NASA Technical Reports Server (NTRS)
2005-01-01
This paper addresses the regulatory processes and requirements already in place by which an applicant might obtain experimental airworthiness certification for a civil Unmanned Aircraft System (UAS). It is more extensive and subsequent to an earlier, similar deliverable, PD007, which was an interim study of the same topic. Since few regulatory airworthiness and operating standards exist for UAS like those for traditional manned aircraft and since most UAS have historically been developed and operated under military auspices, civil use of UAS in the NAS is a new and unfamiliar challenge requiring specific and unique considerations. Experimental certification is the most basic level of FAA approval toward routine UAS operation in the NAS. The paper reviews and explains existing FAA requirements for an applicant seeking experimental airworthiness approval and details the process for submission of necessary information. It summarizes the limited purposes for which experimental aircraft may be used and addresses pertinent aspects of UAS design, construction and operation in the NAS in harmony with traditional manned aircraft. Policy IPT position is that UAS, while different from manned aircraft, can use the same initial processes to gain civil operating experience under the experimental approval. Particular note is taken of those UAS-unique characteristics which require extra attention to assure equivalent safety of operation, such as the UAS control station and sense-and-avoid. The paper also provides "best practices" guidance for UAS manufacturers and FAA personnel in two appendices. The material in Appendix A is intended to provide guidance on assuring UAS safety to FAA, and provides FAA personnel with a suggested list of items to review, with a focus on UAS unique factors, prior to issuance of an experimental airworthiness certificate. Appendix B provides an outline for a program letter which a manufacturer could use in preparing the application for an UAS experimental airworthiness certificate.
Free-energy landscape of protein oligomerization from atomistic simulations
Barducci, Alessandro; Bonomi, Massimiliano; Prakash, Meher K.; Parrinello, Michele
2013-01-01
In the realm of protein–protein interactions, the assembly process of homooligomers plays a fundamental role because the majority of proteins fall into this category. A comprehensive understanding of this multistep process requires the characterization of the driving molecular interactions and the transient intermediate species. The latter are often short-lived and thus remain elusive to most experimental investigations. Molecular simulations provide a unique tool to shed light onto these complex processes complementing experimental data. Here we combine advanced sampling techniques, such as metadynamics and parallel tempering, to characterize the oligomerization landscape of fibritin foldon domain. This system is an evolutionarily optimized trimerization motif that represents an ideal model for experimental and computational mechanistic studies. Our results are fully consistent with previous experimental nuclear magnetic resonance and kinetic data, but they provide a unique insight into fibritin foldon assembly. In particular, our simulations unveil the role of nonspecific interactions and suggest that an interplay between thermodynamic bias toward native structure and residual conformational disorder may provide a kinetic advantage. PMID:24248370
Free-energy landscape of protein oligomerization from atomistic simulations.
Barducci, Alessandro; Bonomi, Massimiliano; Prakash, Meher K; Parrinello, Michele
2013-12-03
In the realm of protein-protein interactions, the assembly process of homooligomers plays a fundamental role because the majority of proteins fall into this category. A comprehensive understanding of this multistep process requires the characterization of the driving molecular interactions and the transient intermediate species. The latter are often short-lived and thus remain elusive to most experimental investigations. Molecular simulations provide a unique tool to shed light onto these complex processes complementing experimental data. Here we combine advanced sampling techniques, such as metadynamics and parallel tempering, to characterize the oligomerization landscape of fibritin foldon domain. This system is an evolutionarily optimized trimerization motif that represents an ideal model for experimental and computational mechanistic studies. Our results are fully consistent with previous experimental nuclear magnetic resonance and kinetic data, but they provide a unique insight into fibritin foldon assembly. In particular, our simulations unveil the role of nonspecific interactions and suggest that an interplay between thermodynamic bias toward native structure and residual conformational disorder may provide a kinetic advantage.
The use of Forest Service experimental forests and ranges for long-term research on invasive species
Ralph Holiday Crawford; Gary W. Miller
2010-01-01
The 81 experimental forests and ranges (EFRs) research sites make the U.S. Department of Agriculture (USDA), Forest Service unique among land management agencies. The EFRs were established for conducting applied research that serves as a basis for managing forests and rangelands. Most EFR research sites have long histories of experimentation and research that provide...
Multiple dopant injection system for small rocket engines
NASA Technical Reports Server (NTRS)
Sakala, G. G.; Raines, N. G.
1992-01-01
The Diagnostics Test Facility (DTF) at NASA's Stennis Space Center (SSC) was designed and built to provide a standard rocket engine exhaust plume for use in the research and development of engine health monitoring instrumentation. A 1000 lb thrust class liquid oxygen (LOX)-gaseous hydrogen (GH2) fueled rocket engine is used as the subscale plume source to simulate the SSME during experimentation and instrument development. The ability of the DTF to provide efficient, and low cost test operations makes it uniquely suited for plume diagnostic experimentation. The most unique feature of the DTF is the Multiple Dopant Injection System (MDIS) that is used to seed the exhaust plume with the desired element or metal alloy. The dopant injection takes place at the fuel injector, yielding a very uniform and homogeneous distribution of the seeding material in the exhaust plume. The MDIS allows during a single test firing of the DTF, the seeding of the exhaust plume with up to three different dopants and also provides distilled water base lines between the dopants. A number of plume diagnostic-related experiments have already utilized the unique capabilities of the DTF.
Prediction of User Preference over Shared Control Paradigms for a Robotic Wheelchair
2017-07-20
the experimentally -observed changes between subject groups and sessions, while providing unique insight into the relative contribution of task metrics...WHEELCHAIR, including the four tested shared- control paradigms. The correlation model and experimental results are provided in Sections IV and V. Section VI...paradigm-specific models. Moreover, we also observe differences between sub- ject groups —meaning that subjects’ evaluations of a control paradigm are
Experimental Modal Analysis of Rectangular and Circular Beams
ERIC Educational Resources Information Center
Emory, Benjamin H.; Zhu, Wei Dong
2006-01-01
Analytical and experimental methods are used to determine the natural frequencies and mode shapes of Aluminum 6061-T651 beams with rectangular and circular cross-sections. A unique test stand is developed to provide the rectangular beam with different boundary conditions including clamped-free, clamped-clamped, clamped-pinned, and pinned-pinned.…
Virtual Diagnostic Interface: Aerospace Experimentation in the Synthetic Environment
NASA Technical Reports Server (NTRS)
Schwartz, Richard J.; McCrea, Andrew C.
2009-01-01
The Virtual Diagnostics Interface (ViDI) methodology combines two-dimensional image processing and three-dimensional computer modeling to provide comprehensive in-situ visualizations commonly utilized for in-depth planning of wind tunnel and flight testing, real time data visualization of experimental data, and unique merging of experimental and computational data sets in both real-time and post-test analysis. The preparation of such visualizations encompasses the realm of interactive three-dimensional environments, traditional and state of the art image processing techniques, database management and development of toolsets with user friendly graphical user interfaces. ViDI has been under development at the NASA Langley Research Center for over 15 years, and has a long track record of providing unique and insightful solutions to a wide variety of experimental testing techniques and validation of computational simulations. This report will address the various aspects of ViDI and how it has been applied to test programs as varied as NASCAR race car testing in NASA wind tunnels to real-time operations concerning Space Shuttle aerodynamic flight testing. In addition, future trends and applications will be outlined in the paper.
Virtual Diagnostic Interface: Aerospace Experimentation in the Synthetic Environment
NASA Technical Reports Server (NTRS)
Schwartz, Richard J.; McCrea, Andrew C.
2010-01-01
The Virtual Diagnostics Interface (ViDI) methodology combines two-dimensional image processing and three-dimensional computer modeling to provide comprehensive in-situ visualizations commonly utilized for in-depth planning of wind tunnel and flight testing, real time data visualization of experimental data, and unique merging of experimental and computational data sets in both real-time and post-test analysis. The preparation of such visualizations encompasses the realm of interactive three-dimensional environments, traditional and state of the art image processing techniques, database management and development of toolsets with user friendly graphical user interfaces. ViDI has been under development at the NASA Langley Research Center for over 15 years, and has a long track record of providing unique and insightful solutions to a wide variety of experimental testing techniques and validation of computational simulations. This report will address the various aspects of ViDI and how it has been applied to test programs as varied as NASCAR race car testing in NASA wind tunnels to real-time operations concerning Space Shuttle aerodynamic flight testing. In addition, future trends and applications will be outlined in the paper.
"AfterZone:" Outcomes for Youth Participating in Providence's Citywide After-School System
ERIC Educational Resources Information Center
Kauh, Tina J.
2011-01-01
This report presents findings from a two-year quasi-experimental evaluation of the "AfterZone"--a citywide system-building effort in Providence, Rhode Island, that aims to provide high-quality, accessible out-of-school-time services to middle school youth. The AfterZone model is unique in that it is built on a network of…
The Crossett Experimental Forest--72 years of science delivery in the silviculture of southern pines
J. M. Guldin
2009-01-01
The network of experimental forests and ranges within the Forest Service, U.S. Department of Agriculture has unique attributes for research, demonstration, and technology transfer. Public forest lands experience a slower rate of ownership change than private forest lands, and this provides greater stability for long-term research studies and demonstrations over time....
Shielding calculations for the National Synchrotron Light Source-II experimental beamlines
NASA Astrophysics Data System (ADS)
Job, Panakkal K.; Casey, William R.
2013-01-01
Brookhaven National Laboratory is in the process of building a new Electron storage ring for scientific research using synchrotron radiation. This facility, called the "National Synchrotron Light Source II" (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors, and robotics, designed to maximize the scientific output of the facility. The project scope includes the design of an electron storage ring and the experimental beamlines, which stores a maximum of 500 mA electron beam current at an energy of 3.0 GeV. When fully built there will be at least 58 beamlines using synchrotron radiation for experimental programs. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in the synchrotron radiation flux to <1%. Because of the very demanding requirements for synchrotron radiation brilliance for the experiments, each of the 58 beamlines will be unique in terms of the source properties and experimental configuration. This makes the shielding configuration of each of the beamlines unique. The shielding calculation methodology and the results for five representative beamlines of NSLS-II, have been presented in this paper.
Recent Experiments Involving Few-Nucleon Systems
NASA Astrophysics Data System (ADS)
Tornow, W.
2014-08-01
Recent experimental results are presented for reactions involving A = 3 to A = 6 nuclear systems. The emphasis is on unique data obtained at new experimental facilities. It is shown that the inertial confinement fusion facilities OMEGA and NIF provide a largely unexpected opportunity for experimental few-body physics to both obtain data of unprecedented quality and extend previous measurements to energies not accessible in the past. Whenever possible, data are compared to state-of-the-art theoretical calculations.
Laurie Yung; Mason Bradbury; Daniel R. Williams
2012-01-01
In this project, we examined the views of 21 long-term employees on climate change in 14 Rocky Mountain Research Station Experimental Forests and Ranges (EFRs). EFRs were described by employees as uniquely positioned to advance knowledge of climate change impacts and adaptation strategies due to the research integrity they provide for long-term studies, the ability to...
Commercial opportunities utilizing the International Space Station
NASA Astrophysics Data System (ADS)
Kearney, Michael E.; Mongan, Phil; Overmyer, Carolyn M.; Jackson, Kenneth
1998-01-01
The International Space Station (ISS) has the unique capability of providing a low-g environment for both short- and long-duration experimentation. This environment can provide a unique and competitive research capability to industry; but until recently, utilization of this environment by the private sector has been limited if not totally unavailable. NASA has recently expressed an interest in the commercial development of space and this is now an integral part of the Agency's enabling legislation through the Space Act. NASA's objective is to foster the use of the space environment for the development of commercial products and processes. Through alliances and agreements with several commercial companies and universities, SPACEHAB, Inc., has built a comprehensive package of services designed to provide low-cost reliable access to space for experimenters. These services provide opportunities to support engineering test beds for materials exposure analysis, to mitigate structural failures as observed on the Hubble Space Telescope; materials processing, remote sensing; space environment definition; and electronic experiments. The intent of this paper is to identify commercial opportunities for utilizing the International Space Station and provide examples of several facilities currently being designed and manufactured by commercial companies with the purpose of providing access to the space environment for commercial users.
Daniel Neary; Deborah Hayes; Lindsey Rustad; James Vose; Gerald Gottfried; Stephen Sebesteyn; Sherri Johnson; Fred Swanson; Mary Adams
2012-01-01
The US Forest Service initiated its catchment research program in 1909 with the first paired catchment study at Wagon Wheel Gap, Colorado, USA. It has since developed the Experimental Forests and Ranges Network, with over 80 long-term research study sites located across the contiguous USA, Alaska, Hawaii, and the Caribbean. This network provides a unique, powerful...
Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2010-01-01
The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.
A Single-Vector Force Calibration Method Featuring the Modern Design of Experiments
NASA Technical Reports Server (NTRS)
Parker, P. A.; Morton, M.; Draper, N.; Line, W.
2001-01-01
This paper proposes a new concept in force balance calibration. An overview of the state-of-the-art in force balance calibration is provided with emphasis on both the load application system and the experimental design philosophy. Limitations of current systems are detailed in the areas of data quality and productivity. A unique calibration loading system integrated with formal experimental design techniques has been developed and designated as the Single-Vector Balance Calibration System (SVS). This new concept addresses the limitations of current systems. The development of a quadratic and cubic calibration design is presented. Results from experimental testing are compared and contrasted with conventional calibration systems. Analyses of data are provided that demonstrate the feasibility of this concept and provide new insights into balance calibration.
SARS-unique fold in the Rousettus bat coronavirus HKU9.
Hammond, Robert G; Tan, Xuan; Johnson, Margaret A
2017-09-01
The coronavirus nonstructural protein 3 (nsp3) is a multifunctional protein that comprises multiple structural domains. This protein assists viral polyprotein cleavage, host immune interference, and may play other roles in genome replication or transcription. Here, we report the solution NMR structure of a protein from the "SARS-unique region" of the bat coronavirus HKU9. The protein contains a frataxin fold or double-wing motif, which is an α + β fold that is associated with protein/protein interactions, DNA binding, and metal ion binding. High structural similarity to the human severe acute respiratory syndrome (SARS) coronavirus nsp3 is present. A possible functional site that is conserved among some betacoronaviruses has been identified using bioinformatics and biochemical analyses. This structure provides strong experimental support for the recent proposal advanced by us and others that the "SARS-unique" region is not unique to the human SARS virus, but is conserved among several different phylogenetic groups of coronaviruses and provides essential functions. © 2017 The Protein Society.
The role of trait mindfulness in the pain experience of adolescents.
Petter, Mark; Chambers, Christine T; McGrath, Patrick J; Dick, Bruce D
2013-12-01
Trait mindfulness appears to mitigate pain among adult clinical populations and has a unique relationship with pain catastrophizing. However, little is understood about this phenomenon among adolescents. The association between trait mindfulness and pain in both real-world and experimental contexts was examined in a community sample of adolescents. Participants were 198 adolescents who completed measures of trait mindfulness, pain catastrophizing, and pain interference, as well as an interview on day-to-day pain before undergoing an acute experimental pain task. Following the task, they provided ratings of pain intensity and state catastrophizing. Results showed that with regard to day-to-day pains, mindfulness was a significant and unique predictor of pain interference, and this relationship was partially mediated by pain catastrophizing. Mindfulness also had an indirect relationship with experimental pain intensity and tolerance. These associations were mediated by catastrophizing during the pain task. These findings highlight the association between trait mindfulness and both real-world and experimental pain and offer insight into how mindfulness may affect pain among youth. Findings are discussed in the context of current psychological models of pediatric pain and future avenues for research. This article highlights the association between trait mindfulness and pain variables among adolescents in both real-world and experimental pain settings. These findings offer further evidence of the unique relationship between trait mindfulness and pain catastrophizing in affecting pain variables across pain contexts and populations. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.
Cascabel prescribed fire long-term watershed study: an opportunity to monitor climate change
Gerald Gottfried; Daniel Neary; Peter Ffolliott; Karen Koestner
2012-01-01
Experimental watershed studies can provide answers to new challenges facing land managers and society including the impacts of fires and climate change on upstream and regional hydrology. The Cascabel Watersheds long-term prescribed fire study provides a unique opportunity to monitor climate change because of its location in an oak savanna situated between deserts or...
Registration of heat capacity mapping mission day and night images
NASA Technical Reports Server (NTRS)
Watson, K.; Hummer-Miller, S.; Sawatzky, D. L.
1982-01-01
Registration of thermal images is complicated by distinctive differences in the appearance of day and night features needed as control in the registration process. These changes are unlike those that occur between Landsat scenes and pose unique constraints. Experimentation with several potentially promising techniques has led to selection of a fairly simple scheme for registration of data from the experimental thermal satellite HCMM using an affine transformation. Two registration examples are provided.
NASA Astrophysics Data System (ADS)
Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.
2018-03-01
The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.
Experimental Overview of Direct Photon Results in Heavy Ion Collisions
NASA Astrophysics Data System (ADS)
Novitzky, Norbert
2016-07-01
Direct photons are color blind probes and thus they provide unique opportunities to study the colored medium created in heavy ion collisions. There are many different sources of direct photons each probing different physics processes as the system evolves. In basic 2 → 2 processes the prompt photons from primary hard scatterings offer the most precise measurements of the outgoing parton energy in the opposite direction. In heavy ion collisions the created medium emits photons as thermal radiation, whose rate and anisotropies provide a unique prospective on the properties and evolution of the system. Recent results on direct photons from the LHC and RHIC experiments are briefly summarized in this paper.
NASA Astrophysics Data System (ADS)
Senesi, R.; Andreani, C.; Bowden, Z.; Colognesi, D.; Degiorgi, E.; Fielding, A. L.; Mayers, J.; Nardone, M.; Norris, J.; Praitano, M.; Rhodes, N. J.; Stirling, W. G.; Tomkinson, J.; Uden, C.
2000-03-01
The VESUVIO project aims to provide unique prototype instrumentation at the ISIS-pulsed neutron source and to establish a routine experimental and theoretical program in neutron scattering spectroscopy at eV energies. This instrumentation will be specifically designed for high momentum, (20 Å-11 eV) inelastic neutron scattering studies of microscopic dynamical processes in materials and will represent a unique facility for EU researchers. It will allow to derive single-particle kinetic energies and single-particle momentum distributions, n(p), providing additional and/or complementary information to other neutron inelastic spectroscopic techniques.
Smerieri, M; Reichelt, R; Savio, L; Vattuone, L; Rocca, M
2012-09-01
We report here on a new experimental apparatus combining a commercial low temperature scanning tunneling microscope with a supersonic molecular beam. This setup provides a unique tool for the in situ investigation of the topography of activated adsorption systems and opens thus new interesting perspectives. It has been tested towards the formation of the O/Ag(110) added rows reconstruction and of their hydroxylation, comparing data recorded upon O(2) exposure at thermal and hyperthermal energies.
A history of forest management in the Ozark Mountains
James M. Guldin
2008-01-01
The network of experimental forests and ranges within the Forest Service, U.S. Department of Agriculture has unique attributes for research, demonstration, and technology transfer. Public forest lands experience a slower rate of ownership change than private forest lands, and this provides greater stability for long-term research studies...
Integrating the glioblastoma microenvironment into engineered experimental models
Xiao, Weikun; Sohrabi, Alireza; Seidlits, Stephanie K
2017-01-01
Glioblastoma (GBM) is the most lethal cancer originating in the brain. Its high mortality rate has been attributed to therapeutic resistance and rapid, diffuse invasion – both of which are strongly influenced by the unique microenvironment. Thus, there is a need to develop new models that mimic individual microenvironmental features and are able to provide clinically relevant data. Current understanding of the effects of the microenvironment on GBM progression, established experimental models of GBM and recent developments using bioengineered microenvironments as ex vivo experimental platforms that mimic the biochemical and physical properties of GBM tumors are discussed. PMID:28883992
Drug Discovery in Fish, Flies, and Worms
Strange, Kevin
2016-01-01
Abstract Nonmammalian model organisms such as the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the zebrafish Danio rerio provide numerous experimental advantages for drug discovery including genetic and molecular tractability, amenability to high-throughput screening methods and reduced experimental costs and increased experimental throughput compared to traditional mammalian models. An interdisciplinary approach that strategically combines the study of nonmammalian and mammalian animal models with diverse experimental tools has and will continue to provide deep molecular and genetic understanding of human disease and will significantly enhance the discovery and application of new therapies to treat those diseases. This review will provide an overview of C. elegans, Drosophila, and zebrafish biology and husbandry and will discuss how these models are being used for phenotype-based drug screening and for identification of drug targets and mechanisms of action. The review will also describe how these and other nonmammalian model organisms are uniquely suited for the discovery of drug-based regenerative medicine therapies. PMID:28053067
Inertial focusing of microparticles and its limitations
NASA Astrophysics Data System (ADS)
Cruz, FJ; Hooshmand Zadeh, S.; Wu, ZG; Hjort, K.
2016-10-01
Microfluidic devices are useful tools for healthcare, biological and chemical analysis and materials synthesis amongst fields that can benefit from the unique physics of these systems. In this paper we studied inertial focusing as a tool for hydrodynamic sorting of particles by size. Theory and experimental results are provided as a background for a discussion on how to extend the technology to submicron particles. Different geometries and dimensions of microchannels were designed and simulation data was compared to the experimental results.
Attitude Certainty and Attitudinal Advocacy: The Unique Roles of Clarity and Correctness.
Cheatham, Lauren; Tormala, Zakary L
2015-11-01
When and why do people advocate on behalf of their attitudes? Past research suggests that attitude certainty is one important determinant. The current research seeks to provide more nuanced insight into this relationship by (a) exploring the unique roles of attitude clarity and attitude correctness, and (b) mapping clarity and correctness onto different forms of advocacy (sharing intentions and persuasion intentions). Across four studies, we find that correctness but not clarity plays an important role in promoting persuasion intentions, whereas both correctness and clarity help shape sharing intentions. Thus, this research unpacks the certainty-advocacy relation and helps identify experimental manipulations that uniquely drive persuasion and sharing intentions. © 2015 by the Society for Personality and Social Psychology, Inc.
Tree ecophysiology research at Taylor Woods
Thomas E. Kolb; Nate G. McDowell
2008-01-01
We summarize the key findings of tree ecophysiology studies performed at Taylor Woods, Fort Valley Experimental Forest, Arizona between 1994 and 2003 that provide unique insight on impacts of long-term stand density management in ponderosa pine forests on tree water relations, leaf gas exchange, radial growth, leaf area-to-sapwood-area ratio, growth efficiency, leaf...
Testing the External Effect of Household Behavior: The Case of the Demand for Children
ERIC Educational Resources Information Center
Li, Hongbin; Zhang, Junsen
2009-01-01
This paper tests the external effect of household childbearing behavior by drawing on microfertility data from China. The test is executed by regressing one woman's fertility on the average fertility of neighboring women. China's unique affirmative birth control policy provides us with quasi-experimental fertility variation that facilities…
Pathways, Networks, and Systems: Theory and Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph H. Nadeau; John D. Lambris
2004-10-30
The international conference provided a unique opportunity for theoreticians and experimenters to exchange ideas, strategies, problems, challenges, language and opportunities in both formal and informal settings. This dialog is an important step towards developing a deep and effective integration of theory and experiments in studies of systems biology in humans and model organisms.
USDA-ARS?s Scientific Manuscript database
The rain gauge network associated with the U.S. Department of Agriculture, Agricultural Research Service Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona provides a unique opportunity for direct comparisons of in-situ measurements and satellite-based instantaneous rain-rate estimat...
Cerjan, Ch J.; Bernstein, L.; Hopkins, L. Berzak; ...
2017-08-16
We present the generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capturemore » cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Lastly, achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerjan, Ch J.; Bernstein, L.; Hopkins, L. Berzak
We present the generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capturemore » cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Lastly, achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.« less
Computational Analysis of a Prototype Martian Rotorcraft Experiment
NASA Technical Reports Server (NTRS)
Corfeld, Kelly J.; Strawn, Roger C.; Long, Lyle N.
2002-01-01
This paper presents Reynolds-averaged Navier-Stokes calculations for a prototype Martian rotorcraft. The computations are intended for comparison with an ongoing Mars rotor hover test at NASA Ames Research Center. These computational simulations present a new and challenging problem, since rotors that operate on Mars will experience a unique low Reynolds number and high Mach number environment. Computed results for the 3-D rotor differ substantially from 2-D sectional computations in that the 3-D results exhibit a stall delay phenomenon caused by rotational forces along the blade span. Computational results have yet to be compared to experimental data, but computed performance predictions match the experimental design goals fairly well. In addition, the computed results provide a high level of detail in the rotor wake and blade surface aerodynamics. These details provide an important supplement to the expected experimental performance data.
Tree ecophysiology research at Taylor Woods (P-53)
Thomas E. Kolb; Nate G. McDowell
2008-01-01
We summarize the key findings of tree ecophysiology studies performed at Taylor Woods, Fort Valley Experimental Forest, Arizona between 1994 and 2003 that provide unique insight on impacts of long-term stand density management in ponderosa pine forests on tree water relations, leaf gas exchange, radial growth, leaf area-to-sapwood-area ratio, growth efficiency, leaf...
Seventy years of forest growth and community dynamics in an undisturbed northern hardwood forest
Jennifer Pontius; Joshua M. Halman; Paul G. Schaberg
2016-01-01
Long-term forest inventories provide a unique opportunity to quantify changes in forest structure and evaluate how changes compare with current stand development models. An examination of a 70 year record at the Bartlett Experimental Forest, New Hampshire, indicated that although species abundances have primarily changed as expected under natural succession, some...
The Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers
NASA Technical Reports Server (NTRS)
Neumann, Richard D.; Freeman, Delma C.
2011-01-01
In 2008 a wind tunnel test program was implemented to update the experimental data available for predicting protuberance heating at supersonic Mach numbers. For this test the Langley Unitary Wind Tunnel was also used. The significant differences for this current test were the advances in the state-of-the-art in model design, fabrication techniques, instrumentation and data acquisition capabilities. This current paper provides a focused discussion of the results of an in depth analysis of unique measurements of recovery temperature obtained during the test.
Production of negatively charged radioactive ion beams
Liu, Y.; Stracener, D. W.; Stora, T.
2017-02-15
Beams of short-lived radioactive nuclei are needed for frontier experimental research in nuclear structure, reactions, and astrophysics. Negatively charged radioactive ion beams have unique advantages and allow for the use of a tandem accelerator for post-acceleration, which can provide the highest beam quality and continuously variable energies. Negative ion beams can be obtained with high intensity and some unique beam purification techniques based on differences in electronegativity and chemical reactivity can be used to provide beams with high purity. This article describes the production of negative radioactive ion beams at the former holifield radioactive ion beam facility at Oak Ridgemore » National Laboratory and at the CERN ISOLDE facility with emphasis on the development of the negative ion sources employed at these two facilities.« less
Neural architecture design based on extreme learning machine.
Bueno-Crespo, Andrés; García-Laencina, Pedro J; Sancho-Gómez, José-Luis
2013-12-01
Selection of the optimal neural architecture to solve a pattern classification problem entails to choose the relevant input units, the number of hidden neurons and its corresponding interconnection weights. This problem has been widely studied in many research works but their solutions usually involve excessive computational cost in most of the problems and they do not provide a unique solution. This paper proposes a new technique to efficiently design the MultiLayer Perceptron (MLP) architecture for classification using the Extreme Learning Machine (ELM) algorithm. The proposed method provides a high generalization capability and a unique solution for the architecture design. Moreover, the selected final network only retains those input connections that are relevant for the classification task. Experimental results show these advantages. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Thao D.; Grazier, John Mark; Boyce, Brad Lee
Biological tissues are uniquely structured materials with technologically appealing properties. Soft tissues such as skin, are constructed from a composite of strong fibrils and fluid-like matrix components. This was the first coordinated experimental/modeling project at Sandia or in the open literature to consider the mechanics of micromechanically-based anisotropy and viscoelasticity of soft biological tissues. We have exploited and applied Sandia's expertise in experimentation and mechanics modeling to better elucidate the behavior of collagen fibril-reinforced soft tissues. The purpose of this project was to provide a detailed understanding of the deformation of ocular tissues, specifically the highly structured skin-like tissue inmore » the cornea. This discovery improved our knowledge of soft/complex materials testing and modeling. It also provided insight into the way that cornea tissue is bio-engineered such that under physiologically-relevant conditions it has a unique set of properties which enhance functionality. These results also provide insight into how non-physiologic loading conditions, such as corrective surgeries, may push the cornea outside of its natural design window, resulting in unexpected non-linear responses. Furthermore, this project created a clearer understanding of the mechanics of soft tissues that could lead to bio-inspired materials, such as highly supple and impact resistant body armor, and improve our design of human-machine interfaces, such as micro-electrical-mechanical (MEMS) based prosthetics.« less
Sheeran, Paul S.; Matsunaga, Terry O.; Dayton, Paul A.
2015-01-01
Phase-change contrast agents (PCCAs) provide a dynamic platform to approach problems in medical ultrasound (US). Upon US-mediated activation, the liquid core vaporizes and expands to produce a gas bubble ideal for US imaging and therapy. In this study, we demonstrate through high-speed video microscopy and US interrogation that PCCAs composed of highly volatile perfluorocarbons (PFCs) exhibit unique acoustic behavior that can be detected and differentiated from standard microbubble contrast agents. Experimental results show that when activated with short pulses PCCAs will over-expand and undergo unforced radial oscillation while settling to a final bubble diameter. The size-dependent oscillation phenomenon generates a unique acoustic signal that can be passively detected in both time and frequency domain using confocal piston transducers with an ‘activate high’ (8 MHz, 2 cycles), ‘listen low’ (1 MHz) scheme. Results show that the magnitude of the acoustic ‘signature’ increases as PFC boiling point decreases. By using a band-limited spectral processing technique, the droplet signals can be isolated from controls and used to build experimental relationships between concentration and vaporization pressure. The techniques shown here may be useful for physical studies as well as development of droplet-specific imaging techniques. PMID:24351961
Mainstreaming Caenorhabditis elegans in experimental evolution.
Gray, Jeremy C; Cutter, Asher D
2014-03-07
Experimental evolution provides a powerful manipulative tool for probing evolutionary process and mechanism. As this approach to hypothesis testing has taken purchase in biology, so too has the number of experimental systems that use it, each with its own unique strengths and weaknesses. The depth of biological knowledge about Caenorhabditis nematodes, combined with their laboratory tractability, positions them well for exploiting experimental evolution in animal systems to understand deep questions in evolution and ecology, as well as in molecular genetics and systems biology. To date, Caenorhabditis elegans and related species have proved themselves in experimental evolution studies of the process of mutation, host-pathogen coevolution, mating system evolution and life-history theory. Yet these organisms are not broadly recognized for their utility for evolution experiments and remain underexploited. Here, we outline this experimental evolution work undertaken so far in Caenorhabditis, detail simple methodological tricks that can be exploited and identify research areas that are ripe for future discovery.
NASA Technical Reports Server (NTRS)
Hayes, J. D.
1972-01-01
The feasibility of monitoring volatile contaminants in a large space simulation chamber using techniques of internal reflection spectroscopy was demonstrated analytically and experimentally. The infrared spectral region was selected as the operational spectral range in order to provide unique identification of the contaminants along with sufficient sensitivity to detect trace contaminant concentrations. It was determined theoretically that a monolayer of the contaminants could be detected and identified using optimized experimental procedures. This ability was verified experimentally. Procedures were developed to correct the attenuated total reflectance spectra for thick sample distortion. However, by using two different element designs the need for such correction can be avoided.
Synchronous scattering and diffraction from gold nanotextured surfaces with structure factors
NASA Astrophysics Data System (ADS)
Gu, Min-Jhong; Lee, Ming-Tsang; Huang, Chien-Hsun; Wu, Chi-Chun; Chen, Yu-Bin
2018-05-01
Synchronous scattering and diffraction were demonstrated using reflectance from gold nanotextured surfaces at oblique (θi = 15° and 60°) incidence of wavelength λ = 405 nm. Two samples of unique auto-correlation functions were cost-effectively fabricated. Multiple structure factors of their profiles were confirmed with Fourier expansions. Bi-directional reflectance function (BRDF) from these samples provided experimental proofs. On the other hand, standard deviation of height and unique auto-correlation function of each sample were used to generate surfaces numerically. Comparing their BRDF with those of totally random rough surfaces further suggested that structure factors in profile could reduce specular reflection more than totally random roughness.
Aeropropulsion 1987. Session 2: Aeropropulsion Structures Research
NASA Technical Reports Server (NTRS)
1987-01-01
Aeropropulsion systems present unique problems to the structural engineer. The extremes in operating temperatures, rotational effects, and behaviors of advanced material systems combine into complexities that require advances in many scientific disciplines involved in structural analysis and design procedures. This session provides an overview of the complexities of aeropropulsion structures and the theoretical, computational, and experimental research conducted to achieve the needed advances.
ERIC Educational Resources Information Center
McEachin, Andrew J.; Welsh, Richard Osbourne; Brewer, Dominic James
2016-01-01
A growing number of states experimented with alternative governance structures in response to pressure to raise student achievement. Post-Katrina experimentation in New Orleans was widely regarded as a model example of new governance reforms and provided a unique opportunity to learn about the variation in student achievement and behavior within…
ERIC Educational Resources Information Center
Hodgson, Yvonne; Choate, Julia
2012-01-01
The Finapres finger cuff recording system provides continuous calculations of beat-to-beat variations in cardiac output (CO), total peripheral resistance, heart rate (HR), and blood pressure (BP). This system is unique in that it allows experimental subjects to immediately, continuously, and noninvasively visualize changes in CO at rest and during…
Development of a model counter-rotating type horizontal-axis tidal turbine
NASA Astrophysics Data System (ADS)
Huang, B.; Yoshida, K.; Kanemoto, T.
2016-05-01
In the past decade, the tidal energies have caused worldwide concern as it can provide regular and predictable renewable energy resource for power generation. The majority of technologies for exploiting the tidal stream energy are based on the concept of the horizontal axis tidal turbine (HATT). A unique counter-rotating type HATT was proposed in the present work. The original blade profiles were designed according to the developed blade element momentum theory (BEMT). CFD simulations and experimental tests were adopted to the performance of the model counter-rotating type HATT. The experimental data provides an evidence of validation of the CFD model. Further optimization of the blade profiles was also carried out based on the CFD results.
Rotating Rake Turbofan Duct Mode Measurement System
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.
2005-01-01
An experimental measurement system was developed and implemented by the NASA Glenn Research Center in the 1990s to measure turbofan duct acoustic modes. The system is a continuously rotating radial microphone rake that is inserted into the duct. This Rotating Rake provides a complete map of the acoustic duct modes present in a ducted fan and has been used on a variety of test articles: from a low-speed, concept test rig, to a full-scale production turbofan engine. The Rotating Rake has been critical in developing and evaluating a number of noise reduction concepts as well as providing experimental databases for verification of several aero-acoustic codes. More detailed derivation of the unique Rotating Rake equations are presented in the appendix.
Controlled experiments for dense gas diffusion: Experimental design and execution, model comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egami, R.; Bowen, J.; Coulombe, W.
1995-07-01
An experimental baseline CO2 release experiment at the DOE Spill Test Facility on the Nevada Test Site in Southern Nevada is described. This experiment was unique in its use of CO2 as a surrogate gas representative of a variety of specific chemicals. Introductory discussion places the experiment in historical perspective. CO2 was selected as a surrogate gas to provide a data base suitable for evaluation of model scenarios involving a variety of specific dense gases. The experiment design and setup are described, including design rationale and quality assurance methods employed. Resulting experimental data are summarized. Data usefulness is examined throughmore » a preliminary comparison of experimental results with simulations performed using the SLAV and DEGADIS dense gas models.« less
Affix Meaning Knowledge in First Through Third Grade Students.
Apel, Kenn; Henbest, Victoria Suzanne
2016-04-01
We examined grade-level differences in 1st- through 3rd-grade students' performance on an experimenter-developed affix meaning task (AMT) and determined whether AMT performance explained unique variance in word-level reading and reading comprehension, beyond other known contributors to reading development. Forty students at each grade level completed an assessment battery that included measures of phonological awareness, receptive vocabulary, word-level reading, reading comprehension, and affix meaning knowledge. On the AMT, 1st-grade students were significantly less accurate than 2nd- and 3rd-grade students; there was no significant difference in performance between the 2nd- and 3rd-grade students. Regression analyses revealed that the AMT accounted for 8% unique variance of students' performance on word-level reading measures and 6% unique variance of students' performance on the reading comprehension measure, after age, phonological awareness, and receptive vocabulary were explained. These results provide initial information on the development of affix meaning knowledge via an explicit measure in 1st- through 3rd-grade students and demonstrate that affix meaning knowledge uniquely contributes to the development of reading abilities above other known literacy predictors. These findings provide empirical support for how students might use morphological problem solving to read unknown multimorphemic words successfully.
Okamura, Hideo; Desimone, Christopher V; Killu, Ammar M; Gilles, Emily J; Tri, Jason; Asirvatham, Roshini; Ladewig, Dejae J; Suddendorf, Scott H; Powers, Joanne M; Wood-Wentz, Christina M; Gray, Peter D; Raymond, Douglas M; Savage, Shelley J; Savage, Walter T; Bruce, Charles J; Asirvatham, Samuel J; Friedman, Paul A
2017-02-01
Automated external defibrillators can provide life-saving therapies to treat ventricular fibrillation. We developed a prototype unit that can deliver a unique shock waveform produced by four independent capacitors that is delivered through two shock vectors, with the rationale of providing more robust shock pathways during emergent defibrillation. We describe the initial testing and feasibility of this unique defibrillation unit, features of which may enable downsizing of current defibrillator devices. We tested our defibrillation unit in four large animal models (two canine and two swine) under general anesthesia. Experimental defibrillation thresholds (DFT) were obtained by delivery of a unique waveform shock pulse via a dual-vector pathway with four defibrillation pads (placed across the chest). DFTs were measured and compared with those of a commercially available biphasic defibrillator (Zoll M series, Zoll Medical, Chelmsford, MA, USA) tested in two different vectors. Shocks were delivered after 10 seconds of stable ventricular fibrillation and the output characteristics and shock outcome recorded. Each defibrillation series used a step-down to failure protocol to define the defibrillation threshold. A total of 96 shocks were delivered during ventricular fibrillation in four large animals. In comparison to the Zoll M series, which delivered a single-vector, biphasic shock, the energy required for successful defibrillation using the unique dual-vector biphasic waveform did not differ significantly (P = 0.65). Our early findings support the feasibility of a unique external defibrillation unit using a dual-vector biphasic waveform approach. This warrants further study to leverage this unique concept and work toward a miniaturized, portable shock delivery system. © 2016 Wiley Periodicals, Inc.
A Multigrasp Hand Prosthesis for Providing Precision and Conformal Grasps
Bennett, Daniel A.; Dalley, Skyler A.; Truex, Don; Goldfarb, Michael
2015-01-01
This paper presents the design of an anthropomorphic prosthetic hand that incorporates four motor units in a unique configuration to explicitly provide both precision and conformal grasp capability. The paper describes the design of the hand prosthesis, and additionally describes the design of an embedded control system located in the palm of the hand that enables self-contained control of hand movement. Following the design description, the paper provides experimental characterizations of hand performance, including digit force capability, bandwidth of digit movement, physical properties such as size and mass, and electrical power measurements during activities of daily living. PMID:26167111
NASA Technical Reports Server (NTRS)
Martinez, Andres; Benavides, Jose Victor; Ormsby, Steve L.; GuarnerosLuna, Ali
2014-01-01
Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) are bowling-ball sized satellites that provide a test bed for development and research into multi-body formation flying, multi-spacecraft control algorithms, and free-flying physical and material science investigations. Up to three self-contained free-flying satellites can fly within the cabin of the International Space Station (ISS), performing flight formations, testing of control algorithms or as a platform for investigations requiring this unique free-flying test environment. Each satellite is a self-contained unit with power, propulsion, computers, navigation equipment, and provides physical and electrical connections (via standardized expansion ports) for Principal Investigator (PI) provided hardware and sensors.
Brown, Matthew A; Johánek, Viktor; Hemminger, John C
2008-02-01
A unique dosing system for the production of hydroxyl radicals under high vacuum for the study of environmental heterogeneous reactions is described. Hydroxyl radicals are produced by the photodissociation of a hydrogen peroxide aqueous gas mixture with 254 nm radiation according to the reaction H2O2+hnu (254 nm)-->OH+OH. Under the conditions of the current design, 0.6% conversion of hydrogen peroxide is expected yielding a hydroxyl number density on the order of 10(10) molecules/cm3. The flux distribution of the dosing system is calculated using a Monte Carlo simulation method and compared with the experimentally determined results. The performance of this unique hydroxyl dosing system is demonstrated for the heterogeneous reaction with a solid surface of potassium iodide. Coupling of the hydroxyl radical dosing system to a quantitative surface analysis system should help provide molecular level insight into detailed reaction mechanisms.
Towards Automated Bargaining in Electronic Markets: A Partially Two-Sided Competition Model
NASA Astrophysics Data System (ADS)
Gatti, Nicola; Lazaric, Alessandro; Restelli, Marcello
This paper focuses on the prominent issue of automating bargaining agents within electronic markets. Models of bargaining in literature deal with settings wherein there are only two agents and no model satisfactorily captures settings in which there is competition among buyers, being they more than one, and analogously among sellers. In this paper, we extend the principal bargaining protocol, i.e. the alternating-offers protocol, to capture bargaining in markets. The model we propose is such that, in presence of a unique buyer and a unique seller, agents' equilibrium strategies are those in the original protocol. Moreover, we game theoretically study the considered game providing the following results: in presence of one-sided competition (more buyers and one seller or vice versa) we provide agents' equilibrium strategies for all the values of the parameters, in presence of two-sided competition (more buyers and more sellers) we provide an algorithm that produce agents' equilibrium strategies for a large set of the parameters and we experimentally evaluate its effectiveness.
NASA Astrophysics Data System (ADS)
Jo, Young Chang; Kim, Hae Na; Kang, Jae Hwan; Hong, Hyuck Ki; Choi, Yeon Shik; Jung, Suk Won; Kim, Sung Phil
2017-04-01
In this study, we examined the possibility of using a multispectral skin photomatrix (MSP) module as a novel biometric device. The MSP device measures optical patterns of the wrist skin tissue. Optical patterns consist of 2 × 8 photocurrent intensities of photodiode arrays, which are generated by optical transmission and diffuse reflection of photons from LED light sources with variable wavelengths into the wrist skin tissue. Optical patterns detected by the MSP device provide information on both the surface and subsurface characteristics of the human skin tissue. We found that in the 21 subjects we studied, they showed their unique characteristics, as determined using several wavelengths of light. The experimental results show that the best personal identification accuracy can be acquired using a combination of infrared light and yellow light. This novel biometric device, the MSP module, exhibited an excellent false acceptance rate (FAR) of 0.3% and a false rejection rate (FRR) of 0.0%, which are better than those of commercialized biometric devices such as a fingerprint biometric system. From these experimental results, we found that people exhibit unique optical patterns of their inner-wrist skin tissue and this uniqueness could be used for developing novel high-accuracy personal identification devices.
Compound Capillary Flows in Complex Containers: Drop Tower Test Results
NASA Astrophysics Data System (ADS)
Bolleddula, Daniel A.; Chen, Yongkang; Semerjian, Ben; Tavan, Noël; Weislogel, Mark M.
2010-10-01
Drop towers continue to provide unique capabilities to investigate capillary flow phenomena relevant to terrestrial and space-based capillary fluidics applications. In this study certain `capillary rise' flows and the value of drop tower experimental investigations are briefly reviewed. A new analytic solution for flows along planar interior edges is presented. A selection of test cell geometries are then discussed where compound capillary flows occur spontaneously and simultaneously over local and global length scales. Sample experimental results are provided. Tertiary experiments on a family of asymmetric geometries that isolate the global component of such flows are then presented along with a qualitative analysis that may be used to either avoid or exploit such flows. The latter may also serve as a design tool with which to assess the impact of inadvertent container asymmetry.
Long-range sound propagation: A review of some experimental data
NASA Technical Reports Server (NTRS)
Sutherland, Louis C.
1990-01-01
Three experimental studies of long range sound propagation carried out or sponsored in the past by NASA are briefly reviewed to provide a partial prospective for some of the analytical studies presented in this symposium. The three studies reviewed cover (1) a unique test of two large rocket engines conducted in such a way as to provide an indication of possible atmospheric scattering loss from a large low-frequency directive sound source, (2) a year-long measurement of low frequency sound propagation which clearly demonstrated the dominant influence of the vertical gradient in the vector sound velocity towards the receiver in defining excess sound attenuation due to refraction, and (3), a series of excess ground attenuation measurements over grass and asphalt surfaces replicated several times under very similar inversion weather conditions.
Polarization observables in few nucleon systems with CLAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zachariou, Nicholas
The CEBAF Large Acceptance Spectrometer (CLAS), housed in Hall-B at the Thomas Jefferson National Accelerator Facility provides us with the experimental tools to study strongly-interacting matter and its dynamics in the transition from hadronic to partonic degrees of freedom in nuclear interactions. In this paper we discuss the progress made in understanding the relevant degrees of freedom using polarisation observables of deuteron photodisintegration in the few-GeV photon-energy region. We also address progress made in studying the interaction between Hyperons and Nucleons via polarisation observables, utilising high-statistics experiments that provided us with the large data samples needed to study final-state interactions,more » as well as perform detailed studies on initial-state effects. The polarisation observables presented here provide us with unique experimental tools to study the underlying dynamics of both initial and final-state interactions, as well as the information needed to disentangle signal from background contributions.« less
Polarization observables in few nucleon systems with CLAS
Zachariou, Nicholas
2017-12-01
The CEBAF Large Acceptance Spectrometer (CLAS), housed in Hall-B at the Thomas Jefferson National Accelerator Facility provides us with the experimental tools to study strongly-interacting matter and its dynamics in the transition from hadronic to partonic degrees of freedom in nuclear interactions. In this paper we discuss the progress made in understanding the relevant degrees of freedom using polarisation observables of deuteron photodisintegration in the few-GeV photon-energy region. We also address progress made in studying the interaction between Hyperons and Nucleons via polarisation observables, utilising high-statistics experiments that provided us with the large data samples needed to study final-state interactions,more » as well as perform detailed studies on initial-state effects. The polarisation observables presented here provide us with unique experimental tools to study the underlying dynamics of both initial and final-state interactions, as well as the information needed to disentangle signal from background contributions.« less
Elucidating unconscious processing with instrumental hypnosis
Landry, Mathieu; Appourchaux, Krystèle; Raz, Amir
2014-01-01
Most researchers leverage bottom-up suppression to unlock the underlying mechanisms of unconscious processing. However, a top-down approach – for example via hypnotic suggestion – paves the road to experimental innovation and complementary data that afford new scientific insights concerning attention and the unconscious. Drawing from a reliable taxonomy that differentiates subliminal and preconscious processing, we outline how an experimental trajectory that champions top-down suppression techniques, such as those practiced in hypnosis, is uniquely poised to further contextualize and refine our scientific understanding of unconscious processing. Examining subliminal and preconscious methods, we demonstrate how instrumental hypnosis provides a reliable adjunct that supplements contemporary approaches. Specifically, we provide an integrative synthesis of the advantages and shortcomings that accompany a top-down approach to probe the unconscious mind. Our account provides a larger framework for complementing the results from core studies involving prevailing subliminal and preconscious techniques. PMID:25120504
O2 reduction to H2O by the multicopper oxidases.
Solomon, Edward I; Augustine, Anthony J; Yoon, Jungjoo
2008-08-14
In nature the four electron reduction of O2 to H2O is carried out by Cytochrome c oxidase (CcO) and the multicopper oxidases (MCOs). In the former, Cytochrome c provides electrons for pumping protons to produce a gradient for ATP synthesis, while in the MCOs the function is the oxidation of substrates, either organic or metal ions. In the MCOs the reduction of O2 is carried out at a trinuclear Cu cluster (TNC). Oxygen intermediates have been trapped which exhibit unique spectroscopic features that reflect novel geometric and electronic structures. These intermediates have both intact and cleaved O-O bonds, allowing the reductive cleavage of the O-O bond to be studied in detail both experimentally and computationally. These studies show that the topology of the TNC provides a unique geometric and electronic structure particularly suited to carry out this key reaction in nature.
O2 Reduction to H2O by the Multicopper Oxidases
Solomon, Edward I.; Augustine, Anthony J.; Yoon, Jungjoo
2010-01-01
In nature the four electron reduction of O2 to H2O is carried out by Cytochrome c Oxidase (CcO) and the multicopper oxidases (MCOs). In the former, Cytochrome c provides electrons for pumping protons to produce a gradient for ATP synthesis, while in the MCOs the function is the oxidation of substrates, either organic or metal ions. In the MCOs the reduction of O2 is carried out at a trinuclear Cu cluster (TNC). Oxygen intermediates have been trapped which exhibit unique spectroscopic features that reflect novel geometric and electronic structures. These intermediates have both intact and cleaved O-O bonds, allowing the reductive cleavage of the O-O bond to be studied in detail both experimentally and computationally. These studies show that the topology of the TNC provides a unique geometric and electronic structure particularly suited to carry out this key reaction in Nature. PMID:18648693
Monitoring and guidance of HIFU beams with dual-mode ultrasound arrays.
Ballard, John R; Casper, Andrew J; Ebbini, Emad S
2009-01-01
We present experimental results illustrating the unique advantages of dual-mode array (DMUA) systems in monitoring and guidance of high intensity focused ultrasound (HIFU) lesion formation. DMUAs offer a unique paradigm in image-guided surgery; one in which images obtained using the same therapeutic transducer provide feedback for: 1) refocusing the array in the presence of strongly scattering objects, e.g. the ribs, 2) temperature change at the intended location of the HIFU focus, and 3) changes in the echogenicity of the tissue in response to therapeutic HIFU. These forms of feedback have been demonstrated in vitro in preparation for the design and implementation of a real-time system for imaging and therapy with DMUAs. The results clearly demonstrate that DMUA image feedback is spatially accurate and provide sufficient spatial and contrast resolution for identification of high contrast objects like the ribs and significant blood vessels in the path of the HIFU beam.
NASA Astrophysics Data System (ADS)
Gómez Álvarez-Arenas, T. E.; de la Fuente, S.; González Gómez, I.
2006-05-01
A novel experimental technique based on phase spectroscopy and through transmission of high-frequency airborne ultrasonic pulses is used to study rigid open cell foams. Phase velocity shows an anomalous relaxation like behavior which is attributed to a frequency variation of the apparent tortuosity. An explanation is proposed in terms of the relationship between the different length scales involved: microstructure and macroscopic behavior. The experimental technique together with the proposed apparent tortuosity scheme provides a novel and unique procedure to determine simultaneously tortuosity and characteristic length dimension and shape of the solid constituent of foams and porous materials in general.
Multicellular Self-Organization of P. aeruginosa due to Interactions with Secreted Trails.
Gelimson, Anatolij; Zhao, Kun; Lee, Calvin K; Kranz, W Till; Wong, Gerard C L; Golestanian, Ramin
2016-10-21
Guided movement in response to slowly diffusing polymeric trails provides a unique mechanism for self-organization of some microorganisms. To elucidate how this signaling route leads to microcolony formation, we experimentally probe the trajectory and orientation of Pseudomonas aeruginosa that propel themselves on a surface using type IV pili motility appendages, which preferentially attach to deposited exopolysaccharides. We construct a stochastic model by analyzing single-bacterium trajectories and show that the resulting theoretical prediction for the many-body behavior of the bacteria is in quantitative agreement with our experimental characterization of how cells explore the surface via a power-law strategy.
Compressed Gas Safety for Experimental Fusion Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee C. Cadwallader
2004-09-01
Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertialmore » fusion experiments.« less
Hybrid, experimental and computational, investigation of mechanical components
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
1996-07-01
Computational and experimental methodologies have unique features for the analysis and solution of a wide variety of engineering problems. Computations provide results that depend on selection of input parameters such as geometry, material constants, and boundary conditions which, for correct modeling purposes, have to be appropriately chosen. In addition, it is relatively easy to modify the input parameters in order to computationally investigate different conditions. Experiments provide solutions which characterize the actual behavior of the object of interest subjected to specific operating conditions. However, it is impractical to experimentally perform parametric investigations. This paper discusses the use of a hybrid, computational and experimental, approach for study and optimization of mechanical components. Computational techniques are used for modeling the behavior of the object of interest while it is experimentally tested using noninvasive optical techniques. Comparisons are performed through a fringe predictor program used to facilitate the correlation between both techniques. In addition, experimentally obtained quantitative information, such as displacements and shape, can be applied in the computational model in order to improve this correlation. The result is a validated computational model that can be used for performing quantitative analyses and structural optimization. Practical application of the hybrid approach is illustrated with a representative example which demonstrates the viability of the approach as an engineering tool for structural analysis and optimization.
NASA Technical Reports Server (NTRS)
Smith, Matthew R.; Molthan, Andrew L.; Fuell, Kevin K.; Jedlovec, Gary J.
2012-01-01
SPoRT is a team of NASA/NOAA scientists focused on demonstrating the utility of NASA and future NOAA data and derived products on improving short-term weather forecasts. Work collaboratively with a suite of unique products and selected WFOs in an end-to-end transition activity. Stable funding from NASA and NOAA. Recognized by the science community as the "go to" place for transitioning experimental and research data to the operational weather community. Endorsed by NWS ESSD/SSD chiefs. Proven paradigm for transitioning satellite observations and modeling capabilities to operations (R2O). SPoRT s transition of NASA satellite instruments provides unique or higher resolution data products to complement the baseline suite of geostationary data available to forecasters. SPoRT s partnership with NWS WFOs provides them with unique imagery to support disaster response and local forecast challenges. SPoRT has years of proven experience in developing and transitioning research products to the operational weather community. SPoRT has begun work with CONUS and OCONUS WFOs to determine the best products for maximum benefit to forecasters. VIIRS has already proven to be another extremely powerful tool, enhancing forecasters ability to handle difficult forecasting situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biancardi, F.R.; Michels, H.H.; Sienel, T.H.
1996-10-01
The purpose of this program was to conduct experimental and analytical efforts to determine lubricant circulation characteristics of new HFC/POE pairs and HFC/mineral oil pairs in a representative central residential HVAC system and to compare their behavior with the traditional HCFC-22/mineral oil (refrigerant/lubricant) pair. A dynamic test facility was designed and built to conduct the experimental efforts. This facility provided a unique capability to visually and physically measure oil circulation rates, on-line, in operating systems. A unique on-line ultraviolet-based measurement device was used to obtain detailed data on the rate and level of lubricant oil circulated within the operating heatmore » pump system. The experimental and analytical data developed during the program are presented as a function of vapor velocity, refrigerant/lubricant viscosity, system features and equipment. Both visual observations and instrumentation were used to understand ``worst case`` oil circulation situations. This report is presented in two volumes. Volume 1 contains a complete description of the program scope, objective, test results summary, conclusions, description of test facility and recommendations for future effort. Volume 2 contains all of the program test data essentially as taken from the laboratory dynamic test facility during the sequence of runs.« less
Perotti, Luigi E; Ponnaluri, Aditya V S; Krishnamoorthi, Shankarjee; Balzani, Daniel; Ennis, Daniel B; Klug, William S
2017-11-01
Quantitative measurement of the material properties (eg, stiffness) of biological tissues is poised to become a powerful diagnostic tool. There are currently several methods in the literature to estimating material stiffness, and we extend this work by formulating a framework that leads to uniquely identified material properties. We design an approach to work with full-field displacement data-ie, we assume the displacement field due to the applied forces is known both on the boundaries and also within the interior of the body of interest-and seek stiffness parameters that lead to balanced internal and external forces in a model. For in vivo applications, the displacement data can be acquired clinically using magnetic resonance imaging while the forces may be computed from pressure measurements, eg, through catheterization. We outline a set of conditions under which the least-square force error objective function is convex, yielding uniquely identified material properties. An important component of our framework is a new numerical strategy to formulate polyconvex material energy laws that are linear in the material properties and provide one optimal description of the available experimental data. An outcome of our approach is the analysis of the reliability of the identified material properties, even for material laws that do not admit unique property identification. Lastly, we evaluate our approach using passive myocardium experimental data at the material point and show its application to identifying myocardial stiffness with an in silico experiment modeling the passive filling of the left ventricle. Copyright © 2017 John Wiley & Sons, Ltd.
Identifying atmospheric monitoring needs for Space Station Freedom
NASA Technical Reports Server (NTRS)
Casserly, Dennis M.
1989-01-01
The atmospheric monitoring needs for Space Station Freedom were identified by examining the following from an industrial hygiene perspective: the experiences of past missions; ground based tests of proposed life support systems; the unique experimental and manufacturing facilities; the contaminant load model; metabolic production; and a fire. A target list of compounds to be monitored is presented and information is provided relative to the frequency of analysis, concentration ranges, and locations for monitoring probes.
Data Preservation in High Energy Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mount, Richard; Brooks, Travis; /SLAC
2012-04-03
Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group. Large data sets accumulated during many years of detector operation at particle accelerators are the heritage ofmore » experimental HEP. These data sets offer unique opportunities for future scientific studies, sometimes long after the shut-down of the actual experiments: new theoretical input; new experimental results and analysis techniques; the quest for high-sensitivity combined analyses; the necessity of cross checks. In many cases, HEP data sets are unique; they cannot and most likely will not be superseded by data from newer generations of experiments. Once lost, or in an unusable state, HEP data samples cannot be reasonably recovered. The cost of conserving this heritage through a collaborative, target-oriented long-term data preservation program would be small, compared to the costs of past experimental projects or to the efforts to re-do experiments. However, this cost is not negligible, especially for collaborations close or past their end-date. The preservation of HEP data would provide today's collaborations with a secure way to complete their data analysis and enable them to seize new scientific opportunities in the coming years. The HEP community will benefit from preserved data samples through reanalysis, combination, education and outreach. Funding agencies would receive more scientific return, and a positive image, from their initial investment leading to the production and the first analysis of preserved data.« less
Tobacco withdrawal symptoms mediate motivation to reinstate smoking during abstinence.
Aguirre, Claudia G; Madrid, Jillian; Leventhal, Adam M
2015-08-01
Withdrawal-based theories of addiction hypothesize that motivation to reinstate drug use following acute abstinence is mediated by withdrawal symptoms. Experimental tests of this hypothesis in the tobacco literature are scant and may be subject to methodological limitations. This study utilized a robust within-subject laboratory experimental design to investigate the extent to which composite tobacco withdrawal symptomatology level and 3 unique withdrawal components (i.e., low positive affect, negative affect, and urge to smoke) mediated the effect of smoking abstinence on motivation to reinstate smoking. Smokers (≥10 cigarettes per day; N = 286) attended 2 counterbalanced sessions at which abstinence duration was differentially manipulated (1 hr vs. 17 hr). At both sessions, participants reported current withdrawal symptoms and subsequently completed a task in which they were monetarily rewarded proportional to the length of time they delayed initiating smoking, with shorter latency reflecting stronger motivation to reinstate smoking. Abstinence reduced latency to smoking initiation and positive affect and increased composite withdrawal symptom level, urge, and negative affect. Abstinence-induced reductions in latency to initiating smoking were mediated by each withdrawal component, with stronger effects operating through urge. Combined analyses suggested that urge, negative affect, and low positive affect operate through empirically unique mediational pathways. Secondary analyses suggested similar effects on smoking quantity, few differences among specific urge and affect subtypes, and that dependence amplifies some abstinence effects. This study provides the first experimental evidence that within-person variation in abstinence impacts motivation to reinstate drug use through withdrawal. Urge, negative affect, and low positive affect may reflect unique withdrawal-mediated mechanisms underlying tobacco addiction. (c) 2015 APA, all rights reserved).
Physical layer security in fiber-optic MIMO-SDM systems: An overview
NASA Astrophysics Data System (ADS)
Guan, Kyle; Cho, Junho; Winzer, Peter J.
2018-02-01
Fiber-optic transmission systems provide large capacities over enormous distances but are vulnerable to simple eavesdropping attacks at the physical layer. We classify key-based and keyless encryption and physical layer security techniques and discuss them in the context of optical multiple-input-multiple-output space-division multiplexed (MIMO-SDM) fiber-optic communication systems. We show that MIMO-SDM not only increases system capacity, but also ensures the confidentiality of information transmission. Based on recent numerical and experimental results, we review how the unique channel characteristics of MIMO-SDM can be exploited to provide various levels of physical layer security.
Development of an Apparatus for Wind Tunnel Dynamic Experiments at High-alpha
NASA Technical Reports Server (NTRS)
Pedreiro, Nelson
1997-01-01
A unique experimental apparatus that allows a wind tunnel model two degrees of freedom has been designed and built. The apparatus was developed to investigate the use of new methods to augment aircraft control in the high angle of attack regime. The model support system provides a platform in which the roll-yaw coupling at high angles of attack can be studied in a controlled environment. Active cancellation of external effects is used to provide a system in which the dynamics are dominated by the aerodynamic loads acting on the wind tunnel model.
Charge transfer in iridate-manganite superlattices
Okamoto, Satoshi; Nichols, John; Sohn, Changhee; ...
2017-03-03
Charge transfer in superlattices consisting of SrIrOmore » $$_3$$ and SrMnO$$_3$$ is investigated using density functional theory. Despite the nearly identical work function and non-polar interfaces between SrIrO$$_3$$ and SrMnO$$_3$$, rather large charge transfer was experimentally reported between them. Our results provide a qualitative understanding to such experimental reports. We further develop a microscopic model that captures the mechanism behind this phenomenon. This leads to unique strain dependence of such charge transfer in iridate-manganite superlattices. The predicted behavior is consistently verified by experiment. Lastly, our work thus demonstrates a new route to control electronic states in non-polar oxide heterostructures.« less
Spacelab Users Guide: A Short Introduction to Spacelab and Its Use
NASA Technical Reports Server (NTRS)
1976-01-01
Spacelab is an orbital facility that provides a pressurized, 'shirt-sleeve' laboratory (the module) and an unpressurized platform (the pallet), together with certain standard services. It is a reusable system, which is transported to and from orbit in the cargo bay of the space shuttle orbiter and remains there throughout the flight. Spacelab extends the shuttle capability, and the Orbiter/Spacelab combination can be regarded as a short-stay space station which can remain in orbit for up to 30 days (the nominal mission duration is 7 days). In orbit, the experiments carried by Spacelab are operated by a team of up to four payload specialists who normally work in the laboratory, but spend their off-duty time in the orbiter cabin. The purpose of Spacelab is to provide a ready access to space for a broad spectrum of experimenters in many fields and from many nations. Low-cost techniques are envisaged for experiment development, integration and operation. The aim of this document is to provide a brief summary of Spacelab design characteristics and its use potential for experimenters wishing to take advantage of the unique opportunities offered for space experimentation.
NASA Astrophysics Data System (ADS)
Brown, Matthew A.; Johánek, Viktor; Hemminger, John C.
2008-02-01
A unique dosing system for the production of hydroxyl radicals under high vacuum for the study of environmental heterogeneous reactions is described. Hydroxyl radicals are produced by the photodissociation of a hydrogen peroxide aqueous gas mixture with 254nm radiation according to the reaction H2O2+hν (254nm)→OH+OH. Under the conditions of the current design, 0.6% conversion of hydrogen peroxide is expected yielding a hydroxyl number density on the order of 1010molecules/cm3. The flux distribution of the dosing system is calculated using a Monte Carlo simulation method and compared with the experimentally determined results. The performance of this unique hydroxyl dosing system is demonstrated for the heterogeneous reaction with a solid surface of potassium iodide. Coupling of the hydroxyl radical dosing system to a quantitative surface analysis system should help provide molecular level insight into detailed reaction mechanisms.
Neurobiological Underpinnings of Math and Reading Learning Disabilities
Ashkenazi, Sarit; Black, Jessica M.; Abrams, Daniel A.; Hoeft, Fumiko; Menon, Vinod
2013-01-01
The primary goal of this review is to highlight current research and theories describing the neurobiological basis of math (MD), reading (RD), and comorbid math and reading disability (MD+RD). We first describe the unique brain and cognitive processes involved in acquisition of math and reading skills, emphasizing similarities and differences in each domain. Next we review functional imaging studies of MD and RD in children, integrating relevant theories from experimental psychology and cognitive neuroscience to characterize the functional neuroanatomy of cognitive dysfunction in MD and RD. We then review recent research on the anatomical correlates of MD and RD. Converging evidence from morphometry and tractography studies are presented to highlight distinct patterns of white matter pathways which are disrupted in MD and RD. Finally, we examine how the intersection of MD and RD provides a unique opportunity to clarify the unique and shared brain systems which adversely impact learning and skill acquisition in MD and RD, and point out important areas for future work on comorbid learning disabilities. PMID:23572008
3D Ultrasonic Wave Simulations for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.
2011-01-01
Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.
Open web system of Virtual labs for nuclear and applied physics
NASA Astrophysics Data System (ADS)
Saldikov, I. S.; Afanasyev, V. V.; Petrov, V. I.; Ternovykh, M. Yu
2017-01-01
An example of virtual lab work on unique experimental equipment is presented. The virtual lab work is software based on a model of real equipment. Virtual labs can be used for educational process in nuclear safety and analysis field. As an example it includes the virtual lab called “Experimental determination of the material parameter depending on the pitch of a uranium-water lattice”. This paper included general description of this lab. A description of a database on the support of laboratory work on unique experimental equipment which is included this work, its concept development are also presented.
Current development of podophyllotoxins.
Canetta, R; Hilgard, P; Florentine, S; Bedogni, P; Lenaz, L
1982-01-01
The unique biological properties and therapeutic efficacy of the podophyllotoxin derivatives, Vumon (VM26, teniposide) and Vepesid (VP16-213, etoposide), are stimulating the interest of both laboratory and clinical researchers. Investigations on new pharmaceutical formulations, pharmacokinetics and metabolism are providing more appropriate information in drug administration; experimental chemotherapy indicates that, among others, cytosine arabinoside and cisplatin are highly synergistic with podophyllotoxins; single agent and combination treatment clinical trials are defining the respective role of Vumon and Vepesid in cancer chemotherapy.
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.; Prahst, Patricia S.; Thorp, Scott A.
2011-01-01
NASA s Fundamental Aeronautics Program is investigating turbine-based combined cycle (TBCC) propulsion systems for access to space because it provides the potential for aircraft-like, space-launch operations that may significantly reduce launch costs and improve safety. To this end, National Aeronautics and Space Administration (NASA) and General Electric (GE) teamed to design a Mach 4 variable cycle turbofan/ramjet engine for access to space. To enable the wide operating range of a Mach 4+ variable cycle turbofan ramjet required the development of a unique fan stage design capable of multi-point operation to accommodate variations in bypass ratio (10 ), fan speed (7 ), inlet mass flow (3.5 ), inlet pressure (8 ), and inlet temperature (3 ). In this paper, NASA has set out to characterize a TBCC engine fan stage aerodynamic performance and stability limits over a wide operating range including power-on and hypersonic-unique "windmill" operation. Herein, we will present the fan stage design, and the experimental test results of the fan stage operating from 15 to 100 percent corrected design speed. Whereas, in the companion paper, we will provide an assessment of NASA s APNASA code s ability to predict the fan stage performance and operability over a wide range of speed and bypass ratio.
NASA Astrophysics Data System (ADS)
Doxastakis, Emmanouil; Garcia Sakai, Victoria; Ohtake, Satoshi; Maranas, Janna K.; de Pablo, Juan J.
2006-03-01
Trehalose, a disaccharide of glucose, is often used for the stabilization of cell membranes in the absence of water. This work studies the effects of trehalose on model membrane systems as they undergo a melting transition using a combination of experimental methods and atomistic molecular simulations. Quasielastic neutron scattering experiments on selectively deuterated samples provide the incoherent dynamic structure over a wide time range. Elastic scans probing the lipid tail dynamics display clear evidence of a main melting transition that is significantly lowered in the presence of trehalose. Lipid headgroup mobility is considerably restricted at high temperatures and directly associated with the dynamics of the sugar in the mixture. Molecular simulations provide a detailed overview of the dynamics and their spatial and time dependence. The combined simulation and experimental methodology offers a unique, molecular view of the physics of systems commonly employed in cryopreservation and lyophilization processes.
Is Chemically Synthesized Graphene ‘Really’ a Unique Substrate for SERS and Fluorescence Quenching?
NASA Astrophysics Data System (ADS)
Sil, Sanchita; Kuhar, Nikki; Acharya, Somnath; Umapathy, Siva
2013-11-01
We demonstrate observation of Raman signals of different analytes adsorbed on carbonaceous materials, such as, chemically reduced graphene, graphene oxide (GO), multi-walled carbon nanotube (MWCNT), graphite and activated carbon. The analytes selected for the study were Rhodamine 6G (R6G) (in resonant conditions), Rhodamine B (RB), Nile blue (NBA), Crystal Violet (CV) and acetaminophen (paracetamol). All the analytes except paracetamol absorb and fluoresce in the visible region. In this article we provide experimental evidence of the fact that observation of Raman signals of analytes on such carbonaceous materials are more due to resonance effect, suppression of fluorescence and efficient adsorption and that this property in not unique to graphene or nanotubes but prevalent for various type of carbon materials.
Modeling and Simulation of Nanoindentation
NASA Astrophysics Data System (ADS)
Huang, Sixie; Zhou, Caizhi
2017-11-01
Nanoindentation is a hardness test method applied to small volumes of material which can provide some unique effects and spark many related research activities. To fully understand the phenomena observed during nanoindentation tests, modeling and simulation methods have been developed to predict the mechanical response of materials during nanoindentation. However, challenges remain with those computational approaches, because of their length scale, predictive capability, and accuracy. This article reviews recent progress and challenges for modeling and simulation of nanoindentation, including an overview of molecular dynamics, the quasicontinuum method, discrete dislocation dynamics, and the crystal plasticity finite element method, and discusses how to integrate multiscale modeling approaches seamlessly with experimental studies to understand the length-scale effects and microstructure evolution during nanoindentation tests, creating a unique opportunity to establish new calibration procedures for the nanoindentation technique.
Hansson, Sven Ove
2016-06-01
An experiment, in the standard scientific sense of the term, is a procedure in which some object of study is subjected to interventions (manipulations) that aim at obtaining a predictable outcome or at least predictable aspects of the outcome. The distinction between an experiment and a non-experimental observation is important since they are tailored to different epistemic needs. Experimentation has its origin in pre-scientific technological experiments that were undertaken in order to find the best technological means to achieve chosen ends. Important parts of the methodological arsenal of modern experimental science can be traced back to this pre-scientific, technological tradition. It is claimed that experimentation involves a unique combination of acting and observing, a combination whose unique epistemological properties have not yet been fully clarified.
Maximizing Macromolecule Crystal Size for Neutron Diffraction Experiments
NASA Technical Reports Server (NTRS)
Judge, R. A.; Kephart, R.; Leardi, R.; Myles, D. A.; Snell, E. H.; vanderWoerd, M.; Curreri, Peter A. (Technical Monitor)
2002-01-01
A challenge in neutron diffraction experiments is growing large (greater than 1 cu mm) macromolecule crystals. In taking up this challenge we have used statistical experiment design techniques to quickly identify crystallization conditions under which the largest crystals grow. These techniques provide the maximum information for minimal experimental effort, allowing optimal screening of crystallization variables in a simple experimental matrix, using the minimum amount of sample. Analysis of the results quickly tells the investigator what conditions are the most important for the crystallization. These can then be used to maximize the crystallization results in terms of reducing crystal numbers and providing large crystals of suitable habit. We have used these techniques to grow large crystals of Glucose isomerase. Glucose isomerase is an industrial enzyme used extensively in the food industry for the conversion of glucose to fructose. The aim of this study is the elucidation of the enzymatic mechanism at the molecular level. The accurate determination of hydrogen positions, which is critical for this, is a requirement that neutron diffraction is uniquely suited for. Preliminary neutron diffraction experiments with these crystals conducted at the Institute Laue-Langevin (Grenoble, France) reveal diffraction to beyond 2.5 angstrom. Macromolecular crystal growth is a process involving many parameters, and statistical experimental design is naturally suited to this field. These techniques are sample independent and provide an experimental strategy to maximize crystal volume and habit for neutron diffraction studies.
NASA Astrophysics Data System (ADS)
Ahmed, H.; Kar, S.; Cantono, G.; Nersisyan, G.; Brauckmann, S.; Doria, D.; Gwynne, D.; Macchi, A.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.
2016-09-01
The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a 'self' proton probing arrangement - i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed.
Empirical predictions of hypervelocity impact damage to the space station
NASA Technical Reports Server (NTRS)
Rule, W. K.; Hayashida, K. B.
1991-01-01
A family of user-friendly, DOS PC based, Microsoft BASIC programs written to provide spacecraft designers with empirical predictions of space debris damage to orbiting spacecraft is described. The spacecraft wall configuration is assumed to consist of multilayer insulation (MLI) placed between a Whipple style bumper and the pressure wall. Predictions are based on data sets of experimental results obtained from simulating debris impacts on spacecraft using light gas guns on Earth. A module of the program facilitates the creation of the data base of experimental results that are used by the damage prediction modules of the code. The user has the choice of three different prediction modules to predict damage to the bumper, the MLI, and the pressure wall. One prediction module is based on fitting low order polynomials through subsets of the experimental data. Another prediction module fits functions based on nondimensional parameters through the data. The last prediction technique is a unique approach that is based on weighting the experimental data according to the distance from the design point.
Early space experiments in materials processing
NASA Technical Reports Server (NTRS)
Naumann, R. J.
1979-01-01
A comprehensive survey of the flight experiments conducted in conjunction with the United States Materials Processing in Space Program is presented. Also included are a brief description of the conditions prevailing in an orbiting spacecraft and the research implications provided by this unique environment. What was done and what was learned are summarized in order to serve as a background for future experiments. It is assumed that the reader has some knowledge of the physical sciences but no background in spaceflight experimentation or in the materials science per se.
A Simulation Analysis of an Automated Identification Processor for the Tactical Air Control System.
1986-06-01
available at the work station for the M&I operators to identify aircraft. Some data is provided via the console such as the IFF/SIF and the airspace control...factors led to the development of efficient work stations for the functional positions in the air defense mission. Experimental Design Experiments are...techniques that helped keep the thesis work "on track"! The Research Design The research plan or design of this thesis effort is not unique. In fact
Development and experimentation of an eye/brain/task testbed
NASA Technical Reports Server (NTRS)
Harrington, Nora; Villarreal, James
1987-01-01
The principal objective is to develop a laboratory testbed that will provide a unique capability to elicit, control, record, and analyze the relationship of operator task loading, operator eye movement, and operator brain wave data in a computer system environment. The ramifications of an integrated eye/brain monitor to the man machine interface are staggering. The success of such a system would benefit users of space and defense, paraplegics, and the monitoring of boring screens (nuclear power plants, air defense, etc.)
NASA Astrophysics Data System (ADS)
Trompet, L.; Geunes, Y.; Ooms, T.; Mahieux, A.; Wilquet, V.; Chamberlain, S.; Robert, S.; Thomas, I. R.; Erard, S.; Cecconi, B.; Le Sidaner, P.; Vandaele, A. C.
2018-01-01
Venus Express SOIR profiles of pressure, temperature and number densities of different constituents of the mesosphere and lower thermosphere of Venus are the only experimental data covering the 60 km to 220 km range of altitudes at the terminator of Venus. This unique dataset is now available in the open access VESPA infrastructure. This paper describes the content of these data products and provides some use cases.
PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED "ODDERON SEARCHES AT RHIC" (VOLUME 76)
DOE Office of Scientific and Technical Information (OSTI.GOV)
ORGANIZERS: GURYN, W.; KOVCHEGOV, Y.; VOGELSANG, W.
The Odderon, a charge-conjugation-odd partner of the Pomeron, has been a puzzle ever since its introduction in 1973. The Pomeron describes a colorless exchange with vacuum quantum numbers in the t-channel of hadronic scattering at high energies. The concept was originally formulated for the non-perturbative regime of Quantum Chromodynamics (QCD). In perturbation theory, the simplest picture of the Poineron is that of a two-gluon exchange process, whereas an Odderon can be thought of as an exchange of three gluons. Both the Pomeron and the Odderon are expected in QCD. However, while there exists plenty of experimental data that could bemore » successfully described by Pomeron exchanges (for example in electron-proton and hadron-hadron scattering at high energies), no experimental sign of the Odderon has been observed. One of the very few hints so far is the difference in the diffractive minima of elastic proton-proton and proton-antiproton scattering measured at the ISR. The Odderon has recently received renewed attention by QCD researchers, mainly for the following two reasons. First of all, RHIC has entered the scene, offering exciting unique new opportunities for Odderon searches. RHIC provides collisions of nuclei at center-of-mass energies far exceeding those at all previous experiments. RHIC also provides collisions of protons of the highest center-of-mass energy, and in the interval, which has not been explored previously in p {bar p} collisions. In addition, it also has the unique feature of polarization for the proton beams, promising to become a crucial tool in Odderon searches. Indeed, theorists have proposed possible signatures of the Odderon in some spin asymmetries measurable at RHIC. Qualitatively unique signals should be seen in these observables if the Odderon coupling is large. Secondly, the Odderon has recently been shown to naturally emerge from the Color Glass Condensate (CGC), a theory for the high-energy asymptotics of QCD. It has been argued that saturation/CGC effects tend to decrease the Odderon intercept, possibly providing an explanation for the lack of experimental evidence for the Odderon so far. This has added further motivation for pursuing searches for the Odderon. During the workshop the status of the Odderon in QCD and its phenomenology were reviewed. The participants also agreed on the most promising observables for the Odderon search at RHIC, which we list. The conclusion of the workshop is that the best available setup to address experimental questions related to the search for the Odderon at RHIC is the proposed combination of STAR experiment and Roman pots of pp2pp experiment, described in the proposal ''Physics with Tagged Forward Protons with the STAR detector at RHIC''.« less
The role of state anxiety in children's memories for pain.
Noel, Melanie; Chambers, Christine T; McGrath, Patrick J; Klein, Raymond M; Stewart, Sherry H
2012-06-01
To investigate the impact of experimentally manipulated state anxiety and the influence of anxiety-related variables on children's memories for pain. A total of 110 children (60 boys) between the ages of 8 and 12 years were randomly assigned to complete a state anxiety induction task or a control task. Following experimental manipulation, children completed a laboratory pain task, pain ratings, and questionnaire measures of anxiety-related variables. 2 weeks later, children provided pain ratings based on their memories of the pain task. The experimental manipulation effectively induced state anxiety; however, pain memories did not differ between groups. Irrespective of group assignment, children with higher state anxiety had more negative pain memories. State anxiety uniquely predicted children's pain memories over and above other well established factors. Anxiety sensitivity and trait anxiety were significant predictors of recalled pain-related fear. These data highlight the importance of anxiety in the development of children's memories for pain.
Physical Justification for Negative Remanent Magnetization in Homogeneous Nanoparticles
Gu, Shuo; He, Weidong; Zhang, Ming; Zhuang, Taisen; Jin, Yi; ElBidweihy, Hatem; Mao, Yiwu; Dickerson, James H.; Wagner, Michael J.; Torre, Edward Della; Bennett, Lawrence H.
2014-01-01
The phenomenon of negative remanent magnetization (NRM) has been observed experimentally in a number of heterogeneous magnetic systems and has been considered anomalous. The existence of NRM in homogenous magnetic materials is still in debate, mainly due to the lack of compelling support from experimental data and a convincing theoretical explanation for its thermodynamic validation. Here we resolve the long-existing controversy by presenting experimental evidence and physical justification that NRM is real in a prototype homogeneous ferromagnetic nanoparticle, an europium sulfide nanoparticle. We provide novel insights into major and minor hysteresis behavior that illuminate the true nature of the observed inverted hysteresis and validate its thermodynamic permissibility and, for the first time, present counterintuitive magnetic aftereffect behavior that is consistent with the mechanism of magnetization reversal, possessing unique capability to identify NRM. The origin and conditions of NRM are explained quantitatively via a wasp-waist model, in combination of energy calculations. PMID:25183061
Generation of a tunable environment for electrical oscillator systems.
León-Montiel, R de J; Svozilík, J; Torres, Juan P
2014-07-01
Many physical, chemical, and biological systems can be modeled by means of random-frequency harmonic oscillator systems. Even though the noise-free evolution of harmonic oscillator systems can be easily implemented, the way to experimentally introduce, and control, noise effects due to a surrounding environment remains a subject of lively interest. Here, we experimentally demonstrate a setup that provides a unique tool to generate a fully tunable environment for classical electrical oscillator systems. We illustrate the operation of the setup by implementing the case of a damped random-frequency harmonic oscillator. The high degree of tunability and control of our scheme is demonstrated by gradually modifying the statistics of the oscillator's frequency fluctuations. This tunable system can readily be used to experimentally study interesting noise effects, such as noise-induced transitions in systems driven by multiplicative noise, and noise-induced transport, a phenomenon that takes place in quantum and classical coupled oscillator networks.
The NASA Ames 16-Inch Shock Tunnel Nozzle Simulations and Experimental Comparison
NASA Technical Reports Server (NTRS)
TokarcikPolsky, S.; Papadopoulos, P.; Venkatapathy, E.; Delwert, G. S.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
The 16-Inch Shock Tunnel at NASA Ames Research Center is a unique test facility used for hypersonic propulsion testing. To provide information necessary to understand the hypersonic testing of the combustor model, computational simulations of the facility nozzle were performed and results are compared with available experimental data, namely static pressure along the nozzle walls and pitot pressure at the exit of the nozzle section. Both quasi-one-dimensional and axisymmetric approaches were used to study the numerous modeling issues involved. The facility nozzle flow was examined for three hypersonic test conditions, and the computational results are presented in detail. The effects of variations in reservoir conditions, boundary layer growth, and parameters of numerical modeling are explored.
NASA Technical Reports Server (NTRS)
Sellers, William L., III; Dwoyer, Douglas L.
1992-01-01
The design of a hypersonic aircraft poses unique challenges to the engineering community. Problems with duplicating flight conditions in ground based facilities have made performance predictions risky. Computational fluid dynamics (CFD) has been proposed as an additional means of providing design data. At the present time, CFD codes are being validated based on sparse experimental data and then used to predict performance at flight conditions with generally unknown levels of uncertainty. This paper will discuss the facility and measurement techniques that are required to support CFD development for the design of hypersonic aircraft. Illustrations are given of recent success in combining experimental and direct numerical simulation in CFD model development and validation for hypersonic perfect gas flows.
Recent ARPES experiments on quasi-1D bulk materials and artificial structures.
Grioni, M; Pons, S; Frantzeskakis, E
2009-01-14
The spectroscopy of quasi-one-dimensional (1D) systems has been a subject of strong interest since the first experimental observations of unusual line shapes in the early 1990s. Angle-resolved photoemission (ARPES) measurements performed with increasing accuracy have greatly broadened our knowledge of the properties of bulk 1D materials and, more recently, of artificial 1D structures. They have yielded a direct view of 1D bands, of open Fermi surfaces, and of characteristic instabilities. They have also provided unique microscopic evidence for the non-conventional, non-Fermi-liquid, behavior predicted by theory, and for strong and singular interactions. Here we briefly review some of the remarkable experimental results obtained in the last decade.
The mini-O, a digital superhet, or a truly low-cost Omega navigation receiver
NASA Technical Reports Server (NTRS)
Burhans, R. W.
1975-01-01
A quartz tuning fork filter circuit and some unique CMOS clock logic methods provide a very simple OMEGA-VLF receiver with true hyperbolic station pair phase difference outputs. An experimental system was implemented on a single battery-operated circuit board requiring only an external antenna preamplifier, and LOP output recorder. A bench evaluation and preliminary navigation tests indicate the technique is viable and can provide very low-cost OMEGA measurement systems. The method is promising for marine use with small boats in the present form, but might be implemented in conjunction with digital microprocessors for airborne navigation aids.
Ahmad, Riaz; Naz, Saeeda; Afzal, Muhammad Zeshan; Amin, Sayed Hassan; Breuel, Thomas
2015-01-01
The presence of a large number of unique shapes called ligatures in cursive languages, along with variations due to scaling, orientation and location provides one of the most challenging pattern recognition problems. Recognition of the large number of ligatures is often a complicated task in oriental languages such as Pashto, Urdu, Persian and Arabic. Research on cursive script recognition often ignores the fact that scaling, orientation, location and font variations are common in printed cursive text. Therefore, these variations are not included in image databases and in experimental evaluations. This research uncovers challenges faced by Arabic cursive script recognition in a holistic framework by considering Pashto as a test case, because Pashto language has larger alphabet set than Arabic, Persian and Urdu. A database containing 8000 images of 1000 unique ligatures having scaling, orientation and location variations is introduced. In this article, a feature space based on scale invariant feature transform (SIFT) along with a segmentation framework has been proposed for overcoming the above mentioned challenges. The experimental results show a significantly improved performance of proposed scheme over traditional feature extraction techniques such as principal component analysis (PCA). PMID:26368566
EML - an electromagnetic levitator for the International Space Station
NASA Astrophysics Data System (ADS)
Seidel, A.; Soellner, W.; Stenzel, C.
2011-12-01
Based on a long and successful evolution of electromagnetic levitators for microgravity applications, including facilities for parabolic flights, sounding rocket missions and Spacelab missions, the Electromagnetic Levitator EML provides unique experiment opportunities onboard ISS. With the application of the electromagnetic levitation principle under microgravity conditions the undercooled regime of electrically conductive materials becomes accessible for an extended time which allows the performance of unique studies of nucleation phenomena or phase formation as well as the measurement of a range of thermophysical properties both above the melting temperature and in the undercooled regime. The EML payload is presently being developed by Astrium Space Transportation under contracts to ESA and DLR. The design of the payload allows flexible experiment scenarios individually targeted towards specific experimental needs and samples including live video control of the running experiments and automatic or interactive process control.
Deng, De-Ming; Chang, Cheng-Hung
2015-05-14
Conventional studies of biomolecular behaviors rely largely on the construction of kinetic schemes. Since the selection of these networks is not unique, a concern is raised whether and under which conditions hierarchical schemes can reveal the same experimentally measured fluctuating behaviors and unique fluctuation related physical properties. To clarify these questions, we introduce stochasticity into the traditional lumping analysis, generalize it from rate equations to chemical master equations and stochastic differential equations, and extract the fluctuation relations between kinetically and thermodynamically equivalent networks under intrinsic and extrinsic noises. The results provide a theoretical basis for the legitimate use of low-dimensional models in the studies of macromolecular fluctuations and, more generally, for exploring stochastic features in different levels of contracted networks in chemical and biological kinetic systems.
Revisiting Ramakrishnan's approach to relatively. [Velocity addition theorem uniqueness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandi, K.K.; Shankara, T.S.
The conditions under which the velocity addition theorem (VAT) is formulated by Ramakrishnan gave rise to doubts about the uniqueness of the theorem. These conditions are rediscussed with reference to their algebraic and experimental implications. 9 references.
NASA Technical Reports Server (NTRS)
Partridge, William P.; Laurendeau, Normand M.
1997-01-01
We have experimentally assessed the quantitative nature of planar laser-induced fluorescence (PLIF) measurements of NO concentration in a unique atmospheric pressure, laminar, axial inverse diffusion flame (IDF). The PLIF measurements were assessed relative to a two-dimensional array of separate laser saturated fluorescence (LSF) measurements. We demonstrated and evaluated several experimentally-based procedures for enhancing the quantitative nature of PLIF concentration images. Because these experimentally-based PLIF correction schemes require only the ability to make PLIF and LSF measurements, they produce a more broadly applicable PLIF diagnostic compared to numerically-based correction schemes. We experimentally assessed the influence of interferences on both narrow-band and broad-band fluorescence measurements at atmospheric and high pressures. Optimum excitation and detection schemes were determined for the LSF and PLIF measurements. Single-input and multiple-input, experimentally-based PLIF enhancement procedures were developed for application in test environments with both negligible and significant quench-dependent error gradients. Each experimentally-based procedure provides an enhancement of approximately 50% in the quantitative nature of the PLIF measurements, and results in concentration images nominally as quantitative as LSF point measurements. These correction procedures can be applied to other species, including radicals, for which no experimental data are available from which to implement numerically-based PLIF enhancement procedures.
Magnetoacoustic tomography with magnetic induction (MAT-MI)
NASA Astrophysics Data System (ADS)
Xu, Yuan; He, Bin
2005-11-01
We report our theoretical and experimental investigations on a new imaging modality, magnetoacoustic tomography with magnetic induction (MAT-MI). In MAT-MI, the sample is located in a static magnetic field and a time-varying (µs) magnetic field. The time-varying magnetic field induces an eddy current in the sample. Consequently, the sample will emit ultrasonic waves by the Lorentz force. The ultrasonic signals are collected around the object to reconstruct images related to the electrical impedance distribution in the sample. MAT-MI combines the good contrast of electrical impedance tomography with the good spatial resolution of sonography. MAT-MI has two unique features due to the solenoid nature of the induced electrical field. Firstly, MAT-MI could provide an explicit or simple quantitative reconstruction algorithm for the electrical impedance distribution. Secondly, it promises to eliminate the shielding effects of other imaging modalities in which the current is applied directly with electrodes. In the theoretical part, we provide formulae for both the forward and inverse problems of MAT-MI and estimate the signal amplitude in biological tissues. In the experimental part, the experimental setup and methods are introduced and the signals and the image of a metal object by means of MAT-MI are presented. The promising pilot experimental results suggest the feasibility of the proposed MAT-MI approach.
The functional basis of adaptive evolution in chemostats.
Gresham, David; Hong, Jungeui
2015-01-01
Two of the central problems in biology are determining the molecular basis of adaptive evolution and understanding how cells regulate their growth. The chemostat is a device for culturing cells that provides great utility in tackling both of these problems: it enables precise control of the selective pressure under which organisms evolve and it facilitates experimental control of cell growth rate. The aim of this review is to synthesize results from studies of the functional basis of adaptive evolution in long-term chemostat selections using Escherichia coli and Saccharomyces cerevisiae. We describe the principle of the chemostat, provide a summary of studies of experimental evolution in chemostats, and use these studies to assess our current understanding of selection in the chemostat. Functional studies of adaptive evolution in chemostats provide a unique means of interrogating the genetic networks that control cell growth, which complements functional genomic approaches and quantitative trait loci (QTL) mapping in natural populations. An integrated approach to the study of adaptive evolution that accounts for both molecular function and evolutionary processes is critical to advancing our understanding of evolution. By renewing efforts to integrate these two research programs, experimental evolution in chemostats is ideally suited to extending the functional synthesis to the study of genetic networks. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
NASA Astrophysics Data System (ADS)
Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran
2016-01-01
The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb (Zr ,Ti )O3 ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d33 and the transverse strain constant d31 are calculated to be 520 and -200 pm /V , respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.
NASA Technical Reports Server (NTRS)
Rehfield, Lawrence W.; Zischka, Peter J.; Fentress, Michael L.; Chang, Stephen
1992-01-01
Some of the unique considerations that are associated with the design and experimental evaluation of chordwise deformable wing structures are addressed. Since chordwise elastic camber deformations are desired and must be free to develop, traditional rib concepts and experimental methodology cannot be used. New rib design concepts are presented and discussed. An experimental methodology based upon the use of a flexible sling support and load application system has been created and utilized to evaluate a model box beam experimentally. Experimental data correlate extremely well with design analysis predictions based upon a beam model for the global properties of camber compliance and spanwise bending compliance. Local strain measurements exhibit trends in agreement with intuition and theory but depart slightly from theoretical perfection based upon beam-like behavior alone. It is conjectured that some additional refinement of experimental technique is needed to explain or eliminate these (minor) departures from asymmetric behavior of upper and lower box cover strains. Overall, a solid basis for the design of box structures based upon the bending method of elastic camber production has been confirmed by the experiments.
Braithwaite, Miles C; Kumar, Pradeep; Choonara, Yahya E; du Toit, Lisa C; Tomar, Lomas K; Tyagi, Charu; Pillay, Viness
2017-10-30
This study was conducted to provide a mechanistic account for understanding the synthesis, characterization and solubility phenomena of vitamin complexes with cyclodextrins (CD) for enhanced solubility and stability employing experimental and in silico molecular modeling strategies. New geometric, molecular and energetic analyses were pursued to explicate experimentally derived cholecalciferol complexes. Various CD molecules (α-, β-, γ-, and hydroxypropyl β-) were complexed with three vitamins: cholecalciferol, ascorbic acid and α-tocopherol. The Inclusion Efficiency (IE%) was computed for each CD-vitamin complex. The highest IE% achieved for a cholecalciferol complex was for 'βCDD 3 -8', after utilizing a unique CD:cholecalciferol molar synthesis ratio of 2.5:1, never before reported as successful. 2HPβCD-cholecalciferol, γCD-cholecalciferol and α-tocopherol inclusion complexes (IC's) reached maximal IE% with a CD:vitamin molar ratio of 5:1. The results demonstrate that IE%, thermal stability, concentration, carrier solubility, molecular mechanics and intended release profile are key factors to consider when synthesizing vitamin-CD complexes. Phase-solubility data provided insights into the design of formulations with IC's that may provide analogous oral vitamin release profiles even when hydrophobic and hydrophilic vitamins are co-incorporated. Static lattice atomistic simulations were able to validate experimentally derived cholecalciferol IE phenomena and are invaluable parameters when approaching formulation strategies using CD's for improved solubility and efficacy of vitamins. Copyright © 2017 Elsevier B.V. All rights reserved.
Discovery of Anthelmintic Drug Targets and Drugs Using Chokepoints in Nematode Metabolic Pathways
Taylor, Christina M.; Wang, Qi; Rosa, Bruce A.; Huang, Stanley Ching-Cheng; Powell, Kerrie; Schedl, Tim; Pearce, Edward J.; Abubucker, Sahar; Mitreva, Makedonka
2013-01-01
Parasitic roundworm infections plague more than 2 billion people (1/3 of humanity) and cause drastic losses in crops and livestock. New anthelmintic drugs are urgently needed as new drug resistance and environmental concerns arise. A “chokepoint reaction” is defined as a reaction that either consumes a unique substrate or produces a unique product. A chokepoint analysis provides a systematic method of identifying novel potential drug targets. Chokepoint enzymes were identified in the genomes of 10 nematode species, and the intersection and union of all chokepoint enzymes were found. By studying and experimentally testing available compounds known to target proteins orthologous to nematode chokepoint proteins in public databases, this study uncovers features of chokepoints that make them successful drug targets. Chemogenomic screening was performed on drug-like compounds from public drug databases to find existing compounds that target homologs of nematode chokepoints. The compounds were prioritized based on chemical properties frequently found in successful drugs and were experimentally tested using Caenorhabditis elegans. Several drugs that are already known anthelmintic drugs and novel candidate targets were identified. Seven of the compounds were tested in Caenorhabditis elegans and three yielded a detrimental phenotype. One of these three drug-like compounds, Perhexiline, also yielded a deleterious effect in Haemonchus contortus and Onchocerca lienalis, two nematodes with divergent forms of parasitism. Perhexiline, known to affect the fatty acid oxidation pathway in mammals, caused a reduction in oxygen consumption rates in C. elegans and genome-wide gene expression profiles provided an additional confirmation of its mode of action. Computational modeling of Perhexiline and its target provided structural insights regarding its binding mode and specificity. Our lists of prioritized drug targets and drug-like compounds have potential to expedite the discovery of new anthelmintic drugs with broad-spectrum efficacy. PMID:23935495
Radiogenic isotopic approaches for quantifying radionuclide transport (Invited)
NASA Astrophysics Data System (ADS)
Maher, K.; Depaolo, D. J.; Singleton, M. J.; Christensen, J. N.; Conrad, M. E.
2009-12-01
Naturally occurring variations in the isotopic compositions of U and Sr provide unique opportunities for assessing the fate and transport of radionuclides at field-scale conditions. When coupled with reactive transport models, U and Sr isotopes may also provide additional constraints on the rates of sediment-fluid or sediment-waste interactions. Such isotopic approaches can be useful for sites where subsurface characterization is complicated by a lack of accessibility or the presence of substantial heterogeneity. In addition, a variety of quantitative modeling approaches of different complexity can be used to evaluate experimentally determined parameters for radionuclide mobility at the field-scale. At the Hanford Site in eastern Washington, 87Sr/86Sr and 234U/238U ratios have been used to quantify the residence time of Sr and U in the unsaturated zone, the long-term background infiltration rate through the unsaturated zone, and to assess the influence of enhanced wastewater discharge on the regional unconfined aquifer. As a result of different processing techniques or due to interactions between caustic waste and the natural sediment, waste plumes may also inherit isotopic fingerprints (e.g. 234U/238U, 235U/238U, 236U/238U; δ15N & δ18O of nitrate) that can be used to resolve multiple sources of contamination. Finally, enriched isotopic tracers can be applied to experimental manipulations to assess the retardation of a variety of contaminants. Collectively this isotopic data contributes unique perspectives on both the hydrologic conditions across the site and the mobility of key radionuclides. Predicting the long-term fate and transport of radionuclides in the environment is often challenging due to natural heterogeneity and incomplete characterization of the subsurface, however detailed analysis of isotopic variations can provide one additional means of characterizing the subsurface.
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Li, Qi; Hu, Jun; Zhang, Bo; He, Jinliang
2018-04-01
Electrical degradation of insulating polymers at electrode interfaces is an essential factor in determining long-term reliability. A critical challenge is that the exact mechanism of degradation is not fully understood, either experimentally or theoretically, due to the inherent complex processes. Consequently, in this study, we investigate electroluminescence (EL) at the interface of an electrode and insulator, and determine the relationship between EL and electrical degradation. Using a tip-plate electrode structure, the unique features of EL under a highly divergent field are investigated. The voltage type (alternating or direct current), the polymer matrix, and the time of pressing are also investigated separately. A study of EL from insulators under a divergent field is provided, and the relationship between EL spectra and degradation is discussed. It is shown that EL spectra under a divergent field have unique characteristics compared with EL spectra from polymer films under a uniform field and the most obvious one is the UV emission. The results obtained in the current investigation bring us a step closer to understanding the process of electrical degradation and provide a potential way to diagnose insulator defects.
Experimental Physical Sciences Vistas: MaRIE (draft)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlachter, Jack
To achieve breakthrough scientific discoveries in the 21st century, a convergence and integration of world-leading experimental facilities and capabilities with theory, modeling, and simulation is necessary. In this issue of Experimental Physical Sciences Vistas, I am excited to present our plans for Los Alamos National Laboratory's future flagship experimental facility, MaRIE (Matter-Radiation Interactions in Extremes). MaRIE is a facility that will provide transformational understanding of matter in extreme conditions required to reduce or resolve key weapons performance uncertainties, develop the materials needed for advanced energy systems, and transform our ability to create materials by design. Our unique role in materialsmore » science starting with the Manhattan Project has positioned us well to develop a contemporary materials strategy pushing the frontiers of controlled functionality - the design and tailoring of a material for the unique demands of a specific application. Controlled functionality requires improvement in understanding of the structure and properties of materials in order to synthesize and process materials with unique characteristics. In the nuclear weapons program today, improving data and models to increase confidence in the stockpile can take years from concept to new knowledge. Our goal with MaRIE is to accelerate this process by enhancing predictive capability - the ability to compute a priori the observables of an experiment or test and pertinent confidence intervals using verified and validated simulation tools. It is a science-based approach that includes the use of advanced experimental tools, theoretical models, and multi-physics codes, simultaneously dealing with multiple aspects of physical operation of a system that are needed to develop an increasingly mature predictive capability. This same approach is needed to accelerate improvements to other systems such as nuclear reactors. MaRIE will be valuable to many national security science challenges. Our first issue of Vistas focused on our current national user facilities (the Los Alamos Neutron Science Center [LANSCE], the National High Magnetic Field Laboratory-Pulsed Field Facility, and the Center for Integrated Nanotechnologies) and the vitality they bring to our Laboratory. These facilities are a magnet for students, postdoctoral researchers, and staff members from all over the world. This, in turn, allows us to continue to develop and maintain our strong staff across the relevant disciplines and conduct world-class discovery science. The second issue of Vistas was devoted entirely to the Laboratory's materials strategy - one of the three strategic science thrusts for the Laboratory. This strategy has helped focus our thinking for MaRIE. We believe there is a bright future in cutting-edge experimental materials research, and that a 21st-century facility with unique capability is necessary to fulfill this goal. The Laboratory has spent the last several years defining MaRIE, and this issue of Vistas presents our current vision of that facility. MaRIE will leverage LANSCE and our other user facilities, as well as our internal and external materials community for decades to come, giving Los Alamos a unique competitive advantage, advancing materials science for the Laboratory's missions and attracting and recruiting scientists of international stature. MaRIE will give the international materials research community a suite of tools capable of meeting a broad range of outstanding grand challenges.« less
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Graham, Jason S.; McVay, Greg P.; Langford, Lester L.
2008-01-01
A unique assessment of acoustic similarity scaling laws and acoustic analogy methodologies in predicting the far-field acoustic signature from a sub-scale altitude rocket test facility at the NASA Stennis Space Center was performed. A directional, point-source similarity analysis was implemented for predicting the acoustic far-field. In this approach, experimental acoustic data obtained from "similar" rocket engine tests were appropriately scaled using key geometric and dynamic parameters. The accuracy of this engineering-level method is discussed by comparing the predictions with acoustic far-field measurements obtained. In addition, a CFD solver was coupled with a Lilley's acoustic analogy formulation to determine the improvement of using a physics-based methodology over an experimental correlation approach. In the current work, steady-state Reynolds-averaged Navier-Stokes calculations were used to model the internal flow of the rocket engine and altitude diffuser. These internal flow simulations provided the necessary realistic input conditions for external plume simulations. The CFD plume simulations were then used to provide the spatial turbulent noise source distributions in the acoustic analogy calculations. Preliminary findings of these studies will be discussed.
Quantifying Nucleic Acid Ensembles with X-ray Scattering Interferometry.
Shi, Xuesong; Bonilla, Steve; Herschlag, Daniel; Harbury, Pehr
2015-01-01
The conformational ensemble of a macromolecule is the complete description of the macromolecule's solution structures and can reveal important aspects of macromolecular folding, recognition, and function. However, most experimental approaches determine an average or predominant structure, or follow transitions between states that each can only be described by an average structure. Ensembles have been extremely difficult to experimentally characterize. We present the unique advantages and capabilities of a new biophysical technique, X-ray scattering interferometry (XSI), for probing and quantifying structural ensembles. XSI measures the interference of scattered waves from two heavy metal probes attached site specifically to a macromolecule. A Fourier transform of the interference pattern gives the fractional abundance of different probe separations directly representing the multiple conformation states populated by the macromolecule. These probe-probe distance distributions can then be used to define the structural ensemble of the macromolecule. XSI provides accurate, calibrated distance in a model-independent fashion with angstrom scale sensitivity in distances. XSI data can be compared in a straightforward manner to atomic coordinates determined experimentally or predicted by molecular dynamics simulations. We describe the conceptual framework for XSI and provide a detailed protocol for carrying out an XSI experiment. © 2015 Elsevier Inc. All rights reserved.
Pigeault, Romain; Vézilier, Julien; Cornet, Stéphane; Zélé, Flore; Nicot, Antoine; Perret, Philippe; Gandon, Sylvain; Rivero, Ana
2015-08-19
Avian malaria has historically played an important role as a model in the study of human malaria, being a stimulus for the development of medical parasitology. Avian malaria has recently come back to the research scene as a unique animal model to understand the ecology and evolution of the disease, both in the field and in the laboratory. Avian malaria is highly prevalent in birds and mosquitoes around the world and is amenable to laboratory experimentation at each stage of the parasite's life cycle. Here, we take stock of 5 years of experimental laboratory research carried out using Plasmodium relictum SGS1, the most prevalent avian malaria lineage in Europe, and its natural vector, the mosquito Culex pipiens. For this purpose, we compile and analyse data obtained in our laboratory in 14 different experiments. We provide statistical relationships between different infection-related parameters, including parasitaemia, gametocytaemia, host morbidity (anaemia) and transmission rates to mosquitoes. This analysis provides a wide-ranging picture of the within-host and between-host parameters that may bear on malaria transmission and epidemiology. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Spatially confined low-power optically pumped ultrafast synchrotron x-ray nanodiffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Joonkyu; Zhang, Qingteng; Chen, Pice
2015-08-27
The combination of ultrafast optical excitation and time-resolved synchrotron x-ray nanodiffraction provides unique insight into the photoinduced dynamics of materials, with the spatial resolution required to probe individual nanostructures or small volumes within heterogeneous materials. Optically excited x-ray nanobeam experiments are challenging because the high total optical power required for experimentally relevant optical fluences leads to mechanical instability due to heating. For a given fluence, tightly focusing the optical excitation reduces the average optical power by more than three orders of magnitude and thus ensures sufficient thermal stability for x-ray nanobeam studies. Delivering optical pulses via a scannable fiber-coupled opticalmore » objective provides a well-defined excitation geometry during rotation and translation of the sample and allows the selective excitation of isolated areas within the sample. Finally, experimental studies of the photoinduced lattice dynamics of a 35 nm BiFeO 3 thin film on a SrTiO 3 substrate demonstrate the potential to excite and probe nanoscale volumes.« less
The AGHS at JET and preparations for a future DT campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R.; JET-EFDA, Culham Science Centre, Abingdon
2015-03-15
The Active Gas Handling System (AGHS) at JET is a unique facility enabling JET to perform reactor like, DT operations. As a future DT experimental campaign (DTE2) is scheduled for 2017 this paper provides a brief overview of the AGHS and a summary of ongoing work supporting the currently JET experimental campaign. In order to improve tritium accountancy a solid state based detector for tritium is being developed. Another important upgrade concerns tritium injection, 4 existing GIMs (Tritium Gas Introduction Module) will inject a mix of D and T rather than T{sub 2} in the divertor region rather than inmore » the torus mid plane enabling a far better control and variability of the introduction of tritium into the plasma. An overview of the scale of DTE2 is included as well as an example of some of the upgrades currently being undertaken to fully exploit the learning opportunities for ITER and DEMO DTE2 provides. (authors)« less
Condie, Brian G; Urbanski, William M
2014-01-01
Effective tools for searching the biomedical literature are essential for identifying reagents or mouse strains as well as for effective experimental design and informed interpretation of experimental results. We have built the Textpresso Site Specific Recombinases (Textpresso SSR) Web server to enable researchers who use mice to perform in-depth searches of a rapidly growing and complex part of the mouse literature. Our Textpresso Web server provides an interface for searching the full text of most of the peer-reviewed publications that report the characterization or use of mouse strains that express Cre or Flp recombinase. The database also contains most of the publications that describe the characterization or analysis of strains carrying conditional alleles or transgenes that can be inactivated or activated by site-specific recombinases such as Cre or Flp. Textpresso SSR complements the existing online databases that catalog Cre and Flp expression patterns by providing a unique online interface for the in-depth text mining of the site specific recombinase literature.
MetaboLights: An Open-Access Database Repository for Metabolomics Data.
Kale, Namrata S; Haug, Kenneth; Conesa, Pablo; Jayseelan, Kalaivani; Moreno, Pablo; Rocca-Serra, Philippe; Nainala, Venkata Chandrasekhar; Spicer, Rachel A; Williams, Mark; Li, Xuefei; Salek, Reza M; Griffin, Julian L; Steinbeck, Christoph
2016-03-24
MetaboLights is the first general purpose, open-access database repository for cross-platform and cross-species metabolomics research at the European Bioinformatics Institute (EMBL-EBI). Based upon the open-source ISA framework, MetaboLights provides Metabolomics Standard Initiative (MSI) compliant metadata and raw experimental data associated with metabolomics experiments. Users can upload their study datasets into the MetaboLights Repository. These studies are then automatically assigned a stable and unique identifier (e.g., MTBLS1) that can be used for publication reference. The MetaboLights Reference Layer associates metabolites with metabolomics studies in the archive and is extensively annotated with data fields such as structural and chemical information, NMR and MS spectra, target species, metabolic pathways, and reactions. The database is manually curated with no specific release schedules. MetaboLights is also recommended by journals for metabolomics data deposition. This unit provides a guide to using MetaboLights, downloading experimental data, and depositing metabolomics datasets using user-friendly submission tools. Copyright © 2016 John Wiley & Sons, Inc.
Cocco, Daniele; Idir, Mourad; Morton, Daniel; ...
2018-03-20
Experiments using high brightness X-rays are on the forefront of science due to the vast variety of knowledge they can provide. New Synchrotron Radiation (SR) and Free Electron Laser (FEL) light sources provide unique tools for advanced studies using X-rays. Top-level scientists from around the world are attracted to these beamlines to perform unprecedented experiments. High brightness, low emittance light sources allow beamline scientists the possibility to dream up cutting-edge experimental stations. X-ray optics play a key role in bringing the beam from the source to the experimental stations. This paper explores the recent developments in X-ray optics. It touchesmore » on simulations, diagnostics, metrology and adaptive optics, giving an overview of the role X-ray optics have played in the recent past. It will also touch on future developments for one of the most active field in the X-ray science.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cocco, Daniele; Idir, Mourad; Morton, Daniel
Experiments using high brightness X-rays are on the forefront of science due to the vast variety of knowledge they can provide. New Synchrotron Radiation (SR) and Free Electron Laser (FEL) light sources provide unique tools for advanced studies using X-rays. Top-level scientists from around the world are attracted to these beamlines to perform unprecedented experiments. High brightness, low emittance light sources allow beamline scientists the possibility to dream up cutting-edge experimental stations. X-ray optics play a key role in bringing the beam from the source to the experimental stations. This paper explores the recent developments in X-ray optics. It touchesmore » on simulations, diagnostics, metrology and adaptive optics, giving an overview of the role X-ray optics have played in the recent past. It will also touch on future developments for one of the most active field in the X-ray science.« less
Smith, Rob; Taylor, Ryan M; Prince, John T
2015-01-01
The comparison of analyte mass spectrometry precursor (MS1) signal is central to many proteomic (and other -omic) workflows. Standard vocabularies for mass spectrometry exist and provide good coverage for most experimental applications yet are insufficient for concise and unambiguous description of data concepts spanning the range of signal provenance from a molecular perspective (e.g. from charged peptides down to fine isotopes). Without a standard unambiguous nomenclature, literature searches, algorithm reproducibility and algorithm evaluation for MS-omics data processing are nearly impossible. We show how terms from current official ontologies are too vague or ambiguous to explicitly map molecular entities to MS signals and we illustrate the inconsistency and ambiguity of current colloquially used terms. We also propose a set of terms for MS1 signal that uniquely, succinctly and intuitively describe data concepts spanning the range of signal provenance from full molecule downs to fine isotopes. We suggest that additional community discussion of these terms should precede any further standardization efforts. We propose a novel nomenclature that spans the range of the required granularity to describe MS data processing from the perspective of the molecular provenance of the MS signal. The proposed nomenclature provides a chain of succinct and unique terms spanning the signal created by a charged molecule down through each of its constituent subsignals. We suggest that additional community discussion of these terms should precede any further standardization efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamieson, Kevin; Davis, IV, Warren L.
Active learning methods automatically adapt data collection by selecting the most informative samples in order to accelerate machine learning. Because of this, real-world testing and comparing active learning algorithms requires collecting new datasets (adaptively), rather than simply applying algorithms to benchmark datasets, as is the norm in (passive) machine learning research. To facilitate the development, testing and deployment of active learning for real applications, we have built an open-source software system for large-scale active learning research and experimentation. The system, called NEXT, provides a unique platform for realworld, reproducible active learning research. This paper details the challenges of building themore » system and demonstrates its capabilities with several experiments. The results show how experimentation can help expose strengths and weaknesses of active learning algorithms, in sometimes unexpected and enlightening ways.« less
Methodological individualism in experimental games: not so easily dismissed.
Krueger, Joachim I
2008-06-01
Orthodox game theory and social preference models cannot explain why people cooperate in many experimental games or how they manage to coordinate their choices. The theory of evidential decision making provides a solution, based on the idea that people tend to project their own choices onto others, whatever these choices might be. Evidential decision making preserves methodological individualism, and it works without recourse to social preferences. Rejecting methodological individualism, team reasoning is a thinly disguised resurgence of the group mind fallacy, and the experiments reported by Colman et al. [Colman, A. M., Pulford, B. D., & Rose, J. (this issue). Collective rationality in interactive decisions: Evidence for team reasoning. Acta Psychologica, doi:10.1016/j.actpsy.2007.08.003.] do not offer evidence that uniquely supports team reasoning.
Mass sensing based on deterministic and stochastic responses of elastically coupled nanocantilevers.
Gil-Santos, Eduardo; Ramos, Daniel; Jana, Anirban; Calleja, Montserrat; Raman, Arvind; Tamayo, Javier
2009-12-01
Coupled nanomechanical systems and their entangled eigenstates offer unique opportunities for the detection of ultrasmall masses. In this paper we show theoretically and experimentally that the stochastic and deterministic responses of a pair of coupled nanocantilevers provide different and complementary information about the added mass of an analyte and its location. This method allows the sensitive detection of minute quantities of mass even in the presence of large initial differences in the active masses of the two cantilevers. Finally, we show the fundamental limits in mass detection of this sensing paradigm.
High resolution monochromator for the VUV radiation from the DORIS storage ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saile, V.; Gurtler, P.; Koch, E.E.
1976-10-01
The unique properties of the DORIS storage ring at DESY as a synchroton radiation source are exploited for high resolution spectroscopy in the vacuum ultraviolet. We describe a new experimental set up with a 3-m normal incidence monochromator for wavelengths between 3000 A and 300 A (4 < or = h..omega.. < or = 40 eV) using a vertical dispersion plane. The storage ring provides a light flux intense and stable enough for rapid photoelectrical scanning of the spectra with a resolution of 0.03 A in first order. (AIP)
Visible-light driven nitrogen-doped petal-morphological ceria nanosheets for water splitting
NASA Astrophysics Data System (ADS)
Qian, Junchao; Zhang, Wenya; Wang, Yaping; Chen, Zhigang; Chen, Feng; Liu, Chengbao; Lu, Xiaowang; Li, Ping; Wang, Kaiyuan; Chen, Ailian
2018-06-01
Water splitting is a promising sustainable technology for solar-to-chemical energy conversion. Herein, we successfully fabricated nitrogen-doped ultrathin CeO2 nanosheets by using field poppy petals as templates, which exhibit an efficiently catalytic activity for water splitting. Abundant oxygen vacancies and substitutional N atoms were experimentally observed in the film due to its unique biomorphic texture. In view of high efficiency and long durability of the as-prepared photocatalyst, this biotemplate method may provide an alternative technique for using biomolecules to assemble 2D nanomaterials.
X-Ray Transition Energies Database
National Institute of Standards and Technology Data Gateway
SRD 128 NIST X-Ray Transition Energies Database (Web, free access) This X-ray transition table provides the energies and wavelengths for the K and L transitions connecting energy levels having principal quantum numbers n = 1, 2, 3, and 4. The elements covered include Z = 10, neon to Z = 100, fermium. There are two unique features of this data base: (1) a serious attempt to have all experimental values on a scale consistent with the International System of measurement (the SI) and (2) inclusion of accurate theoretical estimates for all transitions.
Optical trapping and manipulation of neutral particles using lasers
Ashkin, Arthur
1997-01-01
The techniques of optical trapping and manipulation of neutral particles by lasers provide unique means to control the dynamics of small particles. These new experimental methods have played a revolutionary role in areas of the physical and biological sciences. This paper reviews the early developments in the field leading to the demonstration of cooling and trapping of neutral atoms in atomic physics and to the first use of optical tweezers traps in biology. Some further major achievements of these rapidly developing methods also are considered. PMID:9144154
Zero Gravity Research Facility User's Guide
NASA Technical Reports Server (NTRS)
Thompson, Dennis M.
1999-01-01
The Zero Gravity Research Facility (ZGF) is operated by the Space Experiments Division of the NASA John H. Glenn Research Center (GRC) for investigators sponsored by the Microgravity Science and Applications Division of NASA Headquarters. This unique facility has been utilized by scientists and engineers for reduced gravity experimentation since 1966. The ZGF has provided fundamental scientific information, has been used as an important test facility in the space flight hardware design, development, and test process, and has also been a valuable source of data in the flight experiment definition process. The purpose of this document is to provide information and guidance to prospective researchers regarding the design, buildup, and testing of microgravity experiments.
Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices
NASA Astrophysics Data System (ADS)
Huang, Beibing
2018-01-01
In this paper, we theoretically demonstrate by using one-dimensional superlattices to couple two-dimensional time-reversal-breaking gapped topological superfluid models, an anomalous Weyl superfluid (WS) can be obtained. This new phase features its unique Fermi arc states (FAS) on the surfaces. In the conventional WS, FAS exist only for a part of the line connecting the projections of Weyl points and extending to the border and/or center of surface Brillouin zone. But for the anomalous WS, FAS exist for the whole line. As a proof of principle, we self-consistently at the mean-field level claim the achievement of the anomalous WS in the model with a dichromatic superlattice. In addition, inversion symmetry and band inversion in this model are analyzed to provide the unique features of identifying the anomalous WS experimentally by the momentum-resolved radio-frequency spectroscopy.
A comparative study of the constitutive models for silicon carbide
NASA Astrophysics Data System (ADS)
Ding, Jow-Lian; Dwivedi, Sunil; Gupta, Yogendra
2001-06-01
Most of the constitutive models for polycrystalline silicon carbide were developed and evaluated using data from either normal plate impact or Hopkinson bar experiments. At ISP, extensive efforts have been made to gain detailed insight into the shocked state of the silicon carbide (SiC) using innovative experimental methods, viz., lateral stress measurements, in-material unloading measurements, and combined compression shear experiments. The data obtained from these experiments provide some unique information for both developing and evaluating material models. In this study, these data for SiC were first used to evaluate some of the existing models to identify their strength and possible deficiencies. Motivated by both the results of this comparative study and the experimental observations, an improved phenomenological model was developed. The model incorporates pressure dependence of strength, rate sensitivity, damage evolution under both tension and compression, pressure confinement effect on damage evolution, stiffness degradation due to damage, and pressure dependence of stiffness. The model developments are able to capture most of the material features observed experimentally, but more work is needed to better match the experimental data quantitatively.
Review of Transient Testing of Fast Reactor Fuels in the Transient REActor Test Facility (TREAT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, C.; Wachs, D.; Carmack, J.
The restart of the Transient REActor Test (TREAT) facility provides a unique opportunity to engage the fast reactor fuels community to reinitiate in-pile experimental safety studies. Historically, the TREAT facility played a critical role in characterizing the behavior of both metal and oxide fast reactor fuels under off-normal conditions, irradiating hundreds of fuel pins to support fast reactor fuel development programs. The resulting test data has provided validation for a multitude of fuel performance and severe accident analysis computer codes. This paper will provide a review of the historical database of TREAT experiments including experiment design, instrumentation, test objectives, andmore » salient findings. Additionally, the paper will provide an introduction to the current and future experiment plans of the U.S. transient testing program at TREAT.« less
ERIC Educational Resources Information Center
Newell, Anna; Kleiman, Paul
2012-01-01
Between 2008-2010 the School of Medicine at Queen's University Belfast funded and supported two unique and intensive three week interdisciplinary performance projects in which medical and drama students worked together to create an experimental dance theatre piece. One of the unique aspects of this collaboration was that the medical students who…
Jones, Jenny; Thomson, Patricia; Lauder, William; Leslie, Stephen J
2013-03-01
Reflexology is a complex massage intervention, based on the concept that specific areas of the feet (reflex points) correspond to individual internal organs within the body. Reflexologists trained in the popular Ingham reflexology method claim that massage to these points, using massage techniques unique to reflexology, stimulates an increase in blood supply to the corresponding organ. Reflexology researchers face two key methodological challenges that need to be addressed if a specific treatment-related hemodynamic effect is to be scientifically demonstrated. The first is the problem of inconsistent reflexology foot maps; the second is the issue of poor experimental controls. This article proposes a potential experimental solution that we believe can address both methodological challenges and in doing so, allow any specific hemodynamic treatment effect unique to reflexology to experimentally reveal itself.
Invited review article: the electrostatic plasma lens.
Goncharov, Alexey
2013-02-01
The fundamental principles, experimental results, and potential applications of the electrostatic plasma lens for focusing and manipulating high-current, energetic, heavy ion beams are reviewed. First described almost 50 years ago, this optical beam device provides space charge neutralization of the ion beam within the lens volume, and thus provides an effective and unique tool for focusing high current beams where a high degree of neutralization is essential to prevent beam blow-up. Short and long lenses have been explored, and a lens in which the magnetic field is provided by rare-earth permanent magnets has been demonstrated. Applications include the use of this kind of optical tool for laboratory ion beam manipulation, high dose ion implantation, heavy ion accelerator injection, in heavy ion fusion, and other high technology.
Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems
Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa; ...
2016-11-23
The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and relatedmore » phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications.« less
The development of STS payload environmental engineering standards
NASA Technical Reports Server (NTRS)
Bangs, W. F.
1982-01-01
The presently reported effort to provide a single set of standards for the design, analysis and testing of Space Transportation System (STS) payloads throughout the NASA organization must be viewed as essentially experimental, since the concept of incorporating the diverse opinions and experiences of several separate field research centers may in retrospect be judged too ambitious or perhaps even naive. While each STS payload may have unique characteristics, and the project should formulate its own criteria for environmental design, testing and evaluation, a reference source document providing coordinated standards is expected to minimize the duplication of effort and limit random divergence of practices among the various NASA payload programs. These standards would provide useful information to all potential STS users, and offer a degree of standardization to STS users outside the NASA organization.
Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa
The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and relatedmore » phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications.« less
Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems
Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa; Lampen-Kelley, Paula; Chandra, Sayan; Stojak Repa, Kristen; Nemati, Zohreh; Das, Raja; Iglesias, Óscar; Srikanth, Hariharan
2016-01-01
The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and related phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications. PMID:28335349
Experimental evidence for the influence of cognitions on compulsive buying.
McQueen, Paul; Moulding, Richard; Kyrios, Michael
2014-12-01
Compulsive buying is a disabling condition, where individuals are unable to resist or control their buying behavior, leading to substantial social and financial problems. Cognitive models implicate the role of beliefs as one factor in buying behavior, for example, "this item is unique and will help me improve my life". This study experimentally examined the contribution of such beliefs to the disorder, in individuals who compulsively buy (N = 18) and in non-clinical controls (N = 17). Participants were presented with photographs of idiosyncratically appealing and unappealing items, in the context of imagined scenarios that either minimized or maximized aspects relevant to hypothesized "compulsive buying beliefs" (i.e., beliefs that acquisition can compensate for negative feelings, beliefs regarding uniqueness and lost opportunities, and emotional reasons for buying). It was found that individuals who compulsively buy demonstrated stronger urges to purchase than control participants, regardless of context, but the overall strength of these urges was responsive to manipulations of beliefs about consumer items said to be associated with compulsive buying. The main limitation of the study was a small sample size, potentially reducing power. Nonetheless, these findings provide insights into the processes underlying compulsive phenomena, in particular supporting the role of cognitions in compulsive buying. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mounet, Nicolas; Gibertini, Marco; Schwaller, Philippe; Campi, Davide; Merkys, Andrius; Marrazzo, Antimo; Sohier, Thibault; Castelli, Ivano Eligio; Cepellotti, Andrea; Pizzi, Giovanni; Marzari, Nicola
2018-03-01
Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. Yet, only a few dozen 2D materials have been successfully synthesized or exfoliated. Here, we search for 2D materials that can be easily exfoliated from their parent compounds. Starting from 108,423 unique, experimentally known 3D compounds, we identify a subset of 5,619 compounds that appear layered according to robust geometric and bonding criteria. High-throughput calculations using van der Waals density functional theory, validated against experimental structural data and calculated random phase approximation binding energies, further allowed the identification of 1,825 compounds that are either easily or potentially exfoliable. In particular, the subset of 1,036 easily exfoliable cases provides novel structural prototypes and simple ternary compounds as well as a large portfolio of materials to search from for optimal properties. For a subset of 258 compounds, we explore vibrational, electronic, magnetic and topological properties, identifying 56 ferromagnetic and antiferromagnetic systems, including half-metals and half-semiconductors.
Antman, Yair; Yaron, Lior; Langer, Tomi; Tur, Moshe; Levanon, Nadav; Zadok, Avi
2013-11-15
Dynamic Brillouin gratings (DBGs), inscribed by comodulating two writing pump waves with a perfect Golomb code, are demonstrated and characterized experimentally. Compared with pseudo-random bit sequence (PRBS) modulation of the pump waves, the Golomb code provides lower off-peak reflectivity due to the unique properties of its cyclic autocorrelation function. Golomb-coded DBGs allow the long variable delay of one-time probe waveforms with higher signal-to-noise ratios, and without averaging. As an example, the variable delay of return-to-zero, on-off keyed data at a 1 Gbit/s rate, by as much as 10 ns, is demonstrated successfully. The eye diagram of the reflected waveform remains open, whereas PRBS modulation of the pump waves results in a closed eye. The variable delay of data at 2.5 Gbit/s is reported as well, with a marginally open eye diagram. The experimental results are in good agreement with simulations.
Current and Future Research at DANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandel, M.; Baramsai, B.; Bredeweg, T. A.
2015-05-28
An overview of the current experimental program on measurements of neutron capture and neutron induced fission at the Detector for Advanced Neutron Capture Experiments (DANCE) is presented. Three major projects are currently under way: 1) high precision measurements of neutron capture cross sections on Uranium isotopes, 2) research aimed at studies of the short-lived actinide isomer production in neutron capture on 235U and 3) measurements of correlated data of fission observables. New projects include developments of auxiliary detectors to improve the capability of DANCE. We are building a compact, segmented NEUtron detector Array at DANCE (NEUANCE), which will be installedmore » in the central cavity of the DANCE array. It will thus provide experimental information on prompt fission neutrons in coincidence with the prompt fission gamma-rays measured by 160 BaF 2 crystals of DANCE. Additionally, unique correlated data will be obtained for neutron capture and neutron-induced fission using the DANCE-NEUANCE experimental set up in the future.« less
Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffer, D. B., E-mail: dschaeffer@physics.ucla.edu; Everson, E. T.; Bondarenko, A. S.
2014-05-15
The interaction of a laser-driven super-Alfvénic magnetic piston with a large, preformed magnetized ambient plasma has been studied by utilizing a unique experimental platform that couples the Raptor kJ-class laser system [Niemann et al., J. Instrum. 7, P03010 (2012)] to the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. This platform provides experimental conditions of relevance to space and astrophysical magnetic collisionless shocks and, in particular, allows a detailed study of the microphysics of shock formation, including piston-ambient ion collisionless coupling. An overview of the platform and its capabilitiesmore » is given, and recent experimental results on the coupling of energy between piston and ambient ions and the formation of collisionless shocks are presented and compared to theoretical and computational work. In particular, a magnetosonic pulse consistent with a low-Mach number collisionless shock is observed in a quasi-perpendicular geometry in both experiments and simulations.« less
NASA Astrophysics Data System (ADS)
Mounet, Nicolas; Gibertini, Marco; Schwaller, Philippe; Campi, Davide; Merkys, Andrius; Marrazzo, Antimo; Sohier, Thibault; Castelli, Ivano Eligio; Cepellotti, Andrea; Pizzi, Giovanni; Marzari, Nicola
2018-02-01
Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. Yet, only a few dozen 2D materials have been successfully synthesized or exfoliated. Here, we search for 2D materials that can be easily exfoliated from their parent compounds. Starting from 108,423 unique, experimentally known 3D compounds, we identify a subset of 5,619 compounds that appear layered according to robust geometric and bonding criteria. High-throughput calculations using van der Waals density functional theory, validated against experimental structural data and calculated random phase approximation binding energies, further allowed the identification of 1,825 compounds that are either easily or potentially exfoliable. In particular, the subset of 1,036 easily exfoliable cases provides novel structural prototypes and simple ternary compounds as well as a large portfolio of materials to search from for optimal properties. For a subset of 258 compounds, we explore vibrational, electronic, magnetic and topological properties, identifying 56 ferromagnetic and antiferromagnetic systems, including half-metals and half-semiconductors.
NASA Astrophysics Data System (ADS)
Liu, Tuo; Zhu, Xuefeng; Chen, Fei; Liang, Shanjun; Zhu, Jie
2018-03-01
Exploring the concept of non-Hermitian Hamiltonians respecting parity-time symmetry with classical wave systems is of great interest as it enables the experimental investigation of parity-time-symmetric systems through the quantum-classical analogue. Here, we demonstrate unidirectional wave vector manipulation in two-dimensional space, with an all passive acoustic parity-time-symmetric metamaterials crystal. The metamaterials crystal is constructed through interleaving groove- and holey-structured acoustic metamaterials to provide an intrinsic parity-time-symmetric potential that is two-dimensionally extended and curved, which allows the flexible manipulation of unpaired wave vectors. At the transition point from the unbroken to broken parity-time symmetry phase, the unidirectional sound focusing effect (along with reflectionless acoustic transparency in the opposite direction) is experimentally realized over the spectrum. This demonstration confirms the capability of passive acoustic systems to carry the experimental studies on general parity-time symmetry physics and further reveals the unique functionalities enabled by the judiciously tailored unidirectional wave vectors in space.
Particle Spectrometers for FRIB
NASA Astrophysics Data System (ADS)
Amthor, A. M.
2014-09-01
FRIB promises to dramatically expand the variety of nuclear systems available for direct experimental study by providing rates of many rare isotopes orders of magnitude higher than those currently available. A new generation of experimental systems, including new particle spectrometers will be critical to our ability to take full advantage of the scientific opportunities offered by FRIB. The High-Rigidity Spectrometer (HRS) will allow for experiments with the most neutron-rich and short-lived isotopes produced by in-flight fragmentation at FRIB. The bending capability of the HRS (8 Tm) matches to the rigidity for which rare isotopes are produced at the highest intensity in the FRIB fragment separator. The experimental program will be focused on nuclear structure and astrophysics, and allow for the use of other cutting-edge detection systems for gamma, neutron, and charged-particle detection. Stopped and reaccelerated beam studies will be an important compliment to in-flight techniques at FRIB, providing world-unique, high quality, intense rare isotope beams at low energies up to and beyond the Coulomb barrier--with the completion of ReA12--and serving many of the science goals of the broader facility, from nuclear structure and astrophysics to applications. Two specialized recoil spectrometers are being developed for studies with reaccelerated beams. SECAR, the Separator for Capture Reactions, will be built following ReA3, coupled to a windowless gas jet target, JENSA, and will focus on radiative capture reactions for astrophysics, particularly those needed to improve our understanding of novae and X-ray bursts. A recoil separator following ReA12 is proposed to address a variety of physics cases based on fusion-evaporation, Coulomb excitation, transfer, and deep-inelastic reactions by providing a large angular, momentum and charge state acceptance; a high mass resolving power; and the flexibility to couple to a variety of auxiliary detector systems. Two designs have been proposed to meet these needs, ISLA, the Isochronous Separator with Large Acceptance, and an electromagnetic M/Q separator SUPERB, the Separator for the Unique Products of Experiments with Radioactive Beams.
Slocum, Joshua D; First, Jeremy T; Webb, Lauren J
2017-07-20
Measurement of the magnitude, direction, and functional importance of electric fields in biomolecules has been a long-standing experimental challenge. pK a shifts of titratable residues have been the most widely implemented measurements of the local electrostatic environment around the labile proton, and experimental data sets of pK a shifts in a variety of systems have been used to test and refine computational prediction capabilities of protein electrostatic fields. A more direct and increasingly popular technique to measure electric fields in proteins is Stark effect spectroscopy, where the change in absorption energy of a chromophore relative to a reference state is related to the change in electric field felt by the chromophore. While there are merits to both of these methods and they are both reporters of local electrostatic environment, they are fundamentally different measurements, and to our knowledge there has been no direct comparison of these two approaches in a single protein. We have recently demonstrated that green fluorescent protein (GFP) is an ideal model system for measuring changes in electric fields in a protein interior caused by amino acid mutations using both electronic and vibrational Stark effect chromophores. Here we report the changes in pK a of the GFP fluorophore in response to the same mutations and show that they are in excellent agreement with Stark effect measurements. This agreement in the results of orthogonal experiments reinforces our confidence in the experimental results of both Stark effect and pK a measurements and provides an excellent target data set to benchmark diverse protein electrostatics calculations. We used this experimental data set to test the pK a prediction ability of the adaptive Poisson-Boltzmann solver (APBS) and found that a simple continuum dielectric model of the GFP interior is insufficient to accurately capture the measured pK a and Stark effect shifts. We discuss some of the limitations of this continuum-based model in this system and offer this experimentally self-consistent data set as a target benchmark for electrostatics models, which could allow for a more rigorous test of pK a prediction techniques due to the unique environment of the water-filled GFP barrel compared to traditional globular proteins.
Learning Compositional Simulation Models
2010-01-01
techniques developed by social scientists, economists, and medical researchers over the past four decades. Quasi-experimental designs (QEDs) are...statistical techniques from the social sciences known as quasi- experimental design (QED). QEDs allow a researcher to exploit unique characteristics...can be grouped under the rubric “quasi-experimental design ” (QED), and they attempt to exploit inherent characteristics of observational data sets
Cross section calculations for subthreshold pion production in peripheral heavy-ion collisions
NASA Technical Reports Server (NTRS)
Norbury, J. W.; Cucinotta, F. A.; Deutchman, P. A.; Townsend, L. W.
1986-01-01
Total cross sections angular distributions, and spectral distributions for the exclusive production of charged and neutral subthreshold pions produced in peripheral nucleus-nucleus collisions are calculated by using a particle-hole formalism. The pions result from the formation and decay of an isobar giant resonance state formed in a C-12 nucleus. From considerations of angular momentum conservation and for the sake of providing a unique experimental signature, the other nucleus, chosen for this work to be C-12 also, is assumed to be excited to one of its isovector (1+) giant resonance states. The effects of nucleon recoil by the pion emission are included, and Pauli blocking and pion absorption effects are studied by varying the isobar width. Detailed comparisons with experimental subthreshold pion data for incident energies between 35 and 86 MeV/nucleon are made.
Experimental determination of the inertia constants of an airplane or of a missile
NASA Technical Reports Server (NTRS)
Loiseau, H.
1983-01-01
The possibility to measure the inertia constants of an airplane or of a missile by a unique experimental set up without having to materialize axes of rotation was investigated. It is sufficient to suspend the structure appropriately, to obtain the six natural modes determined by the suspension and to introduce these results as data into a computer. If the structure is very flexible it is necessary to take into account the first natural modes of deformation. Experiments on rigid and flexible models led to precise results and allow consideration of full scale measurements. The final goal is to provide, by a standard ground vibration test completed by the measured characteristics of the suspension modes, the set of data necessary for flutter calculations and for the determination of all the inertia constants.
On continuous user authentication via typing behavior.
Roth, Joseph; Liu, Xiaoming; Metaxas, Dimitris
2014-10-01
We hypothesize that an individual computer user has a unique and consistent habitual pattern of hand movements, independent of the text, while typing on a keyboard. As a result, this paper proposes a novel biometric modality named typing behavior (TB) for continuous user authentication. Given a webcam pointing toward a keyboard, we develop real-time computer vision algorithms to automatically extract hand movement patterns from the video stream. Unlike the typical continuous biometrics, such as keystroke dynamics (KD), TB provides a reliable authentication with a short delay, while avoiding explicit key-logging. We collect a video database where 63 unique subjects type static text and free text for multiple sessions. For one typing video, the hands are segmented in each frame and a unique descriptor is extracted based on the shape and position of hands, as well as their temporal dynamics in the video sequence. We propose a novel approach, named bag of multi-dimensional phrases, to match the cross-feature and cross-temporal pattern between a gallery sequence and probe sequence. The experimental results demonstrate a superior performance of TB when compared with KD, which, together with our ultrareal-time demo system, warrant further investigation of this novel vision application and biometric modality.
Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran
2016-01-15
The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb(Zr,Ti)O_{3} ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d_{33} and the transverse strain constant d_{31} are calculated to be 520 and -200 pm/V, respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.
A Unique Power System For The ISS Fluids And Combustion Facility
NASA Technical Reports Server (NTRS)
Fox, David A.; Poljak, Mark D.
2001-01-01
Unique power control technology has been incorporated into an electrical power control unit (EPCU) for the Fluids and Combustion Facility (FCF). The objective is to maximize science throughput by providing a flexible power system that is easily reconfigured by the science payload. Electrical power is at a premium on the International Space Station (ISS). The EPCU utilizes advanced power management techniques to maximize the power available to the FCF experiments. The EPCU architecture enables dynamic allocation of power from two ISS power channels for experiments. Because of the unique flexible remote power controller (FRPC) design, power channels can be paralleled while maintaining balanced load sharing between the channels. With an integrated and redundant architecture, the EPCU can tolerate multiple faults and still maintain FCF operation. It is important to take full advantage of the EPCU functionality. The EPCU acts as a buffer between the experimenter and the ISS power system with all its complex requirements. However, FCF science payload developers will still need to follow guidelines when designing the FCF payload power system. This is necessary to ensure power system stability, fault coordination, electromagnetic compatibility, and maximum use of available power for gathering scientific data.
Bertails-Descoubes, Florence; Derouet-Jourdan, Alexandre; Romero, Victor; Lazarus, Arnaud
2018-04-01
Solving the equations for Kirchhoff elastic rods has been widely explored for decades in mathematics, physics and computer science, with significant applications in the modelling of thin flexible structures such as DNA, hair or climbing plants. As demonstrated in previous experimental and theoretical studies, the natural curvature plays an important role in the equilibrium shape of a Kirchhoff rod, even in the simple case where the rod is isotropic and suspended under gravity. In this paper, we investigate the reverse problem: can we characterize the natural curvature of a suspended isotropic rod, given an equilibrium curve? We prove that although there exists an infinite number of natural curvatures that are compatible with the prescribed equilibrium, they are all equivalent in the sense that they correspond to a unique natural shape for the rod. This natural shape can be computed efficiently by solving in sequence three linear initial value problems, starting from any framing of the input curve. We provide several numerical experiments to illustrate this uniqueness result, and finally discuss its potential impact on non-invasive parameter estimation and inverse design of thin elastic rods.
NASA Astrophysics Data System (ADS)
Gerd, Niestegge
2010-12-01
In the quantum mechanical Hilbert space formalism, the probabilistic interpretation is a later ad-hoc add-on, more or less enforced by the experimental evidence, but not motivated by the mathematical model itself. A model involving a clear probabilistic interpretation from the very beginning is provided by the quantum logics with unique conditional probabilities. It includes the projection lattices in von Neumann algebras and here probability conditionalization becomes identical with the state transition of the Lüders-von Neumann measurement process. This motivates the definition of a hierarchy of five compatibility and comeasurability levels in the abstract setting of the quantum logics with unique conditional probabilities. Their meanings are: the absence of quantum interference or influence, the existence of a joint distribution, simultaneous measurability, and the independence of the final state after two successive measurements from the sequential order of these two measurements. A further level means that two elements of the quantum logic (events) belong to the same Boolean subalgebra. In the general case, the five compatibility and comeasurability levels appear to differ, but they all coincide in the common Hilbert space formalism of quantum mechanics, in von Neumann algebras, and in some other cases.
NASA Astrophysics Data System (ADS)
Bertails-Descoubes, Florence; Derouet-Jourdan, Alexandre; Romero, Victor; Lazarus, Arnaud
2018-04-01
Solving the equations for Kirchhoff elastic rods has been widely explored for decades in mathematics, physics and computer science, with significant applications in the modelling of thin flexible structures such as DNA, hair or climbing plants. As demonstrated in previous experimental and theoretical studies, the natural curvature plays an important role in the equilibrium shape of a Kirchhoff rod, even in the simple case where the rod is isotropic and suspended under gravity. In this paper, we investigate the reverse problem: can we characterize the natural curvature of a suspended isotropic rod, given an equilibrium curve? We prove that although there exists an infinite number of natural curvatures that are compatible with the prescribed equilibrium, they are all equivalent in the sense that they correspond to a unique natural shape for the rod. This natural shape can be computed efficiently by solving in sequence three linear initial value problems, starting from any framing of the input curve. We provide several numerical experiments to illustrate this uniqueness result, and finally discuss its potential impact on non-invasive parameter estimation and inverse design of thin elastic rods.
Abrahamse, Evan; Minekus, Mans; van Aken, George A; van de Heijning, Bert; Knol, Jan; Bartke, Nana; Oozeer, Raish; van der Beek, Eline M; Ludwig, Thomas
2012-12-01
At least during the first 6 months after birth, the nutrition of infants should ideally consist of human milk which provides 40-60 % of energy from lipids. Beyond energy, human milk also delivers lipids with a specific functionality, such as essential fatty acids (FA), phospholipids, and cholesterol. Healthy development, especially of the nervous and digestive systems, depends fundamentally on these. Epidemiological data suggest that human milk provides unique health benefits during early infancy that extend to long-lasting benefits. Preclinical findings show that qualitative changes in dietary lipids, i.e., lipid structure and FA composition, during early life may contribute to the reported long-term effects. Little is known in this respect about the development of digestive function and the digestion and absorption of lipids by the newborn. This review gives a detailed overview of the distinct functionalities that dietary lipids from human milk and infant formula provide and the profound differences in the physiology and biochemistry of lipid digestion between infants and adults. Fundamental mechanisms of infant lipid digestion can, however, almost exclusively be elucidated in vitro. Experimental approaches and their challenges are reviewed in depth.
Ulmer, Candice Z; Ragland, Jared M; Koelmel, Jeremy P; Heckert, Alan; Jones, Christina M; Garrett, Timothy J; Yost, Richard A; Bowden, John A
2017-12-19
As advances in analytical separation techniques, mass spectrometry instrumentation, and data processing platforms continue to spur growth in the lipidomics field, more structurally unique lipid species are detected and annotated. The lipidomics community is in need of benchmark reference values to assess the validity of various lipidomics workflows in providing accurate quantitative measurements across the diverse lipidome. LipidQC addresses the harmonization challenge in lipid quantitation by providing a semiautomated process, independent of analytical platform, for visual comparison of experimental results of National Institute of Standards and Technology Standard Reference Material (SRM) 1950, "Metabolites in Frozen Human Plasma", against benchmark consensus mean concentrations derived from the NIST Lipidomics Interlaboratory Comparison Exercise.
2015-01-01
Background The comparison of analyte mass spectrometry precursor (MS1) signal is central to many proteomic (and other -omic) workflows. Standard vocabularies for mass spectrometry exist and provide good coverage for most experimental applications yet are insufficient for concise and unambiguous description of data concepts spanning the range of signal provenance from a molecular perspective (e.g. from charged peptides down to fine isotopes). Without a standard unambiguous nomenclature, literature searches, algorithm reproducibility and algorithm evaluation for MS-omics data processing are nearly impossible. Results We show how terms from current official ontologies are too vague or ambiguous to explicitly map molecular entities to MS signals and we illustrate the inconsistency and ambiguity of current colloquially used terms. We also propose a set of terms for MS1 signal that uniquely, succinctly and intuitively describe data concepts spanning the range of signal provenance from full molecule downs to fine isotopes. We suggest that additional community discussion of these terms should precede any further standardization efforts. We propose a novel nomenclature that spans the range of the required granularity to describe MS data processing from the perspective of the molecular provenance of the MS signal. Conclusions The proposed nomenclature provides a chain of succinct and unique terms spanning the signal created by a charged molecule down through each of its constituent subsignals. We suggest that additional community discussion of these terms should precede any further standardization efforts. PMID:25952148
The subjective experience of acute, experimentally-induced Salvia divinorum inebriation.
Addy, Peter H; Garcia-Romeu, Albert; Metzger, Matthew; Wade, Jenny
2015-04-01
This study examined the overall psychological effects of inebriation facilitated by the naturally-occurring plant hallucinogen Salvia divinorum using a double-blind, randomized, placebo-controlled trial. Thirty healthy individuals self-administered Salvia divinorum via combustion and inhalation in a quiet, comfortable research setting. Experimental sessions, post-session interviews, and 8-week follow-up meetings were audio recorded and transcribed to provide the primary qualitative material analyzed here. Additionally, post-session responses to the Hallucinogen Rating Scale provided a quantitative groundwork for mixed-methods discussion. Qualitative data underwent thematic content analysis, being coded independently by three researchers before being collaboratively integrated to provide the final results. Three main themes and 10 subthemes of acute intoxication emerged, encompassing the qualities of the experience, perceptual alterations, and cognitive-affective shifts. The experience was described as having rapid onset and being intense and unique. Participants reported marked changes in auditory, visual, and interoceptive sensory input; losing normal awareness of themselves and their surroundings; and an assortment of delusional phenomena. Additionally, the abuse potential of Salvia divinorum was examined post hoc. These findings are discussed in light of previous research, and provide an initial framework for greater understanding of the subjective effects of Salvia divinorum, an emerging drug of abuse. © The Author(s) 2015.
Smits, Kathleen; Eagen, Victoria; Trautz, Andrew
2015-01-01
Evaporation is directly influenced by the interactions between the atmosphere, land surface and soil subsurface. This work aims to experimentally study evaporation under various surface boundary conditions to improve our current understanding and characterization of this multiphase phenomenon as well as to validate numerical heat and mass transfer theories that couple Navier-Stokes flow in the atmosphere and Darcian flow in the porous media. Experimental data were collected using a unique soil tank apparatus interfaced with a small climate controlled wind tunnel. The experimental apparatus was instrumented with a suite of state of the art sensor technologies for the continuous and autonomous collection of soil moisture, soil thermal properties, soil and air temperature, relative humidity, and wind speed. This experimental apparatus can be used to generate data under well controlled boundary conditions, allowing for better control and gathering of accurate data at scales of interest not feasible in the field. Induced airflow at several distinct wind speeds over the soil surface resulted in unique behavior of heat and mass transfer during the different evaporative stages. PMID:26131928
NASA Astrophysics Data System (ADS)
Bantes, B.; Bayadilov, D.; Beck, R.; Becker, M.; Bella, A.; Bieling, J.; Böse, S.; Braglieri, A.; Brinkmann, K.; Burdeynyi, D.; Curciarello, F.; de Leo, V.; di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Frese, T.; Friedrick, S.; Frommberger, F.; Ganenko, V.; Gervino, G.; Ghio, F.; Giardina, G.; Girolami, B.; Glazier, D.; Goertz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hillert, W.; Ignatov, A.; Jahn, O.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I.; Mandaglio, G.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Nanova, M.; Nedorezov, V.; Noviskiy, D.; Pedroni, P.; Romaniuk, M.; Rostomyan, T.; Schaerf, C.; Schmieden, H.; Sumachev, V.; Tarakonov, V.; Vegna, V.; Vlasov, P.; Walther, D.; Watts, D.; Zaunick, H.-G.; Zimmermann, T.
2014-01-01
Meson photoproduction is a key tool for the experimental investigation of the nucleon excitation spectrum. To disentangle the specific couplings of resonances, in addition to the rather well measured pion and eta photoproduction channels it is mandatory to obtain information on channels involving strange and vector mesons and higher mass pseudoscalar mesons, and the associated multi-particle final states with both charged and neutral particles. In this respect, the new BGO-OD experiment at the ELSA accelerator of the University of Bonn's Physikalisches Institut provides unique instrumentation. We describe the experiment, present its status and the initial program of measurements.
A Unique Software System For Simulation-to-Flight Research
NASA Technical Reports Server (NTRS)
Chung, Victoria I.; Hutchinson, Brian K.
2001-01-01
"Simulation-to-Flight" is a research development concept to reduce costs and increase testing efficiency of future major aeronautical research efforts at NASA. The simulation-to-flight concept is achieved by using common software and hardware, procedures, and processes for both piloted-simulation and flight testing. This concept was applied to the design and development of two full-size transport simulators, a research system installed on a NASA B-757 airplane, and two supporting laboratories. This paper describes the software system that supports the simulation-to-flight facilities. Examples of various simulation-to-flight experimental applications were also provided.
Hydra as a tractable, long-lived model system for senescence.
Bellantuono, Anthony J; Bridge, Diane; Martínez, Daniel E
2015-01-30
Hydra represents a unique model system for the study of senescence, with the opportunity for the comparison of non-aging and induced senescence. Hydra maintains three stem cell lineages, used for continuous tissue morphogenesis and replacement. Recent work has elucidated the roles of the insulin/IGF-1 signaling target FoxO, of Myc proteins, and of PIWI proteins in Hydra stem cells. Under laboratory culture conditions, Hydra vulgaris show no signs of aging even under long-term study. In contrast, Hydra oligactis can be experimentally induced to undergo reproduction-associated senescence. This provides a powerful comparative system for future studies.
X-ray Fluorescence Holography: Principles, Apparatus, and Applications
NASA Astrophysics Data System (ADS)
Hayashi, Kouichi; Korecki, Pawel
2018-06-01
X-ray fluorescence holography (XFH) is an atomic structure determination technique that combines the capabilities of X-ray diffraction and X-ray fluorescence spectroscopy. It provides a unique means of gaining fully three-dimensional information about the local atomic structure and lattice site positions of selected elements inside compound samples. In this work, we discuss experimental and theoretical aspects that are essential for the efficient recording and analysis of X-ray fluorescence holograms and review the most recent advances in XFH. We describe experiments performed with brilliant synchrotron radiation as well as with tabletop setups that employ conventional X-ray tubes.
Inverter design for high frequency power distribution
NASA Technical Reports Server (NTRS)
King, R. J.
1985-01-01
A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.
Numerical Analyses of Subsoil-structure Interaction in Original Non-commercial Software based on FEM
NASA Astrophysics Data System (ADS)
Cajka, R.; Vaskova, J.; Vasek, J.
2018-04-01
For decades attention has been paid to interaction of foundation structures and subsoil and development of interaction models. Given that analytical solutions of subsoil-structure interaction could be deduced only for some simple shapes of load, analytical solutions are increasingly being replaced by numerical solutions (eg. FEM – Finite element method). Numerical analyses provides greater possibilities for taking into account the real factors involved in the subsoil-structure interaction and was also used in this article. This makes it possible to design the foundation structures more efficiently and still reliably and securely. Currently there are several software that, can deal with the interaction of foundations and subsoil. It has been demonstrated that non-commercial software called MKPINTER (created by Cajka) provides appropriately results close to actual measured values. In MKPINTER software stress-strain analysis of elastic half-space by means of Gauss numerical integration and Jacobean of transformation is done. Input data for numerical analysis were observed by experimental loading test of concrete slab. The loading was performed using unique experimental equipment which was constructed in the area Faculty of Civil Engineering, VŠB-TU Ostrava. The purpose of this paper is to compare resulting deformation of the slab with values observed during experimental loading test.
Electronic cigarette substitution in the experimental tobacco marketplace: A review.
Bickel, Warren K; Pope, Derek A; Kaplan, Brent A; Brady DeHart, W; Koffarnus, Mikhail N; Stein, Jeffrey S
2018-04-24
The evolution of science derives, in part, from the development and use of new methods and techniques. Here, we discuss one development that may have impact on the understanding of tobacco regulatory science: namely, the application of behavioral economics to the complex tobacco marketplace. The purpose of this paper is to review studies that examine conditions impacting the degree to which electronic nicotine delivery system (ENDS) products substitute for conventional cigarettes in the Experimental Tobacco Marketplace (ETM). Collectively, the following factors constitute the current experimental understanding of conditions that will affect ENDS use and substitution for conventional cigarettes: increasing the base price of conventional cigarettes, increasing taxation of conventional cigarettes, subsidizing the price of ENDS products, increasing ENDS nicotine strength, and providing narratives that illustrate the potential health benefits of ENDS consumption in lieu of conventional cigarettes. Each of these factors are likely moderated by consumer characteristics, which include prior ENDS use, ENDS use risk perception, and gender. Overall, the ETM provides a unique method to explore and identify the conditions by which various nicotine products may interact with one another that mimics the real world. In addition, the ETM permits the efficacy of a broad range of potential nicotine policies and regulations to be measured prior to governmental implementation. Copyright © 2017. Published by Elsevier Inc.
A Structural Dynamic Analysis of a Manduca Sexta Forewing
2010-03-01
Manduca Sexta wing, it is possible that the agreement with the first two experimental modes was the result of the non -uniqueness of the stiffness...flapping wings. Experimental t ests revealed the first three modes o f a cl amped Manduca Sexta wing in vacuum a re 86 H z, 106 H z, a nd 155 Hz; t...15 II. Experimental Methods
Experimental investigation of the dynamics of a brake shoe
NASA Astrophysics Data System (ADS)
Ivanova, T. B.; Erdakova, N. N.; Karavaev, Yu. L.
2016-12-01
The experimental stand is described and the results of investigation of the motion of a brake shoe are presented. In the noncritical region, the friction coefficient is determined experimentally. It is shown that its value corresponds to the condition of uniqueness of the solution for construction of this brake shoe. The dynamics observed in the paradoxical-motion region is described.
Development of a Dynamically Scaled Generic Transport Model Testbed for Flight Research Experiments
NASA Technical Reports Server (NTRS)
Jordan, Thomas; Langford, William; Belcastro, Christine; Foster, John; Shah, Gautam; Howland, Gregory; Kidd, Reggie
2004-01-01
This paper details the design and development of the Airborne Subscale Transport Aircraft Research (AirSTAR) test-bed at NASA Langley Research Center (LaRC). The aircraft is a 5.5% dynamically scaled, remotely piloted, twin-turbine, swept wing, Generic Transport Model (GTM) which will be used to provide an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. The unique design challenges arising from the dimensional, weight, dynamic (inertial), and actuator scaling requirements necessitated by the research community are described along with the specific telemetry and control issues associated with a remotely piloted subscale research aircraft. Development of the necessary operational infrastructure, including operational and safety procedures, test site identification, and research pilots is also discussed. The GTM is a unique vehicle that provides significant research capacity due to its scaling, data gathering, and control characteristics. By combining data from this testbed with full-scale flight and accident data, wind tunnel data, and simulation results, NASA will advance and validate control upset prevention and recovery technologies for transport aircraft, thereby reducing vehicle loss-of-control accidents resulting from adverse and upset conditions.
Comparative bioinformatics analyses and profiling of lysosome-related organelle proteomes
NASA Astrophysics Data System (ADS)
Hu, Zhang-Zhi; Valencia, Julio C.; Huang, Hongzhan; Chi, An; Shabanowitz, Jeffrey; Hearing, Vincent J.; Appella, Ettore; Wu, Cathy
2007-01-01
Complete and accurate profiling of cellular organelle proteomes, while challenging, is important for the understanding of detailed cellular processes at the organelle level. Mass spectrometry technologies coupled with bioinformatics analysis provide an effective approach for protein identification and functional interpretation of organelle proteomes. In this study, we have compiled human organelle reference datasets from large-scale proteomic studies and protein databases for seven lysosome-related organelles (LROs), as well as the endoplasmic reticulum and mitochondria, for comparative organelle proteome analysis. Heterogeneous sources of human organelle proteins and rodent homologs are mapped to human UniProtKB protein entries based on ID and/or peptide mappings, followed by functional annotation and categorization using the iProXpress proteomic expression analysis system. Cataloging organelle proteomes allows close examination of both shared and unique proteins among various LROs and reveals their functional relevance. The proteomic comparisons show that LROs are a closely related family of organelles. The shared proteins indicate the dynamic and hybrid nature of LROs, while the unique transmembrane proteins may represent additional candidate marker proteins for LROs. This comparative analysis, therefore, provides a basis for hypothesis formulation and experimental validation of organelle proteins and their functional roles.
Structural analysis of a set of proteins resulting from a bacterial genomics project.
Badger, J; Sauder, J M; Adams, J M; Antonysamy, S; Bain, K; Bergseid, M G; Buchanan, S G; Buchanan, M D; Batiyenko, Y; Christopher, J A; Emtage, S; Eroshkina, A; Feil, I; Furlong, E B; Gajiwala, K S; Gao, X; He, D; Hendle, J; Huber, A; Hoda, K; Kearins, P; Kissinger, C; Laubert, B; Lewis, H A; Lin, J; Loomis, K; Lorimer, D; Louie, G; Maletic, M; Marsh, C D; Miller, I; Molinari, J; Muller-Dieckmann, H J; Newman, J M; Noland, B W; Pagarigan, B; Park, F; Peat, T S; Post, K W; Radojicic, S; Ramos, A; Romero, R; Rutter, M E; Sanderson, W E; Schwinn, K D; Tresser, J; Winhoven, J; Wright, T A; Wu, L; Xu, J; Harris, T J R
2005-09-01
The targets of the Structural GenomiX (SGX) bacterial genomics project were proteins conserved in multiple prokaryotic organisms with no obvious sequence homolog in the Protein Data Bank of known structures. The outcome of this work was 80 structures, covering 60 unique sequences and 49 different genes. Experimental phase determination from proteins incorporating Se-Met was carried out for 45 structures with most of the remainder solved by molecular replacement using members of the experimentally phased set as search models. An automated tool was developed to deposit these structures in the Protein Data Bank, along with the associated X-ray diffraction data (including refined experimental phases) and experimentally confirmed sequences. BLAST comparisons of the SGX structures with structures that had appeared in the Protein Data Bank over the intervening 3.5 years since the SGX target list had been compiled identified homologs for 49 of the 60 unique sequences represented by the SGX structures. This result indicates that, for bacterial structures that are relatively easy to express, purify, and crystallize, the structural coverage of gene space is proceeding rapidly. More distant sequence-structure relationships between the SGX and PDB structures were investigated using PDB-BLAST and Combinatorial Extension (CE). Only one structure, SufD, has a truly unique topology compared to all folds in the PDB. Copyright 2005 Wiley-Liss, Inc.
Huang, Yi-Wen; Roa, Juan C.; Goodfellow, Paul J.; Kizer, E. Lynette; Huang, Tim H. M.; Chen, Yidong
2013-01-01
Background DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters. Methodology/Principal Findings Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework. Conclusions/Significance CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible at: http://cbbiweb.uthscsa.edu/KMethylomes/. PMID:23630576
Ambiguity assessment of small-angle scattering curves from monodisperse systems.
Petoukhov, Maxim V; Svergun, Dmitri I
2015-05-01
A novel approach is presented for an a priori assessment of the ambiguity associated with spherically averaged single-particle scattering. The approach is of broad interest to the structural biology community, allowing the rapid and model-independent assessment of the inherent non-uniqueness of three-dimensional shape reconstruction from scattering experiments on solutions of biological macromolecules. One-dimensional scattering curves recorded from monodisperse systems are nowadays routinely utilized to generate low-resolution particle shapes, but the potential ambiguity of such reconstructions remains a major issue. At present, the (non)uniqueness can only be assessed by a posteriori comparison and averaging of repetitive Monte Carlo-based shape-determination runs. The new a priori ambiguity measure is based on the number of distinct shape categories compatible with a given data set. For this purpose, a comprehensive library of over 14,000 shape topologies has been generated containing up to seven beads closely packed on a hexagonal grid. The computed scattering curves rescaled to keep only the shape topology rather than the overall size information provide a `scattering map' of this set of shapes. For a given scattering data set, one rapidly obtains the number of neighbours in the map and the associated shape topologies such that in addition to providing a quantitative ambiguity measure the algorithm may also serve as an alternative shape-analysis tool. The approach has been validated in model calculations on geometrical bodies and its usefulness is further demonstrated on a number of experimental X-ray scattering data sets from proteins in solution. A quantitative ambiguity score (a-score) is introduced to provide immediate and convenient guidance to the user on the uniqueness of the ab initio shape reconstruction from the given data set.
Gu, Fei; Doderer, Mark S; Huang, Yi-Wen; Roa, Juan C; Goodfellow, Paul J; Kizer, E Lynette; Huang, Tim H M; Chen, Yidong
2013-01-01
DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters. Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework. CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible at: http://cbbiweb.uthscsa.edu/KMethylomes/.
Measuring entanglement entropy of a generic many-body system with a quantum switch.
Abanin, Dmitry A; Demler, Eugene
2012-07-13
Entanglement entropy has become an important theoretical concept in condensed matter physics because it provides a unique tool for characterizing quantum mechanical many-body phases and new kinds of quantum order. However, the experimental measurement of entanglement entropy in a many-body system is widely believed to be unfeasible, owing to the nonlocal character of this quantity. Here, we propose a general method to measure the entanglement entropy. The method is based on a quantum switch (a two-level system) coupled to a composite system consisting of several copies of the original many-body system. The state of the switch controls how different parts of the composite system connect to each other. We show that, by studying the dynamics of the quantum switch only, the Rényi entanglement entropy of the many-body system can be extracted. We propose a possible design of the quantum switch, which can be realized in cold atomic systems. Our work provides a route towards testing the scaling of entanglement in critical systems as well as a method for a direct experimental detection of topological order.
Individual Differences in Pain: Understanding the Mosaic that Makes Pain Personal
Fillingim, Roger B.
2016-01-01
The experience of pain is characterized by tremendous inter-individual variability. Multiple biological and psychosocial variables contribute to these individual differences in pain, including demographic variables, genetic factors, and psychosocial processes. For example, sex, age and ethnic group differences in the prevalence of chronic pain conditions have been widely reported. Moreover, these demographic factors have been associated with responses to experimentally-induced pain. Similarly, both genetic and psychosocial factors contribute to clinical and experimental pain responses. Importantly, these different biopsychosocial influences interact with each other in complex ways to sculpt the experience of pain. Some genetic associations with pain have been found to vary across sex and ethnic group. Moreover, genetic factors also interact with psychosocial factors, including stress and pain catastrophizing, to influence pain. The individual and combined influences of these biological and psychosocial variables results in a unique mosaic of factors that contributes pain in each individual. Understanding these mosaics is critically important in order to provide optimal pain treatment, and future research to further elucidate the nature of these biopsychosocial interactions is needed in order to provide more informed and personalized pain care. PMID:27902569
Proton-induced knockout reactions with polarized and unpolarized beams
NASA Astrophysics Data System (ADS)
Wakasa, T.; Ogata, K.; Noro, T.
2017-09-01
Proton-induced knockout reactions provide a direct means of studying the single particle or cluster structures of target nuclei. In addition, these knockout reactions are expected to play a unique role in investigations of the effects of the nuclear medium on nucleon-nucleon interactions as well as the properties of nucleons and mesons. However, due to the nature of hadron probes, these reactions can suffer significant disturbances from the nuclear surroundings and the quantitative theoretical treatment of such processes can also be challenging. In this article, we review the experimental and theoretical progress in this field, particularly focusing on the use of these reactions as a spectroscopic tool and as a way to examine the medium modification of nucleon-nucleon interactions. With regard to the former aspect, the review presents a semi-quantitative evaluation of these reactions based on existing experimental data. In terms of the latter point, we introduce a significant body of evidence that suggests, although does not conclusively prove, the existence of medium effects. In addition, this paper also provides information and comments on other related subjects.
Range expansion promotes cooperation in an experimental microbial metapopulation
Datta, Manoshi Sen; Korolev, Kirill S.; Cvijovic, Ivana; Dudley, Carmel; Gore, Jeff
2013-01-01
Natural populations throughout the tree of life undergo range expansions in response to changes in the environment. Recent theoretical work suggests that range expansions can have a strong effect on evolution, even leading to the fixation of deleterious alleles that would normally be outcompeted in the absence of migration. However, little is known about how range expansions might influence alleles under frequency- or density-dependent selection. Moreover, there is very little experimental evidence to complement existing theory, since expanding populations are difficult to study in the natural environment. In this study, we have used a yeast experimental system to explore the effect of range expansions on the maintenance of cooperative behaviors, which commonly display frequency- and density-dependent selection and are widespread in nature. We found that range expansions favor the maintenance of cooperation in two ways: (i) through the enrichment of cooperators at the front of the expanding population and (ii) by allowing cooperators to “outrun” an invading wave of defectors. In this system, cooperation is enhanced through the coupling of population ecology and evolutionary dynamics in expanding populations, thus providing experimental evidence for a unique mechanism through which cooperative behaviors could be maintained in nature. PMID:23569263
Jefferson Lab Science: Present and Future
McKeown, Robert D.
2015-02-12
The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.
Sound pressure level gain in an acoustic metamaterial cavity.
Song, Kyungjun; Kim, Kiwon; Hur, Shin; Kwak, Jun-Hyuk; Park, Jihyun; Yoon, Jong Rak; Kim, Jedo
2014-12-11
The inherent attenuation of a homogeneous viscous medium limits radiation propagation, thereby restricting the use of many high-frequency acoustic devices to only short-range applications. Here, we design and experimentally demonstrate an acoustic metamaterial localization cavity which is used for sound pressure level (SPL) gain using double coiled up space like structures thereby increasing the range of detection. This unique behavior occurs within a subwavelength cavity that is 1/10(th) of the wavelength of the incident acoustic wave, which provides up to a 13 dB SPL gain. We show that the amplification results from the Fabry-Perot resonance of the cavity, which has a simultaneously high effective refractive index and effective impedance. We also experimentally verify the SPL amplification in an underwater environment at higher frequencies using a sample with an identical unit cell size. The versatile scalability of the design shows promising applications in many areas, especially in acoustic imaging and underwater communication.
NASA Astrophysics Data System (ADS)
Carotenuto, Luigi
This chapter introduces the context, objectives and structure of the book. This book aims both to contribute to disseminate the knowledge about the scientific research conducted in space and to promote new exploitation of existing data in this field. While space experiments are characterised by a long time for preparation, high costs and few opportunities, significant scientific value is expected from the resulting data for almost scientific disciplines. In this context, ISS is a unique experimental environment for research. As part of its Seventh Framework Programme, the European Commission intends to support further exploitation and valorisation of space experimental data. This book was realised as part of the ULISSE project, co-funded by the European Union. The book intends to provide an introduction to space research with a focus on the experiments performed on the ISS and related disciplines. The book also intends to be a useful guide, not only for scientists but also for teachers, students and newcomers to space research activities.
McCormack, Patrick; Han, Fei; Yan, Zijie
2018-02-01
Light-driven self-organization of metal nanoparticles (NPs) can lead to unique optical matter systems, yet simulation of such self-organization (i.e., optical binding) is a complex computational problem that increases nonlinearly with system size. Here we show that a combined electrodynamics-molecular dynamics simulation technique can simulate the trajectories and predict stable configurations of silver NPs in optical fields. The simulated dynamic equilibrium of a two-NP system matches the probability density of oscillations for two optically bound NPs obtained experimentally. The predicted stable configurations for up to eight NPs are further compared to experimental observations of silver NP clusters formed by optical binding in a Bessel beam. All configurations are confirmed to form in real systems, including pentagonal clusters with five-fold symmetry. Our combined simulations and experiments have revealed a diverse optical matter system formed by anisotropic optical binding interactions, providing a new strategy to discover artificial materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sava Gallis, Dorina F.; Ermanoski, Ivan; Greathouse, Jeffrey A.
Here, we present a combined experimental and Grand Canonical Monte Carlo (GCMC) modeling study on the adsorption of iodine in three classes of nanoporous materials: activated charcoals, zeolites, and metal–organic frameworks (MOFs). Iodine adsorption profiles were measured for the first time in situ, with a uniquely designed sorption apparatus. It was determined that pore size and pore environment are responsible for a dynamic adsorption profile, correlated with distinct pressure ranges. At pressures below 0.3 atm, iodine adsorption is governed by a combination of small pores and extra-framework components (e.g., Ag+ ions in the zeolite mordenite). At regimes above 0.3 atm,more » the amount of iodine gas stored relates with an increase in pore size and specific surface area. GCMC results validate the trends noted experimentally and in addition provide a measure of the strength of the adsorbate–adsorbent interactions in these materials.« less
Fabrication of flexible, multimodal light-emitting devices for wireless optogenetics
Huang, Xian; Jung, Yei Hwan; Al-Hasani, Ream; Omenetto, Fiorenzo G.
2014-01-01
Summary The rise of optogenetics provides unique opportunities to advance materials and biomedical engineering as well as fundamental understanding in neuroscience. This protocol describes the fabrication of optoelectronic devices for studying intact neural systems. Unlike optogenetic approaches that rely on rigid fiber optics tethered to external light sources, these novel devices utilize flexible substrates to carry wirelessly powered microscale, inorganic light-emitting diodes (μ-ILEDs) and multimodal sensors inside the brain. We describe the technical procedures for construction of these devices, their corresponding radiofrequency power scavengers, and their implementation in vivo for experimental application. In total, the timeline of the procedure, including device fabrication, implantation, and preparation to begin in vivo experimentation, can be completed in approximately 3–8 weeks. Implementation of these devices allows for chronic (tested up to six months), wireless optogenetic manipulation of neural circuitry in animals experiencing behaviors such as social interaction, home cage, and other complex natural environments. PMID:24202555
Acoustic topological insulator and robust one-way sound transport
NASA Astrophysics Data System (ADS)
He, Cheng; Ni, Xu; Ge, Hao; Sun, Xiao-Chen; Chen, Yan-Bin; Lu, Ming-Hui; Liu, Xiao-Ping; Chen, Yan-Feng
2016-12-01
Topological design of materials enables topological symmetries and facilitates unique backscattering-immune wave transport. In airborne acoustics, however, the intrinsic longitudinal nature of sound polarization makes the use of the conventional spin-orbital interaction mechanism impossible for achieving band inversion. The topological gauge flux is then typically introduced with a moving background in theoretical models. Its practical implementation is a serious challenge, though, due to inherent dynamic instabilities and noise. Here we realize the inversion of acoustic energy bands at a double Dirac cone and provide an experimental demonstration of an acoustic topological insulator. By manipulating the hopping interaction of neighbouring ’atoms’ in this new topological material, we successfully demonstrate the acoustic quantum spin Hall effect, characterized by robust pseudospin-dependent one-way edge sound transport. Our results are promising for the exploration of new routes for experimentally studying topological phenomena and related applications, for example, sound-noise reduction.
Overview and recent progress of the Magnetized Shock Experiment (MSX)
NASA Astrophysics Data System (ADS)
Weber, T. E.; Intrator, T. P.; Smith, R. J.; Hutchinson, T. M.; Boguski, J. C.; Sears, J. A.; Swan, H. O.; Gao, K. W.; Chapdelaine, L. J.; Winske, D.; Dunn, J. P.
2013-10-01
The Magnetized Shock Experiment (MSX) has been constructed to study the physics of super-Alfvènic, supercritical, magnetized shocks. Exhibiting transitional length and time scales much smaller than can be produced through collisional processes, these shocks are observed to create non-thermal distributions, amplify magnetic fields, and accelerate particles to relativistic velocities. Shocks are produced through the acceleration and subsequent stagnation of Field Reversed Configuration (FRC) plasmoids against a high-flux magnetic mirror with a conducting boundary or a plasma target with embedded field. Adjustable shock velocity, density, and magnetic geometry (B parallel, perpendicular, or oblique to k) provide unique access to a wide range of dimensionless parameters relevant to astrophysical shocks. Information regarding the experimental configuration, diagnostics suite, recent simulations, experimental results, and physics goals will be presented. This work is supported by DOE OFES and NNSA under LANS contract DE-AC52-06NA25369 Approved for Public Release: LA-UR-13-24859.
NASA Astrophysics Data System (ADS)
Ren, Guanghui; Yudistira, Didit; Nguyen, Thach G.; Khodasevych, Iryna; Schoenhardt, Steffen; Berean, Kyle J.; Hamm, Joachim M.; Hess, Ortwin; Mitchell, Arnan
2017-07-01
Nanoscale plasmonic structures can offer unique functionality due to extreme sub-wavelength optical confinement, but the realization of complex plasmonic circuits is hampered by high propagation losses. Hybrid approaches can potentially overcome this limitation, but only few practical approaches based on either single or few element arrays of nanoantennas on dielectric nanowire have been experimentally demonstrated. In this paper, we demonstrate a two dimensional hybrid photonic plasmonic crystal interfaced with a standard silicon photonic platform. Off resonance, we observe low loss propagation through our structure, while on resonance we observe strong propagation suppression and intense concentration of light into a dense lattice of nanoscale hot-spots on the surface providing clear evidence of a hybrid photonic plasmonic crystal bandgap. This fully integrated approach is compatible with established silicon-on-insulator (SOI) fabrication techniques and constitutes a significant step toward harnessing plasmonic functionality within SOI photonic circuits.
An OSI architecture for the deep space network
NASA Technical Reports Server (NTRS)
Heuser, W. Randy; Cooper, Lynne P.
1993-01-01
The flexibility and robustness of a monitor and control system are a direct result of the underlying inter-processor communications architecture. A new architecture for monitor & Control at the Deep Space Network Communications Complexes has been developed based on the Open System Interconnection (OSI) standards. The suitability of OSI standards for DSN M&C has been proven in the laboratory. The laboratory success has resulted in choosing an OSI-based architecture for DSS-13 M&C. DSS-13 is the DSN experimental station and is not part of the 'operational' DSN; it's role is to provide an environment to test new communications concepts can be tested and conduct unique science experiments. Therefore, DSS-13 must be robust enough to support operational activities, while also being flexible enough to enable experimentation. This paper describes the M&C architecture developed for DSS-13 and the results from system and operational testing.
Experimental realization of a subwavelength optical potential based on atomic dark state
NASA Astrophysics Data System (ADS)
Wang, Yang; Subhankar, Sarthak; Rolston, Steven; Porto, James
2017-04-01
As a well-established tool optical lattice (OL) provides the unique opportunity to exploit the rich manybody physics. However, ``traditional'' OL, either via laser beam interference or direct projection with spatial light modulator, has a length scale around the wavelength (0.1 10 λ) that is set by diffraction, a fundamental limit from the wave nature of the light. Recent theoretical proposals suggest an alternative route, where the geometric potential, stemming from light-atom interaction, can be engineered to generate a much finer potential landscape which is essentially limited by the wave nature of the slow moving cold atoms. We report on the progress towards an experimental realization of these ideas using degenerate fermionic ytterbium atoms. Such subwavelength optical potential could open the gate to study physics beyond currently available parameter regimes, such as enhanced super-exchange coupling, magnetic dipolar coupling, and tunnel junction in atomtronics.
Genetic and environmental melanoma models in fish
Patton, E Elizabeth; Mitchell, David L; Nairn, Rodney S
2010-01-01
Experimental animal models are extremely valuable for the study of human diseases, especially those with underlying genetic components. The exploitation of various animal models, from fruitflies to mice, has led to major advances in our understanding of the etiologies of many diseases, including cancer. Cutaneous malignant melanoma is a form of cancer for which both environmental insult (i.e., UV) and hereditary predisposition are major causative factors. Fish melanoma models have been used in studies of both spontaneous and induced melanoma formation. Genetic hybrids between platyfish and swordtails, different species of the genus Xiphophorus, have been studied since the 1920s to identify genetic determinants of pigmentation and melanoma formation. Recently, transgenesis has been used to develop zebrafish and medaka models for melanoma research. This review will provide a historical perspective on the use of fish models in melanoma research, and an updated summary of current and prospective studies using these unique experimental systems. PMID:20230482
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Zavodsky, Bradley T.; Srikishen, Jayanthi; Limaye, Ashutosh; Blankenship, Clay B.
2016-01-01
Flooding, severe weather, and drought are key forecasting challenges for the Kenya Meteorological Department (KMD), based in Nairobi, Kenya. Atmospheric processes leading to convection, excessive precipitation and/or prolonged drought can be strongly influenced by land cover, vegetation, and soil moisture content, especially during anomalous conditions and dry/wet seasonal transitions. It is thus important to represent accurately land surface state variables (green vegetation fraction, soil moisture, and soil temperature) in Numerical Weather Prediction (NWP) models. The NASA SERVIR and the Short-term Prediction Research and Transition (SPoRT) programs in Huntsville, AL have established a working partnership with KMD to enhance its regional modeling capabilities. SPoRT and SERVIR are providing experimental land surface initialization datasets and model verification capabilities for capacity building at KMD. To support its forecasting operations, KMD is running experimental configurations of the Weather Research and Forecasting (WRF; Skamarock et al. 2008) model on a 12-km/4-km nested regional domain over eastern Africa, incorporating the land surface datasets provided by NASA SPoRT and SERVIR. SPoRT, SERVIR, and KMD participated in two training sessions in March 2014 and June 2015 to foster the collaboration and use of unique land surface datasets and model verification capabilities. Enhanced regional modeling capabilities have the potential to improve guidance in support of daily operations and high-impact weather and climate outlooks over Eastern Africa. For enhanced land-surface initialization, the NASA Land Information System (LIS) is run over Eastern Africa at 3-km resolution, providing real-time land surface initialization data in place of interpolated global model soil moisture and temperature data available at coarser resolutions. Additionally, real-time green vegetation fraction (GVF) composites from the Suomi-NPP VIIRS instrument is being incorporated into the KMD-WRF runs, using the product generated by NOAA/NESDIS. Model verification capabilities are also being transitioned to KMD using NCAR's Model *Corresponding author address: Jonathan Case, ENSCO, Inc., 320 Sparkman Dr., Room 3008, Huntsville, AL, 35805. Email: Jonathan.Case-1@nasa.gov Evaluation Tools (MET; Brown et al. 2009) software in conjunction with a SPoRT-developed scripting package, in order to quantify and compare errors in simulated temperature, moisture and precipitation in the experimental WRF model simulations. This extended abstract and accompanying presentation summarizes the efforts and training done to date to support this unique regional modeling initiative at KMD. To honor the memory of Dr. Peter J. Lamb and his extensive efforts in bolstering weather and climate science and capacity-building in Africa, we offer this contribution to the special Peter J. Lamb symposium. The remainder of this extended abstract is organized as follows. The collaborating international organizations involved in the project are presented in Section 2. Background information on the unique land surface input datasets is presented in Section 3. The hands-on training sessions from March 2014 and June 2015 are described in Section 4. Sample experimental WRF output and verification from the June 2015 training are given in Section 5. A summary is given in Section 6, followed by Acknowledgements and References.
Røn, Troels; Jacobsen, Kristina Pilgaard; Lee, Seunghwan
2018-04-24
In this study, we introduce a new experimental approach to characterize the forces emerging from simulated catherization. This setup allows for a linear translation of urinary catheters in vertical direction as controlled by an actuator. By employing silicone-based elastomer with a duct of comparable diameter with catheters as urethra model, sliding contacts during the translation of catheters along the duct is generated. A most unique design and operation feature of this setup is that a digital balance was employed as the sensor to detect emerging forces from simulated catherization. Moreover, the possibility to give a variation in environment (ambient air vs. water), clearance, elasticity, and curvature of silicone-based urethra model allows for the detection of forces arising from diverse simulated catherization conditions. Two types of commercially available catheters varying in tubing materials and surface coatings were tested together with their respective uncoated catheter tubing. The first set of testing on the catheter samples showed that this setup can probe the combined effect from flexural strain of bulk tubing materials and slipperiness of surface coatings, both of which are expected to affect the comfort and smooth gliding in clinical catherization. We argue that this new experimental setup can provide unique and valuable information in preclinical friction testing of urinary catheters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Genomics Portals: integrative web-platform for mining genomics data.
Shinde, Kaustubh; Phatak, Mukta; Johannes, Freudenberg M; Chen, Jing; Li, Qian; Vineet, Joshi K; Hu, Zhen; Ghosh, Krishnendu; Meller, Jaroslaw; Medvedovic, Mario
2010-01-13
A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems. Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc), and the integration with an extensive knowledge base that can be used in such analysis. The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org.
Genomics Portals: integrative web-platform for mining genomics data
2010-01-01
Background A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems. Results Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc), and the integration with an extensive knowledge base that can be used in such analysis. Conclusion The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org. PMID:20070909
Invariants of the Jacobi-Porstendorfer room model for radon progeny in indoor air.
Thomas, Josef; Jilek, Karel
2012-06-01
The Jacobi-Porstendörfer room model, describing the dynamical behaviour of radon and radon progeny in indoor air, has been successfully used for decades. The inversion of the model-the determination of the five parameters from measured results which provide better information on the room environment than mere ratios of unattached and attached radon progeny-is treated as an algebraic task. The linear interdependence of the used equations strongly limits the algebraic invertibility of experimental results. For a unique solution, the fulfilment of two invariants of the room model for the measured results is required. Non-fulfilment of these model invariants by the measured results leads to a set of non-identical solutions and indicates the violation of the conditions required by the room model or the incorrectness or excessive uncertainties of the measured results. The limited and non-unique algebraic invertibility of the room model is analysed numerically using our own data for the radon progeny.
Materials design principles of ancient fish armour
NASA Astrophysics Data System (ADS)
Bruet, Benjamin J. F.; Song, Juha; Boyce, Mary C.; Ortiz, Christine
2008-09-01
Knowledge of the structure-property-function relationships of dermal scales of armoured fish could enable pathways to improved bioinspired human body armour, and may provide clues to the evolutionary origins of mineralized tissues. Here, we present a multiscale experimental and computational approach that reveals the materials design principles present within individual ganoid scales from the `living fossil' Polypterus senegalus. This fish belongs to the ancient family Polypteridae, which first appeared 96 million years ago during the Cretaceous period and still retains many of their characteristics. The mechanistic origins of penetration resistance (approximating a biting attack) were investigated and found to include the juxtaposition of multiple distinct reinforcing composite layers that each undergo their own unique deformation mechanisms, a unique spatial functional form of mechanical properties with regions of differing levels of gradation within and between material layers, and layers with an undetectable gradation, load-dependent effective material properties, circumferential surface cracking, orthogonal microcracking in laminated sublayers and geometrically corrugated junctions between layers.
Materials design principles of ancient fish armour.
Bruet, Benjamin J F; Song, Juha; Boyce, Mary C; Ortiz, Christine
2008-09-01
Knowledge of the structure-property-function relationships of dermal scales of armoured fish could enable pathways to improved bioinspired human body armour, and may provide clues to the evolutionary origins of mineralized tissues. Here, we present a multiscale experimental and computational approach that reveals the materials design principles present within individual ganoid scales from the 'living fossil' Polypterus senegalus. This fish belongs to the ancient family Polypteridae, which first appeared 96 million years ago during the Cretaceous period and still retains many of their characteristics. The mechanistic origins of penetration resistance (approximating a biting attack) were investigated and found to include the juxtaposition of multiple distinct reinforcing composite layers that each undergo their own unique deformation mechanisms, a unique spatial functional form of mechanical properties with regions of differing levels of gradation within and between material layers, and layers with an undetectable gradation, load-dependent effective material properties, circumferential surface cracking, orthogonal microcracking in laminated sublayers and geometrically corrugated junctions between layers.
NASA Technical Reports Server (NTRS)
Datta, Anubhav; Yeo, Hyeonsoo; Norman, Thomas R.
2011-01-01
This paper describes and analyzes the measurements from a full-scale, slowed RPM, UH-60A rotor tested at the National Full-Scale Aerodynamics Complex 40- by 80- ft wind tunnel up to an advance ratio of 1.0. A comprehensive set of measurements, that includes performance, blade loads, hub loads and pressures/airloads makes this data set unique. The measurements reveal new and rich aeromechanical phenomena that are special to this exotic regime. These include reverse chord dynamic stall, retreating side impulse in pitch-link load, large inboard-outboard elastic twist differential, supersonic flow at low subsonic advancing tip Mach numbers, diminishing rotor forces yet dramatic build up of blade loads, and dramatic blade loads yet benign levels of vibratory hub loads. The objective of this research is the fundamental understanding of these unique aeromechanical phenomena. The intent is to provide useful knowledge for the design of high speed, high efficiency, slowed RPM rotors of the future and a challenging database for advanced analyses validation.
A statistical framework for multiparameter analysis at the single-cell level.
Torres-García, Wandaliz; Ashili, Shashanka; Kelbauskas, Laimonas; Johnson, Roger H; Zhang, Weiwen; Runger, George C; Meldrum, Deirdre R
2012-03-01
Phenotypic characterization of individual cells provides crucial insights into intercellular heterogeneity and enables access to information that is unavailable from ensemble averaged, bulk cell analyses. Single-cell studies have attracted significant interest in recent years and spurred the development of a variety of commercially available and research-grade technologies. To quantify cell-to-cell variability of cell populations, we have developed an experimental platform for real-time measurements of oxygen consumption (OC) kinetics at the single-cell level. Unique challenges inherent to these single-cell measurements arise, and no existing data analysis methodology is available to address them. Here we present a data processing and analysis method that addresses challenges encountered with this unique type of data in order to extract biologically relevant information. We applied the method to analyze OC profiles obtained with single cells of two different cell lines derived from metaplastic and dysplastic human Barrett's esophageal epithelium. In terms of method development, three main challenges were considered for this heterogeneous dynamic system: (i) high levels of noise, (ii) the lack of a priori knowledge of single-cell dynamics, and (iii) the role of intercellular variability within and across cell types. Several strategies and solutions to address each of these three challenges are presented. The features such as slopes, intercepts, breakpoint or change-point were extracted for every OC profile and compared across individual cells and cell types. The results demonstrated that the extracted features facilitated exposition of subtle differences between individual cells and their responses to cell-cell interactions. With minor modifications, this method can be used to process and analyze data from other acquisition and experimental modalities at the single-cell level, providing a valuable statistical framework for single-cell analysis.
Guitton, Yann; Tremblay-Franco, Marie; Le Corguillé, Gildas; Martin, Jean-François; Pétéra, Mélanie; Roger-Mele, Pierrick; Delabrière, Alexis; Goulitquer, Sophie; Monsoor, Misharl; Duperier, Christophe; Canlet, Cécile; Servien, Rémi; Tardivel, Patrick; Caron, Christophe; Giacomoni, Franck; Thévenot, Etienne A
2017-12-01
Metabolomics is a key approach in modern functional genomics and systems biology. Due to the complexity of metabolomics data, the variety of experimental designs, and the multiplicity of bioinformatics tools, providing experimenters with a simple and efficient resource to conduct comprehensive and rigorous analysis of their data is of utmost importance. In 2014, we launched the Workflow4Metabolomics (W4M; http://workflow4metabolomics.org) online infrastructure for metabolomics built on the Galaxy environment, which offers user-friendly features to build and run data analysis workflows including preprocessing, statistical analysis, and annotation steps. Here we present the new W4M 3.0 release, which contains twice as many tools as the first version, and provides two features which are, to our knowledge, unique among online resources. First, data from the four major metabolomics technologies (i.e., LC-MS, FIA-MS, GC-MS, and NMR) can be analyzed on a single platform. By using three studies in human physiology, alga evolution, and animal toxicology, we demonstrate how the 40 available tools can be easily combined to address biological issues. Second, the full analysis (including the workflow, the parameter values, the input data and output results) can be referenced with a permanent digital object identifier (DOI). Publication of data analyses is of major importance for robust and reproducible science. Furthermore, the publicly shared workflows are of high-value for e-learning and training. The Workflow4Metabolomics 3.0 e-infrastructure thus not only offers a unique online environment for analysis of data from the main metabolomics technologies, but it is also the first reference repository for metabolomics workflows. Copyright © 2017 Elsevier Ltd. All rights reserved.
Defrin, Ruth; Schreiber, Shaul; Ginzburg, Karni
2015-10-01
Posttraumatic stress disorder (PTSD) and chronic pain often co-occur and exacerbate each other. Elucidating the mechanism of this co-occurrence therefore has clinical importance. Previously, patients with PTSD with chronic pain were found to demonstrate a unique paradoxical pain profile: hyperresponsiveness together with hyposensitivity to pain. Our aim was to examine whether 2 seemingly paradoxical facets of PTSD (anxiety and dissociation) underlie this paradoxical profile. Patients with PTSD (n = 32) and healthy control individuals (n = 43) underwent psychophysical testing and completed questionnaires. Patients with PTSD had higher pain thresholds and higher pain ratings to suprathreshold stimuli than control individuals. Pain thresholds were positively associated with dissociation levels and negatively associated with anxiety sensitivity levels. Experimental pain ratings were positively associated with anxiety sensitivity and negatively related to dissociation levels. Chronic pain intensity was associated with anxiety, anxiety sensitivity, and pain catastrophizing. It appears that reduced conscious attention toward incoming stimuli, resulting from dissociation, causes delayed response in pain threshold measurement, whereas biases toward threatening stimuli and decreased inhibition, possibly caused by increased anxiety, are responsible for the intensification of experimental and chronic pain. The paradoxical facets of PTSD and their particular influences over pain perception seem to reinforce the coexistence of PTSD and chronic pain, and should be considered when treating traumatized individuals. This article provides new information regarding the underlying mechanism of the coexistence of PTSD and chronic pain. This knowledge could help to provide better management of PTSD and chronic pain among individuals in the aftermath of trauma. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.
CO 2 utilization and storage in shale gas reservoirs: Experimental results and economic impacts
Schaef, Herbert T.; Davidson, Casie L.; Owen, Antionette Toni; ...
2014-12-31
Natural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO 2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO 2 emissions involves coupling CO 2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO 2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gasesmore » (CH 4 and CO 2) and associated economic consequences. Where enhanced condensation of CO 2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH 4. Volumetric changes to montmorillonites occur during exposure to CO 2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO 2 intercalation. Thus, experimental evidence suggests CH 4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH 4:CO 2 gas systems, where CH 4 concentrations prevail, indicate preferential CO 2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO 2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH 4/CO 2 exchange rates to obtain peak natural gas production.« less
Recent Progress in DIB Research: Survey of PAHS and DIBS
NASA Technical Reports Server (NTRS)
Salama, Farid; Galazutdinov, G.; Krelowski, J.; Biennier, L.; Beletsky, Y.; Song, I.
2013-01-01
The spectra of several neutral and ionized PAHs isolated in the gas phase at low temperature have been measured in the laboratory under experimental conditions that mimic interstellar conditions and are compared with an extensive set of astronomical spectra of reddened, early type stars [1, 2]. The comparisons of astronomical and laboratory data provide upper limits for the abundances of specific neutral PAH molecules and ions along specific lines-of-sight. Something that is not attainable from infrared observations alone. We present the characteristics of the laboratory facility (COSmIC) that was developed for this study and discuss the findings resulting from the comparison of these unique laboratory data with high resolution, high S/N ratio astronomical observations. COSmIC combines a supersonic free jet expansion with discharge plasma and high-sensitivity cavity ringdown spectroscopy and provides experimental conditions that closely mimic the interstellar conditions. The column densities of the individual neutral PAH molecules and ions probed in these surveys are derived from the comparison of these unique laboratory data with high resolution, high S/N ratio astronomical observations. The comparisons of astronomical and laboratory data lead to clear and unambiguous conclusions regarding the expected abundances for PAHs of various sizes and charge states in the interstellar environments probed in the surveys. Band profile comparisons between laboratory and astronomical spectra lead to information regarding the molecular structures and characteristics associated with the DIB carriers in the corresponding lines-of-sight. These quantitative surveys of neutral and ionized PAHs in the optical range open the way for unambiguous quantitative searches of PAHs and complex organics in a variety of interstellar and circumstellar environments.
Comparison of GEANT4 very low energy cross section models with experimental data in water.
Incerti, S; Ivanchenko, A; Karamitros, M; Mantero, A; Moretto, P; Tran, H N; Mascialino, B; Champion, C; Ivanchenko, V N; Bernal, M A; Francis, Z; Villagrasa, C; Baldacchin, G; Guèye, P; Capra, R; Nieminen, P; Zacharatou, C
2010-09-01
The GEANT4 general-purpose Monte Carlo simulation toolkit is able to simulate physical interaction processes of electrons, hydrogen and helium atoms with charge states (H0, H+) and (He0, He+, He2+), respectively, in liquid water, the main component of biological systems, down to the electron volt regime and the submicrometer scale, providing GEANT4 users with the so-called "GEANT4-DNA" physics models suitable for microdosimetry simulation applications. The corresponding software has been recently re-engineered in order to provide GEANT4 users with a coherent and unique approach to the simulation of electromagnetic interactions within the GEANT4 toolkit framework (since GEANT4 version 9.3 beta). This work presents a quantitative comparison of these physics models with a collection of experimental data in water collected from the literature. An evaluation of the closeness between the total and differential cross section models available in the GEANT4 toolkit for microdosimetry and experimental reference data is performed using a dedicated statistical toolkit that includes the Kolmogorov-Smirnov statistical test. The authors used experimental data acquired in water vapor as direct measurements in the liquid phase are not yet available in the literature. Comparisons with several recommendations are also presented. The authors have assessed the compatibility of experimental data with GEANT4 microdosimetry models by means of quantitative methods. The results show that microdosimetric measurements in liquid water are necessary to assess quantitatively the validity of the software implementation for the liquid water phase. Nevertheless, a comparison with existing experimental data in water vapor provides a qualitative appreciation of the plausibility of the simulation models. The existing reference data themselves should undergo a critical interpretation and selection, as some of the series exhibit significant deviations from each other. The GEANT4-DNA physics models available in the GEANT4 toolkit have been compared in this article to available experimental data in the water vapor phase as well as to several published recommendations on the mass stopping power. These models represent a first step in the extension of the GEANT4 Monte Carlo toolkit to the simulation of biological effects of ionizing radiation.
Issues concerning the updating of finite-element models from experimental data
NASA Technical Reports Server (NTRS)
Dunn, Shane A.
1994-01-01
Some issues concerning the updating of dynamic finite-element models by incorporation of experimental data are examined here. It is demonstrated how the number of unknowns can be greatly reduced if the physical nature of the model is maintained. The issue of uniqueness is also examined and it is shown that a number of previous workers have been mistaken in their attempts to define both sufficient and necessary measurement requirements for the updating problem to be solved uniquely. The relative merits of modal and frequency response function (frf) data are discussed and it is shown that for measurements at fewer degrees of freedom than are present in the model, frf data will be unlikely to converge easily to a solution. It is then examined how such problems may become more tractable by using new experimental techniques which would allow measurements at all degrees of freedom present in the mathematical model.
Hypertension and counter-hypertension mechanisms in giraffes.
Zhang, Qiong Gus
2006-03-01
The giraffe is unique as its head is 2500-3000 millimeters above its heart, thus the giraffe's heart must pump hard enough to overcome the huge hydrostatic pressure generated by the tall column of blood in its neck in order to provide its head with sufficient nutrients and oxygen. Giraffes therefore have exceptionally high blood pressure (hypertension) by human standards. Interestingly, the "unnaturally" high blood pressure in giraffes does not culminate in severe vascular lesions, nor does it lead to heart and kidney failure, whereas in humans, the same blood pressure is exceedingly dangerous and will cause severe vascular damage. Intrinsically, natural selection likely has provided an important protective mechanism, because hypertension develops as soon as the giraffe stands up and erects its neck immediately after birth. Therefore, those individual giraffes who did not tolerate the burden of hypertension presumably developed acute heart failure and renal failure, not surviving to reproductive age. The genes and genotypes of animals that did not survive are thus predicted to have been gradually eliminated from the gene pool by natural selection. By the same process, genes that protect against hypertensive damage would be preserved and inherited from generation to generation. Some unique ingredients of the giraffe's diet may also provide an extrinsic mechanism for the prevention of hypertension and the prevention of fatal end-stage organ damage. The fascinating nature of the protective mechanisms in giraffes may provide a conceptual framework for further experimental investigations into mechanisms as well as prevention and treatment of human hypertension and cardiovascular disease.
Yuan, Zhaohe; Fang, Yanming; Zhang, Taikui; Fei, Zhangjun; Han, Fengming; Liu, Cuiyu; Liu, Min; Xiao, Wei; Zhang, Wenjing; Wu, Shan; Zhang, Mengwei; Ju, Youhui; Xu, Huili; Dai, He; Liu, Yujun; Chen, Yanhui; Wang, Lili; Zhou, Jianqing; Guan, Dian; Yan, Ming; Xia, Yanhua; Huang, Xianbin; Liu, Dongyuan; Wei, Hongmin; Zheng, Hongkun
2017-12-22
Pomegranate (Punica granatum L.) has an ancient cultivation history and has become an emerging profitable fruit crop due to its attractive features such as the bright red appearance and the high abundance of medicinally valuable ellagitannin-based compounds in its peel and aril. However, the limited genomic resources have restricted further elucidation of genetics and evolution of these interesting traits. Here, we report a 274-Mb high-quality draft pomegranate genome sequence, which covers approximately 81.5% of the estimated 336-Mb genome, consists of 2177 scaffolds with an N50 size of 1.7 Mb and contains 30 903 genes. Phylogenomic analysis supported that pomegranate belongs to the Lythraceae family rather than the monogeneric Punicaceae family, and comparative analyses showed that pomegranate and Eucalyptus grandis share the paleotetraploidy event. Integrated genomic and transcriptomic analyses provided insights into the molecular mechanisms underlying the biosynthesis of ellagitannin-based compounds, the colour formation in both peels and arils during pomegranate fruit development, and the unique ovule development processes that are characteristic of pomegranate. This genome sequence provides an important resource to expand our understanding of some unique biological processes and to facilitate both comparative biology studies and crop breeding. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Current and Future Research at DANCE
NASA Astrophysics Data System (ADS)
Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Hayes, A.; Kawano, T.; Mosby, S.; Rusev, G.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Walker, C. L.; Wilhelmy, J. B.
2015-05-01
An overview of the current experimental program on measurements of neutron capture and neutron induced fission at the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridgham, Scott D.; Keller, Jason K.; Zhuang, Qianlai
This project was funded from June 15, 2012 through June 15, 2015, with a no-cost extension until Sept. 15, 2016. Our project focused on a whole-ecosystem warming and enhanced atmospheric CO 2 experiment in the S1 Bog in Marcell Experimental Forest in northern Minnesota, USA called “Spruce and Peatland Responses Under Climatic and Environmental Change” (SPRUCE; http://mnspruce.ornl.gov). Construction of substantial infrastructure required for these treatments was beyond our control and led to a staggered initiation of experimental treatments at this site. Deep peat heating (DPH) was instituted in June 2014, whole-ecosystem warming began in August 2015, and the CO 2more » enhancement began in June 2016. Prior to the initiation of the experimental treatments, we completed a large amount of research to better understand factors controlling anaerobic carbon (C) cycling, and particularly methane (CH 4) dynamics, in northern peatlands in an effort to put the SPRUCE project in a broader context. We additionally focused extensively on the DPH treatment, which provided a unique opportunity to isolate warming effects on the vast reservoir of permanently anaerobic C stored in peatlands below the water table.« less
Experimental and theoretical study of the absorption properties of thiolated diamondoids
NASA Astrophysics Data System (ADS)
Landt, Lasse; Bostedt, Christoph; Wolter, David; Möller, Thomas; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Tkachenko, Boryslav A.; Fokin, Andrey A.; Schreiner, Peter R.; Kulesza, Alexander; Mitrić, Roland; Bonačić-Koutecký, Vlasta
2010-04-01
Nanoscale hybrid systems are a new class of molecular aggregates that offer numerous new possibilities in materials design. Diamondoid thiols are promising nanoscale building blocks for such hybrid systems. They allow the incorporation of functional groups and the investigation of their effects on the unique materials' properties of diamondoids. Here we combine experimental data with ab initio theory to explore the optical properties of diamondoid thiols and their dependence on size and shape. Agreement between theoretically and experimentally obtained absorption spectra allows the identification of the nature of the optical transitions that are responsible for some photophysical and photochemical processes. We show that the optical properties of diamondoid thiols in the deep UV regime depend on the functionalization site but are largely size independent. Our findings provide an explanation for the disappearance of diamondoid UV photoluminescence upon thiolation for smaller diamondoids. However, our theoretical results indicate that for larger diamondoid thiols beyond the critical size of six diamondoid cages the lowest energy transitions are characterized by diamondoidlike states suggesting that UV luminescence may be regained.
Study of PRIMAVERA steel samples by a positron annihilation spectroscopy technique
NASA Astrophysics Data System (ADS)
Grafutin, V.; Ilyukhina, O.; Krsjak, V.; Burcl, R.; Hähner, P.; Erak, D.; Zeman, A.
2010-11-01
In the present article, a positron annihilation spectroscopy investigation of VVER-440/230 weld materials is discussed. Important characteristics of metals such as Fermi energy, concentration of electrons in the conduction band, size and concentration of defects were experimentally determined for three model materials with higher level of copper (0.16 wt.%) and phosphorus (0.027-0.038 wt.%). The impact of neutron irradiation and subsequent annealing on crystal lattice parameters was investigated. The experiments with the angular correlation of positron annihilation radiation (ACAR) complement the published positron annihilation spectroscopy (PAS) studies of the radiation treated VVER materials as well as previous experiments on PRIMAVERA materials. The availability of the experimental reactor to prepare strong 64Cu positron sources provided for unique experimental conditions, such as good resolution of spectra (0.4 mrad) and reasonable short time of measurement (36 h). The present paper aims to contribute to further understanding of RPV (reactor pressure vessel) steels behaviour under irradiation conditions as well as annealing recovery procedures, which have already been applied at several VVER NPP units in Europe.
Exotic decays of the 125 GeV Higgs boson
Curtin, David; Essig, Rouven; Gori, Stefania; ...
2014-10-13
We perform an extensive survey of nonstandard Higgs decays that are consistent with the 125 GeV Higgs-like resonance. Our aim is to motivate a large set of new experimental analyses on the existing and forthcoming data from the Large Hadron Collider (LHC). The explicit search for exotic Higgs decays presents a largely untapped discovery opportunity for the LHC collaborations, as such decays may be easily missed by other searches. We emphasize that the Higgs is uniquely sensitive to the potential existence of new weakly coupled particles and provide a unified discussion of a large class of both simplified and completemore » models that give rise to characteristic patterns of exotic Higgs decays. We assess the status of exotic Higgs decays after LHC run I. In many cases we are able to set new nontrivial constraints by reinterpreting existing experimental analyses. We point out that improvements are possible with dedicated analyses and perform some preliminary collider studies. As a result, we prioritize the analyses according to their theoretical motivation and their experimental feasibility.« less
Effect of Sulfur on Siderophile Element Partitioning Between Olivine and Martian Primary Melt
NASA Technical Reports Server (NTRS)
Usui, T.; Shearer, C. K.; Righter, K.; Jones, J. H.
2011-01-01
Since olivine is a common early crystallizing phase in basaltic magmas that have produced planetary and asteroidal crusts, a number of experimental studies have investigated elemental partitioning between olivine and silicate melt [e.g., 1, 2, 3]. In particular, olivine/melt partition coefficients of Ni and Co (DNi and DCo) have been intensively studied because these elements are preferentially partitioned into olivine and thus provide a uniquely useful insight into the basalt petrogenesis [e.g., 4, 5]. However, none of these experimental studies are consistent with incompatible signatures of Co [e.g., 6, 7, 8] and Ni [7] in olivines from Martian meteorites. Chemical analyses of undegassed MORB samples suggest that S dissolved in silicate melts can reduce DNi up to 50 % compared to S-free experimental systems [9]. High S solubility (up to 4000 ppm) for primitive shergottite melts [10] implies that S might have significantly influenced the Ni and Co partitioning into shergottite olivines. This study conducts melting experiments on Martian magmatic conditions to investigate the effect of S on the partitioning of siderophile elements between olivine and Martian primary melt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, J.; Xue, X.
A comprehensive 3D CFD model is developed for a bi-electrode supported cell (BSC) SOFC. The model includes complicated transport phenomena of mass/heat transfer, charge (electron and ion) migration, and electrochemical reaction. The uniqueness of the modeling study is that functionally graded porous electrode property is taken into account, including not only linear but nonlinear porosity distributions. Extensive numerical analysis is performed to elucidate the effects of both porous microstructure distributions and operating condition on cell performance. Results indicate that cell performance is strongly dependent on both operating conditions and porous microstructure distributions of electrodes. Using the proposed fuel/gas feeding design,more » the uniform hydrogen distribution within porous anode is achieved; the oxygen distribution within the cathode is dependent on porous microstructure distributions as well as pressure loss conditions. Simulation results show that fairly uniform temperature distribution can be obtained with the proposed fuel/gas feeding design. The modeling results can be employed to guide experimental design of BSC test and provide pre-experimental analysis, as a result, to circumvent high cost associated with try-and-error experimental design and setup.« less
Three-dimensional cell culture models for investigating human viruses.
He, Bing; Chen, Guomin; Zeng, Yi
2016-10-01
Three-dimensional (3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover, these models bridge the gap between traditional two-dimensional (2D) monolayer cultures and animal models. 3D culture systems have significantly advanced basic cell science and tissue engineering, especially in the fields of cell biology and physiology, stem cell research, regenerative medicine, cancer research, drug discovery, and gene and protein expression studies. In addition, 3D models can provide unique insight into bacteriology, virology, parasitology and host-pathogen interactions. This review summarizes and analyzes recent progress in human virological research with 3D cell culture models. We discuss viral growth, replication, proliferation, infection, virus-host interactions and antiviral drugs in 3D culture models.
Genetics of eosinophilic esophagitis
Kottyan, LC; Rothenberg, ME
2017-01-01
Eosinophilic esophagitis (EoE) is a chronic, allergic disease associated with marked mucosal eosinophil accumulation. EoE disease risk is multifactorial and includes environmental and genetic factors. This review will focus on the contribution of genetic variation to EoE risk, as well as the experimental tools and statistical methodology used to identify EoE risk loci. Specific disease-risk loci that are shared between EoE and other allergic diseases (TSLP, LRRC32) or unique to EoE (CAPN14), as well as Mendellian Disorders associated with EoE, will be reviewed in the context of the insight that they provide into the molecular pathoetiology of EoE. We will also discuss the clinical opportunities that genetic analyses provide in the form of decision support tools, molecular diagnostics, and novel therapeutic approaches. PMID:28224995
Genetics of eosinophilic esophagitis.
Kottyan, L C; Rothenberg, M E
2017-05-01
Eosinophilic esophagitis (EoE) is a chronic, allergic disease associated with marked mucosal eosinophil accumulation. EoE disease risk is multifactorial and includes environmental and genetic factors. This review will focus on the contribution of genetic variation to EoE risk, as well as the experimental tools and statistical methodology used to identify EoE risk loci. Specific disease-risk loci that are shared between EoE and other allergic diseases (TSLP, LRRC32) or unique to EoE (CAPN14), as well as Mendellian Disorders associated with EoE, will be reviewed in the context of the insight that they provide into the molecular pathoetiology of EoE. We will also discuss the clinical opportunities that genetic analyses provide in the form of decision support tools, molecular diagnostics, and novel therapeutic approaches.
NMR-based investigations into target DNA search processes of proteins.
Iwahara, Junji; Zandarashvili, Levani; Kemme, Catherine A; Esadze, Alexandre
2018-05-10
To perform their function, transcription factors and DNA-repair/modifying enzymes must first locate their targets in the vast presence of nonspecific, but structurally similar sites on genomic DNA. Before reaching their targets, these proteins stochastically scan DNA and dynamically move from one site to another on DNA. Solution NMR spectroscopy provides unique atomic-level insights into the dynamic DNA-scanning processes, which are difficult to gain by any other experimental means. In this review, we provide an introductory overview on the NMR methods for the structural, dynamic, and kinetic investigations of target DNA search by proteins. We also discuss advantages and disadvantages of these NMR methods over other methods such as single-molecule techniques and biochemical approaches. Copyright © 2018 Elsevier Inc. All rights reserved.
Haake, Scott M.; Li, Jiannong; Bai, Yun; Kinose, Fumi; Fang, Bin; Welsh, Eric; Zent, Roy; Dhillon, Jasreman; Pow-Sang, Julio; Chen, Yian Ann; Koomen, John; Rathmell, W. Kimryn; Fishman, Mayer; Haura, Eric B.
2016-01-01
Purpose Targeted therapies in renal cell carcinoma (RCC) are limited by acquired resistance. Novel therapeutic targets are needed to combat resistance and, ideally, target the unique biology of RCC subtypes. Experimental Design Tyrosine kinases provide critical oncogenic signaling and their inhibition has significantly impacted cancer care. In order to describe a landscape of tyrosine kinase activity in RCC that could inform novel therapeutic strategies, we performed a mass spectrometry-based system-wide survey of tyrosine phosphorylation in 10 RCC cell lines as well as 15 clear cell and 15 papillary RCC human tumors. To prioritize identified tyrosine kinases for further analysis, a 63 tyrosine kinase inhibitor (TKI) drug screen was performed. Results Among the cell lines, 28 unique tyrosine phosphosites were identified across 19 kinases and phosphatases including EGFR, MET, JAK2, and FAK in nearly all samples. Multiple FAK TKIs decreased cell viability by at least 50% and inhibited RCC cell line adhesion, invasion, and proliferation. Among the tumors, 49 unique tyrosine phosphosites were identified across 44 kinases and phosphatases. FAK pY576/7 was found in all tumors and many cell lines, while DDR1 pY792/6 was preferentially enriched in the papillary RCC tumors. Both tyrosine kinases are capable of transmitting signals from the extracellular matrix and emerged as novel RCC therapeutic targets. Conclusions Tyrosine kinase profiling informs novel therapeutic strategies in RCC and highlights the unique biology amongst kidney cancer subtypes. PMID:27220961
Robinson, Joshua F; Theunissen, Peter T; van Dartel, Dorien A M; Pennings, Jeroen L; Faustman, Elaine M; Piersma, Aldert H
2011-09-01
Toxicogenomic evaluations may improve toxicity prediction of in vitro-based developmental models, such as whole embryo culture (WEC) and embryonic stem cells (ESC), by providing a robust mechanistic marker which can be linked with responses associated with developmental toxicity in vivo. While promising in theory, toxicogenomic comparisons between in vivo and in vitro models are complex due to inherent differences in model characteristics and experimental design. Determining factors which influence these global comparisons are critical in the identification of reliable mechanistic-based markers of developmental toxicity. In this study, we compared available toxicogenomic data assessing the impact of the known teratogen, methylmercury (MeHg) across a diverse set of in vitro and in vivo models to investigate the impact of experimental variables (i.e. model, dose, time) on our comparative assessments. We evaluated common and unique aspects at both the functional (Gene Ontology) and gene level of MeHg-induced response. At the functional level, we observed stronger similarity in MeHg-response between mouse embryos exposed in utero (2 studies), ESC, and WEC as compared to liver, brain and mouse embryonic fibroblast MeHg studies. These findings were strongly correlated to the presence of a MeHg-induced developmentally related gene signature. In addition, we identified specific MeHg-induced gene expression alterations associated with developmental signaling and heart development across WEC, ESC and in vivo systems. However, the significance of overlap between studies was highly dependent on traditional experimental variables (i.e. dose, time). In summary, we identify promising examples of unique gene expression responses which show in vitro-in vivo similarities supporting the relevance of in vitro developmental models for predicting in vivo developmental toxicity. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dong, Jiajun; Zhang, Tong; Zhang, Dong; Zhang, Weiwei; Zhang, Huafang; Liu, Ran; Yao, Mingguang; Liu, Bingbing
2017-01-01
Onion-like carbon nanospheres (OCNSs) with an average diameter of 43 nm were produced on a large scale via a combustion method and examined as an anode material for lithium ion batteries. The OCNSs exhibit a remarkable electrochemical cycling behavior and a capacity much higher than that of graphite. The capacity increases significantly with increasing charge-discharge cycles and reaches a value of 178% of the initial value (from 586 mA h g-1to 1045 mA h g-1) after 200 cycles. Further investigation provides unambiguous experimental evidence that such a remarkable capacity increase is related to the stable onion-like structure of the OCNSs and to the existence of large numbers of disordered/short graphitic fragments, which gradually provide more active sites for Li ion storage. The unique electrochemical performance of OCNSs provides a new way to design a high-performance anode material for rechargeable batteries.
The challenge of spin–orbit-tuned ground states in iridates: a key issues review
NASA Astrophysics Data System (ADS)
Cao, Gang; Schlottmann, Pedro
2018-04-01
Effects of spin–orbit interactions in condensed matter are an important and rapidly evolving topic. Strong competition between spin–orbit, on-site Coulomb and crystalline electric field interactions in iridates drives exotic quantum states that are unique to this group of materials. In particular, the ‘J eff = ½’ Mott state served as an early signal that the combined effect of strong spin–orbit and Coulomb interactions in iridates has unique, intriguing consequences. In this Key Issues Review, we survey some current experimental studies of iridates. In essence, these materials tend to defy conventional wisdom: absence of conventional correlations between magnetic and insulating states, avoidance of metallization at high pressures, ‘S-shaped’ I–V characteristic, emergence of an odd-parity hidden order, etc. It is particularly intriguing that there exist conspicuous discrepancies between current experimental results and theoretical proposals that address superconducting, topological and quantum spin liquid phases. This class of materials, in which the lattice degrees of freedom play a critical role seldom seen in other materials, evidently presents some profound intellectual challenges that call for more investigations both experimentally and theoretically. Physical properties unique to these materials may help unlock a world of possibilities for functional materials and devices. We emphasize that, given the rapidly developing nature of this field, this Key Issues Review is by no means an exhaustive report of the current state of experimental studies of iridates.
Berkovich-Ohana, Aviva; Harel, Michal; Hahamy, Avital; Arieli, Amos; Malach, Rafael
2016-07-15
Recently we proposed that the information contained in spontaneously emerging (resting-state) fluctuations may reflect individually unique neuro-cognitive traits. One prediction of this conjecture, termed the "spontaneous trait reactivation" (STR) hypothesis, is that resting-state activity patterns could be diagnostic of unique personalities, talents and life-styles of individuals. Long-term meditators could provide a unique experimental group to test this hypothesis. Using fMRI we found that, during resting-state, the amplitude of spontaneous fluctuations in long-term mindfulness meditation (MM) practitioners was enhanced in the visual cortex and significantly reduced in the DMN compared to naïve controls. Importantly, during a visual recognition memory task, the MM group showed heightened visual cortex responsivity, concomitant with weaker negative responses in Default Mode Network (DMN) areas. This effect was also reflected in the behavioral performance, where MM practitioners performed significantly faster than the control group. Thus, our results uncover opposite changes in the visual and default mode systems in long-term meditators which are revealed during both rest and task. The results support the STR hypothesis and extend it to the domain of local changes in the magnitude of the spontaneous fluctuations. Copyright © 2016 Elsevier Inc. All rights reserved.
Whipworm kinomes reflect a unique biology and adaptation to the host animal.
Stroehlein, Andreas J; Young, Neil D; Korhonen, Pasi K; Chang, Bill C H; Nejsum, Peter; Pozio, Edoardo; La Rosa, Giuseppe; Sternberg, Paul W; Gasser, Robin B
2017-11-01
Roundworms belong to a diverse phylum (Nematoda) which is comprised of many parasitic species including whipworms (genus Trichuris). These worms have adapted to a biological niche within the host and exhibit unique morphological characteristics compared with other nematodes. Although these adaptations are known, the underlying molecular mechanisms remain elusive. The availability of genomes and transcriptomes of some whipworms now enables detailed studies of their molecular biology. Here, we defined and curated the full complement of an important class of enzymes, the protein kinases (kinomes) of two species of Trichuris, using an advanced and integrated bioinformatic pipeline. We investigated the transcription of Trichuris suis kinase genes across developmental stages, sexes and tissues, and reveal that selectively transcribed genes can be linked to central roles in developmental and reproductive processes. We also classified and functionally annotated the curated kinomes by integrating evidence from structural modelling and pathway analyses, and compared them with other curated kinomes of phylogenetically diverse nematode species. Our findings suggest unique adaptations in signalling processes governing worm morphology and biology, and provide an important resource that should facilitate experimental investigations of kinases and the biology of signalling pathways in nematodes. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Almost, Joan; Gifford, Wendy A; Doran, Diane; Ogilvie, Linda; Miller, Crystal; Rose, Don N; Squires, Mae
2013-06-21
Nurses are the primary healthcare providers in correctional facilities. A solid knowledge and expertise that includes the use of research evidence in clinical decision making is needed to optimize nursing practice and promote positive health outcomes within these settings. The institutional emphasis on custodial care within a heavily secured, regulated, and punitive environment presents unique contextual challenges for nursing practice. Subsequently, correctional nurses are not always able to obtain training or ongoing education that is required for broad scopes of practice. The purpose of the proposed study is to develop an educational intervention for correctional nurses to support the provision of evidence-informed care. A two-phase mixed methods research design will be used. The setting will be three provincial correctional facilities. Phase one will focus on identifying nurses' scope of practice and practice needs, describing work environment characteristics that support evidence-informed practice and developing the intervention. Semi-structured interviews will be completed with nurses and nurse managers. To facilitate priorities for the intervention, a Delphi process will be used to rank the learning needs identified by participants. Based on findings, an online intervention will be developed. Phase two will involve evaluating the acceptability and feasibility of the intervention to inform a future experimental design. The context of provincial correctional facilities presents unique challenges for nurses' provision of care. This study will generate information to address practice and learning needs specific to correctional nurses. Interventions tailored to barriers and supports within specific contexts are important to enable nurses to provide evidence-informed care.
Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials.
Liang, Liangbo; Zhang, Jun; Sumpter, Bobby G; Tan, Qing-Hai; Tan, Ping-Heng; Meunier, Vincent
2017-12-26
Ever since the isolation of single-layer graphene in 2004, two-dimensional layered structures have been among the most extensively studied classes of materials. To date, the pool of two-dimensional materials (2DMs) continues to grow at an accelerated pace and already covers an extensive range of fascinating and technologically relevant properties. An array of experimental techniques have been developed and used to characterize and understand these properties. In particular, Raman spectroscopy has proven to be a key experimental technique, thanks to its capability to identify minute structural and electronic effects in nondestructive measurements. While high-frequency (HF) intralayer Raman modes have been extensively employed for 2DMs, recent experimental and theoretical progress has demonstrated that low-frequency (LF) interlayer Raman modes are more effective at determining layer numbers and stacking configurations and provide a unique opportunity to study interlayer coupling. These advantages are due to 2DMs' unique interlayer vibration patterns where each layer behaves as an almost rigidly moving object with restoring forces corresponding to weak interlayer interactions. Compared to HF Raman modes, the relatively small attention originally devoted to LF Raman modes is largely due to their weaker signal and their proximity to the strong Rayleigh line background, which previously made their detection challenging. Recent progress in Raman spectroscopy with technical and hardware upgrades now makes it possible to probe LF modes with a standard single-stage Raman system and has proven crucial to characterize and understand properties of 2DMs. Here, we present a comprehensive and forward-looking review on the current status of exploiting LF Raman modes of 2DMs from both experimental and theoretical perspectives, revealing the fundamental physics and technological significance of LF Raman modes in advancing the field of 2DMs. We review a broad array of materials, with varying thickness and stacking configurations, discuss the effect of in-plane anisotropy, and present a generalized linear chain model and interlayer bond polarizability model to rationalize the experimental findings. We also discuss the instrumental improvements of Raman spectroscopy to enhance and separate LF Raman signals from the Rayleigh line. Finally, we highlight the opportunities and challenges ahead in this fast-developing field.
Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression.
Beacham, Dorothy A; Cukierman, Edna
2005-10-01
During tumorigenesis, reciprocal changes in stromal fibroblasts and tumor cells induce changes to the neoplastic microenvironmental landscape. In stromagenesis, both the complex network of bi-directional stromal fibroblastic signaling pathways and the stromal extracellular matrix are modified. The presence of a 'primed' stroma during the early, reversible stage of tumorigenesis is optimal for stromal-directed therapeutic intervention. Three-dimensional (3D) cell culture systems have been developed that mimic the in vivo microenvironment. These systems provide unique experimental tools to identify early alterations in stromagenesis that are supportive of tumor progression with the ultimate goal of blocking neoplastic permissiveness and restoring normal phenotypes.
NASA Technical Reports Server (NTRS)
Rouvas, C.; Childs, D. W.
1993-01-01
In identifying the rotordynamic coefficients of a high-Reynolds-number hydrostatic bearing, fluid-flow induced forces present a unique problem, in that they provide an unmeasureable and uncontrollable excitation to the bearing. An analysis method is developed that effectively eliminates the effects of fluid-flow induced excitation on the estimation of the bearing rotordynamic coefficients, by using power spectral densities. In addition to the theoretical development, the method is verified experimentally by single-frequency testing, and repeatability tests. Results obtained for a bearing are the twelve rotordynamic coefficients (stiffness, damping, and inertia coefficients) as functions of eccentricity ratio, speed, and supply pressure.
Highly resolved fluid flows: "liquid plasmas" at the kinetic level.
Morfill, Gregor E; Rubin-Zuzic, Milenko; Rothermel, Hermann; Ivlev, Alexei V; Klumov, Boris A; Thomas, Hubertus M; Konopka, Uwe; Steinberg, Victor
2004-04-30
Fluid flow around an obstacle was observed at the kinetic (individual particle) level using "complex (dusty) plasmas" in their liquid state. These "liquid plasmas" have bulk properties similar to water (e.g., viscosity), and a comparison in terms of similarity parameters suggests that they can provide a unique tool to model classical fluids. This allows us to study "nanofluidics" at the most elementary-the particle-level, including the transition from fluid behavior to purely kinetic transport. In this (first) experimental investigation we describe the kinetic flow topology, discuss our observations in terms of fluid theories, and follow this up with numerical simulations.
NASA Technical Reports Server (NTRS)
Bedewi, Nabih E.; Yang, Jackson C. S.
1987-01-01
Identification of the system parameters of a randomly excited structure may be treated using a variety of statistical techniques. Of all these techniques, the Random Decrement is unique in that it provides the homogeneous component of the system response. Using this quality, a system identification technique was developed based on a least-squares fit of the signatures to estimate the mass, damping, and stiffness matrices of a linear randomly excited system. The results of an experiment conducted on an offshore platform scale model to verify the validity of the technique and to demonstrate its application in damage detection are presented.
Adaptive Load-Balancing Algorithms using Symmetric Broadcast Networks
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Biegel, Bryan A. (Technical Monitor)
2002-01-01
In a distributed computing environment, it is important to ensure that the processor workloads are adequately balanced, Among numerous load-balancing algorithms, a unique approach due to Das and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three efficient SBN-based dynamic load-balancing algorithms, and implement them on an SGI Origin2000. A thorough experimental study with Poisson distributed synthetic loads demonstrates that our algorithms are effective in balancing system load. By optimizing completion time and idle time, the proposed algorithms are shown to compare favorably with several existing approaches.
The gj factor of a bound electron and the hyperfine structure splitting in hydrogenlike ions
NASA Astrophysics Data System (ADS)
Beier, Thomas
2000-12-01
The comparison between theory and experiment of the hyperfine structure splitting and the electronic gj factor in heavy highly charged ions provides a unique testing ground for quantum electrodynamics in the presence of strong electric and magnetic fields. A theoretical evaluation is presented of all quantum electrodynamical contributions to the ground-state hfs splitting in hydrogenlike and lithiumlike atoms as well as to the gj factor. Binding and nuclear effects are discussed as well. A comparison with the available experimental data is performed, and a detailed discussion of theoretical sources of uncertainty is included which is mainly due to insufficiently known nuclear properties.
Hydra as a tractable, long-lived model system for senescence
Bellantuono, Anthony J.; Bridge, Diane; Martínez, Daniel E.
2015-01-01
Hydra represents a unique model system for the study of senescence, with the opportunity for the comparison of non-aging and induced senescence. Hydra maintains three stem cell lineages, used for continuous tissue morphogenesis and replacement. Recent work has elucidated the roles of the insulin/IGF-1 signaling target FoxO, of Myc proteins, and of PIWI proteins in Hydra stem cells. Under laboratory culture conditions, Hydra vulgaris show no signs of aging even under long-term study. In contrast, Hydra oligactis can be experimentally induced to undergo reproduction-associated senescence. This provides a powerful comparative system for future studies. PMID:26136619
The BIG Bell Test: quantum physics experiments with direct public participation
NASA Astrophysics Data System (ADS)
Mitchell, Morgan; Abellan, Carlos; Tura, Jordi; Garcia Matos, Marta; Hirschmann, Alina; Beduini, Federica; Pruneri, Valerio; Acin, Antonio; Marti, Maria; BIG Bell Test Collaboration
The BIG Bell Test is a suite of physics experiments - tests of quantum nonlocality, quantum communications, and related experiments - that use crowd-sourced human randomness as an experimental resource. By connecting participants - anyone with an internet connection - to state-of-the-art experiments on five continents, the project aims at two complementary goals: 1) to provide bits generated directly from human choices, a unique information resource, to physics experiments, and 2) to give the world public the opportunity to contribute in a meaningful way to quantum physics research. We also describe related outreach and educational efforts to spread awareness of quantum physics and its applications.
Heating of trapped ultracold atoms by collapse dynamics
NASA Astrophysics Data System (ADS)
Laloë, Franck; Mullin, William J.; Pearle, Philip
2014-11-01
The continuous spontaneous localization (CSL) theory alters the Schrödinger equation. It describes wave-function collapse as a dynamical process instead of an ill-defined postulate, thereby providing macroscopic uniqueness and solving the so-called measurement problem of standard quantum theory. CSL contains a parameter λ giving the collapse rate of an isolated nucleon in a superposition of two spatially separated states and, more generally, characterizing the collapse time for any physical situation. CSL is experimentally testable, since it predicts some behavior different from that predicted by standard quantum theory. One example is the narrowing of wave functions, which results in energy imparted to particles. Here we consider energy given to trapped ultracold atoms. Since these are the coldest samples under experimental investigation, it is worth inquiring how they are affected by the CSL heating mechanism. We examine the CSL heating of a Bose-Einstein condensate (BEC) in contact with its thermal cloud. Of course, other mechanisms also provide heat and also particle loss. From varied data on optically trapped cesium BECs, we present an energy audit for known heating and loss mechanisms. The result provides an upper limit on CSL heating and thereby an upper limit on the parameter λ . We obtain λ ≲1 (±1 ) ×10-7 s-1.
ERIC Educational Resources Information Center
Kanu, A. Bakarr; Pajski, Megan; Hartman, Machelle; Kimaru, Irene; Marine, Susan
2015-01-01
In today's complex world, there is a continued demand for recently graduated forensic chemists (criminalists) who have some background in forensic experimental techniques. This article describes modern forensic experimental approaches designed and implemented from a unique instructional perspective to present certain facets of crime scene…
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2017-01-01
Laboratory courses represent a unique and potentially important component of the undergraduate physics curriculum, which can be designed to allow students to authentically engage with the process of experimental physics. Among other possible benefits, participation in these courses throughout the undergraduate physics curriculum presents an…
The Luquillo Experimental Forest Arboretum
John K. Francis
1989-01-01
Since 1960, various tree species, mostly exotics with productive potential, have been planted in small blocks within a tract of subsistence farmland. The site, located on the lower western slope of the Luquillo Experimental Forest in Puerto Rico, has become a unique arboretum. The plantings were weeded and maintained for several years, but later were neglected. A...
NASA Technical Reports Server (NTRS)
Vandendriesche, Donald; Parrish, Joseph; Kirven-Brooks, Melissa; Fahlen, Thomas; Larenas, Patricia; Havens, Cindy; Nakamura, Gail; Sun, Liping; Krebs, Chris; de Luis, Javier;
2004-01-01
The CCU and Incubator are habitats under development by SSBRP for gravitational biology research on ISS. They will accommodate multiple specimen types and reside in either Habitat Holding Racks, or the Centrifuge Rotor, which provides selectable gravity levels of up to 2 g. The CCU can support multiple Cell Specimen Chambers, CSCs (18, 9 or 6 CSCs; 3, 10 or 30 mL in volume, respectively). CSCs are temperature controlled from 4-39 degrees C, with heat shock to 45 degrees C. CCU provides automated nutrient supply, magnetic stirring, pH/O2 monitoring, gas supply, specimen lighting, and video microscopy. Sixty sample containers holding up to 2 mL each, stored at 4-39 degrees C, are available for automated cell sampling, subculture, and injection of additives and fixatives. CSCs, sample containers, and fresh/spent media bags are crew-replaceable for long-term experiments. The Incubator provides a 4-45 degrees C controlled environment for life science experiments or storage of experimental reagents. Specimen containers and experiment unique equipment are experimenter-provided. The Specimen Chamber exchanges air with ISS cabin and has 18.8 liters of usable volume that can accommodate six trays and the following instrumentation: five relocatable thermometers, two 60 W power outlets, four analog ports, and one each relative humidity sensor, video port, ethernet port and digital input/output port.
Deconstructing Memory in Drosophila
Margulies, Carla; Tully, Tim; Dubnau, Josh
2011-01-01
Unlike most organ systems, which have evolved to maintain homeostasis, the brain has been selected to sense and adapt to environmental stimuli by constantly altering interactions in a gene network that functions within a larger neural network. This unique feature of the central nervous system provides a remarkable plasticity of behavior, but also makes experimental investigations challenging. Each experimental intervention ramifies through both gene and neural networks, resulting in unpredicted and sometimes confusing phenotypic adaptations. Experimental dissection of mechanisms underlying behavioral plasticity ultimately must accomplish an integration across many levels of biological organization, including genetic pathways acting within individual neurons, neural network interactions which feed back to gene function, and phenotypic observations at the behavioral level. This dissection will be more easily accomplished for model systems such as Drosophila, which, compared with mammals, have relatively simple and manipulable nervous systems and genomes. The evolutionary conservation of behavioral phenotype and the underlying gene function ensures that much of what we learn in such model systems will be relevant to human cognition. In this essay, we have not attempted to review the entire Drosophila memory field. Instead, we have tried to discuss particular findings that provide some level of intellectual synthesis across three levels of biological organization: behavior, neural circuitry and biochemical pathways. We have attempted to use this integrative approach to evaluate distinct mechanistic hypotheses, and to propose critical experiments that will advance this field. PMID:16139203
B. F. Skinner and G. H. Mead: on biological science and social science.
Blackman, D E
1991-01-01
Skinner's contributions to psychology provide a unique bridge between psychology conceptualized as a biological science and psychology conceptualized as a social science. Skinner focused on behavior as a naturally occurring biological phenomenon of interest in its own right, functionally related to surrounding events and, in particular (like phylogenesis), subject to selection by its consequences. This essentially biological orientation was further enhanced by Skinner's emphasis on the empirical foundations provided by laboratory-based experimental analyses of behavior, often with nonhuman subjects. Skinner's theoretical writings, however, also have affinity with the traditions of constructionist social science. The verbal behavior of humans is said to be subject, like other behavior, to functional analyses in terms of its environment, in this case its social context. Verbal behavior in turn makes it possible for us to relate to private events, a process that ultimately allows for the development of consciousness, which is thus said to be a social product. Such ideas make contact with aspects of G. H. Mead's social behaviorism and, perhaps of more contemporary impact in psychology, L. Vygotsky's general genetic law of cultural development. Failure to articulate both the biological and the social science aspects of Skinner's theoretical approach to psychology does a disservice to his unique contribution to a discipline that remains fragmented between two intellectual traditions. PMID:2037828
Brilliant gamma beams for industrial applications: new opportunities, new challenges
NASA Astrophysics Data System (ADS)
Iancu, V.; Suliman, G.; Turturica, G. V.; Iovea, M.; Daito, I.; Ohgaki, H.; Matei, C.; Ur, C. A.; Balabanski, D. L.
2016-10-01
The Nuclear Physics oriented pillar of the pan-European Extreme Light Infrastructure (ELI-NP) will host an ultra-bright, energy tunable, and quasi-monochromatic gamma-ray beam system in the range of 0.2-19.5 MeV produced by laser-Compton backscattering technique. The applied research program envisioned at ELI-NP targets to use nuclear resonance fluorescence (NRF) and computed tomography to provide new opportunities for industry and society. High sensitivity NRF-based investigations can be successfully applied to safeguard applications and management of radioactive wastes as well as to uncharted fields like cultural heritage and medical imaging. Gamma-ray radioscopy and computed tomography performed at ELI-NP has the potential to achieve high resolution in industrial-sized objects provided the detection challenges introduced by the unique characteristics of the gamma beam are overcome. Here we discuss the foreseen industrial applications that will benefit from the high quality and unique characteristics of ELI-NP gamma beam and the challenges they present. We present the experimental setups proposed to be implemented for this goal, discuss their performance based on analytical calculations and numerical Monte-Carlo simulations, and comment about constrains imposed by the limitation of current scintillator detectors. Several gamma-beam monitoring devices based on scintillator detectors will also be discussed.
Martin, Meredith J.; Sturge-Apple, Melissa L.; Davies, Patrick T.; Romero, Christine V.; Buckholz, Abigail
2017-01-01
Drawing on a two-wave, multimethod, multi-informant design, this study provides the first test of a process model of spillover specifying why and how disruptions in the coparenting relationship influence the parent–adolescent attachment relationship. One hundred ninety-four families with an adolescent aged 12–14 (M age = 12.4) were followed for 1 year. Mothers and adolescents participated in two experimental tasks designed to elicit behavioral expressions of parent and adolescent functioning within the attachment relationship. Using a novel observational approach, maternal safe haven, secure base, and harshness (i.e., hostility and control) were compared as potential unique mediators of the association between conflict in the coparenting relationship and adolescent problems. Path models indicated that, although coparenting conflicts were broadly associated with maternal parenting difficulties, only secure base explained the link to adolescent adjustment. Adding further specificity to the process model, maternal secure base support was uniquely associated with adolescent adjustment through deficits in adolescents’ secure exploration. Results support the hypothesis that coparenting disagreements undermine adolescent adjustment in multiple domains specifically by disrupting mothers’ ability to provide a caregiving environment that supports adolescent exploration during a developmental period in which developing autonomy is a crucial stage-salient task. PMID:28401834
Laboratory investigations of earthquake dynamics
NASA Astrophysics Data System (ADS)
Xia, Kaiwen
In this thesis this will be attempted through controlled laboratory experiments that are designed to mimic natural earthquake scenarios. The earthquake dynamic rupturing process itself is a complicated phenomenon, involving dynamic friction, wave propagation, and heat production. Because controlled experiments can produce results without assumptions needed in theoretical and numerical analysis, the experimental method is thus advantageous over theoretical and numerical methods. Our laboratory fault is composed of carefully cut photoelastic polymer plates (Homahte-100, Polycarbonate) held together by uniaxial compression. As a unique unit of the experimental design, a controlled exploding wire technique provides the triggering mechanism of laboratory earthquakes. Three important components of real earthquakes (i.e., pre-existing fault, tectonic loading, and triggering mechanism) correspond to and are simulated by frictional contact, uniaxial compression, and the exploding wire technique. Dynamic rupturing processes are visualized using the photoelastic method and are recorded via a high-speed camera. Our experimental methodology, which is full-field, in situ, and non-intrusive, has better control and diagnostic capacity compared to other existing experimental methods. Using this experimental approach, we have investigated several problems: dynamics of earthquake faulting occurring along homogeneous faults separating identical materials, earthquake faulting along inhomogeneous faults separating materials with different wave speeds, and earthquake faulting along faults with a finite low wave speed fault core. We have observed supershear ruptures, subRayleigh to supershear rupture transition, crack-like to pulse-like rupture transition, self-healing (Heaton) pulse, and rupture directionality.
Amorphous photonic crystals with only short-range order.
Shi, Lei; Zhang, Yafeng; Dong, Biqin; Zhan, Tianrong; Liu, Xiaohan; Zi, Jian
2013-10-04
Distinct from conventional photonic crystals with both short- and long-range order, amorphous photonic crystals that possess only short-range order show interesting optical responses owing to their unique structural features. Amorphous photonic crystals exhibit unique light scattering and transport, which lead to a variety of interesting phenomena such as isotropic photonic bandgaps or pseudogaps, noniridescent structural colors, and light localization. Recent experimental and theoretical advances in the study of amorphous photonic crystals are summarized, focusing on their unique optical properties, artificial fabrication, bionspiration, and potential applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
REFOLDdb: a new and sustainable gateway to experimental protocols for protein refolding.
Mizutani, Hisashi; Sugawara, Hideaki; Buckle, Ashley M; Sangawa, Takeshi; Miyazono, Ken-Ichi; Ohtsuka, Jun; Nagata, Koji; Shojima, Tomoki; Nosaki, Shohei; Xu, Yuqun; Wang, Delong; Hu, Xiao; Tanokura, Masaru; Yura, Kei
2017-04-24
More than 7000 papers related to "protein refolding" have been published to date, with approximately 300 reports each year during the last decade. Whilst some of these papers provide experimental protocols for protein refolding, a survey in the structural life science communities showed a necessity for a comprehensive database for refolding techniques. We therefore have developed a new resource - "REFOLDdb" that collects refolding techniques into a single, searchable repository to help researchers develop refolding protocols for proteins of interest. We based our resource on the existing REFOLD database, which has not been updated since 2009. We redesigned the data format to be more concise, allowing consistent representations among data entries compared with the original REFOLD database. The remodeled data architecture enhances the search efficiency and improves the sustainability of the database. After an exhaustive literature search we added experimental refolding protocols from reports published 2009 to early 2017. In addition to this new data, we fully converted and integrated existing REFOLD data into our new resource. REFOLDdb contains 1877 entries as of March 17 th , 2017, and is freely available at http://p4d-info.nig.ac.jp/refolddb/ . REFOLDdb is a unique database for the life sciences research community, providing annotated information for designing new refolding protocols and customizing existing methodologies. We envisage that this resource will find wide utility across broad disciplines that rely on the production of pure, active, recombinant proteins. Furthermore, the database also provides a useful overview of the recent trends and statistics in refolding technology development.
NASA Astrophysics Data System (ADS)
Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi
2016-01-01
As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques.
Experimental quantum simulations of many-body physics with trapped ions.
Schneider, Ch; Porras, Diego; Schaetz, Tobias
2012-02-01
Direct experimental access to some of the most intriguing quantum phenomena is not granted due to the lack of precise control of the relevant parameters in their naturally intricate environment. Their simulation on conventional computers is impossible, since quantum behaviour arising with superposition states or entanglement is not efficiently translatable into the classical language. However, one could gain deeper insight into complex quantum dynamics by experimentally simulating the quantum behaviour of interest in another quantum system, where the relevant parameters and interactions can be controlled and robust effects detected sufficiently well. Systems of trapped ions provide unique control of both the internal (electronic) and external (motional) degrees of freedom. The mutual Coulomb interaction between the ions allows for large interaction strengths at comparatively large mutual ion distances enabling individual control and readout. Systems of trapped ions therefore exhibit a prominent system in several physical disciplines, for example, quantum information processing or metrology. Here, we will give an overview of different trapping techniques of ions as well as implementations for coherent manipulation of their quantum states and discuss the related theoretical basics. We then report on the experimental and theoretical progress in simulating quantum many-body physics with trapped ions and present current approaches for scaling up to more ions and more-dimensional systems.
NASA Astrophysics Data System (ADS)
El Koussaifi, R.; Tikan, A.; Toffoli, A.; Randoux, S.; Suret, P.; Onorato, M.
2018-01-01
Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.
El Koussaifi, R; Tikan, A; Toffoli, A; Randoux, S; Suret, P; Onorato, M
2018-01-01
Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.
A three-plane architectonic atlas of the rat hippocampal region.
Boccara, Charlotte N; Kjonigsen, Lisa J; Hammer, Ingvild M; Bjaalie, Jan G; Leergaard, Trygve B; Witter, Menno P
2015-07-01
The hippocampal region, comprising the hippocampal formation and the parahippocampal region, has been one of the most intensively studied parts of the brain for decades. Better understanding of its functional diversity and complexity has led to an increased demand for specificity in experimental procedures and manipulations. In view of the complex 3D structure of the hippocampal region, precisely positioned experimental approaches require a fine-grained architectural description that is available and readable to experimentalists lacking detailed anatomical experience. In this paper, we provide the first cyto- and chemoarchitectural description of the hippocampal formation and parahippocampal region in the rat at high resolution and in the three standard sectional planes: coronal, horizontal and sagittal. The atlas uses a series of adjacent sections stained for neurons and for a number of chemical marker substances, particularly parvalbumin and calbindin. All the borders defined in one plane have been cross-checked against their counterparts in the other two planes. The entire dataset will be made available as a web-based interactive application through the Rodent Brain WorkBench (http://www.rbwb.org) which, together with this paper, provides a unique atlas resource. © 2014 Wiley Periodicals, Inc.
Review of Top Quark Physics Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kehoe, R.; Narain, M.; Kumar, A.
2007-12-01
As the heaviest known fundamental particle, the top quark has taken a central role in the study of fundamental interactions. Production of top quarks in pairs provides an important probe of strong interactions. The top quark mass is a key fundamental parameter which places a valuable constraint on the Higgs boson mass and electroweak symmetry breaking. Observations of the relative rates and kinematics of top quark final states constrain potential new physics. In many cases, the tests available with study of the top quark are both critical and unique. Large increases in data samples from the Fermilab Tevatron have beenmore » coupled with major improvements in experimental techniques to produce many new precision measurements of the top quark. The first direct evidence for electroweak production of top quarks has been obtained, with a resulting direct determination of V{sub tb}. Several of the properties of the top quark have been measured. Progress has also been made in obtaining improved limits on potential anomalous production and decay mechanisms. This review presents an overview of recent theoretical and experimental developments in this field. We also provide a brief discussion of the implications for further efforts.« less
Fernández, Roemi; Salinas, Carlota; Montes, Héctor; Sarria, Javier
2014-01-01
The motivation of this research was to explore the feasibility of detecting and locating fruits from different kinds of crops in natural scenarios. To this end, a unique, modular and easily adaptable multisensory system and a set of associated pre-processing algorithms are proposed. The offered multisensory rig combines a high resolution colour camera and a multispectral system for the detection of fruits, as well as for the discrimination of the different elements of the plants, and a Time-Of-Flight (TOF) camera that provides fast acquisition of distances enabling the localisation of the targets in the coordinate space. A controlled lighting system completes the set-up, increasing its flexibility for being used in different working conditions. The pre-processing algorithms designed for the proposed multisensory system include a pixel-based classification algorithm that labels areas of interest that belong to fruits and a registration algorithm that combines the results of the aforementioned classification algorithm with the data provided by the TOF camera for the 3D reconstruction of the desired regions. Several experimental tests have been carried out in outdoors conditions in order to validate the capabilities of the proposed system. PMID:25615730
Matsunaga, Nikita; Rogers, Donald W; Zavitsas, Andreas A
2003-04-18
Contrary to other recent reports, Pauling's original electronegativity equation, applied as Pauling specified, describes quite accurately homolytic bond dissociation enthalpies of common covalent bonds, including highly polar ones, with an average deviation of +/-1.5 kcal mol(-1) from literature values for 117 such bonds. Dissociation enthalpies are presented for more than 250 bonds, including 79 for which experimental values are not available. Some previous evaluations of accuracy gave misleadingly poor results by applying the equation to cases for which it was not derived and for which it should not reproduce experimental values. Properly interpreted, the results of the equation provide new and quantitative insights into many facets of chemistry such as radical stabilities, factors influencing reactivity in electrophilic aromatic substitutions, the magnitude of steric effects, conjugative stabilization in unsaturated systems, rotational barriers, molecular and electronic structure, and aspects of autoxidation. A new corollary of the original equation expands its applicability and provides a rationale for previously observed empirical correlations. The equation raises doubts about a new bonding theory. Hydrogen is unique in that its electronegativity is not constant.
Experimental Investigation of the Electronic Properties of Twisted Bilayer Graphene by STM and STS
NASA Astrophysics Data System (ADS)
Yin, Longjing; Qiao, Jiabin; Wang, Wenxiao; Zuo, Weijie; He, Lin
The electronic properties of graphene multilayers depend sensitively on their stacking order. A twisted angle is treated as a unique degree of freedom to tune the electronic properties of graphene system. Here we study electronic structures of the twisted bilayers by scanning tunneling microscopy (STM) and spectroscopy (STS). We demonstrate that the interlayer coupling strength affects both the Van Hove singularities and the Fermi velocity of twisted bilayers dramatically. This removes the discrepancy about the Fermi velocity renormalization in the twisted bilayers and provides a consistent interpretation of all current data. Moreover, we report the experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers by STM and STS. At a magic twisted angle, about 1.11°, a pronounced sharp peak is observed in the tunnelling spectra due to the action of the non-Abelian gauge fields. Because of the effective non-Abelian gauge fields, the rotation angle could transfer the charge carriers in the twisted bilayers from massless Dirac fermions into well localized electrons, or vice versa, efficiently. This provides a new route to tune the electronic properties of graphene systems, which will be essential in future graphene nanoelectronics.
Unique Power Electronics and Drives Experimental Bench (PEDEB) to Facilitate Learning and Research
ERIC Educational Resources Information Center
Anand, S.; Farswan, R. S.; Fernandes, B. G.
2012-01-01
Experimentation is important for learning and research in the field of power electronics and drives. However, a great deal of equipment is required to study the various topologies, controllers, and functionalities. Thus, the cost of establishing good laboratories and research centers is high. To address this problem, the authors have developed a…
Extended-Range Forecasts at Climate Prediction Center: Current Status and Future Plans
NASA Astrophysics Data System (ADS)
Kumar, A.
2016-12-01
Motivated by a user need to provide forecast information on extended-range time-scales (i.e., weeks 2-4), in recent years Climate Prediction Center (CPC) has made considerable efforts towards developing and testing the feasibility for developing the required forecasts. The forecasts targeting this particular time-scale face a unique challenge in that while the forecast skill due to atmospheric initial conditions is small (because of rapid decay in the memory associated with the atmospheric initial conditions), short time averages for which forecasts are made do not benefit from skill associated with anomalous boundary conditions either. Despite these challenges, CPC has embarked on providing an experimental outlook for weeks 3-4 average. The talk will summarize the current status of CPC's current suite of extended-range forecast products, and further, will discuss some future plans.
Public access management as an adaptive wildlife management tool
Ouren, Douglas S.; Watts, Raymond D.
2005-01-01
One key issue in the Black Mesa – Black Canyon area is the interaction between motorized vehicles and. The working hypothesis for this study is that early season elk movement onto private lands and the National Park is precipitated by increased use of Off Highway Vehicles (OHV’s). Data on intensity of motorized use is extremely limited. In this study, we monitor intensity of motorized vehicle and trail use on elk movements and habitat usage and analyze interactions. If management agencies decide to alter accessibility, we will monitor wildlife responses to changes in the human-use regime. This provides a unique opportunity for adaptive management experimentation based on coordinated research and monitoring. The products from this project will provide natural resource managers across the nation with tools and information to better meet these resource challenges.
Experimental and simulation study results for video landmark acquisition and tracking technology
NASA Technical Reports Server (NTRS)
Schappell, R. T.; Tietz, J. C.; Thomas, H. M.; Lowrie, J. W.
1979-01-01
A synopsis of related Earth observation technology is provided and includes surface-feature tracking, generic feature classification and landmark identification, and navigation by multicolor correlation. With the advent of the Space Shuttle era, the NASA role takes on new significance in that one can now conceive of dedicated Earth resources missions. Space Shuttle also provides a unique test bed for evaluating advanced sensor technology like that described in this report. As a result of this type of rationale, the FILE OSTA-1 Shuttle experiment, which grew out of the Video Landmark Acquisition and Tracking (VILAT) activity, was developed and is described in this report along with the relevant tradeoffs. In addition, a synopsis of FILE computer simulation activity is included. This synopsis relates to future required capabilities such as landmark registration, reacquisition, and tracking.
The MiniCLEAN Dark Matter Experiment
NASA Astrophysics Data System (ADS)
Schnee, Richard; Deap/Clean Collaboration
2011-10-01
The MiniCLEAN dark matter experiment exploits a single-phase liquid argon (LAr) detector, instrumented with photomultiplier tubes submerged in the cryogen with nearly 4 π coverage of a 500 kg target (150 kg fiducial) mass. The high light yield and large difference in singlet/triplet scintillation time-profiles in LAr provide effective defense against radioactive backgrounds through pulse-shape discrimination and event position reconstruction. The detector is also designed for a liquid neon target which, in the event of a positive signal in LAr, will enable an independent verification of backgrounds and provide a unique test of the expected A2 dependence of the WIMP interaction rate. The conceptually simple design can be scaled to target masses in excess of 10 tons in a relatively straightforward and economic manner. The experimental technique and current status of MiniCLEAN will be summarized.
Conditional clustering of temporal expression profiles
Wang, Ling; Montano, Monty; Rarick, Matt; Sebastiani, Paola
2008-01-01
Background Many microarray experiments produce temporal profiles in different biological conditions but common cluster techniques are not able to analyze the data conditional on the biological conditions. Results This article presents a novel technique to cluster data from time course microarray experiments performed across several experimental conditions. Our algorithm uses polynomial models to describe the gene expression patterns over time, a full Bayesian approach with proper conjugate priors to make the algorithm invariant to linear transformations, and an iterative procedure to identify genes that have a common temporal expression profile across two or more experimental conditions, and genes that have a unique temporal profile in a specific condition. Conclusion We use simulated data to evaluate the effectiveness of this new algorithm in finding the correct number of clusters and in identifying genes with common and unique profiles. We also use the algorithm to characterize the response of human T cells to stimulations of antigen-receptor signaling gene expression temporal profiles measured in six different biological conditions and we identify common and unique genes. These studies suggest that the methodology proposed here is useful in identifying and distinguishing uniquely stimulated genes from commonly stimulated genes in response to variable stimuli. Software for using this clustering method is available from the project home page. PMID:18334028
Gong, Bo; Chen, Jui-Hui; Yajima, Rieko; Chen, Yuanyuan; Chase, Elaine; Chadalavada, Durga M; Golden, Barbara L; Carey, Paul R; Bevilacqua, Philip C
2009-10-01
Raman crystallography is the application of Raman spectroscopy to single crystals. This technique has been applied to a variety of protein molecules where it has provided unique information about biopolymer folding, substrate binding, and catalysis. Here, we describe the application of Raman crystallography to functional RNA molecules. RNA represents unique opportunities and challenges for Raman crystallography. One issue that confounds studies of RNA is its tendency to adopt multiple non-functional folds. Raman crystallography has the advantage that it isolates a single state of the RNA within the crystal and can evaluate its fold, metal ion binding properties (ligand identity, stoichiometry, and affinity), proton binding properties (identity, stoichiometry, and affinity), and catalytic potential. In particular, base-specific stretches can be identified and then associated with the binding of metal ions and protons. Because measurements are carried out in the hanging drop at ambient, rather than cryo, conditions and because RNA crystals tend to be approximately 70% solvent, RNA dynamics and conformational changes become experimentally accessible. This review focuses on experimental setup and procedures, acquisition and interpretation of Raman data, and determination of physicochemical properties of the RNA. Raman crystallographic and solution biochemical experiments on the HDV RNA enzyme are summarized and found to be in excellent agreement. Remarkably, characterization of the crystalline state has proven to help rather than hinder functional characterization of functional RNA, most likely because the tendency of RNA to fold heterogeneously is limited in a crystalline environment. Future applications of Raman crystallography to RNA are briefly discussed.
Yang, Rongbing; Nam, Kihoon; Kim, Sung Wan; Turkson, James; Zou, Ye; Zuo, Yi Y; Haware, Rahul V; Chougule, Mahavir B
2017-01-03
Desired characteristics of nanocarriers are crucial to explore its therapeutic potential. This investigation aimed to develop tunable bioresponsive newly synthesized unique arginine grafted poly(cystaminebis(acrylamide)-diaminohexane) [ABP] polymeric matrix based nanocarriers by using L9 Taguchi factorial design, desirability function, and multivariate method. The selected formulation and process parameters were ABP concentration, acetone concentration, the volume ratio of acetone to ABP solution, and drug concentration. The measured nanocarrier characteristics were particle size, polydispersity index, zeta potential, and percentage drug loading. Experimental validation of nanocarrier characteristics computed from initially developed predictive model showed nonsignificant differences (p > 0.05). The multivariate modeling based optimized cationic nanocarrier formulation of <100 nm loaded with hydrophilic acetaminophen was readapted for a hydrophobic etoposide loading without significant changes (p > 0.05) except for improved loading percentage. This is the first study focusing on ABP polymeric matrix based nanocarrier development. Nanocarrier particle size was stable in PBS 7.4 for 48 h. The increase of zeta potential at lower pH 6.4, compared to the physiological pH, showed possible endosomal escape capability. The glutathione triggered release at the physiological conditions indicated the competence of cytosolic targeting delivery of the loaded drug from bioresponsive nanocarriers. In conclusion, this unique systematic approach provides rational evaluation and prediction of a tunable bioresponsive ABP based matrix nanocarrier, which was built on selected limited number of smart experimentation.
CET exSim: mineral exploration experience via simulation
NASA Astrophysics Data System (ADS)
Wong, Jason C.; Holden, Eun-Jung; Kovesi, Peter; McCuaig, T. Campbell; Hronsky, Jon
2013-08-01
Undercover mineral exploration is a challenging task as it requires understanding of subsurface geology by relying heavily on remotely sensed (i.e. geophysical) data. Cost-effective exploration is essential in order to increase the chance of success using finite budgets. This requires effective decision-making in both the process of selecting the optimum data collection methods and in the process of achieving accuracy during subsequent interpretation. Traditionally, developing the skills, behaviour and practices of exploration decision-making requires many years of experience through working on exploration projects under various geological settings, commodities and levels of available resources. This implies long periods of sub-optimal exploration decision-making, before the necessary experience has been successfully obtained. To address this critical industry issue, our ongoing research focuses on the development of the unique and novel e-learning environment, exSim, which simulates exploration scenarios where users can test their strategies and learn the consequences of their choices. This simulator provides an engaging platform for self-learning and experimentation in exploration decision strategies, providing a means to build experience more effectively. The exSim environment also provides a unique platform on which numerous scenarios and situations (e.g. deposit styles) can be simulated, potentially allowing the user to become virtually familiarised with a broader scope of exploration practices. Harnessing the power of computer simulation, visualisation and an intuitive graphical user interface, the simulator provides a way to assess the user's exploration decisions and subsequent interpretations. In this paper, we present the prototype functionalities in exSim including: simulation of geophysical surveys, follow-up drill testing and interpretation assistive tools.
Lee, James J.; Jacobsen, Elizabeth A.; Ochkur, Sergei I; McGarry, Michael P.; Condjella, Rachel M.; Doyle, Alfred D.; Luo, Huijun; Zellner, Katie R.; Protheroe, Cheryl A.; Willetts, Lian; LeSuer, William E.; Colbert, Dana C.; Helmers, Richard A.; Lacy, Paige; Moqbel, Redwan; Lee, Nancy A.
2012-01-01
The respective life histories of humans and mice are well defined and describe a unique story of evolutionary conservation extending from sequence identity within the genome to the underpinnings of biochemical, cellular, and physiological pathways. As a consequence, the hematopoietic lineages of both species are invariantly maintained, each with identifiable eosinophils. This canonical presence nonetheless does not preclude disparities between human and mouse eosinophils and/or their effector functions. Indeed, many books and reviews dogmatically highlight differences, providing a rationale to discount the use of mouse models of human eosinophilic diseases. We suggest that this perspective is parochial and ignores the wealth of available studies and the consensus of the literature that overwhelming similarities (and not differences) exist between human and mouse eosinophils. The goal of this review is to summarize this literature and in some cases provide the experimental details, comparing and contrasting eosinophils and eosinophil effector functions in humans vs. mice. In particular, our review will provide a summation and an easy to use reference guide to important studies demonstrating that while differences exist, more often than not their consequences are unknown and do not necessarily reflect inherent disparities in eosinophil function, but instead, species-specific variations. The conclusion from this overview is that despite nominal differences, the vast similarities between human and mouse eosinophils provide important insights as to their roles in health and disease and, in turn, demonstrate the unique utility of mouse-based studies with an expectation of valid extrapolation to the understanding and treatment of patients. PMID:22935586
45 CFR 162.406 - Standard unique health identifier for health care providers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 1 2014-10-01 2014-10-01 false Standard unique health identifier for health care providers. 162.406 Section 162.406 Public Welfare Department of Health and Human Services ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Standard Unique Health Identifier...
45 CFR 162.406 - Standard unique health identifier for health care providers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 1 2013-10-01 2013-10-01 false Standard unique health identifier for health care providers. 162.406 Section 162.406 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Standard Unique Health Identifier...
Singh, Anushikha; Dutta, Malay Kishore; Sharma, Dilip Kumar
2016-10-01
Identification of fundus images during transmission and storage in database for tele-ophthalmology applications is an important issue in modern era. The proposed work presents a novel accurate method for generation of unique identification code for identification of fundus images for tele-ophthalmology applications and storage in databases. Unlike existing methods of steganography and watermarking, this method does not tamper the medical image as nothing is embedded in this approach and there is no loss of medical information. Strategic combination of unique blood vessel pattern and patient ID is considered for generation of unique identification code for the digital fundus images. Segmented blood vessel pattern near the optic disc is strategically combined with patient ID for generation of a unique identification code for the image. The proposed method of medical image identification is tested on the publically available DRIVE and MESSIDOR database of fundus image and results are encouraging. Experimental results indicate the uniqueness of identification code and lossless recovery of patient identity from unique identification code for integrity verification of fundus images. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Solving NP-Hard Problems with Physarum-Based Ant Colony System.
Liu, Yuxin; Gao, Chao; Zhang, Zili; Lu, Yuxiao; Chen, Shi; Liang, Mingxin; Tao, Li
2017-01-01
NP-hard problems exist in many real world applications. Ant colony optimization (ACO) algorithms can provide approximate solutions for those NP-hard problems, but the performance of ACO algorithms is significantly reduced due to premature convergence and weak robustness, etc. With these observations in mind, this paper proposes a Physarum-based pheromone matrix optimization strategy in ant colony system (ACS) for solving NP-hard problems such as traveling salesman problem (TSP) and 0/1 knapsack problem (0/1 KP). In the Physarum-inspired mathematical model, one of the unique characteristics is that critical tubes can be reserved in the process of network evolution. The optimized updating strategy employs the unique feature and accelerates the positive feedback process in ACS, which contributes to the quick convergence of the optimal solution. Some experiments were conducted using both benchmark and real datasets. The experimental results show that the optimized ACS outperforms other meta-heuristic algorithms in accuracy and robustness for solving TSPs. Meanwhile, the convergence rate and robustness for solving 0/1 KPs are better than those of classical ACS.
Yue, Chuang; Yu, Yingjian; Wu, Zhenguo; Sun, Shibo; He, Xu; Li, Juntao; Zhao, Libo; Wu, Suntao; Li, Jing; Kang, Junyong; Lin, Liwei
2016-03-01
Three-dimensional (3D) Si/Ge-based micro/nano batteries are promising lab-on-chip power supply sources because of the good process compatibility with integrated circuits and Micro/Nano-Electro-Mechanical System technologies. In this work, the effective interlayer of TiN/Ti thin films were introduced to coat around the 3D Si nanorod (NR) arrays before the amorphous Ge layer deposition as anode in micro/nano lithium ion batteries, thus the superior cycling stability was realized by reason for the restriction of Si activation in this unique 3D matchlike Si/TiN/Ti/Ge NR array electrode. Moreover, the volume expansion properties after the repeated lithium-ion insertion/extraction were experimentally investigated to evidence the superior stability of this unique multilayered Si composite electrode. The demonstration of this wafer-scale, cost-effective, and Si-compatible fabrication for anodes in Li-ion micro/nano batteries provides new routes to configurate more efficient 3D energy storage systems for micro/nano smart semiconductor devices.
Nanogap Electrodes towards Solid State Single-Molecule Transistors.
Cui, Ajuan; Dong, Huanli; Hu, Wenping
2015-12-01
With the establishment of complementary metal-oxide-semiconductor (CMOS)-based integrated circuit technology, it has become more difficult to follow Moore's law to further downscale the size of electronic components. Devices based on various nanostructures were constructed to continue the trend in the minimization of electronics, and molecular devices are among the most promising candidates. Compared with other candidates, molecular devices show unique superiorities, and intensive studies on molecular devices have been carried out both experimentally and theoretically at the present time. Compared to two-terminal molecular devices, three-terminal devices, namely single-molecule transistors, show unique advantages both in fundamental research and application and are considered to be an essential part of integrated circuits based on molecular devices. However, it is very difficult to construct them using the traditional microfabrication techniques directly, thus new fabrication strategies are developed. This review aims to provide an exclusive way of manufacturing solid state gated nanogap electrodes, the foundation of constructing transistors of single or a few molecules. Such single-molecule transistors have the potential to be used to build integrated circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Argument as Professional Development: Impacting Teacher Knowledge and Beliefs About Science
NASA Astrophysics Data System (ADS)
Crippen, Kent J.
2012-12-01
Using a case study method, the experiences of a group of high school science teachers participating in a unique professional development method involving an argue-to-learn intervention were examined. The participants ( N = 42) represented 25 different high schools from a large urban school district in the southwestern United States. Data sources included a multiple-choice science content test and artifacts from a capstone argument project. Findings indicate although it was intended for the curriculum to be a robust and sufficient collection of evidence, participant groups were more likely to use the Web to find unique evidence than to they were to use the provided materials. Content knowledge increased, but an issue with teacher conceptions of primary data was identified, as none of the participants chose to use any of their experimental results in their final arguments. The results of this study reinforce multiple calls for science curricula that engage students (including teachers as students) in the manipulation and questioning of authentic data as a means to better understanding complex socioscientific issues and the nature of science.
Parton, Angela; Bayne, Christopher J.; Barnes, David W.
2010-01-01
Elasmobranchs are the most commonly used experimental models among the jawed, cartilaginous fish (Chondrichthyes). Previously we developed cell lines from embryos of two elasmobranchs, Squalus acanthias the spiny dogfish shark (SAE line), and Leucoraja erinacea the little skate (LEE-1 line). From these lines cDNA libraries were derived and expressed sequence tags (ESTs) generated. From the SAE cell line 4303 unique transcripts were identified, with 1848 of these representing unknown sequences (showing no BLASTX identification). From the LEE-1 cell line, 3660 unique transcripts were identified, and unknown, unique sequences totaled 1333. Gene Ontology (GO) annotation showed that GO assignments for the two cell lines were in general similar. These results suggest that the procedures used to derive the cell lines led to isolation of cell types of the same general embryonic origin from both species. The LEE-1 transcripts included GO categories “envelope” and “oxidoreductase activity” but the SAE transcripts did not. GO analysis of SAE transcripts identified the category “anatomical structure formation” that was not present in LEE-1 cells. Increased organelle compartments may exist within LEE-1 cells compared to SAE cells, and the higher oxidoreductase activity in LEE-1 cells may indicate a role for these cells in responses associated with innate immunity or in steroidogenesis. These EST libraries from elasmobranch cell lines provide information for assembly of genomic sequences and are useful in revealing gene diversity, new genes and molecular markers, as well as in providing means for elucidation of full-length cDNAs and probes for gene array analyses. This is the first study of this type with members of the Chondrichthyes. PMID:20471924
Parton, Angela; Bayne, Christopher J; Barnes, David W
2010-09-01
Elasmobranchs are the most commonly used experimental models among the jawed, cartilaginous fish (Chondrichthyes). Previously we developed cell lines from embryos of two elasmobranchs, Squalus acanthias the spiny dogfish shark (SAE line), and Leucoraja erinacea the little skate (LEE-1 line). From these lines cDNA libraries were derived and expressed sequence tags (ESTs) generated. From the SAE cell line 4303 unique transcripts were identified, with 1848 of these representing unknown sequences (showing no BLASTX identification). From the LEE-1 cell line, 3660 unique transcripts were identified, and unknown, unique sequences totaled 1333. Gene Ontology (GO) annotation showed that GO assignments for the two cell lines were in general similar. These results suggest that the procedures used to derive the cell lines led to isolation of cell types of the same general embryonic origin from both species. The LEE-1 transcripts included GO categories "envelope" and "oxidoreductase activity" but the SAE transcripts did not. GO analysis of SAE transcripts identified the category "anatomical structure formation" that was not present in LEE-1 cells. Increased organelle compartments may exist within LEE-1 cells compared to SAE cells, and the higher oxidoreductase activity in LEE-1 cells may indicate a role for these cells in responses associated with innate immunity or in steroidogenesis. These EST libraries from elasmobranch cell lines provide information for assembly of genomic sequences and are useful in revealing gene diversity, new genes and molecular markers, as well as in providing means for elucidation of full-length cDNAs and probes for gene array analyses. This is the first study of this type with members of the Chondrichthyes. Copyright 2010 Elsevier Inc. All rights reserved.
Modeling the Arrest of Tissue Growth in Epithelia
NASA Astrophysics Data System (ADS)
Golden, Alexander; Lubensky, David
The mechanisms of control and eventual arrest of growth of tissues is an area that has received considerable attention, both experimentally and in the development of quantitative models. In particular, the Drosophila wing disc epithelium appears to robustly arrive at a unique final size. One mechanism that has the potential to play a role in the eventual cessation of growth is mechanical feedback from stresses induced by nonuniform growth. There is experimental support for an effect on the tissue growth rate by such mechanical stresses, and a number of numerical or cell-based models have been proposed that show that the arrest of growth can be achieved by mechanical feedback. We introduce an analytic framework that allows us to understand different coarse-grained feedback mechanisms on the same terms. We use the framework to distinguish between families of models that do not have a unique final size and those that do and give rough estimates for how much variability in the eventual organ size can be expected in models that do not have a unique final size. NSF Grant DMR-1056456.
Adsorbate-induced lattice deformation in IRMOF-74 series
Jawahery, Sudi; Simon, Cory M.; Braun, Efrem; ...
2017-01-09
Here, IRMOF-74 analogues are among the most widely studied metal-organic frameworks (MOFs) for adsorption applications because of their one-dimensional channels and high metal density. Most studies involving the IRMOF-74 series assume that the crystal lattice is rigid. This assumption guides the interpretation of experimental data, as changes in the crystal symmetry have so far been ignored as a possibility in the literature. Here, we report a deformation pattern, induced by the adsorption of argon, for IRMOF-74-V. This work has two main implications. First, we use molecular simulations to demonstrate that the IRMOF-74 series undergoes a deformation that is similar tomore » the mechanism behind breathing MOFs, but is unique because the deformation pattern extends beyond a single unit cell of the original structure. Second, we provide an alternative interpretation of experimental small-angle X-ray scattering profiles of these systems, which changes how we view the fundamentals of adsorption in this MOF series.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Steve M.; Manni, S.; Shao, Junping
BaSn 2 has been shown to form as layers of buckled stanene intercalated by barium ions. However, despite an apparently straightforward synthesis and significant interest in stanene as a topological material, BaSn 2 has been left largely unexplored, and has only recently been recognized as a potential topological insulator. Belonging to neither the lead nor bismuth chalcogenide families, it would represent a unique manifestation of the topological insulating phase. Here in this paper, we present a detailed investigation of BaSn 2, using both ab initio and experimental methods. First-principles calculations demonstrate that this overlooked material is indeed a strong, wide-gapmore » topological insulator with a bulk band gap of 200 meV. We characterize the surface state dependence on termination chemistry, providing guidance for experimental efforts to measure and manipulate its topological properties. Additionally, through ab initio modeling and synthesis experiments, we explore the stability and accessibility of this phase, revealing a complicated phase diagram that indicates a challenging path to obtaining single crystals.« less
Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions
Blais, Edik M.; Rawls, Kristopher D.; Dougherty, Bonnie V.; Li, Zhuo I.; Kolling, Glynis L.; Ye, Ping; Wallqvist, Anders; Papin, Jason A.
2017-01-01
The laboratory rat has been used as a surrogate to study human biology for more than a century. Here we present the first genome-scale network reconstruction of Rattus norvegicus metabolism, iRno, and a significantly improved reconstruction of human metabolism, iHsa. These curated models comprehensively capture metabolic features known to distinguish rats from humans including vitamin C and bile acid synthesis pathways. After reconciling network differences between iRno and iHsa, we integrate toxicogenomics data from rat and human hepatocytes, to generate biomarker predictions in response to 76 drugs. We validate comparative predictions for xanthine derivatives with new experimental data and literature-based evidence delineating metabolite biomarkers unique to humans. Our results provide mechanistic insights into species-specific metabolism and facilitate the selection of biomarkers consistent with rat and human biology. These models can serve as powerful computational platforms for contextualizing experimental data and making functional predictions for clinical and basic science applications. PMID:28176778
Lubk, A; Rossell, M D; Seidel, J; He, Q; Yang, S Y; Chu, Y H; Ramesh, R; Hÿtch, M J; Snoeck, E
2012-07-27
Domain walls (DWs) substantially influence a large number of applications involving ferroelectric materials due to their limited mobility when shifted during polarization switching. The discovery of greatly enhanced conduction at BiFeO(3) DWs has highlighted yet another role of DWs as a local material state with unique properties. However, the lack of precise information on the local atomic structure is still hampering microscopical understanding of DW properties. Here, we examine the atomic structure of BiFeO(3) 109° DWs with pm precision by a combination of high-angle annular dark-field scanning transmission electron microscopy and a dedicated structural analysis. By measuring simultaneously local polarization and strain, we provide direct experimental proof for the straight DW structure predicted by ab initio calculations as well as the recently proposed theory of diffuse DWs, thus resolving a long-standing discrepancy between experimentally measured and theoretically predicted DW mobilities.
Stabilization of Si_60 Cage Structure: The Agony and the Ecstasy
NASA Astrophysics Data System (ADS)
Kawazoe, Y.; Sun, Q.; Wang, Q.; Rao, B. K.; Jena, P.
2003-03-01
The unique role of silicon in the micro-electronics industry has motivated many researchers to find ways to stabilize Si_60 with fullerene structure. In spite of numerous experimental attempts, synthesis of a theoretically predicted C_60-supported Si_60 cluster (C_60@Si_60) has not been possible. Using a state-of-the-art theoretical method, we provide the first answer for this long-standing contradiction between the experimental observation and the theoretical prediction. The flaws in earlier theoretical works are pointed out, and Si_60 is shown to be unstable in the fullerene structure either on its own or when supported on a C_60 fullerene (C_60@Si_60). On the other hand, we show that Si_60 cage can be stabilized by using magic clusters such as Al_12X (X = Si, Ge, Sn, Pb) as endohedral units, which have been identified in recent experiment as stable clusters and as suitable building blocks for cluster-assembled materials.
BaSn 2 : A wide-gap strong topological insulator
Young, Steve M.; Manni, S.; Shao, Junping; ...
2017-02-15
BaSn 2 has been shown to form as layers of buckled stanene intercalated by barium ions. However, despite an apparently straightforward synthesis and significant interest in stanene as a topological material, BaSn 2 has been left largely unexplored, and has only recently been recognized as a potential topological insulator. Belonging to neither the lead nor bismuth chalcogenide families, it would represent a unique manifestation of the topological insulating phase. Here in this paper, we present a detailed investigation of BaSn 2, using both ab initio and experimental methods. First-principles calculations demonstrate that this overlooked material is indeed a strong, wide-gapmore » topological insulator with a bulk band gap of 200 meV. We characterize the surface state dependence on termination chemistry, providing guidance for experimental efforts to measure and manipulate its topological properties. Additionally, through ab initio modeling and synthesis experiments, we explore the stability and accessibility of this phase, revealing a complicated phase diagram that indicates a challenging path to obtaining single crystals.« less
Gene expression profiling--Opening the black box of plant ecosystem responses to global change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leakey, A.D.B.; Ainsworth, E.A.; Bernard, S.M.
The use of genomic techniques to address ecological questions is emerging as the field of genomic ecology. Experimentation under environmentally realistic conditions to investigate the molecular response of plants to meaningful changes in growth conditions and ecological interactions is the defining feature of genomic ecology. Since the impact of global change factors on plant performance are mediated by direct effects at the molecular, biochemical and physiological scales, gene expression analysis promises important advances in understanding factors that have previously been consigned to the 'black box' of unknown mechanism. Various tools and approaches are available for assessing gene expression in modelmore » and non-model species as part of global change biology studies. Each approach has its own unique advantages and constraints. A first generation of genomic ecology studies in managed ecosystems and mesocosms have provided a testbed for the approach and have begun to reveal how the experimental design and data analysis of gene expression studies can be tailored for use in an ecological context.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartnett, Chris A.; Mahady, Kyle; Fowlkes, Jason Davidson
We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh–Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting.more » The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. Additionally, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects.« less
Hartnett, Chris A.; Mahady, Kyle; Fowlkes, Jason Davidson; ...
2015-11-23
We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh–Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting.more » The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. Additionally, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects.« less
Bridging the gap between evidence-based innovation and national health-sector reform in Ghana.
Awoonor-Williams, John Koku; Feinglass, Ellie S; Tobey, Rachel; Vaughan-Smith, Maya N; Nyonator, Frank K; Jones, Tanya C
2004-09-01
Although experimental trials often identify optimal strategies for improving community health, transferring operational innovation from well-funded research programs to resource-constrained settings often languishes. Because research initiatives are based in institutions equipped with unique resources and staff capabilities, results are often dismissed by decisionmakers as irrelevant to large-scale operations and national health policy. This article describes an initiative undertaken in Nkwanta District, Ghana, focusing on this problem. The Nkwanta District initiative is a critical link between the experimental study conducted in Navrongo, Ghana, and a national effort to scale up the innovations developed in that study. A 2002 Nkwanta district-level survey provides the basis for assessing the likelihood that the Navrongo model is replicable elsewhere in Ghana. The effect of community-based health planning and services exposure on family planning and safe-motherhood indicators supports the hypothesis that Navrongo effects are transferable to impoverished rural settings elsewhere, confirming the need for strategies to bridge the gap between Navrongo evidence-based innovation and national health-sector reform.
NASA Astrophysics Data System (ADS)
McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; Coughlin, Daniel R.; Clarke, Amy J.; Baldwin, J. Kevin; Gibbs, John W.; Roehling, John D.; Imhoff, Seth D.; Gibbs, Paul J.; Tourret, Damien; Wiezorek, Jörg M. K.; Campbell, Geoffrey H.
2016-03-01
Additive manufacturing (AM) of metals and alloys is becoming a pervasive technology in both research and industrial environments, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al-Cu and Al-Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid-liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. The observed microstructure evolution, solidification product, and presence of a morphological instability at the solid-liquid interface in the Al-4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.
Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell
1998-01-01
Analytical and experimental studies conducted at the NASA Langley Research Center for investigating integrated cryogenic propellant tank systems for a Reusable Launch Vehicle are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, Thermal Protection System (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.
Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell W.
2005-01-01
Analytical and experimental studies conducted at the NASA, Langley Research Center (LaRC) for investigating integrated cryogenic propellant tank systems for a reusable launch vehicle (RLV) are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, thermal protection system (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.
McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; ...
2016-01-27
In research and industrial environments, additive manufacturing (AM) of metals and alloys is becoming a pervasive technology, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al–Cu and Al–Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid–liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. We observed microstructure evolution, solidification product, andmore » presence of a morphological instability at the solid–liquid interface in the Al–4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.« less
Experimental concept for examination of biological effects of magnetic field concealed by gravity.
Yamashita, M; Tomita-Yokotani, K; Hashimoto, H; Takai, M; Tsushima, M; Nakamura, T
2004-01-01
Space is not only a place to study biological effects of gravity, but also provides unique opportunities to examine other environmental factors, where the biological actions are masked by gravity on the ground. Even the earth's magnetic field is steadily acting on living systems, and is known to influence many biological processes. A systematic survey and assessment of its action are difficult to conduct in the presence of dominant factors, such as gravity. Investigation of responses of biological systems against the combined environment of zero-gravity and zero-magnetic field might establish the baseline for the analysis of biological effects of magnetic factors. We propose, in this paper, an experimental concept in this context, together with a practical approach of the experiments, both in orbit and on the ground, with a thin magnetic shielding film. Plant epicotyl growth was taken as an exemplar index to evaluate technical and scientific feasibility of the proposed system concept. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Sound Pressure Level Gain in an Acoustic Metamaterial Cavity
Song, Kyungjun; Kim, Kiwon; Hur, Shin; Kwak, Jun-Hyuk; Park, Jihyun; Yoon, Jong Rak; Kim, Jedo
2014-01-01
The inherent attenuation of a homogeneous viscous medium limits radiation propagation, thereby restricting the use of many high-frequency acoustic devices to only short-range applications. Here, we design and experimentally demonstrate an acoustic metamaterial localization cavity which is used for sound pressure level (SPL) gain using double coiled up space like structures thereby increasing the range of detection. This unique behavior occurs within a subwavelength cavity that is 1/10th of the wavelength of the incident acoustic wave, which provides up to a 13 dB SPL gain. We show that the amplification results from the Fabry-Perot resonance of the cavity, which has a simultaneously high effective refractive index and effective impedance. We also experimentally verify the SPL amplification in an underwater environment at higher frequencies using a sample with an identical unit cell size. The versatile scalability of the design shows promising applications in many areas, especially in acoustic imaging and underwater communication. PMID:25502279
Evolving landscape of low-energy nuclear physics publications
Pritychenko, B.
2016-10-01
Evolution of low-energy nuclear physics publications over the last 120 years has been analyzed using nuclear physics databases. An extensive study of Nuclear Science References, Experimental Nuclear Reaction Data (EXFOR), and Evaluated Nuclear Structure Data File (ENSDF) contents provides a unique picture of refereed and non-refereed nuclear physics references. Significant fractional contributions of non-refereed reports, private communications and conference proceedings in EXFOR and ENSDF databases in the 1970’s reflect extensive experimental campaigns and an insufficient number of research journals. This trend has been reversed in recent years because the number of measurements is much lower, while number of journals ismore » higher. In addition, nuclear physics results are mainly published in a limited number of journals, such as Physical Review C and Nuclear Physics A. In the present work, historic publication trends and averages have been extracted and analyzed using nuclear data mining techniques. Lastly, the results of this study and implications are discussed and conclusions presented.« less
Experience on divertor fuel retention after two ITER-Like Wall campaigns
NASA Astrophysics Data System (ADS)
Heinola, K.; Widdowson, A.; Likonen, J.; Ahlgren, T.; Alves, E.; Ayres, C. F.; Baron-Wiechec, A.; Barradas, N.; Brezinsek, S.; Catarino, N.; Coad, P.; Guillemaut, C.; Jepu, I.; Krat, S.; Lahtinen, A.; Matthews, G. F.; Mayer, M.; Contributors, JET
2017-12-01
The JET ITER-Like Wall experiment, with its all-metal plasma-facing components, provides a unique environment for plasma and plasma-wall interaction studies. These studies are of great importance in understanding the underlying phenomena taking place during the operation of a future fusion reactor. Present work summarizes and reports the plasma fuel retention in the divertor resulting from the two first experimental campaigns with the ITER-Like Wall. The deposition pattern in the divertor after the second campaign shows same trend as was observed after the first campaign: highest deposition of 10-15 μm was found on the top part of the inner divertor. Due to the change in plasma magnetic configurations from the first to the second campaign, and the resulted strike point locations, an increase of deposition was observed on the base of the divertor. The deuterium retention was found to be affected by the hydrogen plasma experiments done at the end of second experimental campaign.
Evolving landscape of low-energy nuclear physics publications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pritychenko, B.
Evolution of low-energy nuclear physics publications over the last 120 years has been analyzed using nuclear physics databases. An extensive study of Nuclear Science References, Experimental Nuclear Reaction Data (EXFOR), and Evaluated Nuclear Structure Data File (ENSDF) contents provides a unique picture of refereed and non-refereed nuclear physics references. Significant fractional contributions of non-refereed reports, private communications and conference proceedings in EXFOR and ENSDF databases in the 1970’s reflect extensive experimental campaigns and an insufficient number of research journals. This trend has been reversed in recent years because the number of measurements is much lower, while number of journals ismore » higher. In addition, nuclear physics results are mainly published in a limited number of journals, such as Physical Review C and Nuclear Physics A. In the present work, historic publication trends and averages have been extracted and analyzed using nuclear data mining techniques. Lastly, the results of this study and implications are discussed and conclusions presented.« less
Adsorbate-induced lattice deformation in IRMOF-74 series
Jawahery, Sudi; Simon, Cory M.; Braun, Efrem; Witman, Matthew; Tiana, Davide; Vlaisavljevich, Bess; Smit, Berend
2017-01-01
IRMOF-74 analogues are among the most widely studied metal-organic frameworks (MOFs) for adsorption applications because of their one-dimensional channels and high metal density. Most studies involving the IRMOF-74 series assume that the crystal lattice is rigid. This assumption guides the interpretation of experimental data, as changes in the crystal symmetry have so far been ignored as a possibility in the literature. Here, we report a deformation pattern, induced by the adsorption of argon, for IRMOF-74-V. This work has two main implications. First, we use molecular simulations to demonstrate that the IRMOF-74 series undergoes a deformation that is similar to the mechanism behind breathing MOFs, but is unique because the deformation pattern extends beyond a single unit cell of the original structure. Second, we provide an alternative interpretation of experimental small-angle X-ray scattering profiles of these systems, which changes how we view the fundamentals of adsorption in this MOF series. PMID:28067222
Adsorbate-induced lattice deformation in IRMOF-74 series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jawahery, Sudi; Simon, Cory M.; Braun, Efrem
Here, IRMOF-74 analogues are among the most widely studied metal-organic frameworks (MOFs) for adsorption applications because of their one-dimensional channels and high metal density. Most studies involving the IRMOF-74 series assume that the crystal lattice is rigid. This assumption guides the interpretation of experimental data, as changes in the crystal symmetry have so far been ignored as a possibility in the literature. Here, we report a deformation pattern, induced by the adsorption of argon, for IRMOF-74-V. This work has two main implications. First, we use molecular simulations to demonstrate that the IRMOF-74 series undergoes a deformation that is similar tomore » the mechanism behind breathing MOFs, but is unique because the deformation pattern extends beyond a single unit cell of the original structure. Second, we provide an alternative interpretation of experimental small-angle X-ray scattering profiles of these systems, which changes how we view the fundamentals of adsorption in this MOF series.« less
Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians.
Newmark, Phillip A; Reddien, Peter W; Cebrià, Francesc; Sánchez Alvarado, Alejandro
2003-09-30
Freshwater planarian flatworms are capable of regenerating complete organisms from tiny fragments of their bodies; the basis for this regenerative prowess is an experimentally accessible stem cell population that is present in the adult planarian. The study of these organisms, classic experimental models for investigating metazoan regeneration, has been revitalized by the application of modern molecular biological approaches. The identification of thousands of unique planarian ESTs, coupled with large-scale whole-mount in situ hybridization screens, and the ability to inhibit planarian gene expression through double-stranded RNA-mediated genetic interference, provide a wealth of tools for studying the molecular mechanisms that regulate tissue regeneration and stem cell biology in these organisms. Here we show that, as in Caenorhabditis elegans, ingestion of bacterially expressed double-stranded RNA can inhibit gene expression in planarians. This inhibition persists throughout the process of regeneration, allowing phenotypes with disrupted regenerative patterning to be identified. These results pave the way for large-scale screens for genes involved in regenerative processes.
NASA Technical Reports Server (NTRS)
Kramer, Edward (Editor)
1998-01-01
The cryogenic fluid management technologies required for the exploration of the solar system can only be fully developed via space-based experiments. A dedicated spacecraft is the most efficient way to perform these experiments. This report documents the extended conceptual design of the COLD-SAT spacecraft, capable of meeting these experimental requirements. All elements, including the spacecraft, ground segment, launch site modifications and launch vehicle operations, and flight operations are included. Greatly expanded coverage is provided for those areas unique to this cryogenic spacecraft, such as the experiment system, attitude control system, and spacecraft operations. Supporting analyses are included as are testing requirements, facilities surveys, and proposed project timelines.
An innovative platform for quick and flexible joining of assorted DNA fragments
De Paoli, Henrique Cestari; Tuskan, Gerald A.; Yang, Xiaohan
2016-01-13
Successful synthetic biology efforts rely on conceptual and experimental designs in combination with testing of multi-gene constructs. Despite recent progresses, several limitations still hinder the ability to flexibly assemble and collectively share different types of DNA segments. We describe an advanced system for joining DNA fragments from a universal library that automatically maintains open reading frames (ORFs) and does not require linkers, adaptors, sequence homology, amplification or mutation (domestication) of fragments in order to work properly. Moreover, we find that this system, which is enhanced by a unique buffer formulation, provides unforeseen capabilities for testing, and sharing, complex multi-gene circuitrymore » assembled from different DNA fragments.« less
Detection of experimental brain tumors using time-resolved laser-induced fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Thompson, Reid C.; Black, Keith L.; Kateb, Babak; Marcu, Laura
2002-05-01
Time-Resolved Laser-Induced Fluorescence Spectroscopy (TR-LIFS) has the potential to provide a non- invasive characterization and detection of tumors. We utilized TR-LIFS to detect gliomas in-vivo in the rat C6 glioma model. Time-resolved emission spectra of both normal brain and tumor were analyzed to determine if unique fluorescence signatures could be used to distinguish the two. Fluorescence parameters derived from both spectral and time domain were used for tissue characterization. Our results show that in the rat C6 glioma model, TR-LIFS can be used to differentiate brain tumors from normal tissue (gray and white mater) based upon time- resolved fluorescence signatures seen in brain tumors.
Go ahead, grow a head! A planarian's guide to anterior regeneration
2016-01-01
Abstract The unique ability of some planarian species to regenerate a head de novo, including a functional brain, provides an experimentally accessible system in which to study the mechanisms underlying regeneration. Here, we summarize the current knowledge on the key steps of planarian head regeneration (head‐versus‐tail decision, anterior pole formation and head patterning) and their molecular and cellular basis. Moreover, instructive properties of the anterior pole as a putative organizer and in coordinating anterior midline formation are discussed. Finally, we highlight that regeneration initiation occurs in a two‐step manner and hypothesize that wound‐induced and existing positional cues interact to detect tissue loss and together determine the appropriate regenerative outcomes. PMID:27606065
Surface modification of ferritic steels using MEVVA and duoplasmatron ion sources
NASA Astrophysics Data System (ADS)
Kulevoy, Timur V.; Chalyhk, Boris B.; Fedin, Petr A.; Sitnikov, Alexey L.; Kozlov, Alexander V.; Kuibeda, Rostislav P.; Andrianov, Stanislav L.; Orlov, Nikolay N.; Kravchuk, Konstantin S.; Rogozhkin, Sergey V.; Useinov, Alexey S.; Oks, Efim M.; Bogachev, Alexey A.; Nikitin, Alexander A.; Iskandarov, Nasib A.; Golubev, Alexander A.
2016-02-01
Metal Vapor Vacuum Arc (MEVVA) ion source (IS) is a unique tool for production of high intensity metal ion beam that can be used for material surface modification. From the other hand, the duoplasmatron ion source provides the high intensity gas ion beams. The MEVVA and duoplasmatron IS developed in Institute for Theoretical and Experimental Physics were used for the reactor steel surface modification experiments. Response of ferritic-martensitic steel specimens on titanium and nitrogen ions implantation and consequent vacuum annealing was investigated. Increase in microhardness of near surface region of irradiated specimens was observed. Local chemical analysis shows atom mixing and redistribution in the implanted layer followed with formation of ultrafine precipitates after annealing.
Vaughan, Kerrie; Peters, Bjoern; O'Connor, Kevin C.; Martin, Roland; Sette, Alessandro
2016-01-01
An analysis to inventory all immune epitope data related to multiple sclerosis (MS) was performed using the Immune Epitope Database (IEDB). The analysis revealed that MS related data represent >20% of all autoimmune data, and that studies of EAE predominate; only 22% of the references describe human data. To date, >5800 unique peptides, analogs, mimotopes, and/or non-protein epitopes have been reported from 861 references, including data describing myelin-containing, as well as non-myelin antigens. This work provides a reference point for the scientific community of the universe of available data for MS-related adaptive immunity in the context of EAE and human disease. PMID:24365494
CLAS+FROST: new generation of photoproduction experiments at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eugene Pasyuk
2009-12-01
A large part of the experimental program in Hall B of the Jefferson Lab is dedicated to baryon spectroscopy. Photoproduction experiments are essential part of this program. CEBAF Large Acceptance Spectrometer (CLAS) and availability of circularly and linearly polarized tagged photon beams provide unique conditions for this type of experiments. Recent addition of the Frozen Spin Target (FROST) gives a remarkable opportunity to measure double and triple polarization observables for different pseudo-scalar meson photoproduction processes. For the first time, a complete or nearly complete experiment becomes possible and will allow model independent extraction of the reaction amplitude. An overview ofmore » the experiment and its current status is presented.« less
Transition to Operations Plans for GPM Datasets
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley; Jedlovec, Gary; Case, Jonathan; Leroy, Anita; Molthan, Andrew; Bell, Jordan; Fuell, Kevin; Stano, Geoffrey
2013-01-01
Founded in 2002 at the National Space Science Technology Center at Marshall Space Flight Center in Huntsville, AL. Focused on transitioning unique NASA and NOAA observations and research capabilities to the operational weather community to improve short-term weather forecasts on a regional and local scale. NASA directed funding; NOAA funding from Proving Grounds (PG). Demonstrate capabilities experimental products to weather applications and societal benefit to prepare forecasters for the use of data from next generation of operational satellites. Objective of this poster is to highlight SPoRT's research to operations (R2O) paradigm and provide examples of work done by the team with legacy instruments relevant to GPM in order to promote collaborations with groups developing GPM products.
Measurement of Aqueous Foam Rheology by Acoustic Levitation
NASA Technical Reports Server (NTRS)
McDaniel, J. Gregory; Holt, R. Glynn; Rogers, Rich (Technical Monitor)
2000-01-01
An experimental technique is demonstrated for acoustically levitating aqueous foam drops and exciting their spheroidal modes. This allows fundamental studies of foam-drop dynamics that provide an alternative means of estimating the viscoelastic properties of the foam. One unique advantage of the technique is the lack of interactions between the foam and container surfaces, which must be accounted for in other techniques. Results are presented in which a foam drop with gas volume fraction phi = 0.77 is levitated at 30 kHz and excited into its first quadrupole resonance at 63 +/- 3 Hz. By modeling the drop as an elastic sphere, the shear modulus of the foam was estimated at 75 +/- 3 Pa.
Histochemistry as a Unique Approach for Investigating Normal and Osteoarthritic Cartilage
Musumeci, G.; Castrogiovanni, P.; Mazzone, V.; Szychlinska, M. A.; Castorina, S.; Loreto, C.
2014-01-01
In this review article, we describe benefits and disadvantages of the established histochemical methods for studying articular cartilage tissue under normal, pathological and experimental conditions. We illustrate the current knowledge on cartilage tissue based on histological and immunohistochemical aspects, and in conclusion we provide a short overview on the degeneration of cartilage, such as osteoarthritis. Adult articular cartilage has low capacity to repair itself, and thus even minor injuries may lead to progressive damage and osteoarthritic joint degeneration, resulting in significant pain and disability. Numerous efforts have been made to implement the knowledge in the study of cartilage in the last years, and histochemistry proved to be an especially powerful tool to this aim. PMID:24998926
Going clean: structure and dynamics of peptides in the gas phase and paths to solvation.
Baldauf, Carsten; Rossi, Mariana
2015-12-16
The gas phase is an artificial environment for biomolecules that has gained much attention both experimentally and theoretically due to its unique characteristic of providing a clean room environment for the comparison between theory and experiment. In this review we give an overview mainly on first-principles simulations of isolated peptides and the initial steps of their interactions with ions and solvent molecules: a bottom up approach to the complexity of biological environments. We focus on the accuracy of different methods to explore the conformational space, the connections between theory and experiment regarding collision cross section evaluations and (anharmonic) vibrational spectra, and the challenges faced in this field.
Pump-probe nonlinear phase dispersion spectroscopy.
Robles, Francisco E; Samineni, Prathyush; Wilson, Jesse W; Warren, Warren S
2013-04-22
Pump-probe microscopy is an imaging technique that delivers molecular contrast of pigmented samples. Here, we introduce pump-probe nonlinear phase dispersion spectroscopy (PP-NLDS), a method that leverages pump-probe microscopy and spectral-domain interferometry to ascertain information from dispersive and resonant nonlinear effects. PP-NLDS extends the information content to four dimensions (phase, amplitude, wavelength, and pump-probe time-delay) that yield unique insight into a wider range of nonlinear interactions compared to conventional methods. This results in the ability to provide highly specific molecular contrast of pigmented and non-pigmented samples. A theoretical framework is described, and experimental results and simulations illustrate the potential of this method. Implications for biomedical imaging are discussed.
Pump-probe nonlinear phase dispersion spectroscopy
Robles, Francisco E.; Samineni, Prathyush; Wilson, Jesse W.; Warren, Warren S.
2013-01-01
Pump-probe microscopy is an imaging technique that delivers molecular contrast of pigmented samples. Here, we introduce pump-probe nonlinear phase dispersion spectroscopy (PP-NLDS), a method that leverages pump-probe microscopy and spectral-domain interferometry to ascertain information from dispersive and resonant nonlinear effects. PP-NLDS extends the information content to four dimensions (phase, amplitude, wavelength, and pump-probe time-delay) that yield unique insight into a wider range of nonlinear interactions compared to conventional methods. This results in the ability to provide highly specific molecular contrast of pigmented and non-pigmented samples. A theoretical framework is described, and experimental results and simulations illustrate the potential of this method. Implications for biomedical imaging are discussed. PMID:23609646
An Experimentally-Supported Genome-Scale Metabolic Network Reconstruction for Yersinia pestis CO92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charusanti, Pep; Chauhan, Sadhana; Mcateer, Kathleen
2011-10-13
Yersinia pestis is a gram-negative bacterium that causes plague, a disease linked historically to the Black Death in Europe during the Middle Ages and to several outbreaks during the modern era. Metabolism in Y. pestis displays remarkable flexibility and robustness, allowing the bacterium to proliferate in both warm-blooded mammalian hosts and cold-blooded insect vectors such as fleas. Here we report a genome-scale reconstruction and mathematical model of metabolism for Y. pestis CO92 and supporting experimental growth and metabolite measurements. The model contains 815 genes, 678 proteins, 963 unique metabolites and 1678 reactions, accurately simulates growth on a range of carbonmore » sources both qualitatively and quantitatively, and identifies gaps in several key biosynthetic pathways and suggests how those gaps might be filled. Furthermore, our model presents hypotheses to explain certain known nutritional requirements characteristic of this strain. Y. pestis continues to be a dangerous threat to human health during modern times. The Y. pestis genome-scale metabolic reconstruction presented here, which has been benchmarked against experimental data and correctly reproduces known phenotypes, thus provides an in silico platform with which to investigate the metabolism of this important human pathogen.« less
Fong, Celesta; Dong, Aurelia W; Hill, Anita J; Boyd, Ben J; Drummond, Calum J
2015-07-21
Positron annihilation lifetime spectroscopy (PALS) has been shown to be highly sensitive to conformational, structural and microenvironmental transformations arising from subtle geometric changes in molecular geometry in self-assembling biomimetic systems. The ortho-positronium (oPs) may be considered an active probe that can provide information on intrinsic packing and mobility within low molecular weight solids, viscous liquids, and soft matter systems. In this perspective we provide a critical overview of the literature in this field, including the evolution of analysis software and experimental protocols with commentary upon the practical utility of PALS. In particular, we discuss how PALS can provide unique insight into the macroscopic transport properties of several porous biomembrane-like nanostructures and suggest how this insight may provide information on the release of drugs from these matrices to aid in developing therapeutic interventions. We discuss the potentially exciting and fruitful application of this technique to membrane dynamics, diffusion and permeability. We propose that PALS can provide novel molecular level information that is complementary to conventional characterisation techniques.
A low molecular weight artificial RNA of unique size with multiple probe target regions
NASA Technical Reports Server (NTRS)
Pitulle, C.; Dsouza, L.; Fox, G. E.
1997-01-01
Artificial RNAs (aRNAs) containing novel sequence segments embedded in a deletion mutant of Vibrio proteolyticus 5S rRNA have previously been shown to be expressed from a plasmid borne growth rate regulated promoter in E. coli. These aRNAs accumulate to high levels and their detection is a promising tool for studies in molecular microbial ecology and in environmental monitoring. Herein a new construct is described which illustrates the versatility of detection that is possible with aRNAs. This 3xPen aRNA construct carries a 72 nucleotide insert with three copies of a unique 17 base probe target sequence. This aRNA is 160 nucleotides in length and again accumulates to high levels in the E. coli cytoplasm without incorporating into ribosomes. The 3xPen aRNA illustrates two improvements in detection. First, by appropriate selection of insert size, we obtained an aRNA which provides a unique and hence, easily quantifiable peak, on a high resolution gel profile of low molecular weight RNAs. Second, the existence of multiple probe targets results in a nearly commensurate increase in signal when detection is by hybridization. These aRNAs are naturally amplified and carry sequence segments that are not found in known rRNA sequences. It thus may be possible to detect them directly. An experimental step involving RT-PCR or PCR amplification of the gene could therefore be avoided.
NASA Astrophysics Data System (ADS)
Singh, Manpreet
There has been longstanding interest in improving the optical detection capabilities of fluorescence spectroscopy to achieve ultrahigh resolution and sensitivity in chemical and biological sensing applications. To promote these efforts, I present my work characterizing and developing zinc oxide nanorods (ZnO NRs) as advanced optical detection platforms that can enable enhanced intensity and stability of adsorbed fluorophore-coupled biomolecules. First, I present my unique findings profiling the temporal and spatial characteristics of biomolecular fluorescence on individual ZnO NRs in which I've identified highly localized, non-linear optical phenomena of fluorescence intensification on nanorod ends (FINE) and enhanced photostability. Using combined experimental and computational strategies, I elucidate the fundamental physicochemical origins of these optical phenomena by systematically decoupling various biomolecular, chemical, and nanomaterial factors. On the biomolecular side, I evaluate the roles of fluorophores with varying spectroscopic properties and concentrations as well as facet-selective biomolecular adsorption on the unique spatiotemporal optical responses on single ZnO NRs. From the chemical/nanomaterial context, I profile the biomolecular emission behaviors on single ZnO NRs as a function of varying NR physical dimensions, NR orientations, and positions along the NR long axis I also present the results of employing finite-difference time domain (FDTD) simulations to corroborate my multifold experimental findings. The FDTD results further clarify the passive waveguiding capacity of the ZnO NRs to couple the radiation of surface-adsorpbed emitters and form evanescent waves that propagate to the NR ends before final emission into the far-field, confirming the experimental manifestation of FINE.. I also present an application exploiting the optical enhancement enabled by ZnO NRs in which I've engineered and validated a novel biosensing assay for the ultrasensitive detection and quantification of two Acute Kidney Injury biomarkers in real patient urine samples. Using micropatterned arrays of ZnO NRs, I've achieved unparalleled sensitivity with detection limits three orders of magnitude lower than conventional enzyme-linked immnosorbent assays allowing for earlier clinical diagnosis and intervention. The combined results of my efforts are hoped to promote the development of highly miniaturized biological/chemical sensing probes, platforms, and devices that utilize the remarkable enhancement of optical intensity and photostability provided by single ZnO NRs.
NASA Astrophysics Data System (ADS)
Ramirez Cuesta, Timmy
Incoherent inelastic neutron scattering spectroscopy is a very powerful technique that requires the use of ab-initio models to interpret the experimental data. Albeit not exact the information obtained from the models gives very valuable insight into the dynamics of atoms in solids and molecules, that, in turn, provides unique access to the vibrational density of states. It is extremely sensitive to hydrogen since the neutron cross section of hydrogen is the largest of all chemical elements. Hydrogen, being the lightest element highlights quantum effects more pronounced than the rest of the elements.In the case of non-crystalline or disordered materials, the models provide partial information and only a reduced sampling of possible configurations can be done at the present. With very large computing power, as exascale computing will provide, a new opportunity arises to study these systems and introduce a description of statistical configurations including energetics and dynamics characterization of configurational entropy. As part of the ICE-MAN project, we are developing the tools to manage the workflows, visualize and analyze the results. To use state of the art computational methods and most neutron scattering that using atomistic models for interpretation of experimental data This work is supported by the Laboratory Directed Research and Development (LDRD 8237) program of the UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
Kubinak, Jason L; Ruff, James S; Hyzer, Cornelius Whitney; Slev, Patricia R; Potts, Wayne K
2012-02-28
The unprecedented genetic diversity found at vertebrate MHC (major histocompatibility complex) loci influences susceptibility to most infectious and autoimmune diseases. The evolutionary explanation for how these polymorphisms are maintained has been controversial. One leading explanation, antagonistic coevolution (also known as the Red Queen), postulates a never-ending molecular arms race where pathogens evolve to evade immune recognition by common MHC alleles, which in turn provides a selective advantage to hosts carrying rare MHC alleles. This cyclical process leads to negative frequency-dependent selection and promotes MHC diversity if two conditions are met: (i) pathogen adaptation must produce trade-offs that result in pathogen fitness being higher in familiar (i.e., host MHC genotype adapted to) vs. unfamiliar host MHC genotypes; and (ii) this adaptation must produce correlated patterns of virulence (i.e., disease severity). Here we test these fundamental assumptions using an experimental evolutionary approach (serial passage). We demonstrate rapid adaptation and virulence evolution of a mouse-specific retrovirus to its mammalian host across multiple MHC genotypes. Critically, this adaptive response results in trade-offs (i.e., antagonistic pleiotropy) between host MHC genotypes; both viral fitness and virulence is substantially higher in familiar versus unfamiliar MHC genotypes. These data are unique in experimentally confirming the requisite conditions of the antagonistic coevolution model of MHC evolution and providing quantification of fitness effects for pathogen and host. These data help explain the unprecedented diversity of MHC genes, including how disease-causing alleles are maintained.
Streamlined design and self reliant hardware for active control of precision space structures
NASA Technical Reports Server (NTRS)
Hyland, David C.; King, James A.; Phillips, Douglas J.
1994-01-01
Precision space structures may require active vibration control to satisfy critical performance requirements relating to line-of-sight pointing accuracy and the maintenance of precise, internal alignments. In order for vibration control concepts to become operational, it is necessary that their benefits be practically demonstrated in large scale ground-based experiments. A unique opportunity to carry out such demonstrations on a wide variety of experimental testbeds was provided by the NASA Control-Structure Integration (CSI) Guest Investigator (GI) Program. This report surveys the experimental results achieved by the Harris Corporation GI team on both Phases 1 and 2 of the program and provides a detailed description of Phase 2 activities. The Phase 1 results illustrated the effectiveness of active vibration control for space structures and demonstrated a systematic methodology for control design, implementation test. In Phase 2, this methodology was significantly streamlined to yield an on-site, single session design/test capability. Moreover, the Phase 2 research on adaptive neural control techniques made significant progress toward fully automated, self-reliant space structure control systems. As a further thrust toward productized, self-contained vibration control systems, the Harris Phase II activity concluded with experimental demonstration of new vibration isolation hardware suitable for a wide range of space-flight and ground-based commercial applications.The CSI GI Program Phase 1 activity was conducted under contract NASA1-18872, and the Phase 2 activity was conducted under NASA1-19372.
Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansong, Charles; Ortega, Corrie; Payne, Samuel H.
The annotation of protein function is almost completely performed by in silico approaches. However, computational prediction of protein function is frequently incomplete and error prone. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins. This lack of functional information severely limits our understanding of Mtb pathogenicity. Current tools for experimental functional annotation are limited and often do not scale to entire protein families. Here, we report a generally applicable chemical biology platform to functionally annotate bacterial proteins by combining activity-based protein profiling (ABPP) and quantitative LC-MS-based proteomics. As an example ofmore » this approach for high-throughput protein functional validation and discovery, we experimentally annotate the families of ATP-binding proteins in Mtb. Our data experimentally validate prior in silico predictions of >250 ATPases and adenosine nucleotide-binding proteins, and reveal 73 hypothetical proteins as novel ATP-binding proteins. We identify adenosine cofactor interactions with many hypothetical proteins containing a diversity of unrelated sequences, providing a new and expanded view of adenosine nucleotide binding in Mtb. Furthermore, many of these hypothetical proteins are both unique to Mycobacteria and essential for infection, suggesting specialized functions in mycobacterial physiology and pathogenicity. Thus, we provide a generally applicable approach for high throughput protein function discovery and validation, and highlight several ways in which application of activity-based proteomics data can improve the quality of functional annotations to facilitate novel biological insights.« less
On the Non-Uniqueness of Sediment Yield
NASA Astrophysics Data System (ADS)
Kim, J.; Ivanov, V. Y.; Fatichi, S.
2014-12-01
There has been ample experimental evidence that soil erosion does not necessarily occur at the same rate, given the same amount of rainfall or runoff. Such a non-unique phenomenon has been often referred to in literature as due to 'natural variability'. Our recent study hypothesized that uncertainties in the distribution and properties of a sediment layer can be a potential clue to one of the reasons of the non-unique sediment yield. Specifically, numerical experimentation with a sophisticated two-dimensional model showed that a deposited layer plays two conflicting roles: it can both increase and decrease soil erosion, given the same magnitude of runoff. The difference in erodibilities of the "original, intact soil layer" and the "deposited, loose soil layer" and the composition of soil particles in the underlying layers give rise to the non-uniqueness of the amount of eroded materials. In continuing efforts, we attempt to investigate this phenomenon using a comprehensive the Universal Soil Loss Erosion (USLE) database, that contains data on paired hillslopes that show a high degree of non-uniqueness in the response, even though the hillslopes exhibit the same topography, soil type, rainfall and meteorological forcings, and landuse. An underlying hypothesis of this study is that uncertainties in the distribution of soil substrate prior to a rainfall event lead to low predictability skill, i.e., a stochastically-varying outcome. A large number of simulation cases demonstrating the proposed hypothesis are conducted using a coupled numerical model, tRIBS-VEGGIE-FEaST (Triangulated irregular network - based Real time Integrated Basin Simulator- VEGetation Generator for Interactive Evolution -Flow Erosion and Sediment Transport).
Quantitative subsurface analysis using frequency modulated thermal wave imaging
NASA Astrophysics Data System (ADS)
Subhani, S. K.; Suresh, B.; Ghali, V. S.
2018-01-01
Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.
Federal Ocean Energy Technology
NASA Astrophysics Data System (ADS)
1987-10-01
The Department of Energy's (DOE) Ocean Energy Technology (OET) Program is looking for cost-effective ways to harness ocean energy to help power tomorrow's world. Federally sponsored researchers are studying methods to transform the solar heat stored in the ocean's surface waters into electricity as well as new ways to convert wave energy into mechanical energy or electricity. This report provides a summary of research completed during FY86. Four major research areas are addressed in the work covered by this report: Thermodynamic Research and Analysis addresses the process and system analyses which provide the underlying understanding of physical effects which constitute the energy conversion processes, Experimental Verification and Testing provides confirmation of the analytical projections and empirical relationships, Materials and Structural Research addresses special materials compatibility issues related to operation in the sea. Much of its focus is on concepts for the system CWP which is a major technology cost driver, and Oceanographic, Environmental, and Geotechnical Research addresss those unique design requirements imposed by construction in steep slope coastal areas.
Intravital Microscopy Imaging Approaches for Image-Guided Drug Delivery Systems
Kirui, Dickson K.; Ferrari, Mauro
2016-01-01
Rapid technical advances in the field of non-linear microscopy have made intravital microscopy a vital pre-clinical tool for research and development of imaging-guided drug delivery systems. The ability to dynamically monitor the fate of macromolecules in live animals provides invaluable information regarding properties of drug carriers (size, charge, and surface coating), physiological, and pathological processes that exist between point-of-injection and the projected of site of delivery, all of which influence delivery and effectiveness of drug delivery systems. In this Review, we highlight how integrating intravital microscopy imaging with experimental designs (in vitro analyses and mathematical modeling) can provide unique information critical in the design of novel disease-relevant drug delivery platforms with improved diagnostic and therapeutic indexes. The Review will provide the reader an overview of the various applications for which intravital microscopy has been used to monitor the delivery of diagnostic and therapeutic agents and discuss some of their potential clinical applications. PMID:25901526
Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis.
Kalendar, Ruslan; Lee, David; Schulman, Alan H
2011-08-01
The polymerase chain reaction is fundamental to molecular biology and is the most important practical molecular technique for the research laboratory. We have developed and tested efficient tools for PCR primer and probe design, which also predict oligonucleotide properties based on experimental studies of PCR efficiency. The tools provide comprehensive facilities for designing primers for most PCR applications and their combinations, including standard, multiplex, long-distance, inverse, real-time, unique, group-specific, bisulphite modification assays, Overlap-Extension PCR Multi-Fragment Assembly, as well as a programme to design oligonucleotide sets for long sequence assembly by ligase chain reaction. The in silico PCR primer or probe search includes comprehensive analyses of individual primers and primer pairs. It calculates the melting temperature for standard and degenerate oligonucleotides including LNA and other modifications, provides analyses for a set of primers with prediction of oligonucleotide properties, dimer and G-quadruplex detection, linguistic complexity, and provides a dilution and resuspension calculator. Copyright © 2011 Elsevier Inc. All rights reserved.
Pull-down Assay to Characterize Ca2+/Calmodulin Binding to Plant Receptor Kinases.
Kaufmann, Christine; Sauter, Margret
2017-01-01
Plant receptor-like kinases (RLKs) are regulated by posttranscriptional modification and by interaction with regulatory proteins. A common modification of RLKs is (auto)phosphorylation, and a common regulatory protein is the calcium sensor calmodulin (CaM). We have developed protocols to detect the interaction of an RLK with CaM. The interaction with CaM was shown by bimolecular fluorescence complementation (BiFC) (see Chapter 14) and pull-down assay (this chapter). Both methods offer unique advantages. BiFC is useful in showing interaction of soluble as well as of membrane-bound proteins in planta. Pull-down assays are restricted to soluble proteins and provide in vitro data. The pull-down assay provides the advantage that proteins can be modified prior to binding and that experimental conditions such as the concentration of Ca 2+ or other divalent cations can be controlled. This chapter provides a pull-down protocol to study RLK-CaM interaction with optional steps to investigate the impact of RLK phosphorylation or of Ca 2+ .
Computational Fluid Dynamics and Experimental Characterization of the Pediatric Pump-Lung.
Wu, Zhongjun J; Gellman, Barry; Zhang, Tao; Taskin, M Ertan; Dasse, Kurt A; Griffith, Bartley P
2011-12-01
The pediatric pump-lung (PediPL) is a miniaturized integrated pediatric pump-oxygenator specifically designed for cardiac or cardiopulmonary support for patients weighing 5-20 kg to allow mobility and extended use for 30 days. The PediPL incorporates a magnetically levitated impeller with uniquely configured hollow fiber membranes into a single unit capable of performing both pumping and gas exchange. A combined computational and experimental study was conducted to characterize the functional and hemocompatibility performances of this newly developed device. The three-dimensional flow features of the PediPL and its hemolytic characteristics were analyzed using computational fluid dynamics based modeling. The oxygen exchange was modeled based on a convection-diffusion-reaction process. The hollow fiber membranes were modeled as a porous medium which incorporates the flow resistance in the bundle by an added momentum sink term. The pumping function was evaluated for the required range of operating conditions (0.5-2.5 L/min and 1000-3000 rpm). The blood damage potentials were further analyzed in terms of flow and shear stress fields, and the calculations of hemolysis index. In parallel, the hydraulic pump performance, oxygen transfer and hemolysis level were quantified experimentally. Based on the computational and experimental results, the PediPL device is found to be functional to provide necessary oxygen transfer and blood pumping requirements for the pediatric patients. Smooth blood flow characteristics and low blood damage potential were observed in the entire device. The in-vitro tests further confirmed that the PediPL can provide adequate blood pumping and oxygen transfer over the range of intended operating conditions with acceptable hemolytic performance. The rated flow rate for oxygenation is 2.5 L/min. The normalized index of hemolysis is 0.065 g/100L at 1.0 L/min and 3000 rpm.
Myers, Tony; Balmer, Nigel
2012-01-01
Numerous factors have been proposed to explain the home advantage in sport. Several authors have suggested that a partisan home crowd enhances home advantage and that this is at least in part a consequence of their influence on officiating. However, while experimental studies examining this phenomenon have high levels of internal validity (since only the "crowd noise" intervention is allowed to vary), they suffer from a lack of external validity, with decision-making in a laboratory setting typically bearing little resemblance to decision-making in live sports settings. Conversely, observational and quasi-experimental studies with high levels of external validity suffer from low levels of internal validity as countless factors besides crowd noise vary. The present study provides a unique opportunity to address these criticisms, by conducting a controlled experiment on the impact of crowd noise on officiating in a live tournament setting. Seventeen qualified judges officiated on thirty Thai boxing bouts in a live international tournament setting featuring "home" and "away" boxers. In each bout, judges were randomized into a "noise" (live sound) or "no crowd noise" (noise-canceling headphones and white noise) condition, resulting in 59 judgments in the "no crowd noise" and 61 in the "crowd noise" condition. The results provide the first experimental evidence of the impact of live crowd noise on officials in sport. A cross-classified statistical model indicated that crowd noise had a statistically significant impact, equating to just over half a point per bout (in the context of five round bouts with the "10-point must" scoring system shared with professional boxing). The practical significance of the findings, their implications for officiating and for the future conduct of crowd noise studies are discussed.
Myers, Tony; Balmer, Nigel
2012-01-01
Numerous factors have been proposed to explain the home advantage in sport. Several authors have suggested that a partisan home crowd enhances home advantage and that this is at least in part a consequence of their influence on officiating. However, while experimental studies examining this phenomenon have high levels of internal validity (since only the “crowd noise” intervention is allowed to vary), they suffer from a lack of external validity, with decision-making in a laboratory setting typically bearing little resemblance to decision-making in live sports settings. Conversely, observational and quasi-experimental studies with high levels of external validity suffer from low levels of internal validity as countless factors besides crowd noise vary. The present study provides a unique opportunity to address these criticisms, by conducting a controlled experiment on the impact of crowd noise on officiating in a live tournament setting. Seventeen qualified judges officiated on thirty Thai boxing bouts in a live international tournament setting featuring “home” and “away” boxers. In each bout, judges were randomized into a “noise” (live sound) or “no crowd noise” (noise-canceling headphones and white noise) condition, resulting in 59 judgments in the “no crowd noise” and 61 in the “crowd noise” condition. The results provide the first experimental evidence of the impact of live crowd noise on officials in sport. A cross-classified statistical model indicated that crowd noise had a statistically significant impact, equating to just over half a point per bout (in the context of five round bouts with the “10-point must” scoring system shared with professional boxing). The practical significance of the findings, their implications for officiating and for the future conduct of crowd noise studies are discussed. PMID:23049520
How to design a single-cell RNA-sequencing experiment: pitfalls, challenges and perspectives.
Dal Molin, Alessandra; Di Camillo, Barbara
2018-01-31
The sequencing of the transcriptome of single cells, or single-cell RNA-sequencing, has now become the dominant technology for the identification of novel cell types in heterogeneous cell populations or for the study of stochastic gene expression. In recent years, various experimental methods and computational tools for analysing single-cell RNA-sequencing data have been proposed. However, most of them are tailored to different experimental designs or biological questions, and in many cases, their performance has not been benchmarked yet, thus increasing the difficulty for a researcher to choose the optimal single-cell transcriptome sequencing (scRNA-seq) experiment and analysis workflow. In this review, we aim to provide an overview of the current available experimental and computational methods developed to handle single-cell RNA-sequencing data and, based on their peculiarities, we suggest possible analysis frameworks depending on specific experimental designs. Together, we propose an evaluation of challenges and open questions and future perspectives in the field. In particular, we go through the different steps of scRNA-seq experimental protocols such as cell isolation, messenger RNA capture, reverse transcription, amplification and use of quantitative standards such as spike-ins and Unique Molecular Identifiers (UMIs). We then analyse the current methodological challenges related to preprocessing, alignment, quantification, normalization, batch effect correction and methods to control for confounding effects. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Hamed, Samia; Sharifzadeh, Sahar; Neaton, Jeffrey
2014-03-01
Elucidation of the energy transfer mechanism in natural photosynthetic systems remains an exciting challenge. In particular, biomimetic protein-pigment complexes provide a unique study space in which individual parameters are adjusted and the impact of those changes captured. Here, we compute the excited state properties of a group of xanthene-derivative chromophores to be employed in the construction of new biomimetic light harvesting frameworks. Excitation energies, transition dipoles, and natural transition orbitals for the low-lying singlet and triplet states of these experimentally-relevant chromophores are obtained from first-principles density functional theory. The performance of several exchange-correlation functionals, including an optimally-tuned range-separated hybrid, are evaluated and compared with many body perturbation theory and experiment. Finally, we will discuss the implication of our results for the bottom-up design of new chromophores. This work is supported by the DOE and computational resources are provided by NERSC.
Diameter-dependent wetting of tungsten disulfide nanotubes
Goldbart, Ohad; Cohen, Sidney R.; Kaplan-Ashiri, Ifat; Glazyrina, Polina; Wagner, H. Daniel; Enyashin, Andrey; Tenne, Reshef
2016-01-01
The simple process of a liquid wetting a solid surface is controlled by a plethora of factors—surface texture, liquid droplet size and shape, energetics of both liquid and solid surfaces, as well as their interface. Studying these events at the nanoscale provides insights into the molecular basis of wetting. Nanotube wetting studies are particularly challenging due to their unique shape and small size. Nonetheless, the success of nanotubes, particularly inorganic ones, as fillers in composite materials makes it essential to understand how common liquids wet them. Here, we present a comprehensive wetting study of individual tungsten disulfide nanotubes by water. We reveal the nature of interaction at the inert outer wall and show that remarkably high wetting forces are attained on small, open-ended nanotubes due to capillary aspiration into the hollow core. This study provides a theoretical and experimental paradigm for this intricate problem. PMID:27856759
Dubay, Rickey; Hassan, Marwan; Li, Chunying; Charest, Meaghan
2014-09-01
This paper presents a unique approach for active vibration control of a one-link flexible manipulator. The method combines a finite element model of the manipulator and an advanced model predictive controller to suppress vibration at its tip. This hybrid methodology improves significantly over the standard application of a predictive controller for vibration control. The finite element model used in place of standard modelling in the control algorithm provides a more accurate prediction of dynamic behavior, resulting in enhanced control. Closed loop control experiments were performed using the flexible manipulator, instrumented with strain gauges and piezoelectric actuators. In all instances, experimental and simulation results demonstrate that the finite element based predictive controller provides improved active vibration suppression in comparison with using a standard predictive control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Monitoring non-thermal plasma processes for nanoparticle synthesis
NASA Astrophysics Data System (ADS)
Mangolini, Lorenzo
2017-09-01
Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.
Bacterial flagella and Type III secretion: case studies in the evolution of complexity.
Pallen, M J; Gophna, U
2007-01-01
Bacterial flagella at first sight appear uniquely sophisticated in structure, so much so that they have even been considered 'irreducibly complex' by the intelligent design movement. However, a more detailed analysis reveals that these remarkable pieces of molecular machinery are the product of processes that are fully compatible with Darwinian evolution. In this chapter we present evidence for such processes, based on a review of experimental studies, molecular phylogeny and microbial genomics. Several processes have played important roles in flagellar evolution: self-assembly of simple repeating subunits, gene duplication with subsequent divergence, recruitment of elements from other systems ('molecular bricolage'), and recombination. We also discuss additional tentative new assignments of homology (FliG with MgtE, FliO with YscJ). In conclusion, rather than providing evidence of intelligent design, flagellar and non-flagellar Type III secretion systems instead provide excellent case studies in the evolution of complex systems from simpler components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akopov, Zaven; Amerio, Silvia; Asner, David
2013-03-27
Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organisational aspects of HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP. This paper includes and extends the intermediate report. It provides an analysis of the research case for data preservation and a detailedmore » description of the various projects at experiment, laboratory and international levels. In addition, the paper provides a concrete proposal for an international organisation in charge of the data management and policies in high-energy physics.« less
Acoustic trapping of active matter
NASA Astrophysics Data System (ADS)
Takatori, Sho C.; de Dier, Raf; Vermant, Jan; Brady, John F.
2016-03-01
Confinement of living microorganisms and self-propelled particles by an external trap provides a means of analysing the motion and behaviour of active systems. Developing a tweezer with a trapping radius large compared with the swimmers' size and run length has been an experimental challenge, as standard optical traps are too weak. Here we report the novel use of an acoustic tweezer to confine self-propelled particles in two dimensions over distances large compared with the swimmers' run length. We develop a near-harmonic trap to demonstrate the crossover from weak confinement, where the probability density is Boltzmann-like, to strong confinement, where the density is peaked along the perimeter. At high concentrations the swimmers crystallize into a close-packed structure, which subsequently `explodes' as a travelling wave when the tweezer is turned off. The swimmers' confined motion provides a measurement of the swim pressure, a unique mechanical pressure exerted by self-propelled bodies.
Outcome evaluation of a new model of critical care orientation.
Morris, Linda L; Pfeifer, Pamela; Catalano, Rene; Fortney, Robert; Nelson, Greta; Rabito, Robb; Harap, Rebecca
2009-05-01
The shortage of critical care nurses and the service expansion of 2 intensive care units provided a unique opportunity to create a new model of critical care orientation. The goal was to design a program that assessed critical thinking, validated competence, and provided learning pathways that accommodated diverse experience. To determine the effect of a new model of critical care orientation on satisfaction, retention, turnover, vacancy, preparedness to manage patient care assignment, length of orientation, and cost of orientation. A prospective, quasi-experimental design with both quantitative and qualitative methods. The new model improved satisfaction scores, retention rates, and recruitment of critical care nurses. Length of orientation was unchanged. Cost was increased, primarily because a full-time education consultant was added. A new model for nurse orientation that was focused on critical thinking and competence validation improved retention and satisfaction and serves as a template for orientation of nurses throughout the medical center.
Microgravity research in plant biological systems: Realizing the potential of molecular biology
NASA Technical Reports Server (NTRS)
Lewis, Norman G.; Ryan, Clarence A.
1993-01-01
The sole all-pervasive feature of the environment that has helped shape, through evolution, all life on Earth is gravity. The near weightlessness of the Space Station Freedom space environment allows gravitational effects to be essentially uncoupled, thus providing an unprecedented opportunity to manipulate, systematically dissect, study, and exploit the role of gravity in the growth and development of all life forms. New and exciting opportunities are now available to utilize molecular biological and biochemical approaches to study the effects of microgravity on living organisms. By careful experimentation, we can determine how gravity perception occurs, how the resulting signals are produced and transduced, and how or if tissue-specific differences in gene expression occur. Microgravity research can provide unique new approaches to further our basic understanding of development and metabolic processes of cells and organisms, and to further the application of this new knowledge for the betterment of humankind.
Acoustic trapping of active matter
Takatori, Sho C.; De Dier, Raf; Vermant, Jan; Brady, John F.
2016-01-01
Confinement of living microorganisms and self-propelled particles by an external trap provides a means of analysing the motion and behaviour of active systems. Developing a tweezer with a trapping radius large compared with the swimmers' size and run length has been an experimental challenge, as standard optical traps are too weak. Here we report the novel use of an acoustic tweezer to confine self-propelled particles in two dimensions over distances large compared with the swimmers' run length. We develop a near-harmonic trap to demonstrate the crossover from weak confinement, where the probability density is Boltzmann-like, to strong confinement, where the density is peaked along the perimeter. At high concentrations the swimmers crystallize into a close-packed structure, which subsequently ‘explodes' as a travelling wave when the tweezer is turned off. The swimmers' confined motion provides a measurement of the swim pressure, a unique mechanical pressure exerted by self-propelled bodies. PMID:26961816
A Behavior Analytic Interpretation of Alexithymia
Darrow, Sabrina M.; Follette, William C.
2014-01-01
Alexithymia is a term used to describe individuals who seem unable to experience or at least describe emotions. This paper offers a theoretical interpretation of alexithymia from a radical behaviorist perspective. While there have been attempts to explain the etiology of alexithymia, the current analysis is unique in that it provides direct treatment implications. The pragmatic analysis described focuses on the verbal behavior of individuals rather than looking “inside” for explanations. This is supported by a review of experimental research that has failed to find consistencies among alexithymic individuals’ physiological responding. Descriptions of the various discriminative and consequential stimulus conditions involved in the complex learning histories of individuals that could result in an alexithymic presentation are provided. This analysis helps situate the alexithymia construct in a broader behavior analytic understanding of emotions. Finally this paper outlines implications for assessment and treatment, which involve influencing discriminative and consequential interpersonal stimulus conditions to shape verbal behavior about emotions. PMID:25473602
Inferring subunit stoichiometry from single molecule photobleaching
2013-01-01
Single molecule photobleaching is a powerful tool for determining the stoichiometry of protein complexes. By attaching fluorophores to proteins of interest, the number of associated subunits in a complex can be deduced by imaging single molecules and counting fluorophore photobleaching steps. Because some bleaching steps might be unobserved, the ensemble of steps will be binomially distributed. In this work, it is shown that inferring the true composition of a complex from such data is nontrivial because binomially distributed observations present an ill-posed inference problem. That is, a unique and optimal estimate of the relevant parameters cannot be extracted from the observations. Because of this, a method has not been firmly established to quantify confidence when using this technique. This paper presents a general inference model for interpreting such data and provides methods for accurately estimating parameter confidence. The formalization and methods presented here provide a rigorous analytical basis for this pervasive experimental tool. PMID:23712552
NASA Astrophysics Data System (ADS)
McMackin, Lenore; Herman, Matthew A.; Weston, Tyler
2016-02-01
We present the design of a multi-spectral imager built using the architecture of the single-pixel camera. The architecture is enabled by the novel sampling theory of compressive sensing implemented optically using the Texas Instruments DLP™ micro-mirror array. The array not only implements spatial modulation necessary for compressive imaging but also provides unique diffractive spectral features that result in a multi-spectral, high-spatial resolution imager design. The new camera design provides multi-spectral imagery in a wavelength range that extends from the visible to the shortwave infrared without reduction in spatial resolution. In addition to the compressive imaging spectrometer design, we present a diffractive model of the architecture that allows us to predict a variety of detailed functional spatial and spectral design features. We present modeling results, architectural design and experimental results that prove the concept.
NASA Technical Reports Server (NTRS)
Thesken, John C.; Bowman, Cheryl L.; Arnold, Steven M.
2003-01-01
Successful spaceflight operations require onboard power management systems that reliably achieve mission objectives for a minimal launch weight. Because of their high specific energies and potential for reduced maintenance and logistics, composite flywheels are an attractive alternative to electrochemical batteries. The Rotor Durability Team, which comprises members from the Ohio Aerospace Institute (OAI) and the NASA Glenn Research Center, completed a program of elevated temperature testing at Glenn' s Life Prediction Branch's Fatigue Laboratory. The experiments provided unique design data essential to the safety and durability of flywheel energy storage systems for the International Space Station and other manned spaceflight applications. Analysis of the experimental data (ref. 1) demonstrated that the compressive stress relaxation of composite flywheel rotor material is significantly greater than the commonly available tensile stress relaxation data. Durability analysis of compression preloaded flywheel rotors is required for accurate safe-life predictions for use in the International Space Station.
2013-04-01
preparation, and presence of an overflow fillet for a high strength epoxy and ductile methacylate adhesive. A unique feature of this study was the...of expanding adhesive joint test configurations as part of the GEMS program. 15. SUBJECT TERMS single lap joint, adhesion, aluminum, epoxy ... epoxy and ductile methacylate adhesive. A unique feature of this study was the use of untrained GEMS (Gains in the Education of Mathematics and Sci
Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak
NASA Astrophysics Data System (ADS)
Wong, Zi Jing; Wang, Yuan; O'Brien, Kevin; Rho, Junsuk; Yin, Xiaobo; Zhang, Shuang; Fang, Nicholas; Yen, Ta-Jen; Zhang, Xiang
2017-08-01
Metamaterials are artificially engineered materials that exhibit novel properties beyond natural materials. By carefully designing the subwavelength unit cell structures, unique effective properties that do not exist in nature can be attained. Our metamaterial research aims to develop new subwavelength structures with unique physics and experimentally demonstrate unprecedented properties. Here we review our research efforts in optical and acoustic metamaterials in the past 15 years which may lead to exciting applications in communications, sensing and imaging.
Joint surface modeling with thin-plate splines.
Boyd, S K; Ronsky, J L; Lichti, D D; Salkauskas, K; Chapman, M A; Salkauskas, D
1999-10-01
Mathematical joint surface models based on experimentally determined data points can be used to investigate joint characteristics such as curvature, congruency, cartilage thickness, joint contact areas, as well as to provide geometric information well suited for finite element analysis. Commonly, surface modeling methods are based on B-splines, which involve tensor products. These methods have had success; however, they are limited due to the complex organizational aspect of working with surface patches, and modeling unordered, scattered experimental data points. An alternative method for mathematical joint surface modeling is presented based on the thin-plate spline (TPS). It has the advantage that it does not involve surface patches, and can model scattered data points without experimental data preparation. An analytical surface was developed and modeled with the TPS to quantify its interpolating and smoothing characteristics. Some limitations of the TPS include discontinuity of curvature at exactly the experimental surface data points, and numerical problems dealing with data sets in excess of 2000 points. However, suggestions for overcoming these limitations are presented. Testing the TPS with real experimental data, the patellofemoral joint of a cat was measured with multistation digital photogrammetry and modeled using the TPS to determine cartilage thicknesses and surface curvature. The cartilage thickness distribution ranged between 100 to 550 microns on the patella, and 100 to 300 microns on the femur. It was found that the TPS was an effective tool for modeling joint surfaces because no preparation of the experimental data points was necessary, and the resulting unique function representing the entire surface does not involve surface patches. A detailed algorithm is presented for implementation of the TPS.
Melts and fluids: An overview of recent advances
NASA Astrophysics Data System (ADS)
Brenan, James M.
1995-07-01
Owing to their capacity to transport mass and heat melts and low viscosity fluids profoundly influence such global processes as planetary heat loss, large and small-scale planetary differentiation as well as affecting the evolution of oceans and atmospheres. As such, these materials play a key role in the physical and chemical volution of Earth, the terrestrial planets and the meteorite parent bodies. In this context, a review chapter that deals exclusively with recent advances in our understanding of the composition, properties, origin and volution of melts and fluids is clearly relevant.1 Since 1991, a host of research advances has provided earth and planetary scientists with new and unique perspectives for understanding natural melts and low viscosity fluids. New instrumentation has provided the basis for several advances, and perhaps most notable is the development and application of reaction cells that allow measurement of melt or fluid properties in situ. Such devices have allowed workers to monitor properties at high pressure and temperature that are typically not preserved when samples are quenched to ambient conditions. In addition to the development of new machines, tried and true experimental and analytical technologies have also yielded significant new results on melts and fluids, largely as a result of their clever application to the solution of what had been longstanding problems in geochemistry and petrology. Although laboratory-based measurements have provided the basis for many recent advances, it is also clear that the Earth still yields provocative samples for our study, and new insights have also been gained concerning the behavior of melts and fluids in natural processes based on recent documentation of previously unobserved melt and fluid compositions. Along with new technologies, clever experiments and unique samples, it is also notable that strides have been made in certain research areas enjoying a resurgence of activity following new and provocative developments. Provoked by controversial theoretical results, perhaps the most notable example of this has been an increased experimental effort aimed at evaluating whether equilibrium core segregation can account for the siderophile element abundances in Earth's upper mantle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoekman, S. Kent; Broch, Broch; Robbins, Curtis
The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solarmore » thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy features to the public.« less
Epstein, Leonard H; Finkelstein, Eric A; Katz, David L; Jankowiak, Noelle; Pudlewski, Corrin; Paluch, Rocco A
2016-08-01
The goal of the present study was to apply experimental economic methods in an online supermarket to examine the effects of nutrient profiling, and differential pricing based on the nutrient profile, on the overall diet quality, energy and macronutrients of the foods purchased, and diet cost. Participants were provided nutrient profiling scores or price adjustments based on nutrient profile scores while completing a hypothetical grocery shopping task. Prices of foods in the top 20 % of nutrient profiling scores were reduced (subsidized) by 25 % while those in the bottom 20 % of scores were increased (taxed) by 25 %. We evaluated the independent and interactive effects of nutrient profiling or price adjustments on overall diet quality of foods purchased as assessed by the NuVal® score, energy and macronutrients purchased and diet cost in a 2×2 factorial design. A large (>10 000 food items) online experimental supermarket in the USA. Seven hundred and eighty-one women. Providing nutrient profiling scores improved overall diet quality of foods purchased. Price changes were associated with an increase in protein purchased, an increase in energy cost, and reduced carbohydrate and protein costs. Price changes and nutrient profiling combined were associated with no unique benefits beyond price changes or nutrient profiling alone. Providing nutrient profile score increased overall NuVal® score without a reduction in energy purchased. Combining nutrient profiling and price changes did not show an overall benefit to diet quality and may be less useful than nutrient profiling alone to consumers who want to increase overall diet quality of foods purchased.
Developing a predictive model for the chemical composition of soot nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Violi, Angela; Michelsen, Hope; Hansen, Nils
In order to provide the scientific foundation to enable technology breakthroughs in transportation fuel, it is important to develop a combustion modeling capability to optimize the operation and design of evolving fuels in advanced engines for transportation applications. The goal of this proposal is to develop a validated predictive model to describe the chemical composition of soot nanoparticles in premixed and diffusion flames. Atomistic studies in conjunction with state-of-the-art experiments are the distinguishing characteristics of this unique interdisciplinary effort. The modeling effort has been conducted at the University of Michigan by Prof. A. Violi. The experimental work has entailed amore » series of studies using different techniques to analyze gas-phase soot precursor chemistry and soot particle production in premixed and diffusion flames. Measurements have provided spatial distributions of polycyclic aromatic hydrocarbons and other gas-phase species and size and composition of incipient soot nanoparticles for comparison with model results. The experimental team includes Dr. N. Hansen and H. Michelsen at Sandia National Labs' Combustion Research Facility, and Dr. K. Wilson as collaborator at Lawrence Berkeley National Lab's Advanced Light Source. Our results show that the chemical and physical properties of nanoparticles affect the coagulation behavior in soot formation, and our results on an experimentally validated, predictive model for the chemical composition of soot nanoparticles will not only enhance our understanding of soot formation since but will also allow the prediction of particle size distributions under combustion conditions. These results provide a novel description of soot formation based on physical and chemical properties of the particles for use in the next generation of soot models and an enhanced capability for facilitating the design of alternative fuels and the engines they will power.« less
Archive and laboratory embedded in the landscape: Future of the Santa Rita Experimental Range
Thomas E. Sheridan
2003-01-01
The Santa Rita Experimental Range (SRER) is both an archive of past ecological research and a laboratory for continuing research embedded in the southern Arizona landscape. The scientific questions being asked there have changed over the last 100 years, but SRER with its monitoring stations and its legacy of repeat photography still offers a unique opportunity to study...
Salim Belyazid; Scott Bailey; Harald Sverdrup
2010-01-01
The Hubbard Brook Ecosystem Study presents a unique opportunity for studying long-term ecosystem responses to changes in anthropogenic factors. Following industrialisation and the intensification of agriculture, the Hubbard Brook Experimental Forest (HBEF) has been subject to increased loads of atmospheric deposition, particularly sulfur and nitrogen. The deposition of...
Predictive Design of Interfacial Functionality in Polymer Matrix Composites
2017-05-24
structural design criteria. Due to the poor accessibility of interfaces by experimental means, little is known about the molecular definition, defect...is designed to allow for concurrent light scattering measurements, which establishes a unique experimental resource. We were able to leverage this...AFRL-AFOSR-VA-TR-2017-0103 Predictive Design of Interfacial Functionality in Polymer Matrix Composites John Kieffer UNIVERSITY OF MICHIGAN 503
NASA Astrophysics Data System (ADS)
Zhang, Gaoming; Hung, David L. S.; Xu, Min
2014-08-01
Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air-fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a "gas jet" structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the "gas jet" structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information concerning the heat and mass transfer inside flash boiling sprays, which is important for the understanding of its unique vaporization process.
Next-generation Lunar Laser Retroreflectors for Precision Tests of General Relativity
NASA Astrophysics Data System (ADS)
Ciocci, Emanuele; dell'Agnello, Simone; Delle Monache, Giovanni; Martini, Manuele; Contessa, Stefania; Porcelli, Luca; Tibuzzi, Mattia; Salvatori, Lorenzo; Patrizi, Giordano; Maiello, Mauro; Intaglietta, Nicola; Mondaini, Chiara; Currie, Douglas; Chandler, John; Bianco, Giuseppe; Murphy, Tom
2016-04-01
Since 1969, Lunar Laser Ranging (LLR) to the Apollo Cube Corner Retroreflectors (CCRs) has supplied almost all significant tests of General Relativity (GR). When first installed in the 1970s, the Apollo CCRs geometry contributed only a negligible fraction of the ranging error budget. Today, because of lunar librations, this contribution dominates the error budget, limiting the precision of the experimental tests of gravitational theories. The new MoonLIGHT-2 (Moon Laser Instrumentation for General relativity High-accuracy Tests) apparatus is a new-generation LLR payload developed by the SCF_Lab (http://www.lnf.infn.it/esperimenti/etrusco/) at INFN-LNF in collaboration with the Maryland University. With the unique design of a single large CCR unaffected by librations, MoonLIGHT-2 can increase up to a factor 100 the precision of the measurement of the lunar geodetic precession and other General Relativity (GR) tests respect to Apollo CCRs. MoonLIGHT-2 is approved to be launched with the Moon Express mission MEX-1 and will be deployed on the Moon surface in 2018. MoonLIGHT-2 is also proposed for the Roscosmos mission Luna-27. To validate/optimize MoonLIGHT-2 for MEX-1, the SCF_Lab is carrying out a unique experimental test called SCF-Test: the concurrent measurement of the optical Far Field Diffraction Pattern (FFDP) and the temperature distribution of the CCR under thermal conditions produced with a close-match solar simulator and simulated space environment. We perform test of GR with current LLR data and also different GR simulation of the expected improvement in GR test provided by MoonLIGHT-2, using the Planetary Ephemeris Program in collaboration with CfA. Our ultimate goal is to improve GR tests by a factor up to 100, and provide constraints on the new gravitational theories like non-miminally coupled gravity and spacetime torision.
Aoun, Bachir
2016-05-05
A new Reverse Monte Carlo (RMC) package "fullrmc" for atomic or rigid body and molecular, amorphous, or crystalline materials is presented. fullrmc main purpose is to provide a fully modular, fast and flexible software, thoroughly documented, complex molecules enabled, written in a modern programming language (python, cython, C and C++ when performance is needed) and complying to modern programming practices. fullrmc approach in solving an atomic or molecular structure is different from existing RMC algorithms and software. In a nutshell, traditional RMC methods and software randomly adjust atom positions until the whole system has the greatest consistency with a set of experimental data. In contrast, fullrmc applies smart moves endorsed with reinforcement machine learning to groups of atoms. While fullrmc allows running traditional RMC modeling, the uniqueness of this approach resides in its ability to customize grouping atoms in any convenient way with no additional programming efforts and to apply smart and more physically meaningful moves to the defined groups of atoms. In addition, fullrmc provides a unique way with almost no additional computational cost to recur a group's selection, allowing the system to go out of local minimas by refining a group's position or exploring through and beyond not allowed positions and energy barriers the unrestricted three dimensional space around a group. © 2016 Wiley Periodicals, Inc.
Aoun, Bachir
2016-01-22
Here, a new Reverse Monte Carlo (RMC) package ‘fullrmc’ for atomic or rigid body and molecular, amorphous or crystalline materials is presented. fullrmc main purpose is to provide a fully modular, fast and flexible software, thoroughly documented, complex molecules enabled, written in a modern programming language (python, cython ,C and C++ when performance is needed) and complying to modern programming practices. fullrmc approach in solving an atomic or molecular structure is different from existing RMC algorithms and software. In a nutshell, traditional RMC methods and software randomly adjust atom positions until the whole system has the greatest consistency with amore » set of experimental data. In contrast, fullrmc applies smart moves endorsed with reinforcement machine learning to groups of atoms. While fullrmc allows running traditional RMC modelling, the uniqueness of this approach resides in its ability to customize grouping atoms in any convenient way with no additional programming efforts and to apply smart and more physically meaningful moves to the defined groups of atoms. Also fullrmc provides a unique way with almost no additional computational cost to recur a group’s selection, allowing the system to go out of local minimas by refining a group’s position or exploring through and beyond not allowed positions and energy barriers the unrestricted three dimensional space around a group.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoun, Bachir
Here, a new Reverse Monte Carlo (RMC) package ‘fullrmc’ for atomic or rigid body and molecular, amorphous or crystalline materials is presented. fullrmc main purpose is to provide a fully modular, fast and flexible software, thoroughly documented, complex molecules enabled, written in a modern programming language (python, cython ,C and C++ when performance is needed) and complying to modern programming practices. fullrmc approach in solving an atomic or molecular structure is different from existing RMC algorithms and software. In a nutshell, traditional RMC methods and software randomly adjust atom positions until the whole system has the greatest consistency with amore » set of experimental data. In contrast, fullrmc applies smart moves endorsed with reinforcement machine learning to groups of atoms. While fullrmc allows running traditional RMC modelling, the uniqueness of this approach resides in its ability to customize grouping atoms in any convenient way with no additional programming efforts and to apply smart and more physically meaningful moves to the defined groups of atoms. Also fullrmc provides a unique way with almost no additional computational cost to recur a group’s selection, allowing the system to go out of local minimas by refining a group’s position or exploring through and beyond not allowed positions and energy barriers the unrestricted three dimensional space around a group.« less
Retrievable payload carrier, next generation Long Duration Exposure Facility: Update 1992
NASA Technical Reports Server (NTRS)
Perry, A. T.; Cagle, J. A.; Newman, S. C.
1993-01-01
Access to space and cost have been two major inhibitors of low Earth orbit research. The Retrievable Payload Carrier (RPC) Program is a commercial space program which strives to overcome these two barriers to space experimentation. The RPC Program's fleet of spacecraft, ground communications station, payload processing facility, and experienced integration and operations team will provide a convenient 'one-stop shop' for investigators seeking to use the unique vantage point and environment of low Earth orbit for research. The RPC is a regularly launched and retrieved, free-flying spacecraft providing resources adequate to meet modest payload/experiment requirements, and presenting ample surface area, volume, mass, and growth capacity for investigator usage. Enhanced capabilities of ground communications, solar-array-supplied electrical power, central computing, and on-board data storage pick up on the path where NASA's Long Duration Exposure Facility (LDEF) blazed the original technology trail. Mission lengths of 6-18 months, or longer, are envisioned. The year 1992 was designated as the 'International Space Year' and coincides with the 500th anniversary of Christopher Columbus's voyage to the New World. This is a fitting year in which to launch the full scale development of our unique shop of discovery whose intent is to facilitate retrieving technological rewards from another new world: space. Presented is an update on progress made on the RPC Program's development since the November 1991 LDEF Materials Workshop.
Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Liangbo; Zhang, Jun; Sumpter, Bobby G.
Ever since the isolation of single-layer graphene in 2004, two-dimensional layered structures have been among the most extensively studied classes of materials. To date, the pool of two-dimensional materials (2DMs) continues to grow at an accelerated pace and already covers an extensive range of fascinating and technologically relevant properties. An array of experimental techniques have been developed and used to fully characterize and understand these properties. In particular, Raman spectroscopy has proven to be a key experimental technique, thanks to its capability to identify minute structural and electronic effects in nondestructive measurements. While high-frequency (HF) intralayer Raman modes have beenmore » extensively employed for 2DMs, recent experimental and theoretical progress has demonstrated that low-frequency (LF) interlayer Raman modes are more effective at determining layer numbers and stacking configurations, and provide a unique opportunity to study interlayer coupling. These advantages are due to 2DMs’ unique interlayer vibration patterns where each layer behaves as an almost rigidly moving object with restoring forces corresponding to weak interlayer interactions. Compared to HF Raman modes, the relatively small attention originally devoted to LF Raman modes is largely due to their weaker signal and their proximity to the strong Rayleigh line background, which previously made their detection challenging. Recent progress in Raman spectroscopy with technical and hardware upgrades now makes it possible to probe LF modes with a standard single-stage Raman system and has proven crucial to characterize and understand properties of 2DMs. Here, we present a comprehensive and forward-looking review on the current status of exploiting LF Raman modes of 2DMs from both experimental and theoretical perspectives, revealing the fundamental physics and technological significance of LF Raman modes in advancing the field of 2DMs. We review a broad array of materials, with varying thickness and stacking configurations, discuss the effect of in-plane anisotropy, and present a generalized linear chain model and interlayer bond polarizability model to rationalize the experimental findings. We also discuss the instrumental improvements of Raman spectroscopy to enhance and separate LF Raman signals from the Rayleigh line. Lastly, we highlight the opportunities and challenges ahead in this fast-developing field.« less
Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials
Liang, Liangbo; Zhang, Jun; Sumpter, Bobby G.; ...
2017-11-03
Ever since the isolation of single-layer graphene in 2004, two-dimensional layered structures have been among the most extensively studied classes of materials. To date, the pool of two-dimensional materials (2DMs) continues to grow at an accelerated pace and already covers an extensive range of fascinating and technologically relevant properties. An array of experimental techniques have been developed and used to fully characterize and understand these properties. In particular, Raman spectroscopy has proven to be a key experimental technique, thanks to its capability to identify minute structural and electronic effects in nondestructive measurements. While high-frequency (HF) intralayer Raman modes have beenmore » extensively employed for 2DMs, recent experimental and theoretical progress has demonstrated that low-frequency (LF) interlayer Raman modes are more effective at determining layer numbers and stacking configurations, and provide a unique opportunity to study interlayer coupling. These advantages are due to 2DMs’ unique interlayer vibration patterns where each layer behaves as an almost rigidly moving object with restoring forces corresponding to weak interlayer interactions. Compared to HF Raman modes, the relatively small attention originally devoted to LF Raman modes is largely due to their weaker signal and their proximity to the strong Rayleigh line background, which previously made their detection challenging. Recent progress in Raman spectroscopy with technical and hardware upgrades now makes it possible to probe LF modes with a standard single-stage Raman system and has proven crucial to characterize and understand properties of 2DMs. Here, we present a comprehensive and forward-looking review on the current status of exploiting LF Raman modes of 2DMs from both experimental and theoretical perspectives, revealing the fundamental physics and technological significance of LF Raman modes in advancing the field of 2DMs. We review a broad array of materials, with varying thickness and stacking configurations, discuss the effect of in-plane anisotropy, and present a generalized linear chain model and interlayer bond polarizability model to rationalize the experimental findings. We also discuss the instrumental improvements of Raman spectroscopy to enhance and separate LF Raman signals from the Rayleigh line. Lastly, we highlight the opportunities and challenges ahead in this fast-developing field.« less
Special Provisions for Intelligent Compaction of Stabilized Soil Subgrades
DOT National Transportation Integrated Search
2017-12-30
Slowing the deterioration of highway infrastructure, reducing carbon emissions, conserving resources, repurposing industrial waste-this Exploratory Advanced Research (EAR) Program project is pursuing multiple benefits through a unique experimental ap...
Duality based direct resolution of unique profiles using zero concentration region information.
Tavakkoli, Elnaz; Rajkó, Róbert; Abdollahi, Hamid
2018-07-01
Self Modeling Curve Resolution (SMCR) is a class of techniques concerned with estimating pure profiles underlying a set of measurements on chemical systems. In general, the estimated profiles are ambiguous (non-unique) except if some special conditions fulfilled. Implementing the adequate information can reduce the so-called rotational ambiguity effectively, and in the most desirable cases lead to the unique solution. Therefore, studies on circumstances resulting in unique solution are of particular importance. The conditions of unique solution can particularly be studied based on duality principle. In bilinear chemical (e.g., spectroscopic) data matrix, there is a natural duality between its row and column vector spaces using minimal constraints (non-negativity of concentrations and absorbances). In this article, the conditions of the unique solution according to duality concept and using zero concentration region information is intended to show. A simulated dataset of three components and an experimental system with synthetic mixtures containing three amino acids tyrosine, phenylalanine and tryptophan are analyzed. It is shown that in the presence of sufficient information, the reliable unique solution is obtained that is valuable in analytical qualification and for quantitative verification analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system.
Kim, Joo H; Roberts, Dustyn
2015-09-01
Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle-space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi-objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint-space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non-periodic tasks that may not be experimentally verifiable. This model also enables real-time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd.
Oakes, Theres; Heather, James M.; Best, Katharine; Byng-Maddick, Rachel; Husovsky, Connor; Ismail, Mazlina; Joshi, Kroopa; Maxwell, Gavin; Noursadeghi, Mahdad; Riddell, Natalie; Ruehl, Tabea; Turner, Carolin T.; Uddin, Imran; Chain, Benny
2017-01-01
The T cell receptor (TCR) repertoire can provide a personalized biomarker for infectious and non-infectious diseases. We describe a protocol for amplifying, sequencing, and analyzing TCRs which is robust, sensitive, and versatile. The key experimental step is ligation of a single-stranded oligonucleotide to the 3′ end of the TCR cDNA. This allows amplification of all possible rearrangements using a single set of primers per locus. It also introduces a unique molecular identifier to label each starting cDNA molecule. This molecular identifier is used to correct for sequence errors and for effects of differential PCR amplification efficiency, thus producing more accurate measures of the true TCR frequency within the sample. This integrated experimental and computational pipeline is applied to the analysis of human memory and naive subpopulations, and results in consistent measures of diversity and inequality. After error correction, the distribution of TCR sequence abundance in all subpopulations followed a power law over a wide range of values. The power law exponent differed between naïve and memory populations, but was consistent between individuals. The integrated experimental and analysis pipeline we describe is appropriate to studies of T cell responses in a broad range of physiological and pathological contexts. PMID:29075258
Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi
2016-01-15
As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques. Copyright © 2015 Elsevier B.V. All rights reserved.
36 CFR 251.23 - Experimental areas and research natural areas.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and research natural areas. The Chief of the Forest Service shall establish and permanently record a... well as other plant communities that have special or unique characteristics of scientific interest and...
Applications of “Tender” Energy (1-5 keV) X-ray Absorption Spectroscopy in Life Sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Northrup, Paul; Leri, Alessandra; Tappero, Ryan
The “tender” energy range of 1 to 5 keV, between the energy ranges of most “hard” (>5 keV) and “soft” (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. Lastly, this brief review describes the technique, its experimental challenges,more » recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences.« less
Applications of “Tender” Energy (1-5 keV) X-ray Absorption Spectroscopy in Life Sciences
Northrup, Paul; Leri, Alessandra; Tappero, Ryan
2016-02-15
The “tender” energy range of 1 to 5 keV, between the energy ranges of most “hard” (>5 keV) and “soft” (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. Lastly, this brief review describes the technique, its experimental challenges,more » recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences.« less
Nonlocal polarization interferometer for entanglement detection
Williams, Brian P.; Humble, Travis S.; Grice, Warren P.
2014-10-30
We report a nonlocal interferometer capable of detecting entanglement and identifying Bell states statistically. This is possible due to the interferometer's unique correlation dependence on the antidiagonal elements of the density matrix, which have distinct bounds for separable states and unique values for the four Bell states. The interferometer consists of two spatially separated balanced Mach-Zehnder or Sagnac interferometers that share a polarization-entangled source. Correlations between these interferometers exhibit nonlocal interference, while single-photon interference is suppressed. This interferometer also allows for a unique version of the Clauser-Horne-Shimony-Holt Bell test where the local reality is the photon polarization. In conclusion, wemore » present the relevant theory and experimental results.« less
RUCS: rapid identification of PCR primers for unique core sequences.
Thomsen, Martin Christen Frølund; Hasman, Henrik; Westh, Henrik; Kaya, Hülya; Lund, Ole
2017-12-15
Designing PCR primers to target a specific selection of whole genome sequenced strains can be a long, arduous and sometimes impractical task. Such tasks would benefit greatly from an automated tool to both identify unique targets, and to validate the vast number of potential primer pairs for the targets in silico. Here we present RUCS, a program that will find PCR primer pairs and probes for the unique core sequences of a positive genome dataset complement to a negative genome dataset. The resulting primer pairs and probes are in addition to simple selection also validated through a complex in silico PCR simulation. We compared our method, which identifies the unique core sequences, against an existing tool called ssGeneFinder, and found that our method was 6.5-20 times more sensitive. We used RUCS to design primer pairs that would target a set of genomes known to contain the mcr-1 colistin resistance gene. Three of the predicted pairs were chosen for experimental validation using PCR and gel electrophoresis. All three pairs successfully produced an amplicon with the target length for the samples containing mcr-1 and no amplification products were produced for the negative samples. The novel methods presented in this manuscript can reduce the time needed to identify target sequences, and provide a quick virtual PCR validation to eliminate time wasted on ambiguously binding primers. Source code is freely available on https://bitbucket.org/genomicepidemiology/rucs. Web service is freely available on https://cge.cbs.dtu.dk/services/RUCS. mcft@cbs.dtu.dk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Lee, James J; Jacobsen, Elizabeth A; Ochkur, Sergei I; McGarry, Michael P; Condjella, Rachel M; Doyle, Alfred D; Luo, Huijun; Zellner, Katie R; Protheroe, Cheryl A; Willetts, Lian; Lesuer, William E; Colbert, Dana C; Helmers, Richard A; Lacy, Paige; Moqbel, Redwan; Lee, Nancy A
2012-09-01
The respective life histories of human subjects and mice are well defined and describe a unique story of evolutionary conservation extending from sequence identity within the genome to the underpinnings of biochemical, cellular, and physiologic pathways. As a consequence, the hematopoietic lineages of both species are invariantly maintained, each with identifiable eosinophils. This canonical presence nonetheless does not preclude disparities between human and mouse eosinophils, their effector functions, or both. Indeed, many books and reviews dogmatically highlight differences, providing a rationale to discount the use of mouse models of human eosinophilic diseases. We suggest that this perspective is parochial and ignores the wealth of available studies and the consensus of the literature that overwhelming similarities (and not differences) exist between human and mouse eosinophils. The goal of this review is to summarize this literature and in some cases provide experimental details comparing and contrasting eosinophils and eosinophil effector functions in human subjects versus mice. In particular, our review will provide a summation and an easy-to-use reference guide to important studies demonstrating that although differences exist, more often than not, their consequences are unknown and do not necessarily reflect inherent disparities in eosinophil function but instead species-specific variations. The conclusion from this overview is that despite nominal differences, the vast similarities between human and mouse eosinophils provide important insights as to their roles in health and disease and, in turn, demonstrate the unique utility of mouse-based studies with an expectation of valid extrapolation to the understanding and treatment of patients. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Widjaja, Joewono; Dawprateep, Saowaros; Chuamchaitrakool, Porntip
2017-07-01
Extractions of particle positions from inline holograms using a single coefficient of Wigner-Ville distribution (WVD) are experimentally verified. WVD analysis of holograms gives local variation of fringe frequency. Regardless of an axial position of particles, one of the WVD coefficients has the unique characteristics of having the lowest amplitude and being located on a line with a slope inversely proportional to the particle position. Experimental results obtained using two image sensors with different resolutions verify the feasibility of the present method.
NASA Astrophysics Data System (ADS)
Chabot, N. L.
2017-12-01
As planetesimals were heated up in the early Solar System, the formation of Fe-Ni metallic melts was a common occurrence. During planetesimal differentiation, the denser Fe-Ni metallic melts separated from the less dense silicate components, though some meteorites suggest that their parent bodies only experienced partial differentiation. If the Fe-Ni metallic melts did form a central metallic core, the core eventually crystallized to a solid, some of which we sample as iron meteorites. In all of these planetesimal evolution processes, the composition of the Fe-Ni metallic melt influenced the process and the resulting trace element chemical signatures. In particular, the metallic melt's "light element" composition, those elements present in the metallic melt in a significant concentration but with lower atomic masses than Fe, can strongly affect trace element partitioning. Experimental studies have provided critical data to determine the effects of light elements in Fe-Ni metallic melts on trace element partitioning behavior. Here I focus on combining numerous experimental results to identify trace elements that provide unique insight into constraining the light element composition of early Solar System Fe-Ni metallic melts. Experimental studies have been conducted at 1 atm in a variety of Fe-Ni systems to investigate the effects of light elements on trace element partitioning behavior. A frequent experimental examination of the effects of light elements in metallic systems involves producing run products with coexisting solid metal and liquid metal phases. Such solid-metal-liquid-metal experiments have been conducted in the Fe-Ni binary system as well as Fe-Ni systems with S, P, and C. Experiments with O-bearing or Si-bearing Fe-Ni metallic melts do not lend themselves to experiments with coexisting solid metal and liquid metal phases, due to the phase diagrams of these elements, but experiments with two immiscible Fe-Ni metallic melts have provided insight into the qualitative effects of O and Si relative to the well-determined effects of S. Together, these experimental studies provide a robust dataset to identify key elements that are predicted to produce distinct chemical signatures as a function of different Fe-Ni metallic melt compositions during planetesimal evolution processes.
NASA Technical Reports Server (NTRS)
Hudson, Susan T.; Zoladz, Thomas F.; Griffin, Lisa W.; Turner, James E. (Technical Monitor)
2000-01-01
Understanding the unsteady aspects of turbine rotor flowfields is critical to successful future turbine designs. A technology program was conducted at NASA's Marshall Space Flight Center to increase the understanding of unsteady environments for rocket engine turbines. The experimental program involved instrumenting turbine rotor blades with surface-mounted high frequency response pressure transducers. The turbine model was then tested to measure the unsteady pressures on the rotor blades. The data obtained from the experimental program is unique in three respects. First, much more unsteady data was obtained (several minutes per set point) than has been possible in the past. Also, two independent unsteady data acquisition systems and fundamental signal processing approaches were used. Finally, an extensive steady performance database existed for the turbine model. This allowed an evaluation of the effect of the on-blade instrumentation on the turbine's performance. This unique data set, the lessons learned for acquiring this type of data, and the improvements made to the data analysis and prediction tools will contribute to future turbine programs such as those for reusable launch vehicles.
The DUV Stability of Superlattice-Doped CMOS Detector Arrays
NASA Technical Reports Server (NTRS)
Hoenk, M. E.; Carver, A.; Jones, T.; Dickie, M.; Cheng, P.; Greer, H. F.; Nikzad, S.; Sgro, J.
2013-01-01
In this paper, we present experimental results and band structure calculations that illuminate the unique properties of superlattice-doped detectors. Numerical band structure calculations are presented to analyze the dependencies of surface passivation on dopant profiles and interface trap densities (Figure 3). Experiments and calculations show that quantum-engineered surfaces, grown at JPL by low temperature molecular beam epitaxy, achieve a qualitative as well as quantitative uniqueness in their near-immunity to high densities of surface and interface traps.
Study of the wave packet treatment of neutrino oscillation at Daya Bay
NASA Astrophysics Data System (ADS)
Daya Bay Collaboration
2017-09-01
The disappearance of reactor \\bar{ν }_e observed by the Daya Bay experiment is examined in the framework of a model in which the neutrino is described by a wave packet with a relative intrinsic momentum dispersion σ _{rel}. Three pairs of nuclear reactors and eight antineutrino detectors, each with good energy resolution, distributed among three experimental halls, supply a high-statistics sample of \\bar{ν }_e acquired at nine different baselines. This provides a unique platform to test the effects which arise from the wave packet treatment of neutrino oscillation. The modified survival probability formula was used to fit Daya Bay data, providing the first experimental limits: 2.38 × 10^{-17}< σ _{rel} < 0.23. Treating the dimensions of the reactor cores and detectors as constraints, the limits are improved: 10^{-14} ≲ σ _ {rel} < 0.23, and an upper limit of σ _ {rel}<0.20 (which corresponds to σ _x ≳ 10^{-11} {cm }) is obtained. All limits correspond to a 95% C.L. Furthermore, the effect due to the wave packet nature of neutrino oscillation is found to be insignificant for reactor antineutrinos detected by the Daya Bay experiment thus ensuring an unbiased measurement of the oscillation parameters sin ^22θ _{13} and Δ m^2_{32} within the plane wave model.
Assembling, cleaning, and testing a unique prototype open-ended cylindrical penning trap
NASA Astrophysics Data System (ADS)
Marble, Kassie; Shidling, Praveen; Melconian, Dan
2016-09-01
A new experimental beamline containing a prototype cylindrical penning trap has recently been constructed at the Cyclotron Laboratory at Texas A&M University. The new beamline will enable precision experiments that enhance our understanding of the limits on non-SM processes in the weak interaction through the measurement of the β- ν correlation parameter for T = 2 ,0+ ->0+ supper allowed β-delayed proton emitters. The prototype TAMU TRAP consists of an open-ended cylindrical penning trap of diameter of 90 mm with gold-plated electrodes of oxygen free high conductivity copper to prevent oxidation. The trap's electric quadrupole field is provided by a SHIP TRAPS RF electronic circuit to the four segmented electrodes at the center of the trap while the trap's 7 Tesla radial magnetic field is provided by an Agilent 210 ASR magnet. A discussion of the assembly of the prototype TAMU TRAP, construction of the RF electronic circuit, the experimental set up and alignment of the beamline will be presented. The method used to test the prototype penning trap using an ion source, Faraday cups, and Micro Chanel Plate (MCP) detectors will also be discussed. Work supported by the U.S. Department of Energy under Grant No. DE-FG02-11ER41747 and the National Science Foundation.
Henderson, Rory; Day-Lewis, Frederick D.; Abarca, Elena; Harvey, Charles F.; Karam, Hanan N.; Liu, Lanbo; Lane, John W.
2010-01-01
Electrical resistivity imaging has been used in coastal settings to characterize fresh submarine groundwater discharge and the position of the freshwater/salt-water interface because of the relation of bulk electrical conductivity to pore-fluid conductivity, which in turn is a function of salinity. Interpretation of tomograms for hydrologic processes is complicated by inversion artifacts, uncertainty associated with survey geometry limitations, measurement errors, and choice of regularization method. Variation of seawater over tidal cycles poses unique challenges for inversion. The capabilities and limitations of resistivity imaging are presented for characterizing the distribution of freshwater and saltwater beneath a beach. The experimental results provide new insight into fresh submarine groundwater discharge at Waquoit Bay National Estuarine Research Reserve, East Falmouth, Massachusetts (USA). Tomograms from the experimental data indicate that fresh submarine groundwater discharge may shut down at high tide, whereas temperature data indicate that the discharge continues throughout the tidal cycle. Sensitivity analysis and synthetic modeling provide insight into resolving power in the presence of a time-varying saline water layer. In general, vertical electrodes and cross-hole measurements improve the inversion results regardless of the tidal level, whereas the resolution of surface arrays is more sensitive to time-varying saline water layer.
Formation and Levitation of Unconfined Droplet Clusters
NASA Technical Reports Server (NTRS)
Liu, S.; Ruff, G. A.
1999-01-01
Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the confounding effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. The overall objective of this research is to study the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would fill a large gap in our current understanding of droplet and spray combustion and provide unique experimental data for the verification and improvement of spray combustion models. This paper describes current work on the design and performance of an apparatus to generate and stabilize droplet clusters using acoustic and electrostatic forces.
NASA Astrophysics Data System (ADS)
Zajicek, J.; Burian, M.; Soukup, P.; Novak, V.; Macko, M.; Jakubek, J.
2017-01-01
Multimodal medical imaging based on Magnetic Resonance is mainly combinated with one of the scintigraphic method like PET or SPECT. These methods provide functional information whereas magnetic resonance imaging provides high spatial resolution of anatomical information or complementary functional information. Fusion of imaging modalities allows researchers to obtain complimentary information in a single measurement. The combination of MRI with SPECT is still relatively new and challenging in many ways. The main complication of using SPECT in MRI systems is the presence of a high magnetic field therefore (ferro)magnetic materials have to be eliminated. Furthermore the application of radiofrequency fields within the MR gantry does not allow for the use of conductive structures such as the common heavy metal collimators. This work presents design and construction of an experimental MRI-SPECT insert system and its initial tests. This unique insert system consists of an MR-compatible SPECT setup with CdTe pixelated sensors Timepix tungsten collimators and a radiofrequency coil. Measurements were performed on a gelatine and tissue phantom with an embedded radioisotopic source (57Co 122 keV γ ray) inside the RF coil by the Bruker BioSpec 47/20 (4.7 T) MR animal scanner. The project was performed in the framework of the Medipix Collaboration.
JSC flight experiment recommendation in support of Space Station robotic operations
NASA Astrophysics Data System (ADS)
Berka, Reginald B.
1993-02-01
The man-tended configuration (MTC) of Space Station Freedom (SSF) provides a unique opportunity to move robotic systems from the laboratory into the mainstream space program. Restricted crew access due to the Shuttle's flight rate, as well as constrained on-orbit stay time, reduces the productivity of a facility dependent on astronauts to perform useful work. A natural tendency toward robotics to perform maintenance and routine tasks will be seen in efforts to increase SSF usefulness. This tendency will provide the foothold for deploying space robots. This paper outlines a flight experiment that will capitalize on the investment in robotic technology made by NASA over the past ten years. The flight experiment described herein provides the technology demonstration necessary for taking advantage of the expected opportunity at MTC. As a context to this flight experiment, a broader view of the strategy developed at the JSC is required. The JSC is building toward MTC by developing a ground-based SSF emulation funded jointly by internal funds, NASA/Code R, and NASA/Code M. The purpose of this ground-based Station is to provide a platform whereby technology originally developed at JPL, LaRC, and GSFC can be integrated into a near flight-like condition. For instance, the Automated Robotic Maintenance of Space Station (ARMSS) project integrates flat targets, surface inspection, and other JPL technologies into a Station analogy for evaluation. Also, ARMSS provides the experimental platform for the Capaciflector from GSPC to be evaluated for its usefulness in performing ORU change out or other tasks where proximity detection is required. The use and enhancement of these ground-based SSF models are planned for use through FY-93. The experimental data gathered from tests in these facilities will provide the basis for the technology content of the proposed flight experiment.
Prolonged striatal disinhibition as a chronic animal model of tic disorders.
Vinner, Esther; Israelashvili, Michal; Bar-Gad, Izhar
2017-12-01
Experimental findings and theoretical models have associated Tourette syndrome with abnormal striatal inhibition. The expression of tics, the hallmark symptom of this disorder, has been transiently induced in non-human primates and rodents by the injection of GABA A antagonists into the striatum, leading to temporary disinhibition. The novel chronic model of tic expression utilizes mini-osmotic pumps implanted subcutaneously in the rat's back for prolonged infusion of bicuculline into the dorsolateral striatum. Tics were expressed on the contralateral side to the infusion over a period of multiple days. Tic expression was stable, and maintained similar properties throughout the infusion period. Electrophysiological recordings revealed the existence of tic-related local field potential spikes and individual neuron activity changes that remained stable throughout the infusion period. The striatal disinhibition model provides a unique combination of face validity (tic expression) and construct validity (abnormal striatal inhibition) but is limited to sub-hour periods. The new chronic model extends the period of tic expression to multiple days and thus enables the study of tic dynamics and the effects of behavior and pharmacological agents on tic expression. The chronic model provides similar behavioral and neuronal correlates of tics as the acute striatal disinhibition model but over prolonged periods of time, thus providing a unique, basal ganglia initiated model of tic expression. Chronic expression of symptoms is the key to studying the time varying properties of Tourette syndrome and the effects of multiple internal and external factors on this disorder. Copyright © 2017 Elsevier B.V. All rights reserved.
The Ti-Mn system revisited: experimental investigation and thermodynamic modelling.
Khan, A U; Brož, P; Premović, M; Pavlů, J; Vřeštál, J; Yan, X; Maccio, D; Saccone, A; Giester, G; Rogl, P
2016-08-17
As the Ti-Mn phase diagram is part of numerous ternary and higher order systems of technological importance, the present paper defines phase relations which have been experimentally established throughout this work from 800 °C to the melting range based on Differential Thermal Analyses (DTA), X-ray powder diffraction, metallography and Electron Probe Micro Analysis (EPMA) techniques on ∼50 alloys, which were prepared by arc melting or high frequency melting under high purity argon starting from freshly cleaned metal ingots. Novel compounds were identified and reaction isotherms were redefined accordingly. In the Ti-rich region a novel compound TiMn was detected, sandwiched between the known phases: TiMn1-x (∼45 at% Mn) and TiMn1+x (∼55 at% Mn). In the Mn-rich region the hitherto unknown crystal structure of TiMn∼3 was solved from X-ray single crystal diffraction data and found to be of a unique structure type Ti6(Ti1-xMnx)6Mn25 (x = 0.462; space group Pbam (#55); a = 0.79081(3) nm, b = 2.58557(9) nm, c = 0.47931(2) nm), which consists of two consecutive layers of the hexagonal MgZn2-type Laves phase (TiMn2) and a combined layer of alternate structure blocks of MgZn2 type and Zr4Al3 type. Whereas TiMn can be considered as a line compound (solubility range <∼1 at%), the homogeneity regions of the Ti-Mn compounds are significant (determined by EPMA): TiMn1-x (44.0 to 46.6 at% Mn), TiMn1+x (54.6 to 56.3 at% Mn), Ti1+xMn2-x (MgZn2-type, 59 to 69 at% Mn at 1000 °C: -0.08 < x < 0.23), TiMn∼3 (unique type; 74 to 76.5 at% Mn) and TiMn∼4 (R-phase: Ti8(TixMn1-x)6Mn39, 80 to 84 at% Ti). Supported by ab initio calculations of the ground state energy for the Laves phase, the new experimental results enabled thermodynamic modelling of the entire Ti-Mn phase diagram providing a complete and novel set of thermodynamic data thus providing a sound basis for future thermodynamic predictions of higher order Ti-Mn-X-Y systems.
Singh, Manpreet; Jiang, Ruibin; Coia, Heidi; Choi, Daniel S.; Alabanza, Anginelle; Chang, Jae Young; Wang, Jianfang; Hahm, Jong-in
2014-01-01
We have carried out a combined experimental and simulation study identifying the key physical and optical parameters affecting the presence and degree of fluorescence intensification measured on zinc oxide nanorod (ZnO NR) ends. Previously, we reported on the highly localized, intensified, and prolonged fluorescence signal measured on the NR ends, termed as fluorescence intensification on NR ends (FINE). As a step towards understanding the mechanism of FINE, the present study aims to provide an insight into the unique optical phenomenon of FINE through experimental and simulation approaches and to elucidate the key factors affecting the occurrence, degree, and temporal stability of FINE. Specifically, we examined the effect of the length, width, and growth orientation of single ZnO NRs on the NR-enhanced biomolecular emission profile after decorating the NR surfaces with different amounts and types of fluorophore-coupled protein molecules. We quantitatively and qualitatively profiled the biomolecular fluorescence signal from individual ZnO NRs as a function of both position along the NR long axis and time. Regardless of the physical dimensions and growth orientations of the NRs, we confirmed the presence of FINE from all ZnO NRs tested by using a range of protein concentrations. We also showed that the manifestation of FINE is not dependent on the spectroscopic signatures of the fluorophores employed. We further observed that the degree of FINE is dependent on the length of the NR with longer NRs showing increased levels of FINE. We also demonstrated that vertically oriented NRs exhibit much stronger fluorescence intensity at the NR ends and a higher level of FINE than the laterally oriented NRs. Additionally, we employed finite-difference time-domain (FDTD) methods to understand the experimental outcomes and to promote our understanding of the mechanism of FINE. Particularly, we utilized the electrodynamic simulations to examine both near-field and far-field emission characteristics when considering various scenarios of fluorophore locations, polarizations, spectroscopic characteristics, and NR dimensions. Our efforts may provide a deeper insight into the unique optical phenomenon of FINE and further be beneficial to highly miniaturized biodetection favoring the use of single ZnO NRs in low-volume and high-throughput protein assays. PMID:25504319
Hofmann, Matthias J.; Koelsch, Patrick
2015-01-01
Vibrational sum-frequency generation (SFG) spectroscopy has become an established technique for in situ surface analysis. While spectral recording procedures and hardware have been optimized, unique data analysis routines have yet to be established. The SFG intensity is related to probing geometries and properties of the system under investigation such as the absolute square of the second-order susceptibility χ(2)2. A conventional SFG intensity measurement does not grant access to the complex parts of χ(2) unless further assumptions have been made. It is therefore difficult, sometimes impossible, to establish a unique fitting solution for SFG intensity spectra. Recently, interferometric phase-sensitive SFG or heterodyne detection methods have been introduced to measure real and imaginary parts of χ(2) experimentally. Here, we demonstrate that iterative phase-matching between complex spectra retrieved from maximum entropy method analysis and fitting of intensity SFG spectra (iMEMfit) leads to a unique solution for the complex parts of χ(2) and enables quantitative analysis of SFG intensity spectra. A comparison between complex parts retrieved by iMEMfit applied to intensity spectra and phase sensitive experimental data shows excellent agreement between the two methods. PMID:26450297
Employing immersive virtual environments for innovative experiments in health care communication.
Persky, Susan
2011-03-01
This report reviews the literature for studies that employ immersive virtual environment technology methods to conduct experimental studies in health care communication. Advantages and challenges of using these tools for research in this area are also discussed. A literature search was conducted using the Scopus database. Results were hand searched to identify the body of studies, conducted since 1995, that are related to the report objective. The review identified four relevant studies that stem from two unique projects. One project focused on the impact of a clinician's characteristics and behavior on health care communication, the other focused on the characteristics of the patient. Both projects illustrate key methodological advantages conferred by immersive virtual environments, including, ability to maintain simultaneously high experimental control and realism, ability to manipulate variables in new ways, and unique behavioral measurement opportunities. Though implementation challenges exist for immersive virtual environment-based research methods, given the technology's unique capabilities, benefits can outweigh the costs in many instances. Immersive virtual environments may therefore prove an important addition to the array of tools available for advancing our understanding of communication in health care. Published by Elsevier Ireland Ltd.
The Cosmic Microwave Background Radiation and its Polarization
NASA Astrophysics Data System (ADS)
Wollack, Edward
2016-03-01
The cosmic microwave background (CMB) radiation and its faint polarization have provided a unique means to constrain the physical state of the early Universe. Continued advances in instrumentation, observation, and analysis have revealed polarized radiation signatures associated with gravitational lensing and have heightened the prospects for using precision polarimetry to experimentally confront the inflationary paradigm. Characterization of this relic radiation field has the power to constrain or reveal the detailed properties of astroparticle species and long wave gravitational radiation. On going and planned CMB polarization efforts from the ground, balloon, and space borne platforms will be briefly surveyed. Recent community activities by the Inflation Probe Science Interest Group (IPSIG) will also be summarized. NASA PCOS mini-symposium (invited IPSIG talk).
Starosta, K; Dewald, A; Dunomes, A; Adrich, P; Amthor, A M; Baumann, T; Bazin, D; Bowen, M; Brown, B A; Chester, A; Gade, A; Galaviz, D; Glasmacher, T; Ginter, T; Hausmann, M; Horoi, M; Jolie, J; Melon, B; Miller, D; Moeller, V; Norris, R P; Pissulla, T; Portillo, M; Rother, W; Shimbara, Y; Stolz, A; Vaman, C; Voss, P; Weisshaar, D; Zelevinsky, V
2007-07-27
Transition rate measurements are reported for the 2(1)+ and 2(2)+ states in N=Z 64Ge. The experimental results are in excellent agreement with large-scale shell-model calculations applying the recently developed GXPF1A interactions. The measurement was done using the recoil distance method (RDM) and a unique combination of state-of-the-art instruments at the National Superconducting Cyclotron Laboratory (NSCL). States of interest were populated via an intermediate-energy single-neutron knockout reaction. RDM studies of knockout and fragmentation reaction products hold the promise of reaching far from stability and providing lifetime information for excited states in a wide range of nuclei.
NASA Astrophysics Data System (ADS)
Starosta, K.; Dewald, A.; Dunomes, A.; Adrich, P.; Amthor, A. M.; Baumann, T.; Bazin, D.; Bowen, M.; Brown, B. A.; Chester, A.; Gade, A.; Galaviz, D.; Glasmacher, T.; Ginter, T.; Hausmann, M.; Horoi, M.; Jolie, J.; Melon, B.; Miller, D.; Moeller, V.; Norris, R. P.; Pissulla, T.; Portillo, M.; Rother, W.; Shimbara, Y.; Stolz, A.; Vaman, C.; Voss, P.; Weisshaar, D.; Zelevinsky, V.
2007-07-01
Transition rate measurements are reported for the 21+ and 22+ states in N=Z Ge64. The experimental results are in excellent agreement with large-scale shell-model calculations applying the recently developed GXPF1A interactions. The measurement was done using the recoil distance method (RDM) and a unique combination of state-of-the-art instruments at the National Superconducting Cyclotron Laboratory (NSCL). States of interest were populated via an intermediate-energy single-neutron knockout reaction. RDM studies of knockout and fragmentation reaction products hold the promise of reaching far from stability and providing lifetime information for excited states in a wide range of nuclei.
Han, Dawei; Young, Bruce A
2018-01-01
The Calabar burrowing python (Calabaria reinhardtii) has a unique combination of marked thickness of the integumentary layers, a highly organized lamellate arrangement of the dermal collagen bundles, and a reduction in the size of the interscale hinge region of the integument. Biomechanical testing demonstrates that the skin of C. reinhardtii is more resistant to penetration than the skin of other snakes. The laminar arrangement of the collagen bundles provides for penetrative resistance, even while maintaining the flexibility characteristic of snake skin. Considering the life history of this species, it is hypothesized that the specialized integument of C. reinhardtii is a passive defensive mechanism against penetrative bites from maternal rodents and predators. © 2017 Wiley Periodicals, Inc.
PERTS: A Prototyping Environment for Real-Time Systems
NASA Technical Reports Server (NTRS)
Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.
1991-01-01
We discuss an ongoing project to build a Prototyping Environment for Real-Time Systems, called PERTS. PERTS is a unique prototyping environment in that it has (1) tools and performance models for the analysis and evaluation of real-time prototype systems, (2) building blocks for flexible real-time programs and the support system software, (3) basic building blocks of distributed and intelligent real time applications, and (4) an execution environment. PERTS will make the recent and future theoretical advances in real-time system design and engineering readily usable to practitioners. In particular, it will provide an environment for the use and evaluation of new design approaches, for experimentation with alternative system building blocks and for the analysis and performance profiling of prototype real-time systems.
NASA Technical Reports Server (NTRS)
Vaughan, W. W.
1977-01-01
The effectiveness of mesoscale models in explaining perturbations observed in vertical detailed wind profile measurements in the troposphere and lower stratosphere is assessed. The structure and persistence of the data were analyzed and interpreted in terms of several physical models with the goal of establishing explanations for the observed persistent features of the mesoscale flow patterns. The experimental data used in the investigation were obtained by a unique detailed wind profile measurement system. This system is capable of providing resolution of 50 to 100 m wavelengths for the altitude region from approximately 200 m to 18 km. The system consists of a high-resolution tracking radar and special super-pressure balloon configuration known as a Jimsphere.
Cooperation and cheating in microbes
NASA Astrophysics Data System (ADS)
Gore, Jeff
2011-03-01
Understanding the cooperative and competitive dynamics within and between species is a central challenge in evolutionary biology. Microbial model systems represent a unique opportunity to experimentally test fundamental theories regarding the evolution of cooperative behaviors. In this talk I will describe our experiments probing cooperation in microbes. In particular, I will compare the cooperative growth of yeast in sucrose and the cooperative inactivation of antibiotics by bacteria. In both cases we find that cheater strains---which don't contribute to the public welfare---are able to take advantage of the cooperator strains. However, this ability of cheaters to out-compete cooperators occurs only when cheaters are present at low frequency, thus leading to steady-state coexistence. These microbial experiments provide fresh insight into the evolutionary origin of cooperation.
The PMDB Protein Model Database
Castrignanò, Tiziana; De Meo, Paolo D'Onorio; Cozzetto, Domenico; Talamo, Ivano Giuseppe; Tramontano, Anna
2006-01-01
The Protein Model Database (PMDB) is a public resource aimed at storing manually built 3D models of proteins. The database is designed to provide access to models published in the scientific literature, together with validating experimental data. It is a relational database and it currently contains >74 000 models for ∼240 proteins. The system is accessible at and allows predictors to submit models along with related supporting evidence and users to download them through a simple and intuitive interface. Users can navigate in the database and retrieve models referring to the same target protein or to different regions of the same protein. Each model is assigned a unique identifier that allows interested users to directly access the data. PMID:16381873
NASA Technical Reports Server (NTRS)
Bauer, Robert; Krawczyk, Richard; Gargione, Frank; Kruse, Hans; Vrotsos, Pete (Technical Monitor)
2002-01-01
Now in its ninth year of operations, the Advanced Communications Technology Satellite (ACTS) program has continued, although since May 2000 in a new operations arrangement involving a university based consortium, the Ohio Consortium for Advanced Communications Technology (OCACT), While NASA has concluded its experimental intentions of ACTS, the spacecraft's ongoing viability has permitted its further operations to provide educational opportunities to engineering and communications students interested in satellite operations, as well as a Ka-band test bed for commercial interests in utilizing Kaband space communications. The consortium has reached its first year of operations. This generous opportunity by NASA has already resulted in unique educational opportunities for students in obtaining "hands-on" experience, such as, in satellite attitude control. An update is presented on the spacecraft and consortium operations.
NASA Astrophysics Data System (ADS)
Fang, Tilden T.; Fang, Wingra T. C.; Griffin, Peter B.; Plummer, James D.
1996-02-01
Investigation of boron diffusion in strained silicon germanium buried layers reveals a fractional interstitial component of boron diffusion (fBI) in Se0.8Ge0.2 approximately equal to the fBI value in silicon. In conjunction with computer-simulated boron profiles, the results yield an absolute lower-bound of fBI in Si0.8Ge0.2 of ˜0.8. In addition, the experimental methodology provides a unique vehicle for measuring the segregation coefficient; oxidation-enhanced diffusion is used instead of an extended, inert anneal to rapidly diffuse the dopant to equilibrium levels across the interface, allowing the segregation coefficient to be measured more quickly.
The 3D structures of VDAC represent a native conformation
Hiller, Sebastian; Abramson, Jeff; Mannella, Carmen; Wagner, Gerhard; Zeth, Kornelius
2010-01-01
The most abundant protein of the mitochondrial outer membrane is the voltage-dependent anion channel (VDAC), which facilitates the exchange of ions and molecules between mitochondria and cytosol and is regulated by interactions with other proteins and small molecules. VDAC has been extensively studied for more than three decades, and last year three independent investigations revealed a structure of VDAC-1 exhibiting 19 transmembrane β-strands, constituting a unique structural class of β-barrel membrane proteins. Here, we provide a historical perspective on VDAC research and give an overview of the experimental design used to obtain these structures. Furthermore, we validate the protein refolding approach and summarize biochemical and biophysical evidence that links the 19-stranded structure to the native form of VDAC. PMID:20708406
Computational Simulation of Continuous Fiber-Reinforced Ceramic Matrix Composites Behavior
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Chamis, Christos C.; Mital, Subodh K.
1996-01-01
This report describes a methodology which predicts the behavior of ceramic matrix composites and has been incorporated in the computational tool CEMCAN (CEramic Matrix Composite ANalyzer). The approach combines micromechanics with a unique fiber substructuring concept. In this new concept, the conventional unit cell (the smallest representative volume element of the composite) of the micromechanics approach is modified by substructuring it into several slices and developing the micromechanics-based equations at the slice level. The methodology also takes into account nonlinear ceramic matrix composite (CMC) behavior due to temperature and the fracture initiation and progression. Important features of the approach and its effectiveness are described by using selected examples. Comparisons of predictions and limited experimental data are also provided.
Nuclear spectroscopy with Geant4: Proton and neutron emission & radioactivity
NASA Astrophysics Data System (ADS)
Sarmiento, L. G.; Rudolph, D.
2016-07-01
With the aid of a novel combination of existing equipment - JYFLTRAP and the TASISpec decay station - it is possible to perform very clean quantum-state selective, high-resolution particle-γ decay spectroscopy. We intend to study the determination of the branching ratio of the ℓ = 9 proton emission from the Iπ = 19/2-, 3174-keV isomer in the N = Z - 1 nucleus 53Co. The study aims to initiate a series of similar experiments along the proton dripline, thereby providing unique insights into "open quantum systems". The technique has been pioneered in case studies using SHIPTRAP and TASISpec at GSI. Newly available radioactive decay modes in Geant4 simulations are going to corroborate the anticipated experimental results.
Markov chains for testing redundant software
NASA Technical Reports Server (NTRS)
White, Allan L.; Sjogren, Jon A.
1988-01-01
A preliminary design for a validation experiment has been developed that addresses several problems unique to assuring the extremely high quality of multiple-version programs in process-control software. The procedure uses Markov chains to model the error states of the multiple version programs. The programs are observed during simulated process-control testing, and estimates are obtained for the transition probabilities between the states of the Markov chain. The experimental Markov chain model is then expanded into a reliability model that takes into account the inertia of the system being controlled. The reliability of the multiple version software is computed from this reliability model at a given confidence level using confidence intervals obtained for the transition probabilities during the experiment. An example demonstrating the method is provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calder, Stuart A; Cao, Guixin; Okamoto, Satoshi
The J_eff=1/2 state is manifested in systems with large cubic crystal field splitting and spin-orbit coupling that are comparable to the on-site Coulomb interaction, U. 5d transition metal oxides host parameters in this regime and strong evidence for this state in Sr2IrO4, and additional iridates, has been presented. All the candidates, however, deviate from the cubic crystal field required to provide an unmixed canonical J_eff=1/2 state, impacting the development of a robust model of this novel insulating and magnetic state. We present experimental and theoretical results that not only show Ca4IrO6 hosts the state, but furthermore uniquely resides in themore » limit required for a canonical unmixed J_eff=1/2 state.« less
Technology demonstration of space intravehicular automation and robotics
NASA Technical Reports Server (NTRS)
Morris, A. Terry; Barker, L. Keith
1994-01-01
Automation and robotic technologies are being developed and capabilities demonstrated which would increase the productivity of microgravity science and materials processing in the space station laboratory module, especially when the crew is not present. The Automation Technology Branch at NASA Langley has been working in the area of intravehicular automation and robotics (IVAR) to provide a user-friendly development facility, to determine customer requirements for automated laboratory systems, and to improve the quality and efficiency of commercial production and scientific experimentation in space. This paper will describe the IVAR facility and present the results of a demonstration using a simulated protein crystal growth experiment inside a full-scale mockup of the space station laboratory module using a unique seven-degree-of-freedom robot.
Entropy favours open colloidal lattices
NASA Astrophysics Data System (ADS)
Mao, Xiaoming; Chen, Qian; Granick, Steve
2013-03-01
Burgeoning experimental and simulation activity seeks to understand the existence of self-assembled colloidal structures that are not close-packed. Here we describe an analytical theory based on lattice dynamics and supported by experiments that reveals the fundamental role entropy can play in stabilizing open lattices. The entropy we consider is associated with the rotational and vibrational modes unique to colloids interacting through extended attractive patches. The theory makes predictions of the implied temperature, pressure and patch-size dependence of the phase diagram of open and close-packed structures. More generally, it provides guidance for the conditions at which targeted patchy colloidal assemblies in two and three dimensions are stable, thus overcoming the difficulty in exploring by experiment or simulation the full range of conceivable parameters.
Coaxial digital holography measures particular matter in cloud and ambient atmosphere
NASA Astrophysics Data System (ADS)
Li, Baosheng; Yu, Haonan; Jia, Yizhen; Tao, Xiaojie; Zhang, Yang
2018-02-01
In the artificially affected weather, the detection of cloud droplets particles provides an important reference for the effective impact of artificial weather. Digital holography has the unique advantages of full-field, non-contact, no damage, real-time and quantification. In this paper, coaxial digital holography is used to record the polyethylene standard particles and aluminum scrap, and some important parameters, such as three-dimensional coordinate spatial distribution and particle size, will be obtained by the means of analyzing the digital hologram of the particle. The experimental results verify the feasibility of the coaxial digital holographic device applied to the measurement of the cloud parameters, and complete the construction of the coaxial digital holographic system and the measurement of the particles.
Gioannini, Theresa L; Teghanemt, Athmane; Zhang, DeSheng; Esparza, Gregory; Yu, Liping; Weiss, Jerrold
2014-08-01
A major focus of work in our laboratory concerns the molecular mechanisms and structural bases of Gram-negative bacterial endotoxin recognition by host (e.g., human) endotoxin-recognition proteins that mediate and/or regulate activation of Toll-like receptor (TLR) 4. Here, we review studies of wild-type and variant monomeric endotoxin.MD-2 complexes first produced and characterized in our laboratories. These purified complexes have provided unique experimental reagents, revealing both quantitative and qualitative determinants of TLR4 activation and antagonism. This review is dedicated to the memory of Dr. Theresa L. Gioannini (1949-2014) who played a central role in many of the studies and discoveries that are reviewed.
Right-handed neutrinos and T-violating, P-conserving interactions
NASA Astrophysics Data System (ADS)
El-Menoufi, Basem Kamal; Ramsey-Musolf, Michael J.; Seng, Chien-Yeah
2017-02-01
We show that experimental probes of the P-conserving, T-violating triple correlation in polarized neutron or nuclear β-decay provide a unique probe of possible T-violation at the TeV scale in the presence of right-handed neutrinos. In contrast to other possible sources of semileptonic T-violation involving only left-handed neutrinos, those involving right-handed neutrinos are relatively unconstrained by present limits on the permanent electric dipole moments of the electron, neutral atoms, and the neutron. On the other hand, LHC results for pp → e + missing transverse energy imply that an order of magnitude of improvement in D-coefficient sensitivity would be needed for discovery. Finally, we discuss the interplay with the scale of neutrino mass and naturalness considerations.
17 CFR 45.5 - Unique swap identifiers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... transmit a unique swap identifier as provided in paragraphs (a)(1) and (2) of this section. (1) Creation... prior to the reporting of required swap creation data. The unique swap identifier shall consist of a... execution facility or designated contract market with respect to unique swap identifier creation; and (ii...
17 CFR 45.5 - Unique swap identifiers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... transmit a unique swap identifier as provided in paragraphs (a)(1) and (2) of this section. (1) Creation... prior to the reporting of required swap creation data. The unique swap identifier shall consist of a... execution facility or designated contract market with respect to unique swap identifier creation; and (ii...
17 CFR 45.5 - Unique swap identifiers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... transmit a unique swap identifier as provided in paragraphs (a)(1) and (2) of this section. (1) Creation... prior to the reporting of required swap creation data. The unique swap identifier shall consist of a... execution facility or designated contract market with respect to unique swap identifier creation; and (ii...
A generator for unique quantum random numbers based on vacuum states
NASA Astrophysics Data System (ADS)
Gabriel, Christian; Wittmann, Christoffer; Sych, Denis; Dong, Ruifang; Mauerer, Wolfgang; Andersen, Ulrik L.; Marquardt, Christoph; Leuchs, Gerd
2010-10-01
Random numbers are a valuable component in diverse applications that range from simulations over gambling to cryptography. The quest for true randomness in these applications has engendered a large variety of different proposals for producing random numbers based on the foundational unpredictability of quantum mechanics. However, most approaches do not consider that a potential adversary could have knowledge about the generated numbers, so the numbers are not verifiably random and unique. Here we present a simple experimental setup based on homodyne measurements that uses the purity of a continuous-variable quantum vacuum state to generate unique random numbers. We use the intrinsic randomness in measuring the quadratures of a mode in the lowest energy vacuum state, which cannot be correlated to any other state. The simplicity of our source, combined with its verifiably unique randomness, are important attributes for achieving high-reliability, high-speed and low-cost quantum random number generators.
Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Per; Greenspan, Ehud
2015-02-09
This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designsmore » are used, the power density of salt- cooled reactors is limited to 10 MW/m 3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m 3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X-PREX facility uses novel digital x-ray tomography methods to track both the translational and rotational motion of spherical pebbles, which provides unique experimental results that can be used to validate discrete element method (DEM) simulations of pebble motion. The validation effort supported by the X-PREX facility provides a means to build confidence in analysis of pebble bed configuration and residence time distributions that impact the neutronics, thermal hydraulics, and safety analysis of pebble bed reactor cores. Experimental and DEM simulation results are reported for silo drainage, a classical problem in the granular flow literature, at several hopper angles. These studies include conventional converging and novel diverging geometries that provide additional flexibility in the design of pebble bed reactor cores. Excellent agreement is found between the X-PREX experimental and DEM simulation results. This report also includes results for additional studies relevant to the design and analysis of pebble bed reactor cores including the study of forces on shut down blades inserted directly into a packed bed and pebble flow in a cylindrical hopper that is representative of a small test reactor.« less
NASA Astrophysics Data System (ADS)
Hosseini, Seyed Mehrdad
Characterizing the near-surface shear-wave velocity structure using Rayleigh-wave phase velocity dispersion curves is widespread in the context of reservoir characterization, exploration seismology, earthquake engineering, and geotechnical engineering. This surface seismic approach provides a feasible and low-cost alternative to the borehole measurements. Phase velocity dispersion curves from Rayleigh surface waves are inverted to yield the vertical shear-wave velocity profile. A significant problem with the surface wave inversion is its intrinsic non-uniqueness, and although this problem is widely recognized, there have not been systematic efforts to develop approaches to reduce the pervasive uncertainty that affects the velocity profiles determined by the inversion. Non-uniqueness cannot be easily studied in a nonlinear inverse problem such as Rayleigh-wave inversion and the only way to understand its nature is by numerical investigation which can get computationally expensive and inevitably time consuming. Regarding the variety of the parameters affecting the surface wave inversion and possible non-uniqueness induced by them, a technique should be established which is not controlled by the non-uniqueness that is already affecting the surface wave inversion. An efficient and repeatable technique is proposed and tested to overcome the non-uniqueness problem; multiple inverted shear-wave velocity profiles are used in a wavenumber integration technique to generate synthetic time series resembling the geophone recordings. The similarity between synthetic and observed time series is used as an additional tool along with the similarity between the theoretical and experimental dispersion curves. The proposed method is proven to be effective through synthetic and real world examples. In these examples, the nature of the non-uniqueness is discussed and its existence is shown. Using the proposed technique, inverted velocity profiles are estimated and effectiveness of this technique is evaluated; in the synthetic example, final inverted velocity profile is compared with the initial target velocity model, and in the real world example, final inverted shear-wave velocity profile is compared with the velocity model from independent measurements in a nearby borehole. Real world example shows that it is possible to overcome the non-uniqueness and distinguish the representative velocity profile for the site that also matches well with the borehole measurements.
Nechifor, Mihai; Cuciureanu, Magda; Chelarescu, Dan; Ciubotariu, Diana; Pascu, Mihaela
2008-03-01
We tested the influence of magnesium, zinc and copper upon the montelukast (MK, antagonist of cysteinyl leukotriene receptor type 1) effect in experimentally-induced thermoalgesia. We worked on 5 groups of 10 adults, each Wistar rats, that received: group I-control; group II: MK (10 mg/kg) unique administration; group III: MgCl2 (1 mM/kg/day) i.p., 3 days and MK (10 mg/kg) unique administration on the 3rd day; group IV: ZnCl2, (0.1 mM/kg/day), i.p., 3 days and MK (10 mg/kg) unique administration on the 3rd day; group V: copper acetate (0.05 mM/kg/day), i.p., 3 days and MK (10 mg/kg) unique administration on the 3rd day. We determined the thermoalgesic sensitivity (TS) using a tail flick analgesia meter, initially, 3 days after daily cation administration and 3 hours after MK administration. Our data show that MK has a statistically significant reduction of TS vs control group (3.76 +/- 1.04 s vs 1.81 +/- 0.98 s, p < 0.05). Copper and magnesium administration do not significantly change the MK effect to decrease TS. The co-administration of zinc and MK statistically significantly increased the TS of the group that received only MK (2.51 +/- 0.21 s vs 3.76 +/- 1.04 s, p < 0.05). Animals that received only cations (in the above mentioned doses) did not significantly change TS.
NASA Technical Reports Server (NTRS)
May, Brian D.
1992-01-01
The experimental NASA satellite, Advanced Communications Technology Satellite (ACTS), introduces new technology for high throughput 30 to 20 GHz satellite services. Contained in a single communication payload is both a regenerative TDMA system and multiple 800 MHz 'bent pipe' channels routed to spot beams by a switch matrix. While only one mode of operation is typical during any experiment, both modes can operate simultaneously with reduced capability due to sharing of the transponder. NASA-Lewis instituted a ground terminal development program in anticipation of the satellite launch to verify the performance of the switch matrix mode of operations. Specific functions are built into the ground terminal to evaluate rain fade compensation with uplink power control and to monitor satellite transponder performance with bit error rate measurements. These functions were the genesis of the ground terminal's name, Link Evaluation Terminal, often referred to as LET. Connectors are included in LET that allow independent experimenters to run unique modulation or network experiments through ACTS using only the RF transmit and receive portions of LET. Test data indicate that LET will be able to verify important parts of ACTS technology and provide independent experimenters with a useful ground terminal. Lab measurements of major subsystems integrated into LET are presented. Bit error rate is measured with LET in an internal loopback mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuur, Edward
2015-06-11
The major research goal of this project was to understand and quantify the fate of carbon stored in permafrost ecosystems using a combination of field and laboratory experiments to measure isotope ratios and C fluxes in a tundra ecosystem exposed to experimental warming. Field measurements centered on the establishment of a two-factor experimental warming using a snow fence and open top chambers to increase winter and summer temperatures alone, and in combination, at a tundra field site at the Eight Mile Lake watershed near Healy, Alaska. The objective of this experimental warming was to significantly raise air and deep soilmore » temperatures and increase the depth of thaw beyond that of previous warming experiments. Detecting the loss and fate of the old permafrost C pool remains a major challenge. Because soil C has been accumulating in these ecosystems over the past 10,000 years, there is a strong difference between the radiocarbon isotopic composition of C deep in the soil profile and permafrost compared to that near the soil surface. This large range of isotopic variability is unique to radiocarbon and provides a valuable and sensitive fingerprint for detecting the loss of old soil C as permafrost thaws.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, P.; Olson, R.; Wilkowski, O.G.
1997-06-01
This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPIRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked andmore » five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results.« less
Influence of perforated triple wing vortex generator on a turbulent flow through a circular tube
NASA Astrophysics Data System (ADS)
Gautam, Abhishek; Pandey, Lokesh; Singh, Satyendra
2018-02-01
Numerous studies has been observed in terms of enhancement of heat transfer by using passive techniques. In present work, a very unique perforated triple wing vortex generator has been used as an insert geometry, with different geometrical parameters of twist ratio (l/D = 2, 3 & 4) and Porosity (P A /T A = 0%, 10%, 20% & 30%). The experimentation has been performed for the wide range of Re (Re), varying between 3200 to 20,600, in order to investigate effect on heat transfer (Nu), friction factor (f) & thermal performance factor (η) in circular tube HEs with respect to different geometrical and flow parameters. Experimentation has been performed in 1.5 m length of test section with 68 mm diameter. Heat flux of 1000 W/m2 has been provided on the test section with the help of variable voltage transformer connected with Nicrome wire coiled heater located on the test section. There is a significant enhancement has been observed in terms of heat enhancement and pressure drop over the smooth tube. The experimental result shows 4.8 times improvement in heat transfer and 1.63 times improvement in thermal performance as compared to smooth tube HE. The statistical correlations have also been presented for Nu, f and η.
NASA Technical Reports Server (NTRS)
Walls, Laurie K.; Kirk, Daniel; deLuis, Kavier; Haberbusch, Mark S.
2011-01-01
As space programs increasingly investigate various options for long duration space missions the accurate prediction of propellant behavior over long periods of time in microgravity environment has become increasingly imperative. This has driven the development of a detailed, physics-based understanding of slosh behavior of cryogenic propellants over a range of conditions and environments that are relevant for rocket and space storage applications. Recent advancements in computational fluid dynamics (CFD) models and hardware capabilities have enabled the modeling of complex fluid behavior in microgravity environment. Historically, launch vehicles with moderate duration upper stage coast periods have contained very limited instrumentation to quantify propellant stratification and boil-off in these environments, thus the ability to benchmark these complex computational models is of great consequence. To benchmark enhanced CFD models, recent work focuses on establishing an extensive experimental database of liquid slosh under a wide range of relevant conditions. In addition, a mass gauging system specifically designed to provide high fidelity measurements for both liquid stratification and liquid/ullage position in a micro-gravity environment has been developed. This pUblication will summarize the various experimental programs established to produce this comprehensive database and unique flight measurement techniques.
Beamlines of the Biomedical Imaging and Therapy Facility at the Canadian Light Source - Part 2
NASA Astrophysics Data System (ADS)
Wysokinski, T. W.; Chapman, D.; Adams, G.; Renier, M.; Suortti, P.; Thomlinson, W.
2013-03-01
The BioMedical Imaging and Therapy (BMIT) facility provides a world class facility with unique synchrotron-specific imaging and therapy capabilities. This paper describes Insertion Device (ID) beamline 05ID-2 with the beam terminated in the first experimental hutch: POE-2. The experimental methods available in POE-2 include: Microbeam Radiation Therapy (MRT), Synchrotron Stereotactic Radiation Therapy (SSRT) and absorption imaging (projection and Computed Tomography (CT)). The source for the ID beamline is a multi-pole superconductive 4.3 T wiggler, which can generate ~30 kW of radiative power and deliver dose as high as 3000 Gy/s required for MRT program. The optics in POE-1 hutch prepares either monochromatic or filtered white beam that is used in POE-2. The Double Crystal (DC), bent Laue monochromator will prepare a beam over 10 cm wide at sample point, while spanning an energy range appropriate for imaging studies of animals (20-100+ keV). The experimental hutch will have a flexible positioning system that can handle subjects up to 120 kg. Several different cameras will be available with resolutions ranging from 4 μm to 150 μm. The latest update on the status of 05B1-1 bending magnet (BM) beamline, described in Part 1 [1], is also included.
Response-Induced Reversals of Preference in Gambling: An Extended Replication in Las Vegas
ERIC Educational Resources Information Center
Lichtenstein, Sarah; Slovic, Paul
1973-01-01
The present report describes an expanded replication of the previous experiments in a nonlaboratory real-play setting unique to the experimental literature on decision processes - a casino in downtown Las Vegas. (Author)
DBSecSys: a database of Burkholderia mallei secretion systems.
Memišević, Vesna; Kumar, Kamal; Cheng, Li; Zavaljevski, Nela; DeShazer, David; Wallqvist, Anders; Reifman, Jaques
2014-07-16
Bacterial pathogenicity represents a major public health concern worldwide. Secretion systems are a key component of bacterial pathogenicity, as they provide the means for bacterial proteins to penetrate host-cell membranes and insert themselves directly into the host cells' cytosol. Burkholderia mallei is a Gram-negative bacterium that uses multiple secretion systems during its host infection life cycle. To date, the identities of secretion system proteins for B. mallei are not well known, and their pathogenic mechanisms of action and host factors are largely uncharacterized. We present the Database of Burkholderia malleiSecretion Systems (DBSecSys), a compilation of manually curated and computationally predicted bacterial secretion system proteins and their host factors. Currently, DBSecSys contains comprehensive experimentally and computationally derived information about B. mallei strain ATCC 23344. The database includes 143 B. mallei proteins associated with five secretion systems, their 1,635 human and murine interacting targets, and the corresponding 2,400 host-B. mallei interactions. The database also includes information about 10 pathogenic mechanisms of action for B. mallei secretion system proteins inferred from the available literature. Additionally, DBSecSys provides details about 42 virulence attenuation experiments for 27 B. mallei secretion system proteins. Users interact with DBSecSys through a Web interface that allows for data browsing, querying, visualizing, and downloading. DBSecSys provides a comprehensive, systematically organized resource of experimental and computational data associated with B. mallei secretion systems. It provides the unique ability to study secretion systems not only through characterization of their corresponding pathogen proteins, but also through characterization of their host-interacting partners.The database is available at https://applications.bhsai.org/dbsecsys.
NASA Technical Reports Server (NTRS)
Martins, J. V.; Marshak, A.; Remer, L. A.; Rosenfeld, D.; Kaufman, Y. J.; Fernandez-Borda, R.; Koren, I.; Correia, A. L.; Zubko, V.; Artaxo, P.
2011-01-01
Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil.
Nakamura, Kosuke; Hitosugi, Shunpei; Sato, Sota; Tokoyama, Hiroaki; Yamakado, Hideo; Ohno, Koichi
2015-01-01
The thermodynamics and dynamics of a carbonaceous molecular bearing comprising a belt-persistent tubular molecule and a fullerene molecule have been investigated using density functional theory (DFT). Among ten representative methods, two DFT methods afforded an association energy that reasonably reproduced the experimental enthalpy of –12.5 kcal mol–1 at the unique curved π-interface. The dynamics of the molecular bearing, which was assembled solely with van der Waals interactions, exhibited small energy barriers with maximum values of 2–3 kcal mol–1 for the rolling motions. The dynamic motions responded sensitively to the steric environment and resulted in two distinct motions, precession and spin, which explained the unique NMR observations that were not clarified in previous experimental studies. PMID:29142679
Toroidal plasmoid generation via extreme hydrodynamic shear
Gharib, Morteza; Mendoza, Sean; Rosenfeld, Moshe; Beizai, Masoud
2017-01-01
Saint Elmo’s fire and lightning are two known forms of naturally occurring atmospheric pressure plasmas. As a technology, nonthermal plasmas are induced from artificially created electromagnetic or electrostatic fields. Here we report the observation of arguably a unique case of a naturally formed such plasma, created in air at room temperature without external electromagnetic action, by impinging a high-speed microjet of deionized water on a dielectric solid surface. We demonstrate that tribo-electrification from extreme and focused hydrodynamic shear is the driving mechanism for the generation of energetic free electrons. Air ionization results in a plasma that, unlike the general family, is topologically well defined in the form of a coherent toroidal structure. Possibly confined through its self-induced electromagnetic field, this plasmoid is shown to emit strong luminescence and discrete-frequency radio waves. Our experimental study suggests the discovery of a unique platform to support experimentation in low-temperature plasma science. PMID:29146825
Totaro, Sara; Cotogno, Giulio; Rasmussen, Kirsten; Pianella, Francesca; Roncaglia, Marco; Olsson, Heidi; Riego Sintes, Juan M; Crutzen, Hugues P
2016-11-01
The European Commission has established a Nanomaterials Repository that hosts industrially manufactured nanomaterials that are distributed world-wide for safety testing of nanomaterials. In a first instance these materials were tested in the OECD Testing Programme. They have then also been tested in several EU funded research projects. The JRC Repository of Nanomaterials has thus developed into serving the global scientific community active in the nanoEHS (regulatory) research. The unique Repository facility is a state-of-the-art installation that allows customised sub-sampling under the safest possible conditions, with traceable final sample vials distributed world-wide for research purposes. This paper describes the design of the Repository to perform a semi-automated subsampling procedure, offering high degree of flexibility and precision in the preparation of NM vials for customers, while guaranteeing the safety of the operators, and environmental protection. The JRC nanomaterials are representative for part of the world NMs market. Their wide use world-wide facilitates the generation of comparable and reliable experimental results and datasets in (regulatory) research by the scientific community, ultimately supporting the further development of the OECD regulatory test guidelines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zapf, Sina; Dressel, Martin
2017-01-01
Despite decades of intense research, the origin of high-temperature superconductivity in cuprates and iron-based compounds is still a mystery. Magnetism and superconductivity are traditionally antagonistic phenomena; nevertheless, there is basically no doubt left that unconventional superconductivity is closely linked to magnetism. But this is not the whole story; recently, also structural effects related to the so-called nematic phase gained considerable attention. In order to obtain more information about this peculiar interplay, systematic material research is one of the most important attempts, revealing from time to time unexpected effects. Europium-based iron pnictides are the latest example of such a completely paradigmatic material, as they display not only spin-density-wave and superconducting ground states, but also local Eu2+ magnetism at a similar temperature scale. Here we review recent experimental progress in determining the complex phase diagrams of europium-based iron pnictides. The conclusions drawn from the observations reach far beyond these model systems. Thus, although europium-based iron pnictides are very peculiar, they provide a unique platform to study the common interplay of structural-nematic, magnetic and electronic effects in high-temperature superconductors.
PANDORA: keyword-based analysis of protein sets by integration of annotation sources.
Kaplan, Noam; Vaaknin, Avishay; Linial, Michal
2003-10-01
Recent advances in high-throughput methods and the application of computational tools for automatic classification of proteins have made it possible to carry out large-scale proteomic analyses. Biological analysis and interpretation of sets of proteins is a time-consuming undertaking carried out manually by experts. We have developed PANDORA (Protein ANnotation Diagram ORiented Analysis), a web-based tool that provides an automatic representation of the biological knowledge associated with any set of proteins. PANDORA uses a unique approach of keyword-based graphical analysis that focuses on detecting subsets of proteins that share unique biological properties and the intersections of such sets. PANDORA currently supports SwissProt keywords, NCBI Taxonomy, InterPro entries and the hierarchical classification terms from ENZYME, SCOP and GO databases. The integrated study of several annotation sources simultaneously allows a representation of biological relations of structure, function, cellular location, taxonomy, domains and motifs. PANDORA is also integrated into the ProtoNet system, thus allowing testing thousands of automatically generated clusters. We illustrate how PANDORA enhances the biological understanding of large, non-uniform sets of proteins originating from experimental and computational sources, without the need for prior biological knowledge on individual proteins.
Dynamic stall characterization using modal analysis of phase-averaged pressure distributions
NASA Astrophysics Data System (ADS)
Harms, Tanner; Nikoueeyan, Pourya; Naughton, Jonathan
2017-11-01
Dynamic stall characterization by means of surface pressure measurements can simplify the time and cost associated with experimental investigation of unsteady airfoil aerodynamics. A unique test capability has been developed at University of Wyoming over the past few years that allows for time and cost efficient measurement of dynamic stall. A variety of rotorcraft and wind turbine airfoils have been tested under a variety of pitch oscillation conditions resulting in a range of dynamic stall behavior. Formation, development and separation of different flow structures are responsible for the complex aerodynamic loading behavior experienced during dynamic stall. These structures have unique signatures on the pressure distribution over the airfoil. This work investigates the statistical behavior of phase-averaged pressure distribution for different types of dynamic stall by means of modal analysis. The use of different modes to identify specific flow structures is being investigated. The use of these modes for different types of dynamic stall can provide a new approach for understanding and categorizing these flows. This work uses airfoil data acquired under Army contract W911W60160C-0021, DOE Grant DE-SC0001261, and a gift from BP Alternative Energy North America, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, Michel; Archer, Bill; Hendrickson, Bruce
The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computationalmore » resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.« less
Advanced Simulation & Computing FY15 Implementation Plan Volume 2, Rev. 0.5
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, Michel; Archer, Bill; Matzen, M. Keith
2014-09-16
The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities andmore » computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. As the program approaches the end of its second decade, ASC is intently focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Where possible, the program also enables the use of high-performance simulation and computing tools to address broader national security needs, such as foreign nuclear weapon assessments and counternuclear terrorism.« less
Characterization of protein folding by a Φ-value calculation with a statistical-mechanical model.
Wako, Hiroshi; Abe, Haruo
2016-01-01
The Φ-value analysis approach provides information about transition-state structures along the folding pathway of a protein by measuring the effects of an amino acid mutation on folding kinetics. Here we compared the theoretically calculated Φ values of 27 proteins with their experimentally observed Φ values; the theoretical values were calculated using a simple statistical-mechanical model of protein folding. The theoretically calculated Φ values reflected the corresponding experimentally observed Φ values with reasonable accuracy for many of the proteins, but not for all. The correlation between the theoretically calculated and experimentally observed Φ values strongly depends on whether the protein-folding mechanism assumed in the model holds true in real proteins. In other words, the correlation coefficient can be expected to illuminate the folding mechanisms of proteins, providing the answer to the question of which model more accurately describes protein folding: the framework model or the nucleation-condensation model. In addition, we tried to characterize protein folding with respect to various properties of each protein apart from the size and fold class, such as the free-energy profile, contact-order profile, and sensitivity to the parameters used in the Φ-value calculation. The results showed that any one of these properties alone was not enough to explain protein folding, although each one played a significant role in it. We have confirmed the importance of characterizing protein folding from various perspectives. Our findings have also highlighted that protein folding is highly variable and unique across different proteins, and this should be considered while pursuing a unified theory of protein folding.
Characterization of protein folding by a Φ-value calculation with a statistical-mechanical model
Wako, Hiroshi; Abe, Haruo
2016-01-01
The Φ-value analysis approach provides information about transition-state structures along the folding pathway of a protein by measuring the effects of an amino acid mutation on folding kinetics. Here we compared the theoretically calculated Φ values of 27 proteins with their experimentally observed Φ values; the theoretical values were calculated using a simple statistical-mechanical model of protein folding. The theoretically calculated Φ values reflected the corresponding experimentally observed Φ values with reasonable accuracy for many of the proteins, but not for all. The correlation between the theoretically calculated and experimentally observed Φ values strongly depends on whether the protein-folding mechanism assumed in the model holds true in real proteins. In other words, the correlation coefficient can be expected to illuminate the folding mechanisms of proteins, providing the answer to the question of which model more accurately describes protein folding: the framework model or the nucleation-condensation model. In addition, we tried to characterize protein folding with respect to various properties of each protein apart from the size and fold class, such as the free-energy profile, contact-order profile, and sensitivity to the parameters used in the Φ-value calculation. The results showed that any one of these properties alone was not enough to explain protein folding, although each one played a significant role in it. We have confirmed the importance of characterizing protein folding from various perspectives. Our findings have also highlighted that protein folding is highly variable and unique across different proteins, and this should be considered while pursuing a unified theory of protein folding. PMID:28409079
Three-dimensional microscopic deformation measurements on cellular solids.
Genovese, K
2016-07-01
The increasing interest in small-scale problems demands novel experimental protocols providing dense sets of 3D deformation data of complex shaped microstructures. Obtaining such information is particularly significant for the study of natural and engineered cellular solids for which experimental data collected at macro scale and describing the global mechanical response provide only limited information on their function/structure relationship. Cellular solids, in fact, due their superior mechanical performances to a unique arrangement of the bulk material properties (i.e. anisotropy and heterogeneity) and cell structural features (i.e. pores shape, size and distribution) at the micro- and nano-scales. To address the need for full-field experimental data down to the cell level, this paper proposes a single-camera stereo-Digital Image Correlation (DIC) system that makes use of a wedge prism in series to a telecentric lens for performing surface shape and deformation measurements on microstructures in three dimensions. Although the system possesses a limited measurement volume (FOV~2.8×4.3mm(2), error-free DOF ~1mm), large surface areas of cellular samples can be accurately covered by employing a sequential image capturing scheme followed by an optimization-based mosaicing procedure. The basic principles of the proposed method together with the results of the benchmarking of its metrological performances and error analysis are here reported and discussed in detail. Finally, the potential utility of this method is illustrated with micro-resolution three-dimensional measurements on a 3D printed honeycomb and on a block sample of a Luffa sponge under compression. Copyright © 2016 Elsevier Ltd. All rights reserved.
Revealing nonclassicality beyond Gaussian states via a single marginal distribution
Park, Jiyong; Lu, Yao; Lee, Jaehak; Shen, Yangchao; Zhang, Kuan; Zhang, Shuaining; Zubairy, Muhammad Suhail; Kim, Kihwan; Nha, Hyunchul
2017-01-01
A standard method to obtain information on a quantum state is to measure marginal distributions along many different axes in phase space, which forms a basis of quantum-state tomography. We theoretically propose and experimentally demonstrate a general framework to manifest nonclassicality by observing a single marginal distribution only, which provides a unique insight into nonclassicality and a practical applicability to various quantum systems. Our approach maps the 1D marginal distribution into a factorized 2D distribution by multiplying the measured distribution or the vacuum-state distribution along an orthogonal axis. The resulting fictitious Wigner function becomes unphysical only for a nonclassical state; thus the negativity of the corresponding density operator provides evidence of nonclassicality. Furthermore, the negativity measured this way yields a lower bound for entanglement potential—a measure of entanglement generated using a nonclassical state with a beam-splitter setting that is a prototypical model to produce continuous-variable (CV) entangled states. Our approach detects both Gaussian and non-Gaussian nonclassical states in a reliable and efficient manner. Remarkably, it works regardless of measurement axis for all non-Gaussian states in finite-dimensional Fock space of any size, also extending to infinite-dimensional states of experimental relevance for CV quantum informatics. We experimentally illustrate the power of our criterion for motional states of a trapped ion, confirming their nonclassicality in a measurement-axis–independent manner. We also address an extension of our approach combined with phase-shift operations, which leads to a stronger test of nonclassicality, that is, detection of genuine non-Gaussianity under a CV measurement. PMID:28077456
The n_TOF facility: Neutron beams for challenging future measurements at CERN
NASA Astrophysics Data System (ADS)
Chiaveri, E.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Bečvář, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Cerutti, F.; Chen, Y. H.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Göbel, K.; García, A. R.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui-Marco, J.; Meo, S. Lo; Lonsdale, S. J.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Radeck, D.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schumann, D.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Woods, P. J.; Wright, T.; Žugec, P.
2017-09-01
The CERN n_TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1), low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n_TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental program and the range of possible measurements has been expanded with the construction of a second experimental area (EAR-2), located 20 m on the vertical of the n_TOF spallation target. This upgrade, which benefits from a neutron flux 30 times higher than in EAR-1, provides a substantial extension in measurement capabilities, opening the possibility to collect data on neutron cross-section of isotopes with short half-lives or available in very small amounts. This contribution will outline the main characteristics of the n_TOF facility, with special emphasis on the new experimental area. In particular, we will discuss the innovative features of the EAR-2 neutron beam that make possible to perform very challenging measurements on short-lived radioisotopes or sub-mg samples, out of reach up to now at other neutron facilities around the world. Finally, the future perspectives of the facility will be presented.
Revealing nonclassicality beyond Gaussian states via a single marginal distribution.
Park, Jiyong; Lu, Yao; Lee, Jaehak; Shen, Yangchao; Zhang, Kuan; Zhang, Shuaining; Zubairy, Muhammad Suhail; Kim, Kihwan; Nha, Hyunchul
2017-01-31
A standard method to obtain information on a quantum state is to measure marginal distributions along many different axes in phase space, which forms a basis of quantum-state tomography. We theoretically propose and experimentally demonstrate a general framework to manifest nonclassicality by observing a single marginal distribution only, which provides a unique insight into nonclassicality and a practical applicability to various quantum systems. Our approach maps the 1D marginal distribution into a factorized 2D distribution by multiplying the measured distribution or the vacuum-state distribution along an orthogonal axis. The resulting fictitious Wigner function becomes unphysical only for a nonclassical state; thus the negativity of the corresponding density operator provides evidence of nonclassicality. Furthermore, the negativity measured this way yields a lower bound for entanglement potential-a measure of entanglement generated using a nonclassical state with a beam-splitter setting that is a prototypical model to produce continuous-variable (CV) entangled states. Our approach detects both Gaussian and non-Gaussian nonclassical states in a reliable and efficient manner. Remarkably, it works regardless of measurement axis for all non-Gaussian states in finite-dimensional Fock space of any size, also extending to infinite-dimensional states of experimental relevance for CV quantum informatics. We experimentally illustrate the power of our criterion for motional states of a trapped ion, confirming their nonclassicality in a measurement-axis-independent manner. We also address an extension of our approach combined with phase-shift operations, which leads to a stronger test of nonclassicality, that is, detection of genuine non-Gaussianity under a CV measurement.
Venko, Katja; Roy Choudhury, A; Novič, Marjana
2017-01-01
The structural and functional details of transmembrane proteins are vastly underexplored, mostly due to experimental difficulties regarding their solubility and stability. Currently, the majority of transmembrane protein structures are still unknown and this present a huge experimental and computational challenge. Nowadays, thanks to X-ray crystallography or NMR spectroscopy over 3000 structures of membrane proteins have been solved, among them only a few hundred unique ones. Due to the vast biological and pharmaceutical interest in the elucidation of the structure and the functional mechanisms of transmembrane proteins, several computational methods have been developed to overcome the experimental gap. If combined with experimental data the computational information enables rapid, low cost and successful predictions of the molecular structure of unsolved proteins. The reliability of the predictions depends on the availability and accuracy of experimental data associated with structural information. In this review, the following methods are proposed for in silico structure elucidation: sequence-dependent predictions of transmembrane regions, predictions of transmembrane helix-helix interactions, helix arrangements in membrane models, and testing their stability with molecular dynamics simulations. We also demonstrate the usage of the computational methods listed above by proposing a model for the molecular structure of the transmembrane protein bilitranslocase. Bilitranslocase is bilirubin membrane transporter, which shares similar tissue distribution and functional properties with some of the members of the Organic Anion Transporter family and is the only member classified in the Bilirubin Transporter Family. Regarding its unique properties, bilitranslocase is a potentially interesting drug target.
45 CFR 162.406 - Standard unique health identifier for health care providers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 1 2011-10-01 2011-10-01 false Standard unique health identifier for health care providers. 162.406 Section 162.406 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES ADMINISTRATIVE... no intelligence about the health care provider in the number. (b) Required and permitted uses for the...
45 CFR 162.406 - Standard unique health identifier for health care providers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 1 2010-10-01 2010-10-01 false Standard unique health identifier for health care providers. 162.406 Section 162.406 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES ADMINISTRATIVE... no intelligence about the health care provider in the number. (b) Required and permitted uses for the...
Shepherd, Robert K; Xu, Jin
2002-10-01
We have developed a novel scala tympani electrode array suitable for use in experimental animals. A unique feature of this array is its ability to chronically deliver pharmacological agents to the scala tympani. The design of the electrode array is described in detail. Experimental studies performed in guinea pigs confirm that this array can successfully deliver various drugs to the cochlea while chronically stimulating the auditory nerve.
Structural Optimization of a Force Balance Using a Computational Experiment Design
NASA Technical Reports Server (NTRS)
Parker, P. A.; DeLoach, R.
2002-01-01
This paper proposes a new approach to force balance structural optimization featuring a computational experiment design. Currently, this multi-dimensional design process requires the designer to perform a simplification by executing parameter studies on a small subset of design variables. This one-factor-at-a-time approach varies a single variable while holding all others at a constant level. Consequently, subtle interactions among the design variables, which can be exploited to achieve the design objectives, are undetected. The proposed method combines Modern Design of Experiments techniques to direct the exploration of the multi-dimensional design space, and a finite element analysis code to generate the experimental data. To efficiently search for an optimum combination of design variables and minimize the computational resources, a sequential design strategy was employed. Experimental results from the optimization of a non-traditional force balance measurement section are presented. An approach to overcome the unique problems associated with the simultaneous optimization of multiple response criteria is described. A quantitative single-point design procedure that reflects the designer's subjective impression of the relative importance of various design objectives, and a graphical multi-response optimization procedure that provides further insights into available tradeoffs among competing design objectives are illustrated. The proposed method enhances the intuition and experience of the designer by providing new perspectives on the relationships between the design variables and the competing design objectives providing a systematic foundation for advancements in structural design.
Perkins, Stephen J; Wright, David W; Zhang, Hailiang; Brookes, Emre H; Chen, Jianhan; Irving, Thomas C; Krueger, Susan; Barlow, David J; Edler, Karen J; Scott, David J; Terrill, Nicholas J; King, Stephen M; Butler, Paul D; Curtis, Joseph E
2016-12-01
The capabilities of current computer simulations provide a unique opportunity to model small-angle scattering (SAS) data at the atomistic level, and to include other structural constraints ranging from molecular and atomistic energetics to crystallography, electron microscopy and NMR. This extends the capabilities of solution scattering and provides deeper insights into the physics and chemistry of the systems studied. Realizing this potential, however, requires integrating the experimental data with a new generation of modelling software. To achieve this, the CCP-SAS collaboration (http://www.ccpsas.org/) is developing open-source, high-throughput and user-friendly software for the atomistic and coarse-grained molecular modelling of scattering data. Robust state-of-the-art molecular simulation engines and molecular dynamics and Monte Carlo force fields provide constraints to the solution structure inferred from the small-angle scattering data, which incorporates the known physical chemistry of the system. The implementation of this software suite involves a tiered approach in which GenApp provides the deployment infrastructure for running applications on both standard and high-performance computing hardware, and SASSIE provides a workflow framework into which modules can be plugged to prepare structures, carry out simulations, calculate theoretical scattering data and compare results with experimental data. GenApp produces the accessible web-based front end termed SASSIE-web , and GenApp and SASSIE also make community SAS codes available. Applications are illustrated by case studies: (i) inter-domain flexibility in two- to six-domain proteins as exemplified by HIV-1 Gag, MASP and ubiquitin; (ii) the hinge conformation in human IgG2 and IgA1 antibodies; (iii) the complex formed between a hexameric protein Hfq and mRNA; and (iv) synthetic 'bottlebrush' polymers.
Contextuality supplies the 'magic' for quantum computation.
Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph
2014-06-19
Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via 'magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple 'hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms.
Photonic surface waves on metamaterial interfaces
NASA Astrophysics Data System (ADS)
Takayama, O.; Bogdanov, A. A.; Lavrinenko, A. V.
2017-11-01
A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. Research on surface waves has been flourishing in the last few decades due to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on near-field techniques, contributing to the establishment of nanophotonics as a field of research. Up to now, a wide variety of surface waves has been investigated in numerous material and structure settings. This article reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of surface wave, we discuss the material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods.
Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite
Friederichs, Robert J.; Chappell, Helen F.; Shepherd, David V.; Best, Serena M.
2015-01-01
Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100°C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. PMID:26040597
OVERVIEW OF NEUTRON MEASUREMENTS IN JET FUSION DEVICE.
Batistoni, P; Villari, R; Obryk, B; Packer, L W; Stamatelatos, I E; Popovichev, S; Colangeli, A; Colling, B; Fonnesu, N; Loreti, S; Klix, A; Klosowski, M; Malik, K; Naish, J; Pillon, M; Vasilopoulou, T; De Felice, P; Pimpinella, M; Quintieri, L
2017-10-05
The design and operation of ITER experimental fusion reactor requires the development of neutron measurement techniques and numerical tools to derive the fusion power and the radiation field in the device and in the surrounding areas. Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case in ITER and power plant studies. The required radiation transport calculations are extremely challenging because of the large physical extent of the reactor plant, the complexity of the geometry, and the combination of deep penetration and streaming paths. This article reports the experimental activities which are carried-out at JET to validate the neutronics measurements methods and numerical tools used in ITER and power plant design. A new deuterium-tritium campaign is proposed in 2019 at JET: the unique 14 MeV neutron yields produced will be exploited as much as possible to validate measurement techniques, codes, procedures and data currently used in ITER design thus reducing the related uncertainties and the associated risks in the machine operation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Out-of-equilibrium protocol for Rényi entropies via the Jarzynski equality.
Alba, Vincenzo
2017-06-01
In recent years entanglement measures, such as the von Neumann and the Rényi entropies, provided a unique opportunity to access elusive features of quantum many-body systems. However, extracting entanglement properties analytically, experimentally, or in numerical simulations can be a formidable task. Here, by combining the replica trick and the Jarzynski equality we devise an alternative effective out-of-equilibrium protocol for measuring the equilibrium Rényi entropies. The key idea is to perform a quench in the geometry of the replicas. The Rényi entropies are obtained as the exponential average of the work performed during the quench. We illustrate an application of the method in classical Monte Carlo simulations, although it could be useful in different contexts, such as in quantum Monte Carlo, or experimentally in cold-atom systems. The method is most effective in the quasistatic regime, i.e., for a slow quench. As a benchmark, we compute the Rényi entropies in the Ising universality class in 1+1 dimensions. We find perfect agreement with the well-known conformal field theory predictions.
Provasi, Davide; Artacho, Marta Camacho; Negri, Ana; Mobarec, Juan Carlos; Filizola, Marta
2011-01-01
Extensive experimental information supports the formation of ligand-specific conformations of G protein-coupled receptors (GPCRs) as a possible molecular basis for their functional selectivity for signaling pathways. Taking advantage of the recently published inactive and active crystal structures of GPCRs, we have implemented an all-atom computational strategy that combines different adaptive biasing techniques to identify ligand-specific conformations along pre-determined activation pathways. Using the prototypic GPCR β2-adrenergic receptor as a suitable test case for validation, we show that ligands with different efficacies (either inverse agonists, neutral antagonists, or agonists) modulate the free-energy landscape of the receptor by shifting the conformational equilibrium towards active or inactive conformations depending on their elicited physiological response. Notably, we provide for the first time a quantitative description of the thermodynamics of the receptor in an explicit atomistic environment, which accounts for the receptor basal activity and the stabilization of different active-like states by differently potent agonists. Structural inspection of these metastable states reveals unique conformations of the receptor that may have been difficult to retrieve experimentally. PMID:22022248
Magnetized Collisionless Shock Studies Using High Velocity Plasmoids
NASA Astrophysics Data System (ADS)
Weber, Thomas; Intrator, T.
2013-04-01
Magnetized collisionless shocks are ubiquitous throughout the cosmos and are observed to accelerate particles to relativistic velocities, amplify magnetic fields, transport energy, and create non-thermal distributions. They exhibit transitional scale lengths much shorter than the collisional mean free path and are mediated by collective interactions rather than Coulomb collisions. The Magnetized Shock Experiment (MSX) leverages advances in Field Reversed Configuration (FRC) plasmoid formation and acceleration to produce highly supersonic and super-Alfvénic supercritical shocks with pre-existing magnetic field at perpendicular, parallel or oblique angles to the direction of propagation. Adjustable shock speed, density, and magnetic field provide unique access to a range of parameter space relevant to a variety of naturally occurring shocks. This effort examines experimentally, analytically, and numerically the physics of collisionless shock formation, structure, and kinetic effects in a laboratory setting and draw comparisons between experimental data and astronomical observations. Supported by DOE Office of Fusion Energy Sciences and National Nuclear Security Administration under LANS contract DE-AC52-06NA25369 Approved for Public Release: LA-UR-12-22886
Photoacoustic spectroscopic studies of polycyclic aromatic hydrocarbons
NASA Astrophysics Data System (ADS)
Zaidi, Zahid H.; Kumar, Pardeep; Garg, R. K.
1999-02-01
Because of their involvement in environmental pollutants, in carcinogenic activity, plastics, pharmaceuticals, synthesis of some laser dyes and presence in interstellar space etc., Polycyclic aromatic hydrocarbons (PAHs) are important. As their structure and properties can be varied systematically, they form a beautiful class of molecules for experimental and quantum chemical investigations. These molecules are being studied for last several years by using conventional spectroscopy. In recent years, Photoacoustic (PA) spectroscopy has emerged as a new non-destructive technique with unique capability and sensitivity. The PA effect is the process of generation of acoustic waves in a sample resulting from the absorption of photons. This technique not only reveals non- radiative transitions but also provides information about forbidden singlet-triplet transitions which are not observed normally by the conventional spectroscopy. The present paper deals with the spectroscopic studies of some PAH molecules by PA spectroscopy in the region 250 - 400 nm. The CNDO/S-CI method is used to calculate the electronic transitions with the optimized geometries. A good agreement is found between the experimental and calculated results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chao; Xu, Jun; Cao, Lei
The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion andmore » a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. Finally, the test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.« less
Blumenthal, Heidemarie; Leen-Feldner, Ellen W.; Knapp, Ashley A.; Bunaciu, Liviu; Zamboanga, Byron L.
2012-01-01
Given the onset of alcohol use, neurological sensitivity, and enhanced panic-relevant vulnerability, adolescence is a key period in which to study the documented linkage between alcohol and panic-related problems. The current study was designed to build upon and uniquely extend extant work via (1) utilization of well-established experimental psychopathology techniques, and (2) evaluation of unique associations between alcohol use and panic symptoms after controlling for theoretically-relevant behavioral, environmental, and individual difference variables (i.e., age, gender, negative affectivity, anxiety sensitivity, child and parent tobacco use, and parental panic disorder). Participants were 111 community-recruited adolescents ages 12–17 years (M = 15.76 years; n = 50 girls). Youth completed a battery of well-established questionnaires and a voluntary hyperventilation challenge, and parents present at the laboratory completed a structured clinical interview. Adolescent alcohol use was categorized as Non-Users, Experimenters, or Users. Panic symptoms were indexed via retrospective self-report and adolescents’ response to a biological challenge procedure (i.e., voluntary hyperventilation). After controlling for theoretically-relevant covariates, Users evidenced elevated panic-relevant symptoms and responding compared to Non-Users; Experimenters did not differ from Non-Users. Findings suggest alcohol use history is uniquely associated with panic symptomatology among youth, including “real-time” reactivity elicited by a laboratory challenge. While there is significant work yet to be done, these data advance extant work and lay the groundwork for the types of sophisticated designs that will be needed to answer the most pressing and complex questions regarding the link between alcohol use and panic symptoms among adolescents. PMID:22369219
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanbin; Shen, Guoyin
2014-12-23
Here, we review recent progress in studying silicate, carbonate, and metallic liquids of geological and geophysical importance at high pressure and temperature, using the large-volume high-pressure devices at the third-generation synchrotron facility of the Advanced Photon Source, Argonne National Laboratory. These integrated high-pressure facilities now offer a unique combination of experimental techniques that allow researchers to investigate structure, density, elasticity, viscosity, and interfacial tension of geo-liquids under high pressure, in a coordinated and systematic fashion. Moreover, we describe experimental techniques, along with scientific highlights. Future developments are also discussed.
Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings
Gan, Qiaoqiang; Gao, Yongkang; Wagner, Kyle; Vezenov, Dmitri; Ding, Yujie J.; Bartoli, Filbert J.
2011-01-01
We report the experimental observation of a trapped rainbow in adiabatically graded metallic gratings, designed to validate theoretical predictions for this unique plasmonic structure. One-dimensional graded nanogratings were fabricated and their surface dispersion properties tailored by varying the grating groove depth, whose dimensions were confirmed by atomic force microscopy. Tunable plasmonic bandgaps were observed experimentally, and direct optical measurements on graded grating structures show that light of different wavelengths in the 500–700-nm region is “trapped” at different positions along the grating, consistent with computer simulations, thus verifying the “rainbow” trapping effect. PMID:21402936
Experimental Verification of the Theory of Wind-Tunnel Boundary Interference
NASA Technical Reports Server (NTRS)
Theodorsen, Theodore; Silverstein, Abe
1935-01-01
The results of an experimental investigation on the boundary-correction factor are presented in this report. The values of the boundary-correction factor from the theory, which at the present time is virtually completed, are given in the report for all conventional types of tunnels. With the isolation of certain disturbing effects, the experimental boundary-correction factor was found to be in satisfactory agreement with the theoretically predicted values, thus verifying the soundness and sufficiency of the theoretical analysis. The establishment of a considerable velocity distortion, in the nature of a unique blocking effect, constitutes a principal result of the investigation.
77 FR 55482 - Public Workshop on Marine Technology and Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-10
... provide a unique opportunity for classification societies, industry groups, standards development... email at [email protected] . You may also contact Lieutenant Commander Ken Hettler, Office of Design and... provides a unique opportunity for classification societies, industry groups, standards development...
TROPHIC EFFECT OF LUTEINIZING HORMONE ON THE RAT LEYDIG CELL
Little is known about the factors controlling Leydig cell growth and differentiation. owever, unique correlations exist between specific testicular compartments and the testosterone-secreting capacity of the testes. elected experimental findings from three common laboratory anima...
What Can Be Learned from Nuclear Resonance Vibrational Spectroscopy: Vibrational Dynamics and Hemes
2017-01-01
Nuclear resonance vibrational spectroscopy (NRVS; also known as nuclear inelastic scattering, NIS) is a synchrotron-based method that reveals the full spectrum of vibrational dynamics for Mössbauer nuclei. Another major advantage, in addition to its completeness (no arbitrary optical selection rules), is the unique selectivity of NRVS. The basics of this recently developed technique are first introduced with descriptions of the experimental requirements and data analysis including the details of mode assignments. We discuss the use of NRVS to probe 57Fe at the center of heme and heme protein derivatives yielding the vibrational density of states for the iron. The application to derivatives with diatomic ligands (O2, NO, CO, CN–) shows the strong capabilities of identifying mode character. The availability of the complete vibrational spectrum of iron allows the identification of modes not available by other techniques. This permits the correlation of frequency with other physical properties. A significant example is the correlation we find between the Fe–Im stretch in six-coordinate Fe(XO) hemes and the trans Fe–N(Im) bond distance, not possible previously. NRVS also provides uniquely quantitative insight into the dynamics of the iron. For example, it provides a model-independent means of characterizing the strength of iron coordination. Prediction of the temperature-dependent mean-squared displacement from NRVS measurements yields a vibrational “baseline” for Fe dynamics that can be compared with results from techniques that probe longer time scales to yield quantitative insights into additional dynamical processes. PMID:28921972
Wilmoth, Jared L; Doak, Peter W; Timm, Andrea; Halsted, Michelle; Anderson, John D; Ginovart, Marta; Prats, Clara; Portell, Xavier; Retterer, Scott T; Fuentes-Cabrera, Miguel
2018-01-01
The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P . aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density and local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models.
Search for a Scalar Component in the Weak Interaction
NASA Astrophysics Data System (ADS)
Zakoucky, Dalibor; Baczyk, Pavel; Ban, Gilles; Beck, Marcus; Breitenfeldt, Martin; Couratin, Claire; Fabian, Xavier; Finlay, Paul; Flechard, Xavier; Friedag, Peter; Glück, Ferenc; Herlert, Alexander; Knecht, Andreas; Kozlov, Valentin; Lienard, Etienne; Porobic, Tomica; Soti, Gergelj; Tandecki, Michael; Vangorp, Simon; Weinheimer, Christian; Wursten, Elise; Severijns, Nathal
Weak interactions are described by the Standard Model which uses the basic assumption of a pure "V(ector)-A(xial vector)" character for the interaction. However, after more than half a century of model development and experimental testing of its fundamental ingredients, experimental limits for possible admixtures of scalar and/or tensor interactions are still as high as 7%. The WITCH project (Weak Interaction Trap for CHarged particles) at the isotope separator ISOLDE at CERN is trying to probe the structure of the weak interaction in specific low energy β-decays in order to look for possible scalar or tensor components or at least significantly improve the current experimental limits. This worldwide unique experimental setup consisting of a combination of two Penning ion traps and a retardation spectrometer allows to catch, trap and cool the radioactive nuclei provided by the ISOLDE separator, form a cooled and scattering-free radioactive source of β-decaying nuclei and let these nuclei decay at rest. The precise measurement of the shape of the energy spectrum of the recoiling nuclei, the shape of which is very sensitive to the character of the weak interaction, enables searching for a possible admixture of a scalar/tensor component in the dominant vector/axial vector mode. First online measurements with the isotope 35Ar were performed in 2011 and 2012. The current status of the experiment, the data analysis and results as well as extensive simulations will be presented and discussed.
Wilmoth, Jared L.; Doak, Peter W.; Timm, Andrea; Halsted, Michelle; Anderson, John D.; Ginovart, Marta; Prats, Clara; Portell, Xavier; Retterer, Scott T.; Fuentes-Cabrera, Miguel
2018-01-01
The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P. aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density and local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models. PMID:29467721
Building a Science of Animal Minds: Lloyd Morgan, Experimentation, and Morgan's Canon.
Fitzpatrick, Simon; Goodrich, Grant
2017-08-01
Conwy Lloyd Morgan (1852-1936) is widely regarded as the father of modern comparative psychology. Yet, Morgan initially had significant doubts about whether a genuine science of comparative psychology was even possible, only later becoming more optimistic about our ability to make reliable inferences about the mental capacities of non-human animals. There has been a fair amount of disagreement amongst scholars of Morgan's work about the nature, timing, and causes of this shift in Morgan's thinking. We argue that Morgan underwent two quite different shifts of attitude towards the proper practice of comparative psychology. The first was a qualified acceptance of the Romanesian approach to comparative psychology that he had initially criticized. The second was a shift away from Romanes' reliance on systematizing anecdotal evidence of animal intelligence towards an experimental approach, focused on studying the development of behaviour. We emphasize the role of Morgan's evolving epistemological views in bringing about the first shift - in particular, his philosophy of science. We emphasize the role of an intriguing but overlooked figure in the history of comparative psychology in explaining the second shift, T. Mann Jones, whose correspondence with Morgan provided an important catalyst for Morgan's experimental turn, particularly the special focus on development. We also shed light on the intended function of Morgan's Canon, the methodological principle for which Morgan is now mostly known. The Canon can only be properly understood by seeing it in the context of Morgan's own unique experimental vision for comparative psychology.
Gingival Mesenchymal Stem/Progenitor Cells: A Unique Tissue Engineering Gem
Fawzy El-Sayed, Karim M.; Dörfer, Christof E.
2016-01-01
The human gingiva, characterized by its outstanding scarless wound healing properties, is a unique tissue and a pivotal component of the periodontal apparatus, investing and surrounding the teeth in their sockets in the alveolar bone. In the last years gingival mesenchymal stem/progenitor cells (G-MSCs), with promising regenerative and immunomodulatory properties, have been isolated and characterized from the gingival lamina propria. These cells, in contrast to other mesenchymal stem/progenitor cell sources, are abundant, readily accessible, and easily obtainable via minimally invasive cell isolation techniques. The present review summarizes the current scientific evidence on G-MSCs' isolation, their characterization, the investigated subpopulations, the generated induced pluripotent stem cells- (iPSC-) like G-MSCs, their regenerative properties, and current approaches for G-MSCs' delivery. The review further demonstrates their immunomodulatory properties, the transplantation preconditioning attempts via multiple biomolecules to enhance their attributes, and the experimental therapeutic applications conducted to treat multiple diseases in experimental animal models in vivo. G-MSCs show remarkable tissue reparative/regenerative potential, noteworthy immunomodulatory properties, and primary experimental therapeutic applications of G-MSCs are very promising, pointing at future biologically based therapeutic techniques, being potentially superior to conventional clinical treatment modalities. PMID:27313628
Study on real-time force feedback for a master-slave interventional surgical robotic system.
Guo, Shuxiang; Wang, Yuan; Xiao, Nan; Li, Youxiang; Jiang, Yuhua
2018-04-13
In robot-assisted catheterization, haptic feedback is important, but is currently lacking. In addition, conventional interventional surgical robotic systems typically employ a master-slave architecture with an open-loop force feedback, which results in inaccurate control. We develop herein a novel real-time master-slave (RTMS) interventional surgical robotic system with a closed-loop force feedback that allows a surgeon to sense the true force during remote operation, provide adequate haptic feedback, and improve control accuracy in robot-assisted catheterization. As part of this system, we also design a unique master control handle that measures the true force felt by a surgeon, providing the basis for the closed-loop control of the entire system. We use theoretical and empirical methods to demonstrate that the proposed RTMS system provides a surgeon (using the master control handle) with a more accurate and realistic force sensation, which subsequently improves the precision of the master-slave manipulation. The experimental results show a substantial increase in the control accuracy of the force feedback and an increase in operational efficiency during surgery.
NASA Technical Reports Server (NTRS)
Sutliff, Thomas J.
1999-01-01
The International Space Station opens for business in the year 2000, and with the opening, science investigations will take advantage of the unique conditions it provides as an on-orbit laboratory for research. With initiation of scientific studies comes a need to understand the environment present during research. The Space Acceleration Measurement System-II provides researchers a consistent means to understand the vibratory conditions present during experimentation on the International Space Station. The Space Acceleration Measurement System-II, or SAMS-II, detects vibrations present while the space station is operating. SAMS-II on-orbit hardware is comprised of two basic building block elements: a centralized control unit and multiple Remote Triaxial Sensors deployed to measure the acceleration environment at the point of scientific research, generally within a research rack. Ground Operations Equipment is deployed to complete the command, control and data telemetry elements of the SAMS-II implementation. Initially, operations consist of user requirements development, measurement sensor deployment and use, and data recovery on the ground. Future system enhancements will provide additional user functionality and support more simultaneous users.
Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition
Alberti, Adriana; Poulain, Julie; Engelen, Stefan; Labadie, Karine; Romac, Sarah; Ferrera, Isabel; Albini, Guillaume; Aury, Jean-Marc; Belser, Caroline; Bertrand, Alexis; Cruaud, Corinne; Da Silva, Corinne; Dossat, Carole; Gavory, Frédérick; Gas, Shahinaz; Guy, Julie; Haquelle, Maud; Jacoby, E'krame; Jaillon, Olivier; Lemainque, Arnaud; Pelletier, Eric; Samson, Gaëlle; Wessner, Mark; Bazire, Pascal; Beluche, Odette; Bertrand, Laurie; Besnard-Gonnet, Marielle; Bordelais, Isabelle; Boutard, Magali; Dubois, Maria; Dumont, Corinne; Ettedgui, Evelyne; Fernandez, Patricia; Garcia, Espérance; Aiach, Nathalie Giordanenco; Guerin, Thomas; Hamon, Chadia; Brun, Elodie; Lebled, Sandrine; Lenoble, Patricia; Louesse, Claudine; Mahieu, Eric; Mairey, Barbara; Martins, Nathalie; Megret, Catherine; Milani, Claire; Muanga, Jacqueline; Orvain, Céline; Payen, Emilie; Perroud, Peggy; Petit, Emmanuelle; Robert, Dominique; Ronsin, Murielle; Vacherie, Benoit; Acinas, Silvia G.; Royo-Llonch, Marta; Cornejo-Castillo, Francisco M.; Logares, Ramiro; Fernández-Gómez, Beatriz; Bowler, Chris; Cochrane, Guy; Amid, Clara; Hoopen, Petra Ten; De Vargas, Colomban; Grimsley, Nigel; Desgranges, Elodie; Kandels-Lewis, Stefanie; Ogata, Hiroyuki; Poulton, Nicole; Sieracki, Michael E.; Stepanauskas, Ramunas; Sullivan, Matthew B.; Brum, Jennifer R.; Duhaime, Melissa B.; Poulos, Bonnie T.; Hurwitz, Bonnie L.; Acinas, Silvia G.; Bork, Peer; Boss, Emmanuel; Bowler, Chris; De Vargas, Colomban; Follows, Michael; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Jaillon, Olivier; Kandels-Lewis, Stefanie; Karp-Boss, Lee; Karsenti, Eric; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stéphane; Raes, Jeroen; Sardet, Christian; Sieracki, Michael E.; Speich, Sabrina; Stemmann, Lars; Sullivan, Matthew B.; Sunagawa, Shinichi; Wincker, Patrick; Pesant, Stéphane; Karsenti, Eric; Wincker, Patrick
2017-01-01
A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009–2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world’s planktonic ecosystems. PMID:28763055
NASA's Zero-g aircraft operations
NASA Technical Reports Server (NTRS)
Williams, R. K.
1988-01-01
NASA's Zero-g aircraft, operated by the Johnson Space Center, provides the unique weightless or zero-g environment of space flight for hardware development and test and astronaut training purposes. The program, which began in 1959, uses a slightly modified Boeing KC-135A aircraft, flying a parabolic trajectory, to produce weightless periods of 20 to 25 seconds. The program has supported the Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz and Shuttle programs as well as a number of unmanned space operations. Typical experiments for flight in the aircraft have included materials processing experiments, welding, fluid manipulation, cryogenics, propellant tankage, satellite deployment dynamics, planetary sciences research, crew training with weightless indoctrination, space suits, tethers, etc., and medical studies including vestibular research. The facility is available to microgravity research organizations on a cost-reimbursable basis, providing a large, hands-on test area for diagnostic and support equipment for the Principal Investigators and providing an iterative-type design approach to microgravity experiment development. The facility allows concepts to be proven and baseline experimentation to be accomplished relatively inexpensively prior to committing to the large expense of a space flight.
Fehér, Olga
2017-02-01
In this article, I argue that a comparative approach focusing on the cognitive capacities and behavioral mechanisms that underlie vocal learning in songbirds and humans can provide valuable insights into the evolutionary origins of language. The experimental approaches I discuss use abnormal song and atypical linguistic input to study the processes of individual learning, social interaction, and cultural transmission. Atypical input places increased learning and communicative pressure on learners, so exploring how they respond to this type of input provides a particularly clear picture of the biases and constraints at work during learning and use. Furthermore, simulating the cultural transmission of these unnatural communication systems in the laboratory informs us about how learning and social biases influence the structure of communication systems in the long run. Findings based on these methods suggest fundamental similarities in the basic social-cognitive mechanisms underlying vocal learning in birds and humans, and continuing research promises insights into the uniquely human mechanisms and into how human cognition and social behavior interact, and ultimately impact on the evolution of language.
Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition.
Alberti, Adriana; Poulain, Julie; Engelen, Stefan; Labadie, Karine; Romac, Sarah; Ferrera, Isabel; Albini, Guillaume; Aury, Jean-Marc; Belser, Caroline; Bertrand, Alexis; Cruaud, Corinne; Da Silva, Corinne; Dossat, Carole; Gavory, Frédérick; Gas, Shahinaz; Guy, Julie; Haquelle, Maud; Jacoby, E'krame; Jaillon, Olivier; Lemainque, Arnaud; Pelletier, Eric; Samson, Gaëlle; Wessner, Mark; Acinas, Silvia G; Royo-Llonch, Marta; Cornejo-Castillo, Francisco M; Logares, Ramiro; Fernández-Gómez, Beatriz; Bowler, Chris; Cochrane, Guy; Amid, Clara; Hoopen, Petra Ten; De Vargas, Colomban; Grimsley, Nigel; Desgranges, Elodie; Kandels-Lewis, Stefanie; Ogata, Hiroyuki; Poulton, Nicole; Sieracki, Michael E; Stepanauskas, Ramunas; Sullivan, Matthew B; Brum, Jennifer R; Duhaime, Melissa B; Poulos, Bonnie T; Hurwitz, Bonnie L; Pesant, Stéphane; Karsenti, Eric; Wincker, Patrick
2017-08-01
A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009-2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world's planktonic ecosystems.
Yuki, Ichiro; Lee, Daniel; Murayama, Yuichi; Chiang, Alexander; Vinters, Harry V; Nismmura, Ichiro; Wang, Chiachien J; Ishii, Akira; Wu, Benjamin M; Viñuela, Fernando
2007-07-01
Bioabsorbable polymeric material coils are being used in the endovascular treatment of aneurysms to achieve better thrombus organization than is possible using bare platinum coils. We used immunohistochemical and molecular biological analysis techniques in experimental aneurysms implanted with three different bioabsorbable polymer coils and platinum coils. The degradation kinetics of nine polymer candidates for further analysis were first analyzed in vitro, and three materials with different degradation rates were selected. Seventy-four aneurysms were created in 37 swine using the venous pouch technique. The aneurysms were surgically implanted with one of the materials as follows (time points = 3, 7, and 14 days): Group 1, Guglielmi detachable coils (platinum); Group 2, Polysorb (90:10 polyglycolic acid [PGA]/polylactic acid); Group 3, Maxon (PGA/trimethylene carbonate); and Group 4, poly-l-lactic acid. Histological, immunohistochemical, and cDNA microarray analyses were performed on tissue specimens. Groups 1 and 4 showed minimal inflammatory response adjacent to the coil mass. In Group 2, Polysorb elicited a unique, firm granulation tissue that accelerated intraaneurysmal thrombus organization. In Group 3 intermediate inflammatory reactions were seen. Microarray analysis with Expression Analysis Sytematic Explorer software showed functional-cluster-gene activation to be increased at Day 7, preceding the histologic manifestation of polymer-induced granulation tissue at Day 14. A profile of expression changes in cytokine-related and extracellular membrane-related genes was compiled. Degradation speed was not the only factor determining the strength of the biological response. Polysorb induced an early, unique granulation tissue that conferred greater mechanical strength to the intraaneurysmal coilthrombus complex. Enhancing the formation of this polymer-induced granulation tissue may provide a new direction for improving long-term anatomical outcomes in cases involving aneurysms embolized with detachable coils.
Desmarais, Samantha M.; Leitner, Thomas; Barron, Annelise E.
2012-01-01
DNA barcodes are short, unique ssDNA primers that “mark” individual biomolecules. To gain better understanding of biophysical parameters constraining primer-dimer formation between primers that incorporate barcode sequences, we have developed a capillary electrophoresis method that utilizes drag-tag-DNA conjugates to quantify dimerization risk between primer-barcode pairs. Results obtained with this unique free-solution conjugate electrophoresis (FSCE) approach are useful as quantitatively precise input data to parameterize computation models of dimerization risk. A set of fluorescently labeled, model primer-barcode conjugates were designed with complementary regions of differing lengths to quantify heterodimerization as a function of temperature. Primer-dimer cases comprised two 30-mer primers, one of which was covalently conjugated to a lab-made, chemically synthesized poly-N-methoxyethylglycine drag-tag, which reduced electrophoretic mobility of ssDNA to distinguish it from ds primer-dimers. The drag-tags also provided a shift in mobility for the dsDNA species, which allowed us to quantitate primer-dimer formation. In the experimental studies, pairs of oligonucleotide primer-barcodes with fully or partially complementary sequences were annealed, and then separated by free-solution conjugate CE at different temperatures, to assess effects on primer-dimer formation. When less than 30 out of 30 basepairs were bonded, dimerization was inversely correlated to temperature. Dimerization occurred when more than 15 consecutive basepairs formed, yet non-consecutive basepairs did not create stable dimers even when 20 out of 30 possible basepairs bonded. The use of free-solution electrophoresis in combination with a peptoid drag-tag and different fluorophores enabled precise separation of short DNA fragments to establish a new mobility shift assay for detection of primer-dimer formation. PMID:22331820
Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures
2018-02-19
the group V2-VI3 TI family. However, experimental efforts on Bi2Se3 have been frequently resulted in the bulk conduction being dominant over TSSs in...group V2-VI3 TI family. However, experimental efforts on Bi2Se3 have been frequently resulted in the bulk conduction being dominant over TSSs in...research interest of creating and manipulating unique quasi particles with topologically exceptional properties, such as Majorana particles, has added
Fresnel diffraction by spherical obstacles
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.
1989-01-01
Lommel functions were used to solve the Fresnel-Kirchhoff diffraction integral for the case of a spherical obstacle. Comparisons were made between Fresnel diffraction theory and Mie scattering theory. Fresnel theory is then compared to experimental data. Experiment and theory typically deviated from one another by less than 10 percent. A unique experimental setup using mercury spheres suspended in a viscous fluid significantly reduced optical noise. The major source of error was due to the Gaussian-shaped laser beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rolfe, R.M.
1976-12-01
The goal of the research was to investigate proton scattering on nuclei at intermediate energies and in particular to investigate proton scattering on helium. A theoretical investigation of the helium nucleus and the nature of the intermediate energy interaction, design and optimization of an energy-loss spectrometer facility for proton-nucleus scattering, and the unique superfluid helium target and experimental design are discussed.
Annual Historical Report - AMEDD Activities, Calendar Year 1986
1987-01-01
experimentation . A method was devised to determine the heat transfer properties of the head by use of a copper model which is unique and allows independent ...Church, VA 22041 Commander US Army Training and Doctrine Command ATTN: ATCD-S ATCD-ATMD Fort Monroe, VA 23651 Commander US Army Test and Experimentation ...4500 m). Soldiers with less than 20 torr increase test have only a 40-50% probability of acute mountain sickness. Therefore, CPT at sea level may be used
1982-05-01
and mercury drop hang time all produced changes in cyclic differential capacity curves and -..-- DD 0A" 1473 EDITION OF 1 NOV 6S IS OBSOLETE S/N 0102...scan rate, and mercury drop hang time all produced changes in cyclic differential capacity curves and cyclic staircase voltammograms which were unique...Faradaic measurements with staircase voltammetry have been enumerated elewhere (24, 25). -4- EXPERIMENTAL Experimental Design The seven variables which
Superhard BC(3) in cubic diamond structure.
Zhang, Miao; Liu, Hanyu; Li, Quan; Gao, Bo; Wang, Yanchao; Li, Hongdong; Chen, Changfeng; Ma, Yanming
2015-01-09
We solve the crystal structure of recently synthesized cubic BC(3) using an unbiased swarm structure search, which identifies a highly symmetric BC(3) phase in the cubic diamond structure (d-BC(3)) that contains a distinct B-B bonding network along the body diagonals of a large 64-atom unit cell. Simulated x-ray diffraction and Raman peaks of d-BC(3) are in excellent agreement with experimental data. Calculated stress-strain relations of d-BC(3) demonstrate its intrinsic superhard nature and reveal intriguing sequential bond-breaking modes that produce superior ductility and extended elasticity, which are unique among superhard solids. The present results establish the first boron carbide in the cubic diamond structure with remarkable properties, and these new findings also provide insights for exploring other covalent solids with complex bonding configurations.
Adaptive Load-Balancing Algorithms Using Symmetric Broadcast Networks
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Biswas, Rupak; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
In a distributed-computing environment, it is important to ensure that the processor workloads are adequately balanced. Among numerous load-balancing algorithms, a unique approach due to Dam and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three novel SBN-based load-balancing algorithms, and implement them on an SP2. A thorough experimental study with Poisson-distributed synthetic loads demonstrates that these algorithms are very effective in balancing system load while minimizing processor idle time. They also compare favorably with several other existing load-balancing techniques. Additional experiments performed with real data demonstrate that the SBN approach is effective in adaptive computational science and engineering applications where dynamic load balancing is extremely crucial.
Verification of a SEU model for advanced 1-micron CMOS structures using heavy ions
NASA Technical Reports Server (NTRS)
Cable, J. S.; Carter, J. R.; Witteles, A. A.
1986-01-01
Modeling and test results are reported for 1 micron CMOS circuits. Analytical predictions are correlated with experimental data, and sensitivities to process and design variations are discussed. Unique features involved in predicting the SEU performance of these devices are described. The results show that the critical charge for upset exhibits a strong dependence on pulse width for very fast devices, and upset predictions must factor in the pulse shape. Acceptable SEU error rates can be achieved for a 1 micron bulk CMOS process. A thin retrograde well provides complete SEU immunity for N channel hits at normal incidence angle. Source interconnect resistance can be important parameter in determining upset rates, and Cf-252 testing can be a valuable tool for cost-effective SEU testing.
NASA Astrophysics Data System (ADS)
Lane, Gerald R.
1999-07-01
To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.
NASA Astrophysics Data System (ADS)
Rolley, Matthew H.; Sweet, Tracy K. N.; Min, Gao
2017-09-01
This work demonstrates a new technique that capitalizes on the inherent flexibility of the thermoelectric module to provide a multifunctional platform, and exhibits a unique advantage only available within CPV-TE hybrid architectures. This system is the first to use the thermoelectric itself for hot-side temperature feedback to a PID control system, needing no additional thermocouple or thermistor to be attached to the cell - eliminating shading, and complex mechanical designs for mounting. Temperature measurement accuracy and thermoelectric active cooling functionality is preserved. Dynamic "per-cell" condition monitoring and protection is feasible using this technique, with direct cell-specific temperature measurement accurate to 1°C demonstrated over the entire experimental range. The extrapolation accuracy potential of the technique was also evaluated.
Karahara, Ichirou
2012-01-01
The Casparian strip is commonly observed in the endodermis of roots of vascular plants and, in some cases, also in the stems. Pea stems develop the Casparian strip, and its development has been reported to be regulated by blue light. In addition, for the purpose of photobiological studies, pea stems provide a unique experimental system for other physiological studies of the development of the Casparian strip. In this article, I have briefly summarized (1) the effects of environmental factors on the development of the Casparian strip, (2) the advantage of using pea stems for physiological studies of the development of the Casparian strip, and (3) cellular events indicated to be involved in the development of the Casparian strip, focusing on the studies using pea stems as well as other recent studies. PMID:22899074
Utilization of Space Station for industrial thermophysical property measurements
NASA Astrophysics Data System (ADS)
Overfelt, Tony; Watkins, John
1996-03-01
The International Space Station represents the largest cooperative space project in history and will be industry's only reasonable access to the low-g environment for long duration R&D. Such access will provide unique and competitive capabilities to industry if private sector entities can commercially utilize the Space Station for their industrial research programs. The metal casting industry has identified the need for accurate thermophysical properties of molten alloys as a priority need. Research over the last decade has demonstrated that experimental techniques exist to containerlessly measure critical thermophysical and related properties of molten metals for improved process design. This paper describes the ``VULCAN'' concept, a proposed commercial instrument for thermophysical properties measurements on the Space Station. Finally, several issues regarding private sector utilization of the Space Station are also discussed.
Right-handed neutrinos and T-violating, P-conserving interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Menoufi, Basem Kamal; Ramsey-Musolf, Michael J.; Seng, Chien -Yeah
We show that experimental probes of the P-conserving, T-violating triple correlation in polarized neutron or nuclear β-decay provide a unique probe of possible T-violation at the TeV scale in the presence of right-handed neutrinos. In contrast to other possible sources of semileptonic T-violation involving only left-handed neutrinos, those involving right-handed neutrinos are relatively unconstrained by present limits on the permanent electric dipole moments of the electron, neutral atoms, and the neutron. On the other hand, LHC results for pp→e+ missing transverse energy imply that an order of magnitude of improvement in D-coefficient sensitivity would be needed for discovery. Lastly, wemore » discuss the interplay with the scale of neutrino mass and naturalness considerations.« less
Right-handed neutrinos and T-violating, P-conserving interactions
El-Menoufi, Basem Kamal; Ramsey-Musolf, Michael J.; Seng, Chien -Yeah
2016-12-02
We show that experimental probes of the P-conserving, T-violating triple correlation in polarized neutron or nuclear β-decay provide a unique probe of possible T-violation at the TeV scale in the presence of right-handed neutrinos. In contrast to other possible sources of semileptonic T-violation involving only left-handed neutrinos, those involving right-handed neutrinos are relatively unconstrained by present limits on the permanent electric dipole moments of the electron, neutral atoms, and the neutron. On the other hand, LHC results for pp→e+ missing transverse energy imply that an order of magnitude of improvement in D-coefficient sensitivity would be needed for discovery. Lastly, wemore » discuss the interplay with the scale of neutrino mass and naturalness considerations.« less
High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal.
Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Haskey, S R; Kaplan, D H
2016-11-01
A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.