Sample records for provide unique capabilities

  1. Mobile Smog Simulator: New Capabilities to Study Urban Mixtures

    EPA Pesticide Factsheets

    A smog simulator developed by EPA scientists and engineers has unique capabilities that will provide information for assessing the health impacts of relevant multipollutant atmospheres and identify contributions of specific sources.

  2. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a technician takes readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a technician takes readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  3. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians begin pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians begin pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  4. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians take readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians take readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  5. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Japanese Experiment Module (JEM) rests on a workstand during pre-assembly measurement activities. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Japanese Experiment Module (JEM) rests on a workstand during pre-assembly measurement activities. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  6. Applications of LANCE Data at SPoRT

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew

    2014-01-01

    Short term Prediction Research and Transition (SPoRT) Center: Mission: Apply NASA and NOAA measurement systems and unique Earth science research to improve the accuracy of short term weather prediction at the regional/local scale. Goals: Evaluate and assess the utility of NASA and NOAA Earth science data and products and unique research capabilities to address operational weather forecast problems; Provide an environment which enables the development and testing of new capabilities to improve short term weather forecasts on a regional scale; Help ensure successful transition of new capabilities to operational weather entities for the benefit of society

  7. Nanoparticles and DNA - a powerful and growing functional combination in bionanotechnology

    NASA Astrophysics Data System (ADS)

    Samanta, Anirban; Medintz, Igor L.

    2016-04-01

    Functionally integrating DNA and other nucleic acids with nanoparticles in all their different physicochemical forms has produced a rich variety of composite nanomaterials which, in many cases, display unique or augmented properties due to the synergistic activity of both components. These capabilities, in turn, are attracting greater attention from various research communities in search of new nanoscale tools for diverse applications that include (bio)sensing, labeling, targeted imaging, cellular delivery, diagnostics, therapeutics, theranostics, bioelectronics, and biocomputing to name just a few amongst many others. Here, we review this vibrant and growing research area from the perspective of the materials themselves and their unique capabilities. Inorganic nanocrystals such as quantum dots or those made from gold or other (noble) metals along with metal oxides and carbon allotropes are desired as participants in these hybrid materials since they can provide distinctive optical, physical, magnetic, and electrochemical properties. Beyond this, synthetic polymer-based and proteinaceous or viral nanoparticulate materials are also useful in the same role since they can provide a predefined and biocompatible cargo-carrying and targeting capability. The DNA component typically provides sequence-based addressability for probes along with, more recently, unique architectural properties that directly originate from the burgeoning structural DNA field. Additionally, DNA aptamers can also provide specific recognition capabilities against many diverse non-nucleic acid targets across a range of size scales from ions to full protein and cells. In addition to appending DNA to inorganic or polymeric nanoparticles, purely DNA-based nanoparticles have recently surfaced as an excellent assembly platform and have started finding application in areas like sensing, imaging and immunotherapy. We focus on selected and representative nanoparticle-DNA materials and highlight their myriad applications using examples from the literature. Overall, it is clear that this unique functional combination of nanomaterials has far more to offer than what we have seen to date and as new capabilities for each of these materials are developed, so, too, will new applications emerge.

  8. NASTRAN interfacing modules within the Integrated Analysis Capability (IAC) Program

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1986-01-01

    The IAC program provides the framework required for the development of an extensive multidisciplinary analysis capability. Several NASTRAN related capabilities were developed which can all be expanded in a routine manner to meet in-house unique needs. Plans are to complete the work discussed herein and to provide it to the engineering community through COSMIC. Release is to be after the current IAC Level 2 contract work on the IAC executive system is completed and meshed with the interfacing modules and analysis capabilities under development at the GSFC.

  9. KENNEDY SPACE CENTER, FLA. - The Japanese Experiment Module (JEM) is moved on its workstand in the Space Station Processing Facility. The JEM will undergo pre-assembly measurements. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - The Japanese Experiment Module (JEM) is moved on its workstand in the Space Station Processing Facility. The JEM will undergo pre-assembly measurements. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  10. Design Features and Capabilities of the First Materials Science Research Rack

    NASA Technical Reports Server (NTRS)

    Pettigrew, P. J.; Lehoczky, S. L.; Cobb, S. D.; Holloway, T.; Kitchens, L.

    2003-01-01

    The First Materials Science Research Rack (MSRR-1) aboard the International Space Station (ISS) will offer many unique capabilities and design features to facilitate a wide range of materials science investigations. The initial configuration of MSRR-1 will accommodate two independent Experiment Modules (EMS) and provide the capability for simultaneous on-orbit processing. The facility will provide the common subsystems and interfaces required for the operation of experiment hardware and accommodate telescience capabilities. MSRR1 will utilize an International Standard Payload Rack (ISPR) equipped with an Active Rack Isolation System (ARIS) for vibration isolation of the facility.

  11. 70 Years of Making the World Safer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This video shows our roles in making the world safer — working to end World War II, providing stable isotopes for research, providing unique precision manufacturing capabilities, and meeting nonproliferation and global security missions.

  12. Enhanced Rescue Lift Capability

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    The evolving and ever-increasing demands of emergency response and disaster relief support provided by rotorcraft dictate, among other things, the development of enhanced rescue lift capability for these platforms. This preliminary analysis is first-order in nature but provides considerable insight into some of the challenges inherent in trying to effect rescue using a unique form of robotic rescue device deployed and operated from rotary-wing aerial platforms.

  13. The Altitude Wind Tunnel (AWT): A unique facility for propulsion system and adverse weather testing

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.

    1985-01-01

    A need has arisen for a new wind tunnel facility with unique capabilities for testing propulsion systems and for conducting research in adverse weather conditions. New propulsion system concepts, new aircraft configurations with an unprecedented degree of propulsion system/aircraft integration, and requirements for aircraft operation in adverse weather dictate the need for a new test facility. Required capabilities include simulation of both altitude pressure and temperature, large size, full subsonic speed range, propulsion system operation, and weather simulation (i.e., icing, heavy rain). A cost effective rehabilitation of the NASA Lewis Research Center's Altitude Wind Tunnel (AWT) will provide a facility with all these capabilities.

  14. 70 Years of Making the World Safer: Extended

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Extended version with narration. This video shows our roles in making the world safer — working to end World War II, providing stable isotopes for research, providing unique precision manufacturing capabilities, and meeting nonproliferation and global security missions.

  15. Detection of arcing location on photovoltaic systems using filters

    DOEpatents

    Johnson, Jay

    2018-02-20

    The present invention relates to photovoltaic systems capable of identifying the location of an arc-fault. In particular, such systems include a unique filter connected to each photovoltaic (PV) string, thereby providing a unique filtered noise profile associated with a particular PV string. Also described herein are methods for identifying and isolating such arc-faults.

  16. Past, Present, and Future Capabilities of the Transonic Dynamics Tunnel from an Aeroelasticity Perspective

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Garcia, Jerry L.

    2000-01-01

    The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. Aeroelastic scaling for the heavy gas results in lower model structural frequencies. Lower model frequencies tend to a make aeroelastic testing safer. This paper will describe major developments in the testing capabilities at the TDT throughout its history, the current status of the facility, and planned additions and improvements to its capabilities in the near future.

  17. Shield evaluation and performance testing at the USMB`s Strategic Structures Testing Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barczak, T.M.; Gearhart, D.F.

    1996-12-31

    Historically, shield performance testing is conducted by the support manufacturers at European facilities. The U.S. Bureau of Mines (USBM) has conducted extensive research in shield Mechanics and is now opening its Strategic Structures Testing (SST) Laboratory to the mining industry for shield performance testing. The SST Laboratory provides unique shield testing capabilities using the Mine Roof Simulator (MRS) load frame. The MRS provides realistic and cost-effective shield evaluation by combining both vertical and horizontal loading into a single load cycle; whereas, several load cycles would be required to obtain this loading in a static frame. In addition to these advantages,more » the USBM acts as an independent research organization to provide an unbiased assessment of shield performance. This paper describes the USBM`s shield testing program that is designed specifically to simulate in-service mining conditions using the unique the capabilities of the SST Laboratory.« less

  18. Numerical Modeling of Ablation Heat Transfer

    NASA Technical Reports Server (NTRS)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  19. Appalachian Mountains

    Atmospheric Science Data Center

    2014-05-15

    ... Radiance Ellipsoid Product. MISR uses this enhanced sensitivity along with the angular variation in signal to monitor particulate ... of MISR's unique capability of providing moderately high spatial resolution, calibrated imagery at very oblique angles. Gradations ...

  20. Fungal Survival in a Chemosynthetic Ecosystem

    NASA Astrophysics Data System (ADS)

    Kiel Reese, B.; Sobol, M. S.; Hoshino, T.; Inagaki, F.; Eder, E.; Nicora, C. D.; Heyman, H. M.; Kyle, J. E.; Hoyt, D. W.; Tfaily, M. M.; Metz, T. O.

    2018-05-01

    Fungi possess metabolic pathways capable of utilizing previously considered non-bioavailable energy reserves. Metabolically active fungi occupy a unique niche within the subsurface, providing an organic carbon source for heterotrophic prokaryotes.

  1. Large-Scale Wind Turbine Testing in the NASA 24.4m (80) by 36.6m(120) Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zell, Peter T.; Imprexia, Cliff (Technical Monitor)

    2000-01-01

    The 80- by 120-Foot Wind Tunnel at NASA Ames Research Center in California provides a unique capability to test large-scale wind turbines under controlled conditions. This special capability is now available for domestic and foreign entities wishing to test large-scale wind turbines. The presentation will focus on facility capabilities to perform wind turbine tests and typical research objectives for this type of testing.

  2. New Directions: Emerging Satellite Observations of Above-cloud Aerosols and Direct Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Zhang, Zhibo

    2013-01-01

    Spaceborne lidar and passive sensors with multi-wavelength and polarization capabilities onboard the A-Train provide unprecedented opportunities of observing above-cloud aerosols and direct radiative forcing. Significant progress has been made in recent years in exploring these new aerosol remote sensing capabilities and generating unique datasets. The emerging observations will advance the understanding of aerosol climate forcing.

  3. SYNBIOCHEM-a SynBio foundry for the biosynthesis and sustainable production of fine and speciality chemicals.

    PubMed

    Carbonell, Pablo; Currin, Andrew; Dunstan, Mark; Fellows, Donal; Jervis, Adrian; Rattray, Nicholas J W; Robinson, Christopher J; Swainston, Neil; Vinaixa, Maria; Williams, Alan; Yan, Cunyu; Barran, Perdita; Breitling, Rainer; Chen, George Guo-Qiang; Faulon, Jean-Loup; Goble, Carole; Goodacre, Royston; Kell, Douglas B; Feuvre, Rosalind Le; Micklefield, Jason; Scrutton, Nigel S; Shapira, Philip; Takano, Eriko; Turner, Nicholas J

    2016-06-15

    The Manchester Synthetic Biology Research Centre (SYNBIOCHEM) is a foundry for the biosynthesis and sustainable production of fine and speciality chemicals. The Centre's integrated technology platforms provide a unique capability to facilitate predictable engineering of microbial bio-factories for chemicals production. An overview of these capabilities is described. © 2016 The Author(s).

  4. The NASA integrated test facility and its impact on flight research

    NASA Technical Reports Server (NTRS)

    Mackall, D. A.; Pickett, M. D.; Schilling, L. J.; Wagner, C. A.

    1988-01-01

    The Integrated Test Facility (ITF), being built at NASA Ames-Dryden Flight Research Facility, will provide new test capabilities for emerging research aircraft. An overview of the ITF and the challenges being addressed by this unique facility are outlined. The current ITF capabilities, being developed with the X-29 Forward Swept Wing Program, are discussed along with future ITF activities.

  5. Projected Applications of a "Weather in a Box" Computing System at the NASA Short-Term Prediction Research and Transition (SPoRT) Center

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Molthan, Andrew; Zavodsky, Bradley T.; Case, Jonathan L.; LaFontaine, Frank J.; Srikishen, Jayanthi

    2010-01-01

    The NASA Short-term Prediction Research and Transition Center (SPoRT)'s new "Weather in a Box" resources will provide weather research and forecast modeling capabilities for real-time application. Model output will provide additional forecast guidance and research into the impacts of new NASA satellite data sets and software capabilities. By combining several research tools and satellite products, SPoRT can generate model guidance that is strongly influenced by unique NASA contributions.

  6. Engine component instrumentation development facility at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan

    1992-01-01

    The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.

  7. System and method for delivery of neutron beams for medical therapy

    DOEpatents

    Nigg, David W.; Wemple, Charles A.

    1999-01-01

    A neutron delivery system that provides improved capability for tumor control during medical therapy. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention.

  8. The U.S. Spectrum X Gamma Coordination Facility

    NASA Astrophysics Data System (ADS)

    Forman, William R.

    1999-08-01

    Spectrum-X-Gamma (SXG) provides for US participation in a first-class international x-ray mission. Despite launch delays, SXG will provide unique scientific opportunities due to its capability for all-sky monitoring, polarimetry, high resolution spectroscopy, and broad wavelength range-from the ultraviolet (TAUVEX and FUVITA), through the x-ray (SODART and JET-X), to the hard x-ray (MART), and gamma-ray burst detectors. Before describing our completed work, we review the unique properties of SXG and provide some examples of the scientific importance of SXG in the Chandra, XMM, and ASTRO-E era.

  9. The U.S. Spectrum X Gamma Coordination Facility

    NASA Technical Reports Server (NTRS)

    Forman, William R.

    1999-01-01

    Spectrum-X-Gamma (SXG) provides for US participation in a first-class international x-ray mission. Despite launch delays, SXG will provide unique scientific opportunities due to its capability for all-sky monitoring, polarimetry, high resolution spectroscopy, and broad wavelength range-from the ultraviolet (TAUVEX and FUVITA), through the x-ray (SODART and JET-X), to the hard x-ray (MART), and gamma-ray burst detectors. Before describing our completed work, we review the unique properties of SXG and provide some examples of the scientific importance of SXG in the Chandra, XMM, and ASTRO-E era.

  10. RL10 Engine Ability to Transition from Atlas to Shuttle/Centaur Program

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    2015-01-01

    A key launch vehicle design feature is the ability to take advantage of new technologies while minimizing expensive and time consuming development and test programs. With successful space launch experiences and the unique features of both the National Aeronautics and Space Administration (NASA) Space Transportation System (Space Shuttle) and Atlas/Centaur programs, it became attractive to leverage these capabilities. The Shuttle/Centaur Program was created to transition the existing Centaur vehicle to be launched from the Space Shuttle cargo bay. This provided the ability to launch heaver and larger payloads, and take advantage of new unique launch operational capabilities. A successful Shuttle/Centaur Program required the Centaur main propulsion system to quickly accommodate the new operating conditions for two new Shuttle/Centaur configurations and evolve to function in the human Space Shuttle environment. This paper describes the transition of the Atlas/Centaur RL10 engine to the Shuttle/Centaur configurations; shows the unique versatility and capability of the engine; and highlights the importance of ground testing. Propulsion testing outcomes emphasize the value added benefits of testing heritage hardware and the significant impact to existing and future programs.

  11. RL10 Engine Ability to Transition from Atlas to Shuttle/Centaur Program

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    2014-01-01

    A key launch vehicle design feature is the ability to take advantage of new technologies while minimizing expensive and time consuming development and test programs. With successful space launch experiences and the unique features of both the National Aeronautics and Space Administration (NASA) Space Transportation System (Space Shuttle) and Atlas/Centaur programs, it became attractive to leverage these capabilities. The Shuttle/Centaur Program was created to transition the existing Centaur vehicle to be launched from the Space Shuttle cargo bay. This provided the ability to launch heaver and larger payloads, and take advantage of new unique launch operational capabilities. A successful Shuttle/Centaur Program required the Centaur main propulsion system to quickly accommodate the new operating conditions for two new Shuttle/Centaur configurations and evolve to function in the human Space Shuttle environment. This paper describes the transition of the Atlas/Centaur RL10 engine to the Shuttle/Centaur configurations; shows the unique versatility and capability of the engine; and highlights the importance of ground testing. Propulsion testing outcomes emphasize the value added benefits of testing heritage hardware and the significant impact to existing and future programs.

  12. International Space Station Capabilities and Payload Accommodations

    NASA Technical Reports Server (NTRS)

    Kugler, Justin; Jones, Rod; Edeen, Marybeth

    2010-01-01

    This slide presentation reviews the research facilities and capabilities of the International Space Station. The station can give unique views of the Earth, as it provides coverage of 85% of the Earth's surface and 95% of the populated landmass every 1-3 days. The various science rack facilities are a resource for scientific research. There are also external research accom0dations. The addition of the Japanese Experiment Module (i.e., Kibo) will extend the science capability for both external payloads and internal payload rack locations. There are also slides reviewing the post shuttle capabilities for payload delivery.

  13. A Multigrasp Hand Prosthesis for Providing Precision and Conformal Grasps

    PubMed Central

    Bennett, Daniel A.; Dalley, Skyler A.; Truex, Don; Goldfarb, Michael

    2015-01-01

    This paper presents the design of an anthropomorphic prosthetic hand that incorporates four motor units in a unique configuration to explicitly provide both precision and conformal grasp capability. The paper describes the design of the hand prosthesis, and additionally describes the design of an embedded control system located in the palm of the hand that enables self-contained control of hand movement. Following the design description, the paper provides experimental characterizations of hand performance, including digit force capability, bandwidth of digit movement, physical properties such as size and mass, and electrical power measurements during activities of daily living. PMID:26167111

  14. Multiple Problem-Solving Strategies Provide Insight into Students' Understanding of Open-Ended Linear Programming Problems

    ERIC Educational Resources Information Center

    Sole, Marla A.

    2016-01-01

    Open-ended questions that can be solved using different strategies help students learn and integrate content, and provide teachers with greater insights into students' unique capabilities and levels of understanding. This article provides a problem that was modified to allow for multiple approaches. Students tended to employ high-powered, complex,…

  15. Explosive Welding in the 1990's

    NASA Technical Reports Server (NTRS)

    Lalwaney, N. S.; Linse, V. D.

    1985-01-01

    Explosive bonding is a unique joining process with the serious potential to produce composite materials capable of fulfilling many of the high performance materials capable of fulfilling many of the high performance materials needs of the 1990's. The process has the technological versatility to provide a true high quality metallurgical compatible and incompatible systems. Metals routinely explosively bonded include a wide variety of combinations of reactive and refractory metals, low and high density metals and their alloys, corrosion resistant and high strength alloys, and common steels. The major advantage of the process is its ability to custom design and engineer composites with physical and/or mechanical properties that meet a specific or unusual performance requirement. Explosive bonding offers the designer unique opportunities in materials selection with unique combinations of properties and high integrity bonds that cannot be achieved by any other metal joining process. The process and some applications are discussed.

  16. System and method for delivery of neutron beams for medical therapy

    DOEpatents

    Nigg, D.W.; Wemple, C.A.

    1999-07-06

    A neutron delivery system that provides improved capability for tumor control during medical therapy is disclosed. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention. 5 figs.

  17. Energy Saving Homes and Buildings - Continuum Magazine | NREL

    Science.gov Websites

    Spring 2014 / Issue 6 Continuum. Clean Energy Innovation at NREL Energy Saving Homes and Buildings Continuum showcases NREL's unique research capabilities and most impactful clean energy innovations. Dan Says From our director Dan says NREL Provides a Foundation for Home Energy Performance 01 NREL Provides

  18. Feasibility and applications of RFID technologies to support Right-of-Way functions : technical report

    DOT National Transportation Integrated Search

    2010-08-01

    Radio frequency identification device (RFID) technology provides the capability to store a unique identification : number and some basic attribute information, which can be retrieved wirelessly. This research project studied : the feasibility of usin...

  19. Commercial opportunities utilizing the International Space Station

    NASA Astrophysics Data System (ADS)

    Kearney, Michael E.; Mongan, Phil; Overmyer, Carolyn M.; Jackson, Kenneth

    1998-01-01

    The International Space Station (ISS) has the unique capability of providing a low-g environment for both short- and long-duration experimentation. This environment can provide a unique and competitive research capability to industry; but until recently, utilization of this environment by the private sector has been limited if not totally unavailable. NASA has recently expressed an interest in the commercial development of space and this is now an integral part of the Agency's enabling legislation through the Space Act. NASA's objective is to foster the use of the space environment for the development of commercial products and processes. Through alliances and agreements with several commercial companies and universities, SPACEHAB, Inc., has built a comprehensive package of services designed to provide low-cost reliable access to space for experimenters. These services provide opportunities to support engineering test beds for materials exposure analysis, to mitigate structural failures as observed on the Hubble Space Telescope; materials processing, remote sensing; space environment definition; and electronic experiments. The intent of this paper is to identify commercial opportunities for utilizing the International Space Station and provide examples of several facilities currently being designed and manufactured by commercial companies with the purpose of providing access to the space environment for commercial users.

  20. Integrated System Health Management (ISHM): Systematic Capability Implementation

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Holland, Randy; Schmalzwel, John; Duncavage, Dan

    2006-01-01

    This paper provides a credible approach for implementation of ISHM capability in any system. The requirements and processes to implement ISHM capability are unique in that a credible capability is initially implemented at a low level, and it evolves to achieve higher levels by incremental augmentation. In contrast, typical capabilities, such as thrust of an engine, are implemented once at full Functional Capability Level (FCL), which is not designed to change during the life of the product. The approach will describe core ingredients (e.g. technologies, architectures, etc.) and when and how ISHM capabilities may be implemented. A specific architecture/taxonomy/ontology will be described, as well as a prototype software environment that supports development of ISHM capability. This paper will address implementation of system-wide ISHM as a core capability, and ISHM for specific subsystems as expansions and evolution, but always focusing on achieving an integrated capability.

  1. Projected Applications of a ``Climate in a Box'' Computing System at the NASA Short-term Prediction Research and Transition (SPoRT) Center

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Molthan, A.; Zavodsky, B.; Case, J.; Lafontaine, F.

    2010-12-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to “Climate in a Box” systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the “Climate in a Box” system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA’s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the “Climate in a Box” system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.

  2. Projected Applications of a "Climate in a Box" Computing System at the NASA Short-Term Prediction Research and Transition (SPoRT) Center

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Molthan, Andrew L.; Zavodsky, Bradley; Case, Jonathan L.; LaFontaine, Frank J.

    2010-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to "Climate in a Box" systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the "Climate in a Box" system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the "Climate in a Box" system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.

  3. FOCU:S--future operator control unit: soldier

    NASA Astrophysics Data System (ADS)

    O'Brien, Barry J.; Karan, Cem; Young, Stuart H.

    2009-05-01

    The U.S. Army Research Laboratory's (ARL) Computational and Information Sciences Directorate (CISD) has long been involved in autonomous asset control, specifically as it relates to small robots. Over the past year, CISD has been making strides in the implementation of three areas of small robot autonomy, namely platform autonomy, Soldier-robot interface, and tactical behaviors. It is CISD's belief that these three areas must be considered as a whole in order to provide Soldiers with useful capabilities. In addressing the Soldier-robot interface aspect, CISD has begun development on a unique dismounted controller called the Future Operator Control Unit: Soldier (FOCU:S) that is based on an Apple iPod Touch. The iPod Touch's small form factor, unique touch-screen input device, and the presence of general purpose computing applications such as a web browser combine to give this device the potential to be a disruptive technology. Setting CISD's implementation apart from other similar iPod or iPhone-based devices is the ARL software that allows multiple robotic platforms to be controlled from a single OCU. The FOCU:S uses the same Agile Computing Infrastructure (ACI) that all other assets in the ARL robotic control system use, enabling automated asset discovery on any type of network. Further, a custom ad hoc routing implementation allows the FOCU:S to communicate with the ARL ad hoc communications system and enables it to extend the range of the network. This paper will briefly describe the current robotic control architecture employed by ARL and provide short descriptions of existing capabilities. Further, the paper will discuss FOCU:S specific software developed for the iPod Touch, including unique capabilities enabled by the device's unique hardware.

  4. Digital processing of mesoscale analysis and space sensor data

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.; Karitani, S.

    1985-01-01

    The mesoscale analysis and space sensor (MASS) data management and analysis system on the research computer system is presented. The MASS data base management and analysis system was implemented on the research computer system which provides a wide range of capabilities for processing and displaying large volumes of conventional and satellite derived meteorological data. The research computer system consists of three primary computers (HP-1000F, Harris/6, and Perkin-Elmer 3250), each of which performs a specific function according to its unique capabilities. The overall tasks performed concerning the software, data base management and display capabilities of the research computer system in terms of providing a very effective interactive research tool for the digital processing of mesoscale analysis and space sensor data is described.

  5. Modular, high power, variable R dynamic electrical load simulator

    NASA Technical Reports Server (NTRS)

    Joncas, K. P.

    1974-01-01

    The design of a previously developed basic variable R load simulator was entended to increase its power dissipation and transient handling capabilities. The delivered units satisfy all design requirements, and provides for a high power, modular simulation capability uniquely suited to the simulation of complex load responses. In addition to presenting conclusions and recommendations and pertinent background information, the report covers program accomplishments; describes the simulator basic circuits, transfer characteristic, protective features, assembly, and specifications; indicates the results of simulator evaluation, including burn-in and acceptance testing; provides acceptance test data; and summarizes the monthly progress reports.

  6. Navy nurse anesthetists at Fleet Hospital Five: the Desert Shield/Storm experience.

    PubMed

    Hrezo, Richard J

    2003-06-01

    In 1990, the United States Navy deployed its first operational fleet hospital: "Fleet Hospital Five" in support of Operation Desert Shield/Storm. Within 2 weeks of notification, the 900 medical providers assigned to this medical facility, which was capable of providing major trauma surgery and critical care, were on their way to Al Jabayl, Saudi Arabia. This article discusses the unique characteristics of this facility and introduces the crucial role that nurse anesthetists play. The article also introduces several innovative ideas that were developed and tested to expand the capabilities of the hospital.

  7. Intelligent On-Board Processing in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Tanner, S.

    2005-12-01

    Most existing sensing systems are designed as passive, independent observers. They are rarely aware of the phenomena they observe, and are even less likely to be aware of what other sensors are observing within the same environment. Increasingly, intelligent processing of sensor data is taking place in real-time, using computing resources on-board the sensor or the platform itself. One can imagine a sensor network consisting of intelligent and autonomous space-borne, airborne, and ground-based sensors. These sensors will act independently of one another, yet each will be capable of both publishing and receiving sensor information, observations, and alerts among other sensors in the network. Furthermore, these sensors will be capable of acting upon this information, perhaps altering acquisition properties of their instruments, changing the location of their platform, or updating processing strategies for their own observations to provide responsive information or additional alerts. Such autonomous and intelligent sensor networking capabilities provide significant benefits for collections of heterogeneous sensors within any environment. They are crucial for multi-sensor observations and surveillance, where real-time communication with external components and users may be inhibited, and the environment may be hostile. In all environments, mission automation and communication capabilities among disparate sensors will enable quicker response to interesting, rare, or unexpected events. Additionally, an intelligent network of heterogeneous sensors provides the advantage that all of the sensors can benefit from the unique capabilities of each sensor in the network. The University of Alabama in Huntsville (UAH) is developing a unique approach to data processing, integration and mining through the use of the Adaptive On-Board Data Processing (AODP) framework. AODP is a key foundation technology for autonomous internetworking capabilities to support situational awareness by sensors and their on-board processes. The two primary research areas for this project are (1) the on-board processing and communications framework itself, and (2) data mining algorithms targeted to the needs and constraints of the on-board environment. The team is leveraging its experience in on-board processing, data mining, custom data processing, and sensor network design. Several unique UAH-developed technologies are employed in the AODP project, including EVE, an EnVironmEnt for on-board processing, and the data mining tools included in the Algorithm Development and Mining (ADaM) toolkit.

  8. Appreciative Assessment: Inquire!

    ERIC Educational Resources Information Center

    Neal, Mary-Anne

    2012-01-01

    Appreciative Inquiry builds on positive experiences to spark positive change; appreciative assessment is all about helping students find and build on their unique abilities and aptitudes by providing positive, supportive feedback with a focus on capabilities and possibilities. Positive stories and anecdotes about best learning practices are the…

  9. The matter in extreme conditions instrument at the Linac Coherent Light Source

    DOE PAGES

    Nagler, Bob; Arnold, Brice; Bouchard, Gary; ...

    2015-04-21

    The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented.

  10. Adaptive guidance and control for future remote sensing systems

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Myers, J. E.

    1980-01-01

    A unique approach to onboard processing was developed that is capable of acquiring high quality image data for users in near real time. The approach is divided into two steps: the development of an onboard cloud detection system; and the development of a landmark tracker. The results of these two developments are outlined and the requirements of an operational guidance and control system capable of providing continuous estimation of the sensor boresight position are summarized.

  11. CHILI: China Lijiang IFU

    NASA Astrophysics Data System (ADS)

    Hao, Lei

    2014-07-01

    Wide-field IFU technology on medium-size telescope provides a unique science capability that compliments larger future facilities. Here I introduce a program to employ a VIRUS-like unit on the 2.4 meter telescope in GaoMeiGu Observatory in LiJiang, China. We name the instrument "CHILI (China Lijiang IFU)". It will be an IFU with very large field of view at 1.8'x3.6'. We discuss its science capabilities and its potential benefit to the Chinese astronomical community.

  12. Improving Large-Scale Testing Capability by Modifying the 40- by 80-ft Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Mort, Kenneth W.; Soderman, Paul T.; Eckert, William T.

    1979-01-01

    Interagency studies conducted during the last several years have indicated the need to Improve full-scale testing capabilities. The studies showed that the most effective trade between test capability and facility cost was provided by re-powering the existing Ames Research Center 40- by 80-ft Wind Tunnel to Increase the maximum speed from about 100 m/s (200 knots) lo about 150 m/s (300 knots) and by adding a new 24- by 37-m (80- by 120-ft) test section powered for about a 50-m/s (100-knot) maximum speed. This paper reviews the design of the facility, a few or its capabilities, and some of its unique features.

  13. Crosscutting Airborne Remote Sensing Technologies for Oil and Gas and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Aubrey, A. D.; Frankenberg, C.; Green, R. O.; Eastwood, M. L.; Thompson, D. R.; Thorpe, A. K.

    2015-01-01

    Airborne imaging spectroscopy has evolved dramatically since the 1980s as a robust remote sensing technique used to generate 2-dimensional maps of surface properties over large spatial areas. Traditional applications for passive airborne imaging spectroscopy include interrogation of surface composition, such as mapping of vegetation diversity and surface geological composition. Two recent applications are particularly relevant to the needs of both the oil and gas as well as government sectors: quantification of surficial hydrocarbon thickness in aquatic environments and mapping atmospheric greenhouse gas components. These techniques provide valuable capabilities for petroleum seepage in addition to detection and quantification of fugitive emissions. New empirical data that provides insight into the source strength of anthropogenic methane will be reviewed, with particular emphasis on the evolving constraints enabled by new methane remote sensing techniques. Contemporary studies attribute high-strength point sources as significantly contributing to the national methane inventory and underscore the need for high performance remote sensing technologies that provide quantitative leak detection. Imaging sensors that map spatial distributions of methane anomalies provide effective techniques to detect, localize, and quantify fugitive leaks. Airborne remote sensing instruments provide the unique combination of high spatial resolution (<1 m) and large coverage required to directly attribute methane emissions to individual emission sources. This capability cannot currently be achieved using spaceborne sensors. In this study, results from recent NASA remote sensing field experiments focused on point-source leak detection, will be highlighted. This includes existing quantitative capabilities for oil and methane using state-of-the-art airborne remote sensing instruments. While these capabilities are of interest to NASA for assessment of environmental impact and global climate change, industry similarly seeks to detect and localize leaks of both oil and methane across operating fields. In some cases, higher sensitivities desired for upstream and downstream applications can only be provided by new airborne remote sensing instruments tailored specifically for a given application. There exists a unique opportunity for alignment of efforts between commercial and government sectors to advance the next generation of instruments to provide more sensitive leak detection capabilities, including those for quantitative source strength determination.

  14. Observation of rocket pollution with overhead sensors

    NASA Astrophysics Data System (ADS)

    Fisher, Annette

    2011-12-01

    The objective of this thesis is to study the dispersal of rocket pollution through remote sensing techniques. Substantial research with remote sensors has been dedicated to observation of volcanic plumes, particulate dispersion, and aircraft contrails with less emphasis on observing rocket launches and the effects on the surrounding environment. This research focuses on observation of rocket exhaust constituents, particularly carbon soot, alumina, and water vapor. The sensors utilized in this thesis have unique capabilities that provide measurements that are likely capable of detecting the rocket exhaust constituents. Methodology and analysis included choosing an appropriate launch vehicle with obtainable launch data and various booster combinations of liquid propellant only or a combination of liquid and solid propellant, prioritizing the data based on launch time versus sensor passing, processing the data, and applying known constituent properties to the data sets where key areas of work in this endeavor. Results of this work demonstrate a unique capability in monitoring man-made pollution and the extent the pollution can spread to surrounding areas.

  15. Infrared Astrophysics in the SOFIA Era - An Overview

    NASA Astrophysics Data System (ADS)

    Yorke, Harold W.

    2018-06-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) provides the international astronomical community access to a broad range of instrumentation that covers wavelengths spanning the near to far infrared. The high spectral resolution of many of these instruments in several wavelength bands is unmatched by any existing or near future planned facility. The far infrared polarization capabilities of one of its instruments, HAWC+, is also unique. Moreover, SOFIA allows for additional instrument augmentations, as new state-of-the-art photometric, spectrometric, and polarimetric capabilities have been added and are being further improved. The fact that SOFIA provides ample mass, power, computing capabilities as well as 4K cooling eases the constraints on future instrument design, technical readiness, and the instrument build to an extent not possible for space-borne missions. We will review SOFIA's current and future planned capabilities and highlight specific science areas for which the stratospheric observatory will be able to significantly advance Origins science topics.

  16. ADDRESSING HUMAN EXPOSURE TO AIR POLLUTANTS AROUND BUILDINGS IN URBAN AREAS WITH COMPUTATIONAL FLUID DYNAMICS (CFD) MODELS

    EPA Science Inventory

    Computational Fluid Dynamics (CFD) simulations provide a number of unique opportunities for expanding and improving capabilities for modeling exposures to environmental pollutants. The US Environmental Protection Agency's National Exposure Research Laboratory (NERL) has been c...

  17. Plasmid DNA Delivery: Nanotopography Matters.

    PubMed

    Song, Hao; Yu, Meihua; Lu, Yao; Gu, Zhengying; Yang, Yannan; Zhang, Min; Fu, Jianye; Yu, Chengzhong

    2017-12-20

    Plasmid DNA molecules with unique loop structures have widespread bioapplications, in many cases relying heavily on delivery vehicles to introduce them into cells and achieve their functions. Herein, we demonstrate that control over delicate nanotopography of silica nanoparticles as plasmid DNA vectors has significant impact on the transfection efficacy. For silica nanoparticles with rambutan-, raspberry-, and flower-like morphologies composed of spike-, hemisphere-, and bowl-type subunit nanotopographies, respectively, the rambutan-like nanoparticles with spiky surfaces demonstrate the highest plasmid DNA binding capability and transfection efficacy of 88%, higher than those reported for silica-based nanovectors. Moreover, it is shown that the surface spikes of rambutan nanoparticles provide a continuous open space to bind DNA chains via multivalent interactions and protect the gene molecules sheltered in the spiky layer against nuclease degradation, exhibiting no significant transfection decay. This unique protection feature is in great contrast to a commercial transfection agent with similar transfection performance but poor protection capability against enzymatic cleavage. Our study provides new understandings in the rational design of nonviral vectors for efficient gene delivery.

  18. The Matter in Extreme Conditions instrument at the Linac Coherent Light Source

    PubMed Central

    Nagler, Bob; Arnold, Brice; Bouchard, Gary; Boyce, Richard F.; Boyce, Richard M.; Callen, Alice; Campell, Marc; Curiel, Ruben; Galtier, Eric; Garofoli, Justin; Granados, Eduardo; Hastings, Jerry; Hays, Greg; Heimann, Philip; Lee, Richard W.; Milathianaki, Despina; Plummer, Lori; Schropp, Andreas; Wallace, Alex; Welch, Marc; White, William; Xing, Zhou; Yin, Jing; Young, James; Zastrau, Ulf; Lee, Hae Ja

    2015-01-01

    The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented. PMID:25931063

  19. Terahertz Tools Advance Imaging for Security, Industry

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Picometrix, a wholly owned subsidiary of Advanced Photonix Inc. (API), of Ann Arbor, Michigan, invented the world s first commercial terahertz system. The company improved the portability and capabilities of their systems through Small Business Innovation Research (SBIR) agreements with Langley Research Center to provide terahertz imaging capabilities for inspecting the space shuttle external tanks and orbiters. Now API s systems make use of the unique imaging capacity of terahertz radiation on manufacturing floors, for thickness measurements of coatings, pharmaceutical tablet production, and even art conservation.

  20. Increasing Realism in Virtual Marksmanship Simulators

    DTIC Science & Technology

    2012-12-01

    M16 5.56 mm service rifle M2 .50-caliber machine gun M240 7.62 mm machine gun M9 9 mm Berretta MPI Mean Point of Impact NHQC Navy Handgun...Corps 14 Concepts in Programs, 2008, p. 214). ISMT has the capability to use a wide variety of weapons, including the .50cal. machinegun ( M2 ), 9...a time. ISMT has the unique capability to “provide immediate feedback to the instructor and trainee on weapon trigger pull, cant position, barrel

  1. Vertical mixing and methane photochemistry in the atmosphere of Uranus: Analysis of Voyager UVS occultation experiments

    NASA Technical Reports Server (NTRS)

    Bishop, James

    1991-01-01

    Extensive capabilities were developed in the analysis of ultraviolet spectrometer (UVS) absorptive lightcurves. The application of these capabilities to the Voyager UVS data sets from Uranus and Neptune has provided significant findings regarding the stratospheres of these planets. In particular, the direct comparison between photochemical models and UVS measurements accomplished by these efforts is unique, and it helps to guarantee that the information returned by the Voyager 2 spacecraft is being used to the fullest extent possible.

  2. Application of circular consensus sequencing and network analysis to characterize the bovine IgG repertoire

    USDA-ARS?s Scientific Manuscript database

    Background: Vertebrate immune systems generate diverse repertoires of antibodies capable of mediating response to a variety of antigens. Next generation sequencing methods provide unique approaches to a number of immuno-based research areas including antibody discovery and engineering, disease surve...

  3. Elemental Composition of Mars Return Samples Using X-Ray Fluorescence Imaging at the National Synchrotron Light Source II

    NASA Astrophysics Data System (ADS)

    Thieme, J.; Hurowitz, J. A.; Schoonen, M. A.; Fogelqvist, E.; Gregerson, J.; Farley, K. A.; Sherman, S.; Hill, J.

    2018-04-01

    NSLS-II at BNL provides a unique and critical capability to perform assessments of the elemental composition and the chemical state of Mars returned samples using synchrotron radiation X-ray fluorescence imaging and X-ray absorption spectroscopy.

  4. JWST Planetary Observations Within the Solar System

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan; Hammel, Heidi; Schaller, Emily; Sonneborn, George; Orton, Glenn; Rieke, George; Rieke, Marcia

    2010-01-01

    JWST provides capabilities unmatched by other telescopic facilities in the near to mid infrared part of the electromagnetic spectrum. Its combination of broad wavelength range, high sensitivity and near diffraction-limited imaging around two microns wavelength make it a high value facility for a variety of Solar System targets. Beyond Neptune, a class of cold, large bodies that include Pluto, Triton and Eris exhibits surface deposits of nitrogen, methane, and other molecules that are poorly observed from the ground, but for which JWST might provide spectral mapping at high sensitivity and spatial resolution difficult to match with the current generation of ground-based observatories. The observatory will also provide unique sensitivity in a variety of near and mid infrared windows for observing relatively deep into the atmospheres of Uranus and Neptune, searching there for minor species. It will examine the Jovian aurora in a wavelength regime where the background atmosphere is dark. Special provision of a subarray observing strategy may allow observation of Jupiter and Saturn over a larger wavelength range despite their large surface brightnesses, allowing for detailed observation of transient phenomena including large scale storms and impact-generation disturbances. JWST's observations of Saturn's moon Titan will overlap with and go beyond the 2017 end-of-mission for Cassini, providing an important extension to the time-series of meteorological studies for much of northern hemisphere summer. It will overlap with a number of other planetary missions to targets for which JWST can make unique types of observations. JWST provides a platform for linking solar system and extrasolar planet studies through its unique observational capabilities in both arenas.

  5. Eddy current inspection of graphite fiber components

    NASA Technical Reports Server (NTRS)

    Workman, G. L.; Bryson, C. C.

    1990-01-01

    The recognition of defects in materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques. The unique capabilities of E-probes and horseshoe probes for inspecting probes for inspecting graphite fiber materials were evaluated and appear to hold great promise once the technology development matures. The initial results are described of modeling eddy current interactions with certain flaws in graphite fiber samples.

  6. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomanowski, B. A., E-mail: b.a.lomanowski@durham.ac.uk; Sharples, R. M.; Meigs, A. G.

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  7. Building a Cadre of Space Professionals With Responsive Lift

    DTIC Science & Technology

    2003-04-01

    doing the impossible is fun. — Walt Disney The current space program at the Academy provides cadets with a unique opportunity for hands-on experience...However, I know proving that a low cost system can be developed and provide a useful capability is a challenge. Hopefully this paper is a start ...launch frequency, and (2) launch cost. For example, to provide USAFA cadets some space mission experience in their academic careers , we must

  8. On Using Meta-Modeling and Multi-Modeling to Address Complex Problems

    ERIC Educational Resources Information Center

    Abu Jbara, Ahmed

    2013-01-01

    Models, created using different modeling techniques, usually serve different purposes and provide unique insights. While each modeling technique might be capable of answering specific questions, complex problems require multiple models interoperating to complement/supplement each other; we call this Multi-Modeling. To address the syntactic and…

  9. NETL- High-Pressure Combustion Research Facility

    ScienceCinema

    None

    2018-02-14

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  10. Graduate students navigating social-ecological research: insights from the Long-Term Ecological Research Network

    Treesearch

    Sydne Record; Paige F. B. Ferguson; Elise Benveniste; Rose A. Graves; Vera W. Pfeiffer; Michele Romolini; Christie E. Yorke; Ben Beardmore

    2016-01-01

    Interdisciplinary, collaborative research capable of capturing the feedbacks between biophysical and social systems can improve the capacity for sustainable environmental decision making. Networks of researchers provide unique opportunities to foster social-ecological inquiry. Although insights into interdisciplinary research have been discussed elsewhere,...

  11. Future directions in high-pressure neutron diffraction

    NASA Astrophysics Data System (ADS)

    Guthrie, M.

    2015-04-01

    The ability to manipulate structure and properties using pressure has been well known for many centuries. Diffraction provides the unique ability to observe these structural changes in fine detail on lengthscales spanning atomic to nanometre dimensions. Amongst the broad suite of diffraction tools available today, neutrons provide unique capabilities of fundamental importance. However, to date, the growth of neutron diffraction under extremes of pressure has been limited by the weakness of available sources. In recent years, substantial government investments have led to the construction of a new generation of neutron sources while existing facilities have been revitalized by upgrades. The timely convergence of these bright facilities with new pressure-cell technologies suggests that the field of high-pressure (HP) neutron science is on the cusp of substantial growth. Here, the history of HP neutron research is examined with the hope of gleaning an accurate prediction of where some of these revolutionary capabilities will lead in the near future. In particular, a dramatic expansion of current pressure-temperature range is likely, with corresponding increased scope for extreme-conditions science with neutron diffraction. This increase in coverage will be matched with improvements in data quality. Furthermore, we can also expect broad new capabilities beyond diffraction, including in neutron imaging, small angle scattering and inelastic spectroscopy.

  12. g-LIMIT: A Vibration Isolation System for the Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.

    1998-01-01

    For many microgravity science experiments using the Microgravity Science Glovebox (MSG), the ambient acceleration environment will exceed desirable levels. To provide a more quiescent acceleration environment, a vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being designed. g-LIMIT is the next generation of technology developed for and demonstrated by STABLE on the USML-2 mission in October 1995. Although g-LIMIT is a sub-rack level isolation system that can be used in a variety of applications, g-LIMIT is uniquely optimized for MSG implementation. Standard MSG structural and umbilical interfaces will be used so that the isolation mount is transparent to the user with no additional accommodation requirements. g-LIMIT consists of three integrated isolator modules, each of which is comprised of a dual axis actuator, two axes of acceleration sensing, two axes of position sensing, control electronics, and data transmission capabilities in a minimum-volume package. In addition, this system provides the unique capability for measuring absolute acceleration of the experiment independent of accelerometers as a by-product of the control system and will have the capability of generating pristine accelerations to enhance experiment operations. g-LIMIT is scheduled for flight during the UF-2 mission and will be available to glovebox investigators immediately after characterization testing.

  13. Utah State University's T2 ODV mobility analysis

    NASA Astrophysics Data System (ADS)

    Davidson, Morgan E.; Bahl, Vikas; Wood, Carl G.

    2000-07-01

    In response to ultra-high maneuverability vehicle requirements, Utah State University (USU) has developed an autonomous vehicle with unique mobility and maneuverability capabilities. This paper describes a study of the mobility of the USU T2 Omni-Directional Vehicle (ODV). The T2 vehicle is a mid-scale (625 kg), second-generation ODV mobile robot with six independently driven and steered wheel assemblies. The six wheel, independent steering system is capable of unlimited steering rotation, presenting a unique solution to enhanced vehicle mobility requirements. This mobility study focuses on energy consumption in three basic experiments, comparing two modes of steering: Ackerman and ODV. The experiments are all performed on the same vehicle without any physical changes to the vehicle itself, providing a direct comparison these two steering methodologies. A computer simulation of the T2 mechanical and control system dynamics is described.

  14. Space station operations management

    NASA Technical Reports Server (NTRS)

    Cannon, Kathleen V.

    1989-01-01

    Space Station Freedom operations management concepts must be responsive to the unique challenges presented by the permanently manned international laboratory. Space Station Freedom will be assembled over a three year period where the operational environment will change as significant capability plateaus are reached. First Element Launch, Man-Tended Capability, and Permanent Manned Capability, represent milestones in operational capability that is increasing toward mature operations capability. Operations management concepts are being developed to accomodate the varying operational capabilities during assembly, as well as the mature operational environment. This paper describes operations management concepts designed to accomodate the uniqueness of Space Station Freedoom, utilizing tools and processes that seek to control operations costs.

  15. Double-Acting Sleeve Muscle Actuator for Bio-Robotic Systems.

    PubMed

    Zheng, Hao; Shen, Xiangrong

    2013-11-25

    This paper presents a new type of muscle-like actuator, namely double-acting (DA) sleeve muscle actuator, which is suitable for the actuation of biologically-inspired and biomedical robotic systems, especially those serving human-assistance purposes (prostheses, orthoses, etc .). Developed based on the traditional pneumatic muscle actuator, the new DA sleeve muscle incorporates a unique insert at the center. With the insert occupying the central portion of the internal volume, this new actuator enjoys multiple advantages relative to the traditional pneumatic muscle, including a consistent increase of force capacity over the entire range of motion, and a significant decrease of energy consumption in operation. Furthermore, the insert encompasses an additional chamber, which generates an extension force when pressurized. As such, this new actuator provides a unique bi-directional actuation capability, and, thus, has a potential to significantly simplify the design of a muscle actuator-powered robotic system. To demonstrate this new actuator concept, a prototype has been designed and fabricated, and experiments conducted on this prototype demonstrated the enhanced force capacity and the unique bi-directional actuation capability.

  16. Cryogenic Balance Technology at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Parker, P. A.

    2001-01-01

    This paper provides an overview of force measurement at the National Transonic Facility (NTF). The NTF has unique force measurement requirements that dictate an integration of all aspects of balance design, production, and calibration. An overview of current force measurement capabilities is provided along with new balance development efforts. Research activities in the areas of thermal compensation and balance calibration are presented. Also, areas of future research are detailed.

  17. Overview of the Orion Vibroacoustic Test Capability at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; Hozman, Aron D.; McNelis, Mark E.; Otten, Kim D.

    2008-01-01

    In order to support the environmental test needs for our new Orion and Constellation program, NASA is developing unique world-class test facilities. To optimize this testing of spaceflight hardware while minimizing transportation issues, a one-stop, under one roof test capability is being developed at the Space Power Facility at the NASA Glenn Research Center's Plum Brook Station. This facility will provide the capability to perform the following environmental testing: (1) reverberation acoustic testing, (2) mechanical base-shake sine testing, (3) modal testing, (4) thermal-vacuum testing, and (5) EMI/EMC (electromagnetic interference and compatibility) testing. An overview of this test capability will be provided in this presentation, with special focus on the two new vibroacoustic test facilities currently being designed and built, the Reverberant Acoustic Test Facility (RATF) and the Mechanical Vibration Facility (MVF). Testing of the engineering developmental hardware and qualification hardware of the Orion (Crew Exploration Vehicle) will commence shortly after the facilities are commissioned.

  18. A perspective of synthetic aperture radar for remote sensing

    NASA Technical Reports Server (NTRS)

    Skolnik, M. I.

    1978-01-01

    The characteristics and capabilities of synthetic aperture radar are discussed so as to identify those features particularly unique to SAR. The SAR and Optical images were compared. The SAR is an example of radar that provides more information about a target than simply its location. It is the spatial resolution and imaging capability of SAR that has made its application of interest, especially from spaceborne platforms. However, for maximum utility to remote sensing, it was proposed that other information be extracted from SAR data, such as the cross section with frequency and polarization.

  19. Control of Free-Flying Space Robot Manipulator Systems

    NASA Technical Reports Server (NTRS)

    Cannon, Robert H., Jr.; Rock, Stephen M.; How, Jonathan

    2000-01-01

    This is the final report on the Stanford University portion of a major NASA program in telerobotics called the TRIWG Program, led strongly from NASA Headquarters by David Lavery This portion of the TRIWG research was carried out in Stanford's Aerospace Robotics Laboratory (ARL) to (1) contribute in unique and valuable ways to new fundamental capability for NASA in its space missions (the total contribution came from some 100 PhD-student years of research), and (2) to provide a steady stream of very capable PhD graduates to the American space enterprise.

  20. Advanced Noise Control Fan: A 20-Year Retrospective

    NASA Technical Reports Server (NTRS)

    Sutliff, Dan

    2016-01-01

    The ANCF test bed is used for evaluating fan noise reduction concepts, developing noise measurement technologies, and providing a database for Aero-acoustic code development. Rig Capabilities: 4 foot 16 bladed rotor @ 2500 rpm, Auxiliary air delivery system (3 lbm/sec @ 6/12 psi), Variable configuration (rotor pitch angle, stator count/position, duct length), synthetic acoustic noise generation (tone/broadband). Measurement Capabilities: 112 channels dynamic data system, Unique rotating rake mode measuremen, Farfield (variable radius), Duct wall microphones, Stator vane microphones, Two component CTA w/ traversing, ESP for static pressures.

  1. Unique Procurement Process Expands Microgrid Research Capabilities at the

    Science.gov Websites

    competitive procurement process provided comparative research on multiple controller technologies, which will be made publicly available on GitHub. "We always set out to design and build innovative advance the design and performance of controls for future microgrids, and of the larger U.S. power system

  2. File Server-Based CD-ROM Networking: Using SCSI Express.

    ERIC Educational Resources Information Center

    McQueen, Howard

    1992-01-01

    Provides guidelines for evaluating SCSI Express Novell 386, a new product allowing CD-ROM drives to be attached to a Netware 3.11 file server, increasing CD-ROM networking capability. Specific limitations concerning software, hardware, and human resources are outlined, as well as its unique features and potential for future networking uses. (EA)

  3. Computers and Information Flow.

    ERIC Educational Resources Information Center

    Patrick, R. L.

    This paper is designed to fill the need for an easily understood introduction to the computing and data processing field for the layman who has, or can expect to have, some contact with it. Information provided includes the unique terminology and jargon of the field, the various types of computers and the scope of computational capabilities, and…

  4. An automatic data system for vibration modal tuning and evaluation

    NASA Technical Reports Server (NTRS)

    Salyer, R. A.; Jung, E. J., Jr.; Huggins, S. L.; Stephens, B. L.

    1975-01-01

    A digitally based automatic modal tuning and analysis system developed to provide an operational capability beginning at 0.1 hertz is described. The elements of the system, which provides unique control features, maximum operator visibility, and rapid data reduction and documentation, are briefly described; and the operational flow is discussed to illustrate the full range of capabilities and the flexibility of application. The successful application of the system to a modal survey of the Skylab payload is described. Information about the Skylab test article, coincident-quadrature analysis of modal response data, orthogonality, and damping calculations is included in the appendixes. Recommendations for future application of the system are also made.

  5. Test Activities in the Langley Transonic Dynamics Tunnel and a Summary of Recent Facility Improvements

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Johnson, R. Keith; Piatak, David J.; Florance, Jennifer P.; Rivera, Jose A., Jr.

    2003-01-01

    The Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities compared to testing in air. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. This paper describes TDT capabilities that make it particularly suited for aeroelasticity testing. The paper also discusses the nature of recent test activities in the TDT, including summaries of several specific tests. Finally, the paper documents recent facility improvement projects and the continuous statistical quality assessment effort for the TDT.

  6. Synthetic Immunology: Hacking Immune Cells to Expand Their Therapeutic Capabilities.

    PubMed

    Roybal, Kole T; Lim, Wendell A

    2017-04-26

    The ability of immune cells to survey tissues and sense pathologic insults and deviations makes them a unique platform for interfacing with the body and disease. With the rapid advancement of synthetic biology, we can now engineer and equip immune cells with new sensors and controllable therapeutic response programs to sense and treat diseases that our natural immune system cannot normally handle. Here we review the current state of engineered immune cell therapeutics and their unique capabilities compared to small molecules and biologics. We then discuss how engineered immune cells are being designed to combat cancer, focusing on how new synthetic biology tools are providing potential ways to overcome the major roadblocks for treatment. Finally, we give a long-term vision for the use of synthetic biology to engineer immune cells as a general sensor-response platform to precisely detect disease, to remodel disease microenvironments, and to treat a potentially wide range of challenging diseases.

  7. Hierarchically structured activated carbon for ultracapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Mok-Hwa; Kim, Kwang-Bum; Park, Sun-Min; Roh, Kwang Chul

    2016-02-01

    To resolve the pore-associated bottleneck problem observed in the electrode materials used for ultracapacitors, which inhibits the transport of the electrolyte ions, we designed hierarchically structured activated carbon (HAC) by synthesizing a mesoporous silica template/carbon composite and chemically activating it to simultaneously remove the silica template and increase the pore volume. The resulting HAC had a well-designed, unique porous structure, which allowed for large interfaces for efficient electric double-layer formation. Given the unique characteristics of the HAC, we believe that the developed synthesis strategy provides important insights into the design and fabrication of hierarchical carbon nanostructures. The HAC, which had a specific surface area of 1,957 m2 g-1, exhibited an extremely high specific capacitance of 157 F g-1 (95 F cc-1), as well as a high rate capability. This indicated that it had superior energy storage capability and was thus suitable for use in advanced ultracapacitors.

  8. Synthetic Immunology: Hacking Immune Cells to Expand Their Therapeutic Capabilities

    PubMed Central

    Roybal, Kole T.; Lim, Wendell A.

    2017-01-01

    The ability of immune cells to survey tissues and sense pathologic insults and deviations makes them a unique platform for interfacing with the body and disease. With the rapid advancement of synthetic biology, we can now engineer and equip immune cells with new sensors and controllable therapeutic response programs to sense and treat diseases that our natural immune system cannot normally handle. Here we review the current state of engineered immune cell therapeutics and their unique capabilities compared to small molecules and biologics. We then discuss how engineered immune cells are being designed to combat cancer, focusing on how new synthetic biology tools are providing potential ways to overcome the major roadblocks for treatment. Finally, we give a long-term vision for the use of synthetic biology to engineer immune cells as a general sensor-response platform to precisely detect disease, to remodel disease microenvironments, and to treat a potentially wide range of challenging diseases. PMID:28446063

  9. SIRU utilization. Volume 2: Software description and program documentation

    NASA Technical Reports Server (NTRS)

    Oehrle, J.; Whittredge, R.

    1973-01-01

    A complete description of the additional analysis, development and evaluation provided for the SIRU system as identified in the requirements for the SIRU utilization program is presented. The SIRU configuration is a modular inertial subsystem with hardware and software features that achieve fault tolerant operational capabilities. The SIRU redundant hardware design is formulated about a six gyro and six accelerometer instrument module package. The modules are mounted in this package so that their measurement input axes form a unique symmetrical pattern that corresponds to the array of perpendiculars to the faces of a regular dodecahedron. This six axes array provides redundant independent sensing and the symmetry enables the formulation of an optimal software redundant data processing structure with self-contained fault detection and isolation (FDI) capabilities. Documentation of the additional software and software modifications required to implement the utilization capabilities includes assembly listings and flow charts

  10. Handheld readout electronics to fully exploit the particle discrimination capabilities of elpasolite scintillators

    DOE PAGES

    Budden, B. S.; Stonehill, L. C.; Warniment, A.; ...

    2015-06-10

    In this study, a new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurablemore » to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.« less

  11. Handheld readout electronics to fully exploit the particle discrimination capabilities of elpasolite scintillators

    NASA Astrophysics Data System (ADS)

    Budden, B. S.; Stonehill, L. C.; Warniment, A.; Michel, J.; Storms, S.; Dallmann, N.; Coupland, D. D. S.; Stein, P.; Weller, S.; Borges, L.; Proicou, M.; Duran, G.; Kamto, J.

    2015-09-01

    A new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurable to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.

  12. The New Heavy Gas Testing Capability in the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Rivera, Jose A., Jr.

    1997-01-01

    The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over thirty-five years. The facility has a rich history of significant contributions to the design of many United States commercial transports and military aircraft. The facility has many features which contribute to its uniqueness for aeroelasticity testing; however, perhaps the most important facility capability is the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind-tunnel models. The heavy gas also provides other testing benefits, including reduction in the power requirements to operate the facility during testing. Unfortunately, the use of the original heavy gas has been curtailed due to environmental concerns. A new gas, referred to as R-134a, has been identified as a suitable replacement for the former TDT heavy gas. The TDT is currently undergoing a facility upgrade to allow testing in R-134a heavy gas. This replacement gas will result in an operational test envelope, model scaling advantages, and general testing capabilities similar to those available with the former TDT heavy gas. As such, the TDT is expected to remain a viable facility for aeroelasticity research and aircraft dynamic clearance testing well into the 21st century. This paper describes the anticipated advantages and facility calibration plans for the new heavy gas and briefly reviews several past test programs that exemplify the possible benefits of heavy gas testing.

  13. User applications unique to mobile satellites

    NASA Technical Reports Server (NTRS)

    Castiel, David

    1990-01-01

    As AMSC enters the market with its mobile satellite services, it faces a sophisticated user group that has already experimented with a wide range of communications services, including cellular radio and Ku-band satellite messaging. AMSC's challenge is to define applications unique to the capabilities of its dedicated L band satellite and consistent with the provisions outlined in its FCC license. Through a carefully researched approach to its three main markets (aeronautical, land mobile, and maritime) AMSC is discovering a wellspring of interest in corporate and general aviation, trucking companies, pipeline monitoring and control companies, maritime management firms, telecommunications companies, and government agencies. A general overview is provided of AMSC's FCC license and corporate history, and the specific applications unique to each user group is discussed.

  14. Test Facilities Capability Handbook: Volume 1 - Stennis Space Center (SSC); Volume 2 - Marshall Space Flight Center (MSFC)

    NASA Technical Reports Server (NTRS)

    Hensarling, Paula L.

    2007-01-01

    The John C. Stennis Space Center (SSC) is located in Southern Mississippi near the Mississippi-Louisiana state line. SSC is chartered as the National Aeronautics and Space Administration (NASA) Center of Excellence for large space transportation propulsion system testing. This charter has led to many unique test facilities, capabilities and advanced technologies provided through the supporting infrastructure. SSC has conducted projects in support of such diverse activities as liquid, and hybrid rocket testing and development; material development; non-intrusive plume diagnostics; plume tracking; commercial remote sensing; test technology and more. On May 30, 1996 NASA designated SSC the lead center for rocket propulsion testing, giving the center total responsibility for conducting and/or managing all NASA rocket engine testing. Test services are now available not only for NASA but also for the Department of Defense, other government agencies, academia, and industry. This handbook was developed to provide a summary of the capabilities that exist within SSC. It is intended as a primary resource document, which will provide the reader with the top-level capabilities and characteristics of the numerous test facilities, test support facilities, laboratories, and services. Due to the nature of continually evolving programs and test technologies, descriptions of the Center's current capabilities are provided. Periodic updates and revisions of this document will be made to maintain its completeness and accuracy.

  15. Permanent-magnet flowmeter having improved output-terminal means

    DOEpatents

    August, C.; Myers, H.J.

    1981-10-26

    Disclosed is an improved permanent magnet flowmeter capable of withstanding bending stresses in the direction of induced emf signals. The flowmeter includes a unique terminal arrangement integrally formed with the flowmeter by trepanning opposing wall sections of the flowmeter body. The terminal arrangement provides increased flowmeter sensitivity by increasing the strength of the induced emf signals.

  16. Permanent magnet flowmeter having improved output terminal means

    DOEpatents

    August, Charles; Myers, Harry J.

    1984-01-01

    Disclosed is an improved permanent magnet flowmeter capable of withstanding bending stresses in the direction of induced emf signals. The flowmeter includes a unique terminal arrangement integrally formed with the flowmeter by trepanning opposing wall sections of the flowmeter body. The terminal arrangement provides increased flowmeter sensitivity by increasing the strength of the induced emf signals.

  17. Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy.

    PubMed

    Xu, Lizhi; Gutbrod, Sarah R; Ma, Yinji; Petrossians, Artin; Liu, Yuhao; Webb, R Chad; Fan, Jonathan A; Yang, Zijian; Xu, Renxiao; Whalen, John J; Weiland, James D; Huang, Yonggang; Efimov, Igor R; Rogers, John A

    2015-03-11

    Advanced materials and fractal design concepts form the basis of a 3D conformal electronic platform with unique capabilities in cardiac electrotherapies. Fractal geometries, advanced electrode materials, and thin, elastomeric membranes yield a class of device capable of integration with the entire 3D surface of the heart, with unique operational capabilities in low power defibrillation. Co-integrated collections of sensors allow simultaneous monitoring of physiological responses. Animal experiments on Langendorff-perfused rabbit hearts demonstrate the key features of these systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A drive unit for the instrument pointing system

    NASA Technical Reports Server (NTRS)

    Birner, R.; Roth, M.

    1981-01-01

    The requirements, capabilities, and unique design features of the instrument pointing system drive units (DU) are presented. The DU's are identical for all three gimbal axes (elevation, cross elevation, and azimuth) and provide alternating rotation of shaft versus the housing of + or - 180 deg. The design features include: two ball bearing cartridges using cemented carbide balls coated with TiC a layer; redundant brushless torque motors and resolvers; a load by-pass mechanism driven by a dc torque motor to off-load the bearings during ascent/descent, ground transportation, and to provide an emergency breaking capability; and cabling over each gimbal axis by means of cable follow-up consisting of 13 signal and 15 power flat band cable loops. Test results of disturbance torque characteristics are presented.

  19. Smart Fluid Systems: The Advent of Autonomous Liquid Robotics.

    PubMed

    Chiolerio, A; Quadrelli, Marco B

    2017-07-01

    Organic, inorganic or hybrid devices in the liquid state, kept in a fixed volume by surface tension or by a confining membrane that protects them from a harsh environment, could be used as biologically inspired autonomous robotic systems with unique capabilities. They could change shape according to a specific exogenous command or by means of a fully integrated adaptive system, and provide an innovative solution for many future applications, such as space exploration in extreme or otherwise challenging environments, post-disaster search and rescue in ground applications, compliant wearable devices, and even in the medical field for in vivo applications. This perspective provides an initial assessment of existing capabilities that could be leveraged to pursue the topic of "Smart Fluid Systems" or "Liquid Engineered Systems".

  20. WFIRST: Science in the Solar System

    NASA Astrophysics Data System (ADS)

    Milam, Stefanie N.; Holler, Bryan J.; Bauer, James M.; West, Robert; WFIRST Solar System Working Group

    2018-01-01

    Future space telescopes offer unprecedented sensitivity and spatial resolution at wavelengths that are inaccessible from the ground due to the Earth’s atmosphere, and will work in concert with future in situ robotic crafts and large ground-based facilities to address key questions for planetary science. Additionally, they provide broader perspectives in both targets and timelines for planetary missions that orbit, land, or fly by a given target. Space observatories are not constrained to a specific target, and provide global context as well as source-to-source comparisons that are not always achieved from directed missions.WFIRST will provide imaging and spectroscopic capabilities from 0.6-2.0 μm and will be a potential contemporary and eventual successor to JWST. Observations of asteroids, the giant planets and their satellites, Kuiper Belt Objects (KBOs), and comets will be possible through both the Guest Investigator (GI) and Guest Observer (GO) programs. Surveys of minor bodies and time domain studies of variable surfaces and atmospheres are uniquely well-suited for WFIRST with its 0.28 deg2 field of view (at ~0.11”/pixel). We will present our recent study of the capabilities for solar system science and highlight unique cases presented in the WFIRST white paper (arXiv: http://arxiv.org/abs/1709.02763).

  1. The Space Shuttle

    NASA Technical Reports Server (NTRS)

    Moffitt, William L.

    2003-01-01

    As missions have become increasingly more challenging over the years, the most adaptable and capable element of space shuttle operations has proven time and again to be human beings. Human space flight provides unique aspects of observation. interaction and intervention that can reduce risk and improve mission success. No other launch vehicle - in development or in operation today - can match the space shuttle's human space flight capabilities. Preserving U.S. leadership in human space flight requires a strategy to meet those challenges. The ongoing development of next generation vehicles, along with upgrades to the space shuttle, is the most effective means for assuring our access to space.

  2. A unique facility for V/STOL aircraft hover testing

    NASA Technical Reports Server (NTRS)

    Culpepper, R. G.; Murphy, R. D.

    1979-01-01

    The paper discusses the Navy's XFV-12A tethered hover testing capabilities utilizing NASA's Impact Dynamic Research Facility (IDRF) at Langley. The facility allows for both static and dynamic tethered hover test operations to be undertaken with safety. The installation which consists of the 'Z' system (tether), restraint system, static tiedowns and the control room and console, is presented in detail. Among the capabilities demonstrated were the ability to recover the aircraft anytime during a test, to rapidly and safely define control limits, and to provide a realistic environment for pilot training and proficiency in VTOL flight.

  3. A highly sensitive biological detection substrate based on TiO2 nanowires supporting gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeng, Yuan; Tan, Hai-jun; Cheng, Xiu-Lan; Chen, Rui; Wang, Ying

    2011-12-01

    Surface enhanced Raman scattering (SERS) has attracted widespread concern in the field of bioassay because it can enhance normally weak Raman signal by several orders of magnitude and facilitate the highly sensitive detection of molecules. Conventional SERS substrates are prepared by placing metal nanoparticles on a planar surface. Here we show a unique SERS substrate stacked by disordered TiO2 nanowires (TiO2-NWs) supportig gold nanocrystals. The structure can be easily fabricated by chemical synthesis at low cost. The COMSOL model simulation shows the designed SERS substrate is capable of output high Local Field Enhancement (LFE) in the Near Infrared region (NIR) that is the optimal wavelength in bio-detection because of both the unique coupling enhancement effect amony nearby Au nanocrystals on TiO2-NWs and the Suface Plasmon Resonance (SPR) effect of TiO2 -NWs. The as-prepared transparent and freestanding SERS substrate is capable of detecting extremely low concentration R6G molecular, showing much higher Raman signal because of the extremely large surface area and the uniqueTiO2-NWs self-assemblied by Au nanocrystals. These results provide a new approach to ultrasensitive bioassay device.

  4. NASA Lewis Research Center's Preheated Combustor and Materials Test Facility

    NASA Technical Reports Server (NTRS)

    Nemets, Steve A.; Ehlers, Robert C.; Parrott, Edith

    1995-01-01

    The Preheated Combustor and Materials Test Facility (PCMTF) in the Engine Research Building (ERB) at the NASA Lewis Research Center is one of two unique combustor facilities that provide a nonvitiated air supply to two test stands, where the air can be used for research combustor testing and high-temperature materials testing. Stand A is used as a research combustor stand, whereas stand B is used for cyclic and survivability tests of aerospace materials at high temperatures. Both stands can accommodate in-house and private industry research programs. The PCMTF is capable of providing up to 30 lb/s (pps) of nonvitiated, 450 psig combustion air at temperatures ranging from 850 to 1150 g F. A 5000 gal tank located outdoors adjacent to the test facility can provide jet fuel at a pressure of 900 psig and a flow rate of 11 gal/min (gpm). Gaseous hydrogen from a 70,000 cu ft (CF) tuber is also available as a fuel. Approximately 500 gpm of cooling water cools the research hardware and exhaust gases. Such cooling is necessary because the air stream reaches temperatures as high as 3000 deg F. The PCMTF provides industry and Government with a facility for studying the combustion process and for obtaining valuable test information on advanced materials. This report describes the facility's support systems and unique capabilities.

  5. Sandia QIS Capabilities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Richard P.

    2017-07-01

    Sandia National Laboratories has developed a broad set of capabilities in quantum information science (QIS), including elements of quantum computing, quantum communications, and quantum sensing. The Sandia QIS program is built atop unique DOE investments at the laboratories, including the MESA microelectronics fabrication facility, the Center for Integrated Nanotechnologies (CINT) facilities (joint with LANL), the Ion Beam Laboratory, and ASC High Performance Computing (HPC) facilities. Sandia has invested $75 M of LDRD funding over 12 years to develop unique, differentiating capabilities that leverage these DOE infrastructure investments.

  6. The Fluids Integrated Rack and Light Microscopy Module Integrated Capabilities

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Gati, Frank; Snead, John H.; Hill, Myron E.; Griffin, DeVon W.

    2003-01-01

    The Fluids Integrated Rack (FIR), a facility class payload, and the Light Microscopy Module (LMM), a subrack payload, are scheduled to be launched in 2005. The LMM integrated into the FIR will provide a unique platform for conducting fluids and biological experiments on ISS. The FIR is a modular, multi-user scientific research facility that will fly in the U.S. laboratory module, Destiny, of the International Space Station (ISS). The first payload in the FIR will be the Light Microscopy Module (LMM). The LMM is planned as a remotely controllable, automated, on-orbit microscope subrack facility, allowing flexible scheduling and control of fluids and biology experiments within the FIR. Key diagnostic capabilities for meeting science requirements include video microscopy to observe microscopic phenomena and dynamic interactions, interferometry to make thin film measurements with nanometer resolution, laser tweezers for particle manipulation, confocal microscopy to provide enhanced three-dimensional visualization of structures, and spectrophotometry to measure photonic properties of materials. The LMM also provides experiment sample containment for frangibles and fluids. This paper will provide a description of the current FIR and LMM designs, planned capabilities and key features. In addition a brief description of the initial five experiments planned for LMM/FIR will be provided.

  7. Multiple dopant injection system for small rocket engines

    NASA Technical Reports Server (NTRS)

    Sakala, G. G.; Raines, N. G.

    1992-01-01

    The Diagnostics Test Facility (DTF) at NASA's Stennis Space Center (SSC) was designed and built to provide a standard rocket engine exhaust plume for use in the research and development of engine health monitoring instrumentation. A 1000 lb thrust class liquid oxygen (LOX)-gaseous hydrogen (GH2) fueled rocket engine is used as the subscale plume source to simulate the SSME during experimentation and instrument development. The ability of the DTF to provide efficient, and low cost test operations makes it uniquely suited for plume diagnostic experimentation. The most unique feature of the DTF is the Multiple Dopant Injection System (MDIS) that is used to seed the exhaust plume with the desired element or metal alloy. The dopant injection takes place at the fuel injector, yielding a very uniform and homogeneous distribution of the seeding material in the exhaust plume. The MDIS allows during a single test firing of the DTF, the seeding of the exhaust plume with up to three different dopants and also provides distilled water base lines between the dopants. A number of plume diagnostic-related experiments have already utilized the unique capabilities of the DTF.

  8. Uniform resolution of compact identifiers for biomedical data

    PubMed Central

    Wimalaratne, Sarala M.; Juty, Nick; Kunze, John; Janée, Greg; McMurry, Julie A.; Beard, Niall; Jimenez, Rafael; Grethe, Jeffrey S.; Hermjakob, Henning; Martone, Maryann E.; Clark, Tim

    2018-01-01

    Most biomedical data repositories issue locally-unique accessions numbers, but do not provide globally unique, machine-resolvable, persistent identifiers for their datasets, as required by publishers wishing to implement data citation in accordance with widely accepted principles. Local accessions may however be prefixed with a namespace identifier, providing global uniqueness. Such “compact identifiers” have been widely used in biomedical informatics to support global resource identification with local identifier assignment. We report here on our project to provide robust support for machine-resolvable, persistent compact identifiers in biomedical data citation, by harmonizing the Identifiers.org and N2T.net (Name-To-Thing) meta-resolvers and extending their capabilities. Identifiers.org services hosted at the European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), and N2T.net services hosted at the California Digital Library (CDL), can now resolve any given identifier from over 600 source databases to its original source on the Web, using a common registry of prefix-based redirection rules. We believe these services will be of significant help to publishers and others implementing persistent, machine-resolvable citation of research data. PMID:29737976

  9. Evaluation of RCAS Inflow Models for Wind Turbine Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tangler, J.; Bir, G.

    The finite element structural modeling in the Rotorcraft Comprehensive Analysis System (RCAS) provides a state-of-the-art approach to aeroelastic analysis. This, coupled with its ability to model all turbine components, results in a methodology that can simulate complex system interactions characteristic of large wind. In addition, RCAS is uniquely capable of modeling advanced control algorithms and the resulting dynamic responses.

  10. Learning on-Location: Evaluating the Instructional Design for Just-in-Time Learning in Interdisciplinary Short-Term Study Abroad

    ERIC Educational Resources Information Center

    Coryell, J. E.

    2013-01-01

    In the current era of global society, adults need to cultivate cognitive and affective capabilities for interacting in a wide variety of work and living situations. Studying abroad can provide unique learning opportunities toward this end. Good intentions in offering study abroad experiences do not, however, always produce the kind of learning,…

  11. Visible-light optical coherence tomography: a review

    NASA Astrophysics Data System (ADS)

    Shu, Xiao; Beckmann, Lisa; Zhang, Hao F.

    2017-12-01

    Visible-light optical coherence tomography (vis-OCT) is an emerging imaging modality, providing new capabilities in both anatomical and functional imaging of biological tissue. It relies on visible light illumination, whereas most commercial and investigational OCTs use near-infrared light. As a result, vis-OCT requires different considerations in engineering design and implementation but brings unique potential benefits to both fundamental research and clinical care of several diseases. Here, we intend to provide a summary of the development of vis-OCT and its demonstrated applications. We also provide perspectives on future technology improvement and applications.

  12. Unique Results and Lessons Learned From the TSS Missions

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.

    2016-01-01

    The Tethered Satellite System (TSS) Space Shuttle missions, TSS-1 in 1993 and TSS-1R in 1996, were the height of space tether technology development in the U.S. Altogether, the investment made by NASA and the Italian Space Agency (ASI) over the thirteen-year period of the TSS Program totaled approximately $400M-exclusive of the two Space Shuttle flights provided by NASA. Since those two pioneering missions, there have been several smaller tether flight experiments, but interest in this promising technology has waned within NASA as well as the DOD agencies. This is curious in view of the unique capabilities of space tether systems and the fact that they have been flight validated in earth orbit and shown to perform better than the preflight dynamic or electrodynamic theoretical predictions. While it is true that the TSS-1 and TSS-1R missions experienced technical difficulties, the causes of these early developmental problems are now known to have been engineering design flaws, material selection, and procedural issues that (1) are unrelated to the basic viability of space tether technology, and (2) can be readily corrected. The purpose of this paper is to review the dynamic and electrodynamic fundamentals of space tethers and the unique capabilities they afford (that are enabling to certain types of space missions); to elucidate the nature, cause, and solution of the early developmental problems; and to provide an update on progress made in development of the technology.

  13. Conceptual Drivers for an Exploration Medical System

    NASA Technical Reports Server (NTRS)

    Antonsen, Erik; Hanson, Andrea; Shah, Ronak; Reed, Rebekah; Canga, Michael

    2016-01-01

    Interplanetary spaceflight, such as NASA's proposed three-year mission to Mars, provides unique and novel challenges when compared with human spaceflight to date. Extended distance and multi-year missions introduce new elements of operational complexity and additional risk. These elements include: inability to resupply medications and consumables, inability to evacuate injured or ill crew, uncharted psychosocial conditions, and communication delays that create a requirement for some level of autonomous medical capability. Because of these unique challenges, the approaches used in prior programs have limited application to a Mars mission. On a Mars mission, resource limitations will significantly constrain available medical capabilities, and require a paradigm shift in the approach to medical system design and risk mitigation for crew health. To respond to this need for a new paradigm, the Exploration Medical Capability (ExMC) Element is assessing each Mars mission phase-transit, surface stay, rendezvous, extravehicular activity, and return-to identify and prioritize medical needs for the journey beyond low Earth orbit (LEO). ExMC is addressing both planned medical operations, and unplanned contingency medical operations that meld clinical needs and research needs into a single system. This assessment is being used to derive a gap analysis and studies to support meaningful medical capabilities trades. These trades, in turn, allow the exploration medical system design to proceed from both a mission centric and ethics-based approach, and to manage the risks associated with the medical limitations inherent in an exploration class mission. This paper outlines the conceptual drivers used to derive medical system and vehicle needs from an integrated vision of how medical care will be provided within this paradigm. Keywords: (Max 6 keywords: exploration, medicine, spaceflight, Mars, research, NASA)

  14. Development and approach to low-frequency microgravity isolation systems

    NASA Technical Reports Server (NTRS)

    Grodsinsky, Carlos M.

    1990-01-01

    The low-gravity environment provided by space flight has afforded the science community a unique arena for the study of fundamental and technological sciences. However, the dynamic environment observed on space shuttle flights and predicted for Space Station Freedom has complicated the analysis of prior microgravity experiments and prompted concern for the viability of proposed space experiments requiring long-term, low-gravity environments. Thus, isolation systems capable of providing significant improvements to this random environment are being developed. The design constraints imposed by acceleration-sensitive, microgravity experiment payloads in the unique environment of space and a theoretical background for active isolation are discussed. A design is presented for a six-degree-of-freedom, active, inertial isolation system based on the baseline relative and inertial isolation techniques described.

  15. Neural architecture design based on extreme learning machine.

    PubMed

    Bueno-Crespo, Andrés; García-Laencina, Pedro J; Sancho-Gómez, José-Luis

    2013-12-01

    Selection of the optimal neural architecture to solve a pattern classification problem entails to choose the relevant input units, the number of hidden neurons and its corresponding interconnection weights. This problem has been widely studied in many research works but their solutions usually involve excessive computational cost in most of the problems and they do not provide a unique solution. This paper proposes a new technique to efficiently design the MultiLayer Perceptron (MLP) architecture for classification using the Extreme Learning Machine (ELM) algorithm. The proposed method provides a high generalization capability and a unique solution for the architecture design. Moreover, the selected final network only retains those input connections that are relevant for the classification task. Experimental results show these advantages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Stretchable and Tunable Microtectonic ZnO-Based Sensors and Photonics.

    PubMed

    Gutruf, Philipp; Zeller, Eike; Walia, Sumeet; Nili, Hussein; Sriram, Sharath; Bhaskaran, Madhu

    2015-09-16

    The concept of realizing electronic applications on elastically stretchable "skins" that conform to irregularly shaped surfaces is revolutionizing fundamental research into mechanics and materials that can enable high performance stretchable devices. The ability to operate electronic devices under various mechanically stressed states can provide a set of unique functionalities that are beyond the capabilities of conventional rigid electronics. Here, a distinctive microtectonic effect enabled oxygen-deficient, nanopatterned zinc oxide (ZnO) thin films on an elastomeric substrate are introduced to realize large area, stretchable, transparent, and ultraportable sensors. The unique surface structures are exploited to create stretchable gas and ultraviolet light sensors, where the functional oxide itself is stretchable, both of which outperform their rigid counterparts under room temperature conditions. Nanoscale ZnO features are embedded in an elastomeric matrix function as tunable diffraction gratings, capable of sensing displacements with nanometre accuracy. These devices and the microtectonic oxide thin film approach show promise in enabling functional, transparent, and wearable electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The International Space Station's Multi-Purpose Logistics Module, Thermal Performance of the First Five Flights

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; Cho, Frank

    2003-01-01

    The Multi-Purpose Logistics Module is the primary carrier for transport of pressurized payload to the International Space Station. Performing five missions within a thirteen month span provided a unique opportunity to gather a great deal of information toward understanding and verifying the orbital performance of the vehicle. This paper will provide a brief overview of the hardware history and design capabilities followed by a summary of the missions flown, resource requirements and possibilities for the future.

  18. The Hubble Space Telescope high speed photometer

    NASA Technical Reports Server (NTRS)

    Vancitters, G. W., Jr.; Bless, R. C.; Dolan, J. F.; Elliot, J. L.; Robinson, E. L.; White, R. L.

    1988-01-01

    The Hubble Space Telescope will provide the opportunity to perform precise astronomical photometry above the disturbing effects of the atmosphere. The High Speed Photometer is designed to provide the observatory with a stable, precise photometer with wide dynamic range, broad wavelenth coverage, time resolution in the microsecond region, and polarimetric capability. Here, the scientific requirements for the instrument are examined, the unique design features of the photometer are explored, and the improvements to be expected over the performance of ground-based instruments are projected.

  19. Application of surface geophysics to ground-water investigations

    USGS Publications Warehouse

    Zohdy, Adel A.R.; Eaton, Gordon P.; Mabey, Don R.

    1974-01-01

    This manual reviews the standard methods of surface geophysics applicable to ground-water investigations. It covers electrical methods, seismic and gravity methods, and magnetic methods. The general physical principles underlying each method and its capabilities and limitations are described. Possibilities for non-uniqueness of interpretation of geophysical results are noted. Examples of actual use of the methods are given to illustrate applications and interpretation in selected geohydrologic environments. The objective of the manual is to provide the hydrogeologist with a sufficient understanding of the capabilities, imitations, and relative cost of geophysical methods to make sound decisions as to when to use of these methods is desirable. The manual also provides enough information for the hydrogeologist to work with a geophysicist in designing geophysical surveys that differentiate significant hydrogeologic changes.

  20. Smart Fluid Systems: The Advent of Autonomous Liquid Robotics

    PubMed Central

    2017-01-01

    Organic, inorganic or hybrid devices in the liquid state, kept in a fixed volume by surface tension or by a confining membrane that protects them from a harsh environment, could be used as biologically inspired autonomous robotic systems with unique capabilities. They could change shape according to a specific exogenous command or by means of a fully integrated adaptive system, and provide an innovative solution for many future applications, such as space exploration in extreme or otherwise challenging environments, post‐disaster search and rescue in ground applications, compliant wearable devices, and even in the medical field for in vivo applications. This perspective provides an initial assessment of existing capabilities that could be leveraged to pursue the topic of “Smart Fluid Systems” or “Liquid Engineered Systems”. PMID:28725530

  1. Integration of Multifidelity Multidisciplinary Computer Codes for Design and Analysis of Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A.; Ozoroski, Lori P.; Fenbert, James W.; Shields, Elwood W.; Li, Wu

    2011-01-01

    This paper documents the development of a conceptual level integrated process for design and analysis of efficient and environmentally acceptable supersonic aircraft. To overcome the technical challenges to achieve this goal, a conceptual design capability which provides users with the ability to examine the integrated solution between all disciplines and facilitates the application of multidiscipline design, analysis, and optimization on a scale greater than previously achieved, is needed. The described capability is both an interactive design environment as well as a high powered optimization system with a unique blend of low, mixed and high-fidelity engineering tools combined together in the software integration framework, ModelCenter. The various modules are described and capabilities of the system are demonstrated. The current limitations and proposed future enhancements are also discussed.

  2. The rationale and design features for the 40 by 80/80 by 120 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Mort, K. W.; Kelly, M. W.; Hickey, D. H.

    1976-01-01

    A substantial increase in the test capability of full scale wind tunnels is considered. In order to determine the most cost effective means for providing this desired increase in test capability, a series of design studies were conducted of various new facilities as well as of major modifications to the existing 40- by 80-foot wind tunnel. The most effective trade between test capability and facility cost was provided by repowering the existing 40 by 80 foot wind tunnel to increase the maximum speed from 200 knots to 300 knots and by the addition of a new 80- by 120-foot test section having a 110 knot maximum speed. The design of the facility is described with special emphasis on the unique features, such as the drive system which absorbs nearly four times the power without an increase in noise, and the large flow diversion devices required to interface the two test sections to a single drive.

  3. Intelligent hand-portable proliferation sensing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.

    1997-08-01

    Argonne National Laboratory, with support from DOE`s Office of Nonproliferation and National Security, is currently developing an intelligent hand-portable sensor system. This system is designed specifically to support the intelligence community with the task of in-field sensing of nuclear proliferation and related activities. Based upon pulsed laser photo-ionization time-of-flight mass spectrometry technology, this novel sensing system is capable of quickly providing a molecular or atomic analysis of specimens. The system is capable of analyzing virtually any gas phase molecule, or molecule that can be induced into the gas phase by (for example) sample heating. This system has the unique advantagesmore » of providing unprecedented portability, excellent sensitivity, tremendous fieldability, and a high performance/cost ratio. The system will be capable of operating in a highly automated manner for on-site inspections, and easily modified for other applications such as perimeter monitoring aboard a plane or drone. The paper describes the sensing system.« less

  4. Modularity, comparative cognition and human uniqueness.

    PubMed

    Shettleworth, Sara J

    2012-10-05

    Darwin's claim 'that the difference in mind between man and the higher animals … is certainly one of degree and not of kind' is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the 'core knowledge' account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research.

  5. Modularity, comparative cognition and human uniqueness

    PubMed Central

    Shettleworth, Sara J.

    2012-01-01

    Darwin's claim ‘that the difference in mind between man and the higher animals … is certainly one of degree and not of kind’ is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the ‘core knowledge’ account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research. PMID:22927578

  6. A Web Service Protocol Realizing Interoperable Internet of Things Tasking Capability.

    PubMed

    Huang, Chih-Yuan; Wu, Cheng-Hung

    2016-08-31

    The Internet of Things (IoT) is an infrastructure that interconnects uniquely-identifiable devices using the Internet. By interconnecting everyday appliances, various monitoring, and physical mashup applications can be constructed to improve human's daily life. In general, IoT devices provide two main capabilities: sensing and tasking capabilities. While the sensing capability is similar to the World-Wide Sensor Web, this research focuses on the tasking capability. However, currently, IoT devices created by different manufacturers follow different proprietary protocols and are locked in many closed ecosystems. This heterogeneity issue impedes the interconnection between IoT devices and damages the potential of the IoT. To address this issue, this research aims at proposing an interoperable solution called tasking capability description that allows users to control different IoT devices using a uniform web service interface. This paper demonstrates the contribution of the proposed solution by interconnecting different IoT devices for different applications. In addition, the proposed solution is integrated with the OGC SensorThings API standard, which is a Web service standard defined for the IoT sensing capability. Consequently, the Extended SensorThings API can realize both IoT sensing and tasking capabilities in an integrated and interoperable manner.

  7. Geosynchronous SAR for Terrain & Atmosphere with short Revisit (GeoSTARe)

    NASA Astrophysics Data System (ADS)

    Monti-Guarnieri, Andrea; Recchia, Andrea; Rocca, Fabio; Bombaci, Ornella; Germani, Chiara; Broquetas, Antoni; Wadge, Geoff; Hobbs, Steve

    2016-08-01

    GeoSTARe would be a mission combining the continuous view capabilities from geostationary orbits of super-continental areas with the all-day, all-weather imaging capabilities of Synthetic Aperture Radar. It would complement Copernicus Sentinel-1 bringing the repeat time from days down to hours.In that, it would provide novel and unique observations. The well proven potentials of Radar in sensing roughness, deformations, and moisture, combined with the short time to get any image, from minutes to an hour, and the immediate data download and exploitation (thanks to the geostationary orbit) makes GeoSTARe a game changer in those fields where hourly-to-daily monitoring is a must.

  8. Rotary Actuators Based on Pneumatically Driven Elastomeric Structures.

    PubMed

    Gong, Xiangyu; Yang, Ke; Xie, Jingjin; Wang, Yanjun; Kulkarni, Parth; Hobbs, Alexander S; Mazzeo, Aaron D

    2016-09-01

    Unique elastomeric rotary actuators based on pneumatically driven peristaltic motion are demonstrated. Using silicone-based wheels, these motors enable a new class of soft locomotion not found in nature, which is capable of withstanding impact, traversing irregular terrain, and operating in water. For soft robotics, this work marks progress toward providing torque without bending actuators. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Manufacturing Methods and Technology Project Summary Reports

    DTIC Science & Technology

    1986-07-01

    Yuma Proving Ground in January 1985. The ARBAT system provides a unique real-time computer capability to identify all critical flight...cheaper tnaii the existing radar system. This prototype is expected to save over ^1 million per year at Yuma Proving Grounds . TECOM is planning to...purchase 4 production ballistic radar systems to be installed at Yuma Proving Grounds , Dugway Proving Grounds , and Jefferson Proving Grounds at a

  10. Defence Industrial Strategy

    DTIC Science & Technology

    2005-12-01

    for early clarity, we needed to act quickly. There are three levels to this strategy :  promoting an overall business environment which is attractive...and that the level of influence and attractiveness of MOD business varies by sector and by type of company. But the UK provides a unique environment...defence business environment in a particular country, and at the specific level , to achieve defined outcomes in particular capability or technology

  11. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  12. KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  13. Social and Economic Analysis Branch: integrating policy, social, economic, and natural science

    USGS Publications Warehouse

    Schuster, Rudy; Walters, Katie D.

    2015-01-01

    The Fort Collins Science Center's Social and Economic Analysis Branch provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and natural science in the context of human–natural resource interactions. Our research provides scientific understanding and support for the management and conservation of our natural resources in support of multiple agency missions. We focus on meeting the scientific needs of the Department of the Interior natural resource management bureaus in addition to fostering partnerships with other Federal and State managers to protect, restore, and enhance our environment. The Social and Economic Analysis Branch has an interdisciplinary group of scientists whose primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to support the development of skills in natural resource management activities. Management and research issues associated with human-resource interactions typically occur in a unique context and require knowledge of both natural and social sciences, along with the skill to integrate multiple science disciplines. In response to these challenging contexts, Social and Economic Analysis Branch researchers apply a wide variety of social science concepts and methods which complement our rangeland/agricultural, wildlife, ecology, and biology capabilities. The goal of the Social and Economic Analysis Branch's research is to enhance natural-resource management, agency functions, policies, and decisionmaking.

  14. Noble Metal Nanoparticles for Biosensing Applications

    PubMed Central

    Doria, Gonçalo; Conde, João; Veigas, Bruno; Giestas, Leticia; Almeida, Carina; Assunção, Maria; Rosa, João; Baptista, Pedro V.

    2012-01-01

    In the last decade the use of nanomaterials has been having a great impact in biosensing. In particular, the unique properties of noble metal nanoparticles have allowed for the development of new biosensing platforms with enhanced capabilities in the specific detection of bioanalytes. Noble metal nanoparticles show unique physicochemical properties (such as ease of functionalization via simple chemistry and high surface-to-volume ratios) that allied with their unique spectral and optical properties have prompted the development of a plethora of biosensing platforms. Additionally, they also provide an additional or enhanced layer of application for commonly used techniques, such as fluorescence, infrared and Raman spectroscopy. Herein we review the use of noble metal nanoparticles for biosensing strategies—from synthesis and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics laboratory. PMID:22438731

  15. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), points to data on the console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), points to data on the console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  16. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), stands inside the Japanese Experiment Module (JEM) that is undergoing a Multi-Element Integrated Test (MEIT) with the U.S. Node 2. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), stands inside the Japanese Experiment Module (JEM) that is undergoing a Multi-Element Integrated Test (MEIT) with the U.S. Node 2. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  17. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  18. Sensor Management for Applied Research Technologies (SMART)-On Demand Modeling (ODM) Project

    NASA Technical Reports Server (NTRS)

    Goodman, M.; Blakeslee, R.; Hood, R.; Jedlovec, G.; Botts, M.; Li, X.

    2006-01-01

    NASA requires timely on-demand data and analysis capabilities to enable practical benefits of Earth science observations. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep learning curve associated with each sensor and data type. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output. A three year project, entitled Sensor Management for Applied Research Technologies (SMART) - On Demand Modeling (ODM), will develop and demonstrate the readiness of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities that integrate both Earth observations and forecast model output into new data acquisition and assimilation strategies. The advancement of SWE-enabled systems (i.e., use of SensorML, sensor planning services - SPS, sensor observation services - SOS, sensor alert services - SAS and common observation model protocols) will have practical and efficient uses in the Earth science community for enhanced data set generation, real-time data assimilation with operational applications, and for autonomous sensor tasking for unique data collection.

  19. Tool making, hand morphology and fossil hominins.

    PubMed

    Marzke, Mary W

    2013-11-19

    Was stone tool making a factor in the evolution of human hand morphology? Is it possible to find evidence in fossil hominin hands for this capability? These questions are being addressed with increasingly sophisticated studies that are testing two hypotheses; (i) that humans have unique patterns of grip and hand movement capabilities compatible with effective stone tool making and use of the tools and, if this is the case, (ii) that there exist unique patterns of morphology in human hands that are consistent with these capabilities. Comparative analyses of human stone tool behaviours and chimpanzee feeding behaviours have revealed a distinctive set of forceful pinch grips by humans that are effective in the control of stones by one hand during manufacture and use of the tools. Comparative dissections, kinematic analyses and biomechanical studies indicate that humans do have a unique pattern of muscle architecture and joint surface form and functions consistent with the derived capabilities. A major remaining challenge is to identify skeletal features that reflect the full morphological pattern, and therefore may serve as clues to fossil hominin manipulative capabilities. Hominin fossils are evaluated for evidence of patterns of derived human grip and stress-accommodation features.

  20. Tool making, hand morphology and fossil hominins

    PubMed Central

    Marzke, Mary W.

    2013-01-01

    Was stone tool making a factor in the evolution of human hand morphology? Is it possible to find evidence in fossil hominin hands for this capability? These questions are being addressed with increasingly sophisticated studies that are testing two hypotheses; (i) that humans have unique patterns of grip and hand movement capabilities compatible with effective stone tool making and use of the tools and, if this is the case, (ii) that there exist unique patterns of morphology in human hands that are consistent with these capabilities. Comparative analyses of human stone tool behaviours and chimpanzee feeding behaviours have revealed a distinctive set of forceful pinch grips by humans that are effective in the control of stones by one hand during manufacture and use of the tools. Comparative dissections, kinematic analyses and biomechanical studies indicate that humans do have a unique pattern of muscle architecture and joint surface form and functions consistent with the derived capabilities. A major remaining challenge is to identify skeletal features that reflect the full morphological pattern, and therefore may serve as clues to fossil hominin manipulative capabilities. Hominin fossils are evaluated for evidence of patterns of derived human grip and stress-accommodation features. PMID:24101624

  1. A Forest Fire Sensor Web Concept with UAVSAR

    NASA Astrophysics Data System (ADS)

    Lou, Y.; Chien, S.; Clark, D.; Doubleday, J.; Muellerschoen, R.; Zheng, Y.

    2008-12-01

    We developed a forest fire sensor web concept with a UAVSAR-based smart sensor and onboard automated response capability that will allow us to monitor fire progression based on coarse initial information provided by an external source. This autonomous disturbance detection and monitoring system combines the unique capabilities of imaging radar with high throughput onboard processing technology and onboard automated response capability based on specific science algorithms. In this forest fire sensor web scenario, a fire is initially located by MODIS/RapidFire or a ground-based fire observer. This information is transmitted to the UAVSAR onboard automated response system (CASPER). CASPER generates a flight plan to cover the alerted fire area and executes the flight plan. The onboard processor generates the fuel load map from raw radar data, used with wind and elevation information, predicts the likely fire progression. CASPER then autonomously alters the flight plan to track the fire progression, providing this information to the fire fighting team on the ground. We can also relay the precise fire location to other remote sensing assets with autonomous response capability such as Earth Observation-1 (EO-1)'s hyper-spectral imager to acquire the fire data.

  2. Development of NASA Technical Standards Program Relative to Enhancing Engineering Capabilities

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Vaughan, William W.

    2003-01-01

    The enhancement of engineering capabilities is an important aspect of any organization; especially those engaged in aerospace development activities. Technical Standards are one of the key elements of this endeavor. The NASA Technical Standards Program was formed in 1997 in response to the NASA Administrator s directive to develop an Agencywide Technical Standards Program. The Program s principal objective involved the converting Center-unique technical standards into Agency wide standards and the adoption/endorsement of non-Government technical standards in lieu of government standards. In the process of these actions, the potential for further enhancement of the Agency s engineering capabilities was noted relative to value of being able to access Agencywide the necessary full-text technical standards, standards update notifications, and integration of lessons learned with technical standards, all available to the user from one Website. This was accomplished and is now being enhanced based on feedbacks from the Agency's engineering staff and supporting contractors. This paper addresses the development experiences with the NASA Technical Standards Program and the enhancement of the Agency's engineering capabilities provided by the Program s products. Metrics are provided on significant aspects of the Program.

  3. Physics, Physicists and Revolutionary Capabilities for the Intelligence Community

    NASA Astrophysics Data System (ADS)

    Porter, Lisa

    2009-05-01

    Over the past several decades, physicists have made seminal contributions to technological capabilities that have enabled the U.S. intelligence community to provide unexpected and unparalleled information to our nation's decision makers and help dispel the cloud of uncertainty they face in dealing with crises and challenges around the world. As we look to the future, we recognize that the ever-quickening pace of changes in the world and the threats we must confront demand continued innovation and improvement in the capabilities needed to provide the information on which our leaders depend. This talk will focus on some of the major technological challenges that the intelligence community faces in the coming years, and the many ways that physicists can help to overcome those challenges. The potential impact of physicists on the future capabilities of the US intelligence community is huge. In addition to the more obvious and direct impact through research in areas ranging from novel sensors to quantum information science, the unique approach physicists bring to a problem can also have an indirect but important effect by influencing how challenges in areas ranging from cybersecurity to advanced analytics are approached and solved. Several examples will be given.

  4. Epitaxial Growth of Hetero-Ln-MOF Hierarchical Single Crystals for Domain- and Orientation-Controlled Multicolor Luminescence 3D Coding Capability.

    PubMed

    Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan; Su, Cheng-Yong

    2017-11-13

    Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budden, B. S.; Stonehill, L. C.; Warniment, A.

    In this study, a new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurablemore » to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.« less

  6. Item Unique Identification Capability Expansion: Established Process Analysis, Cost Benefit Analysis, and Optimal Marking Procedures

    DTIC Science & Technology

    2014-12-01

    chemical etching EDM electrical discharge machine EID enterprise identifier EOSS Engineering Operational Sequencing System F Fahrenheit...Center in Corona , California, released a DoN IUID Marking Guide, which made recommendations on how to mark legacy items. It provides technical...uploaded into the IUID registry managed by the Naval Surface Warfare Center (NSWC) in Corona , California. There is no set amount of information

  7. A Dynamic Non Energy Storing Guidance Constraint with Motion Redirection for Robot Assisted Surgery

    DTIC Science & Technology

    2016-12-01

    Abstract— Haptically enabled hands-on or tele-operated surgical robotic systems provide a unique opportunity to integrate pre- and intra... robot -assisted surgical systems aim at improving and extending human capabilities, by exploiting the advantages of robotic systems while keeping the...move during the operation. Robot -assisted beating heart surgery is an example of procedures that can benefit from dynamic constraints. Their

  8. Operation Protective Edge - A Unique Challenge for a Civilian EMS Agency.

    PubMed

    Jaffe, Eli; Strugo, Refael; Wacht, Oren

    2015-10-01

    During July through August 2014, Operation Protective Edge, a military conflict between Israel and the Hamas regime in Gaza, dramatically affected both populations. Magen David Adom (MDA), the Israeli national Emergency Medical Service (EMS) and a member of the Red Cross, faced a unique challenge during the conflict: to continue providing crucial service to the entire civilian population of Israel, which was under constant missile threat. This challenge included not only providing immediate care for routine EMS calls under missile threat, but also preparing and delivering immediate care to civilians injured in attacks on major cities, as well as small communities, in Israel. This task is a challenge for a civilian EMS agency that normally operates in a non-military environment, yet, in an instant, must enhance its capability to respond to a considerable threat to its population. During Operation Protective Edge, MDA provided care for 842 wounded civilians and utilized a significant amount of its resources. Providing EMS services for a civilian population in a mixed civilian/military scenario is a challenging task on a national level for an EMS system, especially when the threat lasts for weeks. This report describes MDA's preparedness and operations during Operation Protective Edge, and the unique EMS challenges and dilemmas the agency faced.

  9. A unique high heat flux facility for testing hypersonic engine components

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Gladden, Herbert J.

    1990-01-01

    This paper describes the Hot Gas Facility, a unique, reliable, and cost-effective high-heat-flux facility for testing hypersonic engine components developed at the NASA Lewis Research Center. The Hot Gas Facility is capable of providing heat fluxes ranging from 200 Btu/sq ft per sec on flat surfaces up to 8000 Btu/sq ft per sec at a leading edge stagnation point. The usefulness of the Hot Gas Facility for the NASP community was demonstrated by testing hydrogen-cooled structures over a range of temperatures and pressures. Ranges of the Reynolds numbers, Prandtl numbers, enthalpy, and heat fluxes similar to those expected during hypersonic flights were achieved.

  10. Applications of UAVs for Remote Sensing of Critical Infrastructure

    NASA Technical Reports Server (NTRS)

    Wegener, Steve; Brass, James; Schoenung, Susan

    2003-01-01

    The surveillance of critical facilities and national infrastructure such as waterways, roadways, pipelines and utilities requires advanced technological tools to provide timely, up to date information on structure status and integrity. Unmanned Aerial Vehicles (UAVs) are uniquely suited for these tasks, having large payload and long duration capabilities. UAVs also have the capability to fly dangerous and dull missions, orbiting for 24 hours over a particular area or facility providing around the clock surveillance with no personnel onboard. New UAV platforms and systems are becoming available for commercial use. High altitude platforms are being tested for use in communications, remote sensing, agriculture, forestry and disaster management. New payloads are being built and demonstrated onboard the UAVs in support of these applications. Smaller, lighter, lower power consumption imaging systems are currently being tested over coffee fields to determine yield and over fires to detect fire fronts and hotspots. Communication systems that relay video, meteorological and chemical data via satellite to users on the ground in real-time have also been demonstrated. Interest in this technology for infrastructure characterization and mapping has increased dramatically in the past year. Many of the UAV technological developments required for resource and disaster monitoring are being used for the infrastructure and facility mapping activity. This paper documents the unique contributions from NASA;s Environmental Research Aircraft and Sensor Technology (ERAST) program to these applications. ERAST is a UAV technology development effort by a consortium of private aeronautical companies and NASA. Details of demonstrations of UAV capabilities currently underway are also presented.

  11. Light-weight analyzer for odor recognition

    DOEpatents

    Vass, Arpad A; Wise, Marcus B

    2014-05-20

    The invention provides a light weight analyzer, e.g., detector, capable of locating clandestine graves. The detector utilizes the very specific and unique chemicals identified in the database of human decompositional odor. This detector, based on specific chemical compounds found relevant to human decomposition, is the next step forward in clandestine grave detection and will take the guess-work out of current methods using canines and ground-penetrating radar, which have historically been unreliable. The detector is self contained, portable and built for field use. Both visual and auditory cues are provided to the operator.

  12. USAF Academy Center for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Dearborn, M.; Chun, F.; Liu, J.; Tippets, R.

    2011-09-01

    Since the days of Sputnik, the Air Force has maintained the surveillance of space and a position catalog of objects that can be tracked by primarily ground-based radars and optical systems. Recent events in space such as the test of the Chinese anti-satellite weapon in 2007 and the collision between an Iridium and Russian Cosmo satellite have demonstrated the great need to have a more comprehensive awareness of the situation in space. Hence space situational awareness (SSA) has become an increasingly important mission to the Air Force and to the security of the United States. To help meet the need for future leaders knowledgeable about SSA, the Air Force Academy formally stood up the Center for Space Situational Awareness (CSSAR). The goal of the CSSAR is to provide a unique combination of educational operational experience as well as a world-class research capability for hands-on education in SSA. In order to meet this goal, the CSSAR is implementing an array of sensors, operations center, and associated software, and analysis tools. For example we have radar receivers for bi-static returns from the VHF space fence, a network of small aperture telescopes, AFSPC astro standards software, and Joint Mission System software. This paper focuses on the observational capabilities of our telescopes. In general, the preferable method for characterizing a satellite is to obtain a high-resolution image. However, high-resolution images from groundbased telescopes are only achievable if the satellite is large and close in range. Thus small satellites in low-earth orbits and large satellites in geosynchronous orbits are essentially unresolved in the focal plane of a ground-based telescope. Building ever larger telescopes capable of tracking fast enough for satellites at high resolution requires tremendous resources and funding. Cost is one of the reasons we decided to develop a network of small, commercially available telescopes spatially diverse and networked together. We call this the Falcon Telescope Network (FTN) and it provides the Air Force Academy, Air Force and Department of Defense with a unique capability that is essentially non-existent in today’s research and operational environment. With the FTN we will have the eventual capability to conduct simultaneous observations of satellites for non-resolved space object identification (NRSOI). We present preliminary photometric and spectroscopic observations from LEO to GEO satellites. The Air Force Academy has a unique mission to educate future leaders in the science, technology, and operations in missions critical to the Air Force and the CSSAR is stepping up to meet these requirements for the SSA mission.

  13. Cognitive Depth and Hybrid Warfare: Exploring the Nature of Unique Time, Space, and Logic Frames

    DTIC Science & Technology

    2017-05-25

    ELEMENT NUMBER 6. AUTHOR(S) MAJ Jerrid Allen 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...their irregular organization , conventional capabilities, and perceived efficacy against the Israeli Defense Forces. This is an incomplete interpretation...and it misses how Hezbollah’s organization and capabilities were functions of an operational system informed by a unique and contextual hybrid

  14. Technology Challenges in Small UAV Development

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.; Vranas, Thomas L.; Motter, Mark; Shams, Qamar; Pollock, Dion S.

    2005-01-01

    Development of highly capable small UAVs present unique challenges for technology protagonists. Size constraints, the desire for ultra low cost and/or disposable platforms, lack of capable design and analysis tools, and unique mission requirements all add to the level of difficulty in creating state-of-the-art small UAVs. This paper presents the results of several small UAV developments, the difficulties encountered, and proposes a list of technology shortfalls that need to be addressed.

  15. Transition to Operations Plans for GPM Datasets

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Jedlovec, Gary; Case, Jonathan; Leroy, Anita; Molthan, Andrew; Bell, Jordan; Fuell, Kevin; Stano, Geoffrey

    2013-01-01

    Founded in 2002 at the National Space Science Technology Center at Marshall Space Flight Center in Huntsville, AL. Focused on transitioning unique NASA and NOAA observations and research capabilities to the operational weather community to improve short-term weather forecasts on a regional and local scale. NASA directed funding; NOAA funding from Proving Grounds (PG). Demonstrate capabilities experimental products to weather applications and societal benefit to prepare forecasters for the use of data from next generation of operational satellites. Objective of this poster is to highlight SPoRT's research to operations (R2O) paradigm and provide examples of work done by the team with legacy instruments relevant to GPM in order to promote collaborations with groups developing GPM products.

  16. ICE telemetry performance

    NASA Technical Reports Server (NTRS)

    Layland, J. W.

    1986-01-01

    Acquiring telemetry data from the International Cometary Explorer (ICE) at its encounter with the comet Giacobini-Zinner on September 11, 1985 proved to be among the more difficult challenges the DSN has met in recent years. The ICE spacecraft began its life as an Earth orbiting monitor of the Solar Wind. At the comet, ICE was nearly 50 times as distant as in its initial role, with its signal strength diminished nearly 2500 times. Collecting enough of that weak signal to provide meaningful scientific data about the comet required unique new telemetry capabilities and special handling by the DSN. This article describes the development and validation of the DSN telemetry capability for ICE from its early planning stages through the successful comet encounter.

  17. Studying Cold Nuclear Matter with the MPC-EX of PHENIX

    NASA Astrophysics Data System (ADS)

    Grau, Nathan; Phenix Collaboration

    2017-09-01

    Highly asymmetric collision systems, such as d+Au, provide a unique environment to study cold nuclear matter. Potential measurements range from pinning down the modification of the nuclear wave function, i.e. saturation, to studying final state interactions, i.e. energy loss. The PHENIX experiment has enhanced the muon piston calorimeter (MPC) with a silicon-tungsten preshower, the MPC-EX. With its fine segmentation the MPC-EX extends the photon detection capability at 3 < | η | < 3.8. In this talk we review the current status of the detector, its calibration, and its identification capabilities using the 2016 d+Au dataset. We also discuss the specific physics observables the MPC-EX can measure.

  18. Self-Nulling Eddy Current Probe for Surface and Subsurface Flaw Detection

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Fulton, J. P.; Nath, S.; Namkung, M.; Simpson, J. W.

    1994-01-01

    An eddy current probe which provides a null-signal in the presence of unflawed material without the need for any balancing circuitry has been developed at NASA Langley Research Center. Such a unique capability of the probe reduces set-up time, eliminates tester configuration errors, and decreases instrumentation requirements. The probe is highly sensitive to surface breaking fatigue cracks, and shows excellent resolution for the measurement of material thickness, including material loss due to corrosion damage. The presence of flaws in the material under test causes an increase in the extremely stable and reproducible output voltage of the probe. The design of the probe and some examples illustrating its flaw detection capabilities are presented.

  19. A Web Service Protocol Realizing Interoperable Internet of Things Tasking Capability

    PubMed Central

    Huang, Chih-Yuan; Wu, Cheng-Hung

    2016-01-01

    The Internet of Things (IoT) is an infrastructure that interconnects uniquely-identifiable devices using the Internet. By interconnecting everyday appliances, various monitoring, and physical mashup applications can be constructed to improve human’s daily life. In general, IoT devices provide two main capabilities: sensing and tasking capabilities. While the sensing capability is similar to the World-Wide Sensor Web, this research focuses on the tasking capability. However, currently, IoT devices created by different manufacturers follow different proprietary protocols and are locked in many closed ecosystems. This heterogeneity issue impedes the interconnection between IoT devices and damages the potential of the IoT. To address this issue, this research aims at proposing an interoperable solution called tasking capability description that allows users to control different IoT devices using a uniform web service interface. This paper demonstrates the contribution of the proposed solution by interconnecting different IoT devices for different applications. In addition, the proposed solution is integrated with the OGC SensorThings API standard, which is a Web service standard defined for the IoT sensing capability. Consequently, the Extended SensorThings API can realize both IoT sensing and tasking capabilities in an integrated and interoperable manner. PMID:27589759

  20. A global range military transport: The ostrich

    NASA Technical Reports Server (NTRS)

    Aguiar, John; Booker, Cecilia; Hoffman, Eric; Kramar, James; Manahan, Orlando; Serranzana, Ray; Taylor, Mike

    1993-01-01

    Studies have shown that there is an increasing need for a global range transport capable of carrying large numbers of troops and equipment to potential trouble spots throughout the world. The Ostrich is a solution to this problem. The Ostrich is capable of carrying 800,000 pounds 6,500 n.m. and returning with 15 percent payload, without refueling. With a technology availability date in 2010 and an initial operating capability of 2015, the aircraft incorporates many advanced technologies including laminar flow control, composite primary structures, and a unique multibody design. By utilizing current technology, such as using McDonnell Douglas C-17 fuselage for the outer fuselages on the Ostrich, the cost for the aircraft was reduced. The cost of the Ostrich per aircraft is $1.2 billion with a direct operating cost of $56,000 per flight hour. The Ostrich will provide a valuable service as a logistical transport capable of rapidly projecting a significant military force or humanitarian aid anywhere in the world.

  1. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  2. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  3. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  4. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  5. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  6. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  7. KENNEDY SPACE CENTER, FLA. - An overview of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - An overview of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  8. KENNEDY SPACE CENTER, FLA. - A view of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - A view of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  9. Imaging Sensor Flight and Test Equipment Software

    NASA Technical Reports Server (NTRS)

    Freestone, Kathleen; Simeone, Louis; Robertson, Byran; Frankford, Maytha; Trice, David; Wallace, Kevin; Wilkerson, DeLisa

    2007-01-01

    The Lightning Imaging Sensor (LIS) is one of the components onboard the Tropical Rainfall Measuring Mission (TRMM) satellite, and was designed to detect and locate lightning over the tropics. The LIS flight code was developed to run on a single onboard digital signal processor, and has operated the LIS instrument since 1997 when the TRMM satellite was launched. The software provides controller functions to the LIS Real-Time Event Processor (RTEP) and onboard heaters, collects the lightning event data from the RTEP, compresses and formats the data for downlink to the satellite, collects housekeeping data and formats the data for downlink to the satellite, provides command processing and interface to the spacecraft communications and data bus, and provides watchdog functions for error detection. The Special Test Equipment (STE) software was designed to operate specific test equipment used to support the LIS hardware through development, calibration, qualification, and integration with the TRMM spacecraft. The STE software provides the capability to control instrument activation, commanding (including both data formatting and user interfacing), data collection, decompression, and display and image simulation. The LIS STE code was developed for the DOS operating system in the C programming language. Because of the many unique data formats implemented by the flight instrument, the STE software was required to comprehend the same formats, and translate them for the test operator. The hardware interfaces to the LIS instrument using both commercial and custom computer boards, requiring that the STE code integrate this variety into a working system. In addition, the requirement to provide RTEP test capability dictated the need to provide simulations of background image data with short-duration lightning transients superimposed. This led to the development of unique code used to control the location, intensity, and variation above background for simulated lightning strikes at user-selected locations.

  10. A Summary of Actinide Enrichment Technologies and Capability Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Bradley D.; Robinson, Sharon M.

    2017-01-01

    The evaluation performed in this study indicates that a new program is needed to efficiently provide a national actinide radioisotope enrichment capability to produce milligram-to-gram quantities of unique materials for user communities. This program should leverage past actinide enrichment, the recent advances in stable isotope enrichment, and assessments of the future requirements to cost effectively develop this capability while establishing an experience base for a new generation of researchers in this vital area. Preliminary evaluations indicate that an electromagnetic isotope separation (EMIS) device would have the capability to meet the future needs of the user community for enriched actinides. Themore » EMIS technology could be potentially coupled with other enrichment technologies, such as irradiation, as pre-enrichment and/or post-enrichment systems to increase the throughput, reduce losses of material, and/or reduce operational costs of the base EMIS system. Past actinide enrichment experience and advances in the EMIS technology applied in stable isotope separations should be leveraged with this new evaluation information to assist in the establishment of a domestic actinide radioisotope enrichment capability.« less

  11. Fluorescence lifetime as a new parameter in analytical cytology measurements

    NASA Astrophysics Data System (ADS)

    Steinkamp, John A.; Deka, Chiranjit; Lehnert, Bruce E.; Crissman, Harry A.

    1996-05-01

    A phase-sensitive flow cytometer has been developed to quantify fluorescence decay lifetimes on fluorochrome-labeled cells/particles. This instrument combines flow cytometry (FCM) and frequency-domain fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved lifetime measurements, while preserving conventional FCM capabilities. Cells are analyzed as they intersect a high-frequency, intensity-modulated (sine wave) laser excitation beam. Fluorescence signals are processed by conventional and phase-sensitive signal detection electronics and displayed as frequency distribution histograms. In this study we describe results of fluorescence intensity and lifetime measurements on fluorescently labeled particles, cells, and chromosomes. Examples of measurements on intrinsic cellular autofluorescence, cells labeled with immunofluorescence markers for cell- surface antigens, mitochondria stains, and on cellular DNA and protein binding fluorochromes will be presented to illustrate unique differences in measured lifetimes and changes caused by fluorescence quenching. This innovative technology will be used to probe fluorochrome/molecular interactions in the microenvironment of cells/chromosomes as a new parameter and thus expand the researchers' understanding of biochemical processes and structural features at the cellular and molecular level.

  12. Trauma care in Oman: A call for action.

    PubMed

    Mehmood, Amber; Allen, Katharine A; Al-Maniri, Abdullah; Al-Kashmiri, Ammar; Al-Yazidi, Mohamed; Hyder, Adnan A

    2017-12-01

    Many Arab countries have undergone the epidemiologic transition of diseases with increasing economic development and a proportionately decreasing prevalence of communicable diseases. With this transition, injuries have emerged as a major cause of mortality and morbidity in the Gulf Cooperation Council countries in addition to diseases of affluence. Injuries are the number one cause of years of life lost and disability-adjusted life-years in the Sultanate of Oman. The burden of injuries, which affects mostly young Omani males, has a unique geographic distribution that is in contrast to the trauma care capabilities of the country. The concentration of health care resources in the northern part of the country makes it difficult for the majority of Omanis who live elsewhere to access high-quality and time-sensitive care. A broader multisectorial national injury prevention strategy should be evidence based and must strengthen human resources, service delivery, and information systems to improve care of the injured and loss of life. This paper provides a unique overview of the Omani health system with the goal of examining its trauma care capabilities and injury control policies. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Comparison of the protein-coding gene content of Chlamydia trachomatis and Protochlamydia amoebophila using a Raspberry Pi computer.

    PubMed

    Robson, James F; Barker, Daniel

    2015-10-13

    To demonstrate the bioinformatics capabilities of a low-cost computer, the Raspberry Pi, we present a comparison of the protein-coding gene content of two species in phylum Chlamydiae: Chlamydia trachomatis, a common sexually transmitted infection of humans, and Candidatus Protochlamydia amoebophila, a recently discovered amoebal endosymbiont. Identifying species-specific proteins and differences in protein families could provide insights into the unique phenotypes of the two species. Using a Raspberry Pi computer, sequence similarity-based protein families were predicted across the two species, C. trachomatis and P. amoebophila, and their members counted. Examples include nine multi-protein families unique to C. trachomatis, 132 multi-protein families unique to P. amoebophila and one family with multiple copies in both. Most families unique to C. trachomatis were polymorphic outer-membrane proteins. Additionally, multiple protein families lacking functional annotation were found. Predicted functional interactions suggest one of these families is involved with the exodeoxyribonuclease V complex. The Raspberry Pi computer is adequate for a comparative genomics project of this scope. The protein families unique to P. amoebophila may provide a basis for investigating the host-endosymbiont interaction. However, additional species should be included; and further laboratory research is required to identify the functions of unknown or putative proteins. Multiple outer membrane proteins were found in C. trachomatis, suggesting importance for host evasion. The tyrosine transport protein family is shared between both species, with four proteins in C. trachomatis and two in P. amoebophila. Shared protein families could provide a starting point for discovery of wide-spectrum drugs against Chlamydiae.

  14. An Overview of the NASA Sounding Rocket and Balloon Programs

    NASA Technical Reports Server (NTRS)

    Eberspeaker, Philip J.; Smith, Ira S.

    2003-01-01

    The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 50 to 60 missions per year in support of the NASA scientific community. These missions support investigations sponsored by NASA's Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program provides the science community with payload development support, environmental testing, launch vehicles, and launch operations from fixed and mobile launch ranges. Sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface. New technology efforts include GPS payload event triggering, tailored trajectories, new vehicle configuration development to expand current capabilities, and the feasibility assessment of an ultra high altitude sounding rocket vehicle. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. The Long Duration Balloon (LDB) is capable of providing flight durations in excess of two weeks and has had many successful flights since its development. The NASA Balloon Program is currently engaged in the development of the Ultra Long Duration Balloon (ULDB), which will be capable of providing flight times up to 100-days. Additional development efforts are focusing on ultra high altitude balloons, station keeping techniques and planetary balloon technologies.

  15. NASA Johnson Space Center Usability Testing and Analysis Facility (UTAF) Overview

    NASA Technical Reports Server (NTRS)

    Whitmore, M.

    2004-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.

  16. NASA Johnson Space Center Usability Testing and Analysis Facility (WAF) Overview

    NASA Technical Reports Server (NTRS)

    Whitmore, M.

    2004-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.

  17. Human space exploration the next fifty years.

    PubMed

    Williams, David R; Turnock, Matthew

    2011-06-01

    Preparation for the fiftieth anniversary of human spaceflight in the spring of 2011 provides the space faring nations with an opportunity to reflect on past achievements as well as consider the next fifty years of human spaceflight. The International Space Station is a unique platform for long duration life science research that will play a critical role in preparing for future human space exploration beyond low earth orbit. Some feel the future path back to the Moon and on to Mars may be delayed with the current commitment of the United States to support the development of human-rated commercial spacecraft. Others see this as a unique opportunity to leverage the capability of the private sector in expanding access to space exploration. This article provides an overview of the past achievements in human spaceflight and discusses future missions over the next fifty years and the role space medicine will play in extending the time-distance constant of human space exploration.

  18. Ultralow-mass solar-array designs for Halley's comet rendezvous mission

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Rayl, G.

    1978-01-01

    This paper describes the conceptual design study results of photovoltaic arrays capable of powering a Halley's comet rendezvous mission. This mission would be Shuttle-launched, employ a unique form of propulsion (ion drive) which requires high power levels for operation, and operate at distances between 0.6 and 4.5 AU. These requirements make it necessary to develop arrays with extremely high power-to-mass ratio (200 W/kg). In addition, the dual requirements of providing ion thruster power as well as housekeeping power leads to the development of unique methods for mode switching. Both planar and variable-concentrator-enhanced array concepts using ultrathin (50 micron) high-efficiency (up to 12.5%) silicon solar cells coupled with thin (75 micron) plastic encapsulants are considered. In order to satisfy the Shuttle launch environment it was necessary to provide novel methods of both storing and deploying these arrays.

  19. Resilient and Corrosion-proof Rolling Element Bearings Made from Ni-ti Alloys for Aerospace Mechanism Applications and the Ultimate Space Technology Development Platform

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    2014-01-01

    The International Space Station provides a unique microgravity laboratory environment for research. The ISS also serves as an effective platform for the development of technologies and engineered solutions related to living and working in space. The space environment also challenges our capabilities related to lubrication and tribology. In this seminar, Dr. DellaCorte will review the basics of space mechanism tribology and the challenges of providing good lubrication and long-life in the harsh space environment. He will also discuss recent tribological challenges associated with the Solar Alpha Rotary Joint (SARJ) bearings and life support hardware that must operate under severe conditions that are literally out of this world. Each tribology challenge is unique and their solutions often result in new technologies that benefit the tribology community everywhere, even back on Earth

  20. Self-contained microfluidic systems: a review.

    PubMed

    Boyd-Moss, Mitchell; Baratchi, Sara; Di Venere, Martina; Khoshmanesh, Khashayar

    2016-08-16

    Microfluidic systems enable rapid diagnosis, screening and monitoring of diseases and health conditions using small amounts of biological samples and reagents. Despite these remarkable features, conventional microfluidic systems rely on bulky expensive external equipment, which hinders their utility as powerful analysis tools outside of research laboratories. 'Self-contained' microfluidic systems, which contain all necessary components to facilitate a complete assay, have been developed to address this limitation. In this review, we provide an in-depth overview of self-contained microfluidic systems. We categorise these systems based on their operating mechanisms into three major groups: passive, hand-powered and active. Several examples are provided to discuss the structure, capabilities and shortcomings of each group. In particular, we discuss the self-contained microfluidic systems enabled by active mechanisms, due to their unique capability for running multi-step and highly controllable diagnostic assays. Integration of self-contained microfluidic systems with the image acquisition and processing capabilities of smartphones, especially those equipped with accessory optical components, enables highly sensitive and quantitative assays, which are discussed. Finally, the future trends and possible solutions to expand the versatility of self-contained, stand-alone microfluidic platforms are outlined.

  1. Miniature star tracker for small remote sensing satellites

    NASA Astrophysics Data System (ADS)

    Cassidy, Lawrence W.; Schlom, Leslie

    1995-01-01

    Designers of future remote sensing spacecraft, including platforms for Mission to Planet Earth and small satellites, will be driven to provide spacecraft designs that maximize data return and minimize hardware and operating costs. The attitude determination subsystems of these spacecraft must likewise provide maximum capability and versatility at an affordable price. Hughes Danbury Optical Systems (HDOS) has developed the Model HD-1003 Miniature Star Tracker which combines high accuracy, high reliability and growth margin for `all-stellar' capability in a compact, radiation tolerant design that meets these future spacecraft needs and whose cost is competitive with horizon sensors and digital fine sum sensors. Begun in 1991, our HD-1003 development program has now entered the hardware qualification phase. This paper acquaints spacecraft designers with the design and performance capabilities of the HD- 1003 tracker. We highlight the tracker's unique features which include: (1) Very small size (165 cu. in.). (2) Low weight (7 lbs). (3) Multi-star tracking (6 stars simultaneously). (4) Eighteen arc-sec (3-sigma) accuracy. (5) Growth margin for `all-stellar' attitude reference.

  2. Battlespace Dominance 󈨤: Winning the Information War

    DTIC Science & Technology

    1996-06-01

    NRaD is uniquely qualified to provide the expertise and tools to achieve information dominance . Almost every NRaD effort deals with acquiring data, transforming data into...prototyping to fully produced systems. NRaD is applying these capabilities to the central element of future naval warfare information dominance . NRaD’s vision...making information dominance for the warrior a reality is based on achieving five interrelated objectives, or Corporate Initiatives. Our first

  3. High Temperature Latent Heat Thermal Energy Storage to Augment Solar Thermal Propulsion for Microsatellites

    DTIC Science & Technology

    2015-08-30

    Solar Thermal Propulsion for Micro. Sats 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew R. Gilpin 5d...ABSTRACT Solar thermal propulsion (STP) offers an unique combination of thrust and efficiency, providing greater total V capability than chemical...to conventional technologies. The trend in solar thermal research over the past two decades has been towards simplification and miniaturization to

  4. Smart Energy Cryo-refrigerator Technology for the next generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Spagna, Stefano

    2018-01-01

    We describe a “smart energy” cryocooler technology architecture for the next generation Very Large Array that makes use of multiple variable frequency cold heads driven from a single variable speed air cooled compressor. Preliminary experiments indicate that the compressor variable flow control, advanced diagnostics, and the cryo-refrigerator low vibration, provide a unique energy efficient capability for the very large number of antennas that will be employed in this array.

  5. Processing and analysis of commercial satellite image data of the nuclear accident near Chernobyl, U.S.S.R.

    USGS Publications Warehouse

    Sadowski, Franklin G.; Covington, Steven J.

    1987-01-01

    Advanced digital processing techniques were applied to Landsat-5 Thematic Mapper (TM) data and SPOT highresolution visible (HRV) panchromatic data to maximize the utility of images of a nuclear powerplant emergency at Chernobyl in the Soviet Ukraine. The images demonstrate the unique interpretive capabilities provided by the numerous spectral bands of the Thematic Mapper and the high spatial resolution of the SPOT HRV sensor.

  6. DoD High Performance Computing Modernization Program FY16 Annual Report

    DTIC Science & Technology

    2018-05-02

    vortex shedding from rotor blade tips using adaptive mesh refinement gives Helios the unique capability to assess the interaction of these vortices...with the fuselage and nearby rotor blades . Helios provides all the benefits for rotary-winged aircraft that Kestrel does for fixed-wing aircraft...rotor blade upgrade of the CH-47F Chinook helicopter to achieve up to an estimated 2,000 pounds increase in hover thrust (~10%) with limited

  7. Extending the data dictionary for data/knowledge management

    NASA Technical Reports Server (NTRS)

    Hydrick, Cecile L.; Graves, Sara J.

    1988-01-01

    Current relational database technology provides the means for efficiently storing and retrieving large amounts of data. By combining techniques learned from the field of artificial intelligence with this technology, it is possible to expand the capabilities of such systems. This paper suggests using the expanded domain concept, an object-oriented organization, and the storing of knowledge rules within the relational database as a solution to the unique problems associated with CAD/CAM and engineering data.

  8. Modular Fixturing System

    NASA Technical Reports Server (NTRS)

    Littell, Justin Anderson (Inventor); Street, Jon P. (Inventor)

    2017-01-01

    The modular fixturing system of the present invention is modular, reusable and capable of significant customization, both in terms of system radius and system height, allowing it to be arranged and rearranged in numerous unique configurations. The system includes multiple modular stanchions having stanchion shafts and stanchion feet that removably attach to apertures in a table. Angle brackets attached to the modular stanchions support shelves. These shelves in turn provide support to work pieces during fabrication processes such as welding.

  9. Unique Testing Capabilities of the NASA Langley Transonic Dynamics Tunnel, an Exercise in Aeroelastic Scaling

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.

    2013-01-01

    NASA Langley Research Center's Transonic Dynamics Tunnel (TDT) is the world's most capable aeroelastic test facility. Its large size, transonic speed range, variable pressure capability, and use of either air or R-134a heavy gas as a test medium enable unparalleled manipulation of flow-dependent scaling quantities. Matching these scaling quantities enables dynamic similitude of a full-scale vehicle with a sub-scale model, a requirement for proper characterization of any dynamic phenomenon, and many static elastic phenomena. Select scaling parameters are presented in order to quantify the scaling advantages of TDT and the consequence of testing in other facilities. In addition to dynamic testing, the TDT is uniquely well-suited for high risk testing or for those tests that require unusual model mount or support systems. Examples of recently conducted dynamic tests requiring unusual model support are presented. In addition to its unique dynamic test capabilities, the TDT is also evaluated in its capability to conduct aerodynamic performance tests as a result of its flow quality. Results of flow quality studies and a comparison to a many other transonic facilities are presented. Finally, the ability of the TDT to support future NASA research thrusts and likely vehicle designs is discussed.

  10. An aviation security (AVSEC) screening demonstrator for the detection of non-metallic threats at 28-33 GHz

    NASA Astrophysics Data System (ADS)

    Salmon, Neil A.; Bowring, Nick; Hutchinson, Simon; Southgate, Matthew; O'Reilly, Dean

    2013-10-01

    The unique selling proposition of millimetre wave technology for security screening is that it provides a stand-off or portal scenario sensing capability for non-metallic threats. The capabilities to detect some non-metallic threats are investigated in this paper, whilst recommissioning the AVSEC portal screening system at the Manchester Metropolitan University. The AVSEC system is a large aperture (1.6 m) portal screening imager which uses spatially incoherent illumination at 28-33 GHz from mode scrambling cavities to illuminate the subject. The imaging capability is critically analysed in terms of this illumination. A novel technique for the measurement of reflectance, refractive index and extinction coefficient is investigated and this then use to characterise the signatures of nitromethane, hexane, methanol, bees wax and baking flour. Millimetre wave images are shown how these liquids in polycarbonate bottles and the other materials appear against the human body.

  11. High-Resolution Characterization of UMo Alloy Microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devaraj, Arun; Kovarik, Libor; Joshi, Vineet V.

    2016-11-30

    This report highlights the capabilities and procedure for high-resolution characterization of UMo fuels in PNNL. Uranium-molybdenum (UMo) fuel processing steps, from casting to forming final fuel, directly affect the microstructure of the fuel, which in turn dictates the in-reactor performance of the fuel under irradiation. In order to understand the influence of processing on UMo microstructure, microstructure characterization techniques are necessary. Higher-resolution characterization techniques like transmission electron microscopy (TEM) and atom probe tomography (APT) are needed to interrogate the details of the microstructure. The findings from TEM and APT are also directly beneficial for developing predictive multiscale modeling tools thatmore » can predict the microstructure as a function of process parameters. This report provides background on focused-ion-beam–based TEM and APT sample preparation, TEM and APT analysis procedures, and the unique information achievable through such advanced characterization capabilities for UMo fuels, from a fuel fabrication capability viewpoint.« less

  12. Acoustic facilities for human factors research at NASA Langley Research Center: Description and operational capabilities

    NASA Astrophysics Data System (ADS)

    Hubbard, H. H.; Powell, C. A.

    1981-06-01

    A number of facilities were developed which provide a unique test capability for psychoacoustics and related human factors research. The design philosophy, physical layouts, dimensions, construction features, operating capabilities, and example applications for these facilities are described. In the exterior effects room, human subjects are exposed to the types of noises that are experienced outdoors, and in the interior effects room, subjects are exposed to the types of noises and noise-induced vibrations that are experience indoors. Subjects are also exposed to noises in an echo-free environment in the anechoic listening room. An aircraft noise synthesis system, which simulates aircraft flyover noise at an observer position on the ground, is used in conjunction with these three rooms. The passenger ride quality apparatus, a device for studying passenger response to noise and vibration in aircraft, or in other vehicles, is described.

  13. SRAO: optical design and the dual-knife-edge WFS

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas M.; Tokovinin, Andrei

    2016-07-01

    The Southern Robotic Adaptive Optics (SRAO) instrument will bring the proven high-efficiency capabilities of Robo-AO to the Southern-Hemisphere, providing the unique capability to image with high-angular-resolution thousands of targets per year across the entire sky. Deployed on the modern 4.1m SOAR telescope located on Cerro Tololo, the NGS AO system will use an innovative dual-knife-edge wavefront sensor, similar to a pyramid sensor, to enable guiding on targets down to V=16 with diffraction limited resolution in the NIR. The dual-knife-edge wavefront sensor can be up to two orders of magnitude less costly than custom glass pyramids, with similar wavefront error sensitivity and minimal chromatic aberrations. SRAO is capable of observing hundreds of targets a night through automation, allowing confirmation and characterization of the large number of exoplanets produced by current and future missions.

  14. U.S. Department of Energy Space and Defense Power Systems Program Ten-Year Strategic Plan, Volume 1 and Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwight, Carla

    The Department of Energy's Space and Defense Power Systems program provides a unique capability for supplying power systems that function in remote or hostile environments. This capability has been functioning since the early 1960s and counts the National Aeronautics and Space Administration as one of its most prominent customers. This enabling technology has assisted the exploration of our solar system including the planets Jupiter, Saturn, Mars, Neptune, and soon Pluto. This capability is one-of-kind in the world in terms of its experience (over five decades), breadth of power systems flown (over two dozen to date) and range of power levelsmore » (watts to hundreds of watts). This document describes the various components of that infrastructure, work scope, funding needs, and its strategic plans going forward.« less

  15. Acoustic facilities for human factors research at NASA Langley Research Center: Description and operational capabilities

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Powell, C. A.

    1981-01-01

    A number of facilities were developed which provide a unique test capability for psychoacoustics and related human factors research. The design philosophy, physical layouts, dimensions, construction features, operating capabilities, and example applications for these facilities are described. In the exterior effects room, human subjects are exposed to the types of noises that are experienced outdoors, and in the interior effects room, subjects are exposed to the types of noises and noise-induced vibrations that are experience indoors. Subjects are also exposed to noises in an echo-free environment in the anechoic listening room. An aircraft noise synthesis system, which simulates aircraft flyover noise at an observer position on the ground, is used in conjunction with these three rooms. The passenger ride quality apparatus, a device for studying passenger response to noise and vibration in aircraft, or in other vehicles, is described.

  16. Laser dissection sampling modes for direct mass spectral analysis [using a hybrid optical microscopy/laser ablation liquid vortex capture/electrospray ionization system

    DOE PAGES

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2016-02-01

    Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis ofmore » single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.« less

  17. Laser dissection sampling modes for direct mass spectral analysis [using a hybrid optical microscopy/laser ablation liquid vortex capture/electrospray ionization system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis ofmore » single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.« less

  18. NASA Airborne Science Program: NASA Stratospheric Platforms

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  19. Hydrofocusing Bioreactor for Three-Dimensional Cell Culture

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Spaulding, Glenn F.; Tsao, Yow-Min D.; Flechsig, Scott; Jones, Leslie; Soehnge, Holly

    2003-01-01

    The hydrodynamic focusing bioreactor (HFB) is a bioreactor system designed for three-dimensional cell culture and tissue-engineering investigations on orbiting spacecraft and in laboratories on Earth. The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear culture environment simultaneously with the "herding" of suspended cells, tissue assemblies, and air bubbles. Under development for use in the Biotechnology Facility on the International Space Station, the HFB has successfully grown large three-dimensional, tissuelike assemblies from anchorage-dependent cells and grown suspension hybridoma cells to high densities. The HFB, based on the principle of hydrodynamic focusing, provides the capability to control the movement of air bubbles and removes them from the bioreactor without degrading the low-shear culture environment or the suspended three-dimensional tissue assemblies. The HFB also provides unparalleled control over the locations of cells and tissues within its bioreactor vessel during operation and sampling.

  20. The electrophotonic silicon biosensor

    NASA Astrophysics Data System (ADS)

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-09-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale.

  1. Autonomous Space Shuttle

    NASA Technical Reports Server (NTRS)

    Siders, Jeffrey A.; Smith, Robert H.

    2004-01-01

    The continued assembly and operation of the International Space Station (ISS) is the cornerstone within NASA's overall Strategic P an. As indicated in NASA's Integrated Space Transportation Plan (ISTP), the International Space Station requires Shuttle to fly through at least the middle of the next decade to complete assembly of the Station, provide crew transport, and to provide heavy lift up and down mass capability. The ISTP reflects a tight coupling among the Station, Shuttle, and OSP programs to support our Nation's space goal . While the Shuttle is a critical component of this ISTP, there is a new emphasis for the need to achieve greater efficiency and safety in transporting crews to and from the Space Station. This need is being addressed through the Orbital Space Plane (OSP) Program. However, the OSP is being designed to "complement" the Shuttle as the primary means for crew transfer, and will not replace all the Shuttle's capabilities. The unique heavy lift capabilities of the Space Shuttle is essential for both ISS, as well as other potential missions extending beyond low Earth orbit. One concept under discussion to better fulfill this role of a heavy lift carrier, is the transformation of the Shuttle to an "un-piloted" autonomous system. This concept would eliminate the loss of crew risk, while providing a substantial increase in payload to orbit capability. Using the guidelines reflected in the NASA ISTP, the autonomous Shuttle a simplified concept of operations can be described as; "a re-supply of cargo to the ISS through the use of an un-piloted Shuttle vehicle from launch through landing". Although this is the primary mission profile, the other major consideration in developing an autonomous Shuttle is maintaining a crew transportation capability to ISS as an assured human access to space capability.

  2. TOOL ASSEMBLY WITH BI-DIRECTIONAL BEARING

    DOEpatents

    Longhurst, G.E.

    1961-07-11

    A two-direction motion bearing which is incorporated in a refueling nuclear fuel element trsnsfer tool assembly is described. A plurality of bi- directional bearing assembliesare fixed equi-distantly about the circumference of the transfer tool assembly to provide the tool assembly with a bearing surface- for both axial and rotational motion. Each bi-directional bearing assembly contains a plurality of circumferentially bulged rollers mounted in a unique arrangement which will provide a bearing surface for rotational movement of the tool assembly within a bore. The bi-direc tional bearing assembly itself is capable of rational motion and thus provides for longitudinal movement of the tool assembly.

  3. Computer-oriented synthesis of wide-band non-uniform negative resistance amplifiers

    NASA Technical Reports Server (NTRS)

    Branner, G. R.; Chan, S.-P.

    1975-01-01

    This paper presents a synthesis procedure which provides design values for broad-band amplifiers using non-uniform negative resistance devices. Employing a weighted least squares optimization scheme, the technique, based on an extension of procedures for uniform negative resistance devices, is capable of providing designs for a variety of matching network topologies. It also provides, for the first time, quantitative results for predicting the effects of parameter element variations on overall amplifier performance. The technique is also unique in that it employs exact partial derivatives for optimization and sensitivity computation. In comparison with conventional procedures, significantly improved broad-band designs are shown to result.

  4. Transitioning Enhanced Land Surface Initialization and Model Verification Capabilities to the Kenya Meteorological Department (KMD)

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Zavodsky, Bradley T.; Srikishen, Jayanthi; Limaye, Ashutosh; Blankenship, Clay B.

    2016-01-01

    Flooding, severe weather, and drought are key forecasting challenges for the Kenya Meteorological Department (KMD), based in Nairobi, Kenya. Atmospheric processes leading to convection, excessive precipitation and/or prolonged drought can be strongly influenced by land cover, vegetation, and soil moisture content, especially during anomalous conditions and dry/wet seasonal transitions. It is thus important to represent accurately land surface state variables (green vegetation fraction, soil moisture, and soil temperature) in Numerical Weather Prediction (NWP) models. The NASA SERVIR and the Short-term Prediction Research and Transition (SPoRT) programs in Huntsville, AL have established a working partnership with KMD to enhance its regional modeling capabilities. SPoRT and SERVIR are providing experimental land surface initialization datasets and model verification capabilities for capacity building at KMD. To support its forecasting operations, KMD is running experimental configurations of the Weather Research and Forecasting (WRF; Skamarock et al. 2008) model on a 12-km/4-km nested regional domain over eastern Africa, incorporating the land surface datasets provided by NASA SPoRT and SERVIR. SPoRT, SERVIR, and KMD participated in two training sessions in March 2014 and June 2015 to foster the collaboration and use of unique land surface datasets and model verification capabilities. Enhanced regional modeling capabilities have the potential to improve guidance in support of daily operations and high-impact weather and climate outlooks over Eastern Africa. For enhanced land-surface initialization, the NASA Land Information System (LIS) is run over Eastern Africa at 3-km resolution, providing real-time land surface initialization data in place of interpolated global model soil moisture and temperature data available at coarser resolutions. Additionally, real-time green vegetation fraction (GVF) composites from the Suomi-NPP VIIRS instrument is being incorporated into the KMD-WRF runs, using the product generated by NOAA/NESDIS. Model verification capabilities are also being transitioned to KMD using NCAR's Model *Corresponding author address: Jonathan Case, ENSCO, Inc., 320 Sparkman Dr., Room 3008, Huntsville, AL, 35805. Email: Jonathan.Case-1@nasa.gov Evaluation Tools (MET; Brown et al. 2009) software in conjunction with a SPoRT-developed scripting package, in order to quantify and compare errors in simulated temperature, moisture and precipitation in the experimental WRF model simulations. This extended abstract and accompanying presentation summarizes the efforts and training done to date to support this unique regional modeling initiative at KMD. To honor the memory of Dr. Peter J. Lamb and his extensive efforts in bolstering weather and climate science and capacity-building in Africa, we offer this contribution to the special Peter J. Lamb symposium. The remainder of this extended abstract is organized as follows. The collaborating international organizations involved in the project are presented in Section 2. Background information on the unique land surface input datasets is presented in Section 3. The hands-on training sessions from March 2014 and June 2015 are described in Section 4. Sample experimental WRF output and verification from the June 2015 training are given in Section 5. A summary is given in Section 6, followed by Acknowledgements and References.

  5. Solar Orbiter Status Update

    NASA Astrophysics Data System (ADS)

    Zouganelis, Y.; Mueller, D.; St Cyr, O. C.; Gilbert, H. R.

    2016-12-01

    Solar Orbiter, the first mission of ESA's Cosmic Vision 2015-2025 programme, promises to deliver groundbreaking science with previously unavailable observational capabilities provided by a suite of in-situ and remote-sensing instruments in a unique orbit. The mission will address the central question of heliophysics: How does the Sun create and control the heliosphere? The heliosphere represents a uniquely accessible domain of space, where fundamental physical processes common to solar, astrophysical and laboratory plasmas can be studied under conditions impossible to reproduce on Earth and unfeasible to observe from astronomical distances. In this talk, we highlight the scientific goals of Solar Orbiter, address the synergy between this joint ESA/NASA mission and other new space and ground-based observatories, and present the mission's development status.

  6. Synthesis and immobilization of silver nanoparticles on aluminosilicate nanotubes and their antibacterial properties

    NASA Astrophysics Data System (ADS)

    Ipek Yucelen, G.; Connell, Rachel E.; Terbush, Jessica R.; Westenberg, David J.; Dogan, Fatih

    2016-04-01

    A novel colloidal method is presented to synthesize silver nanoparticles on aluminosilicate nanotubes. The technique involves decomposition of AgNO3 solution to Ag nanoparticles in the presence of aluminosilicate nanotubes at room temperature without utilizing of reducing agents or any organic additives. Aluminosilicate nanotubes are shown to be capable of providing a unique chemical environment, not only for in situ conversion of Ag+ into Ag0, but also for stabilization and immobilization of Ag nanoparticles. The synthesis strategy described here could be implemented to obtain self-assembled nanoparticles on other single-walled metal oxide nanotubes for unique applications. Finally, we demonstrated that nanotube/nanoparticle hybrid show strong antibacterial activity toward Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli.

  7. Tracking and data acquisition system for the 1990's. Volume 7: TDAS space technology assessment

    NASA Technical Reports Server (NTRS)

    Khatri, R.

    1983-01-01

    The results of the TDAS and user spacecraft technology assessment effort are provided. For each TDAS Satellite enhancement and user spacecraft element previously enumerated, the technology issues are identified and the R&D needed to resolve these issues is delineated. Subsequently, taking into account developments taking place elsewhere, the addition unique TDAS satellite module and user spacecraft element R&D efforts needed are identified, and conclusions are drawn in each case. From these conclusions, it is evident that with additional unique R&D efforts carried out for TDAS and appropriate user spacecraft elements the desired TDAS' capabilities for the 1990's can be realized and user spacecraft can be implemented that adequately interface with the projected TDAS.

  8. ED leadership competency matrix: an administrative management tool.

    PubMed

    Propp, Douglas A; Glickman, Seth; Uehara, Dennis T

    2003-10-01

    A successful ED relies on its leaders to master and demonstrate core competencies to be effective in the many arenas in which they interact and are responsible. A unique matrix model for the assessment of an ED leadership's key administrative skill sets is presented. The model incorporates capabilities related to the individual's cognitive aptitude, experience, acquired technical skills, behavioral characteristics, as well as the ability to manage relationships effectively. Based on the personnel inventory using the matrix, focused evaluation, development, and recruitment of ED key leaders occurs. This dynamic tool has provided a unique perspective for the evaluation and enhancement of overall ED leadership performance. It is hoped that incorporation of such a model will similarly improve the accomplishments of EDs at other institutions.

  9. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the "proving ground" of lunar-vicinity space to enabling high-energy transits through the outer solar system. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO). Preparations are also underway to evolve the vehicle into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO. Even the initial configuration of SLS will be able to deliver greater mass to orbit than any contemporary launch vehicle, and the evolved configuration will have greater performance than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. The basic capabilities of SLS have been driven by studies on the requirements of human deep-space exploration missions, and continue to be validated by maturing analysis of Mars mission options, including the Global Exploration Roadmap. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. As SLS draws closer to its first launch, the Program is maturing concepts for future capability upgrades, which could begin being available within a decade. These upgrades, from multiple unique payload accommodations to an upper stage providing more power for inspace propulsion, have ramifications for a variety of missions, from human exploration to robotic science.

  10. Evaluation of a Unique Defibrillation Unit with Dual-Vector Biphasic Waveform Capabilities: Towards a Miniaturized Defibrillator.

    PubMed

    Okamura, Hideo; Desimone, Christopher V; Killu, Ammar M; Gilles, Emily J; Tri, Jason; Asirvatham, Roshini; Ladewig, Dejae J; Suddendorf, Scott H; Powers, Joanne M; Wood-Wentz, Christina M; Gray, Peter D; Raymond, Douglas M; Savage, Shelley J; Savage, Walter T; Bruce, Charles J; Asirvatham, Samuel J; Friedman, Paul A

    2017-02-01

    Automated external defibrillators can provide life-saving therapies to treat ventricular fibrillation. We developed a prototype unit that can deliver a unique shock waveform produced by four independent capacitors that is delivered through two shock vectors, with the rationale of providing more robust shock pathways during emergent defibrillation. We describe the initial testing and feasibility of this unique defibrillation unit, features of which may enable downsizing of current defibrillator devices. We tested our defibrillation unit in four large animal models (two canine and two swine) under general anesthesia. Experimental defibrillation thresholds (DFT) were obtained by delivery of a unique waveform shock pulse via a dual-vector pathway with four defibrillation pads (placed across the chest). DFTs were measured and compared with those of a commercially available biphasic defibrillator (Zoll M series, Zoll Medical, Chelmsford, MA, USA) tested in two different vectors. Shocks were delivered after 10 seconds of stable ventricular fibrillation and the output characteristics and shock outcome recorded. Each defibrillation series used a step-down to failure protocol to define the defibrillation threshold. A total of 96 shocks were delivered during ventricular fibrillation in four large animals. In comparison to the Zoll M series, which delivered a single-vector, biphasic shock, the energy required for successful defibrillation using the unique dual-vector biphasic waveform did not differ significantly (P = 0.65). Our early findings support the feasibility of a unique external defibrillation unit using a dual-vector biphasic waveform approach. This warrants further study to leverage this unique concept and work toward a miniaturized, portable shock delivery system. © 2016 Wiley Periodicals, Inc.

  11. Automated fiber placement composite manufacturing: The mission at MSFC's Productivity Enhancement Complex

    NASA Technical Reports Server (NTRS)

    Vickers, John H.; Pelham, Larry I.

    1993-01-01

    Automated fiber placement is a manufacturing process used for producing complex composite structures. It is a notable leap to the state-of-the-art in technology for automated composite manufacturing. The fiber placement capability was established at the Marshall Space Flight Center's (MSFC) Productivity Enhancement Complex in 1992 in collaboration with Thiokol Corporation to provide materials and processes research and development, and to fabricate components for many of the Center's Programs. The Fiber Placement System (FPX) was developed as a distinct solution to problems inherent to other automated composite manufacturing systems. This equipment provides unique capabilities to build composite parts in complex 3-D shapes with concave and other asymmetrical configurations. Components with complex geometries and localized reinforcements usually require labor intensive efforts resulting in expensive, less reproducible components; the fiber placement system has the features necessary to overcome these conditions. The mechanical systems of the equipment have the motion characteristics of a filament winder and the fiber lay-up attributes of a tape laying machine, with the additional capabilities of differential tow payout speeds, compaction and cut-restart to selectively place the correct number of fibers where the design dictates. This capability will produce a repeatable process resulting in lower cost and improved quality and reliability.

  12. Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiyi, Li; Tengyuan, Chen; Beibei, Sun

    Graphical abstract: We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries, including high specific capacity, outstanding rate capability and intriguing cycling stability. - Highlights: • We reported a new LTO-graphene nanohybrid containing two graphene conductive frameworks. • One graphene framework greatly improves the electrical conductivity of LTO crystal. • Another graphene framework enhances electrical conductivity of between LTO crystals and electrolyte transport. • The unique architecture creates big tap density, ultrafast electron transfermore » and rapid mass transport. • The hybrid electrode provides excellent electrochemical performance for lithium-ion batteries. - ABSTRACT: The paper reported the synthesis of lithium titanate(LTO)-graphene hybrid containing two graphene conductive frameworks (G@LTO@G). Tetrabutyl titanate and graphene were dispersed in tertbutanol and heated to reflux state by microwave irradiation. Followed by adding lithium acetate to produce LTO precursor/graphene (p-LTO/G). The resulting p-LTO/G offers homogeneous morphology and ultra small size. All graphene sheets were buried in the spherical agglomerates composed of primitive particles through the second agglomeration. The p-LTO/G was calcined to LTO@graphene (LTO@G). To obtain G@LTO@G, the LTO@G was further hybridized with graphene. The as-prepared G@LTO@G shows well-defined three-dimensional structure and hierarchical porous distribution. Its unique architecture creates big tap density, fast electron transfer and rapid electrolyte transport. As a result, the G@LTO@G provides high specific capacity (175.2 mA h g{sup −1} and 293.5 mA cm{sup −3}), outstanding rate capability (155.7 mAh g{sup −1} at 10C) and intriguing cycling stability (97.2% capacity retention at 5C after 1000 cycles)« less

  13. The NASA Airborne Earth Science Microwave Imaging Radiometer (AESMIR): A New Sensor for Earth Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2003-01-01

    The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer recently developed by NASA. The AESMIR design is unique in that it performs dual-polarized imaging at all standard passive microwave frequency bands (6-89 GHz) using only one sensor headscanner package, providing an efficient solution for Earth remote sensing applications (snow, soil moisture/land parameters, precipitation, ocean winds, sea surface temperature, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, C-130s and ground-based deployments. Thus AESMIR can provide low-, mid-, and high- altitude microwave imaging. Parallel filter banks allow AESMIR to simultaneously simulate the exact passbands of multiple satellite radiometers: SSM/I, TMI, AMSR, Windsat, SSMI/S, and the upcoming GPM/GMI and NPOESS/CMIS instruments --a unique capability among aircraft radiometers. An L-band option is also under development, again using the same scanner. With this option, simultaneous imaging from 1.4 to 89 GHz will be feasible. And, all receivers except the sounding channels will be configured for 4-Stokes polarimetric operation using high-speed digital correlators in the near future. The capabilities and unique design features of this new sensor will be described, and example imagery will be presented.

  14. Disaster mobile health technology: lessons from Haiti.

    PubMed

    Callaway, David W; Peabody, Christopher R; Hoffman, Ari; Cote, Elizabeth; Moulton, Seth; Baez, Amado Alejandro; Nathanson, Larry

    2012-04-01

    Mobile health (mHealth) technology can play a critical role in improving disaster victim tracking, triage, patient care, facility management, and theater-wide decision-making. To date, no disaster mHealth application provides responders with adequate capabilities to function in an austere environment. The Operational Medicine Institute (OMI) conducted a qualitative trial of a modified version of the off-the-shelf application iChart at the Fond Parisien Disaster Rescue Camp during the large-scale response to the January 12, 2010 earthquake in Haiti. The iChart mHealth system created a patient log of 617 unique entries used by on-the-ground medical providers and field hospital administrators to facilitate provider triage, improve provider handoffs, and track vulnerable populations such as unaccompanied minors, pregnant women, traumatic orthopedic injuries and specified infectious diseases. The trial demonstrated that even a non-disaster specific application with significant programmatic limitations was an improvement over existing patient tracking and facility management systems. A unified electronic medical record and patient tracking system would add significant value to first responder capabilities in the disaster response setting.

  15. The National Transonic Facility: A Research Retrospective

    NASA Technical Reports Server (NTRS)

    Wahls, R. A.

    2001-01-01

    An overview of the National Transonic Facility (NTF) from a research utilization perspective is provided. The facility was born in the 1970s from an internationally recognized need for a high Reynolds number test capability based on previous experiences with preflight predictions of aerodynamic characteristics and an anticipated need in support of research and development for future aerospace vehicle systems. Selection of the cryogenic concept to meet the need, unique capabilities of the facility, and the eventual research utilization of the facility are discussed. The primary purpose of the paper is to expose the range of investigations that have used the NTF since being declared operational in late 1984; limited research results are included, though many more can be found in the references.

  16. A hybrid nanosensor for TNT vapor detection.

    PubMed

    Díaz Aguilar, Alvaro; Forzani, Erica S; Leright, Mathew; Tsow, Francis; Cagan, Avi; Iglesias, Rodrigo A; Nagahara, Larry A; Amlani, Islamshah; Tsui, Raymond; Tao, N J

    2010-02-10

    Real-time detection of trace chemicals, such as explosives, in a complex environment containing various interferents has been a difficult challenge. We describe here a hybrid nanosensor based on the electrochemical reduction of TNT and the interaction of the reduction products with conducting polymer nanojunctions in an ionic liquid. The sensor simultaneously measures the electrochemical current from the reduction of TNT and the conductance change of the polymer nanojunction caused from the reduction product. The hybrid detection mechanism, together with the unique selective preconcentration capability of the ionic liquid, provides a selective, fast, and sensitive detection of TNT. The sensor, in its current form, is capable of detecting parts-per-trillion level TNT in the presence of various interferents within a few minutes.

  17. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    DOE PAGES

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; ...

    2016-02-05

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less

  18. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less

  19. The Malemute development program. [rocket upper stage engine design

    NASA Technical Reports Server (NTRS)

    Bolster, W. J.; Hoekstra, P. W.

    1976-01-01

    The Malemute vehicle systems are two-stage systems based on utilizing a new high performance upper stage motor with two existing military boosters. The Malmute development program is described relative to program structure, preliminary design, vehicle subsystems, and the Malemute motor. Two vehicle systems, the Nike-Malemute and Terrier-Malemute, were developed which are capable of transporting comparatively large diameter (16 in.) 200-lb payloads to altitudes of 500 and 700 km, respectively. These vehicles provide relatively low-cost transportation with two-stage reliability and launch simplicity. Flight tests of both vehicle systems revealed their performance capabilities, with the Terrier-Malemute system involving a unique Malemute motor spin sensitivity problem. It is suggested that the vehicles can be successfully flown by lowering the burnout spin rate.

  20. GENOSENSE Diagnostics GmbH.

    PubMed

    Schneeberger, Christian

    2004-07-01

    GENOSENSE Diagnostics GmbH, a company specialized in preventive genetic diagnostics, has committed itself to applying molecular medical knowledge to realizing the vision of individual, preventive and patient-tailored medicine. GENOSENSE offers a unique line of preventive genomic diagnostic profiles. Each profile focuses on a carefully selected set of polymorphisms associated with particular diseases or physiologic imbalances. GENOSENSE does not only provide the genetic test results, but highly capable medical experts 'translate' the results into a clinical language and assist the customer with established support regarding their medical interpretation. In addition, the company provides academic institutions and pharmaceutical companies with turnkey solutions for research-based projects.

  1. Computational neural learning formalisms for manipulator inverse kinematics

    NASA Technical Reports Server (NTRS)

    Gulati, Sandeep; Barhen, Jacob; Iyengar, S. Sitharama

    1989-01-01

    An efficient, adaptive neural learning paradigm for addressing the inverse kinematics of redundant manipulators is presented. The proposed methodology exploits the infinite local stability of terminal attractors - a new class of mathematical constructs which provide unique information processing capabilities to artificial neural systems. For robotic applications, synaptic elements of such networks can rapidly acquire the kinematic invariances embedded within the presented samples. Subsequently, joint-space configurations, required to follow arbitrary end-effector trajectories, can readily be computed. In a significant departure from prior neuromorphic learning algorithms, this methodology provides mechanisms for incorporating an in-training skew to handle kinematics and environmental constraints.

  2. SBML and CellML translation in antimony and JSim.

    PubMed

    Smith, Lucian P; Butterworth, Erik; Bassingthwaighte, James B; Sauro, Herbert M

    2014-04-01

    The creation and exchange of biologically relevant models is of great interest to many researchers. When multiple standards are in use, models are more readily used and re-used if there exist robust translators between the various accepted formats. Antimony 2.4 and JSim 2.10 provide translation capabilities from their own formats to SBML and CellML. All provided unique challenges, stemming from differences in each format's inherent design, in addition to differences in functionality. Both programs are available under BSD licenses; Antimony from http://antimony.sourceforge.net/and JSim from http://physiome.org/jsim/. lpsmith@u.washington.edu.

  3. Optofluidic Microsystems for Chemical and Biological Analysis

    PubMed Central

    Fan, Xudong; White, Ian M.

    2011-01-01

    Optofluidics – the synergistic integration of photonics and microfluidics – has recently emerged as a new analytical field that provides a number of unique characteristics for enhanced sensing performance and simplification of microsystems. In this review, we describe various optofluidic architectures developed in the past five years, emphasize the mechanisms by which optofluidics enhances bio/chemical analysis capabilities, including sensing and the precise control of biological micro/nanoparticles, and envision new research directions to which optofluidics leads. PMID:22059090

  4. Solar Sail Spaceflight Simulation

    NASA Technical Reports Server (NTRS)

    Lisano, Michael; Evans, James; Ellis, Jordan; Schimmels, John; Roberts, Timothy; Rios-Reyes, Leonel; Scheeres, Daniel; Bladt, Jeff; Lawrence, Dale; Piggott, Scott

    2007-01-01

    The Solar Sail Spaceflight Simulation Software (S5) toolkit provides solar-sail designers with an integrated environment for designing optimal solar-sail trajectories, and then studying the attitude dynamics/control, navigation, and trajectory control/correction of sails during realistic mission simulations. Unique features include a high-fidelity solar radiation pressure model suitable for arbitrarily-shaped solar sails, a solar-sail trajectory optimizer, capability to develop solar-sail navigation filter simulations, solar-sail attitude control models, and solar-sail high-fidelity force models.

  5. Social Media: More Than Just a Communications Medium

    DTIC Science & Technology

    2012-03-14

    video-hosting web services with the recognition that “Internet-based capabilities are integral to operations across the Department of Defense.”10...as DoD and the government as a whole, the U.S. Army’s recognition of social media’s unique relationship to time and speed is a step forward toward...populated size of social media entities, Alexa , the leader in free global web analytics, provides an updated list of the top 500 websites on the Internet

  6. Technical Design Report for the FACET-II Project at SLAC National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Electrons can “surf” on waves of plasma – a hot gas of charged particles – gaining very high energies in very short distances. This approach, called plasma wakefield acceleration, has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider has been the focus of FACET, a National User Facility at SLAC. FACET used part of SLAC’s two-mile-long linearmore » accelerator to generate high-density beams of electrons and their antimatter counterparts, positrons. Research into plasma wakefield acceleration was the primary motivation for constructing FACET. In April 2016, FACET operations came to an end to make way for the second phase of SLAC’s x-ray laser, the LCLS-II, which will use part of the tunnel occupied by FACET. FACET-II is a new test facility to provide the unique capability to develop advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. FACET-II represents a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique.« less

  7. "Left to my own devices, I don't know": using theory and patient-reported barriers to move from physical activity recommendations to practice.

    PubMed

    Ziebart, C; McArthur, C; Lee, L; Papaioannou, A; Laprade, J; Cheung, A M; Jain, R; Giangregorio, L

    2018-05-01

    Knowledge exchange with community-dwelling individuals across Ontario revealed barriers to implementation of physical activity recommendations that reflected capability, opportunity, and motivation; barriers unique to individuals with osteoporosis include fear of fracturing, trust in providers, and knowledge of exercise terminology. Using the Behaviour Change Wheel, we identified interventions (training, education, modeling) and policy categories (communication/marketing, guidelines, service provision). Physical activity recommendations exist for individuals with osteoporosis; however, to change behavior, we must address barriers and facilitators to their implementation. The purposes of this project are (1) to identify barriers to and facilitators of uptake of disease-specific physical activity recommendations (2) to use the findings to identify behavior change strategies using the Behaviour Change Wheel (BCW). Focus groups and semi-structured interviews were conducted with community-dwelling individuals attending osteoporosis-related programs or education sessions in Ontario. They were stratified by geographic area, urban/rural, and gender, and transcribed verbatim. Two researchers coded data and identified emerging themes. Using the Behaviour Change Wheel framework, themes were categorized into capability, opportunity, and motivation, and interventions were identified. Two hundred forty community-dwelling individuals across Ontario participated (mean ± SD age = 72 ± 8.28). Barriers were as follows: capability: disease-related symptoms hinder exercise and physical activity participation, lack of exercise-related knowledge, low exercise self-efficacy; opportunity: access to exercise programs that meet needs and preferences, limited resources and time, physical activity norms and preferences; motivation: incentives to exercise, fear of fracturing, trust in exercise providers. Interventions selected were training, education, and modeling. Policy categories selected were communication/marketing, guidelines, and service provision. Barriers unique to individuals with osteoporosis included the following: lack of knowledge on key exercise concepts, fear of fracturing, and trust in providers. Behavior change techniques may need tailoring to gender, age, or presence of comorbid conditions.

  8. Concept for a radioisotope powered dual mode lunar rover

    NASA Technical Reports Server (NTRS)

    Elliott, John O.; Schriener, Timothy M.; Coste, Keith

    2006-01-01

    Over three decades ago, the Apollo missions manifestly demonstrated the value of a lunar rover to expand the exploration activities of lunar astronauts. The stated plan of the new Vision for Space Exploration to establish a permanent presence on the moon in the next decades gives new impetus to providing long range roving and exploration capability in support of the siting, construction, and maintenance of future human bases. The incorporation of radioisotope power systems and telerobotic capability in the design has the potential to significantly expand the capability of such a rover, allowing continuous operation during the full lunar day/night cycle, as well as enabling exploration in permanently shadowed regions that may be of interest to humans for the resources they may hold. This paper describes a concept that builds on earlier studies originated in the Apollo program for a Dual Mode (crewed and telerobotic) Lunar Roving Vehicle (DMLRV). The goal of this vehicle would be to provide a multipurpose infrastructure element and remote science platform for the exploration of the moon. The DMLRV would be essential for extending the productivity of human exploration crews, and would provide a unique capability for diverse long-range, long-duration science exploration between human visits. With minimal reconfiguration this vehicle could also provide the basic platform to support a range of site survey and preparation activities in anticipation of the establishment of a permanent human presence on the moon. A conceptual design is presented for the DMLRV, including discussion of mission architecture, vehicle performance, representative science payload accommodation, and equipment and crew radiation considerations.

  9. Concept for a Radioisotope Powered Dual Mode Lunar Rover

    NASA Astrophysics Data System (ADS)

    Elliott, John O.; Schriener, Timothy M.; Coste, Keith

    2006-01-01

    Over three decades ago, the Apollo missions manifestly demonstrated the value of a lunar rover to expand the exploration activities of lunar astronauts. The stated plan of the new Vision for Space Exploration to establish a permanent presence on the moon in the next decades gives new impetus to providing long range roving and exploration capability in support of the siting, construction, and maintenance of future human bases. The incorporation of radioisotope power systems and telerobotic capability in the design has the potential to significantly expand the capability of such a rover, allowing continuous operation during the full lunar day/night cycle, as well as enabling exploration in permanently shadowed regions that may be of interest to humans for the resources they may hold. This paper describes a concept that builds on earlier studies originated in the Apollo program for a Dual Mode (crewed and telerobotic) Lunar Roving Vehicle (DMLRV). The goal of this vehicle would be to provide a multipurpose infrastructure element and remote science platform for the exploration of the moon. The DMLRV would be essential for extending the productivity of human exploration crews, and would provide a unique capability for diverse long-range, long-duration science exploration between human visits. With minimal reconfiguration this vehicle could also provide the basic platform to support a range of site survey and preparation activities in anticipation of the establishment of a permanent human presence on the moon. A conceptual design is presented for the DMLRV, including discussion of mission architecture, vehicle performance, representative science payload accommodation, and equipment and crew radiation considerations.

  10. Cargo Commercial Orbital Transportation Services Environmental Control and Life Support Integration

    NASA Technical Reports Server (NTRS)

    Duchesne, Stephanie; Thacker, Karen; Williams, Dave

    2012-01-01

    The International Space Station s (ISS) largest crew and cargo resupply vehicle, the Space Shuttle, retired in 2011. To help augment ISS resupply and return capability, NASA announced a project to promote the development of Commercial Orbital Transportation Services (COTS) for the ISS in January of 2006. By December of 2008, NASA entered into space act agreements with SpaceX and Orbital Sciences Corporation for COTS development and ISS Commercial Resupply Services (CRS). The intent of CRS is to fly multiple resupply missions each year to ISS with SpaceX s Dragon vehicle providing resupply and return capabilities and Orbital Science Corporation s Cygnus vehicle providing resupply capability to ISS. The ISS program launched an integration effort to ensure that these new commercial vehicles met the requirements of the ISS vehicle and ISS program needs. The Environmental Control and Life Support System (ECLSS) requirements cover basic cargo vehicle needs including maintaining atmosphere, providing atmosphere circulation, and fire detection and suppression. The ISS-COTS integration effort brought unique challenges combining NASA s established processes and design knowledge with the commercial companies new initiatives and limited experience with human space flight. This paper will discuss the ISS ECLS COTS integration effort including challenges, successes, and lessons learned.

  11. Commercial Orbital Transportation Cargo Services Environmental Control and Life Support Integration

    NASA Technical Reports Server (NTRS)

    Duchesne, Stephanie; Williams, Dave; Orozco, Nicole; Philistine, Cynthia

    2010-01-01

    The International Space Station s (ISS) largest crew and cargo resupply vehicle, the Space Shuttle, will retire in 2011. To help augment ISS resupply and return capability, NASA announced a project to promote the development of Commercial Orbital Transportation Services (COTS) for the ISS in January of 2006. By December of 2008, NASA entered into space act agreements with SpaceX and Orbital Sciences Corporation for COTS development and ISS Commercial Resupply Services (CRS). The intent of CRS is to fly multiple resupply missions each year to ISS with SpaceX s Dragon vehicle providing resupply and return capabilities and Orbital Science Corporation s Cygnus vehicle providing resupply capability to ISS. The ISS program launched an integration effort to ensure that these new commercial vehicles met the requirements of the ISS vehicle and ISS program needs. The Environmental Control and Life Support System (ECLSS) requirements cover basic cargo vehicle needs including maintaining atmosphere, providing atmosphere circulation, and fire detection and suppression. The ISS-COTS integration effort brought unique challenges combining NASA s established processes and design knowledge with the commercial companies new initiatives and limited experience with human space flight. This paper will discuss the ISS ECLS COTS integration effort including challenges, successes, and lessons learned.

  12. Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2010-01-01

    The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.

  13. Transition of Suomi National Polar-Orbiting Partnership (S-NPP) Data Products for Operational Weather Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Smith, Matthew R.; Molthan, Andrew L.; Fuell, Kevin K.; Jedlovec, Gary J.

    2012-01-01

    SPoRT is a team of NASA/NOAA scientists focused on demonstrating the utility of NASA and future NOAA data and derived products on improving short-term weather forecasts. Work collaboratively with a suite of unique products and selected WFOs in an end-to-end transition activity. Stable funding from NASA and NOAA. Recognized by the science community as the "go to" place for transitioning experimental and research data to the operational weather community. Endorsed by NWS ESSD/SSD chiefs. Proven paradigm for transitioning satellite observations and modeling capabilities to operations (R2O). SPoRT s transition of NASA satellite instruments provides unique or higher resolution data products to complement the baseline suite of geostationary data available to forecasters. SPoRT s partnership with NWS WFOs provides them with unique imagery to support disaster response and local forecast challenges. SPoRT has years of proven experience in developing and transitioning research products to the operational weather community. SPoRT has begun work with CONUS and OCONUS WFOs to determine the best products for maximum benefit to forecasters. VIIRS has already proven to be another extremely powerful tool, enhancing forecasters ability to handle difficult forecasting situations.

  14. Scientific Uses and Directions of SPDF Data Services

    NASA Technical Reports Server (NTRS)

    Fung, Shing

    2007-01-01

    From a science user's perspective, the multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project perform as a working and highly functional heliophysics virtual observatory. CDAWeb enables plots, listings and file downloads for current data across the boundaries of missions and instrument types (and now including data from THEMIS and STEREO), VSPO access to a wide range of distributed data sources. SSCWeb, Helioweb and our 3D Animated Orbit Viewer (TIPSOD) provide position data and query logic for most missions currently-important to heliophysics science. OMNIWeb with its new extension to 1- and 5- minute resolution provides interplanetary parameters at the Earth's bow shock as a unique value-added data product. To enable easier integrated use of our capabilities by developers and by the emerging heliophysics VxOs, our data and services are available through webservices-based APls as well as through our direct user interfaces. SPDF has also now developed draft descriptions of its holdings in SPASE-compliant XML In addition to showcasing recent enhancements to SPDF capabilities, we will use these systems and our experience in developing them: to demonstrate a few typical science use cases; to discuss key scope and design issues among users, service providers and end data providers; and to identify key areas where existing capabilities and effective interface design are still inadequate to meet community needs.

  15. NASA Space Launch System: A Cornerstone Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2014-01-01

    Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, sched will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created by the International Space Exploration Coordination Group, which represents 14 of the world's space agencies. In addition, this paper will detail this new rocket's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS Program is currently building a global infrastructure asset that will provide robust space launch capability to deliver sustainable solutions for exploration.

  16. NASA's Space Launch System: A Cornerstone Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2014-01-01

    Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, scheduled for first launch in 2017, will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created by the International Space Exploration Coordination Group, which represents 12 of the world's space agencies. In addition, this paper will detail this new rocket's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS Program is currently building a global infrastructure asset that will provide robust space launch capability to deliver sustainable solutions for exploration.

  17. Lunar Exploration and Science in ESA

    NASA Astrophysics Data System (ADS)

    Carpenter, James; Houdou, Bérengère; Fisackerly, Richard; De Rosa, Diego; Patti, Bernardo; Schiemann, Jens; Hufenbach, Bernhard; Foing, Bernard

    2014-05-01

    ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the composition and isotopic abundances of lunar volatiles in polar regions. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterize and utilize polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensable partner in the exploration missions of the future.

  18. ASSESSING THE EFFECTS OF PULMONARY EXPOSURE TO NANOMATERIALS

    EPA Science Inventory

    Nanotechnology is a dynamic and enabling technology capable of producing a wide diversity of nano-scale (<100 nm) materials displaying unique physicochemical properties for a variety of applications. Nanomaterials may also display unique toxicological properties and routes of exp...

  19. RISK ASSESSMENT OF MANUFACTURED NANOMATERIAL: MORE THAN JUST SIZE

    EPA Science Inventory

    Nanotechnology is a dynamic and enabling technology capable of producing nano-scale materials with unique electrical, catalytic, thermal, mechanical, or imaging properties for a variety of applications. Nanomaterials may display unique toxicological properties and routes of expos...

  20. Monolithic graphene transistor biointerface.

    PubMed

    Nam, SungWoo; Lee, Mi-Sun; Park, Jang-Ung

    2012-01-01

    We report monolithic integration of graphene and graphite for all-carbon integrated bioelectronics. First, we demonstrate that the electrical properties of graphene and graphite can be modulated by controlling the number of graphene layers, and such capabilities allow graphene to be used as active channels and graphite as metallic interconnects for all-carbon bioelectronics. Furthermore, we show that monolithic graphene-graphite devices exhibit mechanical flexibility and robustness while their electrical responses are not perturbed by mechanical deformation, demonstrating their unique electromechanical properties. Chemical sensing capability of all-carbon integrated bioelectronics is manifested in real-time, complementary pH detection. These unique capabilities of our monolithic graphene-graphite bioelectronics could be exploited in chemical and biological detection and conformal interface with biological systems in the future.

  1. Cryogenic wind tunnels: Unique capabilities for the aerodynamicist

    NASA Technical Reports Server (NTRS)

    Hall, R. M.

    1976-01-01

    The cryogenic wind-tunnel concept as a practical means for improving ground simulation of transonic flight conditions. The Langley 1/3-meter transonic cryogenic tunnel is operational, and the design of a cryogenic National Transonic Facility is undertaken. A review of some of the unique capabilities of cryogenic wind tunnels is presented. In particular, the advantages of having independent control of tunnel Mach number, total pressure, and total temperature are highlighted. This separate control over the three tunnel parameters will open new frontiers in Mach number, Reynolds number, aeroelastic, and model-tunnel interaction studies.

  2. Unique Cobalt Sulfide/Reduced Graphene Oxide Composite as an Anode for Sodium-Ion Batteries with Superior Rate Capability and Long Cycling Stability.

    PubMed

    Peng, Shengjie; Han, Xiaopeng; Li, Linlin; Zhu, Zhiqiang; Cheng, Fangyi; Srinivansan, Madhavi; Adams, Stefan; Ramakrishna, Seeram

    2016-03-09

    Exploitation of high-performance anode materials is essential but challenging to the development of sodium-ion batteries (SIBs). Among all proposed anode materials for SIBs, sulfides have been proved promising candidates due to their unique chemical and physical properties. In this work, a facile solvothermal method to in situ decorate cobalt sulfide (CoS) nanoplates on reduced graphene oxide (rGO) to build CoS@rGO composite is described. When evaluated as anode for SIBs, an impressive high specific capacity (540 mAh g(-1) at 1 A g(-1) ), excellent rate capability (636 mAh g(-1) at 0.1 A g(-1) and 306 mAh g(-1) at 10 A g(-1)), and extraordinarily cycle stability (420 mAh g(-1) at 1 A g(-1) after 1000 cycles) have been demonstrated by CoS@rGO composite for sodium storage. The synergetic effect between the CoS nanoplates and rGO matrix contributes to the enhanced electrochemical performance of the hybrid composite. The results provide a facile approach to fabricate promising anode materials for high-performance SIBs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Access and authorisation in a Glocal e-Health Policy context.

    PubMed

    Scott, Richard E; Jennett, Penny; Yeo, Maryann

    2004-03-31

    Challenges to the development of appropriate yet adaptable policy and tools for security of the individual patient electronic health record (EHR) are proving to be significant. Compounding this is the unique capability of e-health to transgress all existing geo-political and other barriers. Initiatives to develop and advance policy, standards, and tools in relation to EHR access control and authorisation management must address this capability. Currently policy development initiatives take place largely in an isolated manner. This jeopardises the potential of e-health because decisions made in one jurisdiction might hamper, even prevent, an e-health opportunity in another. This paper places access and authorisation issues in an overall policy context through describing current Canadian initiatives. The National Initiative for Telehealth (NIFTE) Guidelines project is developing a framework of national guidelines for telehealth. The Policy and Peer Permission (PPP) project is developing a unique tool that provides persistent protection of data. The new corporate body 'Infoway' is developing a pan-Canadian electronic health record solution. Finally, the Glocal e-Health Policy initiative is developing a tool with which to identify and describe the inter-relationships of e-health issues amongst policy levels, themes, and actors.

  4. Apollo experience report: Descent propulsion system

    NASA Technical Reports Server (NTRS)

    Hammock, W. R., Jr.; Currie, E. C.; Fisher, A. E.

    1973-01-01

    The propulsion system for the descent stage of the lunar module was designed to provide thrust to transfer the fully loaded lunar module with two crewmen from the lunar parking orbit to the lunar surface. A history of the development of this system is presented. Development was accomplished primarily by ground testing of individual components and by testing the integrated system. Unique features of the descent propulsion system were the deep throttling capability and the use of a lightweight cryogenic helium pressurization system.

  5. KSC-06pd1684

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japan Aerospace Exploration Agency (JAXA) technicians install piping insulation on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  6. KSC-06pd1685

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japan Aerospace Exploration Agency (JAXA) technicians install piping insulation on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  7. KSC-06pd1682

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a Japan Aerospace Exploration Agency (JAXA) technician inspects the wiring on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  8. KSC-06pd1683

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japan Aerospace Exploration Agency (JAXA) technicians inspect the wiring on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  9. KSC-06pd1687

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Japanese Experiment Module (JEM) awaits its flight to the International Space Station (ISS). The JEM, developed by the Japan Aerospace Exploration Agency (JAXA) for installation on the ISS, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  10. Understanding DNA replication by the bacteriophage T4 replisome.

    PubMed

    Benkovic, Stephen J; Spiering, Michelle M

    2017-11-10

    The T4 replisome has provided a unique opportunity to investigate the intricacies of DNA replication. We present a comprehensive review of this system focusing on the following: its 8-protein composition, their individual and synergistic activities, and assembly in vitro and in vivo into a replisome capable of coordinated leading/lagging strand DNA synthesis. We conclude with a brief comparison with other replisomes with emphasis on how coordinated DNA replication is achieved. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Development and experimentation of an eye/brain/task testbed

    NASA Technical Reports Server (NTRS)

    Harrington, Nora; Villarreal, James

    1987-01-01

    The principal objective is to develop a laboratory testbed that will provide a unique capability to elicit, control, record, and analyze the relationship of operator task loading, operator eye movement, and operator brain wave data in a computer system environment. The ramifications of an integrated eye/brain monitor to the man machine interface are staggering. The success of such a system would benefit users of space and defense, paraplegics, and the monitoring of boring screens (nuclear power plants, air defense, etc.)

  12. KSC-03PD-2461

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Takao Doi, an astronaut with the National Space Development Agency of Japan (NASDA), watches the sensors during a Multi-Equipment Interface Test (MEIT) on the Japanese Experiment Module (JEM). NASDA developed the laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named 'Kibo' (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  13. GOES-R Proving Ground Activities at the NASA Short-Term Prediction Research and Transition (SPoRT) Center

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew

    2011-01-01

    SPoRT is actively involved in GOES-R Proving Ground activities in a number of ways: (1) Applying the paradigm of product development, user training, and interaction to foster interaction with end users at NOAA forecast offices national centers. (2) Providing unique capabilities in collaboration with other GOES-R Proving Ground partners (a) Hybrid GOES-MODIS imagery (b) Pseudo-GLM via regional lightning mapping arrays (c) Developing new RGB imagery from EUMETSAT guidelines

  14. Falcon: A Temporal Visual Analysis System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A.

    2016-09-05

    Flexible visible exploration of long, high-resolution time series from multiple sensor streams is a challenge in several domains. Falcon is a visual analytics approach that helps researchers acquire a deep understanding of patterns in log and imagery data. Falcon allows users to interactively explore large, time-oriented data sets from multiple linked perspectives. Falcon provides overviews, detailed views, and unique segmented time series visualizations with multiple levels of detail. These capabilities are applicable to the analysis of any quantitative time series.

  15. NASA Aeroelasticity Handbook Volume 2: Design Guides Part 2

    NASA Technical Reports Server (NTRS)

    Ramsey, John K. (Editor)

    2006-01-01

    The NASA Aeroelasticity Handbook comprises a database (in three formats) of NACA and NASA aeroelasticity flutter data through 1998 and a collection of aeroelasticity design guides. The Microsoft Access format provides the capability to search for specific data, retrieve it, and present it in a tabular or graphical form unique to the application. The full-text NACA and NASA documents from which the data originated are provided in portable document format (PDF), and these are hyperlinked to their respective data records. This provides full access to all available information from the data source. Two other electronic formats, one delimited by commas and the other by spaces, are provided for use with other software capable of reading text files. To the best of the author s knowledge, this database represents the most extensive collection of NACA and NASA flutter data in electronic form compiled to date by NASA. Volume 2 of the handbook contains a convenient collection of aeroelastic design guides covering fixed wings, turbomachinery, propellers and rotors, panels, and model scaling. This handbook provides an interactive database and design guides for use in the preliminary aeroelastic design of aerospace systems and can also be used in validating or calibrating flutter-prediction software.

  16. N-doped yolk-shell hollow carbon sphere wrapped with graphene as sulfur host for high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Yongzheng; Sun, Kai; Liang, Zhan; Wang, Yanli; Ling, Licheng

    2018-01-01

    N-doped yolk-shell hollow carbon sphere wrapped with reduced graphene oxide (rGO/N-YSHCS) is designed and fabricated as sulfur host for lithium-sulfur batteries. The shuttle effect of polysulfides can be suppressed effectively by the porous yolk-shell structure, graphene layer and N-doping. A good conductivity network is provided for electron transportation through the graphene layer coupled with the unique yolk-shell carbon matrix. Such unique structure offers the synthesized rGO/N-YSHCS/S electrode with a high reversible capacity (800 mAh g-1 at 0.2 C after 100 cycles) and good high-rate capability (636 mAh g-1 at 1 C and 540 mAh g-1 at 2 C).

  17. Modeling and Simulation of Nanoindentation

    NASA Astrophysics Data System (ADS)

    Huang, Sixie; Zhou, Caizhi

    2017-11-01

    Nanoindentation is a hardness test method applied to small volumes of material which can provide some unique effects and spark many related research activities. To fully understand the phenomena observed during nanoindentation tests, modeling and simulation methods have been developed to predict the mechanical response of materials during nanoindentation. However, challenges remain with those computational approaches, because of their length scale, predictive capability, and accuracy. This article reviews recent progress and challenges for modeling and simulation of nanoindentation, including an overview of molecular dynamics, the quasicontinuum method, discrete dislocation dynamics, and the crystal plasticity finite element method, and discusses how to integrate multiscale modeling approaches seamlessly with experimental studies to understand the length-scale effects and microstructure evolution during nanoindentation tests, creating a unique opportunity to establish new calibration procedures for the nanoindentation technique.

  18. The Use of Environmental Test Facilities for Purposes Beyond Their Original Design

    NASA Technical Reports Server (NTRS)

    Fisher, Terry C.; Marner, W. J.

    2000-01-01

    Increasing demands from space flight project offices are requiring environmental testing facilities to become more versatile with increased capabilities. At the same time, maintaining a cost-effective approach to test operations has driven efforts to use these facilities for purposes beyond their original design. This paper presents an overview of the Jet Propulsion Laboratory's efforts to provide JPL's space flight projects with test facilities to meet unique test requirements and to serve the needs of selected outside customers. The large number of recent Mars Missions, including the Mars Pathfinder project, have required testing of components and systems in a Martian surface environment in facilities originally designed for deep space testing. The unique problems associated with performing these tests are discussed, along with practical solutions. Other unique test requirements are discussed including the use of space simulation chambers for testing high altitude balloon gondolas and the use of vacuum chambers for system level test firing of an ion propulsion engine.

  19. Design and Development of a Virtual Facility Tour Using iPIX(TM) Technology

    NASA Technical Reports Server (NTRS)

    Farley, Douglas L.

    2002-01-01

    The capabilities of the iPIX virtual tour software, in conjunction with a web-based interface create a unique and valuable system that provides users with an efficient virtual capability to tour facilities while being able to acquire the necessary technical content is demonstrated. A users guide to the Mechanics and Durability Branch's virtual tour is presented. The guide provides the user with instruction on operating both scripted and unscripted tours as well as a discussion of the tours for Buildings 1148, 1205 and 1256 and NASA Langley Research Center. Furthermore, an indepth discussion has been presented on how to develop a virtual tour using the iPIX software interface with conventional html and JavaScript. The main aspects for discussion are on network and computing issues associated with using this capability. A discussion of how to take the iPIX pictures, manipulate them and bond them together to form hemispherical images is also presented. Linking of images with additional multimedia content is discussed. Finally, a method to integrate the iPIX software with conventional HTML and JavaScript to facilitate linking with multi-media is presented.

  20. g-LIMIT Status Briefing

    NASA Technical Reports Server (NTRS)

    Whorton, Mark; Perkins, Brad T.

    2000-01-01

    For many microgravity science experiments in the International Space Station, the ambient acceleration environment will be exceed desirable levels. To provide a more quiescent acceleration environment to the microgravity payloads, a vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being designed. g-LIMIT is a sub-rack level isolation system that can be tailored to a variety of applications. Scheduled for launch on the UF-1 mission, the initial implementation of g-LIMIT will be a Characterization Test in the Microgravity Science Glovebox (MSG). g-LIMIT will be available to glovebox investigators immediately after characterization testing. Standard MSG structural and umbilical interfaces will be used so that the isolation mount is transparent to the user with no additional accommodation requirements. g-LIMIT consists of three integrated isolator modules, each of which is comprised of a dual axis actuator, two axes of acceleration sensing, two axes of position sensing, control electronics, and data transmission capabilities in a minimum-volume package. In addition, this system provides the unique capability for measuring absolute acceleration of the experiment independent of accelerometers as a by-product of the control system and will have the capability of generating pristine accelerations to enhance experiment operations.

  1. The g-LIMIT Microgravity Vibration Isolation System for the Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.; Ryan, Stephen G. (Technical Monitor)

    2001-01-01

    For many microgravity science experiments in the International Space Station, the ambient acceleration environment will be exceed desirable levels. To provide a more quiescent acceleration environment to the microgravity payloads, a vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being designed. g-LIMIT is a sub-rack level isolation system for the Microgravity Science Glovebox that can be tailored to a variety of applications. Scheduled for launch on the UF-1 mission, the initial implementation of g-LIMIT will be a Characterization Test in the Microgravity Science Glovebox. g-LIMIT will be available to glovebox investigators immediately after characterization testing. Standard MSG structural and umbilical interfaces will be used so that the interface requirements are minimized. g-LIMIT consists of three integrated isolator modules, each of which is comprised of a dual axis actuator, two axes of acceleration sensing, two axes of position sensing, control electronics, and data transmission capabilities in a small-volume package. In addition, this system provides the unique capability for measuring quasi-steady acceleration of the experiment independent of accelerometers as a by-product of the control system and will have the capability of generating user-specified pristine accelerations to enhance experiment operations.

  2. X-ray Cryogenic Facility (XRCF) Handbook

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey R.

    2016-01-01

    The X-ray & Cryogenic Facility (XRCF) Handbook is a guide for planning operations at the facility. A summary of the capabilities, policies, and procedures is provided to enhance project coordination between the facility user and XRCF personnel. This handbook includes basic information that will enable the XRCF to effectively plan and support test activities. In addition, this handbook describes the facilities and systems available at the XRCF for supporting test operations. 1.2 General Facility Description The XRCF was built in 1989 to meet the stringent requirements associated with calibration of X-ray optics, instruments, and telescopes and was subsequently modified in 1999 & 2005 to perform the challenging cryogenic verification of Ultraviolet, Optical, and Infrared mirrors. These unique and premier specialty capabilities, coupled with its ability to meet multiple generic thermal vacuum test requirements for large payloads, make the XRCF the most versatile and adaptable space environmental test facility in the Agency. XRCF is also recognized as the newest, most cost effective, most highly utilized facility in the portfolio and as one of only five NASA facilities having unique capabilities. The XRCF is capable of supporting and has supported missions during all phases from technology development to flight verification. Programs/projects that have benefited from XRCF include Chandra, Solar X-ray Imager, Hinode, and James Webb Space Telescope. All test programs have been completed on-schedule and within budget and have experienced no delays due to facility readiness or failures. XRCF is currently supporting Strategic Astrophysics Technology Development for Cosmic Origins. Throughout the years, XRCF has partnered with and continues to maintain positive working relationships with organizations such as ATK, Ball Aerospace, Northrop Grumman Aerospace, Excelis (formerly Kodak/ITT), Smithsonian Astrophysical Observatory, Goddard Space Flight Center, University of Alabama Huntsville, and more.

  3. Exploration Medical System Trade Study Tools Overview

    NASA Technical Reports Server (NTRS)

    Mindock, J.; Myers, J.; Latorella, K.; Cerro, J.; Hanson, A.; Hailey, M.; Middour, C.

    2018-01-01

    ExMC is creating an ecosystem of tools to enable well-informed medical system trade studies. The suite of tools address important system implementation aspects of the space medical capabilities trade space and are being built using knowledge from the medical community regarding the unique aspects of space flight. Two integrating models, a systems engineering model and a medical risk analysis model, tie the tools together to produce an integrated assessment of the medical system and its ability to achieve medical system target requirements. This presentation will provide an overview of the various tools that are a part of the tool ecosystem. Initially, the presentation's focus will address the tools that supply the foundational information to the ecosystem. Specifically, the talk will describe how information that describes how medicine will be practiced is captured and categorized for efficient utilization in the tool suite. For example, the talk will include capturing what conditions will be planned for in-mission treatment, planned medical activities (e.g., periodic physical exam), required medical capabilities (e.g., provide imaging), and options to implement the capabilities (e.g., an ultrasound device). Database storage and configuration management will also be discussed. The presentation will include an overview of how these information tools will be tied to parameters in a Systems Modeling Language (SysML) model, allowing traceability to system behavioral, structural, and requirements content. The discussion will also describe an HRP-led enhanced risk assessment model developed to provide quantitative insight into each capability's contribution to mission success. Key outputs from these various tools, to be shared with the space medical and exploration mission development communities, will be assessments of medical system implementation option satisfaction of requirements and per-capability contributions toward achieving requirements.

  4. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    NASA Astrophysics Data System (ADS)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  5. Enabling full-field physics-based optical proximity correction via dynamic model generation

    NASA Astrophysics Data System (ADS)

    Lam, Michael; Clifford, Chris; Raghunathan, Ananthan; Fenger, Germain; Adam, Kostas

    2017-07-01

    As extreme ultraviolet lithography becomes closer to reality for high volume production, its peculiar modeling challenges related to both inter and intrafield effects have necessitated building an optical proximity correction (OPC) infrastructure that operates with field position dependency. Previous state-of-the-art approaches to modeling field dependency used piecewise constant models where static input models are assigned to specific x/y-positions within the field. OPC and simulation could assign the proper static model based on simulation-level placement. However, in the realm of 7 and 5 nm feature sizes, small discontinuities in OPC from piecewise constant model changes can cause unacceptable levels of edge placement errors. The introduction of dynamic model generation (DMG) can be shown to effectively avoid these dislocations by providing unique mask and optical models per simulation region, allowing a near continuum of models through the field. DMG allows unique models for electromagnetic field, apodization, aberrations, etc. to vary through the entire field and provides a capability to precisely and accurately model systematic field signatures.

  6. Student-Built Underwater Video and Data Capturing Device

    NASA Astrophysics Data System (ADS)

    Whitt, F.

    2016-12-01

    Students from Stockbridge High School Robotics Team invention is a low cost underwater video and data capturing device. This system is capable of shooting time-lapse photography and/or video for up to 3 days of video at a time. It can be used in remote locations without having to change batteries or adding additional external hard drives for data storage. The video capturing device has a unique base and mounting system which houses a pi drive and a programmable raspberry pi with a camera module. This system is powered by two 12 volt batteries, which makes it easier for users to recharge after use. Our data capturing device has the same unique base and mounting system as the underwater camera. The data capturing device consists of an Arduino and SD card shield that is capable of collecting continuous temperature and pH readings underwater. This data will then be logged onto the SD card for easy access and recording. The low cost underwater video and data capturing device can reach depths up to 100 meters while recording 36 hours of video on 1 terabyte of storage. It also features night vision infrared light capabilities. The cost to build our invention is $500. The goal of this was to provide a device that can easily be accessed by marine biologists, teachers, researchers and citizen scientists to capture photographic and water quality data in marine environments over extended periods of time.

  7. High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum

    NASA Technical Reports Server (NTRS)

    Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.

    1995-01-01

    The Jet Propulsion Laboratory evaluated the use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto-Fast-Flyby (PFF) mission. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers. Using a control package, the mirror system provides image motion compensation and mosaicking capabilities. While this device offers unique advantages, there were concerns pertaining to its operational capabilities for the PFF mission. The issues include irradiation effects and thermal concerns. A literature study indicated that irradiation effects will not significantly impact the linear motor's operational characteristics. On the other hand, thermal concerns necessitated an in depth study.

  8. New capability for ozone dial profiling measurements in the troposphere and lower stratosphere from aircraft

    NASA Astrophysics Data System (ADS)

    Hair, Johnathan; Hostetler, Chris; Cook, Anthony; Harper, David; Notari, Anthony; Fenn, Marta; Newchurch, Mike; Wang, Lihua; Kuang, Shi; Knepp, Travis; Burton, Sharon; Ferrare, Richard; Butler, Carolyn; Collins, Jim; Nehrir, Amin

    2018-04-01

    Recently, we successfully demonstrated a new compact and robust ozone DIAL lidar for smaller aircraft such as the NASA B200 and the ER-2 high-altitude aircraft. This is the first NASA airborne lidar to incorporate advanced solid-state lasers to produce the required power at the required ultraviolet wavelengths, and is compact and robust enough to operate nearly autonomously on the high-altitude ER-2 aircraft. This technology development resulted in the first new NASA airborne ozone DIAL instrument in more than 15 years. The combined ozone, aerosol, and clouds measurements provide valuable information on the chemistry, radiation, and dynamics of the atmosphere. In particular, from the ER-2 it offers a unique capability to study the upper troposphere and lower stratosphere.

  9. Monitoring Error Rates In Illumina Sequencing.

    PubMed

    Manley, Leigh J; Ma, Duanduan; Levine, Stuart S

    2016-12-01

    Guaranteeing high-quality next-generation sequencing data in a rapidly changing environment is an ongoing challenge. The introduction of the Illumina NextSeq 500 and the depreciation of specific metrics from Illumina's Sequencing Analysis Viewer (SAV; Illumina, San Diego, CA, USA) have made it more difficult to determine directly the baseline error rate of sequencing runs. To improve our ability to measure base quality, we have created an open-source tool to construct the Percent Perfect Reads (PPR) plot, previously provided by the Illumina sequencers. The PPR program is compatible with HiSeq 2000/2500, MiSeq, and NextSeq 500 instruments and provides an alternative to Illumina's quality value (Q) scores for determining run quality. Whereas Q scores are representative of run quality, they are often overestimated and are sourced from different look-up tables for each platform. The PPR's unique capabilities as a cross-instrument comparison device, as a troubleshooting tool, and as a tool for monitoring instrument performance can provide an increase in clarity over SAV metrics that is often crucial for maintaining instrument health. These capabilities are highlighted.

  10. Simulation and analysis of differential global positioning system for civil helicopter operations

    NASA Technical Reports Server (NTRS)

    Denaro, R. P.; Cabak, A. R.

    1983-01-01

    A Differential Global Positioning System (DGPS) computer simulation was developed, to provide a versatile tool for assessing DGPS referenced civil helicopter navigation. The civil helicopter community will probably be an early user of the GPS capability because of the unique mission requirements which include offshore exploration and low altitude transport into remote areas not currently served by ground based Navaids. The Monte Carlo simulation provided a sufficiently high fidelity dynamic motion and propagation environment to enable accurate comparisons of alternative differential GPS implementations and navigation filter tradeoffs. The analyst has provided the capability to adjust most aspects of the system, the helicopter flight profile, the receiver Kalman filter, and the signal propagation environment to assess differential GPS performance and parameter sensitivities. Preliminary analysis was conducted to evaluate alternative implementations of the differential navigation algorithm in both the position and measurement domain. Results are presented to show that significant performance gains are achieved when compared with conventional GPS but that differences due to DGPS implementation techniques were small. System performance was relatively insensitive to the update rates of the error correction information.

  11. The New Meteor Radar at Penn State: Design and First Observations

    NASA Technical Reports Server (NTRS)

    Urbina, J.; Seal, R.; Dyrud, L.

    2011-01-01

    In an effort to provide new and improved meteor radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future meteor radars, with primary objectives of making such instruments more capable and more cost effective in order to study the basic properties of the global meteor flux, such as average mass, velocity, and chemical composition. Using low-cost field programmable gate arrays (FPGAs), combined with open source software tools, we describe a design methodology enabling one to develop state-of-the art radar instrumentation, by developing a generalized instrumentation core that can be customized using specialized output stage hardware. Furthermore, using object-oriented programming (OOP) techniques and open-source tools, we illustrate a technique to provide a cost-effective, generalized software framework to uniquely define an instrument s functionality through a customizable interface, implemented by the designer. The new instrument is intended to provide instantaneous profiles of atmospheric parameters and climatology on a daily basis throughout the year. An overview of the instrument design concepts and some of the emerging technologies developed for this meteor radar are presented.

  12. Reducing LANDSAT data to parameters with physical significance and signature extension: A view of LANDSAT capabilities

    NASA Technical Reports Server (NTRS)

    Salmon-Drexler, B. C.

    1977-01-01

    The premise is the LANDSAT is capable of sensing only a few physical parameters. Much of the contrast provided in LANDSAT data is provided by differences in vegetation cover. Although dominant, vegetation is not the only physical parameter that can be detected with LANDSAT; a ratio of MSS Channel 5 to MSS Channel 4 (R5,4), two visible channels, separates materials by color hue. Additional information is attained by the addition of MSS channels 5 and 4 to approximate brightness, permitting separation of materials by color value. Other spectral combinations may provide correlations with these physical parameters or new ones. An iron absorption in the infrared can also be recognized in LANDSAT data when iron content is present in sufficient percentages, Although by color, limonite-rich soils are distinctive as bright yellow, they are not unique in the R5,4. A fairly strong iron absorption is present in the infrared band MSS Channel 7 for these soils, although the wideband configuration of LANDSAT is not optimal for its enhancement and the effects of vegetation often obscure it.

  13. Landsat: Sustaining earth observations beyond Landsat 8

    USGS Publications Warehouse

    Kelly, Francis P.; Holm, Thomas M.

    2014-01-01

    The Landsat series of Earth-observing satellites began 41-years ago as a partnership between the U.S. Geological Survey (USGS) of the Department of the Interior (DOI) and The National Aeronautics and Space Administration (NASA). For the past 41 years, Landsat satellites and associated U.S. Government ground processing, distribution, and archiving systems have acquired and made available global, moderate-resolution, multispectral measurements of land and coastal regions, providing humankind’s longest record of our planet from space. Landsat information is truly a national asset, providing an important and unique capability that benefits abroad community, including Federal, state, and local governments; globalchange science; academia, and the private sector.

  14. Enhancing electrical energy storage capability of dielectric polymer nanocomposites via the room temperature Coulomb blockade effect of ultra-small platinum nanoparticles.

    PubMed

    Wang, Liwei; Huang, Xingyi; Zhu, Yingke; Jiang, Pingkai

    2018-02-14

    Introducing a high dielectric constant (high-k) nanofiller into a dielectric polymer is the most common way to achieve flexible nanocomposites for electrostatic energy storage devices. However, the significant decrease of breakdown strength and large increase of dielectric loss has long been known as the bottleneck restricting the enhancement of practical energy storage capability of the nanocomposites. In this study, by introducing ultra-small platinum (<2 nm) nanoparticles, high-k polymer nanocomposites with high breakdown strength and low dielectric loss were prepared successfully. Core-shell structured polydopamine@BaTiO 3 (PDA@BT) and core-satellite ultra-small platinum decorated PDA@BT (Pt@PDA@BT) were used as nanofillers. Compared with PDA@BT nanocomposites, the maximum discharged energy density of the Pt@PDA@BT nanocomposites is increased by nearly 70% because of the improved energy storage efficiency. This research provides a simple, promising and unique way to enhance energy storage capability of high-k polymer nanocomposites.

  15. Load-Following Power Timeline Analyses for the International Space Station

    NASA Technical Reports Server (NTRS)

    Fincannon, James; Delleur, Ann; Green, Robert; Hojnicki, Jeffrey

    1996-01-01

    Spacecraft are typically complex assemblies of interconnected systems and components that have highly time-varying thermal communications, and power requirements. It is essential that systems designers be able to assess the capability of the spacecraft to meet these requirements which should represent a realistic projection of demand for these resources once the vehicle is on-orbit. To accomplish the assessment from the power standpoint, a computer code called ECAPS has been developed at NASA Lewis Research Center that performs a load-driven analysis of a spacecraft power system given time-varying distributed loading and other mission data. This program is uniquely capable of synthesizing all of the changing spacecraft conditions into a single, seamless analysis for a complete mission. This paper presents example power load timelines with which numerous data are integrated to provide a realistic assessment of the load-following capabilities of the power system. Results of analyses show how well the power system can meet the time-varying power resource demand.

  16. Nanowire Heterostructures Comprising Germanium Stems and Silicon Branches as High-Capacity Li-Ion Anodes with Tunable Rate Capability.

    PubMed

    Kennedy, Tadhg; Bezuidenhout, Michael; Palaniappan, Kumaranand; Stokes, Killian; Brandon, Michael; Ryan, Kevin M

    2015-07-28

    Here we report the rational design of a high-capacity Li-ion anode material comprising Ge nanowires with Si branches. The unique structure provides an electrode material with tunable properties, allowing the performance to be tailored for either high capacity or high rate capability by controlling the mass ratio of Si to Ge. The binder free Si-Ge branched nanowire heterostructures are grown directly from the current collector and exhibit high capacities of up to ∼1800 mAh/g. Rate capability testing revealed that increasing the Ge content within the material boosted the performance of the anode at fast cycling rates, whereas a higher Si content was optimal at slower rates of charge and discharge. Using ex-situ electron microscopy, Raman spectroscopy and energy dispersive X-ray spectroscopy mapping, the composition of the material is shown to be transient in nature, transforming from a heterostructure to a Si-Ge alloy as a consequence of repeated lithiation and delithiation.

  17. KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  18. KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and next to it at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and next to it at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  19. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  20. NASA'S SERVIR Gulf of Mexico Project: The Gulf of Mexico Regional Collaborative (GoMRC)

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Irwin, Daniel; Presson, Joan; Estes, Maury; Estes, Sue; Judd, Kathleen

    2006-01-01

    The Gulf of Mexico Regional Collaborative (GoMRC) is a NASA-funded project that has as its goal to develop an integrated, working, prototype IT infrastructure for Earth science data, knowledge and models for the five Gulf U.S. states and Mexico, and to demonstrate its ability to help decision-makers better understand critical Gulf-scale issues. Within this preview, the mission of this project is to provide cross cutting solution network and rapid prototyping capability for the Gulf of Mexico region, in order to demonstrate substantial, collaborative, multi-agency research and transitional capabilities using unique NASA data sets and models to address regional problems. SERVIR Mesoamerica is seen as an excellent existing framework that can be used to integrate observational and GIs data bases, provide a sensor web interface, visualization and interactive analysis tools, archival functions, data dissemination and product generation within a Rapid Prototyping concept to assist decision-makers in better understanding Gulf-scale environmental issues.

  1. The Ames Vertical Gun Range

    NASA Technical Reports Server (NTRS)

    Karcz, J. S.; Bowling, D.; Cornelison, C.; Parrish, A.; Perez, A.; Raiche, G.; Wiens, J.-P.

    2016-01-01

    The Ames Vertical Gun Range (AVGR) is a national facility for conducting laboratory- scale investigations of high-speed impact processes. It provides a set of light-gas, powder, and compressed gas guns capable of accelerating projectiles to speeds up to 7 km s(exp -1). The AVGR has a unique capability to vary the angle between the projectile-launch and gravity vectors between 0 and 90 deg. The target resides in a large chamber (diameter approximately 2.5 m) that can be held at vacuum or filled with an experiment-specific atmosphere. The chamber provides a number of viewing ports and feed-throughs for data, power, and fluids. Impacts are observed via high-speed digital cameras along with investigation-specific instrumentation, such as spectrometers. Use of the range is available via grant proposals through any Planetary Science Research Program element of the NASA Research Opportunities in Space and Earth Sciences (ROSES) calls. Exploratory experiments (one to two days) are additionally possible in order to develop a new proposal.

  2. Imaging the Atomic Position of Light Cations in a Porous Network and the Europium(III) Ion Exchange Capability by Aberration-Corrected Electron Microscopy.

    PubMed

    Mayoral, Alvaro; Hall, Reece M; Jackowska, Roksana; Readman, Jennifer E

    2016-12-23

    In the present work, ETS-10 microporous titanosilicate has been synthesized and its structure characterized by means of powder XRD and aberration corrected scanning transmission electron microscopy (C s -corrected STEM). For the first time, sodium ions have been imaged sitting inside the 7-membered rings. The ion-exchange capability has been tested by the inclusion of rare earth metals (Eu, Tb and Gd) to produce a luminescent material which has been studied by atomic-resolution C s -corrected STEM. The data produced has allowed unambiguous imaging of light atoms in a microporous framework as well as determining the cationic metal positions for the first time, providing evidence of the importance of advanced electron microscopy methods for the study of the local environment of metals within zeolitic supports providing unique information of both systems (guest and support) at the same time. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electronic Still Camera Project on STS-48

    NASA Technical Reports Server (NTRS)

    1991-01-01

    On behalf of NASA, the Office of Commercial Programs (OCP) has signed a Technical Exchange Agreement (TEA) with Autometric, Inc. (Autometric) of Alexandria, Virginia. The purpose of this agreement is to evaluate and analyze a high-resolution Electronic Still Camera (ESC) for potential commercial applications. During the mission, Autometric will provide unique photo analysis and hard-copy production. Once the mission is complete, Autometric will furnish NASA with an analysis of the ESC s capabilities. Electronic still photography is a developing technology providing the means by which a hand held camera electronically captures and produces a digital image with resolution approaching film quality. The digital image, stored on removable hard disks or small optical disks, can be converted to a format suitable for downlink transmission, or it can be enhanced using image processing software. The on-orbit ability to enhance or annotate high-resolution images and then downlink these images in real-time will greatly improve Space Shuttle and Space Station capabilities in Earth observations and on-board photo documentation.

  4. UAVSAR for the Management of Natural Disasters

    NASA Astrophysics Data System (ADS)

    Lou, Y.; Hensley, S.; Jones, C. E.

    2014-12-01

    The unique capabilities of imaging radar to penetrate cloud cover and collect data in darkness over large areas at high resolution makes it a key information provider for the management and mitigation of natural and human-induced disasters such as earthquakes, volcanoes, landslides, floods, and wildfires. Researchers have demonstrated the use of UAVSAR's fully polarimetric data to determine flood extent, forest fire extent, lava flow, and landslide. The ability for UAVSAR to provide high accuracy repeated flight tracks and precise imaging geometry for measuring surface deformation to a few centimeter accuracy using InSAR techniques. In fact, UAVSAR's repeat-pass interferometry capability unleashed new potential approaches to manage the risk of natural disasters prior to the occurrence of these events by modeling and monitoring volcano inflation, earthquake fault movements, landslide rate and extent, and sink hole precursory movement. In this talk we will present examples of applications of UAVSAR for natural disaster management. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  5. Capabilities and prospects of the East Asia Very Long Baseline Interferometry Network

    NASA Astrophysics Data System (ADS)

    An, T.; Sohn, B. W.; Imai, H.

    2018-02-01

    The very long baseline interferometry (VLBI) technique offers angular resolutions superior to any other instruments at other wavelengths, enabling unique science applications of high-resolution imaging of radio sources and high-precision astrometry. The East Asia VLBI Network (EAVN) is a collaborative effort in the East Asian region. The EAVN currently consists of 21 telescopes with diverse equipment configurations and frequency setups, allowing flexible subarrays for specific science projects. The EAVN provides the highest resolution of 0.5 mas at 22 GHz, allowing the fine imaging of jets in active galactic nuclei, high-accuracy astrometry of masers and pulsars, and precise spacecraft positioning. The soon-to-be-operational Five-hundred-meter Aperture Spherical radio Telescope (FAST) will open a new era for the EAVN. This state-of-the-art VLBI array also provides easy access to and crucial training for the burgeoning Asian astronomical community. This Perspective summarizes the status, capabilities and prospects of the EAVN.

  6. KENNEDY SPACE CENTER, FLA. - The container with the Japanese Experiment Module (JEM)’s pressurized module is inside the Space Station Processing Facility. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - The container with the Japanese Experiment Module (JEM)’s pressurized module is inside the Space Station Processing Facility. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  7. KENNEDY SPACE CENTER, FLA. - The truck transporting the Pressurized Module of the Japanese Experiment Module (JEM) to KSC’s Space Station Processing Facility arrives on Center. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - The truck transporting the Pressurized Module of the Japanese Experiment Module (JEM) to KSC’s Space Station Processing Facility arrives on Center. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  8. KENNEDY SPACE CENTER, FLA. - The JEM Pressurized Module is seen in the hold of the ship that carried it from Japan. The National Space Development Agency of Japan (NASDA) built the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, Japan’s primary contribution to the space station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. The JEM also includes two logistics modules, an exposed pallet for space environment experiments and a robotic manipulator system that are still under construction in Japan. The various JEM components will be assembled in space over the course of three space shuttle missions.

    NASA Image and Video Library

    2003-05-30

    KENNEDY SPACE CENTER, FLA. - The JEM Pressurized Module is seen in the hold of the ship that carried it from Japan. The National Space Development Agency of Japan (NASDA) built the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, Japan’s primary contribution to the space station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. The JEM also includes two logistics modules, an exposed pallet for space environment experiments and a robotic manipulator system that are still under construction in Japan. The various JEM components will be assembled in space over the course of three space shuttle missions.

  9. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    USGS Publications Warehouse

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  10. The User Community and a Multi-Mission Data Project: Services, Experiences and Directions of the Space Physics Data Facility

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Bilitza, D.; Candey, R.; Chimiak, R.; Cooper, John; Fung, Shing; Harris, B.; Johnson R.; King, J.; Kovalick, T.; hide

    2008-01-01

    From a user's perspective, the multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project offer a unique range of important data and services highly complementary to other services presently available or now evolving in the international heliophysics data environment. The VSP (Virtual Space Physics Observatory) service is an active portal to a wide range of distributed data sources. CDAWeb (Coordinate Data Analysis Web) enables plots, listings and file downloads for current data cross the boundaries of missions and instrument types (and now including data from THEMIS and STEREO). SSCWeb, Helioweb and our 3D Animated Orbit Viewer (TIPSOD) provide position data and query logic for most missions currently important to heliophysics science. OMNIWeb with its new extension to 1- and 5-minute resolution provides interplanetary parameters at the Earth's bow shock as a unique value-added data product. SPDF also maintains NASA's CDF (common Data Format) standard and a range of associated tools including translation services. These capabilities are all now available through webservices-based APIs as well as through our direct user interfaces. In this paper, we will demonstrate the latest data and capabilities now supported in these multi-mission services, review the lessons we continue to learn in what science users need and value in this class of services, and discuss out current thinking to the future role and appropriate focus of the SPDF effort in the evolving and increasingly distributed heliophysics data environment.

  11. Why Not Space Tethers?

    NASA Technical Reports Server (NTRS)

    Stone, Noble H.

    2007-01-01

    The Tethered Satellite System Space Shuttle missions, TSS-1 in 1993 and TSS-1R in 1996, were the height of space tether technology development. Since NASA's investment of some $200M and two Shuttle missions in those two pioneering missions, there have been several smaller tether flight experiments, but interest in this promising technology has waned within NASA as well as the DOD agencies. This is curious in view of the unique capabilities of space tether systems and the fact that they have been flight validated and shown to perform as, or better than, expected in earth orbit. While it is true that the TSS-1, TSS-1R and SEDS-2 missions experienced technical difficulties, the causes of these early developmental problems are now known to be design or materials flaws that are (1) unrelated to the basic viability of space tether technology, and (2) they are readily corrected. The purpose of this paper is to review the dynamic and electrodynamic fundamentals of space tethers and the unique capabilities they afford (that are enabling to certain types of space missions); to elucidate the nature, cause, and solution of the early developmental problems; and to provide an update on progress made in development of the technology. Finally, it is shown that (1) all problems experienced during early development of the technology now have solutions; and (2) the technology has been matured by advances made in strength and robustness of tether materials, high voltage engineering in the space environment, tether health and status monitoring, and the elimination of the broken tether hazard. In view of this, it is inexplicable why this flight-validated technology has not been utilized in the past decade, considering the powerful and unique capabilities that space tethers can afford that are, not only required to carryout, otherwise, unobtainable missions, but can also greatly reduce the cost of certain on-going space operations.

  12. NASA science utilization plans for the Space Station.

    PubMed

    Reeves, E M; Cressy, P J

    1995-10-01

    The Mir-1 and International Space Station Alpha capabilities present the science community with unique long duration platforms to conduct a wide range of scientific research in the microgravity and life sciences as well as in the observational sciences, NASA is developing plans to use the capabilities of Mir and Space Station as they emerge during the development of the orbital program. In both cases the planned science utilization programs take advantage of the volume, crew, power, microgravity and logistics resupply unique to each phase. The paper will present these utilization plans in the context of an evolving scientific program.

  13. Towards improved capability and confidence in coupled atmospheric and wildland fire modeling

    NASA Astrophysics Data System (ADS)

    Sauer, Jeremy A.

    This dissertation work is aimed at improving the capability and confidence in a modernized and improved version of Los Alamos National Laboratory's coupled atmospheric and wild- land fire dynamics model, Higrad-Firetec. Higrad is the hydrodynamics component of this large eddy simulation model that solves the three dimensional, fully compressible Navier-Stokes equations, incorporating a dynamic eddy viscosity formulation through a two-scale turbulence closure scheme. Firetec is the vegetation, drag forcing, and combustion physics portion that is integrated with Higrad. The modern version of Higrad-Firetec incorporates multiple numerical methodologies and high performance computing aspects which combine to yield a unique tool capable of augmenting theoretical and observational investigations in order to better understand the multi-scale, multi-phase, and multi-physics, phenomena involved in coupled atmospheric and environmental dynamics. More specifically, the current work includes extended functionality and validation efforts targeting component processes in coupled atmospheric and wildland fire scenarios. Since observational data of sufficient quality and resolution to validate the fully coupled atmosphere-wildfire scenario simply does not exist, we instead seek to validate components of the full prohibitively convoluted process. This manuscript provides first, an introduction and background into the application space of Higrad-Firetec. Second we document the model formulation, solution procedure, and a simple scalar transport verification exercise. Third, we perform a validate model results against observational data for time averaged flow field metrics in and above four idealized forest canopies. Fourth, we carry out a validation effort for the non-buoyant jet in a crossflow scenario (to which an analogy can be made for atmosphere-wildfire interactions) comparing model results to laboratory data of both steady-in-time and unsteady-in-time metrics. Finally, an extension of model multi-phase physics is implemented, allowing for the representation of multiple collocated fuels as separately evolving constituents leading to differences resulting rate of spread and total burned area. In combination these efforts demonstrate improved capability, increased validation of component functionality, and unique applicability the Higrad-Firetec modeling framework. As a result this work provides a substantially more robust foundation for future new, more widely acceptable investigations into the complexities of coupled atmospheric and wildland fire behavior.

  14. Comparative analysis of the functionality of simulators of the da Vinci surgical robot.

    PubMed

    Smith, Roger; Truong, Mireille; Perez, Manuela

    2015-04-01

    The implementation of robotic technology in minimally invasive surgery has led to the need to develop more efficient and effective training methods, as well as assessment and skill maintenance tools for surgical education. Multiple simulators and procedures are available for educational and training purposes. A need for comparative evaluations of these simulators exists to aid users in selecting an appropriate device for their purposes. We conducted an objective review and comparison of the design and capabilities of all dedicated simulators of the da Vinci robot, the da Vinci Skill Simulator (DVSS) (Intuitive Surgical Inc., Sunnyvale, CA, USA), dV-Trainer (dVT) (Mimic Technologies Inc., Seattle, WA, USA), and Robotic Surgery Simulator (RoSS) (Simulated Surgical Skills, LLC, Williamsville, NY, USA). This provides base specifications of the hardware and software, with an emphasis on the training capabilities of each system. Each simulator contains a large number of training exercises, DVSS = 40, dVT = 65, and RoSS = 52 for skills development. All three offer 3D visual images but use different display technologies. The DVSS leverages the real robotic surgeon's console to provide visualization, hand controls, and foot pedals. The dVT and RoSS created simulated versions of all of these control systems. They include systems management services which allow instructors to collect, export, and analyze the scores of students using the simulators. This study is the first to provide comparative information of the three simulators functional capabilities with an emphasis on their educational skills. They offer unique advantages and capabilities in training robotic surgeons. Each device has been the subject of multiple validation experiments which have been published in the literature. But those do not provide specific details on the capabilities of the simulators which are necessary for an understanding sufficient to select the one best suited for an organization's needs.

  15. Heliophysics Science and the Moon: Potential Solar and Space Physics Science for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This report addresses both these features new science enabled by NASAs exploration initiative and enabling science that is critical to ensuring a safe return to the Moon and onward to Mars. The areas of interest are structured into four main themes: Theme 1: Heliophysics Science of the Moon Studies of the Moons unique magnetodynamic plasma environment. Theme 2: Space Weather, Safeguarding the Journey Studies aimed at developing a predictive capability for space weather hazards. Theme 3: The Moon as a Historical Record Studies of the variation of the lunar regolith to uncover the history of the Sun, solar system, local interstellar medium, galaxy, and universe. Theme 4: The Moon as a Heliophysics Science Platform Using the unique environment of the lunar surface as a platform to provide observations beneficial to advancing heliophysics science.

  16. Modification of NASA Langley 8 foot high temperature tunnel to provide a unique national research facility for hypersonic air-breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.

    1984-01-01

    A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.

  17. Immersion ultrasonography: simultaneous A-scan and B-scan.

    PubMed

    Coleman, D J; Dallow, R L; Smith, M E

    1979-01-01

    In eyes with opaque media, ophthalmic ultrasound provides a unique source of information that can dramatically affect the course of patient management. In addition, when an ocular abnormality can be visualized, ultrasonography provides information that supplements and complements other diagnostic testing. It provides documentation and differentiation of abnormal states, such as vitreous hemorrhage and intraocular tumor, as well as differentiation of orbital tumors from inflammatory causes of exophthalmos. Additional capabilities of ultrasound are biometric determinations for calculation of intraocular lens implant powers and drug-effectiveness studies. Maximal information is derived from ultrasonography when A-scan and B-scan techniques are employed simultaneously. Flexibility of electronics, variable-frequency transducers, and the use of several different manual scanning patterns aid in detection and interpretation of results. The immersion system of ultrasonography provides these features optimally.

  18. Capabilities Development for Transient Testing of Advanced Nuclear Fuels at TREAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolstenhulme, N. E.; Baker, C. C.; Bess, J. D.

    2016-09-01

    The TREAT facility is a unique capability at the Idaho National Laboratory currently being prepared for resumption of nuclear transient testing. Accordingly, designs for several transient irradiation tests are being pursued to enable development of advanced nuclear fuels and materials. In addition to the reactor itself, the foundation for TREAT’s capabilities also include a suite of irradiation vehicles and supporting infrastructure to provide the desired specimen boundary conditions while supporting a variety of instrumentation needs. The challenge of creating these vehicles, especially since many of the modern data needs were not historically addressed in TREAT experiment vehicles, has necessitated amore » sizeable engineering effort. This effort is currently underway and maturing rapidly. This paper summarizes the status, future plans, and rationale for TREAT experiment vehicle capabilities. Much of the current progress is focused around understanding and demonstrating the behavior of fuel design with enhanced accident tolerance in water-cooled reactors. Additionally, several related efforts are underway to facilitate transient testing in liquid sodium, inert gas, and steam environments. This paper discusses why such a variety of capabilities are needed, outlines plans to accomplish them, and describes the relationship between transient data needs and the irradiation hardware that will support the gathering of this information.« less

  19. Molecular imaging of melanin distribution in vivo and quantitative differential diagnosis of human pigmented lesions using label-free harmonic generation biopsy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sun, Chi-Kuang; Wei, Ming-Liang; Su, Yu-Hsiang; Weng, Wei-Hung; Liao, Yi-Hua

    2017-02-01

    Harmonic generation microscopy is a noninvasive repetitive imaging technique that provides real-time 3D microscopic images of human skin with a sub-femtoliter resolution and high penetration down to the reticular dermis. In this talk, we show that with a strong resonance effect, the third-harmonic-generation (THG) modality provides enhanced contrast on melanin and allows not only differential diagnosis of various pigmented skin lesions but also quantitative imaging for longterm tracking. This unique capability makes THG microscopy the only label-free technique capable of identifying the active melanocytes in human skin and to image their different dendriticity patterns. In this talk, we will review our recent efforts to in vivo image melanin distribution and quantitatively diagnose pigmented skin lesions using label-free harmonic generation biopsy. This talk will first cover the spectroscopic study on the melanin enhanced THG effect in human cells and the calibration strategy inside human skin for quantitative imaging. We will then review our recent clinical trials including: differential diagnosis capability study on pigmented skin tumors; as well as quantitative virtual biopsy study on pre- and post- treatment evaluation on melasma and solar lentigo. Our study indicates the unmatched capability of harmonic generation microscopy to perform virtual biopsy for noninvasive histopathological diagnosis of various pigmented skin tumors, as well as its unsurpassed capability to noninvasively reveal the pathological origin of different hyperpigmentary diseases on human face as well as to monitor the efficacy of laser depigmentation treatments. This work is sponsored by National Health Research Institutes.

  20. Practical relevance of pattern uniqueness in forensic science.

    PubMed

    Jayaprakash, Paul T

    2013-09-10

    Uniqueness being unprovable, it has recently been argued that individualization in forensic science is irrelevant and, probability, as applied for DNA profiles, should be applied for all identifications. Critiques against uniqueness have omitted physical matching, a realistic and tangible individualization that supports uniqueness. Describing case examples illustrating pattern matches including physical matching, it is indicated that individualizations are practically relevant for forensic science as they establish facts on a definitive basis providing firm leads benefitting criminal investigation. As a tenet of forensic identification, uniqueness forms a fundamental paradigm relevant for individualization. Evidence on the indeterministic and stochastic causal pathways of characteristics in patterns available in the related fields of science sufficiently supports the proposition of uniqueness. Characteristics involved in physical matching and matching achieved in patterned evidence existing in the state of nature are not events amenable for counting; instead these are ensemble of visible units occupying the entire pattern area stretching the probability of re-occurrence of a verisimilitude pattern into infinity offering epistemic support to uniqueness. Observational methods are as respectable as instrumental or statistical methods since they are capable of generating results that are tangible and obviously valid as in physical matching. Applying the probabilistic interpretation used for DNA profiles to the other patterns would be unbefitting since these two are disparate, the causal pathways of the events, the loci, in the manipulated DNA profiles being determinable. While uniqueness enables individualizations, it does not vouch for eliminating errors. Instead of dismissing uniqueness and individualization, accepting errors as human or system failures and seeking remedial measures would benefit forensic science practice and criminal investigation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Archiving Software Systems: Approaches to Preserve Computational Capabilities

    NASA Astrophysics Data System (ADS)

    King, T. A.

    2014-12-01

    A great deal of effort is made to preserve scientific data. Not only because data is knowledge, but it is often costly to acquire and is sometimes collected under unique circumstances. Another part of the science enterprise is the development of software to process and analyze the data. Developed software is also a large investment and worthy of preservation. However, the long term preservation of software presents some challenges. Software often requires a specific technology stack to operate. This can include software, operating systems and hardware dependencies. One past approach to preserve computational capabilities is to maintain ancient hardware long past its typical viability. On an archive horizon of 100 years, this is not feasible. Another approach to preserve computational capabilities is to archive source code. While this can preserve details of the implementation and algorithms, it may not be possible to reproduce the technology stack needed to compile and run the resulting applications. This future forward dilemma has a solution. Technology used to create clouds and process big data can also be used to archive and preserve computational capabilities. We explore how basic hardware, virtual machines, containers and appropriate metadata can be used to preserve computational capabilities and to archive functional software systems. In conjunction with data archives, this provides scientist with both the data and capability to reproduce the processing and analysis used to generate past scientific results.

  2. CCMC: bringing space weather awareness to the next generation

    NASA Astrophysics Data System (ADS)

    Chulaki, A.; Muglach, K.; Zheng, Y.; Mays, M. L.; Kuznetsova, M. M.; Taktakishvili, A.; Collado-Vega, Y. M.; Rastaetter, L.; Mendoza, A. M. M.; Thompson, B. J.; Pulkkinen, A. A.; Pembroke, A. D.

    2017-12-01

    Making space weather an element of core education is critical for the future of the young field of space weather. Community Coordinated Modeling Center (CCMC) is an interagency partnership established to aid the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable our small group to serve as a hub for rising generations of young space scientists and engineers. CCMC offers a variety of educational tools and resources publicly available online and providing access to the largest collection of modern space science models developed by the international research community. CCMC has revolutionized the way these simulations are utilized in classrooms settings, student projects, and scientific labs. Every year, this online system serves hundreds of students, educators and researchers worldwide. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unique capabilities and experiences, the team also provides in-depth space weather training to hundreds of students and professionals. One training module offers undergraduates an opportunity to actively engage in real-time space weather monitoring, analysis, forecasting, tools development and research, eventually serving remotely as NASA space weather forecasters. In yet another project, CCMC is collaborating with Hayden Planetarium and Linkoping University on creating a visualization platform for planetariums (and classrooms) to provide simulations of dynamic processes in the large domain stretching from the solar corona to the Earth's upper atmosphere, for near real-time and historical space weather events.

  3. Imaging Cascadia coupling: optimal design for an offshore seafloor geodetic network

    NASA Astrophysics Data System (ADS)

    Evans, E. L.; Minson, S. E.

    2017-12-01

    The Cascadia subduction zone in the Pacific Northwest of the United States is known to produce MW≈9.2 earthquakes, and accompanying tsunamis every 600 years. An outstanding question in this region (as in most offshore subduction zones) is the degree to which the megathrust is locked (i.e., the coupling rate), and whether the locked zone extends to the trench, where onshore geodetic measurements cannot uniquely resolve strain accumulation. Seafloor geodetic techniques, such as acoustic ranging combined with GNSS positioning, are capable of providing unique observations of strain accumulation near the offshore trench of subduction zones. These observations may be used to constrain megathrust coupling rate and spatial distribution, and ultimately forecast the potential size and rupture pattern of a future subduction zone earthquake, with resolution beyond the capability of onshore observations alone. However, the high cost of seafloor geodesy limits the number of stations that may be deployed and monitored. Therefore, it is essential that deployed stations be positioned in such a way to provide the most informative data for resolving subduction zone coupling. We identify optimal seafloor observation locations by minimizing the Shannon Information Entropy of potential geodetic observation locations, given the current onshore geodetic network. Because coupling rate on the Cascadia megathrust depends on the relative convergence rate between the Juan de Fuca and North American plates, the most valuable location for a single seafloor geodetic station is west of the Juan de Fuca trench, on the Juan de Fuca plate itself. Subsequent optimal locations are also identified offshore, on the hanging wall near the trench. This approach provides a quantitative assessment of the value of seafloor observations: a single offshore observation provides 30 times the information gain of an additional onshore observation, and adding many (>50) onshore observations cannot provide the information gain of a single offshore observation.

  4. Algorithms exploiting ultrasonic sensors for subject classification

    NASA Astrophysics Data System (ADS)

    Desai, Sachi; Quoraishee, Shafik

    2009-09-01

    Proposed here is a series of techniques exploiting micro-Doppler ultrasonic sensors capable of characterizing various detected mammalian targets based on their physiological movements captured a series of robust features. Employed is a combination of unique and conventional digital signal processing techniques arranged in such a manner they become capable of classifying a series of walkers. These processes for feature extraction develops a robust feature space capable of providing discrimination of various movements generated from bipeds and quadrupeds and further subdivided into large or small. These movements can be exploited to provide specific information of a given signature dividing it in a series of subset signatures exploiting wavelets to generate start/stop times. After viewing a series spectrograms of the signature we are able to see distinct differences and utilizing kurtosis, we generate an envelope detector capable of isolating each of the corresponding step cycles generated during a walk. The walk cycle is defined as one complete sequence of walking/running from the foot pushing off the ground and concluding when returning to the ground. This time information segments the events that are readily seen in the spectrogram but obstructed in the temporal domain into individual walk sequences. This walking sequence is then subsequently translated into a three dimensional waterfall plot defining the expected energy value associated with the motion at particular instance of time and frequency. The value is capable of being repeatable for each particular class and employable to discriminate the events. Highly reliable classification is realized exploiting a classifier trained on a candidate sample space derived from the associated gyrations created by motion from actors of interest. The classifier developed herein provides a capability to classify events as an adult humans, children humans, horses, and dogs at potentially high rates based on the tested sample space. The algorithm developed and described will provide utility to an underused sensor modality for human intrusion detection because of the current high-rate of generated false alarms. The active ultrasonic sensor coupled in a multi-modal sensor suite with binary, less descriptive sensors like seismic devices realizing a greater accuracy rate for detection of persons of interest for homeland purposes.

  5. The Microgravity Science Glovebox (MSG), a Resource for Gravity-Dependent Phenomena Research on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Jeter, Linda B.; Vonk, Chris

    2007-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for gravity-dependent phenomena investigation handling. The MSG has been operating in the ISS US Laboratory Module since July 2002. The MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. The MSG s unique design provides two levels of containment to protect the ISS crew from hazardous operations. Research investigations operating inside the MSG are provided a large 255 liter work volume, 1000 watts of dc power via a versatile supply interface (120,28, +/-12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. With these capabilities, the MSG is an ideal platform for research required to advance the technology readiness levels (TRL) needed for the Crew Exploration Vehicle and the Exploration Initiative. Areas of research that will benefit from investigations in the MSG include thermal management, fluid physics, spacecraft fire safety, materials science, combustion and reacting control systems, in situ fabrication and repair, and advanced life support technologies. This paper will provide a detailed explanation of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of investigations planning to operate in the MSG, and possible augmentations that can be added to the MSG facility to further enhance the resources provided to investigations.

  6. The Microgravity Science Glovebox (MSG), a Resource for Gravity-Dependent Phenomena Research on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Jeter, Linda B.; Vonk, Chris

    2007-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for gravity-dependent phenomena investigation handling. The MSG has been operating in the ISS US Laboratory Module since July 2002. The MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. The MSG's unique design provides two levels of containment to protect the ISS crew from hazardous operations. Research investigations operating inside the MSG are provided a large 255 liter work volume, 1000 watts of dc power via a versatile supply interface (120,28, plus or minus 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust' and Vacuum Resource 'Systems, and gaseous nitrogen supply. With these capabilities, the MSG is an ideal platform for research required to advance the technology readiness levels (TRL) needed for the Crew Exploration Vehicle and the Exploration Initiative. Areas of research that will benefit from investigations in the MSG include thermal management, fluid physics, spacecraft fire safety, materials science, combustion and reacting control systems, in situ fabrication and repair, and advanced life support technologies. This paper will provide a detailed explanation of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of investigations planning to operate in the MSG, and possible augmentations that can be added to-the MSG facility to further enhance the resources provided to investigations.

  7. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, M.; Edwards, H.; Harms, E.

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support themore » accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the OHEP mission of Accelerator Stewardship.« less

  8. ASSTC and field sensors: new technology for emergency care

    NASA Astrophysics Data System (ADS)

    Morrison, G. Wayne; Vo-Dinh, Tuan

    2000-05-01

    The US Army Medical Research and Material Command together with the US Marine Corps Combat Development Command sponsored the design and production of a far-forward, lightweight, small footprint, reconfigurable, highly mobile Advanced Surgical Suite for Trauma Casualties (ASSTC) to reduce combat casualties and morbidity. The KIA fraction has remained relatively constant over major wars and conflicts since the early 1900s. One third of the KIA perish after 10 minutes. ASSTC has the potential to dramatically lower this fraction by providing resuscitative care within a short period of wound infliction and not requiring long transport times to the caregivers. ASSTC is also unique in its capability to serve in multiple missions including humanitarian aid, infectious disease control, and disaster relief. Adding field sensor to ASSTC greatly enhances the capability of this highly mobile system to operate in many areas.

  9. Resource Prospector Mission Animation (June 2018)

    NASA Image and Video Library

    2018-05-30

    Expanding human presence beyond low-Earth orbit will require the maximum possible use of local materials, so-called in-situ resources (ISRU). The Moon presents a unique destination to conduct robotic investigations that advance ISRU capabilities, as well as providing significant exploration and science value. This video animation shows one mission concept under study by NASA called Resource Prospector (RP), an ISRU prospecting and technology demonstration mission. RP would scan the surface and sub-surface terrain, and demonstrate extraction of hydrogen and oxygen from lunar regolith to validate one possible ISRU approach. As NASA plans a series of progressive robotic missions to the lunar surface, the agency is considering a variety of approaches to evolve progressively larger landers leading to an eventual human lander capability. Part of this expanded lunar campaign includes early flight of select instruments from Resource Prospector to the Moon.

  10. Microscopy image segmentation tool: Robust image data analysis

    NASA Astrophysics Data System (ADS)

    Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.

    2014-03-01

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  11. Polymer and ceramic nanocomposites for aerospace applications

    NASA Astrophysics Data System (ADS)

    Rathod, Vivek T.; Kumar, Jayanth S.; Jain, Anjana

    2017-11-01

    This paper reviews the potential of polymer and ceramic matrix composites for aerospace/space vehicle applications. Special, unique and multifunctional properties arising due to the dispersion of nanoparticles in ceramic and metal matrix are briefly discussed followed by a classification of resulting aerospace applications. The paper presents polymer matrix composites comprising majority of aerospace applications in structures, coating, tribology, structural health monitoring, electromagnetic shielding and shape memory applications. The capabilities of the ceramic matrix nanocomposites to providing the electromagnetic shielding for aircrafts and better tribological properties to suit space environments are discussed. Structural health monitoring capability of ceramic matrix nanocomposite is also discussed. The properties of resulting nanocomposite material with its disadvantages like cost and processing difficulties are discussed. The paper concludes after the discussion of the possible future perspectives and challenges in implementation and further development of polymer and ceramic nanocomposite materials.

  12. A Unique Photon Bombardment System for Space Applications

    NASA Technical Reports Server (NTRS)

    Klein, E. J.

    1993-01-01

    The innovative Electromagnetic Radiation Collection and Concentration System (EMRCCS) described is the foundation for the development of a multiplicity of space and terrestrial system formats. The system capability allows its use in the visual, infrared, and ultraviolet ranges of the spectrum for EM collection, concentration, source/receptor tracking, and targeting. The nonimaging modular optical system uses a physically static position aperture for EM radiation collection. Folded optics provide the concentration of the radiation and source autotracking. The collected and concentrated electromagnetic radiation is utilized in many applications, e.g., solar spectrum in thermal and associative photon bombardment applications for hazardous waste management, water purification, metal hardening, hydrogen generation, photovoltaics, etc., in both space and terrestrial segment utilization. Additionally, at the high end of the concentration capability range, i.e., 60,000+, a solar-pulsed laser system is possible.

  13. MSFC Optical Metrology: A National Resource

    NASA Technical Reports Server (NTRS)

    Burdine, Robert

    1998-01-01

    A national need exists for Large Diameter Optical Metrology Services. These services include the manufacture, testing, and assurance of precision and control necessary to assure the success of large optical projects. "Best Practices" are often relied on for manufacture and quality controls while optical projects are increasingly more demanding and complex. Marshall Space Flight Center (MSFC) has acquired unique optical measurement, testing and metrology capabilities through active participation in a wide variety of NASA optical programs. An overview of existing optical facilities and metrology capabilities is given with emphasis on use by other optical projects. Cost avoidance and project success is stressed through use of existing MSFC facilities and capabilities for measurement and metrology controls. Current issues in large diameter optical metrology are briefly reviewed. The need for a consistent and long duration Large Diameter Optical Metrology Service Group is presented with emphasis on the establishment of a National Large Diameter Optical Standards Laboratory. Proposals are made to develop MSFC optical standards and metrology capabilities as the primary national standards resource, providing access to MSFC Optical Core Competencies for manufacturers and researchers. Plans are presented for the development of a national lending library of precision optical standards with emphasis on cost avoidance while improving measurement assurance.

  14. Chandra Observations of Neutron Stars: An Overview

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Karovska, M.; Pavlov, G. G.; Zavlin, V. E.; Clarke, Tracy

    2006-01-01

    We present a brief review of Chandra X-ray Observatory observations of neutron stars. The outstanding spatial and spectral resolution of this great observatory have allowed for observations of unprecedented clarity and accuracy. Many of these observations have provided new insights into neutron star physics. We present an admittedly biased and overly brief overview of these observations, highlighting some new discoveries made possible by the Observatory's unique capabilities. We also include our analysis of recent multiwavelength observations of the putative pulsar and its pulsar-wind nebula in the IC 443 SNR.

  15. The Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Neumann, Richard D.; Freeman, Delma C.

    2011-01-01

    In 2008 a wind tunnel test program was implemented to update the experimental data available for predicting protuberance heating at supersonic Mach numbers. For this test the Langley Unitary Wind Tunnel was also used. The significant differences for this current test were the advances in the state-of-the-art in model design, fabrication techniques, instrumentation and data acquisition capabilities. This current paper provides a focused discussion of the results of an in depth analysis of unique measurements of recovery temperature obtained during the test.

  16. KSC-06pd1686

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, processing continues on the Japanese Experiment Module (JEM) for its flight to the International Space Station (ISS). The JEM, developed by the Japan Aerospace Exploration Agency (JAXA) for installation on the ISS, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  17. Development of STOLAND, a versatile navigation, guidance and control system

    NASA Technical Reports Server (NTRS)

    Young, L. S.; Hansen, Q. M.; Rouse, W. E.; Osder, S. S.

    1972-01-01

    STOLAND has been developed to perform navigation, guidance, control, and flight management experiments in advanced V/STOL aircraft. The experiments have broad requirements and have dictated that STOLAND be capable of providing performance that would be realistic and equivalent to a wide range of current and future avionics systems. An integrated digital concept using modern avionics components was selected as the simplest approach to maximizing versatility and growth potential. Unique flexibility has been obtained by use of a single, general-purpose digital computer for all navigation, guidance, control, and displays computation.

  18. Utilizing ISS Camera Systems for Scientific Analysis of Lightning Characteristics and Comparison with ISS-LIS and GLM

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Lang, Timothy J.; Leake, Skye; Runco, Mario, Jr.; Blakeslee, Richard J.

    2017-01-01

    Video and still frame images from cameras aboard the International Space Station (ISS) are used to inspire, educate, and provide a unique vantage point from low-Earth orbit that is second to none; however, these cameras have overlooked capabilities for contributing to scientific analysis of the Earth and near-space environment. The goal of this project is to study how geo referenced video/images from available ISS camera systems can be useful for scientific analysis, using lightning properties as a demonstration.

  19. Voroprot: an interactive tool for the analysis and visualization of complex geometric features of protein structure.

    PubMed

    Olechnovic, Kliment; Margelevicius, Mindaugas; Venclovas, Ceslovas

    2011-03-01

    We present Voroprot, an interactive cross-platform software tool that provides a unique set of capabilities for exploring geometric features of protein structure. Voroprot allows the construction and visualization of the Apollonius diagram (also known as the additively weighted Voronoi diagram), the Apollonius graph, protein alpha shapes, interatomic contact surfaces, solvent accessible surfaces, pockets and cavities inside protein structure. Voroprot is available for Windows, Linux and Mac OS X operating systems and can be downloaded from http://www.ibt.lt/bioinformatics/voroprot/.

  20. Networking for philanthropy: increasing volunteer behavior via social networking sites.

    PubMed

    Kim, Yoojung; Lee, Wei-Na

    2014-03-01

    Social networking sites (SNSs) provide a unique social venue to engage the young generation in philanthropy through their networking capabilities. An integrated model that incorporates social capital into the Theory of Reasoned Action is developed to explain volunteer behavior through social networks. As expected, volunteer behavior was predicted by volunteer intention, which was influenced by attitudes and subjective norms. In addition, social capital, an outcome of the extensive use of SNSs, was as an important driver of users' attitude and subjective norms toward volunteering via SNSs.

  1. Drug discovery in an academic setting: playing to the strengths.

    PubMed

    Huryn, Donna M

    2013-03-14

    Drug discovery and medicinal chemistry initiatives in academia provide an opportunity to create a unique environment that is distinct from the traditional industrial model. Two characteristics of a university setting that are not usually associated with pharma are the ability to pursue high-risk projects and a depth of expertise, infrastructure, and capabilities in focused areas. Encouraging, supporting, and fostering drug discovery efforts that take advantage of these and other distinguishing characteristics of an academic setting can lead to novel and innovative therapies that might not be discovered otherwise.

  2. Analytical Protocols for Analysis of Organic Molecules in Mars Analog Materials

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Brinkerhoff, W.; Buch, A.; Demick, J.; Glavin, D. P.

    2004-01-01

    A range of analytical techniques and protocols that might be applied b in situ investigations of martian fines, ices, and rock samples are evaluated by analysis of organic molecules m Mars analogues. These simulants 6om terrestrial (i.e. tephra from Hawaii) or extraterrestrial (meteoritic) samples are examined by pyrolysis gas chromatograph mass spectrometry (GCMS), organic extraction followed by chemical derivatization GCMS, and laser desorption mass spectrometry (LDMS). The combination of techniques imparts analysis breadth since each technique provides a unique analysis capability for Certain classes of organic molecules.

  3. Evolution of the Space Station Robotic Manipulator

    NASA Technical Reports Server (NTRS)

    Razvi, Shakeel; Burns, Susan H.

    2007-01-01

    The Space Station Remote Manipulator System (SSRMS), Canadarm2, was launched in 2001 and deployed on the International Space Station (ISS). The Canadarm2 has been instrumental in ISS assembly and maintenance. Canadarm2 shares its heritage with the Space Shuttle Arm (Canadarm). This article explores the evolution from the Shuttle Canadarm to the Space Station Canadarm2 design, which incorporates a 7 degree of freedom design, larger joints, and changeable operating base. This article also addresses phased design, redundancy, life and maintainability requirements. The design of Canadarm2 meets unique ISS requirements, including expanded handling capability and the ability to be maintained on orbit. The size of ISS necessitated a mobile manipulator, resulting in the unique capability of Canadarm2 to relocate by performing a walk off to base points located along the Station, and interchanging the tip and base of the manipulator. This provides the manipulator with reach and access to a large part of the Station, enabling on-orbit assembly of the Station and providing support to Extra-Vehicular Activity (EVA). Canadarm2 is evolving based on on-orbit operational experience and new functionality requirements. SSRMS functionality is being developed in phases to support evolving ISS assembly and operation as modules are added and the Station becomes more complex. Changes to sustaining software, hardware architecture, and operations have significantly enhanced SSRMS capability to support ISS mission requirements. As a result of operational experience, SSRMS changes have been implemented for Degraded Joint Operations, Force Moment Sensor Thermal Protection, Enabling Ground Controlled Operations, and Software Commutation. Planned Canadarm2 design modifications include: Force Moment Accommodation, Smart Safing, Separate Safing, and Hot Backup. In summary, Canadarm2 continues to evolve in support of new ISS requirements and improved operations. It is a tribute to the design that this evolution can be accomplished while conducting critical on-orbit operations with minimal hardware changes.

  4. Stirling Isotope Power Systems for Stationary and Mobile Lunar Applications

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2007-01-01

    The NASA Exploration Systems Architecture Study (ESAS) places a significant emphasis on the development of a wide range of capabilities on the lunar surface as a stepping-stone to further space exploration. An important aspect of developing these capabilities will be the availability of reliable, efficient, and low-mass power systems to support both stationary and mobile applications. One candidate system to provide electrical power is made by coupling the General Purpose Heat Source (GPHS) with a high-performance Stirling convertor. In this paper we explore the practical power range of GPHS/Stirling convertor systems all with conductively coupled hot-end designs for use on the lunar surface. Design and off-design operations during the life of the convertor are studied in addition to considering these varying conditions on system. Unique issues concerning Stirling convertor configurations, integration of the GPHS with the Stirling convertor, controller operation, waste heat rejection, and thermal protection are explored. Of particular importance in the evaluation process is a thorough understanding of the interactions between the wide range of unique lunar environments and the selection of key systems operating characteristics and the power systems design. Additionally, as power levels rise the interface between the GPHS and Stirling and the Stirling and the radiator begins to dominate system mass and material selection becomes more important.

  5. First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maidana, Carlos O.; Nieminen, Juha E.

    Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is amore » source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. Here, first studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.« less

  6. First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

    DOE PAGES

    Maidana, Carlos O.; Nieminen, Juha E.

    2017-02-01

    Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is amore » source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. Here, first studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.« less

  7. Trans Atlantic Infrasound Payload (TAIP) Operation Plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Daniel; Lees, Jonathan M.

    The Carolina Infrasound package, added as a piggyback to the 2016 ULDB ight, recorded unique acoustic signals such as the ocean microbarom and a large meteor. These data both yielded unique insights into the acoustic energy transfer from the lower to the upper atmosphere as well as highlighted the vast array of signals whose origins remain unknown. Now, the opportunity to y a payload across the north Atlantic offers an opportunity to sample one of the most active ocean microbarom sources on Earth. Improvements in payload capabilities should result in characterization of the higher frequency range of the stratospheric infrasoundmore » spectrum as well. Finally, numerous large mining and munitions disposal explosions in the region may provide \\ground truth" events for assessing the detection capability of infrasound microphones in the stratosphere. The flight will include three different types of infrasound sensors. One type is a pair of polarity reversed InfraBSU microphones (standard for high altitude flights since 2016), another is a highly sensitive Chaparral 60 modified for a very low corner period, and the final sensor is a lightweight, low power Gem infrasound package. By evaluating these configurations against each other on the same flight, we will be able to optimize future campaigns with different sensitivity and mass constraints.« less

  8. Above the cloud computing orbital services distributed data model

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2014-05-01

    Technology miniaturization and system architecture advancements have created an opportunity to significantly lower the cost of many types of space missions by sharing capabilities between multiple spacecraft. Historically, most spacecraft have been atomic entities that (aside from their communications with and tasking by ground controllers) operate in isolation. Several notable example exist; however, these are purpose-designed systems that collaborate to perform a single goal. The above the cloud computing (ATCC) concept aims to create ad-hoc collaboration between service provider and consumer craft. Consumer craft can procure processing, data transmission, storage, imaging and other capabilities from provider craft. Because of onboard storage limitations, communications link capability limitations and limited windows of communication, data relevant to or required for various operations may span multiple craft. This paper presents a model for the identification, storage and accessing of this data. This model includes appropriate identification features for this highly distributed environment. It also deals with business model constraints such as data ownership, retention and the rights of the storing craft to access, resell, transmit or discard the data in its possession. The model ensures data integrity and confidentiality (to the extent applicable to a given data item), deals with unique constraints of the orbital environment and tags data with business model (contractual) obligation data.

  9. ALON GRIN optics for visible-MWIR applications

    NASA Astrophysics Data System (ADS)

    Nag, Nagendra; Jha, Santosh; Sastri, Suri; Goldman, Lee M.; McCarthy, Peter; Schmidt, Greg R.; Bentley, Julie L.; Moore, Duncan T.

    2016-05-01

    Surmet continuously strives to develop novel, advanced optical ceramics products for current and future defense and commercial systems. Using conventional powder processing techniques, Surmet has made substantial progress in its ability to manufacture large ALON® sensor windows, lenses, domes and transparent armor. In addition to transparency, Surmet has demonstrated the ability to incorporate other capabilities into its optical ceramic components, including: EMI shielding, heating, internal antennas and cooling channels. Working closely with the University of Rochester, Surmet has developed gradient index (GRIN) optics in ALON for use in the visible through the MWIR applications. Surmet has demonstrated the ability to tailor the refractive index of ALON® Optical Ceramic by either varying its composition or through the addition of dopants. Smooth axial and radial gradient profiles with ~0.055 change in refractive index, over depths of 1-8 mm (axial) and over 20 mm radius (radial) have been demonstrated. Initial design studies have shown that such elements provide unique capabilities. Radial gradients in particular, with their optical power contribution, provide additional degrees of freedom for color correction in broadband imaging systems. Surmet continues to mature ALON® GRIN technology along with the associated metrology. Surmet is committed to the development of its ALON® GRIN capability as well as finding insertion opportunities in novel imaging solutions for military and other commercial systems.

  10. Conceptual Drivers for an Exploration Medical System

    NASA Technical Reports Server (NTRS)

    Antonsen, E.; Canga, M.

    2016-01-01

    Interplanetary spaceflight provides unique challenges that have not been encountered in prior spaceflight experience. Extended distance and timeframes introduce new challenges such as an inability to resupply medications and consumables, inability to evacuate injured or ill crew, and communication delays that introduce a requirement for some level of autonomous medical capability. Because of these challenges the approaches used in prior programs have limited application to a proposed three year Mars mission. This paper proposes a paradigm shift in the approach to medical risk mitigation for crew health and mission objectives threatened by inadequate medical capabilities in the setting of severely limited resources. A conceptual approach is outlined to derive medical system and vehicle needs from an integrated vision of how medical care will be provided within this new paradigm. Using NASA Design Reference Missions this process assesses each mission phase to deconstruct medical needs at any point during a mission. Two operational categories are proposed, nominal operations (pre-planned activities) and contingency operations (medical conditions requiring evaluation) that meld clinical needs and research needs into a single system. These definitions are used to derive a task level analysis to support quantifiable studies into a medical capabilities trade. This trade allows system design to proceed from both a mission centric and ethics-based approach to medical limitations in an exploration class mission.

  11. A Multi-University Economic Capability-Building Collaboration

    ERIC Educational Resources Information Center

    Horwitz, Shelley; Briar-Lawson, Katharine

    2017-01-01

    To prepare students to work competently with financially at-risk individuals, families, and communities, social work schools need to bring economic literacy skills into the curriculum. This article describes an ambitious financial capability education initiative in New York City. It reports on a unique collaborative effort to develop, use, and…

  12. Aircraft Landing Dynamics Facility - A unique facility with new capabilities

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Stubbs, S. M.; Tanner, J. A.

    1985-01-01

    The Aircraft Landing Dynamics Facility (ALDF), formerly called the Landing Loads Track, is described. The paper gives a historical overview of the original NASA Langley Research Center Landing Loads Track and discusses the unique features of this national test facility. Comparisons are made between the original track characteristics and the new capabilities of the Aircraft Landing Dynamics Facility following the recently completed facility update. Details of the new propulsion and arresting gear systems are presented along with the novel features of the new high-speed carriage. The data acquisition system is described and the paper concludes with a review of future test programs.

  13. KITTEN Lightweight Kernel 0.1 Beta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedretti, Kevin; Levenhagen, Michael; Kelly, Suzanne

    2007-12-12

    The Kitten Lightweight Kernel is a simplified OS (operating system) kernel that is intended to manage a compute node's hardware resources. It provides a set of mechanisms to user-level applications for utilizing hardware resources (e.g., allocating memory, creating processes, accessing the network). Kitten is much simpler than general-purpose OS kernels, such as Linux or Windows, but includes all of the esssential functionality needed to support HPC (high-performance computing) MPI, PGAS and OpenMP applications. Kitten provides unique capabilities such as physically contiguous application memory, transparent large page support, and noise-free tick-less operation, which enable HPC applications to obtain greater efficiency andmore » scalability than with general purpose OS kernels.« less

  14. Nanofabrication with a helium ion microscope

    NASA Astrophysics Data System (ADS)

    Maas, Diederik; van Veldhoven, Emile; Chen, Ping; Sidorkin, Vadim; Salemink, Huub; van der Drift, Emile..; Alkemade, Paul

    2010-03-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valuable signal for high-resolution imaging as well as a mechanism for very precise nanofabrication. The low proximity effects, due to the low yield of backscattered ions and the confinement of the forward scattered ions into a narrow cone, enable patterning of ultra-dense sub-10 nm structures. This paper presents various nanofabrication results obtained with direct-write, with scanning helium ion beam lithography, and with helium ion beam induced deposition.

  15. Onboard Systems Record Unique Videos of Space Missions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Ecliptic Enterprises Corporation, headquartered in Pasadena, California, provided onboard video systems for rocket and space shuttle launches before it was tasked by Ames Research Center to craft the Data Handling Unit that would control sensor instruments onboard the Lunar Crater Observation and Sensing Satellite (LCROSS) spacecraft. The technological capabilities the company acquired on this project, as well as those gained developing a high-speed video system for monitoring the parachute deployments for the Orion Pad Abort Test Program at Dryden Flight Research Center, have enabled the company to offer high-speed and high-definition video for geosynchronous satellites and commercial space missions, providing remarkable footage that both informs engineers and inspires the imagination of the general public.

  16. Provocative work experiences predict the acquired capability for suicide in physicians.

    PubMed

    Fink-Miller, Erin L

    2015-09-30

    The interpersonal psychological theory of suicidal behavior (IPTS) offers a potential means to explain suicide in physicians. The IPTS posits three necessary and sufficient precursors to death by suicide: thwarted belongingness, perceived burdensomeness, and acquired capability. The present study sought to examine whether provocative work experiences unique to physicians (e.g., placing sutures, withdrawing life support) would predict levels of acquired capability, while controlling for gender and painful and provocative experiences outside the work environment. Data were obtained from 376 of 7723 recruited physicians. Study measures included the Acquired Capability for Suicide Scale, the Interpersonal Needs Questionnaire, the Painful and Provocative Events Scale, and the Life Events Scale-Medical Doctors Version. Painful and provocative events outside of work predicted acquired capability (β=0.23, t=3.82, p<0.001, f(2)=0.09) as did provocative work experiences (β=0.12, t=2.05, p<0.05, f(2)=0.07). This represents the first study assessing the potential impact of unique work experiences on suicidality in physicians. Limitations include over-representation of Caucasian participants, limited representation from various specialties of medicine, and lack of information regarding individual differences. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Adaptation and Re-Use of Spacecraft Power System Models for the Constellation Program

    NASA Technical Reports Server (NTRS)

    Hojnicki, Jeffrey S.; Kerslake, Thomas W.; Ayres, Mark; Han, Augustina H.; Adamson, Adrian M.

    2008-01-01

    NASA's Constellation Program is embarking on a new era of space exploration, returning to the Moon and beyond. The Constellation architecture will consist of a number of new spacecraft elements, including the Orion crew exploration vehicle, the Altair lunar lander, and the Ares family of launch vehicles. Each of these new spacecraft elements will need an electric power system, and those power systems will need to be designed to fulfill unique mission objectives and to survive the unique environments encountered on a lunar exploration mission. As with any new spacecraft power system development, preliminary design work will rely heavily on analysis to select the proper power technologies, size the power system components, and predict the system performance throughout the required mission profile. Constellation projects have the advantage of leveraging power system modeling developments from other recent programs such as the International Space Station (ISS) and the Mars Exploration Program. These programs have developed mature power system modeling tools, which can be quickly modified to meet the unique needs of Constellation, and thus provide a rapid capability for detailed power system modeling that otherwise would not exist.

  18. NASA Johnson Space Center Usability Testing and Analysis facility (UTAF) Overview

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Holden, Kritina L.

    2005-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility performs research for NASA's HumanSystems Integration Program, under the HumanSystems Research and Technology Division. Specifically, the UTAF provides human factors support for space vehicles, including the International Space Station, the Space Shuttle, and the forthcoming Crew Exploration Vehicle. In addition, there are ongoing collaborative research efforts with external corporations and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes and requirements. This presentation will provide an overview of ongoing activities, and will address how the UTAF projects will evolve to meet new space initiatives.

  19. System Level Aerothermal Testing for the Adaptive Deployable Entry and Placement Technology (ADEPT)

    NASA Technical Reports Server (NTRS)

    Cassell, Alan; Gorbunov, Sergey; Yount, Bryan; Prabhu, Dinesh; de Jong, Maxim; Boghozian, Tane; Hui, Frank; Chen, Y.-K.; Kruger, Carl; Poteet, Carl; hide

    2016-01-01

    The Adaptive Deployable Entry and Placement Technology (ADEPT), a mechanically deployable entry vehicle technology, has been under development at NASA since 2011. As part of the technical maturation of ADEPT, designs capable of delivering small payloads (10 kg) are being considered to rapidly mature sub 1 m deployed diameter designs. The unique capability of ADEPT for small payloads comes from its ability to stow within a slender volume and deploy to achieve a mass efficient drag surface with a high heat rate capability. The low ballistic coefficient results in entry heating and mechanical loads that can be met by a revolutionary three-dimensionally woven carbon fabric supported by a deployable skeleton structure. This carbon fabric has test proven capability as both primary structure and payload thermal protection system. In order to rapidly advance ADEPTs technical maturation, the project is developing test methods that enable thermostructural design requirement verification of ADEPT designs at the system level using ground test facilities. Results from these tests are also relevant to larger class missions and help us define areas of focused component level testing in order to mature material and thermal response design codes. The ability to ground test sub 1 m diameter ADEPT configurations at or near full-scale provides significant value to the rapid maturation of this class of deployable entry vehicles. This paper will summarize arc jet test results, highlight design challenges, provide a summary of lessons learned and discuss future test approaches based upon this methodology.

  20. Modeling and Simulation Tools for Heavy Lift Airships

    NASA Technical Reports Server (NTRS)

    Hochstetler, Ron; Chachad, Girish; Hardy, Gordon; Blanken, Matthew; Melton, John

    2016-01-01

    For conventional fixed wing and rotary wing aircraft a variety of modeling and simulation tools have been developed to provide designers the means to thoroughly investigate proposed designs and operational concepts. However, lighter-than-air (LTA) airships, hybrid air vehicles, and aerostats have some important aspects that are different from heavier-than-air (HTA) vehicles. In order to account for these differences, modifications are required to the standard design tools to fully characterize the LTA vehicle design and performance parameters.. To address these LTA design and operational factors, LTA development organizations have created unique proprietary modeling tools, often at their own expense. An expansion of this limited LTA tool set could be accomplished by leveraging existing modeling and simulation capabilities available in the National laboratories and public research centers. Development of an expanded set of publicly available LTA modeling and simulation tools for LTA developers would mitigate the reliance on proprietary LTA design tools in use today. A set of well researched, open source, high fidelity LTA design modeling and simulation tools would advance LTA vehicle development and also provide the analytical basis for accurate LTA operational cost assessments. This paper will present the modeling and analysis tool capabilities required for LTA vehicle design, analysis of operations, and full life-cycle support. A survey of the tools currently available will be assessed to identify the gaps between their capabilities and the LTA industry's needs. Options for development of new modeling and analysis capabilities to supplement contemporary tools will also be presented.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giuliani, Sarah E; Frank, Ashley M; Corgliano, Danielle M

    Abstract Background: Transporter proteins are one of an organism s primary interfaces with the environment. The expressed set of transporters mediates cellular metabolic capabilities and influences signal transduction pathways and regulatory networks. The functional annotation of most transporters is currently limited to general classification into families. The development of capabilities to map ligands with specific transporters would improve our knowledge of the function of these proteins, improve the annotation of related genomes, and facilitate predictions for their role in cellular responses to environmental changes. Results: To improve the utility of the functional annotation for ABC transporters, we expressed and purifiedmore » the set of solute binding proteins from Rhodopseudomonas palustris and characterized their ligand-binding specificity. Our approach utilized ligand libraries consisting of environmental and cellular metabolic compounds, and fluorescence thermal shift based high throughput ligand binding screens. This process resulted in the identification of specific binding ligands for approximately 64% of the purified and screened proteins. The collection of binding ligands is representative of common functionalities associated with many bacterial organisms as well as specific capabilities linked to the ecological niche occupied by R. palustris. Conclusion: The functional screen identified specific ligands that bound to ABC transporter periplasmic binding subunits from R. palustris. These assignments provide unique insight for the metabolic capabilities of this organism and are consistent with the ecological niche of strain isolation. This functional insight can be used to improve the annotation of related organisms and provides a route to evaluate the evolution of this important and diverse group of transporter proteins.« less

  2. A comparative analysis and guide to virtual reality robotic surgical simulators.

    PubMed

    Julian, Danielle; Tanaka, Alyssa; Mattingly, Patricia; Truong, Mireille; Perez, Manuela; Smith, Roger

    2018-02-01

    Since the US Food and Drug Administration approved robotically assisted surgical devices for human surgery in 2000, the number of surgeries utilizing this innovative technology has risen. In 2015, approximately 650 000 robot-assisted procedures were performed worldwide. Surgeons must be properly trained to safely transition to using such innovative technology. Multiple virtual reality robotic simulators are now commercially available for educational and training purposes. There is a need for comparative evaluations of these simulators to aid users in selecting an appropriate device for their purposes. We conducted a comparison of the design and capabilities of all dedicated simulators of the da Vinci robot - the da Vinci Skills Simulator (dVSS), dV-Trainer (dVT), Robotic Skills Simulators (RoSS) and the RobotiX Mentor. This paper provides the base specifications of the hardware and software, with an emphasis on the training capabilities of each system. Each simulator contains a large number of training exercises for skills development: dVSS n = 40, dVT n = 65, RoSS n = 52, RobotiX Mentor n = 31. All four offer 3D visual images but use different display technologies. The dVSS leverages the real robotic surgical console to provide visualization, hand controls and foot pedals. The dVT, RoSS and RobotiX Mentor created simulated versions of all of these control systems. Each includes systems management services that allow instructors to collect, export and analyze the scores of students using the simulators. This study provides comparative information on the four simulators' functional capabilities. Each device offers unique advantages and capabilities for training robotic surgeons. Each has been the subject of validation experiments, which have been published in the literature. But those do not provide specific details on the capabilities of the simulators, which are necessary for an understanding sufficient to select the one best suited for an organization's needs. This article provides comparative information to assist with that type of selection. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Fault recovery in the reliable multicast protocol

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Montgomery, Todd L.; Whetten, Brian

    1995-01-01

    The Reliable Multicast Protocol (RMP) provides a unique, group-based model for distributed programs that need to handle reconfiguration events at the application layer. This model, called membership views, provides an abstraction in which events such as site failures, network partitions, and normal join-leave events are viewed as group reformations. RMP provides access to this model through an application programming interface (API) that notifies an application when a group is reformed as the result of a some event. RMP provides applications with reliable delivery of messages using an underlying IP Multicast (12, 5) media to other group members in a distributed environment even in the case of reformations. A distributed application can use various Quality of Service (QoS) levels provided by RMP to tolerate group reformations. This paper explores the implementation details of the mechanisms in RMP that provide distributed applications with membership view information and fault recovery capabilities.

  4. Specification and Design of a Fault Recovery Model for the Reliable Multicast Protocol

    NASA Technical Reports Server (NTRS)

    Montgomery, Todd; Callahan, John R.; Whetten, Brian

    1996-01-01

    The Reliable Multicast Protocol (RMP) provides a unique, group-based model for distributed programs that need to handle reconfiguration events at the application layer. This model, called membership views, provides an abstraction in which events such as site failures, network partitions, and normal join-leave events are viewed as group reformations. RMP provides access to this model through an application programming interface (API) that notifies an application when a group is reformed as the result of a some event. RMP provides applications with reliable delivery of messages using an underlying IP Multicast media to other group members in a distributed environment even in the case of reformations. A distributed application can use various Quality of Service (QoS) levels provided by RMP to tolerate group reformations. This paper explores the implementation details of the mechanisms in RMP that provide distributed applications with membership view information and fault recovery capabilities.

  5. NASA's Space Launch System: One Vehicle, Many Destinations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will start its missions in 2017 with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the capability of SLS to meet those requirements and enable those missions. It will explain how the SLS Program is executing this development within flat budgetary guidelines by using existing engines assets and developing advanced technology based on heritage systems, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. It will also detail the significant progress that has already been made toward its first launch in 2017. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they will need for extended trips to explore new frontiers. In addition, this paper will summarize the SLS rocket's capability to support science and robotic precursor missions to other worlds, or uniquely high-mass space facilities in Earth orbit. As this paper will explain, the SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by providing the robust launch capability to deliver sustainable solutions for space exploration.

  6. NASA's Space Launch System: One Vehicle, Many Destinations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit (BEO). Developed with the goals of safety, affordability and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the requirements needed for missions to BEO destinations, and the capability of SLS to meet those requirements and enable those missions. It will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for extended trips to asteroids, the Moon, and Mars. In addition, this paper will detail SLS's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS provides game-changing mass and volume lift capability that makes it enhancing or enabling for a variety of unprecedented human and robotic missions.

  7. Lunar Exploration and Science in ESA

    NASA Astrophysics Data System (ADS)

    Carpenter, James; Foing, Bernard H.; Fisackerly, Richard; Houdou, Berengere; De Rosa, Diego; Patti, Bernado; Schiemann, Jens

    ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the abundance, composition and isotopes of lunar volatiles in polar regions, and their associated chemistry. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterise and utilise polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensable partner in the exploration missions of the future.

  8. Synthesis of functionalized 3D porous graphene using both ionic liquid and SiO2 spheres as ``spacers'' for high-performance application in supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Li, Na; Liu, Jiawei; Cai, Kai; Foda, Mohamed F.; Lei, Xiaomin; Han, Heyou

    2014-12-01

    In this work, a high-capacity supercapacitor material based on functionalized three-dimensional (3D) porous graphene was fabricated by low temperature hydrothermal treatment of graphene oxide (GO) using both ionic liquid (IL) and SiO2 spheres as ``spacers''. In the synthesis, the introduction of dual ``spacers'' effectively enlarged the interspace between graphene sheets and suppressed their re-stacking. In addition, the IL also acted as a structure-directing agent playing a crucial role in inducing the formation of unique 3D architectures. Consequently, fast electron/ion transport channels were successfully constructed and numerous oxygen-containing groups on graphene sheets were effectively reserved, which had unique advantages in decreasing ion diffusion resistance and providing additional pseudocapacitance. As expected, the obtained material exhibited superior specific capacitance and rate capability compared to single ``spacer'' designed electrodes and simultaneously maintained excellent cycling stability. In particular, there was nearly no loss of its initial capacitance after 3000 cycles. In addition, we further assembled a symmetric two-electrode device using the material, which showed outstanding flexibility and low equivalent series resistance (ESR). More importantly, it was capable of yielding a maximum power density of about 13.3 kW kg-1 with an energy density of about 7.0 W h kg-1 at a voltage of 1.0 V in 1 M H2SO4 electrolyte. All these impressive results demonstrate that the material obtained by this approach is greatly promising for application in high-performance supercapacitors.In this work, a high-capacity supercapacitor material based on functionalized three-dimensional (3D) porous graphene was fabricated by low temperature hydrothermal treatment of graphene oxide (GO) using both ionic liquid (IL) and SiO2 spheres as ``spacers''. In the synthesis, the introduction of dual ``spacers'' effectively enlarged the interspace between graphene sheets and suppressed their re-stacking. In addition, the IL also acted as a structure-directing agent playing a crucial role in inducing the formation of unique 3D architectures. Consequently, fast electron/ion transport channels were successfully constructed and numerous oxygen-containing groups on graphene sheets were effectively reserved, which had unique advantages in decreasing ion diffusion resistance and providing additional pseudocapacitance. As expected, the obtained material exhibited superior specific capacitance and rate capability compared to single ``spacer'' designed electrodes and simultaneously maintained excellent cycling stability. In particular, there was nearly no loss of its initial capacitance after 3000 cycles. In addition, we further assembled a symmetric two-electrode device using the material, which showed outstanding flexibility and low equivalent series resistance (ESR). More importantly, it was capable of yielding a maximum power density of about 13.3 kW kg-1 with an energy density of about 7.0 W h kg-1 at a voltage of 1.0 V in 1 M H2SO4 electrolyte. All these impressive results demonstrate that the material obtained by this approach is greatly promising for application in high-performance supercapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05473c

  9. Exploring the Feminine Journey of Gifted Women Regarding Career Self-Efficacy and Emotional Well-Being

    ERIC Educational Resources Information Center

    Penny, Heather Elizabeth Dean

    2013-01-01

    Highly capable and intelligent individuals identified as gifted and talented (GATE) in educational settings require support for their unique needs associated with their giftedness. Unique needs for gifted girls include high emotional sensitivities including anxiety, depression, and frustration. These needs can impede the positive development of…

  10. Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures

    NASA Astrophysics Data System (ADS)

    Lu, George J.; Farhadi, Arash; Szablowski, Jerzy O.; Lee-Gosselin, Audrey; Barnes, Samuel R.; Lakshmanan, Anupama; Bourdeau, Raymond W.; Shapiro, Mikhail G.

    2018-05-01

    Non-invasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles (GVs), a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, can produce robust contrast in magnetic resonance imaging (MRI) at sub-nanomolar concentrations, and that this contrast can be inactivated with ultrasound in situ to enable background-free imaging. We demonstrate this capability in vitro, in cells expressing these nanostructures as genetically encoded reporters, and in three model in vivo scenarios. Genetic variants of GVs, differing in their magnetic or mechanical phenotypes, allow multiplexed imaging using parametric MRI and differential acoustic sensitivity. Additionally, clustering-induced changes in MRI contrast enable the design of dynamic molecular sensors. By coupling the complementary physics of MRI and ultrasound, this nanomaterial gives rise to a distinct modality for molecular imaging with unique advantages and capabilities.

  11. Fiber sensors for molecular detection

    NASA Astrophysics Data System (ADS)

    Gu, Claire; Yang, Xuan; Zhang, Jin; Newhouse, Rebecca; Cao, Liangcai

    2010-11-01

    The demand on sensors for detecting chemical and biological agents is greater than ever before, including medical, environmental, food safety, military, and security applications. At present, most detection or sensing techniques tend to be either non-molecular specific, bulky, expensive, relatively inaccurate, or unable to provide real time data. Clearly, alternative sensing technologies are urgently needed. Recently, we have been working to develop a compact fiber optic surface enhanced Raman scattering (SERS) sensor system that integrates various novel ideas to achieve compactness, high sensitivity and consistency, molecular specificity, and automatic preliminary identification capabilities. The unique sensor architecture is expected to bring SERS sensors to practical applications due to a combination of 1) novel SERS substrates that provide the high sensitivity and consistency, molecular specificity, and applicability to a wide range of compounds; 2) a unique hollow core optical fiber probe with double SERS substrate structure that provides the compactness, reliability, low cost, and ease of sampling; and 3) an innovative matched spectral filter set that provides automatic preliminary molecule identification. In this paper, we will review the principle of operation and some of the important milestones of fiber SERS sensor development with emphasis on our recent work to integrate photonic crystal fiber SERS probes with a portable Raman spectrometer and to demonstrate a matched spectral filter for molecule identification.

  12. Experimental Physical Sciences Vistas: MaRIE (draft)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shlachter, Jack

    To achieve breakthrough scientific discoveries in the 21st century, a convergence and integration of world-leading experimental facilities and capabilities with theory, modeling, and simulation is necessary. In this issue of Experimental Physical Sciences Vistas, I am excited to present our plans for Los Alamos National Laboratory's future flagship experimental facility, MaRIE (Matter-Radiation Interactions in Extremes). MaRIE is a facility that will provide transformational understanding of matter in extreme conditions required to reduce or resolve key weapons performance uncertainties, develop the materials needed for advanced energy systems, and transform our ability to create materials by design. Our unique role in materialsmore » science starting with the Manhattan Project has positioned us well to develop a contemporary materials strategy pushing the frontiers of controlled functionality - the design and tailoring of a material for the unique demands of a specific application. Controlled functionality requires improvement in understanding of the structure and properties of materials in order to synthesize and process materials with unique characteristics. In the nuclear weapons program today, improving data and models to increase confidence in the stockpile can take years from concept to new knowledge. Our goal with MaRIE is to accelerate this process by enhancing predictive capability - the ability to compute a priori the observables of an experiment or test and pertinent confidence intervals using verified and validated simulation tools. It is a science-based approach that includes the use of advanced experimental tools, theoretical models, and multi-physics codes, simultaneously dealing with multiple aspects of physical operation of a system that are needed to develop an increasingly mature predictive capability. This same approach is needed to accelerate improvements to other systems such as nuclear reactors. MaRIE will be valuable to many national security science challenges. Our first issue of Vistas focused on our current national user facilities (the Los Alamos Neutron Science Center [LANSCE], the National High Magnetic Field Laboratory-Pulsed Field Facility, and the Center for Integrated Nanotechnologies) and the vitality they bring to our Laboratory. These facilities are a magnet for students, postdoctoral researchers, and staff members from all over the world. This, in turn, allows us to continue to develop and maintain our strong staff across the relevant disciplines and conduct world-class discovery science. The second issue of Vistas was devoted entirely to the Laboratory's materials strategy - one of the three strategic science thrusts for the Laboratory. This strategy has helped focus our thinking for MaRIE. We believe there is a bright future in cutting-edge experimental materials research, and that a 21st-century facility with unique capability is necessary to fulfill this goal. The Laboratory has spent the last several years defining MaRIE, and this issue of Vistas presents our current vision of that facility. MaRIE will leverage LANSCE and our other user facilities, as well as our internal and external materials community for decades to come, giving Los Alamos a unique competitive advantage, advancing materials science for the Laboratory's missions and attracting and recruiting scientists of international stature. MaRIE will give the international materials research community a suite of tools capable of meeting a broad range of outstanding grand challenges.« less

  13. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    DOE PAGES

    Cerjan, Ch J.; Bernstein, L.; Hopkins, L. Berzak; ...

    2017-08-16

    We present the generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capturemore » cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Lastly, achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.« less

  14. The role of hyperpolarized 129xenon in MR imaging of pulmonary function

    PubMed Central

    Ebner, Lukas; Kammerman, Jeff; Driehuys, Bastiaan; Schiebler, Mark L.; Cadman, Robert V.; Fain, Sean B.

    2016-01-01

    In the last two decades, functional imaging of the lungs using hyperpolarized noble gases has entered the clinical stage. Both helium (3 He) and xenon (129Xe) gas have been thoroughly investigated for their ability to assess both the global and regional patterns of lung ventilation. With advances in polarizer technology and the current transition towards the widely available 129Xe gas, this method is ready for translation to the clinic. Currently, hyperpolarized (HP) noble gas lung MRI is limited to selected academic institutions; yet, the promising results from initial clinical trials have drawn the attention of the pulmonary medicine community. HP 129Xe MRI provides not only 3-dimensional ventilation imaging, but also unique capabilities for probing regional lung physiology. In this review article, we aim to (1) provide a brief overview of current ventilation MR imaging techniques, (2) emphasize the role of HP 129Xe MRI within the array of different imaging strategies, (3) discuss the unique imaging possibilities with HP 129Xe MRI, and (4) propose clinical applications. PMID:27707585

  15. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerjan, Ch J.; Bernstein, L.; Hopkins, L. Berzak

    We present the generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capturemore » cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Lastly, achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.« less

  16. Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1995-01-01

    Low-disturbance or 'quiet' wind tunnels are now considered an essential part of meaningful boundary layer transition research. Advances in Supersonic Laminar Flow Control (SLFC) technology for swept wings depends on a better understanding of the receptivity of the transition phenomena to attachment-line contamination and cross-flows. This need has provided the impetus for building the Laminar Flow Supersonic Wind Tunnel (LFSWT) at NASA-Ames, as part of the NASA High Speed Research Program (HSRP). The LFSWT was designed to provide NASA with an unequaled capability for transition research at low supersonic Mach numbers (<2.5). The following are the objectives in support of the new Fluid Mechanic Laboratory (FML) quiet supersonic wind tunnel: (I) Develop a unique injector drive system using the existing FML indraft compressor; (2) Develop an FML instrumentation capability for quiet supersonic wind tunnel evaluation and transition studies at NASA-Ames; (3) Determine the State of the Art in quiet supersonic wind tunnel design; (4) Build and commission the LFSWT; (5) Make detailed flow quality measurements in the LFSWT; (6) Perform tests of swept wing models in the LFSWT in support of the NASA HSR program; and (7) Provide documentation of research progress.

  17. CAD-CAM database management at Bendix Kansas City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, D.R.

    1985-05-01

    The Bendix Kansas City Division of Allied Corporation began integrating mechanical CAD-CAM capabilities into its operations in June 1980. The primary capabilities include a wireframe modeling application, a solid modeling application, and the Bendix Integrated Computer Aided Manufacturing (BICAM) System application, a set of software programs and procedures which provides user-friendly access to graphic applications and data, and user-friendly sharing of data between applications and users. BICAM also provides for enforcement of corporate/enterprise policies. Three access categories, private, local, and global, are realized through the implementation of data-management metaphors: the desk, reading rack, file cabinet, and library are for themore » storage, retrieval, and sharing of drawings and models. Access is provided through menu selections; searching for designs is done by a paging method or a search-by-attribute-value method. The sharing of designs between all users of Part Data is key. The BICAM System supports 375 unique users per quarter and manages over 7500 drawings and models. The BICAM System demonstrates the need for generalized models, a high-level system framework, prototyping, information-modeling methods, and an understanding of the entire enterprise. Future BICAM System implementations are planned to take advantage of this knowledge.« less

  18. Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes.

    PubMed

    Sun, Yinghui; Liu, Kai; Miao, Jiao; Wang, Zheyao; Tian, Baozhong; Zhang, Lina; Li, Qunqing; Fan, Shoushan; Jiang, Kaili

    2010-05-12

    Surface-enhanced Raman scattering (SERS) has attracted wide attention because it can enhance normally weak Raman signal by several orders of magnitude and facilitate the sensitive detection of molecules. Conventional SERS substrates are constructed by placing metal nanoparticles on a planar surface. Here we show that, if the planar surface was substituted by a unique nanoporous surface, the enhancement effect can be dramatically improved. The nanoporous surface can be easily fabricated in batches and at low costs by cross stacking superaligned carbon nanotube films. The as-prepared transparent and freestanding SERS substrate is capable of detecting ambient trinitrotoluene vapor, showing much higher Raman enhancement than ordinary planar substrates because of the extremely large surface area and the unique zero-dimensional at one-dimensional nanostructure. These results not only provide a new approach to ultrasensitive SERS substrates, but also are helpful for improving the fundamental understanding of SERS phenomena.

  19. Unique battery with an active membrane separator having uniform physico-chemically functionalized ion channels and a method making the same

    DOEpatents

    Gerald, II, Rex E.; Ruscic, Katarina J [Chicago, IL; Sears, Devin N [Spruce Grove, CA; Smith, Luis J [Natick, MA; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL

    2012-02-21

    The invention relates to a unique battery having an active, porous membrane and method of making the same. More specifically the invention relates to a sealed battery system having a porous, metal oxide membrane with uniform, physicochemically functionalized ion channels capable of adjustable ionic interaction. The physicochemically-active porous membrane purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  20. Virocell Metabolism: Metabolic Innovations During Host-Virus Interactions in the Ocean.

    PubMed

    Rosenwasser, Shilo; Ziv, Carmit; Creveld, Shiri Graff van; Vardi, Assaf

    2016-10-01

    Marine viruses are considered to be major ecological, evolutionary, and biogeochemical drivers of the marine environment, responsible for nutrient recycling and determining species composition. Viruses can re-shape their host's metabolic network during infection, generating the virocell-a unique metabolic state that supports their specific requirement. Here we discuss the concept of 'virocell metabolism' and its formation by rewiring of host-encoded metabolic networks, or by introducing virus-encoded auxiliary metabolic genes which provide the virocell with novel metabolic capabilities. The ecological role of marine viruses is commonly assessed by their relative abundance and phylogenetic diversity, lacking the ability to assess the dynamics of active viral infection. The new ability to define a unique metabolic state of the virocell will expand the current virion-centric approaches in order to quantify the impact of marine viruses on microbial food webs. Copyright © 2016. Published by Elsevier Ltd.

  1. SAFARI new and improved: extending the capabilities of SPICA's imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Roelfsema, Peter; Giard, Martin; Najarro, Francisco; Wafelbakker, Kees; Jellema, Willem; Jackson, Brian; Sibthorpe, Bruce; Audard, Marc; Doi, Yasuo; di Giorgio, Anna; Griffin, Matthew; Helmich, Frank; Kamp, Inga; Kerschbaum, Franz; Meyer, Michael; Naylor, David; Onaka, Takashi; Poglitch, Albrecht; Spinoglio, Luigi; van der Tak, Floris; Vandenbussche, Bart

    2014-08-01

    The Japanese SPace Infrared telescope for Cosmology and Astrophysics, SPICA, aims to provide astronomers with a truly new window on the universe. With a large -3 meter class- cold -6K- telescope, the mission provides a unique low background environment optimally suited for highly sensitive instruments limited only by the cosmic background itself. SAFARI, the SpicA FAR infrared Instrument SAFARI, is a Fourier Transform imaging spectrometer designed to fully exploit this extremely low far infrared background environment. The SAFARI consortium, comprised of European and Canadian institutes, has established an instrument reference design based on a Mach-Zehnder interferometer stage with outputs directed to three extremely sensitive Transition Edge Sensor arrays covering the 35 to 210 μm domain. The baseline instrument provides R > 1000 spectroscopic imaging capabilities over a 2' by 2' field of view. A number of modifications to the instrument to extend its capabilities are under investigation. With the reference design SAFARI's sensitivity for many objects is limited not only by the detector NEP but also by the level of broad band background radiation - the zodiacal light for the shorter wavelengths and satellite baffle structures for the longer wavelengths. Options to reduce this background are dedicated masks or dispersive elements which can be inserted in the optics as required. The resulting increase in sensitivity can directly enhance the prime science goals of SAFARI; with the expected enhanced sensitivity astronomers would be in a better position to study thousands of galaxies out to redshift 3 and even many hundreds out to redshifts of 5 or 6. Possibilities to increase the wavelength resolution, at least for the shorter wavelength bands, are investigated as this would significantly enhance SAFARI's capabilities to study star and planet formation in our own galaxy.

  2. Ensemble Statistical Post-Processing of the National Air Quality Forecast Capability: Enhancing Ozone Forecasts in Baltimore, Maryland

    NASA Technical Reports Server (NTRS)

    Garner, Gregory G.; Thompson, Anne M.

    2013-01-01

    An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone. The user is provided the freedom to tailor the forecast to the decision at hand by using decision-specific probability thresholds that define a forecast for an ozone exceedance. Taking advantage of the ESP, the user not only receives an increase in value over the NAQFC, but also receives value for An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone. The user is provided the freedom to tailor the forecast to the decision at hand by using decision-specific probability thresholds that define a forecast for an ozone exceedance. Taking advantage of the ESP, the user not only receives an increase in value over the NAQFC, but also receives value for

  3. In-Space Manufacturing: Pioneering a Sustainable Path to Mars

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki

    2015-01-01

    In order to provide meaningful impacts to exploration technology needs, the In-Space Manufacturing (ISM) Initiative must influence exploration systems design now. In-space manufacturing offers: dramatic paradigm shift in the development and creation of space architectures; efficiency gain and risk reduction for low Earth orbit and deep space exploration; and "pioneering" approach to maintenance, repair, and logistics leading to sustainable, affordable supply chain model. In order to develop application-based capabilities in time to support NASA budget and schedule, ISM must be able to leverage the significant commercial developments, which requires innovative, agile collaborative mechanisms (contracts, challenges, SBIR's, etc.); and NASA-unique investments to focus primarily on adapting the technologies and processes to the microgravity environment. We must do the foundational work - it is the critical path for taking these technologies from lab curiosities to institutionalized capabilities: characterize, certify, institutionalize, design for Additive Manufacturing (AM). Ideally, International Space Station (ISS) U.S. lab rack or partial rack space should be identified for in-space manufacturing utilization in order to continue technology development of a suite of capabilities required for exploration missions, as well as commercialization on ISS.

  4. The Buffer Diagnostic Prototype: A fault isolation application using CLIPS

    NASA Technical Reports Server (NTRS)

    Porter, Ken

    1994-01-01

    This paper describes problem domain characteristics and development experiences from using CLIPS 6.0 in a proof-of-concept troubleshooting application called the Buffer Diagnostic Prototype. The problem domain is a large digital communications subsystems called the real-time network (RTN), which was designed to upgrade the launch processing system used for shuttle support at KSC. The RTN enables up to 255 computers to share 50,000 data points with millisecond response times. The RTN's extensive built-in test capability but lack of any automatic fault isolation capability presents a unique opportunity for a diagnostic expert system application. The Buffer Diagnostic Prototype addresses RTN diagnosis with a multiple strategy approach. A novel technique called 'faulty causality' employs inexact qualitative models to process test results. Experimental knowledge provides a capability to recognize symptom-fault associations. The implementation utilizes rule-based and procedural programming techniques, including a goal-directed control structure and simple text-based generic user interface that may be reusable for other rapid prototyping applications. Although limited in scope, this project demonstrates a diagnostic approach that may be adapted to troubleshoot a broad range of equipment.

  5. Calibration Efforts and Unique Capabilities of the HST Space Telescope Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Monroe, TalaWanda R.; Proffitt, Charles R.; Welty, Daniel; Branton, Doug; Carlberg, Joleen K.; debes, John Henry; Lockwood, Sean; Riley, Allyssa; Sohn, Sangmo Tony; Sonnentrucker, Paule G.; Walborn, Nolan R.; Jedrzejewski, Robert I.

    2018-01-01

    The Space Telescope Imaging Spectrograph (STIS) continues to offer the astronomy community the ability to carry out innovative UV and optical spectroscopic and imaging studies, two decades after its deployment on the Hubble Space Telescope (HST). Most notably, STIS provides spectroscopy in the FUV and NUV, including high spectral resolution echelle modes, imaging in the FUV, optical spectroscopy, and coronagraphic capabilities. Additionally, spatial scanning on the CCD with the long-slits is now possible to enable very high S/N spectroscopic observations without saturation while mitigating telluric and fringing concerns in the far red and near-IR. This new mode may especially benefit the diffuse interstellar bands and exoplanet transiting communities. We present recent calibration efforts for the instrument, including work to optimize the calibration of the echelle spectroscopic modes by improving the flux agreement of overlapping spectral orders affected by changes in the grating blaze function since HST Servicing Mission 4. We also discuss considerations to maintain the wavelength precision of the spectroscopic modes, and the current capabilities of CCD spectroscopic spatial trails.

  6. Doppler lidar studies of atmospheric wind field dynamics

    NASA Technical Reports Server (NTRS)

    Hardesty, R. M.; Post, M. J.; Lawrence, T. R.; Hall, F. F., Jr.

    1986-01-01

    For the past 5 years the Wave Propagation Lab. has operated a pulsed CO2 Doppler lidar system to evaluate coherent laser radar technology and to investigate applications of the technique in atmospheric research. The capability of the system to provide measurements of atmospheric winds, backscatter, and water vapor has been extensively studied over this period. Because Doppler lidar can measure atmospheric wind structure in the clear air without degradation by terrain features, it offers a unique capability as a research tool for studies of many transient or local scale atmospheric events. This capability was demonstrated in recent field experiments near Boulder, Colo. and Midland, Tex., in which the lidar clearly depicted the wind field structure associated with several types of phenomena, including thunderstorm microbursts, valley drainage flow, and passage of a dryline front. To improve sensitivity during the periods of low aerosol backscatter, the system has recently been upgraded with new transmitter/receiver hardware. The upgraded system, which transmit 2 J per pulse of output energy at a rate of 50 Hz and incorporates computer control for automated operation, underwent calibration testing during the spring of 1986.

  7. COSTMODL: An automated software development cost estimation tool

    NASA Technical Reports Server (NTRS)

    Roush, George B.

    1991-01-01

    The cost of developing computer software continues to consume an increasing portion of many organizations' total budgets, both in the public and private sector. As this trend develops, the capability to produce reliable estimates of the effort and schedule required to develop a candidate software product takes on increasing importance. The COSTMODL program was developed to provide an in-house capability to perform development cost estimates for NASA software projects. COSTMODL is an automated software development cost estimation tool which incorporates five cost estimation algorithms including the latest models for the Ada language and incrementally developed products. The principal characteristic which sets COSTMODL apart from other software cost estimation programs is its capacity to be completely customized to a particular environment. The estimation equations can be recalibrated to reflect the programmer productivity characteristics demonstrated by the user's organization, and the set of significant factors which effect software development costs can be customized to reflect any unique properties of the user's development environment. Careful use of a capability such as COSTMODL can significantly reduce the risk of cost overruns and failed projects.

  8. NRAO Response to NSF Senior Review of Astronomy Facilities

    NASA Astrophysics Data System (ADS)

    2006-11-01

    The National Science Foundation's (NSF) Astronomy Senior Review Committee report (pdf file), released today, made major recommendations for restructuring the NSF's ground-based astronomy efforts, including significant changes for the National Radio Astronomy Observatory (NRAO). The committee's report urged that leadership in radio astronomy, including millimeter- and submillimeter-wave observatories, "remain centered at NRAO as it is, by far, the largest radio astronomy organization in the world." The report praised the record of management of NRAO and the scientific capabilities of the Atacama Large Millimeter/submillimeter Array (ALMA), the Expanded Very Large Array (EVLA), the Robert C. Byrd Green Bank Telescope (GBT), and the Very Long Baseline Array (VLBA). However, the report also recommended that some reductions and changes occur at the NRAO by 2011. Specifically, the report recommended that: (a) VLBA operations make a transition to a significant reliance on international funding or risk closure; (b) GBT operations costs be reduced; and (c) NRAO scientific staff costs be reduced. "The Senior Review Committee had the very difficult task of reconciling the needs of current facilities and funding new facilities for the future of astronomy. We appreciate their efforts and look forward to working with the NSF to ensure that the valuable and unique research capabilities of our NRAO telescopes continue to serve the astronomical community," said Dr. Fred K.Y. Lo, NRAO Director. The VLBA provides the greatest angular resolution, or ability to see fine detail, of any telescope in the world, greatly exceeding the capabilities of the Hubble Space Telescope and the future Square Kilometre Array. The committee recognized that, "if the VLBA is closed, a unique capability would likely be lost for decades." "The VLBA is used by scientists from around the world because of its unique capabilities. It has produced landmark research milestones and the committee recognized in its report that the VLBA now is poised to become even more scientifically productive. We will aggressively pursue international assistance in keeping this world-class research tool operational, and are optimistic that we will succeed," Lo said. The Robert C. Byrd Green Bank Telescope, termed by the committee a "new and highly promising telescope," already has taken the lead in some important research fields. While the committee recommended reductions in the operational costs of the GBT, the NRAO already has been taking steps to make the operations as efficient as possible, commensurate with adequate support for productive science operations. "We look forward to an independent cost analysis by specialists in telescope operations and business administration," Lo said, adding that, "In the meantime, we will redouble efforts to explore alternative modes of operation while continuing to enhance scientific capabilities." The scientific staff of NRAO, composed of Ph.D astronomers, provides scientific guidance for the development and operations of the telescopes, assistance and mentoring to scientists using the telescopes and to students, and serves in key management and operational roles. The expertise embodied in NRAO's staff is a unique resource for planning the next generation of radio astronomy facilities. "As astronomy becomes more reliant on multi-wavelength investigations and NRAO telescopes are used more by researchers unfamiliar with radio observational techniques, the support provided by an excellent scientific staff will become even more important," Lo said. "Throughout this whole process, the NRAO will continue to carry out its mission of enabling cutting-edge research, attracting and training future scientists and engineers, and stimulating public interest in science," Lo said. The NRAO will work closely with the NSF in the coming months as the NSF considers the Senior Review recommendations. "The future of the NRAO is extremely bright," Lo said. "Our scientific focus is on some of the most important and challenging questions of 21st-Century astronomy. With the GBT and VLBA, EVLA and ALMA coming on line, we will remain a flagship observatory for the astronomical research community of the U.S. and the world," he said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  9. Network connectivity enhancement by exploiting all optical multicast in semiconductor ring laser

    NASA Astrophysics Data System (ADS)

    Siraj, M.; Memon, M. I.; Shoaib, M.; Alshebeili, S.

    2015-03-01

    The use of smart phone and tablet applications will provide the troops for executing, controlling and analyzing sophisticated operations with the commanders providing crucial documents directly to troops wherever and whenever needed. Wireless mesh networks (WMNs) is a cutting edge networking technology which is capable of supporting Joint Tactical radio System (JTRS).WMNs are capable of providing the much needed bandwidth for applications like hand held radios and communication for airborne and ground vehicles. Routing management tasks can be efficiently handled through WMNs through a central command control center. As the spectrum space is congested, cognitive radios are a much welcome technology that will provide much needed bandwidth. They can self-configure themselves, can adapt themselves to the user requirement, provide dynamic spectrum access for minimizing interference and also deliver optimal power output. Sometimes in the indoor environment, there are poor signal issues and reduced coverage. In this paper, a solution utilizing (CR WMNs) over optical network is presented by creating nanocells (PCs) inside the indoor environment. The phenomenon of four-wave mixing (FWM) is exploited to generate all-optical multicast using semiconductor ring laser (SRL). As a result same signal is transmitted at different wavelengths. Every PC is assigned a unique wavelength. By using CR technology in conjunction with PC will not only solve network coverage issue but will provide a good bandwidth to the secondary users.

  10. An Overview of the Microgravity Science Glovebox (MSG) Facility, and the Gravity-Dependent Phenomena Research Performed in the MSG on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Sheredy, William A.; Flores, Ginger

    2008-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for gravity-dependent phenomena investigation handling. The MSG has been operating in the ISS US Laboratory Module since July 2002. The MSG facility provides an enclosed working area for investigation manipulation and observation, The MSG's unique design provides two levels of containment to protect the ISS crew from hazardous operations. Research investigations operating inside the MSG are provided a large 255 liter work volume, 1000 watts of dc power via a versatile supply interface (120, 28, +/-12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. With these capabilities, the MSG is an ideal platform for research required to advance the technology readiness levels (TRL) needed for the Crew Exploration Vehicle and the Exploration Initiative. Areas of research that will benefit from investigations in the MSG include thermal management, fluid physics, spacecraft fire safety, materials science, combustion, reaction control systems, in situ fabrication and repair, and advanced life support technologies. This paper will provide a detailed explanation of the MSG facility, a synopsis of the research that has already been accomplished in the MSG and an overview of investigations planning to operate in the MSG. In addition, this paper will address possible changes to the MSG utilization process that will be brought about by the transition to ISS as a National Laboratory.

  11. Moving graphene devices from lab to market: advanced graphene-coated nanoprobes

    NASA Astrophysics Data System (ADS)

    Hui, Fei; Vajha, Pujashree; Shi, Yuanyuan; Ji, Yanfeng; Duan, Huiling; Padovani, Andrea; Larcher, Luca; Li, Xiao Rong; Xu, Jing Juan; Lanza, Mario

    2016-04-01

    After more than a decade working with graphene there is still a preoccupying lack of commercial devices based on this wonder material. Here we report the use of high-quality solution-processed graphene sheets to fabricate ultra-sharp probes with superior performance. Nanoprobes are versatile tools used in many fields of science, but they can wear fast after some experiments, reducing the quality and increasing the cost of the research. As the market of nanoprobes is huge, providing a solution for this problem should be a priority for the nanotechnology industry. Our graphene-coated nanoprobes not only show enhanced lifetime, but also additional unique properties of graphene, such as hydrophobicity. Moreover, we have functionalized the surface of graphene to provide piezoelectric capability, and have fabricated a nano relay. The simplicity and low cost of this method, which can be used to coat any kind of sharp tip, make it suitable for the industry, allowing production on demand.After more than a decade working with graphene there is still a preoccupying lack of commercial devices based on this wonder material. Here we report the use of high-quality solution-processed graphene sheets to fabricate ultra-sharp probes with superior performance. Nanoprobes are versatile tools used in many fields of science, but they can wear fast after some experiments, reducing the quality and increasing the cost of the research. As the market of nanoprobes is huge, providing a solution for this problem should be a priority for the nanotechnology industry. Our graphene-coated nanoprobes not only show enhanced lifetime, but also additional unique properties of graphene, such as hydrophobicity. Moreover, we have functionalized the surface of graphene to provide piezoelectric capability, and have fabricated a nano relay. The simplicity and low cost of this method, which can be used to coat any kind of sharp tip, make it suitable for the industry, allowing production on demand. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06235g

  12. Advanced Simulation and Computing Fiscal Year 14 Implementation Plan, Rev. 0.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, Robert; McCoy, Michel; Archer, Bill

    2013-09-11

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities andmore » computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Moreover, ASC’s business model is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools.« less

  13. SPoRT - An End-to-End R2O Activity

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.

    2009-01-01

    Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the Short-term Prediction Research and Transition (SPoRT) program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral observational data applications from EOS satellites to improve short-term weather forecasts on a regional and local scale. SPoRT currently partners with several universities and other government agencies for access to real-time data and products, and works collaboratively with them and operational end users at 13 WFOs to develop and test the new products and capabilities in a "test-bed" mode. The test-bed simulates key aspects of the operational environment without putting constraints on the forecaster workload. Products and capabilities which show utility in the test-bed environment are then transitioned experimentally into the operational environment for further evaluation and assessment. SPoRT focuses on a suite of data and products from MODIS, AMSR-E, and AIRS on the NASA Terra and Aqua satellites, and total lightning measurements from ground-based networks. Some of the observations are assimilated into or used with various versions of the WRF model to provide supplemental forecast guidance to operational end users. SPoRT is enhancing partnerships with NOAA / NESDIS for new product development and data access to exploit the remote sensing capabilities of instruments on the NPOESS satellites to address short term weather forecasting problems. The VIIRS and CrIS instruments on the NPP and follow-on NPOESS satellites provide similar observing capabilities to the MODIS and AIRS instruments on Terra and Aqua. SPoRT will be transitioning existing and new capabilities into the AWIIPS II environment to continue the continuity of its activities.

  14. On requirements for a satellite mission to measure tropical rainfall

    NASA Technical Reports Server (NTRS)

    Thiele, Otto W. (Editor)

    1987-01-01

    Tropical rainfall data are crucial in determining the role of tropical latent heating in driving the circulation of the global atmosphere. Also, the data are particularly important for testing the realism of climate models, and their ability to simulate and predict climate accurately on the seasonal time scale. Other scientific issues such as the effects of El Nino on climate could be addressed with a reliable, extended time series of tropical rainfall observations. A passive microwave sensor is planned to provide information on the integrated column precipitation content, its areal distribution, and its intensity. An active microwave sensor (radar) will define the layer depth of the precipitation and provide information about the intensity of rain reaching the surface, the key to determining the latent heat input to the atmosphere. A visible/infrared sensor will provide very high resolution information on cloud coverage, type, and top temperatures and also serve as the link between these data and the long and virtually continuous coverage by the geosynchronous meteorological satellites. The unique combination of sensor wavelengths, coverages, and resolving capabilities together with the low-altitude, non-Sun synchronous orbit provide a sampling capability that should yield monthly precipitation amounts to a reasonable accuracy over a 500- by 500-km grid.

  15. PMAnalyzer: a new web interface for bacterial growth curve analysis.

    PubMed

    Cuevas, Daniel A; Edwards, Robert A

    2017-06-15

    Bacterial growth curves are essential representations for characterizing bacteria metabolism within a variety of media compositions. Using high-throughput, spectrophotometers capable of processing tens of 96-well plates, quantitative phenotypic information can be easily integrated into the current data structures that describe a bacterial organism. The PMAnalyzer pipeline performs a growth curve analysis to parameterize the unique features occurring within microtiter wells containing specific growth media sources. We have expanded the pipeline capabilities and provide a user-friendly, online implementation of this automated pipeline. PMAnalyzer version 2.0 provides fast automatic growth curve parameter analysis, growth identification and high resolution figures of sample-replicate growth curves and several statistical analyses. PMAnalyzer v2.0 can be found at https://edwards.sdsu.edu/pmanalyzer/ . Source code for the pipeline can be found on GitHub at https://github.com/dacuevas/PMAnalyzer . Source code for the online implementation can be found on GitHub at https://github.com/dacuevas/PMAnalyzerWeb . dcuevas08@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  16. Making Sense of Plant Health

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Ciencia, Inc. created a new device, known as a Portable Photosynthesis Analyzer, or Phase Fluorometer, that provides real-time data about the photochemical efficiency of phytoplankton and other plant forms. The commercial version of this technology is used for photosynthesis research and offers major benefits to the field of life science. This new instrument is the first portable instrument of its kind. Through a license agreement with Ciencia, Oriel Instruments, of Stratford, Connecticut, manufactures and markets the commercial version of the instrument under the name LifeSense.TMLifeSense is a 70 MHz single-frequency fluorometer that offers unrivaled capabilities for fluorescence lifetime sensing and analysis. LifeSense provides information about all varieties of photosynthetic systems. Photosynthesis research contributes important health assessments about the plant, be it phytoplankton or a higher form of plant life. With its unique sensing capabilities, LifeSense furnishes data regarding the yield of a plant's photochemistry, as well as its levels of photosynthetic activity. The user can then gain an extremely accurate estimate of the plant's chlorophyll biomass, primary production rates, and a general overview of the plant's physiological condition.

  17. Unique capabilities for ICF and HEDP research with the KrF laser

    NASA Astrophysics Data System (ADS)

    Obenschain, Stephen; Bates, Jason; Chan, Lop-Yung; Karasik, Max; Kehne, David; Sethian, John; Serlin, Victor; Weaver, James; Oh, Jaechul; Jenkins, Bruce; Lehmberg, Robert; Hegeler, Frank; Terrell, Stephen; Aglitskiy, Yefim; Schmitt, Andrew

    2014-10-01

    The krypton-fluoride (KrF) laser provides the shortest wavelength, broadest bandwidth and most uniform target illumination of all developed high-energy lasers. For directly driven targets these characteristics result in higher and more uniform ablation pressures as well as higher intensity thresholds for laser-plasma instability. The ISI beam smoothing scheme implemented on the NRL Nike KrF facility allows easy implementation of focal zooming where the laser radial profile is varied during the laser pulse. The capability for near continuous zooming with KrF would be valuable towards minimizing the effects of cross beam energy transport (CBET) in directly driven capsule implosions. The broad bandwidth ISI beam smoothing that is utilized with the Nike KrF facility may further inhibit certain laser plasma instability. In this presentation we will summarize our current understanding of laser target interaction with the KrF laser and the benefits it provides for ICF and certain HEDP experiments. Status and progress in high-energy KrF laser technology will also be discussed. Work supported by the Deparment of Energy, NNSA.

  18. Lowering the temperature of solid oxide fuel cells.

    PubMed

    Wachsman, Eric D; Lee, Kang Taek

    2011-11-18

    Fuel cells are uniquely capable of overcoming combustion efficiency limitations (e.g., the Carnot cycle). However, the linking of fuel cells (an energy conversion device) and hydrogen (an energy carrier) has emphasized investment in proton-exchange membrane fuel cells as part of a larger hydrogen economy and thus relegated fuel cells to a future technology. In contrast, solid oxide fuel cells are capable of operating on conventional fuels (as well as hydrogen) today. The main issue for solid oxide fuel cells is high operating temperature (about 800°C) and the resulting materials and cost limitations and operating complexities (e.g., thermal cycling). Recent solid oxide fuel cells results have demonstrated extremely high power densities of about 2 watts per square centimeter at 650°C along with flexible fueling, thus enabling higher efficiency within the current fuel infrastructure. Newly developed, high-conductivity electrolytes and nanostructured electrode designs provide a path for further performance improvement at much lower temperatures, down to ~350°C, thus providing opportunity to transform the way we convert and store energy.

  19. The PIP-II Conceptual Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, M.; Burov, A.; Chase, B.

    2017-03-01

    The Proton Improvement Plan-II (PIP-II) encompasses a set of upgrades and improvements to the Fermilab accelerator complex aimed at supporting a world-leading neutrino program over the next several decades. PIP-II is an integral part of the strategic plan for U.S. High Energy Physics as described in the Particle Physics Project Prioritization Panel (P5) report of May 2014 and formalized through the Mission Need Statement approved in November 2015. As an immediate goal, PIP-II is focused on upgrades to the Fermilab accelerator complex capable of providing proton beam power in excess of 1 MW on target at the initiation of themore » Long Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) program, currently anticipated for the mid- 2020s. PIP-II is a part of a longer-term goal of establishing a high-intensity proton facility that is unique within the world, ultimately leading to multi-MW capabilities at Fermilab....« less

  20. Desktop Nanofabrication with Massively Multiplexed Beam Pen Lithography

    PubMed Central

    Liao, Xing; Brown, Keith A.; Schmucker, Abrin L.; Liu, Guoliang; He, Shu; Shim, Wooyoung; Mirkin, Chad A.

    2013-01-01

    The development of a lithographic method that can rapidly define nanoscale features across centimeter-scale surfaces has been a long standing goal of the nanotechnology community. If such a ‘desktop nanofab’ could be implemented in a low-cost format, it would bring the possibility of point-of-use nanofabrication for rapidly prototyping diverse functional structures. Here we report the development of a new tool that is capable of writing arbitrary patterns composed of diffraction-unlimited features over square centimeter areas that are in registry with existing patterns and nanostructures. Importantly, this instrument is based on components that are inexpensive compared to the combination of state-of-the-art nanofabrication tools that approach its capabilities. This tool can be used to prototype functional electronic devices in a mask-free fashion in addition to providing a unique platform for performing high throughput nano- to macroscale photochemistry with relevance to biology and medicine. PMID:23868336

  1. The X-Ray Surveyor Mission Concept Study: Forging the Path to NASA Astrophysics 2020 Decadal Survey Prioritization

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Ozel, Feryal; Vikhlinin, Alexey

    2016-01-01

    The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.

  2. Issues in human/computer control of dexterous remote hands

    NASA Technical Reports Server (NTRS)

    Salisbury, K.

    1987-01-01

    Much research on dexterous robot hands has been aimed at the design and control problems associated with their autonomous operation, while relatively little research has addressed the problem of direct human control. It is likely that these two modes can be combined in a complementary manner yielding more capability than either alone could provide. While many of the issues in mixed computer/human control of dexterous hands parallel those found in supervisory control of traditional remote manipulators, the unique geometry and capabilities of dexterous hands pose many new problems. Among these are the control of redundant degrees of freedom, grasp stabilization and specification of non-anthropomorphic behavior. An overview is given of progress made at the MIT AI Laboratory in control of the Salisbury 3 finger hand, including experiments in grasp planning and manipulation via controlled slip. It is also suggested how we might introduce human control into the process at a variety of functional levels.

  3. Four-dimensional world-wide atmospheric models (surface to 25 km altitude)

    NASA Technical Reports Server (NTRS)

    Spiegler, D. B.; Fowler, M. G.

    1972-01-01

    Four-dimensional atmospheric models previously developed for use as input to atmospheric attenuation models are evaluated to determine where refinements are warranted. The models are refined where appropriate. A computerized technique is developed that has the unique capability of extracting mean monthly and daily variance profiles of moisture, temperature, density and pressure at 1 km intervals to the height of 25 km for any location on the globe. This capability could be very useful to planners of remote sensing of earth resources missions in that the profiles may be used as input to the attenuation models that predict the expected degradation of the sensor data. Recommendations are given for procedures to use the four-dimensional models in computer mission simulations and for the approach to combining the information provided by the 4-D models with that given by the global models.

  4. 3D Holographic Observatory for Long-term Monitoring of Complex Behaviors in Drosophila

    NASA Astrophysics Data System (ADS)

    Kumar, S. Santosh; Sun, Yaning; Zou, Sige; Hong, Jiarong

    2016-09-01

    Drosophila is an excellent model organism towards understanding the cognitive function, aging and neurodegeneration in humans. The effects of aging and other long-term dynamics on the behavior serve as important biomarkers in identifying such changes to the brain. In this regard, we are presenting a new imaging technique for lifetime monitoring of Drosophila in 3D at spatial and temporal resolutions capable of resolving the motion of limbs and wings using holographic principles. The developed system is capable of monitoring and extracting various behavioral parameters, such as ethograms and spatial distributions, from a group of flies simultaneously. This technique can image complicated leg and wing motions of flies at a resolution, which allows capturing specific landing responses from the same data set. Overall, this system provides a unique opportunity for high throughput screenings of behavioral changes in 3D over a long term in Drosophila.

  5. Flow measurements in a water tunnel using a holocinematographic velocimeter

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.; Beeler, George B.

    1987-01-01

    Dual-view holographic movies were used to examine complex flows with full three-space and time resolution. This approach, which tracks the movement of small tracer particles in water, is termed holocinematographic velocimetry (HCV). A small prototype of a new water tunnel was used to demonstrate proof-of-concept for the HCV. After utilizing a conventional flow visualization apparatus with a laser light sheet to illuminate tracer particles to evaluate flow quality of the prototype tunnel, a simplified version of the HCV was employed to demonstrate the capabilities of the approach. Results indicate that a full-scale version of the water tunnel and a high performance version of the HCV should be able to check theoretical and numerical modeling of complex flows and examine the mechanisms operative in turbulent and vortex flow control concepts, providing an entirely unique instrument capable, for the first time, of simultaneous three-space and time measurements in turbulent flow.

  6. Mechanisms, Capabilities, and Applications of High-Resolution Electrohydrodynamic Jet Printing.

    PubMed

    Onses, M Serdar; Sutanto, Erick; Ferreira, Placid M; Alleyne, Andrew G; Rogers, John A

    2015-09-09

    This review gives an overview of techniques used for high-resolution jet printing that rely on electrohydrodynamically induced flows. Such methods enable the direct, additive patterning of materials with a resolution that can extend below 100 nm to provide unique opportunities not only in scientific studies but also in a range of applications that includes printed electronics, tissue engineering, and photonic and plasmonic devices. Following a brief historical perspective, this review presents descriptions of the underlying processes involved in the formation of liquid cones and jets to establish critical factors in the printing process. Different printing systems that share similar principles are then described, along with key advances that have been made in the last decade. Capabilities in terms of printable materials and levels of resolution are reviewed, with a strong emphasis on areas of potential application. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Engineering the vibrational coherence of vision into a synthetic molecular device.

    PubMed

    Gueye, Moussa; Manathunga, Madushanka; Agathangelou, Damianos; Orozco, Yoelvis; Paolino, Marco; Fusi, Stefania; Haacke, Stefan; Olivucci, Massimo; Léonard, Jérémie

    2018-01-22

    The light-induced double-bond isomerization of the visual pigment rhodopsin operates a molecular-level optomechanical energy transduction, which triggers a crucial protein structure change. In fact, rhodopsin isomerization occurs according to a unique, ultrafast mechanism that preserves mode-specific vibrational coherence all the way from the reactant excited state to the primary photoproduct ground state. The engineering of such an energy-funnelling function in synthetic compounds would pave the way towards biomimetic molecular machines capable of achieving optimum light-to-mechanical energy conversion. Here we use resonance and off-resonance vibrational coherence spectroscopy to demonstrate that a rhodopsin-like isomerization operates in a biomimetic molecular switch in solution. Furthermore, by using quantum chemical simulations, we show why the observed coherent nuclear motion critically depends on minor chemical modifications capable to induce specific geometric and electronic effects. This finding provides a strategy for engineering vibrationally coherent motions in other synthetic systems.

  8. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This study was undertaken to develop conceptual designs for a manned, space shuttle sortie mission laboratory capable of supporting a wide variety of experiments in conjunction with communications and navigation research. This space/laboratory would be one in which man may effectively increase experiment efficiency by certain observations, modifications, setup, calibration, and limited maintenance steps. In addition, man may monitor experiment progress and perform preliminary data evaluation to verify proper equipment functioning and may terminate or redirect experiments to obtain the most desirable end results. The flexibility and unique capabilities of man as an experimenter in such a laboratory will add greatly to the simplification of space experiments and this provides the basis for commonality in many of the supportive subsystems, thus reaping the benefits of reusability and reduced experiment costs. For Vol. 4, see N73-19268.

  9. An Example of Concurrent Engineering

    NASA Technical Reports Server (NTRS)

    Rowe, Sidney; Whitten, David; Cloyd, Richard; Coppens, Chris; Rodriguez, Pedro

    1998-01-01

    The Collaborative Engineering Design and Analysis Room (CEDAR) facility allows on-the- spot design review capability for any project during all phases of development. The required disciplines assemble in this facility to work on any problems (analysis, manufacturing, inspection, etc.) associated with a particular design. A small highly focused team of specialists can meet in this room to better expedite the process of developing a solution to an engineering task within the framework of the constraints that are unique to each discipline. This facility provides the engineering tools and translators to develop a concept within the confines of the room or with remote team members that could access the team's data from other locations. The CEDAR area is envisioned as excellent for failure investigation meetings to be conducted where the computer capabilities can be utilized in conjunction with the Smart Board display to develop failure trees, brainstorm failure modes, and evaluate possible solutions.

  10. The Hubble Space Telescope: UV, Visible, and Near-Infrared Pursuits

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer

    2010-01-01

    The Hubble Space Telescope continues to push the limits on world-class astrophysics. Cameras including the Advanced Camera for Surveys and the new panchromatic Wide Field Camera 3 which was installed nu last year's successful servicing mission S2N4,o{fer imaging from near-infrared through ultraviolet wavelengths. Spectroscopic studies of sources from black holes to exoplanet atmospheres are making great advances through the versatile use of STIS, the Space Telescope Imaging Spectrograph. The new Cosmic Origins Spectrograph, also installed last year, is the most sensitive UV spectrograph to fly io space and is uniquely suited to address particular scientific questions on galaxy halos, the intergalactic medium, and the cosmic web. With these outstanding capabilities on HST come complex needs for laboratory astrophysics support including atomic and line identification data. I will provide an overview of Hubble's current capabilities and the scientific programs and goals that particularly benefit from the studies of laboratory astrophysics.

  11. Nonlinear analysis for high-temperature multilayered fiber composite structures. M.S. Thesis; [turbine blades

    NASA Technical Reports Server (NTRS)

    Hopkins, D. A.

    1984-01-01

    A unique upward-integrated top-down-structured approach is presented for nonlinear analysis of high-temperature multilayered fiber composite structures. Based on this approach, a special purpose computer code was developed (nonlinear COBSTRAN) which is specifically tailored for the nonlinear analysis of tungsten-fiber-reinforced superalloy (TFRS) composite turbine blade/vane components of gas turbine engines. Special features of this computational capability include accounting of; micro- and macro-heterogeneity, nonlinear (stess-temperature-time dependent) and anisotropic material behavior, and fiber degradation. A demonstration problem is presented to mainfest the utility of the upward-integrated top-down-structured approach, in general, and to illustrate the present capability represented by the nonlinear COBSTRAN code. Preliminary results indicate that nonlinear COBSTRAN provides the means for relating the local nonlinear and anisotropic material behavior of the composite constituents to the global response of the turbine blade/vane structure.

  12. Desktop nanofabrication with massively multiplexed beam pen lithography.

    PubMed

    Liao, Xing; Brown, Keith A; Schmucker, Abrin L; Liu, Guoliang; He, Shu; Shim, Wooyoung; Mirkin, Chad A

    2013-01-01

    The development of a lithographic method that can rapidly define nanoscale features across centimetre-scale surfaces has been a long-standing goal for the nanotechnology community. If such a 'desktop nanofab' could be implemented in a low-cost format, it would bring the possibility of point-of-use nanofabrication for rapidly prototyping diverse functional structures. Here we report the development of a new tool that is capable of writing arbitrary patterns composed of diffraction-unlimited features over square centimetre areas that are in registry with existing patterns and nanostructures. Importantly, this instrument is based on components that are inexpensive compared with the combination of state-of-the-art nanofabrication tools that approach its capabilities. This tool can be used to prototype functional electronic devices in a mask-free fashion in addition to providing a unique platform for performing high-throughput nano- to macroscale photochemistry with relevance to biology and medicine.

  13. SOFIA general investigator science program

    NASA Astrophysics Data System (ADS)

    Young, Erick T.; Andersson, B.-G.; Becklin, Eric E.; Reach, William T.; Sankrit, Ravi; Zinnecker, Hans; Krabbe, Alfred

    2014-07-01

    SOFIA is a joint project between NASA and DLR, the German Aerospace Center, to provide the worldwide astronomical community with an observatory that offers unique capabilities from visible to far-infrared wavelengths. SOFIA consists of a 2.7-m telescope mounted in a highly modified Boeing 747-SP aircraft, a suite of instruments, and the scientific and operational infrastructure to support the observing program. This paper describes the current status of the observatory and details the General Investigator program. The observatory has recently completed major development activities, and it has transitioned into full operational status. Under the General Investigator program, astronomers submit proposals that are peer reviewed for observation on the facility. We describe the results from the first two cycles of the General Investigator program. We also describe some of the new observational capabilities that will be available for Cycle 3, which will begin in 2015.

  14. Artificial Immune System Approaches for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, Kalmanje; Koga, Dennis (Technical Monitor)

    2002-01-01

    Artificial Immune Systems (AIS) combine a priori knowledge with the adapting capabilities of biological immune system to provide a powerful alternative to currently available techniques for pattern recognition, modeling, design, and control. Immunology is the science of built-in defense mechanisms that are present in all living beings to protect against external attacks. A biological immune system can be thought of as a robust, adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. Biological immune systems use a finite number of discrete "building blocks" to achieve this adaptiveness. These building blocks can be thought of as pieces of a puzzle which must be put together in a specific way-to neutralize, remove, or destroy each unique disturbance the system encounters. In this paper, we outline AIS models that are immediately applicable to aerospace problems and identify application areas that need further investigation.

  15. The X-Ray Surveyor mission concept study: forging the path to NASA astrophysics 2020 decadal survey prioritization

    NASA Astrophysics Data System (ADS)

    Gaskin, Jessica; Özel, Feryal; Vikhlinin, Alexey

    2016-07-01

    The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.

  16. Clinical decision support for whole genome sequence information leveraging a service-oriented architecture: a prototype.

    PubMed

    Welch, Brandon M; Rodriguez-Loya, Salvador; Eilbeck, Karen; Kawamoto, Kensaku

    2014-01-01

    Whole genome sequence (WGS) information could soon be routinely available to clinicians to support the personalized care of their patients. At such time, clinical decision support (CDS) integrated into the clinical workflow will likely be necessary to support genome-guided clinical care. Nevertheless, developing CDS capabilities for WGS information presents many unique challenges that need to be overcome for such approaches to be effective. In this manuscript, we describe the development of a prototype CDS system that is capable of providing genome-guided CDS at the point of care and within the clinical workflow. To demonstrate the functionality of this prototype, we implemented a clinical scenario of a hypothetical patient at high risk for Lynch Syndrome based on his genomic information. We demonstrate that this system can effectively use service-oriented architecture principles and standards-based components to deliver point of care CDS for WGS information in real-time.

  17. Use of magnetic sails for advanced exploration missions

    NASA Technical Reports Server (NTRS)

    Andrews, Dana G.; Zubrin, Robert M.

    1990-01-01

    The magnetic sail, or magsail, is a field effect device which interacts with the ambient solar wind or interstellar medium over a considerable volume of space to generate drag and lift forces. Two theories describing the method of thrust generation are analyzed and data results are presented. The techniques for maintaining superconductor temperatures in interplanetary space are analyzed and low risk options presented. Comparisons are presented showing mission performance differences between currently proposed spacecraft using chemical and electric propulsion systems, and a Magsail propelled spacecraft capable of generating an average thrust of 250 Newtons at a radius of one A.U. The magsail also provides unique capabilities for interstellar missions, in that at relativistic speeds the magnetic field would ionize and deflect the interstellar medium producing a large drag force. This would make it an ideal brake for decelerating a spacecraft from relativistic speeds and then maneuvering within the target star system.

  18. Interactive information processing for NASA's mesoscale analysis and space sensor program

    NASA Technical Reports Server (NTRS)

    Parker, K. G.; Maclean, L.; Reavis, N.; Wilson, G.; Hickey, J. S.; Dickerson, M.; Karitani, S.; Keller, D.

    1985-01-01

    The Atmospheric Sciences Division (ASD) of the Systems Dynamics Laboratory at NASA's Marshall Space Flight Center (MSFC) is currently involved in interactive information processing for the Mesoscale Analysis and Space Sensor (MASS) program. Specifically, the ASD is engaged in the development and implementation of new space-borne remote sensing technology to observe and measure mesoscale atmospheric processes. These space measurements and conventional observational data are being processed together to gain an improved understanding of the mesoscale structure and the dynamical evolution of the atmosphere relative to cloud development and precipitation processes. To satisfy its vast data processing requirements, the ASD has developed a Researcher Computer System consiting of three primary computer systems which provides over 20 scientists with a wide range of capabilities for processing and displaying a large volumes of remote sensing data. Each of the computers performs a specific function according to its unique capabilities.

  19. Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Wercinski, Paul F.; Beck, Robin A. S.; Hamm, Kenneth R.; Yount, Bryan C.; Makino, A.; Smith, B.; Gage, P.; Prabhu, D.

    2012-01-01

    The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term; (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term; and (3) Heavy mass and human missions to Mars in the long term.

  20. Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; Wercinski, P.; Prabhu, D.

    2012-01-01

    The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (approximately 40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low-mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term and (3) Heavy mass and human missions to Mars in the long term.

  1. Xyce parallel electronic simulator : users' guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Ting; Rankin, Eric Lamont; Thornquist, Heidi K.

    2011-05-01

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers; (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-artmore » algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only); and (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a unique electrical simulation capability, designed to meet the unique needs of the laboratory.« less

  2. Space Environmental Effects Testing Capability at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    DeWittBurns, H.; Craven, Paul; Finckenor, Miria; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the effects of the environment can lead to degradation of materials, reduction of functional lifetime, and system failure. In response to this need, the Marshall Space Flight Center has developed world class Space Environmental Effects (SEE) expertise and test facilities to simulate the space environment. Capabilities include multiple unique test systems comprising the most complete SEE testing capability available. These test capabilities include charged particle radiation (electrons, protons, ions), ultraviolet radiation (UV), vacuum ultraviolet radiation (VUV), atomic oxygen, plasma effects, space craft charging, lunar surface and planetary effects, vacuum effects, and hypervelocity impacts as well as the combination of these capabilities. In addition to the uniqueness of the individual test capabilities, MSFC is the only NASA facility where the effects of the different space environments can be tested in one location. Combined with additional analytical capabilities for pre- and post-test evaluation, MSFC is a one-stop shop for materials testing and analysis. The SEE testing and analysis are performed by a team of award winning experts nationally recognized for their contributions in the study of the effects of the space environment on materials and systems. With this broad expertise in space environmental effects and the variety of test systems and equipment available, MSFC is able to customize tests with a demonstrated ability to rapidly adapt and reconfigure systems to meet customers needs. Extensive flight experiment experience bolsters this simulation and analysis capability with a comprehensive understanding of space environmental effects.

  3. The Science and Prospects of Astrophysical Observations with New Horizons

    NASA Astrophysics Data System (ADS)

    Nguyen, Chi; Zemcov, Michael; Cooray, Asantha; Lisse, Carey; Poppe, Andrew

    2018-01-01

    Astrophysical observation from the outer solar system provides a unique and quiet vantage point from which to understand our cosmos. If properly designed, such observations enable several niche science cases that are difficult or impossible to perform near Earth. NASA's New Horizons mission includes several instruments with ~10cm telescopes that provide imaging capability from UV to near-IR wavelengths with moderate spectral resolution. A carefully designed survey can optimize the expendable propellant and limited data telemetry bandwidth to allow several unique measurements, including a detailed understanding of the cosmic extragalactic background light in the optical and near-IR, studies of the local and extragalactic UV background, measurements of the properties of dust and ice in the outer solar system, searches for moons and other faint structures around exoplanets, and determinations of the mass of planets far from their parent stars using gravitational microlensing. New Horizons is currently in an extended mission, that will conclude in 2021, designed to survey distant objects in the Kuiper Belt at high phase angles and perform a close flyby of KBO 2014 MU69. Afterwards, the astrophysics community will have a unique, generational opportunity to use this mission for astronomical observations at heliocentric distances beyond 50 AU. In this poster, we present the science case for an extended 2021 - 2026 astrophysics mission, and discuss some of the practical considerations that must be addressed to maximize the potential science return.

  4. Corral Monitoring System assessment results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filby, E.E.; Haskel, K.J.

    1998-03-01

    This report describes the results of a functional and operational assessment of the Corral Monitoring Systems (CMS), which was designed to detect and document accountable items entering or leaving a monitored site. Its development was motivated by the possibility that multiple sites in the nuclear weapons states of the former Soviet Union might be opened to such monitoring under the provisions of the Strategic Arms Reduction Treaty. The assessment was performed at three levels. One level evaluated how well the planned approach addressed the target application, and which involved tracking sensitive items moving into and around a site being monitoredmore » as part of an international treaty or other agreement. The second level examined the overall design and development approach, while the third focused on individual subsystems within the total package. Unfortunately, the system was delivered as disassembled parts and pieces, with very poor documentation. Thus, the assessment was based on fragmentary operating data coupled with an analysis of what documents were provided with the system. The system design seemed to be a reasonable match to the requirements of the target application; however, important questions about site manning and top level administrative control were left unanswered. Four weaknesses in the overall design and development approach were detected: (1) poor configuration control and management, (2) inadequate adherence to a well defined architectural standard, (3) no apparent provision for improving top level error tolerance, and (4) weaknesses in the object oriented programming approach. The individual subsystems were found to offer few features or capabilities that were new or unique, even at the conceptual level. The CMS might possibly have offered a unique combination of features, but this level of integration was never realized, and it had no unique capabilities that could be readily extracted for use in another system.« less

  5. Scanning mirror for infrared sensors

    NASA Technical Reports Server (NTRS)

    Anderson, R. H.; Bernstein, S. B.

    1972-01-01

    A high resolution, long life angle-encoded scanning mirror, built for application in an infrared attitude sensor, is described. The mirror uses a Moire' fringe type optical encoder and unique torsion bar suspension together with a magnetic drive to meet stringent operational and environmental requirements at a minimum weight and with minimum power consumption. Details of the specifications, design, and construction are presented with an analysis of the mirror suspension that allows accurate prediction of performance. The emphasis is on mechanical design considerations, and brief discussions are included on the encoder and magnetic drive to provide a complete view of the mirror system and its capabilities.

  6. STS-127 Launch HD

    NASA Image and Video Library

    2009-11-16

    Space shuttle Atlantis and its six-member crew began an 11-day delivery flight to the International Space Station on Monday with a 2:28 p.m. EST launch from NASA's Kennedy Space Center in Florida. The shuttle will transport spare hardware to the outpost and return a station crew member who spent more than two months in space. Atlantis is carrying about 30,000 pounds of replacement parts for systems that provide power to the station, keep it from overheating, and maintain a proper orientation in space. The large equipment can best be transported using the shuttle's unique capabilities

  7. A land mobile satellite data system

    NASA Technical Reports Server (NTRS)

    Kent, John D. B.

    1990-01-01

    The Telesat Mobile Incorporated (TMI) Mobile Data System (MDS) was developed to apply satellite technology to the transportation industry's requirement for a fleet management system. It will provide two-way messaging and automatic position reporting capabilities between dispatch centers and customers' fleets of trucks. The design was based on the Inmarsat L-Band space segment with system link parameters and margins adjusted to meet the land mobile satellite channel characteristics. The system interfaces with the Teleglobe Des Laurentides earth station at Weir, Quebec. The signaling protocols were derived from the Inmarsat Standard C packet signalling system with unique trucking requirements incorporated where necessary.

  8. Disulfide-Bridged (Mo3S11) Cluster Polymer: Molecular Dynamics and Application as Electrode Material for a Rechargeable Magnesium Battery.

    PubMed

    Truong, Quang Duc; Kempaiah Devaraju, Murukanahally; Nguyen, Duc N; Gambe, Yoshiyuki; Nayuki, Keiichiro; Sasaki, Yoshikazu; Tran, Phong D; Honma, Itaru

    2016-09-14

    Exploring novel electrode materials is critical for the development of a next-generation rechargeable magnesium battery with high volumetric capacity. Here, we showed that a distinct amorphous molybdenum sulfide, being a coordination polymer of disulfide-bridged (Mo3S11) clusters, has great potential as a rechargeable magnesium battery cathode. This material provided good reversible capacity, attributed to its unique structure with high flexibility and capability of deformation upon Mg insertion. Free-terminal disulfide moiety may act as the active site for reversible insertion and extraction of magnesium.

  9. SCIAMACHY’s View of the Polar Atmosphere

    USGS Publications Warehouse

    Gottwald, M.; Krieg, E.; von Savigny, C.; Noël, S.; Reichl, A.; Bovensmann, H.; Burrows, J.P.

    2007-01-01

    The instrument SCIAMACHY onboard the European ENVISAT mission provides unique capabilities for deriving atmospheric geophysical parameters. Since its launch in early 2002 it has operated successfully in orbit. Due to ENVISAT’s high inclination orbit the polar regions are monitored continuously. We report here results about the status of the polar atmosphere in the past 5 years with special emphasis on the southern hemisphere. This part of the atmosphere is considered to be highly sensitive to anthropogenic impacts on the Earth system and thus to climate change. The acquired data permit retrieving information on the Earth’s atmosphere from troposphere up to the mesosphere

  10. X-ray Fluorescence Holography: Principles, Apparatus, and Applications

    NASA Astrophysics Data System (ADS)

    Hayashi, Kouichi; Korecki, Pawel

    2018-06-01

    X-ray fluorescence holography (XFH) is an atomic structure determination technique that combines the capabilities of X-ray diffraction and X-ray fluorescence spectroscopy. It provides a unique means of gaining fully three-dimensional information about the local atomic structure and lattice site positions of selected elements inside compound samples. In this work, we discuss experimental and theoretical aspects that are essential for the efficient recording and analysis of X-ray fluorescence holograms and review the most recent advances in XFH. We describe experiments performed with brilliant synchrotron radiation as well as with tabletop setups that employ conventional X-ray tubes.

  11. Educational Justice for All: The Capability Approach and Inclusive Education Leadership

    ERIC Educational Resources Information Center

    Toson, Amy L.-M.; Burrello, Leonard C.; Knollman, Gregory

    2013-01-01

    Leaders within education must weigh a number of fundamentals as they engage the needs of the stakeholders they represent within the political, social and economic context they operate within. Leaders must consider the unique needs and capabilities of individuals who might not possess similar abilities or talents to those of the majority. In this…

  12. Assessing Hospital Disaster Readiness Over Time at the US Department of Veterans Affairs.

    PubMed

    Der-Martirosian, Claudia; Radcliff, Tiffany A; Gable, Alicia R; Riopelle, Deborah; Hagigi, Farhad A; Brewster, Pete; Dobalian, Aram

    2017-02-01

    Introduction There have been numerous initiatives by government and private organizations to help hospitals become better prepared for major disasters and public health emergencies. This study reports on efforts by the US Department of Veterans Affairs (VA), Veterans Health Administration, Office of Emergency Management's (OEM) Comprehensive Emergency Management Program (CEMP) to assess the readiness of VA Medical Centers (VAMCs) across the nation. Hypothesis/Problem This study conducts descriptive analyses of preparedness assessments of VAMCs and examines change in hospital readiness over time. To assess change, quantitative analyses of data from two phases of preparedness assessments (Phase I: 2008-2010; Phase II: 2011-2013) at 137 VAMCs were conducted using 61 unique capabilities assessed during the two phases. The initial five-point Likert-like scale used to rate each capability was collapsed into a dichotomous variable: "not-developed=0" versus "developed=1." To describe changes in preparedness over time, four new categories were created from the Phase I and Phase II dichotomous variables: (1) rated developed in both phases; (2) rated not-developed in Phase I but rated developed in Phase II; (3) rated not-developed in both phases; and (4) rated developed in Phase I but rated not- developed in Phase II. From a total of 61 unique emergency preparedness capabilities, 33 items achieved the desired outcome - they were rated either "developed in both phases" or "became developed" in Phase II for at least 80% of VAMCs. For 14 items, 70%-80% of VAMCs achieved the desired outcome. The remaining 14 items were identified as "low-performing" capabilities, defined as less than 70% of VAMCs achieved the desired outcome. Measuring emergency management capabilities is a necessary first step to improving those capabilities. Furthermore, assessing hospital readiness over time and creating robust hospital readiness assessment tools can help hospitals make informed decisions regarding allocation of resources to ensure patient safety, provide timely access to high-quality patient care, and identify best practices in emergency management during and after disasters. Moreover, with some minor modifications, this comprehensive, all-hazards-based, hospital preparedness assessment tool could be adapted for use beyond the VA. Der-Martirosian C , Radcliff TA , Gable AR , Riopelle D , Hagigi FA , Brewster P , Dobalian A . Assessing hospital disaster readiness over time at the US Department of Veterans Affairs. Prehsop Disaster Med. 2017;32(1):46-57.

  13. High Contrast Imaging with NICMOS - I: Teaching an Old Dog New Tricks with Coronagraphic Polarimetry

    NASA Astrophysics Data System (ADS)

    Schneider, G.; Hines, D. C.

    2007-06-01

    HST's Near Infrared Camera and Multi-Object Spectrometer (NICMOS), with its highly stable point spread function, very high imaging Strehl ratio (panchromatically > 98% over its entire 0.8 - 2.4 micron wavelength regime) and coronagraphic imaging capability, celebrated its tenth anniversary in space earlier this year. These combined instrumental attributes uniquely contribute to its capability as a high-contrast imager as demonstrated by its continuing production of new examples of spatially resolved scattered-light imagery of both optically thick and thin circumstellar disks and sub-stellar companions to young stars and brown dwarfs well into the (several) Jovian mass range. We review these capabilities, illustrating with observationally based results, including examples obtained since HST's entry into two gyro guiding mode in mid 2005. The advent of a recently introduced, and now commissioned and calibrated, coronagraphic polarimetry mode has enabled very-high contrast 2 micron imaging polarimetry with 0.2 spatial resolution. Such imagery provides important constraints in the interpretation of disk-scattered starlight in assessing circumstellar disk geometries and the physical properties of their constituent grains. We demonstrate this new capability with observational results from two currently-executing HST programs obtaining 2 micron coronagraphic polarimetric images of circumstellar T-Tauri and debris disks.

  14. What constitutes 'support' for the role of the Aboriginal and Torres Strait Islander child health workforce?

    PubMed

    Watson, Karen; Young, Jeanine; Barnes, Margaret

    2013-02-01

    As well as providing primary health care services, Aboriginal and Torres Strait Islander health workers are known to significantly contribute to the overall acceptability, access and use of health services through their role of cultural brokerage in the communities within which they work. As such they are uniquely positioned to positively influence health improvements for this vulnerable population. This study sought to identify key areas that both Aboriginal and Torres Strait Islander and non-Indigenous health professionals working within Indigenous communities felt were important in providing support for their roles. This group of workers require support within their roles particularly in relation to cultural awareness and capability, resource provision, educational opportunities, collaboration with colleagues and peers, and professional mentorship.

  15. ATR NSUF Instrumentation Enhancement Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joy L. Rempe; Mitchell K. Meyer; Darrell L. Knudson

    A key component of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) effort is to expand instrumentation available to users conducting irradiation tests in this unique facility. In particular, development of sensors capable of providing real-time measurements of key irradiation parameters is emphasized because of their potential to increase data fidelity and reduce posttest examination costs. This paper describes the strategy for identifying new instrumentation needed for ATR irradiations and the program underway to develop and evaluate new sensors to address these needs. Accomplishments from this program are illustrated by describing new sensors now available to users ofmore » the ATR NSUF. In addition, progress is reported on current research efforts to provide improved in-pile instrumentation to users.« less

  16. Numerical Modeling and Optimization of Warm-water Heat Sinks

    NASA Astrophysics Data System (ADS)

    Hadad, Yaser; Chiarot, Paul

    2015-11-01

    For cooling in large data-centers and supercomputers, water is increasingly replacing air as the working fluid in heat sinks. Utilizing water provides unique capabilities; for example: higher heat capacity, Prandtl number, and convection heat transfer coefficient. The use of warm, rather than chilled, water has the potential to provide increased energy efficiency. The geometric and operating parameters of the heat sink govern its performance. Numerical modeling is used to examine the influence of geometry and operating conditions on key metrics such as thermal and flow resistance. This model also facilitates studies on cooling of electronic chip hot spots and failure scenarios. We report on the optimal parameters for a warm-water heat sink to achieve maximum cooling performance.

  17. High power communication satellites power systems study

    NASA Astrophysics Data System (ADS)

    Josloff, Allan T.; Peterson, Jerry R.

    1995-01-01

    This paper discusses a planned study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. These high power satellites can play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities can be significant.

  18. Lidar Remote Sensing

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The laser radar, or lidar (for light detection and ranging) is an important tool for atmospheric studies. Lidar provides a unique and powerful method for unobtrusively profiling aerosols, wind, water vapor, temperature, and other atmospheric parameters. This brief overview of lidar remote sensing is focused on atmospheric applications involving pulsed lasers. The level of technical detail is aimed at the educated non-lidar expert and references are provided for further investigation of specific topics. The article is divided into three main sections. The first describes atmospheric scattering processes and the physics behind laser-atmosphere interactions. The second section highlights some of the primary lidar applications, with brief descriptions of each measurement capability. The third section describes the practical aspects of lidar operation, including the governing equation and operational considerations.

  19. Guidance, Navigation, and Control Considerations for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP). Guidance, navigation, and control of NTP may have some unique but manageable characteristics.

  20. The great American solar eclipse of August 21, 2017; new understanding of the response of the upper atmosphere and ionosphere.

    NASA Astrophysics Data System (ADS)

    Drob, D. P.; Huba, J.; Kordella, L.; Earle, G. D.; Ridley, A. J.

    2017-12-01

    The great American solar eclipse of August 21, 2017 provides a unique opportunity to study the basic physics of the upper atmosphere and ionosphere. While the effects of solar eclipses on the upper atmosphere and ionosphere have been studied since the 1930s, and later matured in the last several decades, recent advances in first principles numerical models and multi-instrument observational capabilities continue to provide new insights. Upper atmospheric eclipse phenomena such as ionospheric conjugate effects and the generation of a thermospheric bow wave that propagates into the nightside are simulated with high-resolution first principles upper atmospheric models and compared with observations to validate this understanding.

  1. CATS Version 2 Aerosol Feature Detection and Applications for Data Assimilation

    NASA Technical Reports Server (NTRS)

    Nowottnick, E. P.; Yorks, J. E.; Selmer, P. A.; Palm, S. P.; Hlavka, D. L.; Pauly, R. M.; Ozog, S.; McGill, M. J.; Da Silva, A.

    2017-01-01

    The Cloud Aerosol Transport System (CATS) lidar has been operating onboard the International Space Station (ISS) since February 2015 and provides vertical observations of clouds and aerosols using total attenuated backscatter and depolarization measurements. From February March 2015, CATS operated in Mode 1, providing backscatter and depolarization measurements at 532 and 1064 nm. CATS began operation in Mode 2 in March 2015, providing backscatter and depolarization measurements at 1064 nm and has continued to operate to the present in this mode. CATS level 2 products are derived from these measurements, including feature detection, cloud aerosol discrimination, cloud and aerosol typing, and optical properties of cloud and aerosol layers. Here, we present changes to our level 2 algorithms, which were aimed at reducing several biases in our version 1 level 2 data products. These changes will be incorporated into our upcoming version 2 level 2 data release in summer 2017. Additionally, owing to the near real time (NRT) data downlinking capabilities of the ISS, CATS provides expedited NRT data products within 6 hours of observation time. This capability provides a unique opportunity for supporting field campaigns and for developing data assimilation techniques to improve simulated cloud and aerosol vertical distributions in models. We additionally present preliminary work toward assimilating CATS observations into the NASA Goddard Earth Observing System version 5 (GEOS-5) global atmospheric model and data assimilation system.

  2. Sliding GAIT Algorithm for the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE)

    NASA Technical Reports Server (NTRS)

    Townsend, Julie; Biesiadecki, Jeffrey

    2012-01-01

    The design of a surface robotic system typically involves a trade between the traverse speed of a wheeled rover and the terrain-negotiating capabilities of a multi-legged walker. The ATHLETE mobility system, with both articulated limbs and wheels, is uniquely capable of both driving and walking, and has the flexibility to employ additional hybrid mobility modes. This paper introduces the Sliding Gait, an intermediate mobility algorithm faster than walking with better terrain-handling capabilities than wheeled mobility.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Michel; Archer, Bill; Hendrickson, Bruce

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computationalmore » resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.« less

  4. Pacific Research Platform - Creation of a West Coast Big Data Freeway System Applied to the CONNected objECT (CONNECT) Data Mining Framework for Earth Science Knowledge Discovery

    NASA Astrophysics Data System (ADS)

    Sellars, S. L.; Nguyen, P.; Tatar, J.; Graham, J.; Kawsenuk, B.; DeFanti, T.; Smarr, L.; Sorooshian, S.; Ralph, M.

    2017-12-01

    A new era in computational earth sciences is within our grasps with the availability of ever-increasing earth observational data, enhanced computational capabilities, and innovative computation approaches that allow for the assimilation, analysis and ability to model the complex earth science phenomena. The Pacific Research Platform (PRP), CENIC and associated technologies such as the Flash I/O Network Appliance (FIONA) provide scientists a unique capability for advancing towards this new era. This presentation reports on the development of multi-institutional rapid data access capabilities and data pipeline for applying a novel image characterization and segmentation approach, CONNected objECT (CONNECT) algorithm to study Atmospheric River (AR) events impacting the Western United States. ARs are often associated with torrential rains, swollen rivers, flash flooding, and mudslides. CONNECT is computationally intensive, reliant on very large data transfers, storage and data mining techniques. The ability to apply the method to multiple variables and datasets located at different University of California campuses has previously been challenged by inadequate network bandwidth and computational constraints. The presentation will highlight how the inter-campus CONNECT data mining framework improved from our prior download speeds of 10MB/s to 500MB/s using the PRP and the FIONAs. We present a worked example using the NASA MERRA data to describe how the PRP and FIONA have provided researchers with the capability for advancing knowledge about ARs. Finally, we will discuss future efforts to expand the scope to additional variables in earth sciences.

  5. The Radio & Plasma Wave Investigation (RPWI) for JUICE - Instrument Concept and Capabilities

    NASA Astrophysics Data System (ADS)

    Bergman, J. E. S.

    2013-09-01

    We present the concept and capabilities of the Radio & Plasma Waves Investigation (RPWI) instrument for the JUICE mission. The RPWI instrument provides measurements of plasma, electric- and magnetic field fluctuations from near DC up to 45 MHz. The RPWI sensors are four Langmuir probes for low temperature plasma diagnostics and electric field measurements, a three-axis searchcoil magnetometer for low-frequency magnetic field measurements, and a three-axial radio antenna, which operates from 80 kHz up to 45 MHz and thus gives RPWI remote sensing capabilities.. In addition, active mutual impedance measurements are used to diagnose the in situ plasma. The RPWI instrument is unique as it provides vector field measurements in the whole frequency range. This makes it possible to employ advanced diagnostics techniques, which are unavailable for scalar measurements. The RPWI instrument has thus outstanding new capabilities not previously available to outer planet missions, which and enables RPWI to address many fundamental planetary science objectives, such as the electrodynamic influence of the Jovian magnetosphere on the exospheres, surfaces and conducting oceans of Ganymede, Europa, and Callisto. RPWI will also be able to investigate the sources of radio emissions from auroral regions of Ganymede and Jupiter, in detail and with unprecedented sensitivity, and possibly also lightning. Moreover, RPWI can search for exhaust plumes from cracks on the icy moons, as well as μm-sized dust and related dust-plasmasurface interaction processes occurring near the icy moons of Jupiter. The top-level blockdiagram of the RPWI instrument is shown here. A detailed technical description of the RPWI instrument will be given.

  6. Integrated System Health Management: Foundational Concepts, Approach, and Implementation

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    2009-01-01

    A sound basis to guide the community in the conception and implementation of ISHM (Integrated System Health Management) capability in operational systems was provided. The concept of "ISHM Model of a System" and a related architecture defined as a unique Data, Information, and Knowledge (DIaK) architecture were described. The ISHM architecture is independent of the typical system architecture, which is based on grouping physical elements that are assembled to make up a subsystem, and subsystems combine to form systems, etc. It was emphasized that ISHM capability needs to be implemented first at a low functional capability level (FCL), or limited ability to detect anomalies, diagnose, determine consequences, etc. As algorithms and tools to augment or improve the FCL are identified, they should be incorporated into the system. This means that the architecture, DIaK management, and software, must be modular and standards-based, in order to enable systematic augmentation of FCL (no ad-hoc modifications). A set of technologies (and tools) needed to implement ISHM were described. One essential tool is a software environment to create the ISHM Model. The software environment encapsulates DIaK, and an infrastructure to focus DIaK on determining health (detect anomalies, determine causes, determine effects, and provide integrated awareness of the system to the operator). The environment includes gateways to communicate in accordance to standards, specially the IEEE 1451.1 Standard for Smart Sensors and Actuators.

  7. The ACI-REF Program: Empowering Prospective Computational Researchers

    NASA Astrophysics Data System (ADS)

    Cuma, M.; Cardoen, W.; Collier, G.; Freeman, R. M., Jr.; Kitzmiller, A.; Michael, L.; Nomura, K. I.; Orendt, A.; Tanner, L.

    2014-12-01

    The ACI-REF program, Advanced Cyberinfrastructure - Research and Education Facilitation, represents a consortium of academic institutions seeking to further advance the capabilities of their respective campus research communities through an extension of the personal connections and educational activities that underlie the unique and often specialized cyberinfrastructure at each institution. This consortium currently includes Clemson University, Harvard University, University of Hawai'i, University of Southern California, University of Utah, and University of Wisconsin. Working together in a coordinated effort, the consortium is dedicated to the adoption of models and strategies which leverage the expertise and experience of its members with a goal of maximizing the impact of each institution's investment in research computing. The ACI-REFs (facilitators) are tasked with making connections and building bridges between the local campus researchers and the many different providers of campus, commercial, and national computing resources. Through these bridges, ACI-REFs assist researchers from all disciplines in understanding their computing and data needs and in mapping these needs to existing capabilities or providing assistance with development of these capabilities. From the Earth sciences perspective, we will give examples of how this assistance improved methods and workflows in geophysics, geography and atmospheric sciences. We anticipate that this effort will expand the number of researchers who become self-sufficient users of advanced computing resources, allowing them to focus on making research discoveries in a more timely and efficient manner.

  8. Overview of NASA MSFC IEC Federated Engineering Collaboration Capability

    NASA Technical Reports Server (NTRS)

    Moushon, Brian; McDuffee, Patrick

    2005-01-01

    The MSFC IEC federated engineering framework is currently developing a single collaborative engineering framework across independent NASA centers. The federated approach allows NASA centers the ability to maintain diversity and uniqueness, while providing interoperability. These systems are integrated together in a federated framework without compromising individual center capabilities. MSFC IEC's Federation Framework will have a direct affect on how engineering data is managed across the Agency. The approach is directly attributed in response to the Columbia Accident Investigation Board (CAB) finding F7.4-11 which states the Space Shuttle Program has a wealth of data sucked away in multiple databases without a convenient way to integrate and use the data for management, engineering, or safety decisions. IEC s federated capability is further supported by OneNASA recommendation 6 that identifies the need to enhance cross-Agency collaboration by putting in place common engineering and collaborative tools and databases, processes, and knowledge-sharing structures. MSFC's IEC Federated Framework is loosely connected to other engineering applications that can provide users with the integration needed to achieve an Agency view of the entire product definition and development process, while allowing work to be distributed across NASA Centers and contractors. The IEC DDMS federation framework eliminates the need to develop a single, enterprise-wide data model, where the goal of having a common data model shared between NASA centers and contractors is very difficult to achieve.

  9. NASA Sounding Rocket Program educational outreach

    NASA Astrophysics Data System (ADS)

    Eberspeaker, P. J.

    2005-08-01

    Educational and public outreach is a major focus area for the National Aeronautics and Space Administration (NASA). The NASA Sounding Rocket Program (NSRP) shares in the belief that NASA plays a unique and vital role in inspiring future generations to pursue careers in science, mathematics, and technology. To fulfill this vision, the NASA Sounding Rocket Program engages in a host of student flight projects providing unique and exciting hands-on student space flight experiences. These projects include single stage Orion missions carrying "active" high school experiments and "passive" Explorer School modules, university level Orion and Terrier-Orion flights, and small hybrid rocket flights as part of the Small-scale Educational Rocketry Initiative (SERI) currently under development. Efforts also include educational programs conducted as part of major campaigns. The student flight projects are designed to reach students ranging from Kindergarteners to university undergraduates. The programs are also designed to accommodate student teams with varying levels of technical capabilities - from teams that can fabricate their own payloads to groups that are barely capable of drilling and tapping their own holes. The program also conducts a hands-on student flight project for blind students in collaboration with the National Federation of the Blind. The NASA Sounding Rocket Program is proud of its role in inspiring the "next generation of explorers" and is working to expand its reach to all regions of the United States and the international community as well.

  10. Fragman: an R package for fragment analysis.

    PubMed

    Covarrubias-Pazaran, Giovanny; Diaz-Garcia, Luis; Schlautman, Brandon; Salazar, Walter; Zalapa, Juan

    2016-04-21

    Determination of microsatellite lengths or other DNA fragment types is an important initial component of many genetic studies such as mutation detection, linkage and quantitative trait loci (QTL) mapping, genetic diversity, pedigree analysis, and detection of heterozygosity. A handful of commercial and freely available software programs exist for fragment analysis; however, most of them are platform dependent and lack high-throughput applicability. We present the R package Fragman to serve as a freely available and platform independent resource for automatic scoring of DNA fragment lengths diversity panels and biparental populations. The program analyzes DNA fragment lengths generated in Applied Biosystems® (ABI) either manually or automatically by providing panels or bins. The package contains additional tools for converting the allele calls to GenAlEx, JoinMap® and OneMap software formats mainly used for genetic diversity and generating linkage maps in plant and animal populations. Easy plotting functions and multiplexing friendly capabilities are some of the strengths of this R package. Fragment analysis using a unique set of cranberry (Vaccinium macrocarpon) genotypes based on microsatellite markers is used to highlight the capabilities of Fragman. Fragman is a valuable new tool for genetic analysis. The package produces equivalent results to other popular software for fragment analysis while possessing unique advantages and the possibility of automation for high-throughput experiments by exploiting the power of R.

  11. Clinical EPR: Unique Opportunities and Some Challenges

    PubMed Central

    Swartz, Harold M.; Williams, Benjamin B.; Zaki, Bassem I.; Hartford, Alan C.; Jarvis, Lesley A.; Chen, Eunice; Comi, Richard J.; Ernstoff, Marc S.; Hou, Huagang; Khan, Nadeem; Swarts, Steven G.; Flood, Ann B.; Kuppusamy, Periannan

    2014-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has been well established as a viable technique for measurement of free radicals and oxygen in biological systems, from in vitro cellular systems to in vivo small animal models of disease. However, the use of EPR in human subjects in the clinical setting, although attractive for a variety of important applications such as oxygen measurement, is challenged with several factors including the need for instrumentation customized for human subjects, probe and regulatory constraints. This paper describes the rationale and development of the first clinical EPR systems for two important clinical applications, namely, measurement of tissue oxygen (oximetry), and radiation dose (dosimetry) in humans. The clinical spectrometers operate at 1.2 GHz frequency and use surface loop resonators capable of providing topical measurements up to 1 cm depth in tissues. Tissue pO2 measurements can be carried out noninvasively and repeatedly after placement of an oxygen-sensitive paramagnetic material (currently India ink) at the site of interest. Our EPR dosimetry system is capable of measuring radiation-induced free radicals in the tooth of irradiated human subjects to determine the exposure dose. These developments offer potential opportunities for clinical dosimetry and oximetry, which include guiding therapy for individual patients with tumors or vascular disease, by monitoring of tissue oxygenation. Further work is in progress to translate this unique technology to routine clinical practice. PMID:24439333

  12. A Search for Exomoons and TTVs from LHS 1140b, a nearby super-Earth orbiting in the habitable-zone of an M dwarf

    NASA Astrophysics Data System (ADS)

    Dittmann, Jason; Charbonneau, David; Irwin, Jonathan; Agol, Eric; Kipping, David; Newton, Elisabeth; Berta-Thompson, Zachory; Haywood, Raphaelle; Winters, Jennifer; Ballard, Sarah

    2017-06-01

    Exoplanets that transit nearby small stars present the best opportunity for future atmospheric studies with the James Webb Space Telescope and the ground based ELTs currently under construction. The MEarth Project has discovered a rocky planet with a period of 27.43 days residing in the habitable zone of the nearby inactive star LHS 1140. This planet will be the subject of GTO observations by JWST, and additional objects in the system would also be tantalizing targets for future study. Owing to the large planetary mass and orbital separation from its star, LHS 1140b is unique among the planets known to transit nearby M dwarfs in its capability to host a large moon. We propose to survey LHS 1140b for signs of exomoons and to search for transit timing variations that may indicate the presence of additional companions. The long orbital period of 25 days, the 12 hour duration for the transit of the Hill sphere, and the small amplitude of the expected signal preclude pursuing this from the ground and make Spitzer uniquely capable to undertake this study. If successful, we may discover additional planets via TTVs for which we may conduct future searches for transits and atmospheric spectroscopy with JWST, and possibly provide the first evidence for exomoons outside of the Solar System.

  13. Policy-Based Management Natural Language Parser

    NASA Technical Reports Server (NTRS)

    James, Mark

    2009-01-01

    The Policy-Based Management Natural Language Parser (PBEM) is a rules-based approach to enterprise management that can be used to automate certain management tasks. This parser simplifies the management of a given endeavor by establishing policies to deal with situations that are likely to occur. Policies are operating rules that can be referred to as a means of maintaining order, security, consistency, or other ways of successfully furthering a goal or mission. PBEM provides a way of managing configuration of network elements, applications, and processes via a set of high-level rules or business policies rather than managing individual elements, thus switching the control to a higher level. This software allows unique management rules (or commands) to be specified and applied to a cross-section of the Global Information Grid (GIG). This software embodies a parser that is capable of recognizing and understanding conversational English. Because all possible dialect variants cannot be anticipated, a unique capability was developed that parses passed on conversation intent rather than the exact way the words are used. This software can increase productivity by enabling a user to converse with the system in conversational English to define network policies. PBEM can be used in both manned and unmanned science-gathering programs. Because policy statements can be domain-independent, this software can be applied equally to a wide variety of applications.

  14. The Osborne 1.

    ERIC Educational Resources Information Center

    McWilliams, Peter

    1982-01-01

    Describes the unique features, available software, performance capabilities, system options, costs, advantages, disadvantages, and eccentricities of the Osborne 1 microcomputer. A table summarizes specifications, features, and costs. (JL)

  15. Ground-based Space Weather Monitoring with LOFAR

    NASA Astrophysics Data System (ADS)

    Wise, Michael; van Haarlem, Michiel; Lawrence, Gareth; Reid, Simon; Bos, Andre; Rawlings, Steve; Salvini, Stef; Mitchell, Cathryn; Soleimani, Manuch; Amado, Sergio; Teresa, Vital

    As one of the first of a new generation of radio instruments, the International LOFAR Telescope (ILT) will provide a number of unique and novel capabilities for the astronomical community. These include remote configuration and operation, dynamic real-time processing and system response, and the ability to provide multiple simultaneous streams of data to a community whose scientific interests run the gamut from lighting in the atmospheres of distant planets to the origins of the universe itself. The LOFAR (LOw Frequency ARray) system is optimized for a frequency range from 30-240 MHz and consists of multiple antenna fields spread across Europe. In the Netherlands, a total 36 LOFAR stations are nearing completion with an initial 8 international stations currently being deployed in Germany, France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR has the potential to achieve unparalleled sensitivity and spatial resolution in the low frequency radio regime. LOFAR will also be one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. As we discuss in this presentation, the same capabilities that make LOFAR a powerful tool for radio astronomy also provide an excellent platform upon which to build a ground-based monitoring system for space weather events. For example, the ability to monitor Solar activity in near real-time is one of the key scientific capabilities being developed for LOFAR. With only a fraction of its total observing capacity, LOFAR will be able to provide continuous monitoring of the Solar spectrum over the entire 10-240 MHz band down to microsecond timescales. Autonomous routines will scan these incoming spectral data for evidence of Solar flares and be capable of generating various responses including alerting external observatories or reallocating internal observing capacity to create short cadence (1-10 sec) images of the Sun. More uniquely, the core development, already invested by LOFAR to produce astronomical images of the sky, makes an excellent framework on which to build a near real-time ionospheric monitor and thereby study the effects of space weather events on our atmosphere. One of the key technical challenges to producing high quality scientific images in the low frequency radio regime are the effects of the active ionosphere over the detector array on signal propagation through the earth's atmosphere. To correct for these effects, the current LOFAR system includes an adaptive calibration employing both single and multi-layer phase screen models for the ionosphere. The output of this calibration automatically produces continuous ionospheric measurements with a data cadence in seconds. Although limited to the sky over the array, the resulting TEC maps can have vertical and horizontal resolutions down to 2m and relative accuracies of 0.001 TECU. The intent is to publish both Solar and ionospheric data-streams to the space weather community providing an excellent complement to existing space-based monitoring assets. In this presentation, we will describe the current and planned capabilities of the LOFAR system as well as show some first examples of the potential data products taken during the ongoing commissioning phase. We will also discuss plans to build upon the current LOFAR infrastructure and provide a source of near real-time monitoring data to the space weather community.

  16. Applications of Computational Methods for Dynamic Stability and Control Derivatives

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Spence, Angela M.

    2004-01-01

    Initial steps in the application o f a low-order panel method computational fluid dynamic (CFD) code to the calculation of aircraft dynamic stability and control (S&C) derivatives are documented. Several capabilities, unique to CFD but not unique to this particular demonstration, are identified and demonstrated in this paper. These unique capabilities complement conventional S&C techniques and they include the ability to: 1) perform maneuvers without the flow-kinematic restrictions and support interference commonly associated with experimental S&C facilities, 2) easily simulate advanced S&C testing techniques, 3) compute exact S&C derivatives with uncertainty propagation bounds, and 4) alter the flow physics associated with a particular testing technique from those observed in a wind or water tunnel test in order to isolate effects. Also presented are discussions about some computational issues associated with the simulation of S&C tests and selected results from numerous surface grid resolution studies performed during the course of the study.

  17. Flight Test Performance of a High Precision Navigation Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George

    2009-01-01

    A navigation Doppler Lidar (DL) was developed at NASA Langley Research Center (LaRC) for high precision velocity measurements from a lunar or planetary landing vehicle in support of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. A unique feature of this DL is that it has the capability to provide a precision velocity vector which can be easily separated into horizontal and vertical velocity components and high accuracy line of sight (LOS) range measurements. This dual mode of operation can provide useful information, such as vehicle orientation relative to the direction of travel, and vehicle attitude relative to the sensor footprint on the ground. System performance was evaluated in a series of helicopter flight tests over the California desert. This paper provides a description of the DL system and presents results obtained from these flight tests.

  18. Pediatric head and neck masses.

    PubMed

    Gujar, Sachin; Gandhi, Dheeraj; Mukherji, Suresh K

    2004-04-01

    Most neck masses in the pediatric head and neck region are benign. Congenital, developmental, and inflammatory lesions make up most of the masses in the pediatric head and neck. For example, neck masses due to inflammatory lymphadenitis are common in children because of the frequency of upper respiratory tract infections. Although many of the malignant tumors in children are found in the head and neck, they account for only a small portion of the neck masses. The choice of the imaging modality is based on a number of factors, several of which are unique to the pediatric population. Although the bulk of disease entities are adequately evaluated by CT, MRI can provide additional vital information in many cases. MRI provides better soft tissue characterization than CT, has multiplanar capabilities. In this article, we will attempt to provide an overview of conditions that present as neck masses.

  19. Unique digital imagery interface between a silicon graphics computer and the kinetic kill vehicle hardware-in-the-loop simulator (KHILS) wideband infrared scene projector (WISP)

    NASA Astrophysics Data System (ADS)

    Erickson, Ricky A.; Moren, Stephen E.; Skalka, Marion S.

    1998-07-01

    Providing a flexible and reliable source of IR target imagery is absolutely essential for operation of an IR Scene Projector in a hardware-in-the-loop simulation environment. The Kinetic Kill Vehicle Hardware-in-the-Loop Simulator (KHILS) at Eglin AFB provides the capability, and requisite interfaces, to supply target IR imagery to its Wideband IR Scene Projector (WISP) from three separate sources at frame rates ranging from 30 - 120 Hz. Video can be input from a VCR source at the conventional 30 Hz frame rate. Pre-canned digital imagery and test patterns can be downloaded into stored memory from the host processor and played back as individual still frames or movie sequences up to a 120 Hz frame rate. Dynamic real-time imagery to the KHILS WISP projector system, at a 120 Hz frame rate, can be provided from a Silicon Graphics Onyx computer system normally used for generation of digital IR imagery through a custom CSA-built interface which is available for either the SGI/DVP or SGI/DD02 interface port. The primary focus of this paper is to describe our technical approach and experience in the development of this unique SGI computer and WISP projector interface.

  20. Silica based hybrid materials for drug delivery and bioimaging.

    PubMed

    Bagheri, Elnaz; Ansari, Legha; Abnous, Khalil; Taghdisi, Seyed Mohammad; Charbgoo, Fahimeh; Ramezani, Mohammad; Alibolandi, Mona

    2018-05-10

    Silica hybrid materials play an important role in improvement of novel progressive functional nanomaterials. Study in silica hybrid functional materials is supported by growing interest in providing intelligent materials that combine best of the inorganic silica structure along with organic or biological realms. Hybrid silica materials do not only provide fantastic opportunities for the design of novel materials for research but their represented unique properties open versatile applications specifically in nanomedicine since it was recognized by US FDA as a safe material for human trials. By combining various materials with different characteristics along with silica NPs as building blocks, silica-based hybrid vehicles were developed. In this regard, silica-based hybrid materials have shown great capabilities as unique carriers for bioimaging and/or drug delivery purposes. In the aforementioned hybrid systems, silica was preferred as a main building block of the hybrid structure, which is easily functionalized with different materials, bio-molecules and targeting ligands while providing biocompatibility for the system. This review will cover a full description of different hybrids of silica nanoparticles including silica-polymer, silica-protein, silica-peptide, silica-nucleic acid, silica-gold, silica-quantum dot, and silica-magnetic nanoparticles and their applications as therapeutic or imaging systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Hypolipidemic and antioxidant activity of mountain celery (Cryptotaenia japonica Hassk) seed essential oils.

    PubMed

    Cheng, Ming-Ching; Lin, Li-Yun; Yu, Tung-Hsi; Peng, Robert Y

    2008-06-11

    Mountain celery seed essential oils (MC-E) contained 109 compounds, including mainly nine kinds of monoterpenoids, 31 kinds of of sesquiterpenoids, and 22 kinds of alcohols. A successive gel column adsorption with solvent fractionation yielded four fractionates. The pentane fractionate revealed potent hypolipidemic but poor antioxidant activities. The ether fractionate exhibited strong hypolipidemic activity in addition to excellent 1,1-diphenyl-2-picrylhydrazyl free radical- and superoxide anion-scavenging capabilities. The third acetone fractionate only showed moderate superoxide anion-scavenging activity. Finally, the fourth methanol fractionate having a rather high content of gamma-selinene, 2-methylpropanal, and Z-9-octadecenamide uniquely revealed very strong superoxide anion-scavenging capability. All MC diets except the MC-E-added diet simultaneously exhibited both significant hypolipidemic and high-density lipoprotein-cholesterol (HDL-C)-elevating capabilities. However, all diets totally failed to affect the hepatic phospholipid levels. Conclusively, the MC-E can be fractionated by such a separation technology to produce products uniquely possessing hypolipidemic and HDL-C-elevating activities.

  2. Brief, Why the Launch Equipment Test Facility Needs a Laser Tracker

    NASA Technical Reports Server (NTRS)

    Yue, Shiu H.

    2011-01-01

    The NASA Kennedy Space Center Launch Equipment Test Facility (LETF) supports a wide spectrum of testing and development activities. This capability was originally established in the 1970's to allow full-scale qualification of Space Shuttle umbilicals and T-O release mechanisms. The LETF has leveraged these unique test capabilities to evolve into a versatile test and development area that supports the entire spectrum of operational programs at KSC. These capabilities are historically Aerospace related, but can certainly can be adapted for other industries. One of the more unique test fixtures is the Vehicle Motion Simulator or the VMS. The VMS simulates all of the motions that a launch vehicle will experience from the time of its roll-out to the launch pad, through roughly the first X second of launch. The VMS enables the development and qualification testing of umbilical systems in both pre-launch and launch environments. The VMS can be used to verify operations procedures, clearances, disconnect systems performance &margins, and vehicle loads through processing flow motion excursions.

  3. Heliophysical Explorers (HELEX): Solar Orbiter and Sentinels - Report of the Joint Science and Technology Definition Team (JSTDT)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Heliophysical Explorers (HELEX) brings together and augments the unique capabilities of ESA's Solar Orbiter mission (near-Sun and out-of-ecliptic in-situ plus remote-sensing observations) with those of NASA's Inner Heliospheric Sentinels (in-situ observations from multiple platforms arrayed at varying radial distances and azimuthal locations in the near-ecliptic plane)to investigate, characterize, and understand how the Sun determines the environment of the inner solar system and, more broadly, generates the heliosphere itself. This joint ESA-NASA science program offers a unique opportunity for coordinated, correlative measurements, resulting in a combined observational capability and science return that far outweighs that of either mission alone. Building on the knowledge gained from missions like Helios and Ulysses, and STEREO, HELEX will bring to bear the power of multipoint, in-situ measurements using previously unavailable instrumental capabilities in combination with remote-sensing observations from a new, inner heliospheric perspective to answer fundamental questions about the Sun-heliosphere linkage.

  4. Test Before You Fly - High Fidelity Planetary Environment Simulation

    NASA Technical Reports Server (NTRS)

    Craven, Paul; Ramachandran, Narayanan; Vaughn, Jason; Schneider, Todd; Nehls, Mary

    2012-01-01

    The lunar surface environment will present many challenges to the survivability of systems developed for long duration lunar habitation and exploration of the lunar, or any other planetary, surface. Obstacles will include issues pertaining especially to the radiation environment (solar plasma and electromagnetic radiation) and lunar regolith dust. The Planetary Environments Chamber is one piece of the MSFC capability in Space Environmental Effects Test and Analysis. Comprised of many unique test systems, MSFC has the most complete set of SEE test capabilities in one location allowing examination of combined space environmental effects without transporting already degraded, potentially fragile samples over long distances between tests. With this system, the individual and combined effects of the lunar radiation and regolith environment on materials, sub-systems, and small systems developed for the lunar return can be investigated. This combined environments facility represents a unique capability to NASA, in which tests can be tailored to any one aspect of the lunar environment (radiation, temperature, vacuum, regolith) or to several of them combined in a single test.

  5. Mechanical properties of biological specimens explored by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kasas, S.; Longo, G.; Dietler, G.

    2013-04-01

    The atomic force microscope is a widely used surface scanning apparatus capable of reconstructing at a nanometric scale resolution the 3D morphology of biological samples. Due to its unique sensitivity, it is now increasingly used as a force sensor, to characterize the mechanical properties of specimens with a similar lateral resolution. This unique capability has produced, in the last years, a vast increase in the number of groups that have exploited the versatility and sensitivity of the instrument to explore the nanomechanics of various samples in the fields of biology, microbiology and medicine. In this review we outline the state of the art in this field, reporting the most interesting recent works involving the exploration of the nanomechanical properties of various biological samples.

  6. Spectroscopic detection, characterization and dynamics of free radicals relevant to combustion processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Terry

    2015-06-04

    Combustion chemistry is enormously complex. The chemical mechanisms involve a multitude of elementary reaction steps and a comparable number of reactive intermediates, many of which are free radicals. Computer simulations based upon these mechanisms are limited by the validity of the mechanisms and the parameters characterizing the properties of the intermediates and their reactivity. Spectroscopy can provide data for sensitive and selective diagnostics to follow their reactions. Spectroscopic analysis also provides detailed parameters characterizing the properties of these intermediates. These parameters serve as experimental gold standards to benchmark predictions of these properties from large-scale, electronic structure calculations. This work hasmore » demonstrated the unique capabilities of near-infrared cavity ringdown spectroscopy (NIR CRDS) to identify, characterize and monitor intermediates of key importance in complex chemical reactions. Our studies have focussed on the large family of organic peroxy radicals which are arguably themost important intermediates in combustion chemistry and many other reactions involving the oxidation of organic compounds. Our spectroscopic studies have shown that the NIR Ã - ˜X electronic spectra of the peroxy radicals allows one to differentiate among chemical species in the organic peroxy family and also determine their isomeric and conformic structure in many cases. We have clearly demonstrated this capability on saturated and unsaturated peroxy radicals and β-hydroxy peroxy radicals. In addition we have developed a unique dual wavelength CRDS apparatus specifically for the purpose of measuring absolute absorption cross section and following the reaction of chemical intermediates. The utility of the apparatus has been demonstrated by measuring the cross-section and self-reaction rate constant for ethyl peroxy.« less

  7. Atomic layer deposition on polymer fibers and fabrics for multifunctional and electronic textiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brozena, Alexandra H.; Oldham, Christopher J.; Parsons, Gregory N., E-mail: gnp@ncsu.edu

    Textile materials, including woven cotton, polymer knit fabrics, and synthetic nonwoven fiber mats, are being explored as low-cost, flexible, and light-weight platforms for wearable electronic sensing, communication, energy generation, and storage. The natural porosity and high surface area in textiles is also useful for new applications in environmental protection, chemical decontamination, pharmaceutical and chemical manufacturing, catalytic support, tissue regeneration, and others. These applications raise opportunities for new chemistries, chemical processes, biological coupling, and nanodevice systems that can readily combine with textile manufacturing to create new “multifunctional” fabrics. Atomic layer deposition (ALD) has a unique ability to form highly uniform andmore » conformal thin films at low processing temperature on nonuniform high aspect ratio surfaces. Recent research shows how ALD can coat, modify, and otherwise improve polymer fibers and textiles by incorporating new materials for viable electronic and other multifunctional capabilities. This article provides a current overview of the understanding of ALD coating and modification of textiles, including current capabilities and outstanding problems, with the goal of providing a starting point for further research and advances in this field. After a brief introduction to textile materials and current textile treatment methods, the authors discuss unique properties of ALD-coated textiles, followed by a review of recent electronic and multifunctional textiles that use ALD coatings either as direct functional components or as critical nucleation layers for active materials integration. The article concludes with possible future directions for ALD on textiles, including the challenges in materials, manufacturing, and manufacturing integration that must be overcome for ALD to reach its full potential in electronic and other emerging multifunctional textile systems.« less

  8. The High Resolution Stereo Camera (HRSC): 10 Years of Imaging Mars

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Neukum, G.; Tirsch, D.; Hoffmann, H.

    2014-04-01

    The HRSC Experiment: Imagery is the major source for our current understanding of the geologic evolution of Mars in qualitative and quantitative terms.Imaging is required to enhance our knowledge of Mars with respect to geological processes occurring on local, regional and global scales and is an essential prerequisite for detailed surface exploration. The High Resolution Stereo Camera (HRSC) of ESA's Mars Express Mission (MEx) is designed to simultaneously map the morphology, topography, structure and geologic context of the surface of Mars as well as atmospheric phenomena [1]. The HRSC directly addresses two of the main scientific goals of the Mars Express mission: (1) High-resolution three-dimensional photogeologic surface exploration and (2) the investigation of surface-atmosphere interactions over time; and significantly supports: (3) the study of atmospheric phenomena by multi-angle coverage and limb sounding as well as (4) multispectral mapping by providing high-resolution threedimensional color context information. In addition, the stereoscopic imagery will especially characterize landing sites and their geologic context [1]. The HRSC surface resolution and the digital terrain models bridge the gap in scales between highest ground resolution images (e.g., HiRISE) and global coverage observations (e.g., Viking). This is also the case with respect to DTMs (e.g., MOLA and local high-resolution DTMs). HRSC is also used as cartographic basis to correlate between panchromatic and multispectral stereo data. The unique multi-angle imaging technique of the HRSC supports its stereo capability by providing not only a stereo triplet but also a stereo quintuplet, making the photogrammetric processing very robust [1, 3]. The capabilities for three dimensional orbital reconnaissance of the Martian surface are ideally met by HRSC making this camera unique in the international Mars exploration effort.

  9. KENNEDY SPACE CENTER, FLA. - At Port Canaveral, the Pressurized Module of the Japanese Experiment Module (JEM) is lifted out of the ship’s cargo hold. The container transport ship carrying JEM departed May 2 from Yokohama Harbor in Japan for the voyage to the United States. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - At Port Canaveral, the Pressurized Module of the Japanese Experiment Module (JEM) is lifted out of the ship’s cargo hold. The container transport ship carrying JEM departed May 2 from Yokohama Harbor in Japan for the voyage to the United States. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  10. The application of information theory for the research of aging and aging-related diseases.

    PubMed

    Blokh, David; Stambler, Ilia

    2017-10-01

    This article reviews the application of information-theoretical analysis, employing measures of entropy and mutual information, for the study of aging and aging-related diseases. The research of aging and aging-related diseases is particularly suitable for the application of information theory methods, as aging processes and related diseases are multi-parametric, with continuous parameters coexisting alongside discrete parameters, and with the relations between the parameters being as a rule non-linear. Information theory provides unique analytical capabilities for the solution of such problems, with unique advantages over common linear biostatistics. Among the age-related diseases, information theory has been used in the study of neurodegenerative diseases (particularly using EEG time series for diagnosis and prediction), cancer (particularly for establishing individual and combined cancer biomarkers), diabetes (mainly utilizing mutual information to characterize the diseased and aging states), and heart disease (mainly for the analysis of heart rate variability). Few works have employed information theory for the analysis of general aging processes and frailty, as underlying determinants and possible early preclinical diagnostic measures for aging-related diseases. Generally, the use of information-theoretical analysis permits not only establishing the (non-linear) correlations between diagnostic or therapeutic parameters of interest, but may also provide a theoretical insight into the nature of aging and related diseases by establishing the measures of variability, adaptation, regulation or homeostasis, within a system of interest. It may be hoped that the increased use of such measures in research may considerably increase diagnostic and therapeutic capabilities and the fundamental theoretical mathematical understanding of aging and disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Enabling Future Science and Human Exploration with NASA's Next Generation Near Earth and Deep Space Communications and Navigation Architecture

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard; Schier, James; Israel, David; Tai, Wallace; Liebrecht, Philip; Townes, Stephen

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities to meet unique space environment requirements and to provide capabilities that are beyond the commercial marketplace. The progress of the communications industry, including the emerging global space internet segment and its planned constellations of 100's of satellites offer additional opportunities for new capability and mission concepts. The opportunities and challenges of a future space architecture require an optimal solution encompassing a global perspective. The concepts and technologies intentionally define an architecture that applies not only to NASA, but to other U.S. government agencies, international space and government agencies, and domestic and international industries to advance the openness, interoperability, and affordability of space communications. Cooperation among the worlds space agencies, their capabilities, standards, operations, and interoperability are key to advancing humankinds understand of the universe and extending human presence into the solar system.

  12. Enabling Future Science and Human Exploration with NASA's Next Generation near Earth and Deep Space Communications and Navigation Architecture

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Schier, James S.; Israel, David J.; Tai, Wallace; Liebrecht, Philip E.; Townes, Stephen A.

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities to meet unique space environment requirements and to provide capabilities that are beyond the commercial marketplace. The progress of the communications industry, including the emerging global space internet segment and its planned constellations of 100's of satellites offer additional opportunities for new capability and mission concepts. The opportunities and challenges of a future space architecture require an optimal solution encompassing a global perspective. The concepts and technologies intentionally define an architecture that applies not only to NASA, but to other U.S. government agencies, international space and government agencies, and domestic and international industries to advance the openness, interoperability, and affordability of space communications. Cooperation among the worlds space agencies, their capabilities, standards, operations, and interoperability are key to advancing humankind's understand of the universe and extending human presence into the solar system.

  13. Ubiquitous and continuous SAR imaging for natural hazards: present and future of remote sensing

    NASA Astrophysics Data System (ADS)

    Monti Guarnieri, Andrea; Rocca, Fabio

    2017-04-01

    Constellation of optical and SAR sensors have achieved unprecedented performances: dense constellation of cubesats - like the next constellation of 88 Dove satellites (Planet labs), launched simultaneously this February - reduce the revisit time to nearly daily. This brings great value to many domains, like the assessment of risk and damage in natural hazards, post-earthquake response, real time flood monitoring. The limits to optical imaging due to cloud coverage could then be removed with drones. Alternatively, decades of coherent exploitation of Synthetic Aperture Radars have demonstrated their unique capabilities in precise deformation monitoring, penetration in canopies and subsurfaces (glacier and deserts), 3D imaging of volumes, sensitivity to soil moisture and generation of water vapor maps. Thanks to these capabilities, for one, early warning was possible for a landslide at Bingham Canyon Mine (one of the largest in history), whereas monitoring of infrastructures, natural gas and carbon dioxide storage reservoirs, dams, mines is already an established business. Many of these applications are made possible by the Sentinel-1 SAR constellation, the first to provide systematic coherent acquisitions and free and open data. More than 50000 products are downloaded daily. Nonetheless, the present revisit times of this constellation (1-3 days), or the future 6 hours of Cosmo-SKYmed I and II constellations, will leave a gap that cannot be fruitfully exploited for early warning of landslides, real time mapping of flooding, hydrometeor forecasts, real-time regional alerts of collapse, continuous soil moisture mapping for precision farming. On the other side, the limited penetration capabilities of C-band (Sentinel-1) and X band (Cosmo, TerraSAR constellations) would not allow sufficient penetration to monitor volumes, like ice, sands and forests. In order to fill these gaps, two novel SAR systems are under study and will possibly appear in the next decades: geosynchronous systems and bistatic constellations. The geosynchronous SAR exploits the geostationary orbit to create a hundred kilometers wide real antenna, fixed in the sky, if relative to the ground. If one satellite is exploited, the full antenna would be spanned in twelve hours, and images of medium resolution (ten meter or so) could be got every one-two hours, and finally coarse resolution products, like water vapor or soil moisture maps for flash-flood now-casting, could be generated every fifteen minutes. However, thanks to the intrinsic possibility of phase coherence of the microwaves, a constellation of mini or microsatellites could be deployed to act as a single instrument. Power and resolution would improve with the number of satellites squared, and the revisit would be reduced to minutes. This would be a unique system to provide day-and-night, all-weather imaging capabilities with the additional coherent Radar capabilities to monitor deformations, water-vapor, volumes, soil moisture. The bistatic SAR companion is a passive satellite (or a constellation of) flying in close formation with an active one. Such a system would provide the same capabilities of present TanDEM-X constellation, but enhanced to 3D volume penetration if L band is used.

  14. Emergency Response and Management Activities

    EPA Pesticide Factsheets

    This quarterly report, highlighting accomplishments over the past several months, showcases EPA’s unique emergency response capabilities through the use of cutting-edge technologies and innovative cleanup strategies.

  15. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  16. Proposed Use of the NASA Ames Nebula Cloud Computing Platform for Numerical Weather Prediction and the Distribution of High Resolution Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh S.; Molthan, Andrew L.; Srikishen, Jayanthi

    2010-01-01

    The development of the Nebula Cloud Computing Platform at NASA Ames Research Center provides an open-source solution for the deployment of scalable computing and storage capabilities relevant to the execution of real-time weather forecasts and the distribution of high resolution satellite data to the operational weather community. Two projects at Marshall Space Flight Center may benefit from use of the Nebula system. The NASA Short-term Prediction Research and Transition (SPoRT) Center facilitates the use of unique NASA satellite data and research capabilities in the operational weather community by providing datasets relevant to numerical weather prediction, and satellite data sets useful in weather analysis. SERVIR provides satellite data products for decision support, emphasizing environmental threats such as wildfires, floods, landslides, and other hazards, with interests in numerical weather prediction in support of disaster response. The Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS) has been configured for Nebula cloud computing use via the creation of a disk image and deployment of repeated instances. Given the available infrastructure within Nebula and the "infrastructure as a service" concept, the system appears well-suited for the rapid deployment of additional forecast models over different domains, in response to real-time research applications or disaster response. Future investigations into Nebula capabilities will focus on the development of a web mapping server and load balancing configuration to support the distribution of high resolution satellite data sets to users within the National Weather Service and international partners of SERVIR.

  17. SCALE Code System 6.2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    The SCALE Code System is a widely used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including 3 deterministic and 3 Monte Carlomore » radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results. SCALE 6.2 represents one of the most comprehensive revisions in the history of SCALE, providing several new capabilities and significant improvements in many existing features.« less

  18. Robust algebraic image enhancement for intelligent control systems

    NASA Technical Reports Server (NTRS)

    Lerner, Bao-Ting; Morrelli, Michael

    1993-01-01

    Robust vision capability for intelligent control systems has been an elusive goal in image processing. The computationally intensive techniques a necessary for conventional image processing make real-time applications, such as object tracking and collision avoidance difficult. In order to endow an intelligent control system with the needed vision robustness, an adequate image enhancement subsystem capable of compensating for the wide variety of real-world degradations, must exist between the image capturing and the object recognition subsystems. This enhancement stage must be adaptive and must operate with consistency in the presence of both statistical and shape-based noise. To deal with this problem, we have developed an innovative algebraic approach which provides a sound mathematical framework for image representation and manipulation. Our image model provides a natural platform from which to pursue dynamic scene analysis, and its incorporation into a vision system would serve as the front-end to an intelligent control system. We have developed a unique polynomial representation of gray level imagery and applied this representation to develop polynomial operators on complex gray level scenes. This approach is highly advantageous since polynomials can be manipulated very easily, and are readily understood, thus providing a very convenient environment for image processing. Our model presents a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets.

  19. Pulmonary (cardio) diagnostic system for combat casualty care capable of extracting embedded characteristics of obstructive or restrictive flow

    NASA Astrophysics Data System (ADS)

    Allgood, Glenn O.; Treece, Dale A.; Pearce, Fred J.; Bentley, Timothy B.

    2000-08-01

    Walter Reed Army Institute of Research and Oak Ridge National Laboratory have developed a prototype pulmonary diagnostic system capable of extracting signatures from adventitious lung sounds that characterize obstructive and/or restrictive flow. Examples of disorders that have been detailed include emphysema, asthma, pulmonary fibrosis, and pneumothorax. The system is based on the premise that acoustic signals associated with pulmonary disorders can be characterized by a set of embedded signatures unique to the disease. The concept is being extended to include cardio signals correlated with pulmonary data to provide an accurate and timely diagnoses of pulmonary function and distress in critically injured soldiers that will allow medical personnel to anticipate the need for accurate therapeutic intervention as well as monitor soldiers whose injuries may lead to pulmonary compromise later. The basic operation of the diagnostic system is as follows: (1) create an image from the acoustic signature based on higher order statistics, (2) deconstruct the image based on a predefined map, (3) compare the deconstructed image with stored images of pulmonary symptoms, and (4) classify the disorder based on a clustering of known symptoms and provide a statistical measure of confidence. The system has produced conformity between adults and infants and provided effective measures of physiology in the presence of noise.

  20. Customizing the JPL Multimission Ground Data System: Lessons learned

    NASA Technical Reports Server (NTRS)

    Murphy, Susan C.; Louie, John J.; Guerrero, Ana Maria; Hurley, Daniel; Flora-Adams, Dana

    1994-01-01

    The Multimission Ground Data System (MGDS) at NASA's Jet Propulsion Laboratory has brought improvements and new technologies to mission operations. It was designed as a generic data system to meet the needs of multiple missions and avoid re-inventing capabilities for each new mission and thus reduce costs. It is based on adaptable tools that can be customized to support different missions and operations scenarios. The MGDS is based on a distributed client/server architecture, with powerful Unix workstations, incorporating standards and open system architectures. The distributed architecture allows remote operations and user science data exchange, while also providing capabilities for centralized ground system monitor and control. The MGDS has proved its capabilities in supporting multiple large-class missions simultaneously, including the Voyager, Galileo, Magellan, Ulysses, and Mars Observer missions. The Operations Engineering Lab (OEL) at JPL has been leading Customer Adaptation Training (CAT) teams for adapting and customizing MGDS for the various operations and engineering teams. These CAT teams have typically consisted of only a few engineers who are familiar with operations and with the MGDS software and architecture. Our experience has provided a unique opportunity to work directly with the spacecraft and instrument operations teams and understand their requirements and how the MGDS can be adapted and customized to minimize their operations costs. As part of this work, we have developed workstation configurations, automation tools, and integrated user interfaces at minimal cost that have significantly improved productivity. We have also proved that these customized data systems are most successful if they are focused on the people and the tasks they perform and if they are based upon user confidence in the development team resulting from daily interactions. This paper will describe lessons learned in adapting JPL's MGDS to fly the Voyager, Galileo, and Mars Observer missions. We will explain how powerful, existing ground data systems can be adapted and packaged in a cost effective way for operations of small and large planetary missions. We will also describe how the MGDS was adapted to support operations within the Galileo Spacecraft Testbed. The Galileo testbed provided a unique opportunity to adapt MGDS to support command and control operations for a small autonomous operations team of a handful of engineers flying the Galileo Spacecraft flight system model.

  1. The Evolution of Technology in the Deep Space Network: A History of the Advanced Systems Program

    NASA Technical Reports Server (NTRS)

    Layland, J. W.; Rauch, L. L.

    1994-01-01

    The Deep Space Network (DSN) of 1995 might be described as the evolutionary result of 45 years of deep space communication and navigation, together with the synergistic activities of radio science and radar and radio astronomy. But the evolution of the DSN did not just happen - it was carefully planned and created. The evolution of the DSN has been an ongoing engineering activity, and engineering is a process of problem solving under constraints, one of which is technology. In turn, technology is the knowledge base providing the capability and experience for practical application of various areas of science, when needed. The best engineering solutions result from optimization under the fewest constraints, and if technology needs are well anticipated (ready when needed), then the most effective engineering solution is possible. Throughout the history of the DSN it has been the goal and function of DSN advanced technology development (designated the DSN Advanced Systems Program from 1963 through 1994) to supply the technology needs of the DSN when needed, and thus to minimize this constraint on DSN engineering. Technology often takes considerable time to develop, and when that happens, it is important to have anticipated engineering needs; at times, this anticipation has been by as much as 15 years. Also, on a number of occasions, mission malfunctions or emergencies have resulted in unplanned needs for technology that has, in fact, been available from the reservoir of advanced technology provided by the DSN Advanced Systems Program. Sometimes, even DSN engineering personnel fail to realize that the organization of JPL permits an overlap of DSN advanced technology activities with subsequent engineering activities. This can result in the flow of advanced technology into DSN engineering in a natural and sometimes almost unnoticed way. In the following pages, we will explore some of the many contributions of the DSN Advanced Systems Program that were provided to DSN Engineering and Implementation. These contributions are, for the most part, unique capabilities that have met the requirements of flight projects for 45 years. These unique capabilities include not only the world's best deep-space communications system, but also outstanding competency in the fields of radio metric measurement, radar and radio astronomy, and radio science.

  2. Encountering the Creative Museum: Museographic Creativeness and the "Bricolage" of Time Materials

    ERIC Educational Resources Information Center

    Tlili, Anwar

    2016-01-01

    The aim of this article is to trace some lines of thinking towards a conceptualization of the uniqueness of the creative work of museums, the mode of creativeness that belongs exclusively to museums, or at least that museums are capable of by virtue of the types of materials and forms as well as activities unique to what will be referred to as…

  3. Rapid Access Ice Drill: A New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology

    NASA Astrophysics Data System (ADS)

    Goodge, J. W.; Severinghaus, J. P.

    2014-12-01

    The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.

  4. Spontaneous motor entrainment to music in multiple vocal mimicking species.

    PubMed

    Schachner, Adena; Brady, Timothy F; Pepperberg, Irene M; Hauser, Marc D

    2009-05-26

    The human capacity for music consists of certain core phenomena, including the tendency to entrain, or align movement, to an external auditory pulse [1-3]. This ability, fundamental both for music production and for coordinated dance, has been repeatedly highlighted as uniquely human [4-11]. However, it has recently been hypothesized that entrainment evolved as a by-product of vocal mimicry, generating the strong prediction that only vocal mimicking animals may be able to entrain [12, 13]. Here we provide comparative data demonstrating the existence of two proficient vocal mimicking nonhuman animals (parrots) that entrain to music, spontaneously producing synchronized movements resembling human dance. We also provide an extensive comparative data set from a global video database systematically analyzed for evidence of entrainment in hundreds of species both capable and incapable of vocal mimicry. Despite the higher representation of vocal nonmimics in the database and comparable exposure of mimics and nonmimics to humans and music, only vocal mimics showed evidence of entrainment. We conclude that entrainment is not unique to humans and that the distribution of entrainment across species supports the hypothesis that entrainment evolved as a by-product of selection for vocal mimicry.

  5. Facile synthesis of hierarchical Co3O4@MnO2 core-shell arrays on Ni foam for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Ming; Zhang, Yuxin; Li, Fei; Zhang, Lili; Wen, Zhiyu; Liu, Qing

    2014-04-01

    Hierarchical Co3O4@MnO2 core-shell arrays on Ni foam have been fabricated by a facile hydrothermal approach and further investigated as the electrode for high-performance supercapacitors. Owing to the high conductivity of the well-defined mesoporous Co3O4 nanowire arrays in combination with the large surface area provided by the ultrathin MnO2 nanosheets, the unique designed Co3O4@MnO2 core-shell arrays on Ni foam have exhibited a high specific capacitance (560 F g-1 at a current density of 0.2 A g-1), good rate capability, and excellent cycling stability (95% capacitance retention after 5000 cycles). An asymmetric supercapacitor with Co3O4@MnO2 core-shell nanostructure as the positive electrode and activated microwave exfoliated graphite oxide activated graphene (MEGO) as the negative electrode yielded an energy density of 17.7 Wh kg-1 and a maximum power density of 158 kW kg-1. The rational design of the unique core-shell array architectures demonstrated in this work provides a new and facile approach to fabricate high-performance electrode for supercapacitors.

  6. Survey of Advanced Applications Over ACTS

    NASA Technical Reports Server (NTRS)

    Bauer, Robert; McMasters, Paul

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) system provided a national testbed that enabled advanced applications to be tested and demonstrated over a live satellite link. Of the applications that used ACTS. some offered unique advantages over current methods, while others simply could not be accommodated by conventional systems. The initial technical and experiments results of the program were reported at the 1995 ACTS Results Conference. in Cleveland, Ohio. Since then, the Experiments Program has involved 45 new experiments comprising 30 application experiments and 15 technology related experiments that took advantage of the advanced technologies and unique capabilities offered by ACTS. The experiments are categorized and quantified to show the organizational mix of the experiments program and relative usage of the satellite. Since paper length guidelines preclude each experiment from being individually reported, the application experiments and significant demonstrations are surveyed to show the breadth of the activities that have been supported. Experiments in a similar application category are collectively discussed, such as. telemedicine. or networking and protocol evaluation. Where available. experiment conclusions and impact are presented and references of results and experiment information are provided. The quantity and diversity of the experiments program demonstrated a variety of service areas for the next generation of commercially available, advanced satellite communications.

  7. Ultrasound biomicroscopy in mouse cardiovascular development

    NASA Astrophysics Data System (ADS)

    Turnbull, Daniel H.

    2004-05-01

    The mouse is the preferred animal model for studying mammalian cardiovascular development and many human congenital heart diseases. Ultrasound biomicroscopy (UBM), utilizing high-frequency (40-50-MHz) ultrasound, is uniquely capable of providing in vivo, real-time microimaging and Doppler blood velocity measurements in mouse embryos and neonates. UBM analyses of normal and abnormal mouse cardiovascular function will be described to illustrate the power of this microimaging approach. In particular, real-time UBM images have been used to analyze dimensional changes in the mouse heart from embryonic to neonatal stages. UBM-Doppler has been used recently to examine the precise timing of onset of a functional circulation in early-stage mouse embryos, from the first detectable cardiac contractions. In other experiments, blood velocity waveforms have been analyzed to characterize the functional phenotype of mutant mouse embryos having defects in cardiac valve formation. Finally, UBM has been developed for real-time, in utero image-guided injection of mouse embryos, enabling cell transplantation and genetic gain-of-function experiments with transfected cells and retroviruses. In summary, UBM provides a unique and powerful approach for in vivo analysis and image-guided manipulation in normal and genetically engineered mice, over a wide range of embryonic to neonatal developmental stages.

  8. Cell–scaffold interaction within engineered tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Haiping; Liu, Yuanyuan, E-mail: Yuanyuan_liu@shu.edu.cn; Jiang, Zhenglong

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted largemore » amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.« less

  9. Development of a Dynamically Scaled Generic Transport Model Testbed for Flight Research Experiments

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas; Langford, William; Belcastro, Christine; Foster, John; Shah, Gautam; Howland, Gregory; Kidd, Reggie

    2004-01-01

    This paper details the design and development of the Airborne Subscale Transport Aircraft Research (AirSTAR) test-bed at NASA Langley Research Center (LaRC). The aircraft is a 5.5% dynamically scaled, remotely piloted, twin-turbine, swept wing, Generic Transport Model (GTM) which will be used to provide an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. The unique design challenges arising from the dimensional, weight, dynamic (inertial), and actuator scaling requirements necessitated by the research community are described along with the specific telemetry and control issues associated with a remotely piloted subscale research aircraft. Development of the necessary operational infrastructure, including operational and safety procedures, test site identification, and research pilots is also discussed. The GTM is a unique vehicle that provides significant research capacity due to its scaling, data gathering, and control characteristics. By combining data from this testbed with full-scale flight and accident data, wind tunnel data, and simulation results, NASA will advance and validate control upset prevention and recovery technologies for transport aircraft, thereby reducing vehicle loss-of-control accidents resulting from adverse and upset conditions.

  10. Development of a Coherent Differential Absorption Lidar for Range Resolved Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulgueta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo. C.; Koch, Grady J.; Beyon, Jeffery J.; Singh, Upendra N.

    2010-01-01

    A pulsed, 2-m coherent Differential Absorption Lidar (DIAL) / Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument will measure atmospheric CO2 profiles (by DIAL) initially from a ground platform, and then be prepared for aircraft installation to measure the atmospheric CO2 column densities in the atmospheric boundary layer (ABL) and lower troposphere. The airborne prototype CO2 lidar can measure atmospheric CO2 column density in a range bin of 1km with better than 1.5% precision at horizontal resolution of less than 50km. It can provide the image of the pooling of CO2 in lowlying areas and performs nighttime mass balance measurements at landscape scale. This sensor is unique in its capability to study the vertical ABL-free troposphere exchange of CO2 directly. It will allow the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop.

  11. Embry-Riddle Aeronautical University multispectral sensor and data fusion laboratory: a model for distributed research and education

    NASA Astrophysics Data System (ADS)

    McMullen, Sonya A. H.; Henderson, Troy; Ison, David

    2017-05-01

    The miniaturization of unmanned systems and spacecraft, as well as computing and sensor technologies, has opened new opportunities in the areas of remote sensing and multi-sensor data fusion for a variety of applications. Remote sensing and data fusion historically have been the purview of large government organizations, such as the Department of Defense (DoD), National Aeronautics and Space Administration (NASA), and National Geospatial-Intelligence Agency (NGA) due to the high cost and complexity of developing, fielding, and operating such systems. However, miniaturized computers with high capacity processing capabilities, small and affordable sensors, and emerging, commercially available platforms such as UAS and CubeSats to carry such sensors, have allowed for a vast range of novel applications. In order to leverage these developments, Embry-Riddle Aeronautical University (ERAU) has developed an advanced sensor and data fusion laboratory to research component capabilities and their employment on a wide-range of autonomous, robotic, and transportation systems. This lab is unique in several ways, for example, it provides a traditional campus laboratory for students and faculty to model and test sensors in a range of scenarios, process multi-sensor data sets (both simulated and experimental), and analyze results. Moreover, such allows for "virtual" modeling, testing, and teaching capability reaching beyond the physical confines of the facility for use among ERAU Worldwide students and faculty located around the globe. Although other institutions such as Georgia Institute of Technology, Lockheed Martin, University of Dayton, and University of Central Florida have optical sensor laboratories, the ERAU virtual concept is the first such lab to expand to multispectral sensors and data fusion, while focusing on the data collection and data products and not on the manufacturing aspect. Further, the initiative is a unique effort among Embry-Riddle faculty to develop multi-disciplinary, cross-campus research to facilitate faculty- and student-driven research. Specifically, the ERAU Worldwide Campus, with locations across the globe and delivering curricula online, will be leveraged to provide novel approaches to remote sensor experimentation and simulation. The purpose of this paper and presentation is to present this new laboratory, research, education, and collaboration process.

  12. Evaluating five different loci (rbcL, rpoB, rpoC1, matK, and ITS) for DNA barcoding of Indian orchids.

    PubMed

    Parveen, Iffat; Singh, Hemant K; Malik, Saloni; Raghuvanshi, Saurabh; Babbar, Shashi B

    2017-08-01

    Orchidaceae, one of the largest families of angiosperms, is represented in India by 1600 species distributed in diverse habitats. Orchids are in high demand owing to their beautiful flowers and therapeutic properties. Overexploitation and habitat destruction have made many orchid species endangered. In the absence of effective identification methods, illicit trade of orchids continues unabated. Considering DNA barcoding as a potential identification tool, species discrimination capability of five loci, ITS, matK, rbcL, rpoB, and rpoC1, was tested in 393 accessions of 94 Indian orchid species belonging to 47 genera, including one listed in Appendix I of CITES and 26 medicinal species. ITS provided the highest species discrimination rate of 94.9%. While, among the chloroplast loci, matK provided the highest species discrimination rate of 85.7%. None of the tested loci individually discriminated 100% of the species. Therefore, multi-locus combinations of up to five loci were tested for their species resolution capability. Among two-locus combinations, the maximum species resolution (86.7%) was provided by ITS+matK. ITS and matK sequences of the medicinal orchids were species specific, thus providing unique molecular identification tags for their identification and detection. These observations emphasize the need for the inclusion of ITS in the core barcode for plants, whenever required and available.

  13. Numerical, Analytical, Experimental Study of Fluid Dynamic Forces in Seals Volume 6: Description of Scientific CFD Code SCISEAL

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh; Przekwas, Andrzej

    2004-01-01

    The objectives of the program were to develop computational fluid dynamics (CFD) codes and simpler industrial codes for analyzing and designing advanced seals for air-breathing and space propulsion engines. The CFD code SCISEAL is capable of producing full three-dimensional flow field information for a variety of cylindrical configurations. An implicit multidomain capability allow the division of complex flow domains to allow optimum use of computational cells. SCISEAL also has the unique capability to produce cross-coupled stiffness and damping coefficients for rotordynamic computations. The industrial codes consist of a series of separate stand-alone modules designed for expeditious parametric analyses and optimization of a wide variety of cylindrical and face seals. Coupled through a Knowledge-Based System (KBS) that provides a user-friendly Graphical User Interface (GUI), the industrial codes are PC based using an OS/2 operating system. These codes were designed to treat film seals where a clearance exists between the rotating and stationary components. Leakage is inhibited by surface roughness, small but stiff clearance films, and viscous pumping devices. The codes have demonstrated to be a valuable resource for seal development of future air-breathing and space propulsion engines.

  14. Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators

    PubMed Central

    Zhang, Yu Shrike; Busignani, Fabio; Ribas, João; Aleman, Julio; Rodrigues, Talles Nascimento; Shaegh, Seyed Ali Mousavi; Massa, Solange; Rossi, Camilla Baj; Taurino, Irene; Shin, Su-Ryon; Calzone, Giovanni; Amaratunga, Givan Mark; Chambers, Douglas Leon; Jabari, Saman; Niu, Yuxi; Manoharan, Vijayan; Dokmeci, Mehmet Remzi; Carrara, Sandro; Demarchi, Danilo; Khademhosseini, Ali

    2016-01-01

    Google Glass is a recently designed wearable device capable of displaying information in a smartphone-like hands-free format by wireless communication. The Glass also provides convenient control over remote devices, primarily enabled by voice recognition commands. These unique features of the Google Glass make it useful for medical and biomedical applications where hands-free experiences are strongly preferred. Here, we report for the first time, an integral set of hardware, firmware, software, and Glassware that enabled wireless transmission of sensor data onto the Google Glass for on-demand data visualization and real-time analysis. Additionally, the platform allowed the user to control outputs entered through the Glass, therefore achieving bi-directional Glass-device interfacing. Using this versatile platform, we demonstrated its capability in monitoring physical and physiological parameters such as temperature, pH, and morphology of liver- and heart-on-chips. Furthermore, we showed the capability to remotely introduce pharmaceutical compounds into a microfluidic human primary liver bioreactor at desired time points while monitoring their effects through the Glass. We believe that such an innovative platform, along with its concept, has set up a premise in wearable monitoring and controlling technology for a wide variety of applications in biomedicine. PMID:26928456

  15. Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators

    NASA Astrophysics Data System (ADS)

    Zhang, Yu Shrike; Busignani, Fabio; Ribas, João; Aleman, Julio; Rodrigues, Talles Nascimento; Shaegh, Seyed Ali Mousavi; Massa, Solange; Rossi, Camilla Baj; Taurino, Irene; Shin, Su-Ryon; Calzone, Giovanni; Amaratunga, Givan Mark; Chambers, Douglas Leon; Jabari, Saman; Niu, Yuxi; Manoharan, Vijayan; Dokmeci, Mehmet Remzi; Carrara, Sandro; Demarchi, Danilo; Khademhosseini, Ali

    2016-03-01

    Google Glass is a recently designed wearable device capable of displaying information in a smartphone-like hands-free format by wireless communication. The Glass also provides convenient control over remote devices, primarily enabled by voice recognition commands. These unique features of the Google Glass make it useful for medical and biomedical applications where hands-free experiences are strongly preferred. Here, we report for the first time, an integral set of hardware, firmware, software, and Glassware that enabled wireless transmission of sensor data onto the Google Glass for on-demand data visualization and real-time analysis. Additionally, the platform allowed the user to control outputs entered through the Glass, therefore achieving bi-directional Glass-device interfacing. Using this versatile platform, we demonstrated its capability in monitoring physical and physiological parameters such as temperature, pH, and morphology of liver- and heart-on-chips. Furthermore, we showed the capability to remotely introduce pharmaceutical compounds into a microfluidic human primary liver bioreactor at desired time points while monitoring their effects through the Glass. We believe that such an innovative platform, along with its concept, has set up a premise in wearable monitoring and controlling technology for a wide variety of applications in biomedicine.

  16. Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators.

    PubMed

    Zhang, Yu Shrike; Busignani, Fabio; Ribas, João; Aleman, Julio; Rodrigues, Talles Nascimento; Shaegh, Seyed Ali Mousavi; Massa, Solange; Baj Rossi, Camilla; Taurino, Irene; Shin, Su-Ryon; Calzone, Giovanni; Amaratunga, Givan Mark; Chambers, Douglas Leon; Jabari, Saman; Niu, Yuxi; Manoharan, Vijayan; Dokmeci, Mehmet Remzi; Carrara, Sandro; Demarchi, Danilo; Khademhosseini, Ali

    2016-03-01

    Google Glass is a recently designed wearable device capable of displaying information in a smartphone-like hands-free format by wireless communication. The Glass also provides convenient control over remote devices, primarily enabled by voice recognition commands. These unique features of the Google Glass make it useful for medical and biomedical applications where hands-free experiences are strongly preferred. Here, we report for the first time, an integral set of hardware, firmware, software, and Glassware that enabled wireless transmission of sensor data onto the Google Glass for on-demand data visualization and real-time analysis. Additionally, the platform allowed the user to control outputs entered through the Glass, therefore achieving bi-directional Glass-device interfacing. Using this versatile platform, we demonstrated its capability in monitoring physical and physiological parameters such as temperature, pH, and morphology of liver- and heart-on-chips. Furthermore, we showed the capability to remotely introduce pharmaceutical compounds into a microfluidic human primary liver bioreactor at desired time points while monitoring their effects through the Glass. We believe that such an innovative platform, along with its concept, has set up a premise in wearable monitoring and controlling technology for a wide variety of applications in biomedicine.

  17. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.; Shi, Y.

    1991-01-01

    The development of a comprehensive fluid-structure interaction capability within a boundary element computer code is described. This new capability is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach. A number of detailed numerical examples are included at the end of these two sections to validate the formulations and to emphasize both the accuracy and generality of the computer code. A brief review of the recent applicable boundary element literature is included for completeness. The fluid-structure interaction facility is discussed. Once again, several examples are provided to highlight this unique capability. A collection of potential boundary element applications that have been uncovered as a result of work related to the present grant is given. For most of those problems, satisfactory analysis techniques do not currently exist.

  18. Affordable Launch Services using the Sport Orbit Transfer System

    NASA Astrophysics Data System (ADS)

    Goldstein, D. J.

    2002-01-01

    Despite many advances in small satellite technology, a low-cost, reliable method is needed to place spacecraft in their de- sired orbits. AeroAstro has developed the Small Payload ORbit Transfer (SPORTTM) system to provide a flexible low-cost orbit transfer capability, enabling small payloads to use low-cost secondary launch opportunities and still reach their desired final orbits. This capability allows small payloads to effectively use a wider variety of launch opportunities, including nu- merous under-utilized GTO slots. Its use, in conjunction with growing opportunities for secondary launches, enable in- creased access to space using proven technologies and highly reliable launch vehicles such as the Ariane family and the Starsem launcher. SPORT uses a suite of innovative technologies that are packaged in a simple, reliable, modular system. The command, control and data handling of SPORT is provided by the AeroAstro BitsyTM core electronics module. The Bitsy module also provides power regulation for the batteries and optional solar arrays. The primary orbital maneuvering capability is provided by a nitrous oxide monopropellant propulsion system. This system exploits the unique features of nitrous oxide, which in- clude self-pressurization, good performance, and safe handling, to provide a light-weight, low-cost and reliable propulsion capability. When transferring from a higher energy orbit to a lower energy orbit (i.e. GTO to LEO), SPORT uses aerobraking technol- ogy. After using the propulsion system to lower the orbit perigee, the aerobrake gradually slows SPORT via atmospheric drag. After the orbit apogee is reduced to the target level, an apogee burn raises the perigee and ends the aerobraking. At the conclusion of the orbit transfer maneuver, either the aerobrake or SPORT can be shed, as desired by the payload. SPORT uses a simple design for high reliability and a modular architecture for maximum mission flexibility. This paper will discuss the launch system and its application to small satellite launch without increasing risk. It will also discuss relevant issues such as aerobraking operations and radiation issues, as well as existing partnerships and patents for the system.

  19. Lunar Exploration and Science in ESA

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Houdou, B.; Fisackerly, R.; De Rosa, D.; Patti, B.; Schiemann, J.; Hufenbach, B.; Foing, B.

    2014-04-01

    ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the composition and isotopic abundances of lunar volatiles in polar regions. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterize and utilize polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensible partner in the exploration missions of the future. We report on the current status of the European elements in this cooperative scenario, with an emphasis on the investigations to be performed at the lunar surface. These investigations should generate knowledge that can be enabling for exploration in the future, and should also have a significant fundamental scientific return.

  20. Lunar Exploration and Science Opportunities in ESA

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Houdou, B.; Fisackerly, R.; De Rosa, D.; Schiemann, J.; Patti, B.; Foing, B.

    2014-04-01

    ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavour. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the composition and isotopic abundances of lunar volatiles in polar regions. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterize and utilize polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensible partner in the exploration missions of the future. We report on the current status of the European elements in this cooperative scenario, with an emphasis on the investigations to be performed at the lunar surface. These investigations should generate knowledge that can be enabling for exploration in the future, and should also have a significant fundamental scientific return.

  1. Compound Capillary Flows in Complex Containers: Drop Tower Test Results

    NASA Astrophysics Data System (ADS)

    Bolleddula, Daniel A.; Chen, Yongkang; Semerjian, Ben; Tavan, Noël; Weislogel, Mark M.

    2010-10-01

    Drop towers continue to provide unique capabilities to investigate capillary flow phenomena relevant to terrestrial and space-based capillary fluidics applications. In this study certain `capillary rise' flows and the value of drop tower experimental investigations are briefly reviewed. A new analytic solution for flows along planar interior edges is presented. A selection of test cell geometries are then discussed where compound capillary flows occur spontaneously and simultaneously over local and global length scales. Sample experimental results are provided. Tertiary experiments on a family of asymmetric geometries that isolate the global component of such flows are then presented along with a qualitative analysis that may be used to either avoid or exploit such flows. The latter may also serve as a design tool with which to assess the impact of inadvertent container asymmetry.

  2. NASA's Parker Solar Probe and Solar Orbiter Missions: Discovering the Secrets of our Star

    NASA Astrophysics Data System (ADS)

    Zurbuchen, T.

    2017-12-01

    This session will explore the importance of the Parker Solar Probe and Solar Orbiter missions to NASA Science, and the preparations for discoveries from these missions. NASA's Parker Solar Probe and Solar Orbiter Missions have complementary missions and will provide unique and unprecedented contributions to heliophysics and astrophysics overall. These inner heliospheric missions will also be part of the Heliophysics System Observatory which includes an increasing amount of innovative new technology and architectures to address science and data in an integrated fashion and advance models through assimilation and system-level tests. During this talk, we will briefly explore how NASA Heliophysics research efforts not only increase our understanding and predictive capability of space weather phenomena, but also provide key insights on fundamental processes important throughout the universe.

  3. Transverse injection into Mach 2 flow behind a rearward-facing step - A 3-D, compressible flow test case for hypersonic combustor CFD validation

    NASA Technical Reports Server (NTRS)

    Mcdaniel, James C.; Fletcher, Douglas G.; Hartfield, Roy J.; Hollo, Steven D.

    1991-01-01

    A spatially-complete data set of the important primitive flow variables is presented for the complex, nonreacting, 3D unit combustor flow field employing transverse injection into a Mach 2 flow behind a rearward-facing step. A unique wind tunnel facility providing the capability for iodine seeding was built specifically for these measurements. Two optical techniques based on laser-induced-iodine fluorescence were developed and utilized for nonintrusive, in situ flow field measurements. LDA provided both mean and fluctuating velocity component measurements. A thermographic phosphor wall temperature measurement technique was developed and employed. Data from the 2D flow over a rearward-facing step and the complex 3D mixing flow with injection are reported.

  4. A Review of Optical NDT Technologies

    PubMed Central

    Zhu, Yong-Kai; Tian, Gui-Yun; Lu, Rong-Sheng; Zhang, Hong

    2011-01-01

    Optical non-destructive testing (NDT) has gained more and more attention in recent years, mainly because of its non-destructive imaging characteristics with high precision and sensitivity. This paper provides a review of the main optical NDT technologies, including fibre optics, electronic speckle, infrared thermography, endoscopic and terahertz technology. Among them, fibre optics features easy integration and embedding, electronic speckle focuses on whole-field high precision detection, infrared thermography has unique advantages for tests of combined materials, endoscopic technology provides images of the internal surface of the object directly, and terahertz technology opens a new direction of internal NDT because of its excellent penetration capability to most of non-metallic materials. Typical engineering applications of these technologies are illustrated, with a brief introduction of the history and discussion of recent progress. PMID:22164045

  5. Development of Time-Distance Helioseismology Data Analysis Pipeline for SDO/HMI

    NASA Technical Reports Server (NTRS)

    DuVall, T. L., Jr.; Zhao, J.; Couvidat, S.; Parchevsky, K. V.; Beck, J.; Kosovichev, A. G.; Scherrer, P. H.

    2008-01-01

    The Helioseismic and Magnetic Imager of SDO will provide uninterrupted 4k x 4k-pixel Doppler-shift images of the Sun with approximately 40 sec cadence. These data will have a unique potential for advancing local helioseismic diagnostics of the Sun's interior structure and dynamics. They will help to understand the basic mechanisms of solar activity and develop predictive capabilities for NASA's Living with a Star program. Because of the tremendous amount of data the HMI team is developing a data analysis pipeline, which will provide maps of subsurface flows and sound-speed distributions inferred form the Doppler data by the time-distance technique. We discuss the development plan, methods, and algorithms, and present the status of the pipeline, testing results and examples of the data products.

  6. Design, hydrothermal synthesis and electrochemical properties of porous birnessite-type manganese dioxide nanosheets on graphene as a hybrid material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Yan, De; Zhuo, Renfu; Li, Shuankui; Wu, Zhiguo; Wang, Jun; Ren, Pingyuan; Yan, Pengxun; Geng, Zhongrong

    2013-11-01

    MnO2-graphene hybrid with a unique structure of porous birnessite-type manganese dioxide (MnO2) nanosheets on graphene has been designed and synthesized by a simple hydrothermal method. The formation mechanism of the hybrid is discussed based on a series of time-dependent experiments. Electrochemical measurements reveal that the MnO2-graphene electrode exhibits much higher specific capacitance (315 F g-1 at a current density of 0.2 A g-1) and better rate capability (even 193 F g-1 at 6 A g-1) compared with both the graphene and MnO2 electrodes. Moreover, the capacitance of MnO2-graphene electrode is still 87% retained after 2000 cycles at a charging rate of 3 A g-1. The superior capacitive performance of the hybrid is attributed to its unique structure, which provides good electronic conductivity, fast electron and ion transport, and high utilization of MnO2.

  7. Shape memory alloys: metallurgy, biocompatibility, and biomechanics for neurosurgical applications.

    PubMed

    Hoh, Daniel J; Hoh, Brian L; Amar, Arun P; Wang, Michael Y

    2009-05-01

    SHAPE MEMORY ALLOYS possess distinct dynamic properties with particular applications in neurosurgery. Because of their unique physical characteristics, these materials are finding increasing application where resiliency, conformation, and actuation are needed. Nitinol, the most frequently manufactured shape memory alloy, responds to thermal and mechanical stimuli with remarkable mechanical properties such as shape memory effect, super-elasticity, and high damping capacity. Nitinol has found particular use in the biomedical community because of its excellent fatigue resistance and biocompatibility, with special interest in neurosurgical applications. The properties of nitinol and its diffusionless phase transformations contribute to these unique mechanical capabilities. The features of nitinol, particularly its shape memory effect, super-elasticity, damping capacity, as well as its biocompatibility and biomechanics are discussed herein. Current and future applications of nitinol and other shape memory alloys in endovascular, spinal, and minimally invasive neurosurgery are introduced. An understanding of the metallurgic properties of nitinol provides a foundation for further exploration of its use in neurosurgical implant design.

  8. Re-analysis of human immunodeficiency virus type 1 isolates from Cyprus and Greece, initially designated 'subtype I', reveals a unique complex A/G/H/K/? mosaic pattern.

    PubMed

    Paraskevis, D; Magiorkinis, M; Vandamme, A M; Kostrikis, L G; Hatzakis, A

    2001-03-01

    Human immunodeficiency virus type 1 (HIV-1) has been classified into three main groups and 11 distinct subtypes. Moreover, several circulating recombinant forms (CRFs) of HIV-1 have been recently documented to have spread widely causing extensive HIV-1 epidemics. A subtype, initially designated I (CRF04_cpx), was documented in Cyprus and Greece and was found to comprise regions of sequence derived from subtypes A and G as well as regions of unclassified sequence. Re-analysis of the three full-length CRF04_cpx sequences that were available revealed a mosaic genomic organization of unique complexity comprising regions of sequence from at least five distinct subtypes, A, G, H, K and unclassified regions. These strains account for approximately 2% of the total HIV-1-infected population in Greece, thus providing evidence of the great capability of HIV-1 to recombine and produce highly divergent strains which can be spread successfully through different infection routes.

  9. A Practical Guide To Solar Array Simulation And PCDU Test

    NASA Astrophysics Data System (ADS)

    Schmitz, Noah; Carroll, Greg; Clegg, Russell

    2011-10-01

    Solar arrays consisting of multiple photovoltaic segments provide power to satellites and charge internal batteries for use during eclipse. Solar arrays have unique I-V characteristics and output power which vary with environmental and operational conditions such as temperature, irradiance, spin, and eclipse. Therefore, specialty power solutions are needed to properly test the satellite on the ground, especially the Power Control and Distribution Unit (PCDU) and the Array Power Regulator (APR.) This paper explores some practical and theoretical considerations that should be taken into account when choosing a commercial, off-the-shelf solar array simulator (SAS) for verification of the satellite PCDU. An SAS is a unique power supply with I-V output characteristics that emulate the solar arrays used to power a satellite. It is important to think about the strengths and the limitations of this emulation capability, how closely the SAS approximates a real solar panel, and how best to design a system using SAS as components.

  10. Identification of oocyte progenitor cells in the zebrafish ovary.

    PubMed

    Draper, Bruce W

    2012-01-01

    Zebrafish breed year round and females are capable of producing thousands of eggs during their lifetime. This amazing fecundity is due to the fact that the adult ovary, contains premeiotic oocyte progenitor cells, called oogonia, which produce a continuous supply of new oocytes throughout adult life. Oocyte progenitor cells can be easily identified based on their expression of Vasa, and their characteristic nuclear morphology. Thus, the zebrafish ovary provides a unique and powerful system to study the genetic regulation of oocyte production in a vertebrate animal. A method is presented here for identifying oocyte progenitor cells in the zebrafish ovary using whole-mount confocal immunofluorescence that is simple and accurate.

  11. A synchronization technique for the on-board master clock of a regenerative TDMA satellite communications system

    NASA Astrophysics Data System (ADS)

    Pattini, F.; Porzio Giusto, P.

    The design criteria and performance of the master clock (MCK) generator and the unique word (UW) detector are examined. A narrow band phase lock loop is used for the onboard MCK generator and it is implemented with an all-digital scheme that employs a D-type flip flop as the phase detector. The performance of the MCK generator is analyzed with a computer program which considers phase offset of the digital phase comparator. The characteristics and capabilities of the UW detector which provides strobe signals for the MCK generator and synchronization signals for the onboard switching matrix are described.

  12. The Inner Magnetosphere Plasma Response to Interplanetary Shocks: Van Allen Probes HOPE Observations

    NASA Astrophysics Data System (ADS)

    Winter, L. M.; Denton, M.; Ferradas, C.; Henderson, M. G.; Larsen, B.; Reeves, G.; Skoug, R. M.; Thomsen, M. F.

    2017-12-01

    The Van Allen Probes' Helium, Oxygen, Proton, and Electron (HOPE) sensors measure ion and electron populations in the plasmasphere, plasma sheet, and lower-energy ring current, providing unique observations at low energies (0.001-50 keV) and low L-shell (down to 1.5 RE). We use the capabilities of these two spacecraft to probe changes in the low energy particles in response to interplanetary (IP) shocks. We focus on changes in the plasma energies, composition, and pitch angle distributions following IP shocks and storm sudden commencements from 2012-2017 through a comparison of HOPE observations preceding and post shock.

  13. Advanced Computational Methods for Thermal Radiative Heat Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weaponmore » resp onse in fire environments.« less

  14. Numerical calculation of ion polarization in the NICA collider

    NASA Astrophysics Data System (ADS)

    Kovalenko, A. D.; Butenko, A. V.; Kekelidze, V. D.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2016-02-01

    The NICA Collider with two solenoid Siberian snakes is “transparent” to the spin. The collider transparent to the spin provides a unique capability to control any polarization direction of protons and deuterons using additional weak solenoids without affecting orbital parameters of the beam. The spin tune induced by the control solenoids must significantly exceed the strength of the zero-integer spin resonance, which contains a coherent part associated with errors in the collider's magnetic structure and an incoherent part associated with the beam emittances. We present calculations of the coherent part of the resonance strength in the NICA collider for proton and deuteron beams.

  15. Disordered multihyperuniformity derived from binary plasmas

    NASA Astrophysics Data System (ADS)

    Lomba, Enrique; Weis, Jean-Jacques; Torquato, Salvatore

    2018-01-01

    Disordered multihyperuniform many-particle systems are exotic amorphous states that allow exquisite color sensing capabilities due to their anomalous suppression of density fluctuations for distinct subsets of particles, as recently evidenced in photoreceptor mosaics in avian retina. Motivated by this biological finding, we present a statistical-mechanical model that rigorously achieves disordered multihyperuniform many-body systems by tuning interactions in binary mixtures of nonadditive hard-disk plasmas. We demonstrate that multihyperuniformity competes with phase separation and stabilizes a clustered phase. Our work provides a systematic means to generate disordered multihyperuniform solids, and hence lays the groundwork to explore their potentially unique photonic, phononic, electronic, and transport properties.

  16. A smart end-effector for assembly of space truss structures

    NASA Technical Reports Server (NTRS)

    Doggett, William R.; Rhodes, Marvin D.; Wise, Marion A.; Armistead, Maurice F.

    1992-01-01

    A unique facility, the Automated Structures Research Laboratory, is being used to investigate robotic assembly of truss structures. A special-purpose end-effector is used to assemble structural elements into an eight meter diameter structure. To expand the capabilities of the facility to include construction of structures with curved surfaces from straight structural elements of different lengths, a new end-effector has been designed and fabricated. This end-effector contains an integrated microprocessor to monitor actuator operations through sensor feedback. This paper provides an overview of the automated assembly tasks required by this end-effector and a description of the new end-effector's hardware and control software.

  17. Use of Small Angle Neutron Scattering to Study Various Properties of Wool and Mohair Fibres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklyn, C. B.; Toeroek, Gy.

    2011-12-13

    To maintain a competitive edge in the wool and mohair industry, a detailed knowledge and understanding of the properties of wool fibres is essential. Standard techniques are used to determine fibre diameter, length and strength; however, properties such as hydroscopicity, lustre and changes in fibre structure following chemical or mechanical treatment are not so well understood. The unique capabilities of small angle neutron scattering to study changes in the supermolecular structure of wool fibres, particularly at the level of the microfibril-matrix complex, have been used to provide previously unknown features of the fibres. The results of these studies are presented.

  18. The X-ray Fluorescence Microscopy Beamline at the Australian Synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paterson, D.; Jonge, M. D. de; Howard, D. L.

    2011-09-09

    A hard x-ray micro-nanoprobe has commenced operation at the Australian Synchrotron providing versatile x-ray fluorescence microscopy across an incident energy range from 4 to 25 keV. Two x-ray probes are used to collect {mu}-XRF and {mu}-XANES for elemental and chemical microanalysis: a Kirkpatrick-Baez mirror microprobe for micron resolution studies and a Fresnel zone plate nanoprobe capable of 60-nm resolution. Some unique aspects of the beamline design and operation are discussed. An advanced energy dispersive x-ray fluorescence detection scheme named Maia has been developed for the beamline, which enables ultrafast x-ray fluorescence microscopy.

  19. Head-Worn Displays for NextGen

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Shelton, Kevin J.; Arthur, J. J.

    2011-01-01

    The operating concepts emerging under the Next Generation air transportation system (NextGen) require new technology and procedures - not only on the ground-side - but also on the flight deck. Flight deck display and decision support technologies are specifically targeted to overcome aircraft safety barriers that might otherwise constrain the full realization of NextGen. One such technology is the very lightweight, unobtrusive head-worn display (HWD). HWDs with an integrated head-tracking system are being researched as they offer significant potential benefit under emerging NextGen operational concepts. Two areas of benefit for NextGen are defined. First, the HWD may be designed to be equivalent to the Head-Up Display (HUD) using Virtual HUD concepts. As such, these operational credits may be provided to significantly more aircraft for which HUD installation is neither practical nor possible. Second, the HWD provides unique display capabilities, such as an unlimited field-of-regard. These capabilities may be integral to emerging NextGen operational concepts, eliminating safety issues which might otherwise constrain the full realization of NextGen. The paper details recent research results, current HWD technology limitations, and future technology development needed to realize HWDs as a enabling technology for NextGen.

  20. Upgrades at the NASA Langley Research Center National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Paryz, Roman W.

    2012-01-01

    Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.

Top