynamic spectra analysis. The results of the statistical analysis of the wave properties will be presented.
Quantitative three-dimensional ice roughness from scanning electron microscopy
NASA Astrophysics Data System (ADS)
Butterfield, Nicholas; Rowe, Penny M.; Stewart, Emily; Roesel, David; Neshyba, Steven
2017-03-01
We present a method for inferring surface morphology of ice from scanning electron microscope images. We first develop a novel functional form for the backscattered electron intensity as a function of ice facet orientation; this form is parameterized using smooth ice facets of known orientation. Three-dimensional representations of rough surfaces are retrieved at approximately micrometer resolution using Gauss-Newton inversion within a Bayesian framework. Statistical analysis of the resulting data sets permits characterization of ice surface roughness with a much higher statistical confidence than previously possible. A survey of results in the range -39°C to -29°C shows that characteristics of the roughness (e.g., Weibull parameters) are sensitive not only to the degree of roughening but also to the symmetry of the roughening. These results suggest that roughening characteristics obtained by remote sensing and in situ measurements of atmospheric ice clouds can potentially provide more facet-specific information than has previously been appreciated.
Evaluation and Applications of Cloud Climatologies from CALIOP
NASA Technical Reports Server (NTRS)
Winker, David; Getzewitch, Brian; Vaughan, Mark
2008-01-01
Clouds have a major impact on the Earth radiation budget and differences in the representation of clouds in global climate models are responsible for much of the spread in predicted climate sensitivity. Existing cloud climatologies, against which these models can be tested, have many limitations. The CALIOP lidar, carried on the CALIPSO satellite, has now acquired over two years of nearly continuous cloud and aerosol observations. This dataset provides an improved basis for the characterization of 3-D global cloudiness. Global average cloud cover measured by CALIOP is about 75%, significantly higher than for existing cloud climatologies due to the sensitivity of CALIOP to optically thin cloud. Day/night biases in cloud detection appear to be small. This presentation will discuss detection sensitivity and other issues associated with producing a cloud climatology, characteristics of cloud cover statistics derived from CALIOP data, and applications of those statistics.
Enhanced Higgs boson to τ(+)τ(-) search with deep learning.
Baldi, P; Sadowski, P; Whiteson, D
2015-03-20
The Higgs boson is thought to provide the interaction that imparts mass to the fundamental fermions, but while measurements at the Large Hadron Collider (LHC) are consistent with this hypothesis, current analysis techniques lack the statistical power to cross the traditional 5σ significance barrier without more data. Deep learning techniques have the potential to increase the statistical power of this analysis by automatically learning complex, high-level data representations. In this work, deep neural networks are used to detect the decay of the Higgs boson to a pair of tau leptons. A Bayesian optimization algorithm is used to tune the network architecture and training algorithm hyperparameters, resulting in a deep network of eight nonlinear processing layers that improves upon the performance of shallow classifiers even without the use of features specifically engineered by physicists for this application. The improvement in discovery significance is equivalent to an increase in the accumulated data set of 25%.
Bridging stylized facts in finance and data non-stationarities
NASA Astrophysics Data System (ADS)
Camargo, Sabrina; Duarte Queirós, Sílvio M.; Anteneodo, Celia
2013-04-01
Employing a recent technique which allows the representation of nonstationary data by means of a juxtaposition of locally stationary paths of different length, we introduce a comprehensive analysis of the key observables in a financial market: the trading volume and the price fluctuations. From the segmentation procedure we are able to introduce a quantitative description of statistical features of these two quantities, which are often named stylized facts, namely the tails of the distribution of trading volume and price fluctuations and a dynamics compatible with the U-shaped profile of the volume in a trading section and the slow decay of the autocorrelation function. The segmentation of the trading volume series provides evidence of slow evolution of the fluctuating parameters of each patch, pointing to the mixing scenario. Assuming that long-term features are the outcome of a statistical mixture of simple local forms, we test and compare different probability density functions to provide the long-term distribution of the trading volume, concluding that the log-normal gives the best agreement with the empirical distribution. Moreover, the segmentation of the magnitude price fluctuations are quite different from the results for the trading volume, indicating that changes in the statistics of price fluctuations occur at a faster scale than in the case of trading volume.
Stochastic Optimally Tuned Range-Separated Hybrid Density Functional Theory.
Neuhauser, Daniel; Rabani, Eran; Cytter, Yael; Baer, Roi
2016-05-19
We develop a stochastic formulation of the optimally tuned range-separated hybrid density functional theory that enables significant reduction of the computational effort and scaling of the nonlocal exchange operator at the price of introducing a controllable statistical error. Our method is based on stochastic representations of the Coulomb convolution integral and of the generalized Kohn-Sham density matrix. The computational cost of the approach is similar to that of usual Kohn-Sham density functional theory, yet it provides a much more accurate description of the quasiparticle energies for the frontier orbitals. This is illustrated for a series of silicon nanocrystals up to sizes exceeding 3000 electrons. Comparison with the stochastic GW many-body perturbation technique indicates excellent agreement for the fundamental band gap energies, good agreement for the band edge quasiparticle excitations, and very low statistical errors in the total energy for large systems. The present approach has a major advantage over one-shot GW by providing a self-consistent Hamiltonian that is central for additional postprocessing, for example, in the stochastic Bethe-Salpeter approach.
treespace: Statistical exploration of landscapes of phylogenetic trees.
Jombart, Thibaut; Kendall, Michelle; Almagro-Garcia, Jacob; Colijn, Caroline
2017-11-01
The increasing availability of large genomic data sets as well as the advent of Bayesian phylogenetics facilitates the investigation of phylogenetic incongruence, which can result in the impossibility of representing phylogenetic relationships using a single tree. While sometimes considered as a nuisance, phylogenetic incongruence can also reflect meaningful biological processes as well as relevant statistical uncertainty, both of which can yield valuable insights in evolutionary studies. We introduce a new tool for investigating phylogenetic incongruence through the exploration of phylogenetic tree landscapes. Our approach, implemented in the R package treespace, combines tree metrics and multivariate analysis to provide low-dimensional representations of the topological variability in a set of trees, which can be used for identifying clusters of similar trees and group-specific consensus phylogenies. treespace also provides a user-friendly web interface for interactive data analysis and is integrated alongside existing standards for phylogenetics. It fills a gap in the current phylogenetics toolbox in R and will facilitate the investigation of phylogenetic results. © 2017 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
How to make progress in geosciences towards UN Sustainable Development Goal N°5?
NASA Astrophysics Data System (ADS)
Garçon, Véronique
2017-04-01
Gender equality is not only a fundamental human right, but a necessary foundation for a peaceful, prosperous and sustainable world. Providing women and girls with equal access to education, decent work, and representation in institutional, scientific research, political and economic decision-making processes will fuel sustainable economies and benefit societies and humanity at large. With a stand-alone goal SDG 5, awareness has been raised about the need for high quality gender data statistics. What is the state of the art in public research institutions? I will present the four main areas of action of the "Mission for the Place of Women at CNRS" namely fostering gender equality within CNRS, promoting gender(ed) research, outreach to young women, female role models, profile raising, and developing networks and partnerships. I will compare data statistics with other research institutions and present the strong partnership that CNRS has developed at national, European and international levels. Belonging to the 27% of women senior scientists at CNRS in geosciences, I will, based on my personal life experience, provide vision on how, in the laboratories world, to promote equality in our disciplines.
NASA Astrophysics Data System (ADS)
Quesada-Montano, Beatriz; Westerberg, Ida K.; Fuentes-Andino, Diana; Hidalgo-Leon, Hugo; Halldin, Sven
2017-04-01
Long-term hydrological data are key to understanding catchment behaviour and for decision making within water management and planning. Given the lack of observed data in many regions worldwide, hydrological models are an alternative for reproducing historical streamflow series. Additional types of information - to locally observed discharge - can be used to constrain model parameter uncertainty for ungauged catchments. Climate variability exerts a strong influence on streamflow variability on long and short time scales, in particular in the Central-American region. We therefore explored the use of climate variability knowledge to constrain the simulated discharge uncertainty of a conceptual hydrological model applied to a Costa Rican catchment, assumed to be ungauged. To reduce model uncertainty we first rejected parameter relationships that disagreed with our understanding of the system. We then assessed how well climate-based constraints applied at long-term, inter-annual and intra-annual time scales could constrain model uncertainty. Finally, we compared the climate-based constraints to a constraint on low-flow statistics based on information obtained from global maps. We evaluated our method in terms of the ability of the model to reproduce the observed hydrograph and the active catchment processes in terms of two efficiency measures, a statistical consistency measure, a spread measure and 17 hydrological signatures. We found that climate variability knowledge was useful for reducing model uncertainty, in particular, unrealistic representation of deep groundwater processes. The constraints based on global maps of low-flow statistics provided more constraining information than those based on climate variability, but the latter rejected slow rainfall-runoff representations that the low flow statistics did not reject. The use of such knowledge, together with information on low-flow statistics and constraints on parameter relationships showed to be useful to constrain model uncertainty for an - assumed to be - ungauged basin. This shows that our method is promising for reconstructing long-term flow data for ungauged catchments on the Pacific side of Central America, and that similar methods can be developed for ungauged basins in other regions where climate variability exerts a strong control on streamflow variability.
Linking Neural and Symbolic Representation and Processing of Conceptual Structures
van der Velde, Frank; Forth, Jamie; Nazareth, Deniece S.; Wiggins, Geraint A.
2017-01-01
We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like) structures. First is the Neural Blackboard Architecture (NBA), which aims to account for representation and processing of complex and combinatorial conceptual structures in the brain. Second is IDyOT (Information Dynamics of Thinking), which derives sentence-like structures by learning statistical sequential regularities over a suitable corpus. Although IDyOT is designed at a level more abstract than the neural, so it is a model of cognitive function, rather than neural processing, there are strong similarities between the composite structures developed in IDyOT and the NBA. We hypothesize that these similarities form the basis of a combined architecture in which the individual strengths of each architecture are integrated. We outline and discuss the characteristics of this combined architecture, emphasizing the representation and processing of conceptual structures. PMID:28848460
Demodulation of messages received with low signal to noise ratio
NASA Astrophysics Data System (ADS)
Marguinaud, A.; Quignon, T.; Romann, B.
The implementation of this all-digital demodulator is derived from maximum likelihood considerations applied to an analytical representation of the received signal. Traditional adapted filters and phase lock loops are replaced by minimum variance estimators and hypothesis tests. These statistical tests become very simple when working on phase signal. These methods, combined with rigorous control data representation allow significant computation savings as compared to conventional realizations. Nominal operation has been verified down to energetic signal over noise of -3 dB upon a QPSK demodulator.
Pearce, Marcus T
2018-05-11
Music perception depends on internal psychological models derived through exposure to a musical culture. It is hypothesized that this musical enculturation depends on two cognitive processes: (1) statistical learning, in which listeners acquire internal cognitive models of statistical regularities present in the music to which they are exposed; and (2) probabilistic prediction based on these learned models that enables listeners to organize and process their mental representations of music. To corroborate these hypotheses, I review research that uses a computational model of probabilistic prediction based on statistical learning (the information dynamics of music (IDyOM) model) to simulate data from empirical studies of human listeners. The results show that a broad range of psychological processes involved in music perception-expectation, emotion, memory, similarity, segmentation, and meter-can be understood in terms of a single, underlying process of probabilistic prediction using learned statistical models. Furthermore, IDyOM simulations of listeners from different musical cultures demonstrate that statistical learning can plausibly predict causal effects of differential cultural exposure to musical styles, providing a quantitative model of cultural distance. Understanding the neural basis of musical enculturation will benefit from close coordination between empirical neuroimaging and computational modeling of underlying mechanisms, as outlined here. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.
NASA Astrophysics Data System (ADS)
Gebre, Engida H.; Polman, Joseph L.
2016-12-01
This study presents descriptive analysis of young adults' use of multiple representations in the context of science news reporting. Across one semester, 71 high school students, in a socioeconomically diverse suburban secondary school in Midwestern United States, participated in activities of researching science topics of their choice and producing infographic-based science news for possible online publication. An external editor reviewed their draft infographics and provided comments for subsequent revision. Students also provided peer feedback to the draft version of infographics using an online commentary tool. We analysed the nature of representations students used as well as the comments from peer and the editor feedback. Results showed both students' capabilities and challenges in learning with representations in this context. Students frequently rely on using certain kinds of representations that are depictive in nature, and supporting their progress towards using more abstract representations requires special attention and identifying learning gaps. Results also showed that students were able to determine representational adequacy in the context of providing peer feedback. The study has implication for research and instruction using infographics as expressive tools to support learning.
The impact on midlevel vision of statistically optimal divisive normalization in V1
Coen-Cagli, Ruben; Schwartz, Odelia
2013-01-01
The first two areas of the primate visual cortex (V1, V2) provide a paradigmatic example of hierarchical computation in the brain. However, neither the functional properties of V2 nor the interactions between the two areas are well understood. One key aspect is that the statistics of the inputs received by V2 depend on the nonlinear response properties of V1. Here, we focused on divisive normalization, a canonical nonlinear computation that is observed in many neural areas and modalities. We simulated V1 responses with (and without) different forms of surround normalization derived from statistical models of natural scenes, including canonical normalization and a statistically optimal extension that accounted for image nonhomogeneities. The statistics of the V1 population responses differed markedly across models. We then addressed how V2 receptive fields pool the responses of V1 model units with different tuning. We assumed this is achieved by learning without supervision a linear representation that removes correlations, which could be accomplished with principal component analysis. This approach revealed V2-like feature selectivity when we used the optimal normalization and, to a lesser extent, the canonical one but not in the absence of both. We compared the resulting two-stage models on two perceptual tasks; while models encompassing V1 surround normalization performed better at object recognition, only statistically optimal normalization provided systematic advantages in a task more closely matched to midlevel vision, namely figure/ground judgment. Our results suggest that experiments probing midlevel areas might benefit from using stimuli designed to engage the computations that characterize V1 optimality. PMID:23857950
Statistical analysis of microgravity experiment performance using the degrees of success scale
NASA Technical Reports Server (NTRS)
Upshaw, Bernadette; Liou, Ying-Hsin Andrew; Morilak, Daniel P.
1994-01-01
This paper describes an approach to identify factors that significantly influence microgravity experiment performance. Investigators developed the 'degrees of success' scale to provide a numerical representation of success. A degree of success was assigned to 293 microgravity experiments. Experiment information including the degree of success rankings and factors for analysis was compiled into a database. Through an analysis of variance, nine significant factors in microgravity experiment performance were identified. The frequencies of these factors are presented along with the average degree of success at each level. A preliminary discussion of the relationship between the significant factors and the degree of success is presented.
Geodesic Monte Carlo on Embedded Manifolds
Byrne, Simon; Girolami, Mark
2013-01-01
Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton–Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering methods to simulate from probability distributions that themselves are defined on a manifold, with common examples being classes of distributions describing directional statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel manifold of orthonormal matrices. PMID:25309024
NASA Technical Reports Server (NTRS)
Waller, M. C.
1976-01-01
An electro-optical device called an oculometer which tracks a subject's lookpoint as a time function has been used to collect data in a real-time simulation study of instrument landing system (ILS) approaches. The data describing the scanning behavior of a pilot during the instrument approaches have been analyzed by use of a stepwise regression analysis technique. A statistically significant correlation between pilot workload, as indicated by pilot ratings, and scanning behavior has been established. In addition, it was demonstrated that parameters derived from the scanning behavior data can be combined in a mathematical equation to provide a good representation of pilot workload.
2D Affine and Projective Shape Analysis.
Bryner, Darshan; Klassen, Eric; Huiling Le; Srivastava, Anuj
2014-05-01
Current techniques for shape analysis tend to seek invariance to similarity transformations (rotation, translation, and scale), but certain imaging situations require invariance to larger groups, such as affine or projective groups. Here we present a general Riemannian framework for shape analysis of planar objects where metrics and related quantities are invariant to affine and projective groups. Highlighting two possibilities for representing object boundaries-ordered points (or landmarks) and parameterized curves-we study different combinations of these representations (points and curves) and transformations (affine and projective). Specifically, we provide solutions to three out of four situations and develop algorithms for computing geodesics and intrinsic sample statistics, leading up to Gaussian-type statistical models, and classifying test shapes using such models learned from training data. In the case of parameterized curves, we also achieve the desired goal of invariance to re-parameterizations. The geodesics are constructed by particularizing the path-straightening algorithm to geometries of current manifolds and are used, in turn, to compute shape statistics and Gaussian-type shape models. We demonstrate these ideas using a number of examples from shape and activity recognition.
Spectral embedding-based registration (SERg) for multimodal fusion of prostate histology and MRI
NASA Astrophysics Data System (ADS)
Hwuang, Eileen; Rusu, Mirabela; Karthigeyan, Sudha; Agner, Shannon C.; Sparks, Rachel; Shih, Natalie; Tomaszewski, John E.; Rosen, Mark; Feldman, Michael; Madabhushi, Anant
2014-03-01
Multi-modal image registration is needed to align medical images collected from different protocols or imaging sources, thereby allowing the mapping of complementary information between images. One challenge of multimodal image registration is that typical similarity measures rely on statistical correlations between image intensities to determine anatomical alignment. The use of alternate image representations could allow for mapping of intensities into a space or representation such that the multimodal images appear more similar, thus facilitating their co-registration. In this work, we present a spectral embedding based registration (SERg) method that uses non-linearly embedded representations obtained from independent components of statistical texture maps of the original images to facilitate multimodal image registration. Our methodology comprises the following main steps: 1) image-derived textural representation of the original images, 2) dimensionality reduction using independent component analysis (ICA), 3) spectral embedding to generate the alternate representations, and 4) image registration. The rationale behind our approach is that SERg yields embedded representations that can allow for very different looking images to appear more similar, thereby facilitating improved co-registration. Statistical texture features are derived from the image intensities and then reduced to a smaller set by using independent component analysis to remove redundant information. Spectral embedding generates a new representation by eigendecomposition from which only the most important eigenvectors are selected. This helps to accentuate areas of salience based on modality-invariant structural information and therefore better identifies corresponding regions in both the template and target images. The spirit behind SERg is that image registration driven by these areas of salience and correspondence should improve alignment accuracy. In this work, SERg is implemented using Demons to allow the algorithm to more effectively register multimodal images. SERg is also tested within the free-form deformation framework driven by mutual information. Nine pairs of synthetic T1-weighted to T2-weighted brain MRI were registered under the following conditions: five levels of noise (0%, 1%, 3%, 5%, and 7%) and two levels of bias field (20% and 40%) each with and without noise. We demonstrate that across all of these conditions, SERg yields a mean squared error that is 81.51% lower than that of Demons driven by MRI intensity alone. We also spatially align twenty-six ex vivo histology sections and in vivo prostate MRI in order to map the spatial extent of prostate cancer onto corresponding radiologic imaging. SERg performs better than intensity registration by decreasing the root mean squared distance of annotated landmarks in the prostate gland via both Demons algorithm and mutual information-driven free-form deformation. In both synthetic and clinical experiments, the observed improvement in alignment of the template and target images suggest the utility of parametric eigenvector representations and hence SERg for multimodal image registration.
Formalizing nursing knowledge: from theories and models to ontologies.
Peace, Jane; Brennan, Patricia Flatley
2009-01-01
Knowledge representation in nursing is poised to address the depth of nursing knowledge about the specific phenomena of importance to nursing. Nursing theories and models may provide a starting point for making this knowledge explicit in representations. We combined knowledge building methods from nursing and ontology design methods from biomedical informatics to create a nursing representation of family health history. Our experience provides an example of how knowledge representations may be created to facilitate electronic support for nursing practice and knowledge development.
Interference in the classical probabilistic model and its representation in complex Hilbert space
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei Yu.
2005-10-01
The notion of a context (complex of physical conditions, that is to say: specification of the measurement setup) is basic in this paper.We show that the main structures of quantum theory (interference of probabilities, Born's rule, complex probabilistic amplitudes, Hilbert state space, representation of observables by operators) are present already in a latent form in the classical Kolmogorov probability model. However, this model should be considered as a calculus of contextual probabilities. In our approach it is forbidden to consider abstract context independent probabilities: “first context and only then probability”. We construct the representation of the general contextual probabilistic dynamics in the complex Hilbert space. Thus dynamics of the wave function (in particular, Schrödinger's dynamics) can be considered as Hilbert space projections of a realistic dynamics in a “prespace”. The basic condition for representing of the prespace-dynamics is the law of statistical conservation of energy-conservation of probabilities. In general the Hilbert space projection of the “prespace” dynamics can be nonlinear and even irreversible (but it is always unitary). Methods developed in this paper can be applied not only to quantum mechanics, but also to classical statistical mechanics. The main quantum-like structures (e.g., interference of probabilities) might be found in some models of classical statistical mechanics. Quantum-like probabilistic behavior can be demonstrated by biological systems. In particular, it was recently found in some psychological experiments.
Detecting fast, online reasoning processes in clinical decision making.
Flores, Amanda; Cobos, Pedro L; López, Francisco J; Godoy, Antonio
2014-06-01
In an experiment that used the inconsistency paradigm, experienced clinical psychologists and psychology students performed a reading task using clinical reports and a diagnostic judgment task. The clinical reports provided information about the symptoms of hypothetical clients who had been previously diagnosed with a specific mental disorder. Reading times of inconsistent target sentences were slower than those of control sentences, demonstrating an inconsistency effect. The results also showed that experienced clinicians gave different weights to different symptoms according to their relevance when fluently reading the clinical reports provided, despite the fact that all the symptoms were of equal diagnostic value according to the Diagnostic and Statistical Manual of Mental Disorders (4th ed., text rev.; American Psychiatric Association, 2000). The diagnostic judgment task yielded a similar pattern of results. In contrast to previous findings, the results of the reading task may be taken as direct evidence of the intervention of reasoning processes that occur very early, rapidly, and online. We suggest that these processes are based on the representation of mental disorders and that these representations are particularly suited to fast retrieval from memory and to making inferences. They may also be related to the clinicians' causal reasoning. The implications of these results for clinician training are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilson, James R.; McQueen, Tyrel M.
With the increased availability of high-intensity time-of-flight neutron and synchrotron X-ray scattering sources that can access wide ranges of momentum transfer, the pair distribution function method has become a standard analysis technique for studying disorder of local coordination spheres and at intermediate atomic separations. In some cases, rational modeling of the total scattering data (Bragg and diffuse) becomes intractable with least-squares approaches, necessitating reverse Monte Carlo simulations using large atomistic ensembles. However, the extraction of meaningful information from the resulting atomistic ensembles is challenging, especially at intermediate length scales. Representational analysis is used here to describe the displacements of atomsmore » in reverse Monte Carlo ensembles from an ideal crystallographic structure in an approach analogous to tight-binding methods. Rewriting the displacements in terms of a local basis that is descriptive of the ideal crystallographic symmetry provides a robust approach to characterizing medium-range order (and disorder) and symmetry breaking in complex and disordered crystalline materials. Lastly, this method enables the extraction of statistically relevant displacement modes (orientation, amplitude and distribution) of the crystalline disorder and provides directly meaningful information in a locally symmetry-adapted basis set that is most descriptive of the crystal chemistry and physics.« less
Neilson, James R.; McQueen, Tyrel M.
2015-09-20
With the increased availability of high-intensity time-of-flight neutron and synchrotron X-ray scattering sources that can access wide ranges of momentum transfer, the pair distribution function method has become a standard analysis technique for studying disorder of local coordination spheres and at intermediate atomic separations. In some cases, rational modeling of the total scattering data (Bragg and diffuse) becomes intractable with least-squares approaches, necessitating reverse Monte Carlo simulations using large atomistic ensembles. However, the extraction of meaningful information from the resulting atomistic ensembles is challenging, especially at intermediate length scales. Representational analysis is used here to describe the displacements of atomsmore » in reverse Monte Carlo ensembles from an ideal crystallographic structure in an approach analogous to tight-binding methods. Rewriting the displacements in terms of a local basis that is descriptive of the ideal crystallographic symmetry provides a robust approach to characterizing medium-range order (and disorder) and symmetry breaking in complex and disordered crystalline materials. Lastly, this method enables the extraction of statistically relevant displacement modes (orientation, amplitude and distribution) of the crystalline disorder and provides directly meaningful information in a locally symmetry-adapted basis set that is most descriptive of the crystal chemistry and physics.« less
Chromatic information and feature detection in fast visual analysis
Del Viva, Maria M.; Punzi, Giovanni; Shevell, Steven K.; ...
2016-08-01
The visual system is able to recognize a scene based on a sketch made of very simple features. This ability is likely crucial for survival, when fast image recognition is necessary, and it is believed that a primal sketch is extracted very early in the visual processing. Such highly simplified representations can be sufficient for accurate object discrimination, but an open question is the role played by color in this process. Rich color information is available in natural scenes, yet artist's sketches are usually monochromatic; and, black-andwhite movies provide compelling representations of real world scenes. Also, the contrast sensitivity ofmore » color is low at fine spatial scales. We approach the question from the perspective of optimal information processing by a system endowed with limited computational resources. We show that when such limitations are taken into account, the intrinsic statistical properties of natural scenes imply that the most effective strategy is to ignore fine-scale color features and devote most of the bandwidth to gray-scale information. We find confirmation of these information-based predictions from psychophysics measurements of fast-viewing discrimination of natural scenes. As a result, we conclude that the lack of colored features in our visual representation, and our overall low sensitivity to high-frequency color components, are a consequence of an adaptation process, optimizing the size and power consumption of our brain for the visual world we live in.« less
Chromatic information and feature detection in fast visual analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Viva, Maria M.; Punzi, Giovanni; Shevell, Steven K.
The visual system is able to recognize a scene based on a sketch made of very simple features. This ability is likely crucial for survival, when fast image recognition is necessary, and it is believed that a primal sketch is extracted very early in the visual processing. Such highly simplified representations can be sufficient for accurate object discrimination, but an open question is the role played by color in this process. Rich color information is available in natural scenes, yet artist's sketches are usually monochromatic; and, black-andwhite movies provide compelling representations of real world scenes. Also, the contrast sensitivity ofmore » color is low at fine spatial scales. We approach the question from the perspective of optimal information processing by a system endowed with limited computational resources. We show that when such limitations are taken into account, the intrinsic statistical properties of natural scenes imply that the most effective strategy is to ignore fine-scale color features and devote most of the bandwidth to gray-scale information. We find confirmation of these information-based predictions from psychophysics measurements of fast-viewing discrimination of natural scenes. As a result, we conclude that the lack of colored features in our visual representation, and our overall low sensitivity to high-frequency color components, are a consequence of an adaptation process, optimizing the size and power consumption of our brain for the visual world we live in.« less
Summation of visual motion across eye movements reflects a nonspatial decision mechanism.
Morris, Adam P; Liu, Charles C; Cropper, Simon J; Forte, Jason D; Krekelberg, Bart; Mattingley, Jason B
2010-07-21
Human vision remains perceptually stable even though retinal inputs change rapidly with each eye movement. Although the neural basis of visual stability remains unknown, a recent psychophysical study pointed to the existence of visual feature-representations anchored in environmental rather than retinal coordinates (e.g., "spatiotopic" receptive fields; Melcher and Morrone, 2003). In that study, sensitivity to a moving stimulus presented after a saccadic eye movement was enhanced when preceded by another moving stimulus at the same spatial location before the saccade. The finding is consistent with spatiotopic sensory integration, but it could also have arisen from a probabilistic improvement in performance due to the presence of more than one motion signal for the perceptual decision. Here we show that this statistical advantage accounts completely for summation effects in this task. We first demonstrate that measurements of summation are confounded by noise related to an observer's uncertainty about motion onset times. When this uncertainty is minimized, comparable summation is observed regardless of whether two motion signals occupy the same or different locations in space, and whether they contain the same or opposite directions of motion. These results are incompatible with the tuning properties of motion-sensitive sensory neurons and provide no evidence for a spatiotopic representation of visual motion. Instead, summation in this context reflects a decision mechanism that uses abstract representations of sensory events to optimize choice behavior.
CARMA: Software for continuous affect rating and media annotation
Girard, Jeffrey M
2017-01-01
CARMA is a media annotation program that collects continuous ratings while displaying audio and video files. It is designed to be highly user-friendly and easily customizable. Based on Gottman and Levenson's affect rating dial, CARMA enables researchers and study participants to provide moment-by-moment ratings of multimedia files using a computer mouse or keyboard. The rating scale can be configured on a number of parameters including the labels for its upper and lower bounds, its numerical range, and its visual representation. Annotations can be displayed alongside the multimedia file and saved for easy import into statistical analysis software. CARMA provides a tool for researchers in affective computing, human-computer interaction, and the social sciences who need to capture the unfolding of subjective experience and observable behavior over time. PMID:29308198
Workplace statistical literacy for teachers: interpreting box plots
NASA Astrophysics Data System (ADS)
Pierce, Robyn; Chick, Helen
2013-06-01
As a consequence of the increased use of data in workplace environments, there is a need to understand the demands that are placed on users to make sense of such data. In education, teachers are being increasingly expected to interpret and apply complex data about student and school performance, and, yet it is not clear that they always have the appropriate knowledge and experience to interpret the graphs, tables and other data that they receive. This study examined the statistical literacy demands placed on teachers, with a particular focus on box plot representations. Although box plots summarise the data in a way that makes visual comparisons possible across sets of data, this study showed that teachers do not always have the necessary fluency with the representation to describe correctly how the data are distributed in the representation. In particular, a significant number perceived the size of the regions of the box plot to be depicting frequencies rather than density, and there were misconceptions associated with outlying data that were not displayed on the plot. As well, teachers' perceptions of box plots were found to relate to three themes: attitudes, perceived value and misconceptions.
Process and representation in graphical displays
NASA Technical Reports Server (NTRS)
Gillan, Douglas J.; Lewis, Robert; Rudisill, Marianne
1993-01-01
Our initial model of graphic comprehension has focused on statistical graphs. Like other models of human-computer interaction, models of graphical comprehension can be used by human-computer interface designers and developers to create interfaces that present information in an efficient and usable manner. Our investigation of graph comprehension addresses two primary questions: how do people represent the information contained in a data graph?; and how do they process information from the graph? The topics of focus for graphic representation concern the features into which people decompose a graph and the representations of the graph in memory. The issue of processing can be further analyzed as two questions: what overall processing strategies do people use?; and what are the specific processing skills required?
NASA Technical Reports Server (NTRS)
Ristorcelli, J. R.
1995-01-01
The mathematical consequences of a few simple scaling assumptions about the effects of compressibility are explored using a simple singular perturbation idea and the methods of statistical fluid mechanics. Representations for the pressure-dilation and dilatational dissipation covariances appearing in single-point moment closures for compressible turbulence are obtained. While the results are expressed in the context of a second-order statistical closure they provide some interesting and very clear physical metaphors for the effects of compressibility that have not been seen using more traditional linear stability methods. In the limit of homogeneous turbulence with quasi-normal large-scales the expressions derived are - in the low turbulent Mach number limit - asymptotically exact. The expressions obtained are functions of the rate of change of the turbulence energy, its correlation length scale, and the relative time scale of the cascade rate. The expressions for the dilatational covariances contain constants which have a precise and definite physical significance; they are related to various integrals of the longitudinal velocity correlation. The pressure-dilation covariance is found to be a nonequilibrium phenomena related to the time rate of change of the internal energy and the kinetic energy of the turbulence. Also of interest is the fact that the representation for the dilatational dissipation in turbulence, with or without shear, features a dependence on the Reynolds number. This article is a documentation of an analytical investigation of the implications of a pseudo-sound theory for the effects of compressibility.
Low-level contrast statistics are diagnostic of invariance of natural textures
Groen, Iris I. A.; Ghebreab, Sennay; Lamme, Victor A. F.; Scholte, H. Steven
2012-01-01
Texture may provide important clues for real world object and scene perception. To be reliable, these clues should ideally be invariant to common viewing variations such as changes in illumination and orientation. In a large image database of natural materials, we found textures with low-level contrast statistics that varied substantially under viewing variations, as well as textures that remained relatively constant. This led us to ask whether textures with constant contrast statistics give rise to more invariant representations compared to other textures. To test this, we selected natural texture images with either high (HV) or low (LV) variance in contrast statistics and presented these to human observers. In two distinct behavioral categorization paradigms, participants more often judged HV textures as “different” compared to LV textures, showing that textures with constant contrast statistics are perceived as being more invariant. In a separate electroencephalogram (EEG) experiment, evoked responses to single texture images (single-image ERPs) were collected. The results show that differences in contrast statistics correlated with both early and late differences in occipital ERP amplitude between individual images. Importantly, ERP differences between images of HV textures were mainly driven by illumination angle, which was not the case for LV images: there, differences were completely driven by texture membership. These converging neural and behavioral results imply that some natural textures are surprisingly invariant to illumination changes and that low-level contrast statistics are diagnostic of the extent of this invariance. PMID:22701419
Problem representation and mathematical problem solving of students of varying math ability.
Krawec, Jennifer L
2014-01-01
The purpose of this study was to examine differences in math problem solving among students with learning disabilities (LD, n = 25), low-achieving students (LA, n = 30), and average-achieving students (AA, n = 29). The primary interest was to analyze the processes students use to translate and integrate problem information while solving problems. Paraphrasing, visual representation, and problem-solving accuracy were measured in eighth grade students using a researcher-modified version of the Mathematical Processing Instrument. Results indicated that both students with LD and LA students struggled with processing but that students with LD were significantly weaker than their LA peers in paraphrasing relevant information. Paraphrasing and visual representation accuracy each accounted for a statistically significant amount of variance in problem-solving accuracy. Finally, the effect of visual representation of relevant information on problem-solving accuracy was dependent on ability; specifically, for students with LD, generating accurate visual representations was more strongly related to problem-solving accuracy than for AA students. Implications for instruction for students with and without LD are discussed.
Gender and Publishing in Nursing: a secondary analysis of h-index ranking tables.
Porter, Sam
2018-05-24
To analyse published ranking tables on academics' h-index scores to establish whether male nursing academics are disproportionately represented in these tables compared with their representation across the whole profession. Previous studies have identified a disproportionate representation of UK male nursing academics in publishing in comparison to their US counterparts. Secondary statistical analysis, which involved comparative correlation of proportions. Four papers from the UK, Canada and Australia containing h-index ranking tables and published between 2010-2017, were re-analysed in June 2017 to identify authors' sex. Pearson's chi-squared test was applied to ascertain whether the number of men included in the tables was statistically proportionate to the number of men on the pertinent national professional register. There was a disproportionate number of men with high h-index scores in the UK and Canadian data sets, compared with the proportion of men on the pertinent national registers. The number of men in the Australian data set was proportionate with the number of men on the nursing register. There was a disproportionate number of male professors in UK universities. The influence of men over nursing publishing in the UK and Canada outweighs their representation across the whole profession. Similarly, in the UK, men's representation in the professoriate is disproportionately great. However, the Australian results suggest that gender inequality is not inevitable and that it is possible to create more egalitarian nursing cultures. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Fast Learning for Immersive Engagement in Energy Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, Brian W; Bugbee, Bruce; Gruchalla, Kenny M
The fast computation which is critical for immersive engagement with and learning from energy simulations would be furthered by developing a general method for creating rapidly computed simplified versions of NREL's computation-intensive energy simulations. Created using machine learning techniques, these 'reduced form' simulations can provide statistically sound estimates of the results of the full simulations at a fraction of the computational cost with response times - typically less than one minute of wall-clock time - suitable for real-time human-in-the-loop design and analysis. Additionally, uncertainty quantification techniques can document the accuracy of the approximate models and their domain of validity. Approximationmore » methods are applicable to a wide range of computational models, including supply-chain models, electric power grid simulations, and building models. These reduced-form representations cannot replace or re-implement existing simulations, but instead supplement them by enabling rapid scenario design and quality assurance for large sets of simulations. We present an overview of the framework and methods we have implemented for developing these reduced-form representations.« less
Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley; Srikishen, Jayanthi
2014-01-01
Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA's Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Previously, it has been shown that cloud top designation associated with quality control procedures within the Gridpoint Statistical Interpolation (GSI) system used operationally by a number of Joint Center for Satellite Data Assimilation (JCSDA) partners may not provide the best representation of cloud top pressure (CTP). Because this designated CTP determines which channels are cloud-free and, thus, available for assimilation, ensuring the most accurate representation of this value is imperative to obtaining the greatest impact from satellite radiances. This paper examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing analysis increments and numerical forecasts generated using operational techniques with a research technique that swaps CTP from the Moderate-resolution Imaging Spectroradiometer (MODIS) for the value of CTP calculated from the radiances within GSI.
Jenkins, Rob; Burton, A. Mike
2011-01-01
Photographs are often used to establish the identity of an individual or to verify that they are who they claim to be. Yet, recent research shows that it is surprisingly difficult to match a photo to a face. Neither humans nor machines can perform this task reliably. Although human perceivers are good at matching familiar faces, performance with unfamiliar faces is strikingly poor. The situation is no better for automatic face recognition systems. In practical settings, automatic systems have been consistently disappointing. In this review, we suggest that failure to distinguish between familiar and unfamiliar face processing has led to unrealistic expectations about face identification in applied settings. We also argue that a photograph is not necessarily a reliable indicator of facial appearance, and develop our proposal that summary statistics can provide more stable face representations. In particular, we show that image averaging stabilizes facial appearance by diluting aspects of the image that vary between snapshots of the same person. We review evidence that the resulting images can outperform photographs in both behavioural experiments and computer simulations, and outline promising directions for future research. PMID:21536553
A Nonparametric Approach For Representing Interannual Dependence In Monthly Streamflow Sequences
NASA Astrophysics Data System (ADS)
Sharma, A.; Oneill, R.
The estimation of risks associated with water management plans requires generation of synthetic streamflow sequences. The mathematical algorithms used to generate these sequences at monthly time scales are found lacking in two main respects: inability in preserving dependence attributes particularly at large (seasonal to interannual) time lags; and, a poor representation of observed distributional characteristics, in partic- ular, representation of strong assymetry or multimodality in the probability density function. Proposed here is an alternative that naturally incorporates both observed de- pendence and distributional attributes in the generated sequences. Use of a nonpara- metric framework provides an effective means for representing the observed proba- bility distribution, while the use of a Svariable kernelT ensures accurate modeling of & cedil;streamflow data sets that contain a substantial number of zero flow values. A careful selection of prior flows imparts the appropriate short-term memory, while use of an SaggregateT flow variable allows representation of interannual dependence. The non- & cedil;parametric simulation model is applied to monthly flows from the Beaver River near Beaver, Utah, USA, and the Burrendong dam inflows, New South Wales, Australia. Results indicate that while the use of traditional simulation approaches leads to an inaccurate representation of dependence at long (annual and interannual) time scales, the proposed model can simulate both short and long-term dependence. As a result, the proposed model ensures a significantly improved representation of reservoir storage statistics, particularly for systems influenced by long droughts. It is important to note that the proposed method offers a simpler and better alternative to conventional dis- aggregation models as: (a) a separate annual flow series is not required, (b) stringent assumptions relating annual and monthly flows are not needed, and (c) the method does not require the specification of a "water year", instead ensuring that the sum of any sequence of flows lasting twelve months will result in the type of dependence that is observed in the historical annual flow series.
NASA Astrophysics Data System (ADS)
Lamouroux, Julien; Testut, Charles-Emmanuel; Lellouche, Jean-Michel; Perruche, Coralie; Paul, Julien
2017-04-01
The operational production of data-assimilated biogeochemical state of the ocean is one of the challenging core projects of the Copernicus Marine Environment Monitoring Service. In that framework - and with the April 2018 CMEMS V4 release as a target - Mercator Ocean is in charge of improving the realism of its global ¼° BIOMER coupled physical-biogeochemical (NEMO/PISCES) simulations, analyses and re-analyses, and to develop an effective capacity to routinely estimate the biogeochemical state of the ocean, through the implementation of biogeochemical data assimilation. Primary objectives are to enhance the time representation of the seasonal cycle in the real time and reanalysis systems, and to provide a better control of the production in the equatorial regions. The assimilation of BGC data will rely on a simplified version of the SEEK filter, where the error statistics do not evolve with the model dynamics. The associated forecast error covariances are based on the statistics of a collection of 3D ocean state anomalies. The anomalies are computed from a multi-year numerical experiment (free run without assimilation) with respect to a running mean in order to estimate the 7-day scale error on the ocean state at a given period of the year. These forecast error covariances rely thus on a fixed-basis seasonally variable ensemble of anomalies. This methodology, which is currently implemented in the "blue" component of the CMEMS operational forecast system, is now under adaptation to be applied to the biogeochemical part of the operational system. Regarding observations - and as a first step - the system shall rely on the CMEMS GlobColour Global Ocean surface chlorophyll concentration products, delivered in NRT. The objective of this poster is to provide a detailed overview of the implementation of the aforementioned data assimilation methodology in the CMEMS BIOMER forecasting system. Focus shall be put on (1) the assessment of the capabilities of this data assimilation methodology to provide satisfying statistics of the model variability errors (through space-time analysis of dedicated representers of satellite surface Chla observations), (2) the dedicated features of the data assimilation configuration that have been implemented so far (e.g. log-transformation of the analysis state, multivariate Chlorophyll-Nutrient control vector, etc.) and (3) the assessment of the performances of this future operational data assimilation configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb-Robertson, Bobbie-Jo M.
Accurate identification of peptides is a current challenge in mass spectrometry (MS) based proteomics. The standard approach uses a search routine to compare tandem mass spectra to a database of peptides associated with the target organism. These database search routines yield multiple metrics associated with the quality of the mapping of the experimental spectrum to the theoretical spectrum of a peptide. The structure of these results make separating correct from false identifications difficult and has created a false identification problem. Statistical confidence scores are an approach to battle this false positive problem that has led to significant improvements in peptidemore » identification. We have shown that machine learning, specifically support vector machine (SVM), is an effective approach to separating true peptide identifications from false ones. The SVM-based peptide statistical scoring method transforms a peptide into a vector representation based on database search metrics to train and validate the SVM. In practice, following the database search routine, a peptides is denoted in its vector representation and the SVM generates a single statistical score that is then used to classify presence or absence in the sample« less
2012-01-01
Background Chaos Game Representation (CGR) is an iterated function that bijectively maps discrete sequences into a continuous domain. As a result, discrete sequences can be object of statistical and topological analyses otherwise reserved to numerical systems. Characteristically, CGR coordinates of substrings sharing an L-long suffix will be located within 2-L distance of each other. In the two decades since its original proposal, CGR has been generalized beyond its original focus on genomic sequences and has been successfully applied to a wide range of problems in bioinformatics. This report explores the possibility that it can be further extended to approach algorithms that rely on discrete, graph-based representations. Results The exploratory analysis described here consisted of selecting foundational string problems and refactoring them using CGR-based algorithms. We found that CGR can take the role of suffix trees and emulate sophisticated string algorithms, efficiently solving exact and approximate string matching problems such as finding all palindromes and tandem repeats, and matching with mismatches. The common feature of these problems is that they use longest common extension (LCE) queries as subtasks of their procedures, which we show to have a constant time solution with CGR. Additionally, we show that CGR can be used as a rolling hash function within the Rabin-Karp algorithm. Conclusions The analysis of biological sequences relies on algorithmic foundations facing mounting challenges, both logistic (performance) and analytical (lack of unifying mathematical framework). CGR is found to provide the latter and to promise the former: graph-based data structures for sequence analysis operations are entailed by numerical-based data structures produced by CGR maps, providing a unifying analytical framework for a diversity of pattern matching problems. PMID:22551152
48 CFR 31.201-6 - Accounting for unallowable costs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... unbiased sample that is a reasonable representation of the sampling universe. (ii) Any large dollar value... universe from that sampled cost is also subject to the same penalty provisions. (4) Use of statistical...
48 CFR 31.201-6 - Accounting for unallowable costs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... unbiased sample that is a reasonable representation of the sampling universe. (ii) Any large dollar value... universe from that sampled cost is also subject to the same penalty provisions. (4) Use of statistical...
48 CFR 31.201-6 - Accounting for unallowable costs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... unbiased sample that is a reasonable representation of the sampling universe. (ii) Any large dollar value... universe from that sampled cost is also subject to the same penalty provisions. (4) Use of statistical...
48 CFR 31.201-6 - Accounting for unallowable costs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... unbiased sample that is a reasonable representation of the sampling universe. (ii) Any large dollar value... universe from that sampled cost is also subject to the same penalty provisions. (4) Use of statistical...
Guell, Xavier; Gabrieli, John D E; Schmahmann, Jeremy D
2018-05-15
Delineation of functional topography is critical to the evolving understanding of the cerebellum's role in a wide range of nervous system functions. We used data from the Human Connectome Project (n = 787) to analyze cerebellar fMRI task activation (motor, working memory, language, social and emotion processing) and resting-state functional connectivity calculated from cerebral cortical seeds corresponding to the peak Cohen's d of each task contrast. The combination of exceptional statistical power, activation from both motor and multiple non-motor tasks in the same participants, and convergent resting-state networks in the same participants revealed novel aspects of the functional topography of the human cerebellum. Consistent with prior studies there were two distinct representations of motor activation. Newly revealed were three distinct representations each for working memory, language, social, and emotional task processing that were largely separate for these four cognitive and affective domains. In most cases, the task-based activations and the corresponding resting-network correlations were congruent in identifying the two motor representations and the three non-motor representations that were unique to working memory, language, social cognition, and emotion. The definitive localization and characterization of distinct triple representations for cognition and emotion task processing in the cerebellum opens up new basic science questions as to why there are triple representations (what different functions are enabled by the different representations?) and new clinical questions (what are the differing consequences of lesions to the different representations?). Copyright © 2018 Elsevier Inc. All rights reserved.
Evaluation, Use, and Refinement of Knowledge Representations through Acquisition Modeling
ERIC Educational Resources Information Center
Pearl, Lisa
2017-01-01
Generative approaches to language have long recognized the natural link between theories of knowledge representation and theories of knowledge acquisition. The basic idea is that the knowledge representations provided by Universal Grammar enable children to acquire language as reliably as they do because these representations highlight the…
López-Ibáñez, Manuel; Prasad, T Devi; Paechter, Ben
2011-01-01
Reducing the energy consumption of water distribution networks has never had more significance. The greatest energy savings can be obtained by carefully scheduling the operations of pumps. Schedules can be defined either implicitly, in terms of other elements of the network such as tank levels; or explicitly, by specifying the time during which each pump is on/off. The traditional representation of explicit schedules is a string of binary values with each bit representing pump on/off status during a particular time interval. In this paper, we formally define and analyze two new explicit representations based on time-controlled triggers, where the maximum number of pump switches is established beforehand and the schedule may contain fewer than the maximum number of switches. In these representations, a pump schedule is divided into a series of integers with each integer representing the number of hours for which a pump is active/inactive. This reduces the number of potential schedules compared to the binary representation, and allows the algorithm to operate on the feasible region of the search space. We propose evolutionary operators for these two new representations. The new representations and their corresponding operations are compared with the two most-used representations in pump scheduling, namely, binary representation and level-controlled triggers. A detailed statistical analysis of the results indicates which parameters have the greatest effect on the performance of evolutionary algorithms. The empirical results show that an evolutionary algorithm using the proposed representations is an improvement over the results obtained by a recent state of the art hybrid genetic algorithm for pump scheduling using level-controlled triggers.
NASA Astrophysics Data System (ADS)
Salamuniccar, G.
The Mathematical Statistics Theory (MST) and the Mathematical Theory of Stochastic Processes (MTSP) are different branches of the more general Mathematical Probability Theory (MPT) that represents different aspects of some physical processes we can analyze using mathematics. Each model of a stochastic process according to MTSP can provide one or more interpretations in MST domain. Large body of work on the impact crater statistics according to MST was already done many years ago, for e.g., where Cratering Chronology Diagrams (CCD) were shown in log/log scale, showing Cum. Crater Frequency [N km-2] that is the function of Age [years] for some particular crater diameter. However, all this is only one possible representation in MST domain, of the bombardment of the planetary surface modeled as stochastic process according to MTSP. The idea that other representations in MST domain of the same stochastic process from MTSP are possible was recently presented [G. Salamuniæcar, Adv. Space Res. in press]. The importance of the approach is that each such interpretation can provide large amount of new information. Topography Profile Diagrams (TPDs) are one example, that with MOLA data provide us with large amount of new information regarding history of Mars. TPDs consists of [34thLPS #1403]: (1) Topography-Profile Curve (TPC) that is representation of the planet topography, (2) Density-of-Craters Curve (DCC) that represents density of craters, (3) Filtered-DCC (FDCC) that represents DCC filtered by a low-pass filter included with the purpose of reducing the noise and (4) Level-of-Substance-Over-Time Curve (LSOTC). While definition of TPC uniquely corresponds to way we will compute it, the same is not also the case with DCC and FDCC. While DCC depends on algorithms for computing crater altitude according to the topography, center coordinates and radius of impact crater [34thLPS #1409], FDCC depends on the architecture of the custom designed low-pass filter for filtering DCC [34thLPS #1415]. However all variations of DCC and FDCC including the different input craters data-sets confirmed correlation between density of craters and topographic altitude over 70˜ 80% of the planet surface. For the assumption that ocean primarily caused noted correlation, LSOTC additionally for the first time offers mathematical approach how to compute how level of ocean was changing over time [6thMars #3187]. Accordingly, conclusion is that TPDs are the first new practical application of MTSP to the Lunar and Planetary Science (LPS).
Learning, memory, and the role of neural network architecture.
Hermundstad, Ann M; Brown, Kevin S; Bassett, Danielle S; Carlson, Jean M
2011-06-01
The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems.
Kraemer, Kari; Cohen, Mark E; Liu, Yaoming; Barnhart, Douglas C; Rangel, Shawn J; Saito, Jacqueline M; Bilimoria, Karl Y; Ko, Clifford Y; Hall, Bruce L
2016-11-01
There is an increased desire among patients and families to be involved in the surgical decision-making process. A surgeon's ability to provide patients and families with patient-specific estimates of postoperative complications is critical for shared decision making and informed consent. Surgeons can also use patient-specific risk estimates to decide whether or not to operate and what options to offer patients. Our objective was to develop and evaluate a publicly available risk estimation tool that would cover many common pediatric surgical procedures across all specialties. American College of Surgeons NSQIP Pediatric standardized data from 67 hospitals were used to develop a risk estimation tool. Surgeons enter 18 preoperative variables (demographics, comorbidities, procedure) that are used in a logistic regression model to predict 9 postoperative outcomes. A surgeon adjustment score is also incorporated to adjust for any additional risk not accounted for in the 18 risk factors. A pediatric surgical risk calculator was developed based on 181,353 cases covering 382 CPT codes across all specialties. It had excellent discrimination for mortality (c-statistic = 0.98), morbidity (c-statistic = 0.81), and 7 additional complications (c-statistic > 0.77). The Hosmer-Lemeshow statistic and graphic representations also showed excellent calibration. The ACS NSQIP Pediatric Surgical Risk Calculator was developed using standardized and audited multi-institutional data from the ACS NSQIP Pediatric, and it provides empirically derived, patient-specific postoperative risks. It can be used as a tool in the shared decision-making process by providing clinicians, families, and patients with useful information for many of the most common operations performed on pediatric patients in the US. Copyright © 2016 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Representational geometry: integrating cognition, computation, and the brain
Kriegeskorte, Nikolaus; Kievit, Rogier A.
2013-01-01
The cognitive concept of representation plays a key role in theories of brain information processing. However, linking neuronal activity to representational content and cognitive theory remains challenging. Recent studies have characterized the representational geometry of neural population codes by means of representational distance matrices, enabling researchers to compare representations across stages of processing and to test cognitive and computational theories. Representational geometry provides a useful intermediate level of description, capturing both the information represented in a neuronal population code and the format in which it is represented. We review recent insights gained with this approach in perception, memory, cognition, and action. Analyses of representational geometry can compare representations between models and the brain, and promise to explain brain computation as transformation of representational similarity structure. PMID:23876494
Shared liking and association valence for representational art but not abstract art.
Schepman, Astrid; Rodway, Paul; Pullen, Sarah J; Kirkham, Julie
2015-01-01
We examined the finding that aesthetic evaluations are more similar across observers for representational images than for abstract images. It has been proposed that a difference in convergence of observers' tastes is due to differing levels of shared semantic associations (Vessel & Rubin, 2010). In Experiment 1, student participants rated 20 representational and 20 abstract artworks. We found that their judgments were more similar for representational than abstract artworks. In Experiment 2, we replicated this finding, and also found that valence ratings given to associations and meanings provided in response to the artworks converged more across observers for representational than for abstract art. Our empirical work provides insight into processes that may underlie the observation that taste for representational art is shared across individual observers, while taste for abstract art is more idiosyncratic.
NASA Astrophysics Data System (ADS)
Paramonov, P. V.; Vorontsov, A. M.; Kunitsyn, V. E.
2015-10-01
Numerical modeling of optical wave propagation in atmospheric turbulence is traditionally performed with using the so-called "split"-operator method, when the influence of the propagation medium's refractive index inhomogeneities is accounted for only within a system of infinitely narrow layers (phase screens) where phase is distorted. Commonly, under certain assumptions, such phase screens are considered as mutually statistically uncorrelated. However, in several important applications including laser target tracking, remote sensing, and atmospheric imaging, accurate optical field propagation modeling assumes upper limitations on interscreen spacing. The latter situation can be observed, for instance, in the presence of large-scale turbulent inhomogeneities or in deep turbulence conditions, where interscreen distances become comparable with turbulence outer scale and, hence, corresponding phase screens cannot be statistically uncorrelated. In this paper, we discuss correlated phase screens. The statistical characteristics of screens are calculated based on a representation of turbulent fluctuations of three-dimensional (3D) refractive index random field as a set of sequentially correlated 3D layers displaced in the wave propagation direction. The statistical characteristics of refractive index fluctuations are described in terms of the von Karman power spectrum density. In the representation of these 3D layers by corresponding phase screens, the geometrical optics approximation is used.
Solving Differential Equations in R
Although R is still predominantly applied for statistical analysis and graphical representation, it is rapidly becoming more suitable for mathematical computing. One of the fields where considerable progress has been made recently is the solution of differential equations. Here w...
A Hybrid Multi-Scale Model of Crystal Plasticity for Handling Stress Concentrations
Sun, Shang; Ramazani, Ali; Sundararaghavan, Veera
2017-09-04
Microstructural effects become important at regions of stress concentrators such as notches, cracks and contact surfaces. A multiscale model is presented that efficiently captures microstructural details at such critical regions. The approach is based on a multiresolution mesh that includes an explicit microstructure representation at critical regions where stresses are localized. At regions farther away from the stress concentration, a reduced order model that statistically captures the effect of the microstructure is employed. The statistical model is based on a finite element representation of the orientation distribution function (ODF). As an illustrative example, we have applied the multiscaling method tomore » compute the stress intensity factor K I around the crack tip in a wedge-opening load specimen. The approach is verified with an analytical solution within linear elasticity approximation and is then extended to allow modeling of microstructural effects on crack tip plasticity.« less
A Hybrid Multi-Scale Model of Crystal Plasticity for Handling Stress Concentrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Shang; Ramazani, Ali; Sundararaghavan, Veera
Microstructural effects become important at regions of stress concentrators such as notches, cracks and contact surfaces. A multiscale model is presented that efficiently captures microstructural details at such critical regions. The approach is based on a multiresolution mesh that includes an explicit microstructure representation at critical regions where stresses are localized. At regions farther away from the stress concentration, a reduced order model that statistically captures the effect of the microstructure is employed. The statistical model is based on a finite element representation of the orientation distribution function (ODF). As an illustrative example, we have applied the multiscaling method tomore » compute the stress intensity factor K I around the crack tip in a wedge-opening load specimen. The approach is verified with an analytical solution within linear elasticity approximation and is then extended to allow modeling of microstructural effects on crack tip plasticity.« less
Computer Administering of the Psychological Investigations: Set-Relational Representation
NASA Astrophysics Data System (ADS)
Yordzhev, Krasimir
Computer administering of a psychological investigation is the computer representation of the entire procedure of psychological assessments - test construction, test implementation, results evaluation, storage and maintenance of the developed database, its statistical processing, analysis and interpretation. A mathematical description of psychological assessment with the aid of personality tests is discussed in this article. The set theory and the relational algebra are used in this description. A relational model of data, needed to design a computer system for automation of certain psychological assessments is given. Some finite sets and relation on them, which are necessary for creating a personality psychological test, are described. The described model could be used to develop real software for computer administering of any psychological test and there is full automation of the whole process: test construction, test implementation, result evaluation, storage of the developed database, statistical implementation, analysis and interpretation. A software project for computer administering personality psychological tests is suggested.
Multiscale Structure of UXO Site Characterization: Spatial Estimation and Uncertainty Quantification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrouchov, George; Doll, William E.; Beard, Les P.
2009-01-01
Unexploded ordnance (UXO) site characterization must consider both how the contamination is generated and how we observe that contamination. Within the generation and observation processes, dependence structures can be exploited at multiple scales. We describe a conceptual site characterization process, the dependence structures available at several scales, and consider their statistical estimation aspects. It is evident that most of the statistical methods that are needed to address the estimation problems are known but their application-specific implementation may not be available. We demonstrate estimation at one scale and propose a representation for site contamination intensity that takes full account of uncertainty,more » is flexible enough to answer regulatory requirements, and is a practical tool for managing detailed spatial site characterization and remediation. The representation is based on point process spatial estimation methods that require modern computational resources for practical application. These methods have provisions for including prior and covariate information.« less
ERIC Educational Resources Information Center
Scott, D. Beth; Dreher, Mariam Jean
2016-01-01
This study examined the thinking processes students engage in while constructing graphic representations of textbook content. Twenty-eight students who either used graphic representations in a routine manner during social studies instruction or learned to construct graphic representations based on the rhetorical patterns used to organize textbook…
Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti
2016-07-01
A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness.Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Code is available at https://github.com/aalto-ics-kepaco anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J.; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T.; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti
2016-01-01
Motivation: A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. Results: We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness. Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Availability and implementation: Code is available at https://github.com/aalto-ics-kepaco Contacts: anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153689
Emotional anchoring and objectification in the media reporting on climate change.
Höijer, Birgitta
2010-11-01
Using the framework of social representations theory--more precisely the concepts of anchoring and objectification--this article analyses the emotions on which the media reporting on climate change draws. Emotions are thereby regarded as discursive phenomena. A qualitative analysis of two series in Swedish media on climate change, one in a tabloid newspaper and one in public service television news, is presented showing how the verbal and visual representations are attached to emotions of fear, hope, guilt, compassion and nostalgia. It is further argued that emotional representations of climate change may on the one hand enhance public engagement in the issue, but on the other hand may draw attention away from climate change as the abstract, long-term phenomenon of a statistical character that it is.
Local air temperature tolerance: a sensible basis for estimating climate variability
NASA Astrophysics Data System (ADS)
Kärner, Olavi; Post, Piia
2016-11-01
The customary representation of climate using sample moments is generally biased due to the noticeably nonstationary behaviour of many climate series. In this study, we introduce a moment-free climate representation based on a statistical model fitted to a long-term daily air temperature anomaly series. This model allows us to separate the climate and weather scale variability in the series. As a result, the climate scale can be characterized using the mean annual cycle of series and local air temperature tolerance, where the latter is computed using the fitted model. The representation of weather scale variability is specified using the frequency and the range of outliers based on the tolerance. The scheme is illustrated using five long-term air temperature records observed by different European meteorological stations.
Interpolation on the manifold of K component GMMs.
Kim, Hyunwoo J; Adluru, Nagesh; Banerjee, Monami; Vemuri, Baba C; Singh, Vikas
2015-12-01
Probability density functions (PDFs) are fundamental objects in mathematics with numerous applications in computer vision, machine learning and medical imaging. The feasibility of basic operations such as computing the distance between two PDFs and estimating a mean of a set of PDFs is a direct function of the representation we choose to work with. In this paper, we study the Gaussian mixture model (GMM) representation of the PDFs motivated by its numerous attractive features. (1) GMMs are arguably more interpretable than, say, square root parameterizations (2) the model complexity can be explicitly controlled by the number of components and (3) they are already widely used in many applications. The main contributions of this paper are numerical algorithms to enable basic operations on such objects that strictly respect their underlying geometry. For instance, when operating with a set of K component GMMs, a first order expectation is that the result of simple operations like interpolation and averaging should provide an object that is also a K component GMM. The literature provides very little guidance on enforcing such requirements systematically. It turns out that these tasks are important internal modules for analysis and processing of a field of ensemble average propagators (EAPs), common in diffusion weighted magnetic resonance imaging. We provide proof of principle experiments showing how the proposed algorithms for interpolation can facilitate statistical analysis of such data, essential to many neuroimaging studies. Separately, we also derive interesting connections of our algorithm with functional spaces of Gaussians, that may be of independent interest.
Development of a representational conceptual evaluation in the first law of thermodynamics
NASA Astrophysics Data System (ADS)
Sriyansyah, S. P.; Suhandi, A.
2016-08-01
As part of an ongoing research to investigate student consistency in understanding the first law of thermodynamics, a representational conceptual evaluation (RCET) has been developed to assess student conceptual understanding, representational consistency, and scientific consistency in the introductory physics course. Previous physics education research findings were used to develop the test. RCET items were 30 items which designed as an isomorphic multiple-choice test with three different representations concerning the concept of work, heat, first law of thermodynamics, and its application in the thermodynamic processes. Here, we present preliminary measures of the validity and reliability of the instrument, including the classical test statistics. This instrument can be used to measure the intended concept in the first law of thermodynamics and it will give the consistent results with the ability to differentiate well between high-achieving students and low-achieving students and also students at different level. As well as measuring the effectiveness of the learning process in the concept of the first law of thermodynamics.
NASA Astrophysics Data System (ADS)
Fernández-Llamazares, Álvaro; Belmonte, Jordina; Delgado, Rosario; De Linares, Concepción
2014-04-01
Airborne pollen records are a suitable indicator for the study of climate change. The present work focuses on the role of annual pollen indices for the detection of bioclimatic trends through the analysis of the aerobiological spectra of 11 taxa of great biogeographical relevance in Catalonia over an 18-year period (1994-2011), by means of different parametric and non-parametric statistical methods. Among others, two non-parametric rank-based statistical tests were performed for detecting monotonic trends in time series data of the selected airborne pollen types and we have observed that they have similar power in detecting trends. Except for those cases in which the pollen data can be well-modeled by a normal distribution, it is better to apply non-parametric statistical methods to aerobiological studies. Our results provide a reliable representation of the pollen trends in the region and suggest that greater pollen quantities are being liberated to the atmosphere in the last years, specially by Mediterranean taxa such as Pinus, Total Quercus and Evergreen Quercus, although the trends may differ geographically. Longer aerobiological monitoring periods are required to corroborate these results and survey the increasing levels of certain pollen types that could exert an impact in terms of public health.
Wang, Guoli; Ebrahimi, Nader
2014-01-01
Non-negative matrix factorization (NMF) is a powerful machine learning method for decomposing a high-dimensional nonnegative matrix V into the product of two nonnegative matrices, W and H, such that V ∼ W H. It has been shown to have a parts-based, sparse representation of the data. NMF has been successfully applied in a variety of areas such as natural language processing, neuroscience, information retrieval, image processing, speech recognition and computational biology for the analysis and interpretation of large-scale data. There has also been simultaneous development of a related statistical latent class modeling approach, namely, probabilistic latent semantic indexing (PLSI), for analyzing and interpreting co-occurrence count data arising in natural language processing. In this paper, we present a generalized statistical approach to NMF and PLSI based on Renyi's divergence between two non-negative matrices, stemming from the Poisson likelihood. Our approach unifies various competing models and provides a unique theoretical framework for these methods. We propose a unified algorithm for NMF and provide a rigorous proof of monotonicity of multiplicative updates for W and H. In addition, we generalize the relationship between NMF and PLSI within this framework. We demonstrate the applicability and utility of our approach as well as its superior performance relative to existing methods using real-life and simulated document clustering data. PMID:25821345
Devarajan, Karthik; Wang, Guoli; Ebrahimi, Nader
2015-04-01
Non-negative matrix factorization (NMF) is a powerful machine learning method for decomposing a high-dimensional nonnegative matrix V into the product of two nonnegative matrices, W and H , such that V ∼ W H . It has been shown to have a parts-based, sparse representation of the data. NMF has been successfully applied in a variety of areas such as natural language processing, neuroscience, information retrieval, image processing, speech recognition and computational biology for the analysis and interpretation of large-scale data. There has also been simultaneous development of a related statistical latent class modeling approach, namely, probabilistic latent semantic indexing (PLSI), for analyzing and interpreting co-occurrence count data arising in natural language processing. In this paper, we present a generalized statistical approach to NMF and PLSI based on Renyi's divergence between two non-negative matrices, stemming from the Poisson likelihood. Our approach unifies various competing models and provides a unique theoretical framework for these methods. We propose a unified algorithm for NMF and provide a rigorous proof of monotonicity of multiplicative updates for W and H . In addition, we generalize the relationship between NMF and PLSI within this framework. We demonstrate the applicability and utility of our approach as well as its superior performance relative to existing methods using real-life and simulated document clustering data.
Representational geometry: integrating cognition, computation, and the brain.
Kriegeskorte, Nikolaus; Kievit, Rogier A
2013-08-01
The cognitive concept of representation plays a key role in theories of brain information processing. However, linking neuronal activity to representational content and cognitive theory remains challenging. Recent studies have characterized the representational geometry of neural population codes by means of representational distance matrices, enabling researchers to compare representations across stages of processing and to test cognitive and computational theories. Representational geometry provides a useful intermediate level of description, capturing both the information represented in a neuronal population code and the format in which it is represented. We review recent insights gained with this approach in perception, memory, cognition, and action. Analyses of representational geometry can compare representations between models and the brain, and promise to explain brain computation as transformation of representational similarity structure. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhu, Yun; Fan, Ruzong; Xiong, Momiao
2017-01-01
Investigating the pleiotropic effects of genetic variants can increase statistical power, provide important information to achieve deep understanding of the complex genetic structures of disease, and offer powerful tools for designing effective treatments with fewer side effects. However, the current multiple phenotype association analysis paradigm lacks breadth (number of phenotypes and genetic variants jointly analyzed at the same time) and depth (hierarchical structure of phenotype and genotypes). A key issue for high dimensional pleiotropic analysis is to effectively extract informative internal representation and features from high dimensional genotype and phenotype data. To explore correlation information of genetic variants, effectively reduce data dimensions, and overcome critical barriers in advancing the development of novel statistical methods and computational algorithms for genetic pleiotropic analysis, we proposed a new statistic method referred to as a quadratically regularized functional CCA (QRFCCA) for association analysis which combines three approaches: (1) quadratically regularized matrix factorization, (2) functional data analysis and (3) canonical correlation analysis (CCA). Large-scale simulations show that the QRFCCA has a much higher power than that of the ten competing statistics while retaining the appropriate type 1 errors. To further evaluate performance, the QRFCCA and ten other statistics are applied to the whole genome sequencing dataset from the TwinsUK study. We identify a total of 79 genes with rare variants and 67 genes with common variants significantly associated with the 46 traits using QRFCCA. The results show that the QRFCCA substantially outperforms the ten other statistics. PMID:29040274
Dweck, Carol S
2017-11-01
Drawing on both classic and current approaches, I propose a theory that integrates motivation, personality, and development within one framework, using a common set of principles and mechanisms. The theory begins by specifying basic needs and by suggesting how, as people pursue need-fulfilling goals, they build mental representations of their experiences (beliefs, representations of emotions, and representations of action tendencies). I then show how these needs, goals, and representations can serve as the basis of both motivation and personality, and can help to integrate disparate views of personality. The article builds on this framework to provide a new perspective on development, particularly on the forces that propel development and the roles of nature and nurture. I argue throughout that the focus on representations provides an important entry point for change and growth. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Commercial bus crashes in North Carolina 1995-1999
DOT National Transportation Integrated Search
2000-04-01
Tables and figures are shown to depict a statistical representation of commercial bus crashes in North Carolina. Information displayed includes crash frequency, crashes by county, accident severity, time of day, month of the year, class of roadway, r...
Energy flow in non-equilibrium conformal field theory
NASA Astrophysics Data System (ADS)
Bernard, Denis; Doyon, Benjamin
2012-09-01
We study the energy current and its fluctuations in quantum gapless 1d systems far from equilibrium modeled by conformal field theory, where two separated halves are prepared at distinct temperatures and glued together at a point contact. We prove that these systems converge towards steady states, and give a general description of such non-equilibrium steady states in terms of quantum field theory data. We compute the large deviation function, also called the full counting statistics, of energy transfer through the contact. These are universal and satisfy fluctuation relations. We provide a simple representation of these quantum fluctuations in terms of classical Poisson processes whose intensities are proportional to Boltzmann weights.
ERIC Educational Resources Information Center
Mešic, Vanes; Mahmutovic, Sabaheta; Hasovic, Elvedin; Erceg, Nataša
2016-01-01
Earlier research has found that it is useful to distinguish situations in which students construct external representations on their own from situations in which they are expected to interpret already provided external representations. One type of representations that is particularly important for teaching mechanics is the free-body diagram. In…
ERIC Educational Resources Information Center
Wiese, Eliane S.; Koedinger, Kenneth R.
2017-01-01
This paper proposes "grounded feedback" as a way to provide implicit verification when students are working with a novel representation. In grounded feedback, students' responses are in the target, to-be-learned representation, and those responses are reflected in a more-accessible linked representation that is intrinsic to the domain.…
Evidence Integration in Natural Acoustic Textures during Active and Passive Listening
Rupp, Andre; Celikel, Tansu
2018-01-01
Abstract Many natural sounds can be well described on a statistical level, for example, wind, rain, or applause. Even though the spectro-temporal profile of these acoustic textures is highly dynamic, changes in their statistics are indicative of relevant changes in the environment. Here, we investigated the neural representation of change detection in natural textures in humans, and specifically addressed whether active task engagement is required for the neural representation of this change in statistics. Subjects listened to natural textures whose spectro-temporal statistics were modified at variable times by a variable amount. Subjects were instructed to either report the detection of changes (active) or to passively listen to the stimuli. A subset of passive subjects had performed the active task before (passive-aware vs passive-naive). Psychophysically, longer exposure to pre-change statistics was correlated with faster reaction times and better discrimination performance. EEG recordings revealed that the build-up rate and size of parieto-occipital (PO) potentials reflected change size and change time. Reduced effects were observed in the passive conditions. While P2 responses were comparable across conditions, slope and height of PO potentials scaled with task involvement. Neural source localization identified a parietal source as the main contributor of change-specific potentials, in addition to more limited contributions from auditory and frontal sources. In summary, the detection of statistical changes in natural acoustic textures is predominantly reflected in parietal locations both on the skull and source level. The scaling in magnitude across different levels of task involvement suggests a context-dependent degree of evidence integration. PMID:29662943
Evidence Integration in Natural Acoustic Textures during Active and Passive Listening.
Górska, Urszula; Rupp, Andre; Boubenec, Yves; Celikel, Tansu; Englitz, Bernhard
2018-01-01
Many natural sounds can be well described on a statistical level, for example, wind, rain, or applause. Even though the spectro-temporal profile of these acoustic textures is highly dynamic, changes in their statistics are indicative of relevant changes in the environment. Here, we investigated the neural representation of change detection in natural textures in humans, and specifically addressed whether active task engagement is required for the neural representation of this change in statistics. Subjects listened to natural textures whose spectro-temporal statistics were modified at variable times by a variable amount. Subjects were instructed to either report the detection of changes (active) or to passively listen to the stimuli. A subset of passive subjects had performed the active task before (passive-aware vs passive-naive). Psychophysically, longer exposure to pre-change statistics was correlated with faster reaction times and better discrimination performance. EEG recordings revealed that the build-up rate and size of parieto-occipital (PO) potentials reflected change size and change time. Reduced effects were observed in the passive conditions. While P2 responses were comparable across conditions, slope and height of PO potentials scaled with task involvement. Neural source localization identified a parietal source as the main contributor of change-specific potentials, in addition to more limited contributions from auditory and frontal sources. In summary, the detection of statistical changes in natural acoustic textures is predominantly reflected in parietal locations both on the skull and source level. The scaling in magnitude across different levels of task involvement suggests a context-dependent degree of evidence integration.
High-order statistics of weber local descriptors for image representation.
Han, Xian-Hua; Chen, Yen-Wei; Xu, Gang
2015-06-01
Highly discriminant visual features play a key role in different image classification applications. This study aims to realize a method for extracting highly-discriminant features from images by exploring a robust local descriptor inspired by Weber's law. The investigated local descriptor is based on the fact that human perception for distinguishing a pattern depends not only on the absolute intensity of the stimulus but also on the relative variance of the stimulus. Therefore, we firstly transform the original stimulus (the images in our study) into a differential excitation-domain according to Weber's law, and then explore a local patch, called micro-Texton, in the transformed domain as Weber local descriptor (WLD). Furthermore, we propose to employ a parametric probability process to model the Weber local descriptors, and extract the higher-order statistics to the model parameters for image representation. The proposed strategy can adaptively characterize the WLD space using generative probability model, and then learn the parameters for better fitting the training space, which would lead to more discriminant representation for images. In order to validate the efficiency of the proposed strategy, we apply three different image classification applications including texture, food images and HEp-2 cell pattern recognition, which validates that our proposed strategy has advantages over the state-of-the-art approaches.
2011-10-14
landscapes. It is motivated by statistical learning arguments and unifies the tasks of biasing the molecular dynamics to escape free energy wells and...statistical learning arguments and unifies the tasks of biasing the molecular dynamics to escape free energy wells and estimating the free energy...experimentally, to characterize global changes as well as investigate relative stabilities. In most applications, a brute- force computation based on
[Research & development on computer expert system for forensic bones estimation].
Zhao, Jun-ji; Zhang, Jan-zheng; Liu, Nin-guo
2005-08-01
To build an expert system for forensic bones estimation. By using the object oriented method, employing statistical data of forensic anthropology, combining the statistical data frame knowledge representation with productions and also using the fuzzy matching and DS evidence theory method. Software for forensic estimation of sex, age and height with opened knowledge base was designed. This system is reliable and effective, and it would be a good assistant of the forensic technician.
Image super-resolution via sparse representation.
Yang, Jianchao; Wright, John; Huang, Thomas S; Ma, Yi
2010-11-01
This paper presents a new approach to single-image super-resolution, based on sparse signal representation. Research on image statistics suggests that image patches can be well-represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the low-resolution input, and then use the coefficients of this representation to generate the high-resolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low- and high-resolution image patches, we can enforce the similarity of sparse representations between the low resolution and high resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low resolution image patch can be applied with the high resolution image patch dictionary to generate a high resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches, which simply sample a large amount of image patch pairs, reducing the computational cost substantially. The effectiveness of such a sparsity prior is demonstrated for both general image super-resolution and the special case of face hallucination. In both cases, our algorithm generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods. In addition, the local sparse modeling of our approach is naturally robust to noise, and therefore the proposed algorithm can handle super-resolution with noisy inputs in a more unified framework.
Cant, Jonathan S; Xu, Yaoda
2017-02-01
Our visual system can extract summary statistics from large collections of objects without forming detailed representations of the individual objects in the ensemble. In a region in ventral visual cortex encompassing the collateral sulcus and the parahippocampal gyrus and overlapping extensively with the scene-selective parahippocampal place area (PPA), we have previously reported fMRI adaptation to object ensembles when ensemble statistics repeated, even when local image features differed across images (e.g., two different images of the same strawberry pile). We additionally showed that this ensemble representation is similar to (but still distinct from) how visual texture patterns are processed in this region and is not explained by appealing to differences in the color of the elements that make up the ensemble. To further explore the nature of ensemble representation in this brain region, here we used PPA as our ROI and investigated in detail how the shape and surface properties (i.e., both texture and color) of the individual objects constituting an ensemble affect the ensemble representation in anterior-medial ventral visual cortex. We photographed object ensembles of stone beads that varied in shape and surface properties. A given ensemble always contained beads of the same shape and surface properties (e.g., an ensemble of star-shaped rose quartz beads). A change to the shape and/or surface properties of all the beads in an ensemble resulted in a significant release from adaptation in PPA compared with conditions in which no ensemble feature changed. In contrast, in the object-sensitive lateral occipital area (LO), we only observed a significant release from adaptation when the shape of the ensemble elements varied, and found no significant results in additional scene-sensitive regions, namely, the retrosplenial complex and occipital place area. Together, these results demonstrate that the shape and surface properties of the individual objects comprising an ensemble both contribute significantly to object ensemble representation in anterior-medial ventral visual cortex and further demonstrate a functional dissociation between object- (LO) and scene-selective (PPA) visual cortical regions and within the broader scene-processing network itself.
A ganglion-cell-based primary image representation method and its contribution to object recognition
NASA Astrophysics Data System (ADS)
Wei, Hui; Dai, Zhi-Long; Zuo, Qing-Song
2016-10-01
A visual stimulus is represented by the biological visual system at several levels: in the order from low to high levels, they are: photoreceptor cells, ganglion cells (GCs), lateral geniculate nucleus cells and visual cortical neurons. Retinal GCs at the early level need to represent raw data only once, but meet a wide number of diverse requests from different vision-based tasks. This means the information representation at this level is general and not task-specific. Neurobiological findings have attributed this universal adaptation to GCs' receptive field (RF) mechanisms. For the purposes of developing a highly efficient image representation method that can facilitate information processing and interpretation at later stages, here we design a computational model to simulate the GC's non-classical RF. This new image presentation method can extract major structural features from raw data, and is consistent with other statistical measures of the image. Based on the new representation, the performances of other state-of-the-art algorithms in contour detection and segmentation can be upgraded remarkably. This work concludes that applying sophisticated representation schema at early state is an efficient and promising strategy in visual information processing.
AnthropMMD: An R package with a graphical user interface for the mean measure of divergence.
Santos, Frédéric
2018-01-01
The mean measure of divergence is a dissimilarity measure between groups of individuals described by dichotomous variables. It is well suited to datasets with many missing values, and it is generally used to compute distance matrices and represent phenograms. Although often used in biological anthropology and archaeozoology, this method suffers from a lack of implementation in common statistical software. A package for the R statistical software, AnthropMMD, is presented here. Offering a dynamic graphical user interface, it is the first one dedicated to Smith's mean measure of divergence. The package also provides facilities for graphical representations and the crucial step of trait selection, so that the entire analysis can be performed through the graphical user interface. Its use is demonstrated using an artificial dataset, and the impact of trait selection is discussed. Finally, AnthropMMD is compared to three other free tools available for calculating the mean measure of divergence, and is proven to be consistent with them. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hirst, Jonathan D.; King, Ross D.; Sternberg, Michael J. E.
1994-08-01
Neural networks and inductive logic programming (ILP) have been compared to linear regression for modelling the QSAR of the inhibition of E. coli dihydrofolate reductase (DHFR) by 2,4-diamino-5-(substitured benzyl)pyrimidines, and, in the subsequent paper [Hirst, J.D., King, R.D. and Sternberg, M.J.E., J. Comput.-Aided Mol. Design, 8 (1994) 421], the inhibition of rodent DHFR by 2,4-diamino-6,6-dimethyl-5-phenyl-dihydrotriazines. Cross-validation trials provide a statistically rigorous assessment of the predictive capabilities of the methods, with training and testing data selected randomly and all the methods developed using identical training data. For the ILP analysis, molecules are represented by attributes other than Hansch parameters. Neural networks and ILP perform better than linear regression using the attribute representation, but the difference is not statistically significant. The major benefit from the ILP analysis is the formulation of understandable rules relating the activity of the inhibitors to their chemical structure.
Global ensemble texture representations are critical to rapid scene perception.
Brady, Timothy F; Shafer-Skelton, Anna; Alvarez, George A
2017-06-01
Traditionally, recognizing the objects within a scene has been treated as a prerequisite to recognizing the scene itself. However, research now suggests that the ability to rapidly recognize visual scenes could be supported by global properties of the scene itself rather than the objects within the scene. Here, we argue for a particular instantiation of this view: That scenes are recognized by treating them as a global texture and processing the pattern of orientations and spatial frequencies across different areas of the scene without recognizing any objects. To test this model, we asked whether there is a link between how proficient individuals are at rapid scene perception and how proficiently they represent simple spatial patterns of orientation information (global ensemble texture). We find a significant and selective correlation between these tasks, suggesting a link between scene perception and spatial ensemble tasks but not nonspatial summary statistics In a second and third experiment, we additionally show that global ensemble texture information is not only associated with scene recognition, but that preserving only global ensemble texture information from scenes is sufficient to support rapid scene perception; however, preserving the same information is not sufficient for object recognition. Thus, global ensemble texture alone is sufficient to allow activation of scene representations but not object representations. Together, these results provide evidence for a view of scene recognition based on global ensemble texture rather than a view based purely on objects or on nonspatially localized global properties. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Thermodynamic characterization of networks using graph polynomials
NASA Astrophysics Data System (ADS)
Ye, Cheng; Comin, César H.; Peron, Thomas K. DM.; Silva, Filipi N.; Rodrigues, Francisco A.; Costa, Luciano da F.; Torsello, Andrea; Hancock, Edwin R.
2015-09-01
In this paper, we present a method for characterizing the evolution of time-varying complex networks by adopting a thermodynamic representation of network structure computed from a polynomial (or algebraic) characterization of graph structure. Commencing from a representation of graph structure based on a characteristic polynomial computed from the normalized Laplacian matrix, we show how the polynomial is linked to the Boltzmann partition function of a network. This allows us to compute a number of thermodynamic quantities for the network, including the average energy and entropy. Assuming that the system does not change volume, we can also compute the temperature, defined as the rate of change of entropy with energy. All three thermodynamic variables can be approximated using low-order Taylor series that can be computed using the traces of powers of the Laplacian matrix, avoiding explicit computation of the normalized Laplacian spectrum. These polynomial approximations allow a smoothed representation of the evolution of networks to be constructed in the thermodynamic space spanned by entropy, energy, and temperature. We show how these thermodynamic variables can be computed in terms of simple network characteristics, e.g., the total number of nodes and node degree statistics for nodes connected by edges. We apply the resulting thermodynamic characterization to real-world time-varying networks representing complex systems in the financial and biological domains. The study demonstrates that the method provides an efficient tool for detecting abrupt changes and characterizing different stages in network evolution.
Some practicable applications of quadtree data structures/representation in astronomy
NASA Technical Reports Server (NTRS)
Pasztor, L.
1992-01-01
Development of quadtree as hierarchical data structuring technique for representing spatial data (like points, regions, surfaces, lines, curves, volumes, etc.) has been motivated to a large extent by storage requirements of images, maps, and other multidimensional (spatially structured) data. For many spatial algorithms, time-efficiency of quadtrees in terms of execution may be as important as their space-efficiency concerning storage conditions. Briefly, the quadtree is a class of hierarchical data structures which is based on the recursive partition of a square region into quadrants and sub-quadrants until a predefined limit. Beyond the wide applicability of quadtrees in image processing, spatial information analysis, and building digital databases (processes becoming ordinary for the astronomical community), there may be numerous further applications in astronomy. Some of these practicable applications based on quadtree representation of astronomical data are presented and suggested for further considerations. Examples are shown for use of point as well as region quadtrees. Statistics of different leaf and non-leaf nodes (homogeneous and heterogeneous sub-quadrants respectively) at different levels may provide useful information on spatial structure of astronomical data in question. By altering the principle guiding the decomposition process, different types of spatial data may be focused on. Finally, a sampling method based on quadtree representation of an image is proposed which may prove to be efficient in the elaboration of sampling strategy in a region where observations were carried out previously either with different resolution or/and in different bands.
A word in the hand: action, gesture and mental representation in humans and non-human primates
Cartmill, Erica A.; Beilock, Sian; Goldin-Meadow, Susan
2012-01-01
The movements we make with our hands both reflect our mental processes and help to shape them. Our actions and gestures can affect our mental representations of actions and objects. In this paper, we explore the relationship between action, gesture and thought in both humans and non-human primates and discuss its role in the evolution of language. Human gesture (specifically representational gesture) may provide a unique link between action and mental representation. It is kinaesthetically close to action and is, at the same time, symbolic. Non-human primates use gesture frequently to communicate, and do so flexibly. However, their gestures mainly resemble incomplete actions and lack the representational elements that characterize much of human gesture. Differences in the mirror neuron system provide a potential explanation for non-human primates' lack of representational gestures; the monkey mirror system does not respond to representational gestures, while the human system does. In humans, gesture grounds mental representation in action, but there is no evidence for this link in other primates. We argue that gesture played an important role in the transition to symbolic thought and language in human evolution, following a cognitive leap that allowed gesture to incorporate representational elements. PMID:22106432
Unpacking Exoplanet Detection Using Pedagogical Discipline Representations (PDRs)
NASA Astrophysics Data System (ADS)
Prather, Edward E.; Chambers, Timothy G.; Wallace, Colin Scott; Brissenden, Gina
2017-01-01
Successful educators know the importance of using multiple representations to teach the content of their disciplines. We have all seen the moments of epiphany that can be inspired when engaging with just the right representation of a difficult concept. The formal study of the cognitive impact of different representations on learners is now an active area of education research. The affordances of a particular representation are defined as the elements of disciplinary knowledge that students are able to access and reason about using that representation. Instructors with expert pedagogical content knowledge teach each topic using representations with complementary affordances, maximizing their students’ opportunity to develop fluency with all aspects of the topic. The work presented here examines how we have applied the theory of affordances to the development of pedagogical discipline representation (PDR) in an effort to provide access to, and help non-science-majors engage in expert-like reasoning about, general relativity as applied to detection of exoplanets. We define a pedagogical discipline representation (PDR) as a representation that has been uniquely tailored for the purpose of teaching a specific topic within a discipline. PDRs can be simplified versions of expert representations or can be highly contextualized with features that purposefully help unpack specific reasoning or concepts, and engage learners’ pre-existing mental models while promoting and enabling critical discourse. Examples of PDRs used for instruction and assessment will be provided along with preliminary results documenting the effectiveness of their use in the classroom.
Dissimilarity representations in lung parenchyma classification
NASA Astrophysics Data System (ADS)
Sørensen, Lauge; de Bruijne, Marleen
2009-02-01
A good problem representation is important for a pattern recognition system to be successful. The traditional approach to statistical pattern recognition is feature representation. More specifically, objects are represented by a number of features in a feature vector space, and classifiers are built in this representation. This is also the general trend in lung parenchyma classification in computed tomography (CT) images, where the features often are measures on feature histograms. Instead, we propose to build normal density based classifiers in dissimilarity representations for lung parenchyma classification. This allows for the classifiers to work on dissimilarities between objects, which might be a more natural way of representing lung parenchyma. In this context, dissimilarity is defined between CT regions of interest (ROI)s. ROIs are represented by their CT attenuation histogram and ROI dissimilarity is defined as a histogram dissimilarity measure between the attenuation histograms. In this setting, the full histograms are utilized according to the chosen histogram dissimilarity measure. We apply this idea to classification of different emphysema patterns as well as normal, healthy tissue. Two dissimilarity representation approaches as well as different histogram dissimilarity measures are considered. The approaches are evaluated on a set of 168 CT ROIs using normal density based classifiers all showing good performance. Compared to using histogram dissimilarity directly as distance in a emph{k} nearest neighbor classifier, which achieves a classification accuracy of 92.9%, the best dissimilarity representation based classifier is significantly better with a classification accuracy of 97.0% (text{emph{p" border="0" class="imgtopleft"> = 0.046).
Crashes involving farm tractors and other farm vehicles/equipment in North Carolina 1995-1999
DOT National Transportation Integrated Search
2000-04-01
Tables and figures are shown to depict a statistical representation of crashes involving farm tractors and other farm vehicles or equipment, in North Carolina. Information displayed includes crash frequency, crashes by county, accident severity, type...
Impossibility Theorem in Proportional Representation Problem
NASA Astrophysics Data System (ADS)
Karpov, Alexander
2010-09-01
The study examines general axiomatics of Balinski and Young and analyzes existed proportional representation methods using this approach. The second part of the paper provides new axiomatics based on rational choice models. New system of axioms is applied to study known proportional representation systems. It is shown that there is no proportional representation method satisfying a minimal set of the axioms (monotonicity and neutrality).
A hierarchical structure for representing and learning fuzzy rules
NASA Technical Reports Server (NTRS)
Yager, Ronald R.
1993-01-01
Yager provides an example in which the flat representation of fuzzy if-then rules leads to unsatisfactory results. Consider a rule base consisting to two rules: if U is 12 the V is 29; if U is (10-15) the V is (25-30). If U = 12 we would get V is G where G = (25-30). The application of the defuzzification process leads to a selection of V = 27.5. Thus we see that the very specific instruction was not followed. The problem with the technique used is that the most specific information was swamped by the less specific information. In this paper we shall provide for a new structure for the representation of fuzzy if-then rules. The representational form introduced here is called a Hierarchical Prioritized Structure (HPS) representation. Most importantly in addition to overcoming the problem illustrated in the previous example this HPS representation has an inherent capability to emulate the learning of general rules and provides a reasonable accurate cognitive mapping of how human beings store information.
As above, so below? Towards understanding inverse models in BCI
NASA Astrophysics Data System (ADS)
Lindgren, Jussi T.
2018-02-01
Objective. In brain-computer interfaces (BCI), measurements of the user’s brain activity are classified into commands for the computer. With EEG-based BCIs, the origins of the classified phenomena are often considered to be spatially localized in the cortical volume and mixed in the EEG. We investigate if more accurate BCIs can be obtained by reconstructing the source activities in the volume. Approach. We contrast the physiology-driven source reconstruction with data-driven representations obtained by statistical machine learning. We explain these approaches in a common linear dictionary framework and review the different ways to obtain the dictionary parameters. We consider the effect of source reconstruction on some major difficulties in BCI classification, namely information loss, feature selection and nonstationarity of the EEG. Main results. Our analysis suggests that the approaches differ mainly in their parameter estimation. Physiological source reconstruction may thus be expected to improve BCI accuracy if machine learning is not used or where it produces less optimal parameters. We argue that the considered difficulties of surface EEG classification can remain in the reconstructed volume and that data-driven techniques are still necessary. Finally, we provide some suggestions for comparing approaches. Significance. The present work illustrates the relationships between source reconstruction and machine learning-based approaches for EEG data representation. The provided analysis and discussion should help in understanding, applying, comparing and improving such techniques in the future.
MAGMA: analysis of two-channel microarrays made easy.
Rehrauer, Hubert; Zoller, Stefan; Schlapbach, Ralph
2007-07-01
The web application MAGMA provides a simple and intuitive interface to identify differentially expressed genes from two-channel microarray data. While the underlying algorithms are not superior to those of similar web applications, MAGMA is particularly user friendly and can be used without prior training. The user interface guides the novice user through the most typical microarray analysis workflow consisting of data upload, annotation, normalization and statistical analysis. It automatically generates R-scripts that document MAGMA's entire data processing steps, thereby allowing the user to regenerate all results in his local R installation. The implementation of MAGMA follows the model-view-controller design pattern that strictly separates the R-based statistical data processing, the web-representation and the application logic. This modular design makes the application flexible and easily extendible by experts in one of the fields: statistical microarray analysis, web design or software development. State-of-the-art Java Server Faces technology was used to generate the web interface and to perform user input processing. MAGMA's object-oriented modular framework makes it easily extendible and applicable to other fields and demonstrates that modern Java technology is also suitable for rather small and concise academic projects. MAGMA is freely available at www.magma-fgcz.uzh.ch.
Using radar imagery for crop discrimination: a statistical and conditional probability study
Haralick, R.M.; Caspall, F.; Simonett, D.S.
1970-01-01
A number of the constraints with which remote sensing must contend in crop studies are outlined. They include sensor, identification accuracy, and congruencing constraints; the nature of the answers demanded of the sensor system; and the complex temporal variances of crops in large areas. Attention is then focused on several methods which may be used in the statistical analysis of multidimensional remote sensing data.Crop discrimination for radar K-band imagery is investigated by three methods. The first one uses a Bayes decision rule, the second a nearest-neighbor spatial conditional probability approach, and the third the standard statistical techniques of cluster analysis and principal axes representation.Results indicate that crop type and percent of cover significantly affect the strength of the radar return signal. Sugar beets, corn, and very bare ground are easily distinguishable, sorghum, alfalfa, and young wheat are harder to distinguish. Distinguishability will be improved if the imagery is examined in time sequence so that changes between times of planning, maturation, and harvest provide additional discriminant tools. A comparison between radar and photography indicates that radar performed surprisingly well in crop discrimination in western Kansas and warrants further study.
LATENT SPACE MODELS FOR MULTIVIEW NETWORK DATA
Salter-Townshend, Michael; McCormick, Tyler H.
2018-01-01
Social relationships consist of interactions along multiple dimensions. In social networks, this means that individuals form multiple types of relationships with the same person (e.g., an individual will not trust all of his/her acquaintances). Statistical models for these data require understanding two related types of dependence structure: (i) structure within each relationship type, or network view, and (ii) the association between views. In this paper, we propose a statistical framework that parsimoniously represents dependence between relationship types while also maintaining enough flexibility to allow individuals to serve different roles in different relationship types. Our approach builds on work on latent space models for networks [see, e.g., J. Amer. Statist. Assoc. 97 (2002) 1090–1098]. These models represent the propensity for two individuals to form edges as conditionally independent given the distance between the individuals in an unobserved social space. Our work departs from previous work in this area by representing dependence structure between network views through a multivariate Bernoulli likelihood, providing a representation of between-view association. This approach infers correlations between views not explained by the latent space model. Using our method, we explore 6 multiview network structures across 75 villages in rural southern Karnataka, India [Banerjee et al. (2013)]. PMID:29721127
LATENT SPACE MODELS FOR MULTIVIEW NETWORK DATA.
Salter-Townshend, Michael; McCormick, Tyler H
2017-09-01
Social relationships consist of interactions along multiple dimensions. In social networks, this means that individuals form multiple types of relationships with the same person (e.g., an individual will not trust all of his/her acquaintances). Statistical models for these data require understanding two related types of dependence structure: (i) structure within each relationship type, or network view, and (ii) the association between views. In this paper, we propose a statistical framework that parsimoniously represents dependence between relationship types while also maintaining enough flexibility to allow individuals to serve different roles in different relationship types. Our approach builds on work on latent space models for networks [see, e.g., J. Amer. Statist. Assoc. 97 (2002) 1090-1098]. These models represent the propensity for two individuals to form edges as conditionally independent given the distance between the individuals in an unobserved social space. Our work departs from previous work in this area by representing dependence structure between network views through a multivariate Bernoulli likelihood, providing a representation of between-view association. This approach infers correlations between views not explained by the latent space model. Using our method, we explore 6 multiview network structures across 75 villages in rural southern Karnataka, India [Banerjee et al. (2013)].
Empirical Neutral Thermosphere Models; Then and Now
NASA Astrophysics Data System (ADS)
Drob, Douglas; Emmert, John; McDonald, Sarah; Picone, J. Michael
The empirical Mass Spectrometer Incoherent Scatter (MSIS) upper atmospheric model pro-vides a readily available framework for summarizing the results of five solar cycles of density, composition, and temperature information from multi-agency satellite missions, rocket flights, and ground-based observations. The MSIS versions described in Hedin et al. (1987), Hedin et al. (1991), and Picone et al., (2002) have been cited over 2500 times in the peer reviewed scientific literature. The cross-listed subject areas include Astronomy (50%), Atmospheric Sci-ences (40%), Geophysics (25%), Multidisciplinary (23%), Aerospace (16%), Remote Sensing (4%), Instrumentation (3%), and Telecommunications (2%). The MSIS model even has its own Wikipedia entry; it is also included in commercial applications such as the Satellite Tool Kit and the MATLAB Aerospace Toolbox. In addition, the recently updated Horizontal Wind Model (HWM07) of Drob et al. (2008) provides a statistical representation of the horizontal wind fields from the ground to the exosphere (> 500 km), representing over 35-years of satellite, rocket, and ground-based wind measurements via a compact Fortran 90 subroutine. Together, these models approximately describe the compositional, thermal, and dynamical state of the neutral upper atmosphere. These low overhead, high-availability computer subroutines are a function of geographic location, altitude, day of the year, solar local time, and geomagnetic activity. In contrast to General Circulation Models, they provide a set of precompiled spectral patterns bypassing the need to compute them directly from first principles. They include representations of the zonal mean state, stationary planetary waves, migrating tides, and the seasonal modulation thereof; as well as the influences of geomagnetic activity and solar flux. End-users interact with a statistical summary of the underlying knowledgebase via a single subroutine interface which encapsulates much of the system complexity. The knowledge pro-vided by the set of available measurement is represented by approximately 10000 precompiled model parameters. The data assimilation system used to estimate these model parameters also provides a wealth of auxiliary statistics regarding the coverage of the observational data sets and state of the thermosphere. Despite the success of these models they are not perfect, typically resulting from the lack of observational data at hand, as well as theoretical understanding. The differences between the model output and observational data can either be systematic (bias) or irregular (observational variance). In the latter case this is simply the natural geophysical variability that the models are not designed to represent. Published research clearly demonstrates that certain aspects of the MSIS (and HWM07) should be updated. Knowledge of these discrepancies, along with supporting observational data sets can be used to update and improve the fidelity of the models.
On the Origins of Suboptimality in Human Probabilistic Inference
Acerbi, Luigi; Vijayakumar, Sethu; Wolpert, Daniel M.
2014-01-01
Humans have been shown to combine noisy sensory information with previous experience (priors), in qualitative and sometimes quantitative agreement with the statistically-optimal predictions of Bayesian integration. However, when the prior distribution becomes more complex than a simple Gaussian, such as skewed or bimodal, training takes much longer and performance appears suboptimal. It is unclear whether such suboptimality arises from an imprecise internal representation of the complex prior, or from additional constraints in performing probabilistic computations on complex distributions, even when accurately represented. Here we probe the sources of suboptimality in probabilistic inference using a novel estimation task in which subjects are exposed to an explicitly provided distribution, thereby removing the need to remember the prior. Subjects had to estimate the location of a target given a noisy cue and a visual representation of the prior probability density over locations, which changed on each trial. Different classes of priors were examined (Gaussian, unimodal, bimodal). Subjects' performance was in qualitative agreement with the predictions of Bayesian Decision Theory although generally suboptimal. The degree of suboptimality was modulated by statistical features of the priors but was largely independent of the class of the prior and level of noise in the cue, suggesting that suboptimality in dealing with complex statistical features, such as bimodality, may be due to a problem of acquiring the priors rather than computing with them. We performed a factorial model comparison across a large set of Bayesian observer models to identify additional sources of noise and suboptimality. Our analysis rejects several models of stochastic behavior, including probability matching and sample-averaging strategies. Instead we show that subjects' response variability was mainly driven by a combination of a noisy estimation of the parameters of the priors, and by variability in the decision process, which we represent as a noisy or stochastic posterior. PMID:24945142
A Gaussian wave packet phase-space representation of quantum canonical statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughtrie, David J.; Tew, David P.
2015-07-28
We present a mapping of quantum canonical statistical averages onto a phase-space average over thawed Gaussian wave-packet (GWP) parameters, which is exact for harmonic systems at all temperatures. The mapping invokes an effective potential surface, experienced by the wave packets, and a temperature-dependent phase-space integrand, to correctly transition from the GWP average at low temperature to classical statistics at high temperature. Numerical tests on weakly and strongly anharmonic model systems demonstrate that thermal averages of the system energy and geometric properties are accurate to within 1% of the exact quantum values at all temperatures.
Statistical error model for a solar electric propulsion thrust subsystem
NASA Technical Reports Server (NTRS)
Bantell, M. H.
1973-01-01
The solar electric propulsion thrust subsystem statistical error model was developed as a tool for investigating the effects of thrust subsystem parameter uncertainties on navigation accuracy. The model is currently being used to evaluate the impact of electric engine parameter uncertainties on navigation system performance for a baseline mission to Encke's Comet in the 1980s. The data given represent the next generation in statistical error modeling for low-thrust applications. Principal improvements include the representation of thrust uncertainties and random process modeling in terms of random parametric variations in the thrust vector process for a multi-engine configuration.
Nonverbal arithmetic in humans: light from noise.
Cordes, Sara; Gallistel, C R; Gelman, Rochel; Latham, Peter
2007-10-01
Animal and human data suggest the existence of a cross-species system of analog number representation (e.g., Cordes, Gelman, Gallistel, & Whalen, 2001; Meeck & Church, 1983), which may mediate the computation of statistical regularities in the environment (Gallistel, Gelman, & Cordes, 2006). However, evidence of arithmetic manipulation of these nonverbal magnitude representations is sparse and lacking in depth. This study uses the analysis of variability as a tool for understanding properties of these combinatorial processes. Human subjects participated in tasks requiring responses dependent upon the addition, subtraction, or reproduction of nonverbal counts. Variance analyses revealed that the magnitude of both inputs and answer contributed to the variability in the arithmetic responses, with operand variability dominating. Other contributing factors to the observed variability and implications for logarithmic versus scalar models of magnitude representation are discussed in light of these results.
Medical Image Retrieval Using Multi-Texton Assignment.
Tang, Qiling; Yang, Jirong; Xia, Xianfu
2018-02-01
In this paper, we present a multi-texton representation method for medical image retrieval, which utilizes the locality constraint to encode each filter bank response within its local-coordinate system consisting of the k nearest neighbors in texton dictionary and subsequently employs spatial pyramid matching technique to implement feature vector representation. Comparison with the traditional nearest neighbor assignment followed by texton histogram statistics method, our strategies reduce the quantization errors in mapping process and add information about the spatial layout of texton distributions and, thus, increase the descriptive power of the image representation. We investigate the effects of different parameters on system performance in order to choose the appropriate ones for our datasets and carry out experiments on the IRMA-2009 medical collection and the mammographic patch dataset. The extensive experimental results demonstrate that the proposed method has superior performance.
Institutional racism in public health contracting: Findings of a nationwide survey from New Zealand.
Came, H; Doole, C; McKenna, B; McCreanor, T
2018-02-01
Public institutions within New Zealand have long been accused of mono-culturalism and institutional racism. This study sought to identify inconsistencies and bias by comparing government funded contracting processes for Māori public health providers (n = 60) with those of generic providers (n = 90). Qualitative and quantitative data were collected (November 2014-May 2015), through a nationwide telephone survey of public health providers, achieving a 75% response rate. Descriptive statistical analyses were applied to quantitative responses and an inductive approach was taken to analyse data from open-ended responses in the survey domains of relationships with portfolio contract managers, contracting and funding. The quantitative data showed four sites of statistically significant variation: length of contracts, intensity of monitoring, compliance costs and frequency of auditing. Non-significant data involved access to discretionary funding and cost of living adjustments, the frequency of monitoring, access to Crown (government) funders and representation on advisory groups. The qualitative material showed disparate provider experiences, dependent on individual portfolio managers, with nuanced differences between generic and Māori providers' experiences. This study showed that monitoring government performance through a nationwide survey was an innovative way to identify sites of institutional racism. In a policy context where health equity is a key directive to the health sector, this study suggests there is scope for New Zealand health funders to improve their contracting practices. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Borisenko, V. I., G.g.; Stetsenko, Z. A.
1980-01-01
The functions were discribed and the operating instructions, the block diagram and the proposed versions are given for modifying the program in order to obtain the statistical characteristics of multi-channel video information. The program implements certain man-machine methods for investigating video information. It permits representation of the material and its statistical characteristics in a form which is convenient for the user.
From fields to objects: A review of geographic boundary analysis
NASA Astrophysics Data System (ADS)
Jacquez, G. M.; Maruca, S.; Fortin, M.-J.
Geographic boundary analysis is a relatively new approach unfamiliar to many spatial analysts. It is best viewed as a technique for defining objects - geographic boundaries - on spatial fields, and for evaluating the statistical significance of characteristics of those boundary objects. This is accomplished using null spatial models representative of the spatial processes expected in the absence of boundary-generating phenomena. Close ties to the object-field dialectic eminently suit boundary analysis to GIS data. The majority of existing spatial methods are field-based in that they describe, estimate, or predict how attributes (variables defining the field) vary through geographic space. Such methods are appropriate for field representations but not object representations. As the object-field paradigm gains currency in geographic information science, appropriate techniques for the statistical analysis of objects are required. The methods reviewed in this paper are a promising foundation. Geographic boundary analysis is clearly a valuable addition to the spatial statistical toolbox. This paper presents the philosophy of, and motivations for geographic boundary analysis. It defines commonly used statistics for quantifying boundaries and their characteristics, as well as simulation procedures for evaluating their significance. We review applications of these techniques, with the objective of making this promising approach accessible to the GIS-spatial analysis community. We also describe the implementation of these methods within geographic boundary analysis software: GEM.
Non-Abelian statistics of vortices with non-Abelian Dirac fermions.
Yasui, Shigehiro; Hirono, Yuji; Itakura, Kazunori; Nitta, Muneto
2013-05-01
We extend our previous analysis on the exchange statistics of vortices having a single Dirac fermion trapped in each core to the case where vortices trap two Dirac fermions with U(2) symmetry. Such a system of vortices with non-Abelian Dirac fermions appears in color superconductors at extremely high densities and in supersymmetric QCD. We show that the exchange of two vortices having doublet Dirac fermions in each core is expressed by non-Abelian representations of a braid group, which is explicitly verified in the matrix representation of the exchange operators when the number of vortices is up to four. We find that the result contains the matrices previously obtained for the vortices with a single Dirac fermion in each core as a special case. The whole braid group does not immediately imply non-Abelian statistics of identical particles because it also contains exchanges between vortices with different numbers of Dirac fermions. However, we find that it does contain, as its subgroup, genuine non-Abelian statistics for the exchange of the identical particles, that is, vortices with the same number of Dirac fermions. This result is surprising compared with conventional understanding because all Dirac fermions are defined locally at each vortex, unlike the case of Majorana fermions for which Dirac fermions are defined nonlocally by Majorana fermions located at two spatially separated vortices.
NASA Astrophysics Data System (ADS)
Steger, Stefan; Brenning, Alexander; Bell, Rainer; Glade, Thomas
2016-12-01
There is unanimous agreement that a precise spatial representation of past landslide occurrences is a prerequisite to produce high quality statistical landslide susceptibility models. Even though perfectly accurate landslide inventories rarely exist, investigations of how landslide inventory-based errors propagate into subsequent statistical landslide susceptibility models are scarce. The main objective of this research was to systematically examine whether and how inventory-based positional inaccuracies of different magnitudes influence modelled relationships, validation results, variable importance and the visual appearance of landslide susceptibility maps. The study was conducted for a landslide-prone site located in the districts of Amstetten and Waidhofen an der Ybbs, eastern Austria, where an earth-slide point inventory was available. The methodological approach comprised an artificial introduction of inventory-based positional errors into the present landslide data set and an in-depth evaluation of subsequent modelling results. Positional errors were introduced by artificially changing the original landslide position by a mean distance of 5, 10, 20, 50 and 120 m. The resulting differently precise response variables were separately used to train logistic regression models. Odds ratios of predictor variables provided insights into modelled relationships. Cross-validation and spatial cross-validation enabled an assessment of predictive performances and permutation-based variable importance. All analyses were additionally carried out with synthetically generated data sets to further verify the findings under rather controlled conditions. The results revealed that an increasing positional inventory-based error was generally related to increasing distortions of modelling and validation results. However, the findings also highlighted that interdependencies between inventory-based spatial inaccuracies and statistical landslide susceptibility models are complex. The systematic comparisons of 12 models provided valuable evidence that the respective error-propagation was not only determined by the degree of positional inaccuracy inherent in the landslide data, but also by the spatial representation of landslides and the environment, landslide magnitude, the characteristics of the study area, the selected classification method and an interplay of predictors within multiple variable models. Based on the results, we deduced that a direct propagation of minor to moderate inventory-based positional errors into modelling results can be partly counteracted by adapting the modelling design (e.g. generalization of input data, opting for strongly generalizing classifiers). Since positional errors within landslide inventories are common and subsequent modelling and validation results are likely to be distorted, the potential existence of inventory-based positional inaccuracies should always be considered when assessing landslide susceptibility by means of empirical models.
Probability Issues in without Replacement Sampling
ERIC Educational Resources Information Center
Joarder, A. H.; Al-Sabah, W. S.
2007-01-01
Sampling without replacement is an important aspect in teaching conditional probabilities in elementary statistics courses. Different methods proposed in different texts for calculating probabilities of events in this context are reviewed and their relative merits and limitations in applications are pinpointed. An alternative representation of…
Statistical Representations of Track Geometry : Volume II, Appendices.
DOT National Transportation Integrated Search
1980-03-31
This volume contains some of the more detailed data and analyses to support the results and conclusions reached in Volume I of this report. It is divided into appendixes lettered A through J. Appendix A defines a procedure for evaluating the statisti...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-16
...: Acute kidney injury Acute interstitial pneumonia (re-presentation) Atrial fibrillation Highly calcified... encephalomyelitis Acute necrotizing hemorrhagic encephalopathy Atrial fibrillation and flutter Benign shuddering... resurfacing Lead extraction Left atrial appendage exclusion femoral/epicardial access Neuroflow endovascular...
Standard model of knowledge representation
NASA Astrophysics Data System (ADS)
Yin, Wensheng
2016-09-01
Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.
Phonological Representations in Children with SLI
ERIC Educational Resources Information Center
Claessen, Mary; Leitao, Suze
2012-01-01
It has been hypothesized that children with specific language impairment (SLI) have difficulty processing sound-based information, including storing and accessing phonological representations in the lexicon. Tasks are emerging in the literature that provide a measure of the quality of stored phonological representations, without requiring a verbal…
Uncertainty representation of grey numbers and grey sets.
Yang, Yingjie; Liu, Sifeng; John, Robert
2014-09-01
In the literature, there is a presumption that a grey set and an interval-valued fuzzy set are equivalent. This presumption ignores the existence of discrete components in a grey number. In this paper, new measurements of uncertainties of grey numbers and grey sets, consisting of both absolute and relative uncertainties, are defined to give a comprehensive representation of uncertainties in a grey number and a grey set. Some simple examples are provided to illustrate that the proposed uncertainty measurement can give an effective representation of both absolute and relative uncertainties in a grey number and a grey set. The relationships between grey sets and interval-valued fuzzy sets are also analyzed from the point of view of the proposed uncertainty representation. The analysis demonstrates that grey sets and interval-valued fuzzy sets provide different but overlapping models for uncertainty representation in sets.
Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods
Berman, Paula; Levi, Ofer; Parmet, Yisrael; Saunders, Michael; Wiesman, Zeev
2013-01-01
Low-resolution nuclear magnetic resonance (LR-NMR) relaxometry is a powerful tool that can be harnessed for characterizing constituents in complex materials. Conversion of the relaxation signal into a continuous distribution of relaxation components is an ill-posed inverse Laplace transform problem. The most common numerical method implemented today for dealing with this kind of problem is based on L2-norm regularization. However, sparse representation methods via L1 regularization and convex optimization are a relatively new approach for effective analysis and processing of digital images and signals. In this article, a numerical optimization method for analyzing LR-NMR data by including non-negativity constraints and L1 regularization and by applying a convex optimization solver PDCO, a primal-dual interior method for convex objectives, that allows general linear constraints to be treated as linear operators is presented. The integrated approach includes validation of analyses by simulations, testing repeatability of experiments, and validation of the model and its statistical assumptions. The proposed method provides better resolved and more accurate solutions when compared with those suggested by existing tools. © 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 72–88, 2013. PMID:23847452
Multimodal Word Meaning Induction From Minimal Exposure to Natural Text.
Lazaridou, Angeliki; Marelli, Marco; Baroni, Marco
2017-04-01
By the time they reach early adulthood, English speakers are familiar with the meaning of thousands of words. In the last decades, computational simulations known as distributional semantic models (DSMs) have demonstrated that it is possible to induce word meaning representations solely from word co-occurrence statistics extracted from a large amount of text. However, while these models learn in batch mode from large corpora, human word learning proceeds incrementally after minimal exposure to new words. In this study, we run a set of experiments investigating whether minimal distributional evidence from very short passages suffices to trigger successful word learning in subjects, testing their linguistic and visual intuitions about the concepts associated with new words. After confirming that subjects are indeed very efficient distributional learners even from small amounts of evidence, we test a DSM on the same multimodal task, finding that it behaves in a remarkable human-like way. We conclude that DSMs provide a convincing computational account of word learning even at the early stages in which a word is first encountered, and the way they build meaning representations can offer new insights into human language acquisition. Copyright © 2017 Cognitive Science Society, Inc.
Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods.
Berman, Paula; Levi, Ofer; Parmet, Yisrael; Saunders, Michael; Wiesman, Zeev
2013-05-01
Low-resolution nuclear magnetic resonance (LR-NMR) relaxometry is a powerful tool that can be harnessed for characterizing constituents in complex materials. Conversion of the relaxation signal into a continuous distribution of relaxation components is an ill-posed inverse Laplace transform problem. The most common numerical method implemented today for dealing with this kind of problem is based on L 2 -norm regularization. However, sparse representation methods via L 1 regularization and convex optimization are a relatively new approach for effective analysis and processing of digital images and signals. In this article, a numerical optimization method for analyzing LR-NMR data by including non-negativity constraints and L 1 regularization and by applying a convex optimization solver PDCO, a primal-dual interior method for convex objectives, that allows general linear constraints to be treated as linear operators is presented. The integrated approach includes validation of analyses by simulations, testing repeatability of experiments, and validation of the model and its statistical assumptions. The proposed method provides better resolved and more accurate solutions when compared with those suggested by existing tools. © 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 72-88, 2013.
Sadeghi, Zahra; McClelland, James L; Hoffman, Paul
2015-09-01
An influential position in lexical semantics holds that semantic representations for words can be derived through analysis of patterns of lexical co-occurrence in large language corpora. Firth (1957) famously summarised this principle as "you shall know a word by the company it keeps". We explored whether the same principle could be applied to non-verbal patterns of object co-occurrence in natural scenes. We performed latent semantic analysis (LSA) on a set of photographed scenes in which all of the objects present had been manually labelled. This resulted in a representation of objects in a high-dimensional space in which similarity between two objects indicated the degree to which they appeared in similar scenes. These representations revealed similarities among objects belonging to the same taxonomic category (e.g., items of clothing) as well as cross-category associations (e.g., between fruits and kitchen utensils). We also compared representations generated from this scene dataset with two established methods for elucidating semantic representations: (a) a published database of semantic features generated verbally by participants and (b) LSA applied to a linguistic corpus in the usual fashion. Statistical comparisons of the three methods indicated significant association between the structures revealed by each method, with the scene dataset displaying greater convergence with feature-based representations than did LSA applied to linguistic data. The results indicate that information about the conceptual significance of objects can be extracted from their patterns of co-occurrence in natural environments, opening the possibility for such data to be incorporated into existing models of conceptual representation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
FATHERS' AND MOTHERS' REPRESENTATIONS OF THE INFANT: ASSOCIATIONS WITH PRENATAL RISK FACTORS.
Vreeswijk, Charlotte M J M; Rijk, Catharina H A M; Maas, A Janneke B M; van Bakel, Hedwig J A
2015-01-01
Parents' representations of their infants consist of parents' subjective experiences of how they perceive their infants. They provide important information about the quality of the parent-infant relationship and are closely related to parenting behavior and infant attachment. Previous studies have shown that parents' representations emerge during pregnancy. However, little is known about prenatal (risk) factors that are related to parents' representations. In a prospective study, 308 mothers and 243 fathers were followed during pregnancy and postpartum. Prenatal risk factors were assessed with an adapted version of the Dunedin Family Services Indicator (T.G. Egan et al., ; R.C. Muir et al., ). At 26 weeks' gestation and 6 months' postpartum, parents' representations of their children were assessed with the Working Model of the Child Interview (C.H. Zeanah, D. Benoit, L. Hirshberg, M.L. Barton, & C. Regan). Results showed stability between pre- and postnatal representations, with fathers having more disengaged representations than did mothers. In addition, prenatal risk factors of parenting problems were associated with the quality of parents' prenatal (only in mothers) and postnatal representations. This study provides valuable information concerning parents at risk of developing nonbalanced representations of their children. In clinical practice, these families could be monitored more intensively and may be supported in developing a more optimal parent-infant relationship. © 2015 Michigan Association for Infant Mental Health.
Word Length and Lexical Activation: Longer Is Better
ERIC Educational Resources Information Center
Pitt, Mark A.; Samuel, Arthur G.
2006-01-01
Many models of spoken word recognition posit the existence of lexical and sublexical representations, with excitatory and inhibitory mechanisms used to affect the activation levels of such representations. Bottom-up evidence provides excitatory input, and inhibition from phonetically similar representations leads to lexical competition. In such a…
ERIC Educational Resources Information Center
Namdar, Bahadir; Shen, Ji
2018-01-01
Computer-supported collaborative learning (CSCL) environments provide learners with multiple representational tools for storing, sharing, and constructing knowledge. However, little is known about how learners organize knowledge through multiple representations about complex socioscientific issues. Therefore, the purpose of this study was to…
Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.
Focused sunlight factor of forest fire danger assessment using Web-GIS and RS technologies
NASA Astrophysics Data System (ADS)
Baranovskiy, Nikolay V.; Sherstnyov, Vladislav S.; Yankovich, Elena P.; Engel, Marina V.; Belov, Vladimir V.
2016-08-01
Timiryazevskiy forestry of Tomsk region (Siberia, Russia) is a study area elaborated in current research. Forest fire danger assessment is based on unique technology using probabilistic criterion, statistical data on forest fires, meteorological conditions, forest sites classification and remote sensing data. MODIS products are used for estimating some meteorological conditions and current forest fire situation. Geonformation technologies are used for geospatial analysis of forest fire danger situation on controlled forested territories. GIS-engine provides opportunities to construct electronic maps with different levels of forest fire probability and support raster layer for satellite remote sensing data on current forest fires. Web-interface is used for data loading on specific web-site and for forest fire danger data representation via World Wide Web. Special web-forms provide interface for choosing of relevant input data in order to process the forest fire danger data and assess the forest fire probability.
Yang, Hyeri; Na, Jihye; Jang, Won-Hee; Jung, Mi-Sook; Jeon, Jun-Young; Heo, Yong; Yeo, Kyung-Wook; Jo, Ji-Hoon; Lim, Kyung-Min; Bae, SeungJin
2015-05-05
Mouse local lymph node assay (LLNA, OECD TG429) is an alternative test replacing conventional guinea pig tests (OECD TG406) for the skin sensitization test but the use of a radioisotopic agent, (3)H-thymidine, deters its active dissemination. New non-radioisotopic LLNA, LLNA:BrdU-FCM employs a non-radioisotopic analog, 5-bromo-2'-deoxyuridine (BrdU) and flow cytometry. For an analogous method, OECD TG429 performance standard (PS) advises that two reference compounds be tested repeatedly and ECt(threshold) values obtained must fall within acceptable ranges to prove within- and between-laboratory reproducibility. However, this criteria is somewhat arbitrary and sample size of ECt is less than 5, raising concerns about insufficient reliability. Here, we explored various statistical methods to evaluate the reproducibility of LLNA:BrdU-FCM with stimulation index (SI), the raw data for ECt calculation, produced from 3 laboratories. Descriptive statistics along with graphical representation of SI was presented. For inferential statistics, parametric and non-parametric methods were applied to test the reproducibility of SI of a concurrent positive control and the robustness of results were investigated. Descriptive statistics and graphical representation of SI alone could illustrate the within- and between-laboratory reproducibility. Inferential statistics employing parametric and nonparametric methods drew similar conclusion. While all labs passed within- and between-laboratory reproducibility criteria given by OECD TG429 PS based on ECt values, statistical evaluation based on SI values showed that only two labs succeeded in achieving within-laboratory reproducibility. For those two labs that satisfied the within-lab reproducibility, between-laboratory reproducibility could be also attained based on inferential as well as descriptive statistics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Distinguishing Representations as Origin and Representations as Input: Roles for Individual Neurons.
Edwards, Jonathan C W
2016-01-01
It is widely perceived that there is a problem in giving a naturalistic account of mental representation that deals adequately with the issue of meaning, interpretation, or significance (semantic content). It is suggested here that this problem may arise partly from the conflation of two vernacular senses of representation: representation-as-origin and representation-as-input. The flash of a neon sign may in one sense represent a popular drink, but to function as a representation it must provide an input to a 'consumer' in the street. The arguments presented draw on two principles - the neuron doctrine and the need for a venue for 'presentation' or 'reception' of a representation at a specified site, consistent with the locality principle. It is also argued that domains of representation cannot be defined by signal traffic, since they can be expected to include 'null' elements based on non-firing cells. In this analysis, mental representations-as-origin are distributed patterns of cell firing. Each firing cell is given semantic value in its own right - some form of atomic propositional significance - since different axonal branches may contribute to integration with different populations of signals at different downstream sites. Representations-as-input are patterns of local co-arrival of signals in the form of synaptic potentials in dendrites. Meaning then draws on the relationships between active and null inputs, forming 'scenarios' comprising a molecular combination of 'premises' from which a new output with atomic propositional significance is generated. In both types of representation, meaning, interpretation or significance pivots on events in an individual cell. (This analysis only applies to 'occurrent' representations based on current neural activity.) The concept of representations-as-input emphasizes the need for an internal 'consumer' of a representation and the dependence of meaning on the co-relationships involved in an input interaction between signals and consumer. The acceptance of this necessity provides a basis for resolving the problem that representations appear both as distributed (representation-as-origin) and as local (representation-as-input). The key implications are that representations in the brain are massively multiple both in series and in parallel, and that individual cells play specific semantic roles. These roles are discussed in relation to traditional concepts of 'gnostic' cell types.
Distinguishing Representations as Origin and Representations as Input: Roles for Individual Neurons
Edwards, Jonathan C. W.
2016-01-01
It is widely perceived that there is a problem in giving a naturalistic account of mental representation that deals adequately with the issue of meaning, interpretation, or significance (semantic content). It is suggested here that this problem may arise partly from the conflation of two vernacular senses of representation: representation-as-origin and representation-as-input. The flash of a neon sign may in one sense represent a popular drink, but to function as a representation it must provide an input to a ‘consumer’ in the street. The arguments presented draw on two principles – the neuron doctrine and the need for a venue for ‘presentation’ or ‘reception’ of a representation at a specified site, consistent with the locality principle. It is also argued that domains of representation cannot be defined by signal traffic, since they can be expected to include ‘null’ elements based on non-firing cells. In this analysis, mental representations-as-origin are distributed patterns of cell firing. Each firing cell is given semantic value in its own right – some form of atomic propositional significance – since different axonal branches may contribute to integration with different populations of signals at different downstream sites. Representations-as-input are patterns of local co-arrival of signals in the form of synaptic potentials in dendrites. Meaning then draws on the relationships between active and null inputs, forming ‘scenarios’ comprising a molecular combination of ‘premises’ from which a new output with atomic propositional significance is generated. In both types of representation, meaning, interpretation or significance pivots on events in an individual cell. (This analysis only applies to ‘occurrent’ representations based on current neural activity.) The concept of representations-as-input emphasizes the need for an internal ‘consumer’ of a representation and the dependence of meaning on the co-relationships involved in an input interaction between signals and consumer. The acceptance of this necessity provides a basis for resolving the problem that representations appear both as distributed (representation-as-origin) and as local (representation-as-input). The key implications are that representations in the brain are massively multiple both in series and in parallel, and that individual cells play specific semantic roles. These roles are discussed in relation to traditional concepts of ‘gnostic’ cell types. PMID:27746760
Giordano, Bruno L.; Kayser, Christoph; Rousselet, Guillaume A.; Gross, Joachim; Schyns, Philippe G.
2016-01-01
Abstract We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open‐source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541–1573, 2017. © 2016 Wiley Periodicals, Inc. PMID:27860095
The representation of abstract words: why emotion matters.
Kousta, Stavroula-Thaleia; Vigliocco, Gabriella; Vinson, David P; Andrews, Mark; Del Campo, Elena
2011-02-01
Although much is known about the representation and processing of concrete concepts, knowledge of what abstract semantics might be is severely limited. In this article we first address the adequacy of the 2 dominant accounts (dual coding theory and the context availability model) put forward in order to explain representation and processing differences between concrete and abstract words. We find that neither proposal can account for experimental findings and that this is, at least partly, because abstract words are considered to be unrelated to experiential information in both of these accounts. We then address a particular type of experiential information, emotional content, and demonstrate that it plays a crucial role in the processing and representation of abstract concepts: Statistically, abstract words are more emotionally valenced than are concrete words, and this accounts for a residual latency advantage for abstract words, when variables such as imageability (a construct derived from dual coding theory) and rated context availability are held constant. We conclude with a discussion of our novel hypothesis for embodied abstract semantics. (c) 2010 APA, all rights reserved.
No arousal-biased competition in focused visuospatial attention.
Ásgeirsson, Árni Gunnar; Nieuwenhuis, Sander
2017-11-01
Arousal sometimes enhances and sometimes impairs perception and memory. A recent theory attempts to reconcile these findings by proposing that arousal amplifies the competition between stimulus representations, strengthening already strong representations and weakening already weak representations. Here, we report a stringent test of this arousal-biased competition theory in the context of focused visuospatial attention. Participants were required to identify a briefly presented target in the context of multiple distractors, which varied in the degree to which they competed for representation with the target, as revealed by psychophysics. We manipulated arousal using emotionally arousing pictures (Experiment 1), alerting tones (Experiment 2) and white-noise stimulation (Experiment 3), and validated these manipulations with electroencephalography and pupillometry. In none of the experiments did we find evidence that arousal modulated the effect of distractor competition on the accuracy of target identification. Bayesian statistics revealed moderate to strong evidence against arousal-biased competition. Modeling of the psychophysical data based on Bundesen's (1990) theory of visual attention corroborated the conclusion that arousal does not bias competition in focused visuospatial attention. Copyright © 2017 Elsevier B.V. All rights reserved.
Ensemble representations: effects of set size and item heterogeneity on average size perception.
Marchant, Alexander P; Simons, Daniel J; de Fockert, Jan W
2013-02-01
Observers can accurately perceive and evaluate the statistical properties of a set of objects, forming what is now known as an ensemble representation. The accuracy and speed with which people can judge the mean size of a set of objects have led to the proposal that ensemble representations of average size can be computed in parallel when attention is distributed across the display. Consistent with this idea, judgments of mean size show little or no decrement in accuracy when the number of objects in the set increases. However, the lack of a set size effect might result from the regularity of the item sizes used in previous studies. Here, we replicate these previous findings, but show that judgments of mean set size become less accurate when set size increases and the heterogeneity of the item sizes increases. This pattern can be explained by assuming that average size judgments are computed using a limited capacity sampling strategy, and it does not necessitate an ensemble representation computed in parallel across all items in a display. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hilliard, Antony
Energy Monitoring and Targeting is a well-established business process that develops information about utility energy consumption in a business or institution. While M&T has persisted as a worthwhile energy conservation support activity, it has not been widely adopted. This dissertation explains M&T challenges in terms of diagnosing and controlling energy consumption, informed by a naturalistic field study of M&T work. A Cognitive Work Analysis of M&T identifies structures that diagnosis can search, information flows un-supported in canonical support tools, and opportunities to extend the most popular tool for MM&T: Cumulative Sum of Residuals (CUSUM) charts. A design application outlines how CUSUM charts were augmented with a more contemporary statistical change detection strategy, Recursive Parameter Estimates, modified to better suit the M&T task using Representation Aiding principles. The design was experimentally evaluated in a controlled M&T synthetic task, and was shown to significantly improve diagnosis performance.
Statistical and clustering analysis for disturbances: A case study of voltage dips in wind farms
Garcia-Sanchez, Tania; Gomez-Lazaro, Emilio; Muljadi, Eduard; ...
2016-01-28
This study proposes and evaluates an alternative statistical methodology to analyze a large number of voltage dips. For a given voltage dip, a set of lengths is first identified to characterize the root mean square (rms) voltage evolution along the disturbance, deduced from partial linearized time intervals and trajectories. Principal component analysis and K-means clustering processes are then applied to identify rms-voltage patterns and propose a reduced number of representative rms-voltage profiles from the linearized trajectories. This reduced group of averaged rms-voltage profiles enables the representation of a large amount of disturbances, which offers a visual and graphical representation ofmore » their evolution along the events, aspects that were not previously considered in other contributions. The complete process is evaluated on real voltage dips collected in intense field-measurement campaigns carried out in a wind farm in Spain among different years. The results are included in this paper.« less
Foroushani, Amir B.K.; Brinkman, Fiona S.L.
2013-01-01
Motivation. Predominant pathway analysis approaches treat pathways as collections of individual genes and consider all pathway members as equally informative. As a result, at times spurious and misleading pathways are inappropriately identified as statistically significant, solely due to components that they share with the more relevant pathways. Results. We introduce the concept of Pathway Gene-Pair Signatures (Pathway-GPS) as pairs of genes that, as a combination, are specific to a single pathway. We devised and implemented a novel approach to pathway analysis, Signature Over-representation Analysis (SIGORA), which focuses on the statistically significant enrichment of Pathway-GPS in a user-specified gene list of interest. In a comparative evaluation of several published datasets, SIGORA outperformed traditional methods by delivering biologically more plausible and relevant results. Availability. An efficient implementation of SIGORA, as an R package with precompiled GPS data for several human and mouse pathway repositories is available for download from http://sigora.googlecode.com/svn/. PMID:24432194
Feature Statistics Modulate the Activation of Meaning During Spoken Word Processing.
Devereux, Barry J; Taylor, Kirsten I; Randall, Billi; Geertzen, Jeroen; Tyler, Lorraine K
2016-03-01
Understanding spoken words involves a rapid mapping from speech to conceptual representations. One distributed feature-based conceptual account assumes that the statistical characteristics of concepts' features--the number of concepts they occur in (distinctiveness/sharedness) and likelihood of co-occurrence (correlational strength)--determine conceptual activation. To test these claims, we investigated the role of distinctiveness/sharedness and correlational strength in speech-to-meaning mapping, using a lexical decision task and computational simulations. Responses were faster for concepts with higher sharedness, suggesting that shared features are facilitatory in tasks like lexical decision that require access to them. Correlational strength facilitated responses for slower participants, suggesting a time-sensitive co-occurrence-driven settling mechanism. The computational simulation showed similar effects, with early effects of shared features and later effects of correlational strength. These results support a general-to-specific account of conceptual processing, whereby early activation of shared features is followed by the gradual emergence of a specific target representation. Copyright © 2015 The Authors. Cognitive Science published by Cognitive Science Society, Inc.
Taxonomy development and knowledge representation of nurses' personal cognitive artifacts.
McLane, Sharon; Turley, James P
2009-11-14
Nurses prepare knowledge representations, or summaries of patient clinical data, each shift. These knowledge representations serve multiple purposes, including support of working memory, workload organization and prioritization, critical thinking, and reflection. This summary is integral to internal knowledge representations, working memory, and decision-making. Study of this nurse knowledge representation resulted in development of a taxonomy of knowledge representations necessary to nursing practice.This paper describes the methods used to elicit the knowledge representations and structures necessary for the work of clinical nurses, described the development of a taxonomy of this knowledge representation, and discusses translation of this methodology to the cognitive artifacts of other disciplines. Understanding the development and purpose of practitioner's knowledge representations provides important direction to informaticists seeking to create information technology alternatives. The outcome of this paper is to suggest a process template for transition of cognitive artifacts to an information system.
Corina, David P.; Lawyer, Laurel A.; Cates, Deborah
2013-01-01
Studies of deaf individuals who are users of signed languages have provided profound insight into the neural representation of human language. Case studies of deaf signers who have incurred left- and right-hemisphere damage have shown that left-hemisphere resources are a necessary component of sign language processing. These data suggest that, despite frank differences in the input and output modality of language, core left perisylvian regions universally serve linguistic function. Neuroimaging studies of deaf signers have generally provided support for this claim. However, more fine-tuned studies of linguistic processing in deaf signers are beginning to show evidence of important differences in the representation of signed and spoken languages. In this paper, we provide a critical review of this literature and present compelling evidence for language-specific cortical representations in deaf signers. These data lend support to the claim that the neural representation of language may show substantive cross-linguistic differences. We discuss the theoretical implications of these findings with respect to an emerging understanding of the neurobiology of language. PMID:23293624
Teacher's Representational Fluency in a Context of Technology Use
ERIC Educational Resources Information Center
Rocha, Helena
2016-01-01
This study focuses on teacher's Knowledge for Teaching Mathematics with Technology (KTMT), paying a special attention to teacher's representational fluency. It intends to characterize how the teacher uses and integrates the different representations provided by the graphing calculator on the process of teaching and learning functions at the high…
Studying Action Representation in Children via Motor Imagery
ERIC Educational Resources Information Center
Gabbard, Carl
2009-01-01
The use of motor imagery is a widely used experimental paradigm for the study of cognitive aspects of action planning and control in adults. Furthermore, there are indications that motor imagery provides a window into the process of action representation. These notions complement internal model theory suggesting that such representations allow…
Sharma, Ati S; Moarref, Rashad; McKeon, Beverley J; Park, Jae Sung; Graham, Michael D; Willis, Ashley P
2016-02-01
We report that many exact invariant solutions of the Navier-Stokes equations for both pipe and channel flows are well represented by just a few modes of the model of McKeon and Sharma [J. Fluid Mech. 658, 336 (2010)]. This model provides modes that act as a basis to decompose the velocity field, ordered by their amplitude of response to forcing arising from the interaction between scales. The model was originally derived from the Navier-Stokes equations to represent turbulent flows and has been used to explain coherent structure and to predict turbulent statistics. This establishes a surprising new link between the two distinct approaches to understanding turbulence.
New control concepts for uncertain water resources systems: 1. Theory
NASA Astrophysics Data System (ADS)
Georgakakos, Aris P.; Yao, Huaming
1993-06-01
A major complicating factor in water resources systems management is handling unknown inputs. Stochastic optimization provides a sound mathematical framework but requires that enough data exist to develop statistical input representations. In cases where data records are insufficient (e.g., extreme events) or atypical of future input realizations, stochastic methods are inadequate. This article presents a control approach where input variables are only expected to belong in certain sets. The objective is to determine sets of admissible control actions guaranteeing that the system will remain within desirable bounds. The solution is based on dynamic programming and derived for the case where all sets are convex polyhedra. A companion paper (Yao and Georgakakos, this issue) addresses specific applications and problems in relation to reservoir system management.
NASA Astrophysics Data System (ADS)
Sharma, Ati S.; Moarref, Rashad; McKeon, Beverley J.; Park, Jae Sung; Graham, Michael D.; Willis, Ashley P.
2016-02-01
We report that many exact invariant solutions of the Navier-Stokes equations for both pipe and channel flows are well represented by just a few modes of the model of McKeon and Sharma [J. Fluid Mech. 658, 336 (2010), 10.1017/S002211201000176X]. This model provides modes that act as a basis to decompose the velocity field, ordered by their amplitude of response to forcing arising from the interaction between scales. The model was originally derived from the Navier-Stokes equations to represent turbulent flows and has been used to explain coherent structure and to predict turbulent statistics. This establishes a surprising new link between the two distinct approaches to understanding turbulence.
NASA Astrophysics Data System (ADS)
Car, Nicholas; Cox, Simon; Fitch, Peter
2015-04-01
With earth-science datasets increasingly being published to enable re-use in projects disassociated from the original data acquisition or generation, there is an urgent need for associated metadata to be connected, in order to guide their application. In particular, provenance traces should support the evaluation of data quality and reliability. However, while standards for describing provenance are emerging (e.g. PROV-O), these do not include the necessary statistical descriptors and confidence assessments. UncertML has a mature conceptual model that may be used to record uncertainty metadata. However, by itself UncertML does not support the representation of uncertainty of multi-part datasets, and provides no direct way of associating the uncertainty information - metadata in relation to a dataset - with dataset objects.We present a method to address both these issues by combining UncertML with PROV-O, and delivering resulting uncertainty-enriched provenance traces through the Linked Data API. UncertProv extends the PROV-O provenance ontology with an RDF formulation of the UncertML conceptual model elements, adds further elements to support uncertainty representation without a conceptual model and the integration of UncertML through links to documents. The Linked ID API provides a systematic way of navigating from dataset objects to their UncertProv metadata and back again. The Linked Data API's 'views' capability enables access to UncertML and non-UncertML uncertainty metadata representations for a dataset. With this approach, it is possible to access and navigate the uncertainty metadata associated with a published dataset using standard semantic web tools, such as SPARQL queries. Where the uncertainty data follows the UncertML model it can be automatically interpreted and may also support automatic uncertainty propagation . Repositories wishing to enable uncertainty propagation for all datasets must ensure that all elements that are associated with uncertainty (PROV-O Entity and Activity classes) have UncertML elements recorded. This methodology is intentionally flexible to allow uncertainty metadata in many forms, not limited to UncertML. While the more formal representation of uncertainty metadata is desirable (using UncertProv elements to implement the UncertML conceptual model ), this will not always be possible, and any uncertainty data stored will be better than none. Since the UncertProv ontology contains a superset of UncertML elements to facilitate the representation of non-UncertML uncertainty data, it could easily be extended to include other formal uncertainty conceptual models thus allowing non-UncertML propagation calculations.
NASA Astrophysics Data System (ADS)
Xiang-Guo, Meng; Hong-Yi, Fan; Ji-Suo, Wang
2018-04-01
This paper proposes a kind of displaced thermal states (DTS) and explores how this kind of optical field emerges using the entangled state representation. The results show that the DTS can be generated by a coherent state passing through a diffusion channel with the diffusion coefficient ϰ only when there exists κ t = (e^{\\hbar ν /kBT} - 1 )^{-1}. Also, its statistical properties, such as mean photon number, Wigner function and entropy, are investigated.
Selection vector filter framework
NASA Astrophysics Data System (ADS)
Lukac, Rastislav; Plataniotis, Konstantinos N.; Smolka, Bogdan; Venetsanopoulos, Anastasios N.
2003-10-01
We provide a unified framework of nonlinear vector techniques outputting the lowest ranked vector. The proposed framework constitutes a generalized filter class for multichannel signal processing. A new class of nonlinear selection filters are based on the robust order-statistic theory and the minimization of the weighted distance function to other input samples. The proposed method can be designed to perform a variety of filtering operations including previously developed filtering techniques such as vector median, basic vector directional filter, directional distance filter, weighted vector median filters and weighted directional filters. A wide range of filtering operations is guaranteed by the filter structure with two independent weight vectors for angular and distance domains of the vector space. In order to adapt the filter parameters to varying signal and noise statistics, we provide also the generalized optimization algorithms taking the advantage of the weighted median filters and the relationship between standard median filter and vector median filter. Thus, we can deal with both statistical and deterministic aspects of the filter design process. It will be shown that the proposed method holds the required properties such as the capability of modelling the underlying system in the application at hand, the robustness with respect to errors in the model of underlying system, the availability of the training procedure and finally, the simplicity of filter representation, analysis, design and implementation. Simulation studies also indicate that the new filters are computationally attractive and have excellent performance in environments corrupted by bit errors and impulsive noise.
Methods for processing microarray data.
Ares, Manuel
2014-02-01
Quality control must be maintained at every step of a microarray experiment, from RNA isolation through statistical evaluation. Here we provide suggestions for analyzing microarray data. Because the utility of the results depends directly on the design of the experiment, the first critical step is to ensure that the experiment can be properly analyzed and interpreted. What is the biological question? What is the best way to perform the experiment? How many replicates will be required to obtain the desired statistical resolution? Next, the samples must be prepared, pass quality controls for integrity and representation, and be hybridized and scanned. Also, slides with defects, missing data, high background, or weak signal must be rejected. Data from individual slides must be normalized and combined so that the data are as free of systematic bias as possible. The third phase is to apply statistical filters and tests to the data to determine genes (1) expressed above background, (2) whose expression level changes in different samples, and (3) whose RNA-processing patterns or protein associations change. Next, a subset of the data should be validated by an alternative method, such as reverse transcription-polymerase chain reaction (RT-PCR). Provided that this endorses the general conclusions of the array analysis, gene sets whose expression, splicing, polyadenylation, protein binding, etc. change in different samples can be classified with respect to function, sequence motif properties, as well as other categories to extract hypotheses for their biological roles and regulatory logic.
Gao, Y Nina
2018-04-06
The Resource-Based Relative Value Scale Update Committee (RUC) submits recommended reimbursement values for physician work (wRVUs) under Medicare Part B. The RUC includes rotating representatives from medical specialties. To identify changes in physician reimbursements associated with RUC rotating seat representation. Relative Value Scale Update Committee members 1994-2013; Medicare Part B Relative Value Scale 1994-2013; Physician/Supplier Procedure Summary Master File 2007; Part B National Summary Data File 2000-2011. I match service and procedure codes to specialties using 2007 Medicare billing data. Subsequently, I model wRVUs as a function of RUC rotating committee representation and level of code specialization. An annual RUC rotating seat membership is associated with a statistically significant 3-5 percent increase in Medicare expenditures for codes billed to that specialty. For codes that are performed by a small number of physicians, the association between reimbursement and rotating subspecialty representation is positive, 0.177 (SE = 0.024). For codes that are performed by a large number of physicians, the association is negative, -0.183 (SE = 0.026). Rotating representation on the RUC is correlated with overall reimbursement rates. The resulting differential changes may exacerbate existing reimbursement discrepancies between generalist and specialist practitioners. © Health Research and Educational Trust.
Effects of long-term representations on free recall of unrelated words
Katkov, Mikhail; Romani, Sandro
2015-01-01
Human memory stores vast amounts of information. Yet recalling this information is often challenging when specific cues are lacking. Here we consider an associative model of retrieval where each recalled item triggers the recall of the next item based on the similarity between their long-term neuronal representations. The model predicts that different items stored in memory have different probability to be recalled depending on the size of their representation. Moreover, items with high recall probability tend to be recalled earlier and suppress other items. We performed an analysis of a large data set on free recall and found a highly specific pattern of statistical dependencies predicted by the model, in particular negative correlations between the number of words recalled and their average recall probability. Taken together, experimental and modeling results presented here reveal complex interactions between memory items during recall that severely constrain recall capacity. PMID:25593296
Nondeterministic data base for computerized visual perception
NASA Technical Reports Server (NTRS)
Yakimovsky, Y.
1976-01-01
A description is given of the knowledge representation data base in the perception subsystem of the Mars robot vehicle prototype. Two types of information are stored. The first is generic information that represents general rules that are conformed to by structures in the expected environments. The second kind of information is a specific description of a structure, i.e., the properties and relations of objects in the specific case being analyzed. The generic knowledge is represented so that it can be applied to extract and infer the description of specific structures. The generic model of the rules is substantially a Bayesian representation of the statistics of the environment, which means it is geared to representation of nondeterministic rules relating properties of, and relations between, objects. The description of a specific structure is also nondeterministic in the sense that all properties and relations may take a range of values with an associated probability distribution.
Embodied effects of conceptual knowledge continuously perturb the hand in flight.
Till, Bernie C; Masson, Michael E J; Bub, Daniel N; Driessen, Peter F
2014-08-01
Attending to a manipulable object evokes a mental representation of hand actions associated with the object's form and function. In one view, these representations are sufficiently abstract that their competing influence on an unrelated action is confined to the planning stages of movement and does not affect its on-line control. Alternatively, an object may evoke action representations that affect the entire trajectory of an unrelated grasping action. We developed a new methodology to statistically analyze the forward motion and rotation of the hand and fingers under different task conditions. Using this novel approach, we established that a grasping action executed after seeing a photograph of an object is systematically perturbed even into the late stages of its trajectory by the competing influence of the grasping posture associated with the object. Our results show that embodied effects of conceptual knowledge continuously modulate the hand in flight. © The Author(s) 2014.
System and method for extracting dominant orientations from a scene
Straub, Julian; Rosman, Guy; Freifeld, Oren; Leonard, John J.; Fisher, III; , John W.
2017-05-30
In one embodiment, a method of identifying the dominant orientations of a scene comprises representing a scene as a plurality of directional vectors. The scene may comprise a three-dimensional representation of a scene, and the plurality of directional vectors may comprise a plurality of surface normals. The method further comprises determining, based on the plurality of directional vectors, a plurality of orientations describing the scene. The determined plurality of orientations explains the directionality of the plurality of directional vectors. In certain embodiments, the plurality of orientations may have independent axes of rotation. The plurality of orientations may be determined by representing the plurality of directional vectors as lying on a mathematical representation of a sphere, and inferring the parameters of a statistical model to adapt the plurality of orientations to explain the positioning of the plurality of directional vectors lying on the mathematical representation of the sphere.
Modeling and Simulation of High Dimensional Stochastic Multiscale PDE Systems at the Exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevrekidis, Ioannis
2017-03-22
The thrust of the proposal was to exploit modern data-mining tools in a way that will create a systematic, computer-assisted approach to the representation of random media -- and also to the representation of the solutions of an array of important physicochemical processes that take place in/on such media. A parsimonious representation/parametrization of the random media links directly (via uncertainty quantification tools) to good sampling of the distribution of random media realizations. It also links directly to modern multiscale computational algorithms (like the equation-free approach that has been developed in our group) and plays a crucial role in accelerating themore » scientific computation of solutions of nonlinear PDE models (deterministic or stochastic) in such media – both solutions in particular realizations of the random media, and estimation of the statistics of the solutions over multiple realizations (e.g. expectations).« less
Cortical mechanisms for the segregation and representation of acoustic textures.
Overath, Tobias; Kumar, Sukhbinder; Stewart, Lauren; von Kriegstein, Katharina; Cusack, Rhodri; Rees, Adrian; Griffiths, Timothy D
2010-02-10
Auditory object analysis requires two fundamental perceptual processes: the definition of the boundaries between objects, and the abstraction and maintenance of an object's characteristic features. Although it is intuitive to assume that the detection of the discontinuities at an object's boundaries precedes the subsequent precise representation of the object, the specific underlying cortical mechanisms for segregating and representing auditory objects within the auditory scene are unknown. We investigated the cortical bases of these two processes for one type of auditory object, an "acoustic texture," composed of multiple frequency-modulated ramps. In these stimuli, we independently manipulated the statistical rules governing (1) the frequency-time space within individual textures (comprising ramps with a given spectrotemporal coherence) and (2) the boundaries between textures (adjacent textures with different spectrotemporal coherences). Using functional magnetic resonance imaging, we show mechanisms defining boundaries between textures with different coherences in primary and association auditory cortices, whereas texture coherence is represented only in association cortex. Furthermore, participants' superior detection of boundaries across which texture coherence increased (as opposed to decreased) was reflected in a greater neural response in auditory association cortex at these boundaries. The results suggest a hierarchical mechanism for processing acoustic textures that is relevant to auditory object analysis: boundaries between objects are first detected as a change in statistical rules over frequency-time space, before a representation that corresponds to the characteristics of the perceived object is formed.
SPLICER - A GENETIC ALGORITHM TOOL FOR SEARCH AND OPTIMIZATION, VERSION 1.0 (MACINTOSH VERSION)
NASA Technical Reports Server (NTRS)
Wang, L.
1994-01-01
SPLICER is a genetic algorithm tool which can be used to solve search and optimization problems. Genetic algorithms are adaptive search procedures (i.e. problem solving methods) based loosely on the processes of natural selection and Darwinian "survival of the fittest." SPLICER provides the underlying framework and structure for building a genetic algorithm application. These algorithms apply genetically-inspired operators to populations of potential solutions in an iterative fashion, creating new populations while searching for an optimal or near-optimal solution to the problem at hand. SPLICER 1.0 was created using a modular architecture that includes a Genetic Algorithm Kernel, interchangeable Representation Libraries, Fitness Modules and User Interface Libraries, and well-defined interfaces between these components. The architecture supports portability, flexibility, and extensibility. SPLICER comes with all source code and several examples. For instance, a "traveling salesperson" example searches for the minimum distance through a number of cities visiting each city only once. Stand-alone SPLICER applications can be used without any programming knowledge. However, to fully utilize SPLICER within new problem domains, familiarity with C language programming is essential. SPLICER's genetic algorithm (GA) kernel was developed independent of representation (i.e. problem encoding), fitness function or user interface type. The GA kernel comprises all functions necessary for the manipulation of populations. These functions include the creation of populations and population members, the iterative population model, fitness scaling, parent selection and sampling, and the generation of population statistics. In addition, miscellaneous functions are included in the kernel (e.g., random number generators). Different problem-encoding schemes and functions are defined and stored in interchangeable representation libraries. This allows the GA kernel to be used with any representation scheme. The SPLICER tool provides representation libraries for binary strings and for permutations. These libraries contain functions for the definition, creation, and decoding of genetic strings, as well as multiple crossover and mutation operators. Furthermore, the SPLICER tool defines the appropriate interfaces to allow users to create new representation libraries. Fitness modules are the only component of the SPLICER system a user will normally need to create or alter to solve a particular problem. Fitness functions are defined and stored in interchangeable fitness modules which must be created using C language. Within a fitness module, a user can create a fitness (or scoring) function, set the initial values for various SPLICER control parameters (e.g., population size), create a function which graphically displays the best solutions as they are found, and provide descriptive information about the problem. The tool comes with several example fitness modules, while the process of developing a fitness module is fully discussed in the accompanying documentation. The user interface is event-driven and provides graphic output in windows. SPLICER is written in Think C for Apple Macintosh computers running System 6.0.3 or later and Sun series workstations running SunOS. The UNIX version is easily ported to other UNIX platforms and requires MIT's X Window System, Version 11 Revision 4 or 5, MIT's Athena Widget Set, and the Xw Widget Set. Example executables and source code are included for each machine version. The standard distribution media for the Macintosh version is a set of three 3.5 inch Macintosh format diskettes. The standard distribution medium for the UNIX version is a .25 inch streaming magnetic tape cartridge in UNIX tar format. For the UNIX version, alternate distribution media and formats are available upon request. SPLICER was developed in 1991.
Representation and matching of knowledge to design digital systems
NASA Technical Reports Server (NTRS)
Jones, J. U.; Shiva, S. G.
1988-01-01
A knowledge-based expert system is described that provides an approach to solve a problem requiring an expert with considerable domain expertise and facts about available digital hardware building blocks. To design digital hardware systems from their high level VHDL (Very High Speed Integrated Circuit Hardware Description Language) representation to their finished form, a special data representation is required. This data representation as well as the functioning of the overall system is described.
Alaska Consumer Protection Unit
Office investigates unfair or deceptive business practices and files legal actions on behalf of the State affecting the public interest. Although we informally mediate consumer complaints, we do not provide legal representation to consumers. The Attorney General's Office cannot provide legal advice, representation, or
NASA Technical Reports Server (NTRS)
Murphy, Kyle R.; Mann, Ian R.; Rae, I. Jonathan; Sibeck, David G.; Watt, Clare E. J.
2016-01-01
Wave-particle interactions play a crucial role in energetic particle dynamics in the Earths radiation belts. However, the relative importance of different wave modes in these dynamics is poorly understood. Typically, this is assessed during geomagnetic storms using statistically averaged empirical wave models as a function of geomagnetic activity in advanced radiation belt simulations. However, statistical averages poorly characterize extreme events such as geomagnetic storms in that storm-time ultralow frequency wave power is typically larger than that derived over a solar cycle and Kp is a poor proxy for storm-time wave power.
Learning investment indicators through data extension
NASA Astrophysics Data System (ADS)
Dvořák, Marek
2017-07-01
Stock prices in the form of time series were analysed using single and multivariate statistical methods. After simple data preprocessing in the form of logarithmic differences, we augmented this single variate time series to a multivariate representation. This method makes use of sliding windows to calculate several dozen of new variables using simple statistic tools like first and second moments as well as more complicated statistic, like auto-regression coefficients and residual analysis, followed by an optional quadratic transformation that was further used for data extension. These were used as a explanatory variables in a regularized logistic LASSO regression which tried to estimate Buy-Sell Index (BSI) from real stock market data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoilova, N. I.
Generalized quantum statistics, such as paraboson and parafermion statistics, are characterized by triple relations which are related to Lie (super)algebras of type B. The correspondence of the Fock spaces of parabosons, parafermions as well as the Fock space of a system of parafermions and parabosons to irreducible representations of (super)algebras of type B will be pointed out. Example of generalized quantum statistics connected to the basic classical Lie superalgebra B(1|1) ≡ osp(3|2) with interesting physical properties, such as noncommutative coordinates, will be given. Therefore the article focuses on the question, addressed already in 1950 by Wigner: do the equation ofmore » motion determine the quantum mechanical commutation relation?.« less
Quantitative Graphics in Newspapers.
ERIC Educational Resources Information Center
Tankard, James W., Jr.
The use of quantitative graphics in newspapers requires achieving a balance between being accurate and getting the attention of the reader. The statistical representations in newspapers are drawn by graphic designers whose key technique is fusion--the striking combination of two visual images. This technique often results in visual puns,…
A Contrastive Study of Chinese and American University Students' "Friend" Concepts
ERIC Educational Resources Information Center
Chen, Cheng
2015-01-01
The research aims to get representations and cultural causes of cross-cultural differences in Chinese and American University Students' "friend" concepts by empirical studies including questionnaire and interviews. Based on the statistics of the research, the research analyzes the different interactions of "friends" in…
Statistical virtual eye model based on wavefront aberration
Wang, Jie-Mei; Liu, Chun-Ling; Luo, Yi-Ning; Liu, Yi-Guang; Hu, Bing-Jie
2012-01-01
Wavefront aberration affects the quality of retinal image directly. This paper reviews the representation and reconstruction of wavefront aberration, as well as the construction of virtual eye model based on Zernike polynomial coefficients. In addition, the promising prospect of virtual eye model is emphasized. PMID:23173112
[Multifaceted body. I. The bodies of medicine].
Saraga, M; Bourquin, C; Wykretowicz, H; Stiefel, F
2015-02-11
The human body is the object upon which medicine is acting, but also lived reality, image, symbol, representation and the object of elaboration and theory. All these elements which constitute the body influence the way medicine is treating it. In this series of three articles, we address the human body from various perspectives: medical (1), phenomenological (2), psychosomatic and socio-anthropological (3). This first article discusses four distinct types of representation of the body within medicine, each related to a specific epistemology and shaping a distinct kind of clinical legitimacy: the body-object of anatomy, the body-machine of physiology, the cybernetic body of biology, the statistical body of epidemiology.
Karataş, Tuğba; Özen, Şükrü; Kutlutürkan, Sevinç
2017-01-01
Objective: The main aim of this study was to investigate the factor structure and psychometric properties of the Brief Illness Perception Questionnaire (BIPQ) in Turkish cancer patients. Methods: This methodological study involved 135 cancer patients. Statistical methods included confirmatory or exploratory factor analysis and Cronbach alpha coefficients for internal consistency. Results: The values of fit indices are within the acceptable range. The alpha coefficients for emotional illness representations, cognitive illness representations, and total scale are 0.83, 0.80, and 0.85, respectively. Conclusions: The results confirm the two-factor structure of the Turkish BIPQ and demonstrate its reliability and validity. PMID:28217734
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-13
...Pursuant to Section 943 of the Dodd-Frank Wall Street Reform and Consumer Protection Act \\1\\ we are proposing rules related to representations and warranties in asset-backed securities offerings. Our proposals would require securitizers of asset-backed securities to disclose fulfilled and unfulfilled repurchase requests across all transactions. Our proposals would also require nationally recognized statistical rating organizations to include information regarding the representations, warranties and enforcement mechanisms available to investors in an asset-backed securities offering in any report accompanying a credit rating issued in connection with such offerings, including a preliminary credit rating. ---------------------------------------------------------------------------
Multimodal Literacies in Science: Currency, Coherence and Focus
NASA Astrophysics Data System (ADS)
Klein, Perry D.; Kirkpatrick, Lori C.
2010-01-01
Since the 1990s, researchers have increasingly drawn attention to the multiplicity of representations used in science. This issue of RISE advances this line of research by placing such representations at the centre of science teaching and learning. The authors show that representations do not simply transmit scientific information; they are integral to reasoning about scientific phenomena. This focus on thinking with representations mediates between well-resolved representations and formal reasoning of disciplinary science, and the capacity-limited, perceptually-driven nature of human cognition. The teaching practices described here build on three key principles: Each representation is interpreted through others; natural language is a sign system that is used to interpret a variety of other kinds of representations; and this chain of signs or representations is ultimately grounded in bodily experiences of perception and action. In these papers, the researchers provide examples and analysis of teachers scaffolding students in using representations to construct new knowledge, and in constructing new representations to express and develop their knowledge. The result is a new delineation of the power and the challenges of teaching science with multiple representations.
Subject-based discriminative sparse representation model for detection of concealed information.
Akhavan, Amir; Moradi, Mohammad Hassan; Vand, Safa Rafiei
2017-05-01
The use of machine learning approaches in concealed information test (CIT) plays a key role in the progress of this neurophysiological field. In this paper, we presented a new machine learning method for CIT in which each subject is considered independent of the others. The main goal of this study is to adapt the discriminative sparse models to be applicable for subject-based concealed information test. In order to provide sufficient discriminability between guilty and innocent subjects, we introduced a novel discriminative sparse representation model and its appropriate learning methods. For evaluation of the method forty-four subjects participated in a mock crime scenario and their EEG data were recorded. As the model input, in this study the recurrence plot features were extracted from single trial data of different stimuli. Then the extracted feature vectors were reduced using statistical dependency method. The reduced feature vector went through the proposed subject-based sparse model in which the discrimination power of sparse code and reconstruction error were applied simultaneously. Experimental results showed that the proposed approach achieved better performance than other competing discriminative sparse models. The classification accuracy, sensitivity and specificity of the presented sparsity-based method were about 93%, 91% and 95% respectively. Using the EEG data of a single subject in response to different stimuli types and with the aid of the proposed discriminative sparse representation model, one can distinguish guilty subjects from innocent ones. Indeed, this property eliminates the necessity of several subject EEG data in model learning and decision making for a specific subject. Copyright © 2017 Elsevier B.V. All rights reserved.
Bootstrapping language acquisition.
Abend, Omri; Kwiatkowski, Tom; Smith, Nathaniel J; Goldwater, Sharon; Steedman, Mark
2017-07-01
The semantic bootstrapping hypothesis proposes that children acquire their native language through exposure to sentences of the language paired with structured representations of their meaning, whose component substructures can be associated with words and syntactic structures used to express these concepts. The child's task is then to learn a language-specific grammar and lexicon based on (probably contextually ambiguous, possibly somewhat noisy) pairs of sentences and their meaning representations (logical forms). Starting from these assumptions, we develop a Bayesian probabilistic account of semantically bootstrapped first-language acquisition in the child, based on techniques from computational parsing and interpretation of unrestricted text. Our learner jointly models (a) word learning: the mapping between components of the given sentential meaning and lexical words (or phrases) of the language, and (b) syntax learning: the projection of lexical elements onto sentences by universal construction-free syntactic rules. Using an incremental learning algorithm, we apply the model to a dataset of real syntactically complex child-directed utterances and (pseudo) logical forms, the latter including contextually plausible but irrelevant distractors. Taking the Eve section of the CHILDES corpus as input, the model simulates several well-documented phenomena from the developmental literature. In particular, the model exhibits syntactic bootstrapping effects (in which previously learned constructions facilitate the learning of novel words), sudden jumps in learning without explicit parameter setting, acceleration of word-learning (the "vocabulary spurt"), an initial bias favoring the learning of nouns over verbs, and one-shot learning of words and their meanings. The learner thus demonstrates how statistical learning over structured representations can provide a unified account for these seemingly disparate phenomena. Copyright © 2017 Elsevier B.V. All rights reserved.
Młynarski, Wiktor
2015-05-01
In mammalian auditory cortex, sound source position is represented by a population of broadly tuned neurons whose firing is modulated by sounds located at all positions surrounding the animal. Peaks of their tuning curves are concentrated at lateral position, while their slopes are steepest at the interaural midline, allowing for the maximum localization accuracy in that area. These experimental observations contradict initial assumptions that the auditory space is represented as a topographic cortical map. It has been suggested that a "panoramic" code has evolved to match specific demands of the sound localization task. This work provides evidence suggesting that properties of spatial auditory neurons identified experimentally follow from a general design principle- learning a sparse, efficient representation of natural stimuli. Natural binaural sounds were recorded and served as input to a hierarchical sparse-coding model. In the first layer, left and right ear sounds were separately encoded by a population of complex-valued basis functions which separated phase and amplitude. Both parameters are known to carry information relevant for spatial hearing. Monaural input converged in the second layer, which learned a joint representation of amplitude and interaural phase difference. Spatial selectivity of each second-layer unit was measured by exposing the model to natural sound sources recorded at different positions. Obtained tuning curves match well tuning characteristics of neurons in the mammalian auditory cortex. This study connects neuronal coding of the auditory space with natural stimulus statistics and generates new experimental predictions. Moreover, results presented here suggest that cortical regions with seemingly different functions may implement the same computational strategy-efficient coding.
Assaad, Houssein I; Choudhary, Pankaj K
2013-01-01
The L -statistics form an important class of estimators in nonparametric statistics. Its members include trimmed means and sample quantiles and functions thereof. This article is devoted to theory and applications of L -statistics for repeated measurements data, wherein the measurements on the same subject are dependent and the measurements from different subjects are independent. This article has three main goals: (a) Show that the L -statistics are asymptotically normal for repeated measurements data. (b) Present three statistical applications of this result, namely, location estimation using trimmed means, quantile estimation and construction of tolerance intervals. (c) Obtain a Bahadur representation for sample quantiles. These results are generalizations of similar results for independently and identically distributed data. The practical usefulness of these results is illustrated by analyzing a real data set involving measurement of systolic blood pressure. The properties of the proposed point and interval estimators are examined via simulation.
Cater, Sarah Wallace; Yoon, Sora C; Lowell, Dorothy A; Campbell, James C; Sulioti, Gary; Qin, Rosie; Jiang, Brian; Grimm, Lars J
2018-02-01
Women make up half of American medical school graduates, but remain underrepresented among radiologists. This study sought to determine whether workforce gender disparities exist in other countries, and to identify any country-specific indices associated with increased female representation. In this cross-sectional study, 95 professional radiology organizations in 75 countries were contacted via email to provide membership statistics, including proportion of female members, female members aged 35 or under, and women in society leadership positions. Country-specific metrics collected included gross domestic product, Gini index, percent female medical school enrollment, and Gender Development Index for the purposes of univariate multiple regression analysis. Twenty-nine organizations provided data on 184,888 radiologists, representing 26 countries from Europe (n = 12), North America (n = 2), Central/South America (n = 6), Oceania (n = 2), Asia (n = 3), and Africa (n = 1) for a response rate of 34.7% (26/75). Globally, 33.5% of radiologists are female. Women constitute a higher proportion of younger radiologists, with 48.5% of radiologists aged 35 or under being female. Female representation in radiology is lowest in the United States (27.2%), highest in Thailand (85.0%), and most variable in Europe (mean 40.1%, range 28.8%-68.9%). The proportion of female radiologists was positively associated with a country's Gender Development Index (P = .006), percent female medical student enrollment (P = .001), and Gini index (P = .002), and negatively associated with gross domestic product (P = .03). Women are underrepresented in radiology globally, most notably in the United States. Countries with greater representation of women had higher gender equality and percent female medical school enrollment, suggesting these factors may play a role in the gender gap. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Mainstream web standards now support science data too
NASA Astrophysics Data System (ADS)
Richard, S. M.; Cox, S. J. D.; Janowicz, K.; Fox, P. A.
2017-12-01
The science community has developed many models and ontologies for representation of scientific data and knowledge. In some cases these have been built as part of coordinated frameworks. For example, the biomedical communities OBO Foundry federates applications covering various aspects of life sciences, which are united through reference to a common foundational ontology (BFO). The SWEET ontology, originally developed at NASA and now governed through ESIP, is a single large unified ontology for earth and environmental sciences. On a smaller scale, GeoSciML provides a UML and corresponding XML representation of geological mapping and observation data. Some of the key concepts related to scientific data and observations have recently been incorporated into domain-neutral mainstream ontologies developed by the World Wide Web consortium through their Spatial Data on the Web working group (SDWWG). OWL-Time has been enhanced to support temporal reference systems needed for science, and has been deployed in a linked data representation of the International Chronostratigraphic Chart. The Semantic Sensor Network ontology has been extended to cover samples and sampling, including relationships between samples. Gridded data and time-series is supported by applications of the statistical data-cube ontology (QB) for earth observations (the EO-QB profile) and spatio-temporal data (QB4ST). These standard ontologies and encodings can be used directly for science data, or can provide a bridge to specialized domain ontologies. There are a number of advantages in alignment with the W3C standards. The W3C vocabularies use discipline-neutral language and thus support cross-disciplinary applications directly without complex mappings. The W3C vocabularies are already aligned with the core ontologies that are the building blocks of the semantic web. The W3C vocabularies are each tightly scoped thus encouraging good practices in the combination of complementary small ontologies. The W3C vocabularies are hosted on well known, reliable infrastructure. The W3C SDWWG outputs are being selectively adopted by the general schema.org discovery framework.
Huebner, Philip A.; Willits, Jon A.
2018-01-01
Previous research has suggested that distributional learning mechanisms may contribute to the acquisition of semantic knowledge. However, distributional learning mechanisms, statistical learning, and contemporary “deep learning” approaches have been criticized for being incapable of learning the kind of abstract and structured knowledge that many think is required for acquisition of semantic knowledge. In this paper, we show that recurrent neural networks, trained on noisy naturalistic speech to children, do in fact learn what appears to be abstract and structured knowledge. We trained two types of recurrent neural networks (Simple Recurrent Network, and Long Short-Term Memory) to predict word sequences in a 5-million-word corpus of speech directed to children ages 0–3 years old, and assessed what semantic knowledge they acquired. We found that learned internal representations are encoding various abstract grammatical and semantic features that are useful for predicting word sequences. Assessing the organization of semantic knowledge in terms of the similarity structure, we found evidence of emergent categorical and hierarchical structure in both models. We found that the Long Short-term Memory (LSTM) and SRN are both learning very similar kinds of representations, but the LSTM achieved higher levels of performance on a quantitative evaluation. We also trained a non-recurrent neural network, Skip-gram, on the same input to compare our results to the state-of-the-art in machine learning. We found that Skip-gram achieves relatively similar performance to the LSTM, but is representing words more in terms of thematic compared to taxonomic relations, and we provide reasons why this might be the case. Our findings show that a learning system that derives abstract, distributed representations for the purpose of predicting sequential dependencies in naturalistic language may provide insight into emergence of many properties of the developing semantic system. PMID:29520243
45 CFR 1611.6 - Representation of groups.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 4 2012-10-01 2012-10-01 false Representation of groups. 1611.6 Section 1611.6... ELIGIBILITY § 1611.6 Representation of groups. (a) A recipient may provide legal assistance to a group... practical means of obtaining, funds to retain private counsel and either: (1) The group, or for a non...
45 CFR 1611.6 - Representation of groups.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 4 2014-10-01 2014-10-01 false Representation of groups. 1611.6 Section 1611.6... ELIGIBILITY § 1611.6 Representation of groups. (a) A recipient may provide legal assistance to a group... practical means of obtaining, funds to retain private counsel and either: (1) The group, or for a non...
45 CFR 1611.6 - Representation of groups.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 4 2013-10-01 2013-10-01 false Representation of groups. 1611.6 Section 1611.6... ELIGIBILITY § 1611.6 Representation of groups. (a) A recipient may provide legal assistance to a group... practical means of obtaining, funds to retain private counsel and either: (1) The group, or for a non...
32 CFR Appendix to Part 145 - Legal Representation
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 1 2014-07-01 2014-07-01 false Legal Representation Appendix to Part 145... Part 145—Legal Representation 1. An employee or member of the Armed Forces asked to provide information (testimonial or documentary) to the OSC in the course of an investigation by that office may obtain legal...
32 CFR Appendix to Part 145 - Legal Representation
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 1 2012-07-01 2012-07-01 false Legal Representation Appendix to Part 145... Part 145—Legal Representation 1. An employee or member of the Armed Forces asked to provide information (testimonial or documentary) to the OSC in the course of an investigation by that office may obtain legal...
32 CFR Appendix to Part 145 - Legal Representation
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 1 2013-07-01 2013-07-01 false Legal Representation Appendix to Part 145... Part 145—Legal Representation 1. An employee or member of the Armed Forces asked to provide information (testimonial or documentary) to the OSC in the course of an investigation by that office may obtain legal...
45 CFR 1611.6 - Representation of groups.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false Representation of groups. 1611.6 Section 1611.6... ELIGIBILITY § 1611.6 Representation of groups. (a) A recipient may provide legal assistance to a group... practical means of obtaining, funds to retain private counsel and either: (1) The group, or for a non...
ERIC Educational Resources Information Center
Rau, M. A.; Aleven, V.; Rummel, N.; Pardos, Z.
2014-01-01
Providing learners with multiple representations of learning content has been shown to enhance learning outcomes. When multiple representations are presented across consecutive problems, we have to decide in what sequence to present them. Prior research has demonstrated that interleaving "tasks types" (as opposed to blocking them) can…
ERIC Educational Resources Information Center
Cook, Michelle Patrick
2006-01-01
Visual representations are essential for communicating ideas in the science classroom; however, the design of such representations is not always beneficial for learners. This paper presents instructional design considerations providing empirical evidence and integrating theoretical concepts related to cognitive load. Learners have a limited…
Andersen, Lau M.
2018-01-01
An important aim of an analysis pipeline for magnetoencephalographic data is that it allows for the researcher spending maximal effort on making the statistical comparisons that will answer the questions of the researcher, while in turn spending minimal effort on the intricacies and machinery of the pipeline. I here present a set of functions and scripts that allow for setting up a clear, reproducible structure for separating raw and processed data into folders and files such that minimal effort can be spend on: (1) double-checking that the right input goes into the right functions; (2) making sure that output and intermediate steps can be accessed meaningfully; (3) applying operations efficiently across groups of subjects; (4) re-processing data if changes to any intermediate step are desirable. Applying the scripts requires only general knowledge about the Python language. The data analyses are neural responses to tactile stimulations of the right index finger in a group of 20 healthy participants acquired from an Elekta Neuromag System. Two analyses are presented: going from individual sensor space representations to, respectively, an across-group sensor space representation and an across-group source space representation. The processing steps covered for the first analysis are filtering the raw data, finding events of interest in the data, epoching data, finding and removing independent components related to eye blinks and heart beats, calculating participants' individual evoked responses by averaging over epoched data and calculating a grand average sensor space representation over participants. The second analysis starts from the participants' individual evoked responses and covers: estimating noise covariance, creating a forward model, creating an inverse operator, estimating distributed source activity on the cortical surface using a minimum norm procedure, morphing those estimates onto a common cortical template and calculating the patterns of activity that are statistically different from baseline. To estimate source activity, processing of the anatomy of subjects based on magnetic resonance imaging is necessary. The necessary steps are covered here: importing magnetic resonance images, segmenting the brain, estimating boundaries between different tissue layers, making fine-resolution scalp surfaces for facilitating co-registration, creating source spaces and creating volume conductors for each subject. PMID:29403349
Andersen, Lau M
2018-01-01
An important aim of an analysis pipeline for magnetoencephalographic data is that it allows for the researcher spending maximal effort on making the statistical comparisons that will answer the questions of the researcher, while in turn spending minimal effort on the intricacies and machinery of the pipeline. I here present a set of functions and scripts that allow for setting up a clear, reproducible structure for separating raw and processed data into folders and files such that minimal effort can be spend on: (1) double-checking that the right input goes into the right functions; (2) making sure that output and intermediate steps can be accessed meaningfully; (3) applying operations efficiently across groups of subjects; (4) re-processing data if changes to any intermediate step are desirable. Applying the scripts requires only general knowledge about the Python language. The data analyses are neural responses to tactile stimulations of the right index finger in a group of 20 healthy participants acquired from an Elekta Neuromag System. Two analyses are presented: going from individual sensor space representations to, respectively, an across-group sensor space representation and an across-group source space representation. The processing steps covered for the first analysis are filtering the raw data, finding events of interest in the data, epoching data, finding and removing independent components related to eye blinks and heart beats, calculating participants' individual evoked responses by averaging over epoched data and calculating a grand average sensor space representation over participants. The second analysis starts from the participants' individual evoked responses and covers: estimating noise covariance, creating a forward model, creating an inverse operator, estimating distributed source activity on the cortical surface using a minimum norm procedure, morphing those estimates onto a common cortical template and calculating the patterns of activity that are statistically different from baseline. To estimate source activity, processing of the anatomy of subjects based on magnetic resonance imaging is necessary. The necessary steps are covered here: importing magnetic resonance images, segmenting the brain, estimating boundaries between different tissue layers, making fine-resolution scalp surfaces for facilitating co-registration, creating source spaces and creating volume conductors for each subject.
Finite-Dimensional Representations for Controlled Diffusions with Delay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Federico, Salvatore, E-mail: salvatore.federico@unimi.it; Tankov, Peter, E-mail: tankov@math.univ-paris-diderot.fr
2015-02-15
We study stochastic delay differential equations (SDDE) where the coefficients depend on the moving averages of the state process. As a first contribution, we provide sufficient conditions under which the solution of the SDDE and a linear path functional of it admit a finite-dimensional Markovian representation. As a second contribution, we show how approximate finite-dimensional Markovian representations may be constructed when these conditions are not satisfied, and provide an estimate of the error corresponding to these approximations. These results are applied to optimal control and optimal stopping problems for stochastic systems with delay.
Representation and design of wavelets using unitary circuits
NASA Astrophysics Data System (ADS)
Evenbly, Glen; White, Steven R.
2018-05-01
The representation of discrete, compact wavelet transformations (WTs) as circuits of local unitary gates is discussed. We employ a similar formalism as used in the multiscale representation of quantum many-body wave functions using unitary circuits, further cementing the relation established in the literature between classical and quantum multiscale methods. An algorithm for constructing the circuit representation of known orthogonal, dyadic, discrete WTs is presented, and the explicit representation for Daubechies wavelets, coiflets, and symlets is provided. Furthermore, we demonstrate the usefulness of the circuit formalism in designing WTs, including various classes of symmetric wavelets and multiwavelets, boundary wavelets, and biorthogonal wavelets.
Conceptual knowledge representation: A cross-section of current research.
Rogers, Timothy T; Wolmetz, Michael
2016-01-01
How is conceptual knowledge encoded in the brain? This special issue of Cognitive Neuropsychology takes stock of current efforts to answer this question through a variety of methods and perspectives. Across this work, three questions recur, each fundamental to knowledge representation in the mind and brain. First, what are the elements of conceptual representation? Second, to what extent are conceptual representations embodied in sensory and motor systems? Third, how are conceptual representations shaped by context, especially linguistic context? In this introductory article we provide relevant background on these themes and introduce how they are addressed by our contributing authors.
A 3D object-based model to simulate highly-heterogeneous, coarse, braided river deposits
NASA Astrophysics Data System (ADS)
Huber, E.; Huggenberger, P.; Caers, J.
2016-12-01
There is a critical need in hydrogeological modeling for geologically more realistic representation of the subsurface. Indeed, widely-used representations of the subsurface heterogeneity based on smooth basis functions such as cokriging or the pilot-point approach fail at reproducing the connectivity of high permeable geological structures that control subsurface solute transport. To realistically model the connectivity of high permeable structures of coarse, braided river deposits, multiple-point statistics and object-based models are promising alternatives. We therefore propose a new object-based model that, according to a sedimentological model, mimics the dominant processes of floodplain dynamics. Contrarily to existing models, this object-based model possesses the following properties: (1) it is consistent with field observations (outcrops, ground-penetrating radar data, etc.), (2) it allows different sedimentological dynamics to be modeled that result in different subsurface heterogeneity patterns, (3) it is light in memory and computationally fast, and (4) it can be conditioned to geophysical data. In this model, the main sedimentological elements (scour fills with open-framework-bimodal gravel cross-beds, gravel sheet deposits, open-framework and sand lenses) and their internal structures are described by geometrical objects. Several spatial distributions are proposed that allow to simulate the horizontal position of the objects on the floodplain as well as the net rate of sediment deposition. The model is grid-independent and any vertical section can be computed algebraically. Furthermore, model realizations can serve as training images for multiple-point statistics. The significance of this model is shown by its impact on the subsurface flow distribution that strongly depends on the sedimentological dynamics modeled. The code will be provided as a free and open-source R-package.
A neuromorphic model of motor overflow in focal hand dystonia due to correlated sensory input
NASA Astrophysics Data System (ADS)
Sohn, Won Joon; Niu, Chuanxin M.; Sanger, Terence D.
2016-10-01
Objective. Motor overflow is a common and frustrating symptom of dystonia, manifested as unintentional muscle contraction that occurs during an intended voluntary movement. Although it is suspected that motor overflow is due to cortical disorganization in some types of dystonia (e.g. focal hand dystonia), it remains elusive which mechanisms could initiate and, more importantly, perpetuate motor overflow. We hypothesize that distinct motor elements have low risk of motor overflow if their sensory inputs remain statistically independent. But when provided with correlated sensory inputs, pre-existing crosstalk among sensory projections will grow under spike-timing-dependent-plasticity (STDP) and eventually produce irreversible motor overflow. Approach. We emulated a simplified neuromuscular system comprising two anatomically distinct digital muscles innervated by two layers of spiking neurons with STDP. The synaptic connections between layers included crosstalk connections. The input neurons received either independent or correlated sensory drive during 4 days of continuous excitation. The emulation is critically enabled and accelerated by our neuromorphic hardware created in previous work. Main results. When driven by correlated sensory inputs, the crosstalk synapses gained weight and produced prominent motor overflow; the growth of crosstalk synapses resulted in enlarged sensory representation reflecting cortical reorganization. The overflow failed to recede when the inputs resumed their original uncorrelated statistics. In the control group, no motor overflow was observed. Significance. Although our model is a highly simplified and limited representation of the human sensorimotor system, it allows us to explain how correlated sensory input to anatomically distinct muscles is by itself sufficient to cause persistent and irreversible motor overflow. Further studies are needed to locate the source of correlation in sensory input.
NASA Astrophysics Data System (ADS)
Helsy, I.; Maryamah; Farida, I.; Ramdhani, M. A.
2017-09-01
This study aimed to describe the application of teaching materials, analyze the increase in the ability of students to connect the three levels of representation and student responses after application of multiple representations based teaching materials chemistry. The method used quasi one-group pretest-posttest design to 71 students. The results showed the application of teaching materials carried 88% with very good category. A significant increase ability to connect the three levels of representation of students after the application of multiple representations based teaching materials chemistry with t-value > t-crit (11.402 > 1.991). Recapitulation N-gain pretest and posttest showed relatively similar for all groups is 0.6 criterion being achievement. Students gave a positive response to the application of multiple representations based teaching materials chemistry. Students agree teaching materials used in teaching chemistry (88%), and agrees teaching materials to provide convenience in connecting the three levels of representation (95%).
Mason, Robert A; Just, Marcel Adam
2015-05-01
Incremental instruction on the workings of a set of mechanical systems induced a progression of changes in the neural representations of the systems. The neural representations of four mechanical systems were assessed before, during, and after three phases of incremental instruction (which first provided information about the system components, then provided partial causal information, and finally provided full functional information). In 14 participants, the neural representations of four systems (a bathroom scale, a fire extinguisher, an automobile braking system, and a trumpet) were assessed using three recently developed techniques: (1) machine learning and classification of multi-voxel patterns; (2) localization of consistently responding voxels; and (3) representational similarity analysis (RSA). The neural representations of the systems progressed through four stages, or states, involving spatially and temporally distinct multi-voxel patterns: (1) initially, the representation was primarily visual (occipital cortex); (2) it subsequently included a large parietal component; (3) it eventually became cortically diverse (frontal, parietal, temporal, and medial frontal regions); and (4) at the end, it demonstrated a strong frontal cortex weighting (frontal and motor regions). At each stage of knowledge, it was possible for a classifier to identify which one of four mechanical systems a participant was thinking about, based on their brain activation patterns. The progression of representational states was suggestive of progressive stages of learning: (1) encoding information from the display; (2) mental animation, possibly involving imagining the components moving; (3) generating causal hypotheses associated with mental animation; and finally (4) determining how a person (probably oneself) would interact with the system. This interpretation yields an initial, cortically-grounded, theory of learning of physical systems that potentially can be related to cognitive learning theories by suggesting links between cortical representations, stages of learning, and the understanding of simple systems. Copyright © 2015 Elsevier Inc. All rights reserved.
Performance Data Gathering and Representation from Fixed-Size Statistical Data
NASA Technical Reports Server (NTRS)
Yan, Jerry C.; Jin, Haoqiang H.; Schmidt, Melisa A.; Kutler, Paul (Technical Monitor)
1997-01-01
The two commonly-used performance data types in the super-computing community, statistics and event traces, are discussed and compared. Statistical data are much more compact but lack the probative power event traces offer. Event traces, on the other hand, are unbounded and can easily fill up the entire file system during program execution. In this paper, we propose an innovative methodology for performance data gathering and representation that offers a middle ground. Two basic ideas are employed: the use of averages to replace recording data for each instance and 'formulae' to represent sequences associated with communication and control flow. The user can trade off tracing overhead, trace data size with data quality incrementally. In other words, the user will be able to limit the amount of trace data collected and, at the same time, carry out some of the analysis event traces offer using space-time views. With the help of a few simple examples, we illustrate the use of these techniques in performance tuning and compare the quality of the traces we collected with event traces. We found that the trace files thus obtained are, indeed, small, bounded and predictable before program execution, and that the quality of the space-time views generated from these statistical data are excellent. Furthermore, experimental results showed that the formulae proposed were able to capture all the sequences associated with 11 of the 15 applications tested. The performance of the formulae can be incrementally improved by allocating more memory at runtime to learn longer sequences.
On Statistical Analysis of Neuroimages with Imperfect Registration
Kim, Won Hwa; Ravi, Sathya N.; Johnson, Sterling C.; Okonkwo, Ozioma C.; Singh, Vikas
2016-01-01
A variety of studies in neuroscience/neuroimaging seek to perform statistical inference on the acquired brain image scans for diagnosis as well as understanding the pathological manifestation of diseases. To do so, an important first step is to register (or co-register) all of the image data into a common coordinate system. This permits meaningful comparison of the intensities at each voxel across groups (e.g., diseased versus healthy) to evaluate the effects of the disease and/or use machine learning algorithms in a subsequent step. But errors in the underlying registration make this problematic, they either decrease the statistical power or make the follow-up inference tasks less effective/accurate. In this paper, we derive a novel algorithm which offers immunity to local errors in the underlying deformation field obtained from registration procedures. By deriving a deformation invariant representation of the image, the downstream analysis can be made more robust as if one had access to a (hypothetical) far superior registration procedure. Our algorithm is based on recent work on scattering transform. Using this as a starting point, we show how results from harmonic analysis (especially, non-Euclidean wavelets) yields strategies for designing deformation and additive noise invariant representations of large 3-D brain image volumes. We present a set of results on synthetic and real brain images where we achieve robust statistical analysis even in the presence of substantial deformation errors; here, standard analysis procedures significantly under-perform and fail to identify the true signal. PMID:27042168
Meinicke, Peter; Tech, Maike; Morgenstern, Burkhard; Merkl, Rainer
2004-01-01
Background Kernel-based learning algorithms are among the most advanced machine learning methods and have been successfully applied to a variety of sequence classification tasks within the field of bioinformatics. Conventional kernels utilized so far do not provide an easy interpretation of the learnt representations in terms of positional and compositional variability of the underlying biological signals. Results We propose a kernel-based approach to datamining on biological sequences. With our method it is possible to model and analyze positional variability of oligomers of any length in a natural way. On one hand this is achieved by mapping the sequences to an intuitive but high-dimensional feature space, well-suited for interpretation of the learnt models. On the other hand, by means of the kernel trick we can provide a general learning algorithm for that high-dimensional representation because all required statistics can be computed without performing an explicit feature space mapping of the sequences. By introducing a kernel parameter that controls the degree of position-dependency, our feature space representation can be tailored to the characteristics of the biological problem at hand. A regularized learning scheme enables application even to biological problems for which only small sets of example sequences are available. Our approach includes a visualization method for transparent representation of characteristic sequence features. Thereby importance of features can be measured in terms of discriminative strength with respect to classification of the underlying sequences. To demonstrate and validate our concept on a biochemically well-defined case, we analyze E. coli translation initiation sites in order to show that we can find biologically relevant signals. For that case, our results clearly show that the Shine-Dalgarno sequence is the most important signal upstream a start codon. The variability in position and composition we found for that signal is in accordance with previous biological knowledge. We also find evidence for signals downstream of the start codon, previously introduced as transcriptional enhancers. These signals are mainly characterized by occurrences of adenine in a region of about 4 nucleotides next to the start codon. Conclusions We showed that the oligo kernel can provide a valuable tool for the analysis of relevant signals in biological sequences. In the case of translation initiation sites we could clearly deduce the most discriminative motifs and their positional variation from example sequences. Attractive features of our approach are its flexibility with respect to oligomer length and position conservation. By means of these two parameters oligo kernels can easily be adapted to different biological problems. PMID:15511290
Leadership: Underrepresentation of Women in Higher Education
ERIC Educational Resources Information Center
Krause, Susan Faye
2017-01-01
In 2014, statisticians at the Bureau of Labor Statistics found that women constitute 45% of the workforce. Women's participation in high-level organizational leadership roles remains low. In higher education, women's representation in top-ranking leadership roles is less than one-third at colleges and universities. The conceptual framework for…
Latino-Hispanic Student Voices and Self-Representation through Digital Storytelling
ERIC Educational Resources Information Center
Mogadime, Dolana; O'Sullivan, Michael
2017-01-01
Forty percent of Portuguese and Spanish speaking students in Toronto do not complete high school (Brown, 2006). This daunting statistic motivated Pueblito Canada, a Toronto-based Non-Governmental Organization (NGO) committed to Latino-Hispanic children, to initiate collaboration with the local Hispanic Development Council, a community activist…
Fractional models of seismoacoustic and electromagnetic activity
NASA Astrophysics Data System (ADS)
Shevtsov, Boris; Sheremetyeva, Olga
2017-10-01
Statistical models of the seismoacoustic and electromagnetic activity caused by deformation disturbances are considered on the basis of compound Poisson process and its fractional generalizations. Wave representations of these processes are used too. It is discussed five regimes of deformation activity and their role in understanding of the earthquakes precursors nature.
A Large-Scale Analysis of Variance in Written Language
ERIC Educational Resources Information Center
Johns, Brendan T.; Jamieson, Randall K.
2018-01-01
The collection of very large text sources has revolutionized the study of natural language, leading to the development of several models of language learning and distributional semantics that extract sophisticated semantic representations of words based on the statistical redundancies contained within natural language (e.g., Griffiths, Steyvers,…
Achievement and Underachievement: The Experiences of African Caribbeans
ERIC Educational Resources Information Center
Rhamie, Jasmine
2012-01-01
The disproportionate representation of African Caribbeans in all the negative educational statistics has been well documented. Despite this, there are African Caribbeans who achieve academically but relatively few studies have explored this area. This study aimed to investigate the factors that contribute to African Caribbean academic success,…
Three Myths? The Over-Representation of the Gifted among Dropouts, Delinquents, and Suicides.
ERIC Educational Resources Information Center
Lajoie, Susanne P.; Shore, Bruce M.
1981-01-01
From findings, it is concluded that: the proportion of gifted dropouts may be average, existing literature on delinquency suggests underrepresentation of the gifted, and suicide statistics and theories about the causes of suicide are the most accommodating to the idea of overrepresentation of the gifted. (SB)
Examining Department Climate for Women in Engineering: The Role of STEM Interventions
ERIC Educational Resources Information Center
Rincón, Blanca E.; George-Jackson, Casey E.
2016-01-01
Women comprise over half of the total undergraduate population in the United States (National Center for Education Statistics, 2014), yet remain underrepresented in a number of science, technology, engineering, and mathematics (STEM) fields (National Science Foundation [NSF], 2014). Although women have steadily increased their representation in…
Under-Representation in Nationally Representative Secondary Data
ERIC Educational Resources Information Center
Frederick, Karen; Barnard-Brak, Lucy; Sulak, Tracey
2012-01-01
There has been a significant increase in the use of secondary data sets. Many such data sets purport to be nationally representative. Secondary data sets include research commissioned by the National Center for Education Statistics, the Centers for Disease Control, and other public entities. Research increasingly utilizes these secondary data in…
The Use of Modelling for Theory Building in Qualitative Analysis
ERIC Educational Resources Information Center
Briggs, Ann R. J.
2007-01-01
The purpose of this article is to exemplify and enhance the place of modelling as a qualitative process in educational research. Modelling is widely used in quantitative research as a tool for analysis, theory building and prediction. Statistical data lend themselves to graphical representation of values, interrelationships and operational…
Mental Representation of Circuit Diagrams.
1984-10-15
transformer serves to change the voltage of an AC supply, that a particular combination of transitors acts as a flip-flop, and so forth. Fundamentally, this... statistically signi ’P,. differences between skill levels, the size of the effect as a pro., an of variability would probably not be very great. Thus
On Categorical Diagnoses in "DSM-V": Cutting Dimensions at Useful Points?
ERIC Educational Resources Information Center
Kamphuis, Jan H.; Noordhof, Arjen
2009-01-01
The "Diagnostic and Statistical Manual of Mental Disorders" (5th ed.; "DSM-V") will likely place more emphasis on dimensional representation of mental disorders. However, it is often argued that categorical diagnoses are preferable for professional communication, clinical decision-making, or distinguishing between individuals with and without a…
Zheng, Jie; Harris, Marcelline R; Masci, Anna Maria; Lin, Yu; Hero, Alfred; Smith, Barry; He, Yongqun
2016-09-14
Statistics play a critical role in biological and clinical research. However, most reports of scientific results in the published literature make it difficult for the reader to reproduce the statistical analyses performed in achieving those results because they provide inadequate documentation of the statistical tests and algorithms applied. The Ontology of Biological and Clinical Statistics (OBCS) is put forward here as a step towards solving this problem. The terms in OBCS including 'data collection', 'data transformation in statistics', 'data visualization', 'statistical data analysis', and 'drawing a conclusion based on data', cover the major types of statistical processes used in basic biological research and clinical outcome studies. OBCS is aligned with the Basic Formal Ontology (BFO) and extends the Ontology of Biomedical Investigations (OBI), an OBO (Open Biological and Biomedical Ontologies) Foundry ontology supported by over 20 research communities. Currently, OBCS comprehends 878 terms, representing 20 BFO classes, 403 OBI classes, 229 OBCS specific classes, and 122 classes imported from ten other OBO ontologies. We discuss two examples illustrating how the ontology is being applied. In the first (biological) use case, we describe how OBCS was applied to represent the high throughput microarray data analysis of immunological transcriptional profiles in human subjects vaccinated with an influenza vaccine. In the second (clinical outcomes) use case, we applied OBCS to represent the processing of electronic health care data to determine the associations between hospital staffing levels and patient mortality. Our case studies were designed to show how OBCS can be used for the consistent representation of statistical analysis pipelines under two different research paradigms. Other ongoing projects using OBCS for statistical data processing are also discussed. The OBCS source code and documentation are available at: https://github.com/obcs/obcs . The Ontology of Biological and Clinical Statistics (OBCS) is a community-based open source ontology in the domain of biological and clinical statistics. OBCS is a timely ontology that represents statistics-related terms and their relations in a rigorous fashion, facilitates standard data analysis and integration, and supports reproducible biological and clinical research.
The orbitofrontal cortex and beyond: from affect to decision-making.
Rolls, Edmund T; Grabenhorst, Fabian
2008-11-01
The orbitofrontal cortex represents the reward or affective value of primary reinforcers including taste, touch, texture, and face expression. It learns to associate other stimuli with these to produce representations of the expected reward value for visual, auditory, and abstract stimuli including monetary reward value. The orbitofrontal cortex thus plays a key role in emotion, by representing the goals for action. The learning process is stimulus-reinforcer association learning. Negative reward prediction error neurons are related to this affective learning. Activations in the orbitofrontal cortex correlate with the subjective emotional experience of affective stimuli, and damage to the orbitofrontal cortex impairs emotion-related learning, emotional behaviour, and subjective affective state. With an origin from beyond the orbitofrontal cortex, top-down attention to affect modulates orbitofrontal cortex representations, and attention to intensity modulates representations in earlier cortical areas of the physical properties of stimuli. Top-down word-level cognitive inputs can bias affective representations in the orbitofrontal cortex, providing a mechanism for cognition to influence emotion. Whereas the orbitofrontal cortex provides a representation of reward or affective value on a continuous scale, areas beyond the orbitofrontal cortex such as the medial prefrontal cortex area 10 are involved in binary decision-making when a choice must be made. For this decision-making, the orbitofrontal cortex provides a representation of each specific reward in a common currency.
Koster-Hale, Jorie; Bedny, Marina; Saxe, Rebecca
2014-01-01
Blind people's inferences about how other people see provide a window into fundamental questions about the human capacity to think about one another's thoughts. By working with blind individuals, we can ask both what kinds of representations people form about others’ minds, and how much these representations depend on the observer having had similar mental states themselves. Thinking about others’ mental states depends on a specific group of brain regions, including the right temporo-parietal junction (RTPJ). We investigated the representations of others’ mental states in these brain regions, using multivoxel pattern analyses (MVPA). We found that, first, in the RTPJ of sighted adults, the pattern of neural response distinguished the source of the mental state (did the protagonist see or hear something?) but not the valence (did the protagonist feel good or bad?). Second, these neural representations were preserved in congenitally blind adults. These results suggest that the temporo-parietal junction contains explicit, abstract representations of features of others’ mental states, including the perceptual source. The persistence of these representations in congenitally blind adults, who have no first-person experience with sight, provides evidence that these representations emerge even in the absence of first-person perceptual experiences. PMID:24960530
Koster-Hale, Jorie; Bedny, Marina; Saxe, Rebecca
2014-10-01
Blind people's inferences about how other people see provide a window into fundamental questions about the human capacity to think about one another's thoughts. By working with blind individuals, we can ask both what kinds of representations people form about others' minds, and how much these representations depend on the observer having had similar mental states themselves. Thinking about others' mental states depends on a specific group of brain regions, including the right temporo-parietal junction (RTPJ). We investigated the representations of others' mental states in these brain regions, using multivoxel pattern analyses (MVPA). We found that, first, in the RTPJ of sighted adults, the pattern of neural response distinguished the source of the mental state (did the protagonist see or hear something?) but not the valence (did the protagonist feel good or bad?). Second, these neural representations were preserved in congenitally blind adults. These results suggest that the temporo-parietal junction contains explicit, abstract representations of features of others' mental states, including the perceptual source. The persistence of these representations in congenitally blind adults, who have no first-person experience with sight, provides evidence that these representations emerge even in the absence of relevant first-person perceptual experiences. Copyright © 2014 Elsevier B.V. All rights reserved.
Hudson, Joanna L; Bundy, Chris; Coventry, Peter A; Dickens, Chris
2014-04-01
Depression and anxiety are common in diabetes and are associated with lower diabetes self-care adherence. How this occurs is unclear. Our systematic review explored the relationship between cognitive illness representations and poor emotional health and their combined association with diabetes self-care. Medline, Psycinfo, EMBASE, and CINAHL were searched from inception to June 2013. Data on associations between cognitive illness representations, poor emotional health, and diabetes self-care were extracted. Random effects meta-analysis was used to test the relationship between cognitive illness representations and poor emotional health. Their combined effect on diabetes self-care was narratively evaluated. Nine cross-sectional studies were included. Increased timeline cyclical, consequences, and seriousness beliefs were associated with poorer emotional health symptoms. Lower perceived personal control was associated with increased depression and anxiety, but not mixed anxiety and depressive symptoms. Remaining cognitive illness representation domains had mixed statistically significant and non-significant relationships across emotional states or were measured only once. Effect sizes ranged from small to large (r=±0.20 to 0.51). Two studies explored the combined effects of cognitions and emotions on diabetes self-care. Both showed that cognitive illness representations have an independent effect on diabetes self-care, but only one study found that depression has an independent effect also. Associations between cognitive illness representations and poor emotional health were in the expected direction - negative diabetes perceptions were associated with poorer emotional health. Few studies examined the relative effects of cognitions and emotions on diabetes self-care. Longitudinal studies are needed to clarify directional pathways. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Bussey, Thomas J.
2013-01-01
Biochemistry education relies heavily on students' ability to visualize abstract cellular and molecular processes, mechanisms, and components. As such, biochemistry educators often turn to external representations to provide tangible, working models from which students' internal representations (mental models) can be constructed, evaluated, and…
Towards "Inverse" Character Tables? A One-Step Method for Decomposing Reducible Representations
ERIC Educational Resources Information Center
Piquemal, J.-Y.; Losno, R.; Ancian, B.
2009-01-01
In the framework of group theory, a new procedure is described for a one-step automated reduction of reducible representations. The matrix inversion tool, provided by standard spreadsheet software, is applied to the central part of the character table that contains the characters of the irreducible representation. This method is not restricted to…
Taking representation seriously: rethinking bioethics through Clint Eastwood's Million Dollar Baby.
Braswell, Harold
2011-06-01
In this article, I propose a new model for understanding the function of representation in bioethics. Bioethicists have traditionally judged representations according to a mimetic paradigm, in which representations of bioethical dilemmas are assessed based on their correspondence to the "reality" of bioethics itself. In this article, I argue that this mimetic paradigm obscures the interaction between representation and reality and diverts bioethicists from analyzing the tensions in the representational object itself. I propose an anti-mimetic model of representation that is attuned to how representations can both maintain and potentially subvert dominant conceptions of bioethics. I illustrate this model through a case study of Clint Eastwood's film Million Dollar Baby. By focusing attention on the film's lack of adherence bioethical procedures and medical science, critics missed how an analysis of its representational logic provides a means of reimagining both bioethics and medical practice. In my conclusion, I build off this case study to assess how an incorporation of representational studies can deepen-and be deepened by-recent calls for interdisciplinarity in bioethics.
Toth, S L; Cicchetti, D; Macfie, J; Emde, R N
1997-01-01
The MacArthur Story Stem Battery was used to examine maternal and self-representations in neglected, physically abused, sexually abused, and nonmaltreated comparison preschool children. The narratives of maltreated children contained more negative maternal representations and more negative self-representations than did the narratives of nonmaltreated children. Maltreated children also were more controlling with and less responsive to the examiner. In examining the differential impact of maltreatment subtype differences on maternal and self-representations, physically abused children evidenced the most negative maternal representations; they also had more negative self-representations than nonmaltreated children. Sexually abused children manifested more positive self-representations than neglected children. Despite these differences in the nature of maternal and self-representations, physically and sexually abused children both were more controlling and less responsive to the examiner. The investigation adds to the corpus of knowledge regarding disturbances in the self-system functioning of maltreated children and provides support for relations between representational models of self and other and the self-organizing function that these models exert on children's lives.
Ince-Gaussian series representation of the two-dimensional fractional Fourier transform.
Bandres, Miguel A; Gutiérrez-Vega, Julio C
2005-03-01
We introduce the Ince-Gaussian series representation of the two-dimensional fractional Fourier transform in elliptical coordinates. A physical interpretation is provided in terms of field propagation in quadratic graded-index media whose eigenmodes in elliptical coordinates are derived for the first time to our knowledge. The kernel of the new series representation is expressed in terms of Ince-Gaussian functions. The equivalence among the Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian series representations is verified by establishing the relation among the three definitions.
Automated Diagnosis Coding with Combined Text Representations.
Berndorfer, Stefan; Henriksson, Aron
2017-01-01
Automated diagnosis coding can be provided efficiently by learning predictive models from historical data; however, discriminating between thousands of codes while allowing a variable number of codes to be assigned is extremely difficult. Here, we explore various text representations and classification models for assigning ICD-9 codes to discharge summaries in MIMIC-III. It is shown that the relative effectiveness of the investigated representations depends on the frequency of the diagnosis code under consideration and that the best performance is obtained by combining models built using different representations.
Evidence for highly selective neuronal tuning to whole words in the "visual word form area".
Glezer, Laurie S; Jiang, Xiong; Riesenhuber, Maximilian
2009-04-30
Theories of reading have posited the existence of a neural representation coding for whole real words (i.e., an orthographic lexicon), but experimental support for such a representation has proved elusive. Using fMRI rapid adaptation techniques, we provide evidence that the human left ventral occipitotemporal cortex (specifically the "visual word form area," VWFA) contains a representation based on neurons highly selective for individual real words, in contrast to current theories that posit a sublexical representation in the VWFA.
Knowledge representation issues for explaining plans
NASA Technical Reports Server (NTRS)
Prince, Mary Ellen; Johannes, James D.
1988-01-01
Explanations are recognized as an important facet of intelligent behavior. Unfortunately, expert systems are currently limited in their ability to provide useful, intelligent justifications of their results. We are currently investigating the issues involved in providing explanation facilities for expert planning systems. This investigation addresses three issues: knowledge content, knowledge representation, and explanation structure.
Aesthetic Forms of Data Representation in Qualitative Family Therapy Research
ERIC Educational Resources Information Center
Piercy, Fred P.; Benson, Kristen
2005-01-01
In this article we provide a rationale for using alternative, aesthetic methods of qualitative representation (e.g., creative writing, art, music, performance, poetry) in qualitative family therapy research. We also provide illustrative examples of methods that bring findings to life, and involve the audience in reflecting on their meaning. One…
A Combined Eulerian-Lagrangian Data Representation for Large-Scale Applications.
Sauer, Franz; Xie, Jinrong; Ma, Kwan-Liu
2017-10-01
The Eulerian and Lagrangian reference frames each provide a unique perspective when studying and visualizing results from scientific systems. As a result, many large-scale simulations produce data in both formats, and analysis tasks that simultaneously utilize information from both representations are becoming increasingly popular. However, due to their fundamentally different nature, drawing correlations between these data formats is a computationally difficult task, especially in a large-scale setting. In this work, we present a new data representation which combines both reference frames into a joint Eulerian-Lagrangian format. By reorganizing Lagrangian information according to the Eulerian simulation grid into a "unit cell" based approach, we can provide an efficient out-of-core means of sampling, querying, and operating with both representations simultaneously. We also extend this design to generate multi-resolution subsets of the full data to suit the viewer's needs and provide a fast flow-aware trajectory construction scheme. We demonstrate the effectiveness of our method using three large-scale real world scientific datasets and provide insight into the types of performance gains that can be achieved.
Visual Memories Bypass Normalization.
Bloem, Ilona M; Watanabe, Yurika L; Kibbe, Melissa M; Ling, Sam
2018-05-01
How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores-neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation.
Visual Memories Bypass Normalization
Bloem, Ilona M.; Watanabe, Yurika L.; Kibbe, Melissa M.; Ling, Sam
2018-01-01
How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores—neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation. PMID:29596038
Optimized scalar promotion with load and splat SIMD instructions
Eichenberger, Alexander E; Gschwind, Michael K; Gunnels, John A
2013-10-29
Mechanisms for optimizing scalar code executed on a single instruction multiple data (SIMD) engine are provided. Placement of vector operation-splat operations may be determined based on an identification of scalar and SIMD operations in an original code representation. The original code representation may be modified to insert the vector operation-splat operations based on the determined placement of vector operation-splat operations to generate a first modified code representation. Placement of separate splat operations may be determined based on identification of scalar and SIMD operations in the first modified code representation. The first modified code representation may be modified to insert or delete separate splat operations based on the determined placement of the separate splat operations to generate a second modified code representation. SIMD code may be output based on the second modified code representation for execution by the SIMD engine.
Optimized scalar promotion with load and splat SIMD instructions
Eichenberger, Alexandre E [Chappaqua, NY; Gschwind, Michael K [Chappaqua, NY; Gunnels, John A [Yorktown Heights, NY
2012-08-28
Mechanisms for optimizing scalar code executed on a single instruction multiple data (SIMD) engine are provided. Placement of vector operation-splat operations may be determined based on an identification of scalar and SIMD operations in an original code representation. The original code representation may be modified to insert the vector operation-splat operations based on the determined placement of vector operation-splat operations to generate a first modified code representation. Placement of separate splat operations may be determined based on identification of scalar and SIMD operations in the first modified code representation. The first modified code representation may be modified to insert or delete separate splat operations based on the determined placement of the separate splat operations to generate a second modified code representation. SIMD code may be output based on the second modified code representation for execution by the SIMD engine.
Statistical mechanics of human resource allocation
NASA Astrophysics Data System (ADS)
Inoue, Jun-Ichi; Chen, He
2014-03-01
We provide a mathematical platform to investigate the network topology of agents, say, university graduates who are looking for their positions in labor markets. The basic model is described by the so-called Potts spin glass which is well-known in the research field of statistical physics. In the model, each Potts spin (a tiny magnet in atomic scale length) represents the action of each student, and it takes a discrete variable corresponding to the company he/she applies for. We construct the energy to include three distinct effects on the students' behavior, namely, collective effect, market history and international ranking of companies. In this model system, the correlations (the adjacent matrix) between students are taken into account through the pairwise spin-spin interactions. We carry out computer simulations to examine the efficiency of the model. We also show that some chiral representation of the Potts spin enables us to obtain some analytical insights into our labor markets. This work was financially supported by Grant-in-Aid for Scientific Research (C) of Japan Society for the Promotion of Science No. 25330278.
Edla, Shwetha; Kovvali, Narayan; Papandreou-Suppappola, Antonia
2012-01-01
Constructing statistical models of electrocardiogram (ECG) signals, whose parameters can be used for automated disease classification, is of great importance in precluding manual annotation and providing prompt diagnosis of cardiac diseases. ECG signals consist of several segments with different morphologies (namely the P wave, QRS complex and the T wave) in a single heart beat, which can vary across individuals and diseases. Also, existing statistical ECG models exhibit a reliance upon obtaining a priori information from the ECG data by using preprocessing algorithms to initialize the filter parameters, or to define the user-specified model parameters. In this paper, we propose an ECG modeling technique using the sequential Markov chain Monte Carlo (SMCMC) filter that can perform simultaneous model selection, by adaptively choosing from different representations depending upon the nature of the data. Our results demonstrate the ability of the algorithm to track various types of ECG morphologies, including intermittently occurring ECG beats. In addition, we use the estimated model parameters as the feature set to classify between ECG signals with normal sinus rhythm and four different types of arrhythmia.
VALUE - A Framework to Validate Downscaling Approaches for Climate Change Studies
NASA Astrophysics Data System (ADS)
Maraun, Douglas; Widmann, Martin; Gutiérrez, José M.; Kotlarski, Sven; Chandler, Richard E.; Hertig, Elke; Wibig, Joanna; Huth, Radan; Wilke, Renate A. I.
2015-04-01
VALUE is an open European network to validate and compare downscaling methods for climate change research. VALUE aims to foster collaboration and knowledge exchange between climatologists, impact modellers, statisticians, and stakeholders to establish an interdisciplinary downscaling community. A key deliverable of VALUE is the development of a systematic validation framework to enable the assessment and comparison of both dynamical and statistical downscaling methods. Here, we present the key ingredients of this framework. VALUE's main approach to validation is user-focused: starting from a specific user problem, a validation tree guides the selection of relevant validation indices and performance measures. Several experiments have been designed to isolate specific points in the downscaling procedure where problems may occur: what is the isolated downscaling skill? How do statistical and dynamical methods compare? How do methods perform at different spatial scales? Do methods fail in representing regional climate change? How is the overall representation of regional climate, including errors inherited from global climate models? The framework will be the basis for a comprehensive community-open downscaling intercomparison study, but is intended also to provide general guidance for other validation studies.
VALUE: A framework to validate downscaling approaches for climate change studies
NASA Astrophysics Data System (ADS)
Maraun, Douglas; Widmann, Martin; Gutiérrez, José M.; Kotlarski, Sven; Chandler, Richard E.; Hertig, Elke; Wibig, Joanna; Huth, Radan; Wilcke, Renate A. I.
2015-01-01
VALUE is an open European network to validate and compare downscaling methods for climate change research. VALUE aims to foster collaboration and knowledge exchange between climatologists, impact modellers, statisticians, and stakeholders to establish an interdisciplinary downscaling community. A key deliverable of VALUE is the development of a systematic validation framework to enable the assessment and comparison of both dynamical and statistical downscaling methods. In this paper, we present the key ingredients of this framework. VALUE's main approach to validation is user- focused: starting from a specific user problem, a validation tree guides the selection of relevant validation indices and performance measures. Several experiments have been designed to isolate specific points in the downscaling procedure where problems may occur: what is the isolated downscaling skill? How do statistical and dynamical methods compare? How do methods perform at different spatial scales? Do methods fail in representing regional climate change? How is the overall representation of regional climate, including errors inherited from global climate models? The framework will be the basis for a comprehensive community-open downscaling intercomparison study, but is intended also to provide general guidance for other validation studies.
A logical foundation for representation of clinical data.
Campbell, K E; Das, A K; Musen, M A
1994-01-01
OBJECTIVE: A general framework for representation of clinical data that provides a declarative semantics of terms and that allows developers to define explicitly the relationships among both terms and combinations of terms. DESIGN: Use of conceptual graphs as a standard representation of logic and of an existing standardized vocabulary, the Systematized Nomenclature of Medicine (SNOMED International), for lexical elements. Concepts such as time, anatomy, and uncertainty must be modeled explicitly in a way that allows relation of these foundational concepts to surface-level clinical descriptions in a uniform manner. RESULTS: The proposed framework was used to model a simple radiology report, which included temporal references. CONCLUSION: Formal logic provides a framework for formalizing the representation of medical concepts. Actual implementations will be required to evaluate the practicality of this approach. PMID:7719805
Hexagonal wavelet processing of digital mammography
NASA Astrophysics Data System (ADS)
Laine, Andrew F.; Schuler, Sergio; Huda, Walter; Honeyman-Buck, Janice C.; Steinbach, Barbara G.
1993-09-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms and used to enhance features of importance to mammography within a continuum of scale-space. We present a method of contrast enhancement based on an overcomplete, non-separable multiscale representation: the hexagonal wavelet transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by local and global non-linear operators. Multiscale edges identified within distinct levels of transform space provide local support for enhancement. We demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.
Richardson, Emma M; Schüz, Natalie; Sanderson, Kristy; Scott, Jennifer L; Schüz, Benjamin
2017-06-01
Cancer is associated with negative health and emotional outcomes in those affected by it, suggesting the need to better understand the psychosocial determinants of illness outcomes and coping. The common sense model is the leading psychological model of self-regulation in the face of illness and assumes that subjective illness representations explain how people attempt to cope with illness. This systematic review and meta-analysis examines the associations of the common sense model's illness representation dimensions with health and coping outcomes in people with cancer. A systematic literature search located 54 studies fulfilling the inclusion criteria, with 38 providing sufficient data for meta-analysis. A narrative review of the remaining studies was also conducted. Random-effects models revealed small to moderate effect sizes (Fisher Z) for the relations between illness representations and coping behaviors (in particular between control perceptions, problem-focused coping, and cognitive reappraisal) and moderate to large effect sizes between illness representations and illness outcomes (in particular between identity, consequences, emotional representations, and psychological distress). The narrative review of studies with insufficient data provided similar results. The results indicate how illness representations relate to illness outcomes in people with cancer. However, more high-quality studies are needed to examine causal effects of illness representations on coping and outcomes. High heterogeneity indicates potential moderators of the relationships between illness representations and health and coping outcomes, including diagnostic, prognostic, and treatment-related variables. This review can inform the design of interventions to improve coping strategies and mental health outcomes in people with cancer. Copyright © 2016 John Wiley & Sons, Ltd.
Improved protein surface comparison and application to low-resolution protein structure data.
Sael, Lee; Kihara, Daisuke
2010-12-14
Recent advancements of experimental techniques for determining protein tertiary structures raise significant challenges for protein bioinformatics. With the number of known structures of unknown function expanding at a rapid pace, an urgent task is to provide reliable clues to their biological function on a large scale. Conventional approaches for structure comparison are not suitable for a real-time database search due to their slow speed. Moreover, a new challenge has arisen from recent techniques such as electron microscopy (EM), which provide low-resolution structure data. Previously, we have introduced a method for protein surface shape representation using the 3D Zernike descriptors (3DZDs). The 3DZD enables fast structure database searches, taking advantage of its rotation invariance and compact representation. The search results of protein surface represented with the 3DZD has showngood agreement with the existing structure classifications, but some discrepancies were also observed. The three new surface representations of backbone atoms, originally devised all-atom-surface representation, and the combination of all-atom surface with the backbone representation are examined. All representations are encoded with the 3DZD. Also, we have investigated the applicability of the 3DZD for searching protein EM density maps of varying resolutions. The surface representations are evaluated on structure retrieval using two existing classifications, SCOP and the CE-based classification. Overall, the 3DZDs representing backbone atoms show better retrieval performance than the original all-atom surface representation. The performance further improved when the two representations are combined. Moreover, we observed that the 3DZD is also powerful in comparing low-resolution structures obtained by electron microscopy.
Sound texture perception via statistics of the auditory periphery: Evidence from sound synthesis
McDermott, Josh H.; Simoncelli, Eero P.
2014-01-01
Rainstorms, insect swarms, and galloping horses produce “sound textures” – the collective result of many similar acoustic events. Sound textures are distinguished by temporal homogeneity, suggesting they could be recognized with time-averaged statistics. To test this hypothesis, we processed real-world textures with an auditory model containing filters tuned for sound frequencies and their modulations, and measured statistics of the resulting decomposition. We then assessed the realism and recognizability of novel sounds synthesized to have matching statistics. Statistics of individual frequency channels, capturing spectral power and sparsity, generally failed to produce compelling synthetic textures. However, combining them with correlations between channels produced identifiable and natural-sounding textures. Synthesis quality declined if statistics were computed from biologically implausible auditory models. The results suggest that sound texture perception is mediated by relatively simple statistics of early auditory representations, presumably computed by downstream neural populations. The synthesis methodology offers a powerful tool for their further investigation. PMID:21903084
NASA Astrophysics Data System (ADS)
Bourget, Antoine; Troost, Jan
2018-04-01
We revisit the study of the multiplets of the conformal algebra in any dimension. The theory of highest weight representations is reviewed in the context of the Bernstein-Gelfand-Gelfand category of modules. The Kazhdan-Lusztig polynomials code the relation between the Verma modules and the irreducible modules in the category and are the key to the characters of the conformal multiplets (whether finite dimensional, infinite dimensional, unitary or non-unitary). We discuss the representation theory and review in full generality which representations are unitarizable. The mathematical theory that allows for both the general treatment of characters and the full analysis of unitarity is made accessible. A good understanding of the mathematics of conformal multiplets renders the treatment of all highest weight representations in any dimension uniform, and provides an overarching comprehension of case-by-case results. Unitary highest weight representations and their characters are classified and computed in terms of data associated to cosets of the Weyl group of the conformal algebra. An executive summary is provided, as well as look-up tables up to and including rank four.
Jaspal, Rusi; Nerlich, Brigitte
2014-02-01
Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.
Storytelling, statistics and hereditary thought: the narrative support of early statistics.
López-Beltrán, Carlos
2006-03-01
This paper's main contention is that some basically methodological developments in science which are apparently distant and unrelated can be seen as part of a sequential story. Focusing on general inferential and epistemological matters, the paper links occurrences separated by both in time and space, by formal and representational issues rather than social or disciplinary links. It focuses on a few limited aspects of several cognitive practices in medical and biological contexts separated by geography, disciplines and decades, but connected by long term transdisciplinary representational and inferential structures and constraints. The paper intends to show a given set of knowledge claims based on organizing statistically empirical data can be seen to have been underpinned by a previous, more familiar, and probably more natural, narrative handling of similar evidence. To achieve that this paper moves from medicine in France in the late eighteenth and early nineteenth century to the second half of the nineteenth century in England among gentleman naturalists, following its subject: the shift from narrative depiction of hereditary transmission of physical peculiarities to posterior statistical articulations of the same phenomena. Some early defenders of heredity as an important (if not the most important) causal presence in the understanding of life adopted singular narratives, in the form of case stories from medical and natural history traditions, to flesh out a special kind of causality peculiar to heredity. This work tries to reconstruct historically the rationale that drove the use of such narratives. It then shows that when this rationale was methodologically challenged, its basic narrative and probabilistic underpinings were transferred to the statistical quantificational tools that took their place.
Sadeghi, Zahra; Testolin, Alberto
2017-08-01
In humans, efficient recognition of written symbols is thought to rely on a hierarchical processing system, where simple features are progressively combined into more abstract, high-level representations. Here, we present a computational model of Persian character recognition based on deep belief networks, where increasingly more complex visual features emerge in a completely unsupervised manner by fitting a hierarchical generative model to the sensory data. Crucially, high-level internal representations emerging from unsupervised deep learning can be easily read out by a linear classifier, achieving state-of-the-art recognition accuracy. Furthermore, we tested the hypothesis that handwritten digits and letters share many common visual features: A generative model that captures the statistical structure of the letters distribution should therefore also support the recognition of written digits. To this aim, deep networks trained on Persian letters were used to build high-level representations of Persian digits, which were indeed read out with high accuracy. Our simulations show that complex visual features, such as those mediating the identification of Persian symbols, can emerge from unsupervised learning in multilayered neural networks and can support knowledge transfer across related domains.
Lefkimmiatis, Stamatios; Maragos, Petros; Papandreou, George
2009-08-01
We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.
Pagès, Hervé
2018-01-01
Biological experiments involving genomics or other high-throughput assays typically yield a data matrix that can be explored and analyzed using the R programming language with packages from the Bioconductor project. Improvements in the throughput of these assays have resulted in an explosion of data even from routine experiments, which poses a challenge to the existing computational infrastructure for statistical data analysis. For example, single-cell RNA sequencing (scRNA-seq) experiments frequently generate large matrices containing expression values for each gene in each cell, requiring sparse or file-backed representations for memory-efficient manipulation in R. These alternative representations are not easily compatible with high-performance C++ code used for computationally intensive tasks in existing R/Bioconductor packages. Here, we describe a C++ interface named beachmat, which enables agnostic data access from various matrix representations. This allows package developers to write efficient C++ code that is interoperable with dense, sparse and file-backed matrices, amongst others. We evaluated the performance of beachmat for accessing data from each matrix representation using both simulated and real scRNA-seq data, and defined a clear memory/speed trade-off to motivate the choice of an appropriate representation. We also demonstrate how beachmat can be incorporated into the code of other packages to drive analyses of a very large scRNA-seq data set. PMID:29723188
Fusion of fuzzy statistical distributions for classification of thyroid ultrasound patterns.
Iakovidis, Dimitris K; Keramidas, Eystratios G; Maroulis, Dimitris
2010-09-01
This paper proposes a novel approach for thyroid ultrasound pattern representation. Considering that texture and echogenicity are correlated with thyroid malignancy, the proposed approach encodes these sonographic features via a noise-resistant representation. This representation is suitable for the discrimination of nodules of high malignancy risk from normal thyroid parenchyma. The material used in this study includes a total of 250 thyroid ultrasound patterns obtained from 75 patients in Greece. The patterns are represented by fused vectors of fuzzy features. Ultrasound texture is represented by fuzzy local binary patterns, whereas echogenicity is represented by fuzzy intensity histograms. The encoded thyroid ultrasound patterns are discriminated by support vector classifiers. The proposed approach was comprehensively evaluated using receiver operating characteristics (ROCs). The results show that the proposed fusion scheme outperforms previous thyroid ultrasound pattern representation methods proposed in the literature. The best classification accuracy was obtained with a polynomial kernel support vector machine, and reached 97.5% as estimated by the area under the ROC curve. The fusion of fuzzy local binary patterns and fuzzy grey-level histogram features is more effective than the state of the art approaches for the representation of thyroid ultrasound patterns and can be effectively utilized for the detection of nodules of high malignancy risk in the context of an intelligent medical system. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Lun, Aaron T L; Pagès, Hervé; Smith, Mike L
2018-05-01
Biological experiments involving genomics or other high-throughput assays typically yield a data matrix that can be explored and analyzed using the R programming language with packages from the Bioconductor project. Improvements in the throughput of these assays have resulted in an explosion of data even from routine experiments, which poses a challenge to the existing computational infrastructure for statistical data analysis. For example, single-cell RNA sequencing (scRNA-seq) experiments frequently generate large matrices containing expression values for each gene in each cell, requiring sparse or file-backed representations for memory-efficient manipulation in R. These alternative representations are not easily compatible with high-performance C++ code used for computationally intensive tasks in existing R/Bioconductor packages. Here, we describe a C++ interface named beachmat, which enables agnostic data access from various matrix representations. This allows package developers to write efficient C++ code that is interoperable with dense, sparse and file-backed matrices, amongst others. We evaluated the performance of beachmat for accessing data from each matrix representation using both simulated and real scRNA-seq data, and defined a clear memory/speed trade-off to motivate the choice of an appropriate representation. We also demonstrate how beachmat can be incorporated into the code of other packages to drive analyses of a very large scRNA-seq data set.
White, Aaron J; Fallis, Drew W; Vandewalle, Kraig S
2010-04-01
Study models are an essential part of an orthodontic record. Digital models are now available. One option for generating a digital model is cone-beam computed tomography (CBCT) scanning of orthodontic impressions and bite registrations. However, the accuracy of digital measurements from models generated by this method has yet to be thoroughly evaluated. A plastic typodont was modified with reference points for standardized intra-arch and interarch measurements, and 16 sets of maxillary and mandibular vinylpolysiloxane and alginate impressions were made. A copper wax-bite registration was made with the typodont in maximum intercuspal position to accompany each set of impressions. The impressions were shipped to OrthoProofUSA (Albuquerque, NM), where digital orthodontic models were generated via CBCT. Intra-arch and interarch measurements were made directly on the typodont with electronic digital calipers and on the digital models by using OrthoProofUSA's proprietary DigiModel software. Percentage differences from the typodont of all intra-arch measurements in the alginate and vinylpolysiloxane groups were low, from 0.1% to 0.7%. Statistical analysis of the intra-arch percentage differences from the typodont of the alginate and vinylpolysiloxane groups had a statistically significant difference between the groups only for maxillary intermolar width. However, because of the small percentage differences, this was not considered clinically significant for orthodontic measurements. Percentage differences from the typodont of all interarch measurements in the alginate and vinylpolysiloxane groups were much higher, from 3.3% to 10.7%. Statistical analysis of the interarch percentage differences from the typodont of the alginate and vinylpolysiloxane groups showed statistically significant differences between the groups in both the maxillary right canine to mandibular right canine (alginate with a lower percentage difference than vinylpolysiloxane) and the maxillary left second molar to mandibular left second molar (alginate with a greater percentage difference than vinylpolysiloxane) segments. This difference, ranging from 0.24 to 0.72 mm, is clinically significant. In this study, digital orthodontic models from CBCT scans of alginate and vinylpolysiloxane impressions provided a dimensionally accurate representation of intra-arch relationships for orthodontic evaluation. However, the use of copper wax-bite registrations in this CBCT-based process did not result in an accurate digital representation of interarch relationships. Copyright (c) 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Theory-based Bayesian models of inductive learning and reasoning.
Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles
2006-07-01
Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.
Analysis models for the estimation of oceanic fields
NASA Technical Reports Server (NTRS)
Carter, E. F.; Robinson, A. R.
1987-01-01
A general model for statistically optimal estimates is presented for dealing with scalar, vector and multivariate datasets. The method deals with anisotropic fields and treats space and time dependence equivalently. Problems addressed include the analysis, or the production of synoptic time series of regularly gridded fields from irregular and gappy datasets, and the estimate of fields by compositing observations from several different instruments and sampling schemes. Technical issues are discussed, including the convergence of statistical estimates, the choice of representation of the correlations, the influential domain of an observation, and the efficiency of numerical computations.
Dynamic Encoding of Speech Sequence Probability in Human Temporal Cortex
Leonard, Matthew K.; Bouchard, Kristofer E.; Tang, Claire
2015-01-01
Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statistics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information about word identity and meaning. PMID:25948269
Ince, Robin A A; Giordano, Bruno L; Kayser, Christoph; Rousselet, Guillaume A; Gross, Joachim; Schyns, Philippe G
2017-03-01
We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open-source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541-1573, 2017. © 2016 Wiley Periodicals, Inc. 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Grider, Gary A.; Poole, Stephen W.
2015-09-01
Collective buffering and data pattern solutions are provided for storage, retrieval, and/or analysis of data in a collective parallel processing environment. For example, a method can be provided for data storage in a collective parallel processing environment. The method comprises receiving data to be written for a plurality of collective processes within a collective parallel processing environment, extracting a data pattern for the data to be written for the plurality of collective processes, generating a representation describing the data pattern, and saving the data and the representation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.
In this paper, we present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support ourmore » construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Lastly, our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less
NASA Technical Reports Server (NTRS)
Fymat, A. L.
1978-01-01
A unifying approach, based on a generalization of Pearson's differential equation of statistical theory, is proposed for both the representation of particulate size distribution and the interpretation of radiometric measurements in terms of this parameter. A single-parameter gamma-type distribution is introduced, and it is shown that inversion can only provide the dimensionless parameter, r/ab (where r = particle radius, a = effective radius, b = effective variance), at least when the distribution vanishes at both ends. The basic inversion problem in reconstructing the particle size distribution is analyzed, and the existing methods are reviewed (with emphasis on their capabilities) and classified. A two-step strategy is proposed for simultaneously determining the complex refractive index and reconstructing the size distribution of atmospheric particulates.
Visualizing Spatially Varying Distribution Data
NASA Technical Reports Server (NTRS)
Kao, David; Luo, Alison; Dungan, Jennifer L.; Pang, Alex; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Box plot is a compact representation that encodes the minimum, maximum, mean, median, and quarters information of a distribution. In practice, a single box plot is drawn for each variable of interest. With the advent of more accessible computing power, we are now facing the problem of visual icing data where there is a distribution at each 2D spatial location. Simply extending the box plot technique to distributions over 2D domain is not straightforward. One challenge is reducing the visual clutter if a box plot is drawn over each grid location in the 2D domain. This paper presents and discusses two general approaches, using parametric statistics and shape descriptors, to present 2D distribution data sets. Both approaches provide additional insights compared to the traditional box plot technique
Baijal, Shruti; Nakatani, Chie; van Leeuwen, Cees; Srinivasan, Narayanan
2013-06-07
Human observers show remarkable efficiency in statistical estimation; they are able, for instance, to estimate the mean size of visual objects, even if their number exceeds the capacity limits of focused attention. This ability has been understood as the result of a distinct mode of attention, i.e. distributed attention. Compared to the focused attention mode, working memory representations under distributed attention are proposed to be more compressed, leading to reduced working memory loads. An alternate proposal is that distributed attention uses less structured, feature-level representations. These would fill up working memory (WM) more, even when target set size is low. Using event-related potentials, we compared WM loading in a typical distributed attention task (mean size estimation) to that in a corresponding focused attention task (object recognition), using a measure called contralateral delay activity (CDA). Participants performed both tasks on 2, 4, or 8 different-sized target disks. In the recognition task, CDA amplitude increased with set size; notably, however, in the mean estimation task the CDA amplitude was high regardless of set size. In particular for set-size 2, the amplitude was higher in the mean estimation task than in the recognition task. The result showed that the task involves full WM loading even with a low target set size. This suggests that in the distributed attention mode, representations are not compressed, but rather less structured than under focused attention conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Leinbach, L. Carl
2015-01-01
This paper illustrates a TI N-Spire .tns file created by the author for generating continued fraction representations of real numbers and doing arithmetic with them. The continued fraction representation provides an alternative to the decimal representation. The .tns file can be used as tool for studying continued fractions and their properties as…
ERIC Educational Resources Information Center
Einsiedler, Wolfgang
1996-01-01
Asks whether theories of knowledge representation provide a basis for the development of theories of knowledge structuring in instruction. Discusses codes of knowledge, surface versus deep structures, semantic networks, and multiple memory systems. Reviews research on teaching, external representation of cognitive structures, hierarchical…
Güçlü, Umut; van Gerven, Marcel A J
2017-01-15
Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action recognition. This is achieved by training deep neural networks to recognize actions in videos and subsequently using them to predict neural responses while subjects are watching natural movies. Moreover, we explore whether dorsal stream representations are shared between subjects. In order to address this question, we examine if individual subject predictions can be made in a common representational space estimated via hyperalignment. Results show that a DNN trained for action recognition can be used to accurately predict how dorsal stream responds to natural movies, revealing a correspondence in representations of DNN layers and dorsal stream areas. It is also demonstrated that models operating in a common representational space can generalize to responses of multiple or even unseen individual subjects to novel spatio-temporal stimuli in both encoding and decoding settings, suggesting that a common representational space underlies dorsal stream responses across multiple subjects. Copyright © 2015 Elsevier Inc. All rights reserved.
Spectral methods in edge-diffraction theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, J.M.
Spectral methods for the construction of uniform asymptotic representations of the field diffracted by an aperture in a plane screen are reviewed. These are separated into contrasting approaches, roughly described as physical and geometrical. It is concluded that the geometrical methods provide a direct route to the construction of uniform representations that are formally identical to the equivalent-edge-current concept. Some interpretive and analytical difficulties that complicate the physical methods of obtaining uniform representations are analyzed. Spectral synthesis proceeds directly from the ray geometry and diffraction coefficients, without any intervening current representation, and the representation is uniform at shadow boundaries andmore » caustics of the diffracted field. The physical theory of diffraction postulates currents on the diffracting screen that give rise to the diffracted field. The difficulties encountered in evaluating the current integrals are throughly examined, and it is concluded that the additional data provided by the physical theory of diffraction (diffraction coefficients off the Keller diffraction cone) are not actually required for obtaining uniform asymptotics at the leading order. A new diffraction representation that generalizes to arbitrary plane-convex apertures a formula given by Knott and Senior [Proc. IEEE 62, 1468 (1974)] for circular apertures is deduced. 34 refs., 1 fig.« less
General Multivariate Linear Modeling of Surface Shapes Using SurfStat
Chung, Moo K.; Worsley, Keith J.; Nacewicz, Brendon, M.; Dalton, Kim M.; Davidson, Richard J.
2010-01-01
Although there are many imaging studies on traditional ROI-based amygdala volumetry, there are very few studies on modeling amygdala shape variations. This paper present a unified computational and statistical framework for modeling amygdala shape variations in a clinical population. The weighted spherical harmonic representation is used as to parameterize, to smooth out, and to normalize amygdala surfaces. The representation is subsequently used as an input for multivariate linear models accounting for nuisance covariates such as age and brain size difference using SurfStat package that completely avoids the complexity of specifying design matrices. The methodology has been applied for quantifying abnormal local amygdala shape variations in 22 high functioning autistic subjects. PMID:20620211
Scaling and correlations in three bus-transport networks of China
NASA Astrophysics Data System (ADS)
Xu, Xinping; Hu, Junhui; Liu, Feng; Liu, Lianshou
2007-01-01
We report the statistical properties of three bus-transport networks (BTN) in three different cities of China. These networks are composed of a set of bus lines and stations serviced by these. Network properties, including the degree distribution, clustering and average path length are studied in different definitions of network topology. We explore scaling laws and correlations that may govern intrinsic features of such networks. Besides, we create a weighted network representation for BTN with lines mapped to nodes and number of common stations to weights between lines. In such a representation, the distributions of degree, strength and weight are investigated. A linear behavior between strength and degree s(k)∼k is also observed.
Fock expansion of multimode pure Gaussian states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cariolaro, Gianfranco; Pierobon, Gianfranco, E-mail: gianfranco.pierobon@unipd.it
2015-12-15
The Fock expansion of multimode pure Gaussian states is derived starting from their representation as displaced and squeezed multimode vacuum states. The approach is new and appears to be simpler and more general than previous ones starting from the phase-space representation given by the characteristic or Wigner function. Fock expansion is performed in terms of easily evaluable two-variable Hermite–Kampé de Fériet polynomials. A relatively simple and compact expression for the joint statistical distribution of the photon numbers in the different modes is obtained. In particular, this result enables one to give a simple characterization of separable and entangled states, asmore » shown for two-mode and three-mode Gaussian states.« less
Speech recognition: Acoustic-phonetic knowledge acquisition and representation
NASA Astrophysics Data System (ADS)
Zue, Victor W.
1988-09-01
The long-term research goal is to develop and implement speaker-independent continuous speech recognition systems. It is believed that the proper utilization of speech-specific knowledge is essential for such advanced systems. This research is thus directed toward the acquisition, quantification, and representation, of acoustic-phonetic and lexical knowledge, and the application of this knowledge to speech recognition algorithms. In addition, we are exploring new speech recognition alternatives based on artificial intelligence and connectionist techniques. We developed a statistical model for predicting the acoustic realization of stop consonants in various positions in the syllable template. A unification-based grammatical formalism was developed for incorporating this model into the lexical access algorithm. We provided an information-theoretic justification for the hierarchical structure of the syllable template. We analyzed segmented duration for vowels and fricatives in continuous speech. Based on contextual information, we developed durational models for vowels and fricatives that account for over 70 percent of the variance, using data from multiple, unknown speakers. We rigorously evaluated the ability of human spectrogram readers to identify stop consonants spoken by many talkers and in a variety of phonetic contexts. Incorporating the declarative knowledge used by the readers, we developed a knowledge-based system for stop identification. We achieved comparable system performance to that to the readers.
A compression algorithm for the combination of PDF sets.
Carrazza, Stefano; Latorre, José I; Rojo, Juan; Watt, Graeme
The current PDF4LHC recommendation to estimate uncertainties due to parton distribution functions (PDFs) in theoretical predictions for LHC processes involves the combination of separate predictions computed using PDF sets from different groups, each of which comprises a relatively large number of either Hessian eigenvectors or Monte Carlo (MC) replicas. While many fixed-order and parton shower programs allow the evaluation of PDF uncertainties for a single PDF set at no additional CPU cost, this feature is not universal, and, moreover, the a posteriori combination of the predictions using at least three different PDF sets is still required. In this work, we present a strategy for the statistical combination of individual PDF sets, based on the MC representation of Hessian sets, followed by a compression algorithm for the reduction of the number of MC replicas. We illustrate our strategy with the combination and compression of the recent NNPDF3.0, CT14 and MMHT14 NNLO PDF sets. The resulting compressed Monte Carlo PDF sets are validated at the level of parton luminosities and LHC inclusive cross sections and differential distributions. We determine that around 100 replicas provide an adequate representation of the probability distribution for the original combined PDF set, suitable for general applications to LHC phenomenology.
Knowledge Representation Issues in Semantic Graphs for Relationship Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barthelemy, M; Chow, E; Eliassi-Rad, T
2005-02-02
An important task for Homeland Security is the prediction of threat vulnerabilities, such as through the detection of relationships between seemingly disjoint entities. A structure used for this task is a ''semantic graph'', also known as a ''relational data graph'' or an ''attributed relational graph''. These graphs encode relationships as typed links between a pair of typed nodes. Indeed, semantic graphs are very similar to semantic networks used in AI. The node and link types are related through an ontology graph (also known as a schema). Furthermore, each node has a set of attributes associated with it (e.g., ''age'' maymore » be an attribute of a node of type ''person''). Unfortunately, the selection of types and attributes for both nodes and links depends on human expertise and is somewhat subjective and even arbitrary. This subjectiveness introduces biases into any algorithm that operates on semantic graphs. Here, we raise some knowledge representation issues for semantic graphs and provide some possible solutions using recently developed ideas in the field of complex networks. In particular, we use the concept of transitivity to evaluate the relevance of individual links in the semantic graph for detecting relationships. We also propose new statistical measures for semantic graphs and illustrate these semantic measures on graphs constructed from movies and terrorism data.« less