Science.gov

Sample records for proximity detectors

  1. Optical proximity detector

    NASA Technical Reports Server (NTRS)

    Hermann, W. A.; Johnston, A. R.

    1977-01-01

    Sensitive, relatively inexpensive instrument uses phase-detection techniques to sense presence of objects. Phase-sensitive detectors, LED, photodiode with response matched to LED output, and filtering lens allow detector to operate over narrow radiation band, giving selectivity over stray light.

  2. Semiconductor detectors with proximity signal readout

    SciTech Connect

    Asztalos, Stephen J.

    2014-01-30

    Semiconductor-based radiation detectors are routinely used for the detection, imaging, and spectroscopy of x-rays, gamma rays, and charged particles for applications in the areas of nuclear and medical physics, astrophysics, environmental remediation, nuclear nonproliferation, and homeland security. Detectors used for imaging and particle tracking are more complex in that they typically must also measure the location of the radiation interaction in addition to the deposited energy. In such detectors, the position measurement is often achieved by dividing or segmenting the electrodes into many strips or pixels and then reading out the signals from all of the electrode segments. Fine electrode segmentation is problematic for many of the standard semiconductor detector technologies. Clearly there is a need for a semiconductor-based radiation detector technology that can achieve fine position resolution while maintaining the excellent energy resolution intrinsic to semiconductor detectors, can be fabricated through simple processes, does not require complex electrical interconnections to the detector, and can reduce the number of required channels of readout electronics. Proximity electrode signal readout (PESR), in which the electrodes are not in physical contact with the detector surface, satisfies this need.

  3. Light-operated proximity detector with linear output

    DOEpatents

    Simpson, Marc L.; McNeilly, David R.

    1985-01-01

    A light-operated proximity detector is described in which reflected light intensity from a surface whose proximity to the detector is to be gauged is translated directly into a signal proportional to the distance of the detector from the surface. A phototransistor is used to sense the reflected light and is connected in a detector circuit which maintains the phototransistor in a saturated state. A negative feedback arrangement using an operational amplifier connected between the collector and emitter of the transistor provides an output at the output of the amplifier which is linearly proportional to the proximity of the surface to the detector containing the transistor. This direct proportional conversion is true even though the light intensity is varying with the proximity in proportion to the square of the inverse of the distance. The detector may be used for measuring the distance remotely from any target surface.

  4. Light-operated proximity detector with linear output

    DOEpatents

    Simpson, M.L.; McNeilly, D.R.

    1984-01-01

    A light-operated proximity detector is described in which reflected light intensity from a surface whose proximity to the detector is to be gauged is translated directly into a signal proportional to the distance of the detector from the surface. A phototransistor is used to sense the reflected light and is connected in a detector circuit which maintains the phtotransistor in a saturated state. A negative feedback arrangement using an operational amplifier connected between the collector and emitter of the transistor provides an output at the output of the amplifier which is linearly proportional to the proximity of the surface to the detector containing the transistor. This direct proportional conversion is true even though the light intensity is varying with the proximity in proportion to the square of the inverse of the distance. The detector may be used for measuring the distance remotely from any target surface.

  5. Proximity charge sensing for semiconductor detectors

    DOEpatents

    Luke, Paul N; Tindall, Craig S; Amman, Mark

    2013-10-08

    A non-contact charge sensor includes a semiconductor detector having a first surface and an opposing second surface. The detector includes a high resistivity electrode layer on the first surface and a low resistivity electrode on the high resistivity electrode layer. A portion of the low resistivity first surface electrode is deleted to expose the high resistivity electrode layer in a portion of the area. A low resistivity electrode layer is disposed on the second surface of the semiconductor detector. A voltage applied between the first surface low resistivity electrode and the second surface low resistivity electrode causes a free charge to drift toward the first or second surface according to a polarity of the free charge and the voltage. A charge sensitive preamplifier coupled to a non-contact electrode disposed at a distance from the exposed high resistivity electrode layer outputs a signal in response to movement of free charge within the detector.

  6. Object detection system using SPAD proximity detectors

    NASA Astrophysics Data System (ADS)

    Stark, Laurence; Raynor, Jeffrey M.; Henderson, Robert K.

    2011-10-01

    This paper presents an object detection system based upon the use of multiple single photon avalanche diode (SPAD) proximity sensors operating upon the time-of-flight (ToF) principle, whereby the co-ordinates of a target object in a coordinate system relative to the assembly are calculated. The system is similar to a touch screen system in form and operation except that the lack of requirement of a physical sensing surface provides a novel advantage over most existing touch screen technologies. The sensors are controlled by FPGA-based firmware and each proximity sensor in the system measures the range from the sensor to the target object. A software algorithm is implemented to calculate the x-y coordinates of the target object based on the distance measurements from at least two separate sensors and the known relative positions of these sensors. Existing proximity sensors were capable of determining the distance to an object with centimetric accuracy and were modified to obtain a wide field of view in the x-y axes with low beam angle in z in order to provide a detection area as large as possible. Design and implementation of the firmware, electronic hardware, mechanics and optics are covered in the paper. Possible future work would include characterisation with alternative designs of proximity sensors, as this is the component which determines the highest achievable accur1acy of the system.

  7. QCL-based standoff and proximal chemical detectors

    NASA Astrophysics Data System (ADS)

    Dupuis, Julia R.; Hensley, Joel; Cosofret, Bogdan R.; Konno, Daisei; Mulhall, Phillip; Schmit, Thomas; Chang, Shing; Allen, Mark; Marinelli, William J.

    2016-05-01

    The development of two longwave infrared quantum cascade laser (QCL) based surface contaminant detection platforms supporting government programs will be discussed. The detection platforms utilize reflectance spectroscopy with application to optically thick and thin materials including solid and liquid phase chemical warfare agents, toxic industrial chemicals and materials, and explosives. Operation at standoff (10s of m) and proximal (1 m) ranges will be reviewed with consideration given to the spectral signatures contained in the specular and diffusely reflected components of the signal. The platforms comprise two variants: Variant 1 employs a spectrally tunable QCL source with a broadband imaging detector, and Variant 2 employs an ensemble of broadband QCLs with a spectrally selective detector. Each variant employs a version of the Adaptive Cosine Estimator for detection and discrimination in high clutter environments. Detection limits of 5 μg/cm2 have been achieved through speckle reduction methods enabling detector noise limited performance. Design considerations for QCL-based standoff and proximal surface contaminant detectors are discussed with specific emphasis on speckle-mitigated and detector noise limited performance sufficient for accurate detection and discrimination regardless of the surface coverage morphology or underlying surface reflectivity. Prototype sensors and developmental test results will be reviewed for a range of application scenarios. Future development and transition plans for the QCL-based surface detector platforms are discussed.

  8. Distributed proximity sensor system having embedded light emitters and detectors

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan (Inventor)

    1990-01-01

    A distributed proximity sensor system is provided with multiple photosensitive devices and light emitters embedded on the surface of a robot hand or other moving member in a geometric pattern. By distributing sensors and emitters capable of detecting distances and angles to points on the surface of an object from known points in the geometric pattern, information is obtained for achieving noncontacting shape and distance perception, i.e., for automatic determination of the object's shape, direction and distance, as well as the orientation of the object relative to the robot hand or other moving member.

  9. A proximity focusing RICH detector for kaon physics at Jefferson lab hall A

    SciTech Connect

    F. Garibaldi; E. Cisbani; S. Colilli; F. Cusanno; S. Frullani; R. Fratoni; F. Giuliani; M. Gricia; M. Iodice; M. Lucentini; L. Pierangeli; F. Santavenere; G.M. Urciuoli; P. Veneroni; G. De Cataldo; R. De Leo; L. Lagamba; E. Nappi; V. Paticchio; J. LeRose; B. Kross; B. Reitz; J. Segal; C. Zorn; H. Breuer

    2003-04-01

    Important information on the LN interaction can be obtained from High Resolution Hypernuclear Spectroscopy experiments with electromagnetic probes. A challenging experiment on electroproduction of hypernuclei is scheduled for 2003 in Hall A at Jefferson Lab. One of the challenges is the high performance particle identification system needed. The signal is expected to be rare compared to the very high pion and proton backgrounds due to the small electron and kaon detection angles. The ''standard'' Hall A PID apparatus (TOF and two aerogel threshold Cherenkov detectors) does not provide sufficient suppression of the background. Simulations and calculations have shown that a RICH detector would solve the problem. A proximity focusing fluorocarbon/CsI detector similar to the ALICE RICH detector has been designed, built, tested and commissioned. The results show that the detector performs as expected.

  10. Implementation of an acoustic emission proximity detector for use in generating glass optics

    SciTech Connect

    Blaedel, K.L.; Piscotty, M.A.; Taylor, J.S.

    1996-11-11

    We are using the approach acoustic emission (AE) signal during a grinding operation to detect the proximity of the grinding wheel relative to a brittle material workpiece and are using this detection as a feed- back control signal in our CNC. The repeatability of the AE signal during the wheel approach is the key that allows AE to be used as a proximity detector and is demonstrated at LLNL to be about mm. We noted significant changes of the AE signal as process parameters are modified, but conclude that with a quick CNC calibration routine and holding the parameters constant during a given operation, the AE system can be successfully used to sense pre- contact wheel- to- workpiece separation. Additionally, the AE sensing system allows real- time monitoring during grinding to provide in- process information. The first prototype of an AE system on a commercially available generator is currently be tested at the Center for Optics Manufacturing.

  11. Measurement of magnetic susceptibility in pulsed magnetic fields using a proximity detector oscillator.

    PubMed

    Ghannadzadeh, S; Coak, M; Franke, I; Goddard, P A; Singleton, J; Manson, J L

    2011-11-01

    We present a novel susceptometer with a particularly small spatial footprint and no moving parts. The susceptometer is suitable for use in systems with limited space where magnetic measurements may not have been previously possible, such as in pressure cells and rotators, as well as in extremely high pulsed fields. The susceptometer is based on the proximity detector oscillator, which has a broad dynamic resonant frequency range and has so far been used predominantly for transport measurements. We show that for insulating samples, the resonance frequency behavior as a function of field consists of a magnetoresistive and an inductive component, originating, respectively, from the sensor coil and the sample. The response of the coil is modeled, and upon subtraction of the magnetoresistive component the dynamic magnetic susceptibility and magnetization can be extracted. We successfully measure the magnetization of the organic molecular magnets Cu(H(2)O)(5)(VOF(4))(H(2)O) and [Cu(HF(2))(pyz)(2)]BF(4) in pulsed magnetic fields and by comparing the results to that from a traditional extraction susceptometer confirm that the new system can be used to measure and observe magnetic susceptibilities and phase transitions.

  12. Proximity detector circuits: an attractive alternative to tunnel diode oscillators for contactless measurements in pulsed magnetic fields

    SciTech Connect

    Altarawneh, Moaz M; Mielke, Charles H

    2009-01-01

    A new radio frequency oscillator circuit based on a proximity detector integrated circuit is described as an alternative for the traditional tunnel diode oscillator used for pulsed magnetic field measurements at low temperatures. The new circuit has been successfully applied to measure the superconducting upper critical field in Ba{sub 0.55}K{sub 0.45}Fe{sub 2}As{sub 2} single crystfl.ls up to 60 T. The new circuit design avoids many of the problems associated with tunnel diode circuits while keeping the advantages of contact less measurements in pulsed magnets.

  13. Implementation of an acoustic emission proximity detector for use in generating glass optics

    SciTech Connect

    Piscotty, M.A.; Taylor, J.S.; Blaedel, K.L.

    1996-12-31

    The use acoustic emission (AE) sensing as a method to monitor proximity between a grinding wheel and a brittle material workpiece is being developed at Lawrence Livermore National Laboratory (LLNL) and the Center for Optics Manufacturing (COM) in Rochester, NY. Significantly reducing the amount of expensive {open_quote}air-grinding{close_quote} is one of the primary motivations behind this effort, along with lessening the chances of a crash which could damage the wheel, part and machine tool. AE sensing is well developed and routinely used in the metal working industry for {open_quote}initial contact{close_quote} sensing or tool breakage, for example, and in monitoring diamond turning and grinding processes. However, using AE sensing to switch from a rapid to a final in-feed rate at the detection of initial-contact between the grinding wheel and a brittle material workpiece, such as an optical glass, is often unacceptable during fine grinding (less than 10 {mu}m grit wheels) which produce surfaces with roughness values of 100 {Angstrom} rms or less. In the approach taken here, the authors are sensing the AE prior to contact between the workpiece and the tool. The coolant between the workpiece and the grinding wheel is used as an AE medium to transfer AE signals generated by the relative motions of the coolant, workpiece and wheel. Capitalizing on the repeatability of the AE approach signal, the authors have developed a system to detect the proximity of the grinding wheel relative to the workpiece prior to initial contact.

  14. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  15. Proximal Nephron

    PubMed Central

    Zhuo, Jia L.; Li, Xiao C.

    2013-01-01

    The kidney plays a fundamental role in maintaining body salt and fluid balance and blood pressure homeostasis through the actions of its proximal and distal tubular segments of nephrons. However, proximal tubules are well recognized to exert a more prominent role than distal counterparts. Proximal tubules are responsible for reabsorbing approximately 65% of filtered load and most, if not all, of filtered amino acids, glucose, solutes, and low molecular weight proteins. Proximal tubules also play a key role in regulating acid-base balance by reabsorbing approximately 80% of filtered bicarbonate. The purpose of this review article is to provide a comprehensive overview of new insights and perspectives into current understanding of proximal tubules of nephrons, with an emphasis on the ultrastructure, molecular biology, cellular and integrative physiology, and the underlying signaling transduction mechanisms. The review is divided into three closely related sections. The first section focuses on the classification of nephrons and recent perspectives on the potential role of nephron numbers in human health and diseases. The second section reviews recent research on the structural and biochemical basis of proximal tubular function. The final section provides a comprehensive overview of new insights and perspectives in the physiological regulation of proximal tubular transport by vasoactive hormones. In the latter section, attention is particularly paid to new insights and perspectives learnt from recent cloning of transporters, development of transgenic animals with knockout or knockin of a particular gene of interest, and mapping of signaling pathways using microarrays and/or physiological proteomic approaches. PMID:23897681

  16. Analysis of the topological properties of the proximal femur on a regional scale: evaluation of multi-detector CT-scans for the assessment of biomechanical strength using local Minkowski functionals in 3D

    NASA Astrophysics Data System (ADS)

    Boehm, H. F.; Link, T. M.; Monetti, R. A.; Kuhn, V.; Eckstein, F.; Raeth, C. W.; Reiser, M.

    2006-03-01

    In our recent studies on the analysis of bone texture in the context of Osteoporosis, we could already demonstrate the great potential of the topological evaluation of bone architecture based on the Minkowski Functionals (MF) in 2D and 3D for the prediction of the mechanical strength of cubic bone specimens depicted by high resolution MRI. Other than before, we now assess the mechanical characteristics of whole hip bone specimens imaged by multi-detector computed tomography. Due to the specific properties of the imaging modality and the bone tissue in the proximal femur, this requires to introduce a new analysis method. The internal architecture of the hip is functionally highly specialized to withstand the complex pattern of external and internal forces associated with human gait. Since the direction, connectivity and distribution of the trabeculae changes considerably within narrow spatial limits it seems most reasonable to evaluate the femoral bone structure on a local scale. The Minkowski functionals are a set of morphological descriptors for the topological characterization of binarized, multi-dimensional, convex objects with respect to shape, structure, and the connectivity of their components. The MF are usually used as global descriptors and may react very sensitively to minor structural variations which presents a major limitation in a number of applications. The objective of this work is to assess the mechanical competence of whole hip bone specimens using parameters based on the MF. We introduce an algorithm that considers the local topological aspects of the bone architecture of the proximal femur allowing to identify regions within the bone that contribute more to the overall mechanical strength than others.

  17. Proximity fuze

    DOEpatents

    Harrison, Thomas R.

    1989-08-22

    A proximity fuze system includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation cirtcuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal depending upon the light pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance form the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation.

  18. Proximity fuze

    DOEpatents

    Harrison, T.R.

    1987-07-10

    A proximity fuze system includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation circuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal depending upon the light pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance from the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation. 3 figs.

  19. Proximity fuze

    SciTech Connect

    Harrison, T.R.

    1989-08-22

    A proximity fuze system is described. It includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation circuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal depending upon the light pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance from the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation.

  20. Micropower RF material proximity sensor

    DOEpatents

    McEwan, T.E.

    1998-11-10

    A level detector or proximity detector for materials capable of sensing through plastic container walls or encapsulating materials is disclosed. Thus, it can be used in corrosive environments, as well as in a wide variety of applications. An antenna has a characteristic impedance which depends on the materials in proximity to the antenna. An RF oscillator, which includes the antenna and is based on a single transistor in a Colpitt`s configuration, produces an oscillating signal. A detector is coupled to the oscillator which signals changes in the oscillating signal caused by changes in the materials in proximity to the antenna. The oscillator is turned on and off at a pulse repetition frequency with a low duty cycle to conserve power. The antenna consists of a straight monopole about one-quarter wavelength long at the nominal frequency of the oscillator. The antenna may be horizontally disposed on a container and very accurately detects the fill level within the container as the material inside the container reaches the level of the antenna. 5 figs.

  1. Micropower RF material proximity sensor

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    A level detector or proximity detector for materials capable of sensing through plastic container walls or encapsulating materials is of the sensor. Thus, it can be used in corrosive environments, as well as in a wide variety of applications. An antenna has a characteristic impedance which depends on the materials in proximity to the antenna. An RF oscillator, which includes the antenna and is based on a single transistor in a Colpitt's configuration, produces an oscillating signal. A detector is coupled to the oscillator which signals changes in the oscillating signal caused by changes in the materials in proximity to the antenna. The oscillator is turned on and off at a pulse repetition frequency with a low duty cycle to conserve power. The antenna consists of a straight monopole about one-quarter wavelength long at the nominal frequency of the oscillator. The antenna may be horizontally disposed on a container and very accurately detects the fill level within the container as the material inside the container reaches the level of the antenna.

  2. Proximal Tibial Bone Graft

    MedlinePlus

    ... All Site Content AOFAS / FootCareMD / Treatments Proximal Tibial Bone Graft Page Content What is a bone graft? Bone grafts may be needed for various ... the proximal tibia. What is a proximal tibial bone graft? Proximal tibial bone graft (PTBG) is a ...

  3. Proximal humerus fractures.

    PubMed

    Price, Matthew C; Horn, Pamela L; Latshaw, James C

    2013-01-01

    Proximal humerus fractures are among the most common fractures associated with osteoporosis. With an aging population, incidence of these fractures will only increase. The proximal humerus not only forms the lateral portion of the shoulder articulation but also has significant associations with musculoskeletal and neurovascular structures. As a result, fractures of the proximal humerus can significantly impact not only the function of the shoulder joint, but the health and function of the entire upper extremity as well. Understanding of these fractures, the management options, and associated nursing care, can help reduce morbidity rate and improve functional outcomes.

  4. Capacitive proximity sensor

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A proximity sensor based on a closed field circuit is disclosed. The circuit comprises a ring oscillator using a symmetrical array of plates that creates an oscillating displacement current. The displacement current varies as a function of the proximity of objects to the plate array. Preferably the plates are in the form of a group of three pair of symmetric plates having a common center, arranged in a hexagonal pattern with opposing plates linked as a pair. The sensor produces logic level pulses suitable for interfacing with a computer or process controller. The proximity sensor can be incorporated into a load cell, a differential pressure gauge, or a device for measuring the consistency of a characteristic of a material where a variation in the consistency causes the dielectric constant of the material to change. 14 figs.

  5. Capacitive proximity sensor

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A proximity sensor based on a closed field circuit. The circuit comprises a ring oscillator using a symmetrical array of plates that creates an oscillating displacement current. The displacement current varies as a function of the proximity of objects to the plate array. Preferably the plates are in the form of a group of three pair of symmetric plates having a common center, arranged in a hexagonal pattern with opposing plates linked as a pair. The sensor produces logic level pulses suitable for interfacing with a computer or process controller. The proximity sensor can be incorporated into a load cell, a differential pressure gauge, or a device for measuring the consistency of a characteristic of a material where a variation in the consistency causes the dielectric constant of the material to change.

  6. Proximal Hamstring Repair Strength

    PubMed Central

    Harvey, Margaret Ann; Singh, Hardeep; Obopilwe, Elifho; Charette, Ryan; Miller, Suzanne

    2015-01-01

    Background: Proximal hamstring repair for complete ruptures has become a common treatment. There is no consensus in the literature about postoperative rehabilitation protocols following proximal hamstring repair. Some protocols describe bracing to prevent hip flexion or knee extension while others describe no immobilization. There are currently no biomechanical studies evaluating proximal hamstring repairs; nor are there any studies evaluating the effect of different hip flexion angles on these repairs. Hypothesis: As hip flexion increases from 0° to 90°, there will be a greater gap with cyclical loading. Study Design: Controlled laboratory study. Methods: Proximal hamstring insertions were detached from the ischial tuberosity in 24 cadavers and were repaired with 3 single-loaded suture anchors in the hamstring footprint with a Krakow suture technique. Cyclic loading from 10 to 125 N at 1 Hz was then performed for 0°, 45°, and 90° of hip flexion for 1500 cycles. Gap formation, stiffness, yield load, ultimate load, and energy to ultimate load were compared between groups using paired t tests. Results: Cyclic loading demonstrated the least amount of gap formation (P < .05) at 0° of hip flexion (2.39 mm) and most at 90° of hip flexion (4.19 mm). There was no significant difference in ultimate load between hip flexion angles (326, 309, and 338 N at 0°, 45°, and 90°, respectively). The most common mode of failure occurred with knot/suture failure (n = 17). Conclusion: Increasing hip flexion from 0° to 90° increases the displacement across proximal hamstring repairs. Postoperative bracing that limits hip flexion should be considered. Clinical Relevance: Repetitive motion involving hip flexion after a proximal hamstring repair may cause compromise of the repair. PMID:26665049

  7. Biological detector and method

    DOEpatents

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  8. Biological detector and method

    DOEpatents

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2014-04-15

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  9. Biological detector and method

    SciTech Connect

    Sillerud, Laurel; Alam, Todd M.; McDowell, Andrew F.

    2015-11-24

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  10. Nanowire-based detector

    DOEpatents

    Berggren, Karl K; Hu, Xiaolong; Masciarelli, Daniele

    2014-06-24

    Systems, articles, and methods are provided related to nanowire-based detectors, which can be used for light detection in, for example, single-photon detectors. In one aspect, a variety of detectors are provided, for example one including an electrically superconductive nanowire or nanowires constructed and arranged to interact with photons to produce a detectable signal. In another aspect, fabrication methods are provided, including techniques to precisely reproduce patterns in subsequently formed layers of material using a relatively small number of fabrication steps. By precisely reproducing patterns in multiple material layers, one can form electrically insulating materials and electrically conductive materials in shapes such that incoming photons are redirected toward a nearby electrically superconductive materials (e.g., electrically superconductive nanowire(s)). For example, one or more resonance structures (e.g., comprising an electrically insulating material), which can trap electromagnetic radiation within its boundaries, can be positioned proximate the nanowire(s). The resonance structure can include, at its boundaries, electrically conductive material positioned proximate the electrically superconductive nanowire such that light that would otherwise be transmitted through the sensor is redirected toward the nanowire(s) and detected. In addition, electrically conductive material can be positioned proximate the electrically superconductive nanowire (e.g. at the aperture of the resonant structure), such that light is directed by scattering from this structure into the nanowire.

  11. Traumatic proximal tibiofibular dislocation.

    PubMed

    Burgos, J; Alvarez-Montero, R; Gonzalez-Herranz, P; Rapariz, J M

    1997-01-01

    Proximal tibiofibular dislocation is an exceptional lesion. Rarer still is its presentation in childhood. We describe the clinical case of a 6-year-old boy, the victim of a road accident. He had a tibiofibular dislocation associated with a metaphyseal fracture of the tibia.

  12. Steerable Capacitive Proximity Sensor

    NASA Technical Reports Server (NTRS)

    Jenstrom, Del T.; Mcconnell, Robert L.

    1994-01-01

    Steerable capacitive proximity sensor of "capaciflector" type based partly on sensing units described in GSC-13377 and GSC-13475. Position of maximum sensitivity adjusted without moving sensor. Voltage of each driven shield adjusted separately to concentrate sensing electric field more toward one side or other.

  13. Proximate Analysis of Coal

    ERIC Educational Resources Information Center

    Donahue, Craig J.; Rais, Elizabeth A.

    2009-01-01

    This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter,…

  14. Neutron detectors comprising boron powder

    DOEpatents

    Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

    2013-05-21

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  15. Subacute diabetic proximal neuropathy

    NASA Technical Reports Server (NTRS)

    Pascoe, M. K.; Low, P. A.; Windebank, A. J.; Litchy, W. J.

    1997-01-01

    OBJECTIVE: To evaluate the clinical, electrophysiologic, autonomic, and neuropathologic characteristics and the natural history of subacute diabetic proximal neuropathy and its response to immunotherapy. MATERIAL AND METHODS: For the 12-year period from 1983 to 1995, we conducted a retrospective review of medical records of Mayo Clinic patients with diabetes who had subacute onset and progression of proximal weakness. The responses of treated versus untreated patients were compared statistically. RESULTS: During the designated study period, 44 patients with subacute diabetic proximal neuropathy were encountered. Most patients were middle-aged or elderly, and no sex preponderance was noted. The proximal muscle weakness often was associated with reduced or absent lower extremity reflexes. Associated weight loss was a common finding. Frequently, patients had some evidence of demyelination on nerve conduction studies, but it invariably was accompanied by concomitant axonal degeneration. The cerebrospinal fluid protein concentration was usually increased. Diffuse and substantial autonomic failure was generally present. In most cases, a sural nerve biopsy specimen suggested demyelination, although evidence of an inflammatory infiltrate was less common. Of 12 patients who received treatment (with prednisone, intravenous immune globulin, or plasma exchange), 9 had improvement of their conditions, but 17 of 29 untreated patients (59%) with follow-up also eventually had improvement, albeit at a much slower rate. Improvement was usually incomplete. CONCLUSION: We suggest that the entity of subacute diabetic proximal neuropathy is an extensive and severe variant of bilateral lumbosacral radiculoplexopathy, with some features suggestive of an immune-mediated cause. It differs from chronic inflammatory demyelinating polyradiculoneuropathy in that most cases have a more restricted distribution and seem to be monophasic and self-limiting. The efficacy of immunotherapy is unproved

  16. Range gated strip proximity sensor

    DOEpatents

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  17. Range gated strip proximity sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  18. Proximity Networks and Epidemics

    NASA Astrophysics Data System (ADS)

    Guclu, Hasan; Toroczkai, Zoltán

    2007-03-01

    We presented the basis of a framework to account for the dynamics of contacts in epidemic processes, through the notion of dynamic proximity graphs. By varying the integration time-parameter T, which is the period of infectivity one can give a simple account for some of the differences in the observed contact networks for different diseases, such as smallpox, or AIDS. Our simplistic model also seems to shed some light on the shape of the degree distribution of the measured people-people contact network from the EPISIM data. We certainly do not claim that the simplistic graph integration model above is a good model for dynamic contact graphs. It only contains the essential ingredients for such processes to produce a qualitative agreement with some observations. We expect that further refinements and extensions to this picture, in particular deriving the link-probabilities in the dynamic proximity graph from more realistic contact dynamics should improve the agreement between models and data.

  19. Echosonography with proximity sensors

    NASA Astrophysics Data System (ADS)

    Thaisiam, W.; Laithong, T.; Meekhun, S.; Chaiwathyothin, N.; Thanlarp, P.; Danworaphong, S.

    2013-03-01

    We propose the use of a commercial ultrasonic proximity sensor kit for profiling an altitude-varying surface by employing echosonography. The proximity sensor kit, two identical transducers together with its dedicated operating circuit, is used as a profiler for the construction of an image. Ultrasonic pulses are emitted from one of the transducers and received by the other. The time duration between the pulses allows us to determine the traveling distance of each pulse. In the experiment, the circuit is used with the addition of two copper wires for directing the outgoing and incoming signals to an oscilloscope. The time of flight of ultrasonic pulses can thus be determined. Square grids of 5 × 5 cm2 are made from fishing lines, forming pixels in the image. The grids are designed to hold the detection unit in place, about 30 cm above a flat surface. The surface to be imaged is constructed to be height varying and placed on the flat surface underneath the grids. Our result shows that an image of the profiled surface can be created by varying the location of the detection unit along the grid. We also investigate the deviation in relation to the time of flight of the ultrasonic pulse. Such an experiment should be valuable for conveying the concept of ultrasonic imaging to physical and medical science undergraduate students. Due to its simplicity, the setup could be made in any undergraduate laboratory relatively inexpensively and it requires no complex parts. The results illustrate the concept of echosonography.

  20. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  1. Prototype study of a Proximity Focusing RICH for the AMS experiment

    NASA Astrophysics Data System (ADS)

    Thuillier, T.; Ohlsson-Malek, F.; Ballon, J.; Barancourt, D.; Barbier, G.; Barrau, A.; Berger, J.; Buénerd, M.; Gallin-Martel, L.; Meillon, B.; Menchaca-Rocha, A.; Pouxe, J.; Ren, Z.; Simon, J.; Stassi, P.

    2000-03-01

    A study prototype of a Proximity Focusing Ring Imaging Cherenkov detector (PFRICH) has been developed and built at the ISN Grenoble. The detector has been tested with cosmic-ray particles, 12C beams and fragmentation ions at different energies at GSI-Darmstadt.

  2. Some Properties of Fuzzy Soft Proximity Spaces

    PubMed Central

    Demir, İzzettin; Özbakır, Oya Bedre

    2015-01-01

    We study the fuzzy soft proximity spaces in Katsaras's sense. First, we show how a fuzzy soft topology is derived from a fuzzy soft proximity. Also, we define the notion of fuzzy soft δ-neighborhood in the fuzzy soft proximity space which offers an alternative approach to the study of fuzzy soft proximity spaces. Later, we obtain the initial fuzzy soft proximity determined by a family of fuzzy soft proximities. Finally, we investigate relationship between fuzzy soft proximities and proximities. PMID:25793224

  3. Some properties of fuzzy soft proximity spaces.

    PubMed

    Demir, İzzettin; Özbakır, Oya Bedre

    2015-01-01

    We study the fuzzy soft proximity spaces in Katsaras's sense. First, we show how a fuzzy soft topology is derived from a fuzzy soft proximity. Also, we define the notion of fuzzy soft δ-neighborhood in the fuzzy soft proximity space which offers an alternative approach to the study of fuzzy soft proximity spaces. Later, we obtain the initial fuzzy soft proximity determined by a family of fuzzy soft proximities. Finally, we investigate relationship between fuzzy soft proximities and proximities.

  4. Liquid level detector

    DOEpatents

    Tshishiku, Eugene M.

    2011-08-09

    A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.

  5. Smoke Detector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo, Fire Chief Jay Stout of Safety Harbor, Florida, is explaining to young Richard Davis the workings of the Honeywell smoke and fire detector which probably saved Richard's life and that of his teen-age brother. Alerted by the detector's warning, the pair were able to escape their burning home. The detector in the Davis home was one of 1,500 installed in Safety Harbor residences in a cooperative program conducted by the city and Honeywell Inc.

  6. Improved Portable Ultrasonic Leak Detectors

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Moerk, John S.; Haskell, William D.; Cox, Robert B.; Polk, Jimmy D.; Strobel, James P.; Luaces, Frank

    1995-01-01

    Improved portable ultrasonic leak detector features three interchangeable ultrasonic-transducer modules, each suited for operation in unique noncontact or contact mode. One module equipped with ultrasound-collecting horn for use in scanning to detect leaks from distance; horn provides directional sensitivity pattern with sensitivity multiplied by factor of about 6 in forward direction. Another module similar, does not include horn; this module used for scanning close to suspected leak, where proximity of leak more than offsets loss of sensitivity occasioned by lack of horn. Third module designed to be pressed against leaking vessel; includes rugged stainless-steel shell. Improved detectors perform significantly better, smaller, more rugged, and greater sensitivity.

  7. Upgrade of the proximity focusing RICH at Jlab

    SciTech Connect

    Cisbani, Evaristo; Colilli, Stefano; Cusanno, Francesco; Fratoni, Rolando; Frullani, Salvatore; Garibaldi, Franco; Giuliani, Fausto; Gricia, Massimo; Lucentini, Maurizio; Santavenere, Fabio; Urciuoli, Guido; Iodice, Mauro; Argentieri, A.; de Cataldo, Giacinto; De Leo, Raffaele; Lagamba, Luigi; Marrone, Stefano; Nappi, E.; Camsonne, Alexandre; Kross, Brian; Michaels, Robert; Reitz, Bodo; Segal, John; Wojtsekhowski, Bogdan; Zorn, Carl; Monno, E.; Breuer, Herbert

    2009-09-01

    The Hall A RICH at Jefferson Lab is undergoing an upgrade to adapt to the higher momentum kinematics of the neutron spin structure Transversity experiments planned to run in 2008. The JLab RICH is a proximity focusing detector using liquid C6F14 as Cherenkov radiator, a thin layer of CsI as photon converter, evaporated on segmented pad panels of a proportional chamber. The original RICH had a superior hadron identification up to 2 GeV/c with pion/kaon rejection at the level of 1:1000 at ~ similar90% intrinsic efficiency. The upgrade will extend this performance above 2.4 GeV/c by means of a larger photon detector (a multiwire-multipad proportional chamber) and a longer proximity gap which will improve the photon detection geometrical efficiency and the angular resolution, respectively.

  8. Metal Detectors.

    ERIC Educational Resources Information Center

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  9. Hirayama Disease with Proximal Involvement

    PubMed Central

    2016-01-01

    Hirayama disease is a slowly progressing benign motor neuron disease that affects the distal upper limb. A 29-year-old man visited the hospital with a 1-year history of weakened left proximal upper limb. He was diagnosed with Hirayama disease 9 years ago, while there was no further progression of the muscle weakness afterward. Atrophy and weakness was detected in proximal upper limb muscles. Magnetic resonance imaging and somatosensory evoked potentials were normal. Needle electromyography showed abnormal findings in proximal upper limb muscles. Our patient had Hirayama disease involving the proximal portion through secondary progression. Clinical manifestation and accurate electromyography may be useful for diagnosis. Rare cases with progression patterns as described here are helpful and have clinical meaning for clinicians. PMID:27550499

  10. Tools for proximal soil sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proximal soil sensing (i.e. near-surface geophysical methods) are used to study soil phenomena across spatial scales. Geophysical methods exploit contrasts in physical properties (dielectric permittivity, apparent electrical conductivity or resistivity, magnetic susceptibility) to indirectly measur...

  11. Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  12. MS Detectors

    SciTech Connect

    Koppenaal, David W.; Barinaga, Charles J.; Denton, M Bonner B.; Sperline, Roger P.; Hieftje, Gary M.; Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.

    2005-11-01

    Good eyesight is often taken for granted, a situation that everyone appreciates once vision begins to fade with age. New eyeglasses or contact lenses are traditional ways to improve vision, but recent new technology, i.e. LASIK laser eye surgery, provides a new and exciting means for marked vision restoration and improvement. In mass spectrometry, detectors are the 'eyes' of the MS instrument. These 'eyes' have also been taken for granted. New detectors and new technologies are likewise needed to correct, improve, and extend ion detection and hence, our 'chemical vision'. The purpose of this report is to review and assess current MS detector technology and to provide a glimpse towards future detector technologies. It is hoped that the report will also serve to motivate interest, prompt ideas, and inspire new visions for ion detection research.

  13. Photon detectors

    SciTech Connect

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  14. Cubesat Proximity Operations Demonstration (CPOD)

    NASA Technical Reports Server (NTRS)

    Villa, Marco; Martinez, Andres; Petro, Andrew

    2015-01-01

    The CubeSat Proximity Operations Demonstration (CPOD) project will demonstrate rendezvous, proximity operations and docking (RPOD) using two 3-unit (3U) CubeSats. Each CubeSat is a satellite with the dimensions 4 inches x 4 inches x 13 inches (10 centimeters x 10 centimeters x 33 centimeters) and weighing approximately 11 pounds (5 kilograms). This flight demonstration will validate and characterize many new miniature low-power proximity operations technologies applicable to future missions. This mission will advance the state of the art in nanosatellite attitude determination,navigation and control systems, in addition to demonstrating relative navigation capabilities.The two CPOD satellites are scheduled to be launched together to low-Earth orbit no earlier than Dec. 1, 2015.

  15. Solid-state detector and optical system for microchip analyzers

    DOEpatents

    Mathies, Richard A.; Kamei, Toshihiro; Scherer, James R.; Street, Robert A.

    2005-03-15

    A miniaturized optical excitation and detector system is described for detecting fluorescently labeled analytes in electrophoretic microchips and microarrays. The system uses miniature integrated components, light collection, optical fluorescence filtering, and an amorphous a-Si:H detector for detection. The collection of light is accomplished with proximity gathering and/or a micro-lens system. Optical filtering is accomplished by integrated optical filters. Detection is accomplished utilizing a-Si:H detectors.

  16. Intruder Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The shadowy prowler is attempting a break-in, unaware that his presence has already been detected and reported by the device in the lower left corner of the photo. It is part of a three-element ntruder Detecti on System developed by NASA's Ames Research Center from technology acquired in the Apollo lunar exploration program. Apollo astronauts left behind on the moon small portable seismic (shock) detectors to record subsurface vibrations and transmit to Earth data on the moon's density and thickness. A similar seismic detector is the key component of the lntruder Detection System. Encased in a stainless steel tube, the detector is implanted in the ground outside the facility being protected-home, bank, industrial or other facilities. The vibration-sensing detector picks up the footstep of anyone within a preset range. The detector is connected by cable to the transmitter, which relays the warning to a portable radio receiver. The radio alerts plant guards or home occupants by emitting an audible tone burst for each footstep.

  17. Pyroelectric detectors

    NASA Technical Reports Server (NTRS)

    Haller, Eugene E.; Beeman, Jeffrey; Hansen, William L.; Hubbard, G. Scott; Mcmurray, Robert E., Jr.

    1990-01-01

    The multi-agency, long-term Global Change programs, and specifically NASA's Earth Observing system, will require some new and advanced photon detector technology which must be specifically tailored for long-term stability, broad spectral range, cooling constraints, and other parameters. Whereas MCT and GaAs alloy based photovoltaic detectors and detector arrays reach most impressive results to wavelengths as long as 12 microns when cooled to below 70 K, other materials, such as ferroelectrics and pyroelectrics, appear to offer special opportunities beyond 12 microns and above 70 K. These materials have found very broad use in a wide variety of room temperature applications. Little is known about these classes of materials at sub-room temperatures and no photon detector results have been reported. From the limited information available, researchers conclude that the room temperature values of D asterisk greater than or equal to 10(exp 9) cm Hz(exp 1/2)/W may be improved by one to two orders of magnitude upon cooling to temperatures around 70 K. Improvements of up to one order of magnitude appear feasible for temperatures achievable by passive cooling. The flat detector response over a wavelength range reaching from the visible to beyond 50 microns, which is an intrinsic advantage of bolometric devices, makes for easy calibration. The fact that these materials have been developed for reduced temperature applications makes ferro- and pyroelectric materials most attractive candidates for serious exploration.

  18. MAMA Detector

    NASA Technical Reports Server (NTRS)

    Bowyer, Stuart

    1998-01-01

    Work carried out under this grant led to fundamental discoveries and over one hundred publications in the scientific literature. Fundamental developments in instrumentation were made including all the instrumentation on the EUVE satellite, the invention of a whole new type of grazing instrument spectrometer and the development of fundamentally new photon counting detectors including the Wedge and Strip used on EUVE and many other missions and the Time Delay detector used on OREFUS and FUSE. The Wedge and Strip and Time Delay detectors were developed under this grant for less than two million dollars and have been used in numerous missions most recently for the FUSE mission. In addition, a fundamentally new type of diffuse spectrometer has been developed under this grant which has been used in instrumentation on the MMSAT spacecraft and the Lewis spacecraft. Plans are underway to use this instrumentation on several other missions as well.

  19. PHASE DETECTOR

    DOEpatents

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  20. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  1. Microwave detector

    SciTech Connect

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1986-12-02

    A detector is described for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations, the detector comprising: a B-dot loop linking the magnetic field of the microwave pulse; a biased ferrite, that produces a magnetization field flux that links the B-dot loop. The ferrite is positioned within the B-dot loop so that the magnetic field of the microwave pulse interacts with the ferrite and thereby participates in the formation of the magnetization field flux; and high-frequency insensitive means for measuring electric voltage or current induced in the B-dot loop.

  2. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  3. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  4. Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Sadrozinski, Hartmut

    2014-03-01

    The use of silicon detectors has experienced an exponential growth in accelerator and space based experiments, similar to trends in the semiconductor industry as a whole, usually paraphrased as ``Moore's Law.'' Some of the essentials for this phenomenon will be presented, together with examples of the exciting science results which it enabled. With the establishment of a ``semiconductor culture'' in universities and laboratories around the world, an increased understanding of the sensors results in thinner, faster, more radiation-resistant detectors, spawning an amazing wealth of new technologies and applications, which will be the main subject of the presentation.

  5. Driven shielding capacitive proximity sensor

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor); McConnell, Robert L. (Inventor)

    2000-01-01

    A capacitive proximity sensing element, backed by a reflector driven at the same voltage as and in phase with the sensor, is used to reflect the field lines away from a grounded robot arm towards an intruding object, thus dramatically increasing the sensor's range and sensitivity.

  6. Proximity Sensors Make Robot Dexterous

    NASA Technical Reports Server (NTRS)

    Hess, Cliff; Li, Larry C. H.

    1990-01-01

    Control system enables robot hand to grasp objects of varied shapes. Key features of system: reflective proximity sensors furnishing data on position, orientation, and distance of object and software protocol controlling sequence of operations in approaching and grasping objects. Reflected-beam sensing concept applied to simple opposed-jaw industrial grippers as well as to dexterous robot hands.

  7. Vertex detectors

    SciTech Connect

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10{sup {minus}13} s, among them the {tau} lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation.

  8. Proximity and Anti-proximity effects in nanowires

    NASA Astrophysics Data System (ADS)

    Chan, Moses

    Near a superconductor/normal-metal interface, the leakage of Cooper pairs extends superconducting behavior into the metal. The spatial range of this proximity effect in a normal metal can be as long as 1 µm. However, when a ferromagnet is placed in contact with a superconductor, the Cooper pairs from the superconductor are not expected to survive beyond at most a few nanometers into the ferromagnet. Surprisingly we find when a cobalt nanowire as long as 600 nm is sandwiched between superconducting electrodes, it attains zero resistance at low temperature. For even longer wires, the transition to incomplete superconductivity via this (long range) proximity effect is foreshadowed by a large resistance peak (1). On the other hand when Zn nanowires of 40 nm diameter are contacted by superconducting electrodes, their superconductivity is unexpectedly suppressed (2). Worked supported by Penn State MRSEC.

  9. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  10. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  11. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  12. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  13. Proximate and polyphenolic characterization of cranberry pomace

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The proximate composition and identification and quantification of polyphenolic compounds in dried cranberry pomace were determined. Proximate analysis was conducted based on AOAC methods for moisture, protein, fat, and ash. Total carbohydrates were determined by the difference method. Polyphenolic ...

  14. Active Targets For Capacitive Proximity Sensors

    NASA Technical Reports Server (NTRS)

    Jenstrom, Del T.; Mcconnell, Robert L.

    1994-01-01

    Lightweight, low-power active targets devised for use with improved capacitive proximity sensors described in "Capacitive Proximity Sensor Has Longer Range" (GSC-13377), and "Capacitive Proximity Sensors With Additional Driven Shields" (GSC-13475). Active targets are short-distance electrostatic beacons; they generate known alternating electro-static fields used for alignment and/or to measure distances.

  15. The HTV Proximity Communication System

    NASA Astrophysics Data System (ADS)

    Harada, Motoyuki; Takahashi, Tetsuo; Tanaka, Tetsuo

    2002-01-01

    National Space Development Agency of Japan (NASDA) is developing the H-II Transfer Vehicle (HTV) as an unmanned logistic support vehicle for the International Space Station (ISS). The HTV, which is launched by the H-IIA rocket, transports both pressurized and un-pressurized cargoes to the ISS, reloads disposal items from the ISS and performs destructive reentry over ocean area. NASDA plans the first flight of HTV in 2005 for demonstration. The HTV will contribute the ISS assembly and logistic re-supply operations with international commonality. For unmanned vehicle operation, communication link is critical with commanding and control, especially in proximity region to the ISS. As for the HTV operation, NASDA is developing dedicated communication system installed on the Japanese Experiment Module (JEM) of the ISS, which is called the Proximity Communication System (PROX). The HTV receives commands and transmits telemetry data through the PROX in its proximity operation to the ISS. To achieve this, the PROX can communicate with the HTV on its nominal trajectory within 23km of the ISS. Especially within 3km of the ISS, the PROX has capability to perform omni-directional communication to the HTV. The PROX also has GPS receiver and send GPS data to the HTV to support the HTV navigation for relative GPS navigation used in "far" range (500m away from the ISS). In addition to the above fundamental functions, the PROX has a capability of range and range-rate measurement between the ISS and the HTV by the pseudo noise (PN) code epoch and the Doppler shift frequency. This provides a reference data independent of "main" navigation methods (rendezvous sensor navigation or GPS navigation) of the HTV. The PROX also assists the ISS crew with its commanding device, called the Hardware Command Panel (HCP), to issue time-dependent safety-related critical commands for HTV berthing/un-berthing operation. When a failure occurs somewhere on "communication path" from the PROX Base Band

  16. Proximal Biceps in Overhead Athletes.

    PubMed

    Chalmers, Peter N; Verma, Nikhil N

    2016-01-01

    The proximal long head of the biceps tendon and its attachment at the superior glenoid tubercle and labrum are subject to a spectrum of disorders in overhead athletes. Biceps disorders are commonly characterized by intermittent anterior or deep-seated shoulder pain exacerbated by activity. Diagnosis is reached via various physical examination maneuvers; MRI can be uncertain. Nonsteroidal anti-inflammatory medications, targeted ultrasound-guided corticosteroid injections, and supervised physical therapy are the mainstays of nonoperative treatment. Operative treatment, which remains controversial, provides reliable pain relief, restoration of function for activities of daily living, and low complication rates, but return to play can be unpredictable.

  17. Protein Neighbors and Proximity Proteomics.

    PubMed

    Rees, Johanna S; Li, Xue-Wen; Perrett, Sarah; Lilley, Kathryn S; Jackson, Antony P

    2015-11-01

    Within cells, proteins can co-assemble into functionally integrated and spatially restricted multicomponent complexes. Often, the affinities between individual proteins are relatively weak, and proteins within such clusters may interact only indirectly with many of their other protein neighbors. This makes proteomic characterization difficult using methods such as immunoprecipitation or cross-linking. Recently, several groups have described the use of enzyme-catalyzed proximity labeling reagents that covalently tag the neighbors of a targeted protein with a small molecule such as fluorescein or biotin. The modified proteins can then be isolated by standard pulldown methods and identified by mass spectrometry. Here we will describe the techniques as well as their similarities and differences. We discuss their applications both to study protein assemblies and to provide a new way for characterizing organelle proteomes. We stress the importance of proteomic quantitation and independent target validation in such experiments. Furthermore, we suggest that there are biophysical and cell-biological principles that dictate the appropriateness of enzyme-catalyzed proximity labeling methods to address particular biological questions of interest.

  18. Fibrosis: ultimate and proximate causes

    PubMed Central

    Thannickal, Victor J.; Zhou, Yong; Gaggar, Amit; Duncan, Steven R.

    2014-01-01

    Fibrotic disorders account for an increasing burden of disease-associated morbidity and mortality worldwide. Although numerous risk factors have been recognized, the etiologies of many of these clinical syndromes have not been identified, and they are often termed idiopathic or cryptogenic. Here, we provide an evolutionary perspective on fibrosis aimed at elucidating its etiopathogenesis. By asking the ultimate question of “why” this process evolved in multicellular organisms, we hope to uncover proximate explanations for “how” it causes disease in humans. We posit that physiological fibrosis-like reactions evolved as an essential process in host defense against pathogens and in normal wound healing. Based on this premise, we reason that pathological fibrosis is related to one or more of the following: unidentified infectious or noninfectious antigens, autoimmunity, impaired regenerative responses, and the antagonistically pleiotropic action of genes involved in wound healing or development. The importance of genetic susceptibility, epigenetics, aging, and the modern-day environment are highlighted. Consideration of both ultimate and proximate causation goes beyond philosophical cogitations, as it will better inform pathobiological mechanisms of disease and aid in the prevention and treatment of fibrotic diseases. PMID:25365073

  19. Ash Aggregates in Proximal Settings

    NASA Astrophysics Data System (ADS)

    Porritt, L. A.; Russell, K.

    2012-12-01

    Ash aggregates are thought to have formed within and been deposited by the eruption column and plume and dilute density currents and their associated ash clouds. Moist, turbulent ash clouds are considered critical to ash aggregate formation by facilitating both collision and adhesion of particles. Consequently, they are most commonly found in distal deposits. Proximal deposits containing ash aggregates are less commonly observed but do occur. Here we describe two occurrences of vent proximal ash aggregate-rich deposits; the first within a kimberlite pipe where coated ash pellets and accretionary lapilli are found within the intra-vent sequence; and the second in a glaciovolcanic setting where cored pellets (armoured lapilli) occur within <1 km of the vent. The deposits within the A418 pipe, Diavik Diamond Mine, Canada, are the residual deposits within the conduit and vent of the volcano and are characterised by an abundance of ash aggregates. Coated ash pellets are dominant but are followed in abundance by ash pellets, accretionary lapilli and rare cored pellets. The coated ash pellets typically range from 1 - 5 mm in diameter and have core to rim ratios of approximately 10:1. The formation and preservation of these aggregates elucidates the style and nature of the explosive phase of kimberlite eruption at A418 (and other pipes?). First, these pyroclasts dictate the intensity of the kimberlite eruption; it must be energetic enough to cause intense fragmentation of the kimberlite to produce a substantial volume of very fine ash (<62 μm). Secondly, the ash aggregates indicate the involvement of moisture coupled with the presence of dilute expanded eruption clouds. The structure and distribution of these deposits throughout the kimberlite conduit demand that aggregation and deposition operate entirely within the confines of the vent; this indicates that aggregation is a rapid process. Ash aggregates within glaciovolcanic sequences are also rarely documented. The

  20. Oscillator detector

    SciTech Connect

    Potter, B.M.

    1980-05-13

    An alien liquid detector employs a monitoring element and an oscillatory electronic circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. The output wave form, eg., frequency of oscillation or wave shape, of the oscillatory circuit depends upon the temperaturedependent electrical characteristic of the monitoring element. A predetermined change in the output waveform allows water to be discriminated from another liquid, eg., oil. Features of the invention employing two thermistors in two oscillatory circuits include positioning one thermistor for contact with water and the other thermistor above the oil-water interface to detect a layer of oil if present. Unique oscillatory circuit arrangements are shown that achieve effective thermistor action with an economy of parts and energizing power. These include an operational amplifier employed in an astable multivibrator circuit, a discrete transistor-powered tank circuit, and use of an integrated circuit chip.

  1. Deformed proximity potential for heavy ion reactions

    SciTech Connect

    Baltz, A.J.

    1989-09-01

    The proximity potential is discussed for the inelastic scattering of a spherical nucleus on a deformed nucleus or the mutual interaction of two deformed nuclei. It is shown that the proximity potential is, in general, geometrically more correct than the usual centerline prescription used in inelastic scattering analyses. For the cases where the proximity potential is inadequate a folding model approach is advocated. Techniques to facilitate the coupled channels analysis are presented. 11 refs., 6 figs.

  2. Proximal Priority Laser Therapy: PPLT

    NASA Astrophysics Data System (ADS)

    Ohshiro, Toshio

    2004-09-01

    The author has, in the past, classified treatment methods for pain geometrically as point, line, two-dimensional, three-dimensional treatment and has used these over the years. However as a practitioner of western medicine, the author originally treated pain only directed at the painful site, and encountered cases where local treatment did not suffice. The author proved with SPECT and the Rand Phantom that treating the neck which is the midpoint of the brain, the center of the nervous system and the heart, the center of circulation, increased cerebral blood flow and also that laser emitted to neck will reach the spinal chord no matter from where on the neck the laser is emitted. From such research and 25 years of clinical experience, the author has created an anatomy based, systemic treatment method called the Proximal Priority Laser Therapy (PPLT) where not only the cerebral cortex, spinal chord and peripheral nerves are treated but also the tracts of blood vessels and lymph ducts are treated as well. Treatment method and cases are presented herein.

  3. Grouping by proximity in haptic contour detection.

    PubMed

    Overvliet, Krista E; Krampe, Ralf Th; Wagemans, Johan

    2013-01-01

    We investigated the applicability of the Gestalt principle of perceptual grouping by proximity in the haptic modality. To do so, we investigated the influence of element proximity on haptic contour detection. In the course of four sessions ten participants performed a haptic contour detection task in which they freely explored a haptic random dot display that contained a contour in 50% of the trials. A contour was defined by a higher density of elements (raised dots), relative to the background surface. Proximity of the contour elements as well as the average proximity of background elements was systematically varied. We hypothesized that if proximity of contour elements influences haptic contour detection, detection will be more likely when contour elements are in closer proximity. This should be irrespective of the ratio with the proximity of the background elements. Results showed indeed that the closer the contour elements were, the higher the detection rates. Moreover, this was the case independent of the contour/background ratio. We conclude that the Gestalt law of proximity applies to haptic contour detection.

  4. Sugar proximity and human grip strength.

    PubMed

    Quintanar, A F; Hill, T V

    1988-12-01

    In a double-blind experiment with 90 undergraduate students the hypothesis was tested that proximity to sugar reduces human grip strength. An earlier study indicated that sugar proximity does indeed significantly reduce human grip strength. When additional controls were added to this design to reduce random sampling error, the hypothesis was not supported.

  5. Grouping by Proximity in Haptic Contour Detection

    PubMed Central

    Overvliet, Krista E.; Krampe, Ralf Th.; Wagemans, Johan

    2013-01-01

    We investigated the applicability of the Gestalt principle of perceptual grouping by proximity in the haptic modality. To do so, we investigated the influence of element proximity on haptic contour detection. In the course of four sessions ten participants performed a haptic contour detection task in which they freely explored a haptic random dot display that contained a contour in 50% of the trials. A contour was defined by a higher density of elements (raised dots), relative to the background surface. Proximity of the contour elements as well as the average proximity of background elements was systematically varied. We hypothesized that if proximity of contour elements influences haptic contour detection, detection will be more likely when contour elements are in closer proximity. This should be irrespective of the ratio with the proximity of the background elements. Results showed indeed that the closer the contour elements were, the higher the detection rates. Moreover, this was the case independent of the contour/background ratio. We conclude that the Gestalt law of proximity applies to haptic contour detection. PMID:23762364

  6. Proximal Participation: A Pathway into Work

    ERIC Educational Resources Information Center

    Chan, Selena

    2013-01-01

    In a longitudinal case study of apprentices, the term proximal participation was coined to describe the entry process of young people, with unclear career destinations, into the trade of baking. This article unravels the significance of proximal participation in the decision-making processes of young people who enter a trade through initial…

  7. Spiral silicon drift detectors

    SciTech Connect

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs.

  8. Scintillator-fiber charged-particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector has been developed using a bundle of square cross-section plastic scintillator fiber optics, proximity focused onto an image intensified Charge Injection Device (CID) camera. Detector to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei have been exposed and images of their tracks are obtained. This paper presents details of the detector technique, properties of the tracks obtained, and range measurements of 15 MeV protons stopping in the fiber bundle.

  9. Advanced UV Detectors and Detector Arrays

    NASA Technical Reports Server (NTRS)

    Pankove, Jacques I.; Torvik, John

    1998-01-01

    Gallium Nitride (GaN) with its wide energy bandgap of 3.4 eV holds excellent promise for solar blind UV detectors. We have successfully designed, fabricated and tested GaN p-i-n detectors and detector arrays. The detectors have a peak responsivity of 0.14A/W at 363 nm (3.42 eV) at room temperature. This corresponds to an internal quantum efficiency of 56%. The responsivity decreases by several orders of magnitude to 0.008 A/W at 400 nm (3.10 eV) giving the excellent visible rejection ratio needed for solar-blind applications.

  10. GADRAS Detector Response Function.

    SciTech Connect

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  11. Promoting proximal formative assessment with relational discourse

    NASA Astrophysics Data System (ADS)

    Scherr, Rachel E.; Close, Hunter G.; McKagan, Sarah B.

    2012-02-01

    The practice of proximal formative assessment - the continual, responsive attention to students' developing understanding as it is expressed in real time - depends on students' sharing their ideas with instructors and on teachers' attending to them. Rogerian psychology presents an account of the conditions under which proximal formative assessment may be promoted or inhibited: (1) Normal classroom conditions, characterized by evaluation and attention to learning targets, may present threats to students' sense of their own competence and value, causing them to conceal their ideas and reducing the potential for proximal formative assessment. (2) In contrast, discourse patterns characterized by positive anticipation and attention to learner ideas increase the potential for proximal formative assessment and promote self-directed learning. We present an analysis methodology based on these principles and demonstrate its utility for understanding episodes of university physics instruction.

  12. A Brief Index for Proximity Searching

    NASA Astrophysics Data System (ADS)

    Téllez, Eric Sadit; Chávez, Edgar; Camarena-Ibarrola, Antonio

    Many pattern recognition tasks can be modeled as proximity searching. Here the common task is to quickly find all the elements close to a given query without sequentially scanning a very large database.

  13. Polarization proximity effect in isolator crystal pairs.

    PubMed

    Linzon, Y; Ferrera, M; Razzari, L; Pignolet, A; Morandotti, R

    2008-12-01

    We experimentally study the polarization dynamics (orientation and ellipticity) of near-infrared light transmitted through magneto-optical yttrium iron garnet isolator crystal pairs using a modified balanced detection scheme. When the pair separation is in the submillimeter range, we observed a proximity effect in which the saturation field is reduced by up to 20%. One-dimensional calculations suggest that the proximity effect originates from magnetostatic interactions between the dipole moments of the isolator crystals.

  14. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, E.G.; Winefordner, J.D.; Jurgensen, A.R.

    1983-11-08

    A liquid-phase chromatography detector comprises a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focusing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof. 5 figs.

  15. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, Edward G.; Winefordner, James D.; Jurgensen, Arthur R.

    1983-01-01

    A liquid-phase chromatography detector comprising a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focussing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof.

  16. Proximity sensor system development. CRADA final report

    SciTech Connect

    Haley, D.C.; Pigoski, T.M.

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors.

  17. Proximity operations considerations affecting spacecraft design

    NASA Technical Reports Server (NTRS)

    Staas, Steven K.

    1991-01-01

    Experience from several recent spacecraft development programs, such as Space Station Freedom (SSF) and the Orbital Maneuvering Vehicle (OMV) has shown the need for factoring proximity operations considerations into the vehicle design process. Proximity operations, those orbital maneuvers and procedures which involve operation of two or more spacecraft at ranges of less than one nautical mile, are essential to the construction, servicing, and operation of complex spacecraft. Typical proximity operations considerations which drive spacecraft design may be broken into two broad categories; flight profile characteristics and concerns, and use of various spacecraft systems during proximity operations. Proximity operations flight profile concerns include the following: (1) relative approach/separation line; (2) relative orientation of the vehicles; (3) relative translational and rotational rates; (4) vehicle interaction, in the form of thruster plume impingement, mating or demating operations, or uncontrolled contact/collision; and (5) active vehicle piloting. Spacecraft systems used during proximity operations include the following: (1) sensors, such as radar, laser ranging devices, or optical ranging systems; (2) effector hardware, such as thrusters; (3) flight control software; and (4) mating hardware, needed for docking or berthing operations. A discussion of how these factors affect vehicle design follows, addressing both active and passive/cooperative vehicles.

  18. Tin Can Radiation Detector.

    ERIC Educational Resources Information Center

    Crull, John L.

    1986-01-01

    Provides instructions for making tin can radiation detectors from empty aluminum cans, aluminum foil, clear plastic, copper wire, silica gel, and fine, unwaxed dental floss put together with tape or glue. Also provides suggestions for activities using the detectors. (JN)

  19. Thermal kinetic inductance detector

    DOEpatents

    Cecil, Thomas; Gades, Lisa; Miceli, Antonio; Quaranta, Orlando

    2016-12-20

    A microcalorimeter for radiation detection that uses superconducting kinetic inductance resonators as the thermometers. The detector is frequency-multiplexed which enables detector systems with a large number of pixels.

  20. LGB neutron detector

    NASA Astrophysics Data System (ADS)

    Quist, Nicole

    2012-10-01

    The double pulse signature of the Gadolinium Lithium Borate Cerium doped plastic detector suggests its effectiveness for analyzing neutrons while providing gamma ray insensitivity. To better understand this detector, a californium gamma/neutron time of flight facility was constructed in our lab. Reported here are efforts to understand the properties and applications of the LGB detector with regards to neutron spectroscopy.

  1. Randomized SUSAN edge detector

    NASA Astrophysics Data System (ADS)

    Qu, Zhi-Guo; Wang, Ping; Gao, Ying-Hui; Wang, Peng

    2011-11-01

    A speed up technique for the SUSAN edge detector based on random sampling is proposed. Instead of sliding the mask pixel by pixel on an image as the SUSAN edge detector does, the proposed scheme places the mask randomly on pixels to find edges in the image; we hereby name it randomized SUSAN edge detector (R-SUSAN). Specifically, the R-SUSAN edge detector adopts three approaches in the framework of random sampling to accelerate a SUSAN edge detector: procedure integration of response computation and nonmaxima suppression, reduction of unnecessary processing for obvious nonedge pixels, and early termination. Experimental results demonstrate the effectiveness of the proposed method.

  2. Infrared SWAP detectors: pushing the limits

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Taalat, R.; Brunner, A.; Rubaldo, L.; Augey, T.; Kerlain, A.; Péré-Laperne, N.; Manissadjian, A.; Gravrand, O.; Castelein, P.; Destéfanis, G.

    2015-06-01

    The growing demand for compact and low consumption infrared cooled detectors is driven by different products segments. Hand Held Thermal Imagers, UAV, small gimbals are some of them. End users are requiring devices easy to use with fast cool down time, excellent portability, low acoustic noise with no trade-offs in reliability and performance. These requirements are pushing the technology developments toward constant innovations on detectors, coolers, read out circuits and proximity electronic boards. In this paper we are discussing the different figures of merit and highlighting the challenges for the different components. An update on the developments of HOT technology for most advanced pixel pitch will be presented. Very compact products are driving the developments for innovative coolers and cryogenic solutions. A low power compact architecture is a must for electronic boards to optimize the overall system power consumption. Finally a look to the future requirements for further shrink will be addressed.

  3. High-energy detector

    DOEpatents

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  4. Evaluation and Management of Proximal Humerus Fractures

    PubMed Central

    Khmelnitskaya, Ekaterina; Lamont, Lauren E.; Taylor, Samuel A.; Lorich, Dean G.; Dines, David M.; Dines, Joshua S.

    2012-01-01

    Proximal humerus fractures are common injuries, especially among older osteoporotic women. Restoration of function requires a thorough understanding of the neurovascular, musculotendinous, and bony anatomy. This paper addresses the relevant anatomy and highlights various management options, including indication for arthroplasty. In the vast majority of cases, proximal humerus fractures may be treated nonoperatively. In the case of displaced fractures, when surgical intervention may be pursued, numerous constructs have been investigated. Of these, the proximal humerus locking plate is the most widely used. Arthroplasty is generally reserved for comminuted 4-part fractures, head-split fractures, or fractures with significant underlying arthritic changes. Reverse total shoulder arthroplasty is reserved for patients with a deficient rotator cuff, or highly comminuted tuberosities. PMID:23316376

  5. Two-Dimensional Optical Proximity Effects

    NASA Astrophysics Data System (ADS)

    Flanner, Philip D.; Subramanian, Shankar; Neureuther, Andrew R.

    1986-08-01

    In projection printing the proximity effects between adjacent two-dimensional features such as concentric elbows can be the limiting factor in designing layout rules. An aerial image simulation code based on the imaging algorithms in SAMPLE has been developed and used to investigate these proximity effects. The program accepts arbitrary polygonal shapes constructed of rectangular and triangular patches. The image is calculated using Hopkins transmission cross coefficient formulation and uses rapid integral evaluation techniques. The cpu time for this FORTRAN F77 program depends on the size of the mask and the partial coherence factor as 0.25[(1 + σ) 2A(NA/λ)2]2 seconds on a DEC VAX 11/780 using double precision, where A is the mask area, σ the coherence factor, NA the numerical aperture and λ the wavelength. The output intensity can be displayed with graphics tools such as UNIGRAFIX or cross-sectioned for input to SAMPLE development simulation along critical paths. Proximity effects in critical regions between features such as nested elbows, contacts near contacts and lines, and lines near large pads are studied. For small contacts studies show that a contact hole can be placed as close as 0.5λ/NA microns to another contact hole. For nested elbows the critical effect is the variation in intensity in the straight regions just adjacent to the corner. This undesirable variation is primarily due to the intrafeature intensity interactions and is not greatly influenced by the proximity of another nested elbow. For general feature shapes the proximity effects are reduced by increasing the partial coherence factor to 0.5 or higher but at the cost of reducing contrast and peak intensity. For contact masks a partial coherence of 0.3 is recommended for higher edge slope and peak intensities. Proximity effects of small defects are also illustrated.

  6. Strategy for photostable proximity bioassays using lanthanides

    PubMed Central

    Haushalter, Jeanne P.; Faris, Gregory W.

    2011-01-01

    We report initial findings for research aimed at creating photostable lanthanide chelate reporters for proximity assays. These reporters take advantage of the nanometer scale distance dependence of fluorescence enhancement for molecules in the vicinity of noble metal nanoparticles and also capitalize on some unique properties of lanthanide chelates. This approach promises to lead to proximity assays that do not suffer from photobleaching and offer very high on/off enhancement ratios. Results for lanthanide chelates on silver island films and in colloidal suspensions are reported. Enhancement factors range from 1 to 2 orders of magnitude, with larger enhancements for strongly quenched lanthanides. PMID:17356638

  7. Neutrino Detectors: Challenges and Opportunities

    SciTech Connect

    Soler, F. J. P.

    2011-10-06

    This paper covers possible detector options suitable at future neutrino facilities, such as Neutrino Factories, Super Beams and Beta Beams. The Magnetised Iron Neutrino Detector (MIND), which is the baseline detector at a Neutrino Factory, will be described and a new analysis which improves the efficiency of this detector at low energies will be shown. Other detectors covered include the Totally Active Scintillating Detectors (TASD), particularly relevant for a low energy Neutrino Factory, emulsion detectors for tau detection, liquid argon detectors and megaton scale water Cherenkov detectors. Finally the requirements of near detectors for long-baseline neutrino experiments will be demonstrated.

  8. [Proximity and breastfeeding at the maternity hospital].

    PubMed

    Fradin-Charrier, Anne-Claire

    2015-01-01

    The establishment of breastfeeding, as well as its duration, are facilitated through the proximity of the mother with her new baby. However, in maternity hospitals, breastfeeding mothers very often leave their baby in the nursery at night time. A study carried out in 2014 in several maternity hospitals put forward suggestions and highlighted areas to improve in everyday practice.

  9. Vortices in normal part of proximity system

    DOE PAGES

    Kogan, V. G.

    2015-05-26

    It is shown that the order parameter Δ induced in the normal part of superconductor-normal-superconductor proximity system is modulated in the magnetic field differently from vortices in bulk superconductors. Whereas Δ turns zero at vortex centers, the magnetic structure of these vortices differs from that of Abrikosov's.

  10. Current status of proximal gastric vagotomy.

    PubMed Central

    Schirmer, B D

    1989-01-01

    Proximal gastric vagotomy is nearing its twentieth year in clinical use as an operation for peptic ulcer disease. No other acid-reducing operation has undergone as much scrutiny or study. At this time, the evidence of such studies and long-term follow-up strongly supports the use of proximal gastric vagotomy as the treatment of choice for chronic duodenal ulcer in patients who have failed medical therapy. Its application in treating the complications of peptic ulcer disease, which recently have come to represent an increasingly greater percentage of all operations done for peptic ulcer disease, is well-tested. However, initial series suggest that it should probably occupy a prominent role in treating some of these complications, particularly in selected patients, in the future. The operation has the well-documented ability to reduce gastric acid production, not inhibit gastric bicarbonate production, and also minimally inhibit gastric motility. The combination of these physiologic results after proximal gastric vagotomy, along with preservation of the normal antropyloroduodenal mechanism of gastrointestinal control, serve to allow patients with proximal gastric vagotomy the improved benefits of significantly fewer severe gastrointestinal side effects than are seen after other operations for peptic ulcer disease. PMID:2644897

  11. Encoding Direction when Interpreting Proximal Terms

    ERIC Educational Resources Information Center

    Ashley, Aaron; Carlson, Laura A.

    2007-01-01

    The location of an object is often described by spatially relating it to a known landmark. The spatial terms used in such descriptions can provide various types of information. For example, projective terms such as "above" indicate direction but not distance, whereas proximal terms such as "near" indicate distance but not direction. Previous…

  12. Laparoscopic Proximal Gastrectomy With Gastric Tube Reconstruction

    PubMed Central

    Shiraishi, Norio; Toujigamori, Manabu; Shiroshita, Hidefumi; Etoh, Tsuyoshi; Inomata, Masafumi

    2016-01-01

    Background and Objectives: There is no standardized method of reconstruction in laparoscopic proximal gastrectomy (LPG). We present a novel technique of reconstruction with a long, narrow gastric tube in LPG for early gastric cancer (EGC). Methods: During the laparoscopic procedure, the upper part of the stomach is fully mobilized with perigastric and suprapancreatic lymphadenectomy, and then the abdominal esophagus is transected. After a minilaparotomy is created, the entire stomach is pulled outside. A long, narrow gastric tube (20 cm long, 3 cm wide) is created with a linear stapler. The proximal part of the gastric tube is formed into a cobra head shape for esophagogastric tube anastomosis, which is then performed with a 45-mm linear stapler under laparoscopic view. The end of the esophagus is fixed on the gastric tube to prevent postoperative esophageal reflux. Results: Thirteen patients with early proximal gastric cancer underwent the procedure. The mean operative time was 283 min, and median blood loss was 63 ml. There were no conversions to open surgery, and no intraoperative complications. Conclusion: This new technique of reconstruction after LPG is simple and feasible. The procedure has the potential of becoming a standard reconstruction technique after LPG for proximal EGC. PMID:27547027

  13. Goal-Proximity Decision-Making

    ERIC Educational Resources Information Center

    Veksler, Vladislav D.; Gray, Wayne D.; Schoelles, Michael J.

    2013-01-01

    Reinforcement learning (RL) models of decision-making cannot account for human decisions in the absence of prior reward or punishment. We propose a mechanism for choosing among available options based on goal-option association strengths, where association strengths between objects represent previously experienced object proximity. The proposed…

  14. Proximity correction for electron beam lithography

    NASA Astrophysics Data System (ADS)

    Marrian, Christie R.; Chang, Steven; Peckerar, Martin C.

    1996-09-01

    As the critical dimensions required in mask making and direct write by electron beam lithography become ever smaller, correction for proximity effects becomes increasingly important. Furthermore, the problem is beset by the fact that only a positive energy dose can be applied with an electron beam. We discuss techniques such as chopping and dose shifting, which have been proposed to meet the positivity requirement. An alternative approach is to treat proximity correction as an optimization problem. Two such methods, local area dose correction and optimization using a regularizer proportional to the informational entropy of the solution, are compared. A notable feature of the regularized proximity correction is the ability to correct for forward scattering by the generation of a 'firewall' set back from the edge of a feature. As the forward scattering width increases, the firewall is set back farther from the feature edge. The regularized optimization algorithm is computationally time consuming using conventional techniques. However, the algorithm lends itself to a microelectronics integrated circuit coprocessor implementation, which could perform the optimization faster than even the fastest work stations. Scaling the circuit to larger number of pixels is best approached with a hybrid serial/parallel digital architecture that would correct for proximity effects over 108 pixels in about 1 h. This time can be reduced by simply adding additional coprocessors.

  15. Proximity correction for e-beam lithography

    NASA Astrophysics Data System (ADS)

    Marrian, Christie R.; Chang, Steven; Peckerar, Martin C.

    1995-12-01

    As the critical dimensions required for masks and e-beam direct write become ever smaller, the correction of proximity effects becomes more necessary. Furthermore, the problem is beset by the fact that only a positive energy dose can be applied with the e-beam. We discuss here approaches such as chopping and dose shifting which have been proposed to meet the positivity requirement. An alternative approach is to treat proximity correction as an optimization problem. Two such methods, local area dose correction and optimization using a regularizer proportional to the informational entropy of the solution, are compared. A notable feature of the regularized proximity correction is the ability to correct for forward scattering by the generation of a 'firewall' set back from the edge of a feature. As the forward scattering width increases, the firewall is set back further from the feature edge. The regularized optimization algorithm is computationally time consuming using conventional techniques. However, the algorithm lends itself to a microelectronics integrated circuit coprocessor implementation which could perform the optimization much faster than even the fastest work stations. Scaling the circuit to larger number of pixels is best approached with a hybrid serial/parallel digital architecture which would correct for proximity effects over 108 pixels about one hour. This time can be reduced by simply adding additional coprocessors.

  16. BATSE spectroscopy detector calibration

    NASA Technical Reports Server (NTRS)

    Band, D.; Ford, L.; Matteson, J.; Lestrade, J. P.; Teegarden, B.; Schaefer, B.; Cline, T.; Briggs, M.; Paciesas, W.; Pendleton, G.

    1992-01-01

    We describe the channel-to-energy calibration of the Spectroscopy Detectors of the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (GRO). These detectors consist of NaI(TI) crystals viewed by photomultiplier tubes whose output in turn is measured by a pulse height analyzer. The calibration of these detectors has been complicated by frequent gain changes and by nonlinearities specific to the BATSE detectors. Nonlinearities in the light output from the NaI crystal and in the pulse height analyzer are shifted relative to each other by changes in the gain of the photomultiplier tube. We present the analytical model which is the basis of our calibration methodology, and outline how the empirical coefficients in this approach were determined. We also describe the complications peculiar to the Spectroscopy Detectors, and how our understanding of the detectors' operation led us to a solution to these problems.

  17. Intelligent Detector Design

    SciTech Connect

    Graf, N.A.; /SLAC

    2012-06-11

    As the complexity and resolution of imaging detectors increases, the need for detailed simulation of the experimental setup also becomes more important. Designing the detectors requires efficient tools to simulate the detector response and reconstruct the events. We have developed efficient and flexible tools for detailed physics and detector response simulation as well as event reconstruction and analysis. The primary goal has been to develop a software toolkit and computing infrastructure to allow physicists from universities and labs to quickly and easily conduct physics analyses and contribute to detector research and development. The application harnesses the full power of the Geant4 toolkit without requiring the end user to have any experience with either Geant4 or C++, thereby allowing the user to concentrate on the physics of the detector system.

  18. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  19. Detectors (5/5)

    ScienceCinema

    None

    2016-07-12

    This lecture will serve as an introduction to particle detectors and detection techniques. In the first lecture, a historic overview of particle detector development will be given. In the second lecture, some basic techniques and concepts for particle detection will be discussed. In the third lecture, the interaction of particles with matter, the basis of particle detection, will be presented. The fourth and fifth lectures will discuss different detector types used for particle tracking, energy measurement and particle identification.

  20. Detectors (4/5)

    ScienceCinema

    None

    2016-07-12

    This lecture will serve as an introduction to particle detectors and detection techniques. In the first lecture, a historic overview of particle detector development will be given. In the second lecture, some basic techniques and concepts for particle detection will be discussed. In the third lecture, the interaction of particles with matter, the basis of particle detection, will be presented. The fourth and fifth lectures will discuss different detector types used for particle tracking, energy measurement and particle identification.

  1. Proximal Contact Repair of Complex Amalgam Restorations.

    PubMed

    Zguri, M N; Casey, J A; Jessup, J P; Vandewalle, K S

    2017-01-12

    The carving of a complex amalgam restoration may occasionally result in light proximal contact with the adjacent tooth. The purpose of this study was to investigate the strength of complex amalgam restorations repaired with a proximal slot amalgam preparation. Extracted human third molars of similar coronal size were sectioned 1 mm apical to the height of the contour using a saw and were randomly distributed into 9 groups of 10 teeth each. One pin was placed at each line angle of the flattened dentinal tooth surface. A metal matrix band was placed and an admixed alloy was condensed and carved to create a full crown contour but with a flat occlusal surface. A proximal slot was prepared with or without a retention groove and repaired using a single-composition spherical amalgam 15 minutes, 24 hours, one week, or six months after the initial crown condensation. The specimens were stored for 24 hours in 37°C water before fracture at the marginal ridge using a round-ended blade in a universal testing machine. The control group was not repaired. The mean maximum force in newtons and standard deviation were determined per group. Data were analyzed with a 2-way analysis of variance as well as Tukey and Dunnett tests (α=0.05). Significant differences were found between groups based on type of slot preparation (p=0.017) but not on time (p=0.327), with no significant interaction (p=0.152). No significant difference in the strength of the marginal ridge was found between any repair group and the unrepaired control group (p>0.076). The proximal repair strength of a complex amalgam restoration was not significantly different from an unrepaired amalgam crown. Placing a retention groove in the proximal slot preparation resulted in significantly greater fracture strength than a slot with no retention grooves. Time of repair had no significant effect on the strength of the repair.

  2. Characteristics of He II Proximity Profiles

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Syphers, David; Meiksin, Avery; Kriss, Gerard A.; Schneider, Donald P.; York, Donald G.; Anderson, Scott F.

    2015-06-01

    The proximity profile in the spectra of z≈ 3 quasars, where fluxes extend blueward of the He ii Lyα wavelength 304 (1+z) Å, is one of the most important spectral features in the study of the intergalactic medium (IGM). Based on the Hubble Space Telescope spectra of 24 He ii quasars, we find that the majority of them display a proximity profile, corresponding to an ionization radius as large as 20 Mpc in the source's rest frame. In comparison with those in the H i spectra of the quasars at z ≈ 6, the He ii proximity effect is more prominent and is observed over a considerably longer period of reionization. The He ii proximity zone sizes decrease at higher redshifts, particularly at z\\gt 3.3. This trend is similar to that for H i, signaling an onset of He ii reionization at z≳ 4. For quasar SDSS1253+6817 (z = 3.48), the He ii absorption trough displays a gradual decline and serves as a good case for modeling the He ii reionization. To model such a broad profile requires a quasar radiation field whose energy distribution between 4 and 1 Rydberg is considerably harder than normally assumed. The UV continuum of this quasar is indeed exceptionally steep, and the He ii ionization level in the quasar vicinity is higher than the average level in the IGM. These results are evidence that a very hard EUV continuum from this quasar produces a large ionized zone around it. Distinct exceptions are the two brightest He ii quasars at z ≈ 2.8, for which no significant proximity profile is present, probably implying that they are very young.

  3. Photocapacitive MIS infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.; Lu, S. S.-M.; Moriarty, J. A.; Crouch, R. K.; Miller, W. E.

    1978-01-01

    A new class of room-temperature infrared detectors has been developed through use of metal-insulator-semiconductor (MIS) or metal-insulator-semiconductor-insulator-metal (MISIM) slabs. The detectors, which have been fabricated from Si, Ge and GaAs, rely for operation on the electrical capacitance variations induced by modulated incident radiation. The peak detectivity for a 1000-A Si MISIM detector is comparable to that of a conventional Si detector functioning in the photovoltaic mode. Optimization of the photocapacitive-mode detection sensitivity is discussed.

  4. The CDFII Silicon Detector

    SciTech Connect

    Julia Thom

    2004-07-23

    The CDFII silicon detector consists of 8 layers of double-sided silicon micro-strip sensors totaling 722,432 readout channels, making it one of the largest silicon detectors in present use by an HEP experiment. After two years of data taking, we report on our experience operating the complex device. The performance of the CDFII silicon detector is presented and its impact on physics analyses is discussed. We have already observed measurable effects from radiation damage. These results and their impact on the expected lifetime of the detector are briefly reviewed.

  5. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  6. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  7. SCINTILLATION EXPOSURE RATE DETECTOR

    DOEpatents

    Spears, W.G.

    1960-11-01

    A radiation detector for gamma and x rays is described. The detector comprises a scintillation crystal disposed between a tantalum shield and the input of a photomultiplier tube, the crystal and the shield cooperating so that their combined response to a given quantity of radiation at various energy levels is substantially constant.

  8. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  9. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  10. Particle impact location detector

    NASA Technical Reports Server (NTRS)

    Auer, S. O.

    1974-01-01

    Detector includes delay lines connected to each detector surface strip. When several particles strike different strips simultaneously, pulses generated by each strip are time delayed by certain intervals. Delay time for each strip is known. By observing time delay in pulse, it is possible to locate strip that is struck by particle.

  11. Borner Ball Neutron Detector

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Bonner Ball Neutron Detector measures neutron radiation. Neutrons are uncharged atomic particles that have the ability to penetrate living tissues, harming human beings in space. The Bonner Ball Neutron Detector is one of three radiation experiments during Expedition Two. The others are the Phantom Torso and Dosimetric Mapping.

  12. Alkali ionization detector

    DOEpatents

    Hrizo, John; Bauerle, James E.; Witkowski, Robert E.

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  13. Cable-splice detector

    NASA Technical Reports Server (NTRS)

    Lee, R. D.; Iufer, E. J.; Giovannetti, A.

    1980-01-01

    Detector has possible uses in aerial cable-car systems, equipment handling in mines, boreholes, and undersea operations, and other applications where moving steel cable must be measured, monitored, or controlled. Detector consists of Hall-effect magnetic sensor located close to cable. Magnetic markings on cable are converted to electrical signals. Signals are filtered, amplified, and can actuate alarm.

  14. The PERDaix detector

    NASA Astrophysics Data System (ADS)

    Bachlechner, Andreas; Beischer, Bastian; Greim, Roman; Kirn, Thomas; Mai, Carsten; Yearwood, Gregorio Roper; Schael, Stefan; Schug, David; Tholen, Heiner; Wienkenhöver, Jens

    2012-12-01

    The PERDaix (Proton Electron Radiation Detector Aix-la-Chapelle) detector is designed to measure charged particles in cosmic rays. It can distinguish particle species up to 5 GV rigidity. PERDaix was flown on the BEXUS-11 balloon on 23rd November 2010. The detector has the dimensions of 246×400×859 mm3, a geometrical acceptance of 32 cm2sr, a low weight of 40 kg and a low power consumption of 60 W. The spectrometer consists of a time-of-flight system, a scintillating fiber tracking detector, a permanent magnet and a transition radiation detector. Silicon photomultipliers are used as photodetectors in the time-of-flight and the tracker system.

  15. Optimal optoacoustic detector design

    NASA Technical Reports Server (NTRS)

    Rosengren, L.-G.

    1975-01-01

    Optoacoustic detectors are used to measure pressure changes occurring in enclosed gases, liquids, or solids being excited by intensity or frequency modulated electromagnetic radiation. Radiation absorption spectra, collisional relaxation rates, substance compositions, and reactions can be determined from the time behavior of these pressure changes. Very successful measurements of gaseous air pollutants have, for instance, been performed by using detectors of this type together with different lasers. The measuring instrument consisting of radiation source, modulator, optoacoustic detector, etc. is often called spectrophone. In the present paper, a thorough optoacoustic detector optimization analysis based upon a review of its theory of operation is introduced. New quantitative rules and suggestions explaining how to design detectors with maximal pressure responsivity and over-all sensitivity and minimal background signal are presented.

  16. Advanced far infrared detectors

    SciTech Connect

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > {lambda} > 50 {mu}m are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide.

  17. Nanomechanical resonance detector

    DOEpatents

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  18. Clinical Impact of Proximal Autosomal Imbalances

    PubMed Central

    Hamid, AB; Weise, A; Voigt, M; Bucksch, M; Kosyakova, N; Liehr, T; Klein, E

    2012-01-01

    Centromere-near gain of copy number can be induced by intra- or inter-chromosomal rearrangements or by the presence of a small supernumerary marker chromosome (sSMC). Interestingly, partial trisomy to hexasomy of euchromatic material may be present in clinically healthy or affected individuals, depending on origin and size of chromosomal material involved. Here we report the known minimal sizes of all centromere-near, i.e., proximal auto-somal regions in humans, which are tolerated; over 100 Mb of coding DNA are comprised in these regions. Additionally, we have summarized the typical symptoms for nine proximal autosomal regions including genes obviously sensitive to copy numbers. Overall, studying the carriers of specific chromosomal imbalances using genomics-based medicine, combined with single cell analysis can provide the genotype-phenotype correlations and can also give hints where copy-number-sensitive genes are located in the human genome. PMID:24052727

  19. Painful Spastic Hip Dislocation: Proximal Femoral Resection

    PubMed Central

    Albiñana, Javier; Gonzalez-Moran, Gaspar

    2002-01-01

    The dislocated hip in a non-ambulatory child with spastic paresis tends to be a painful interference to sleep, sitting upright, and perineal care. Proximal femoral resection-interposition arthroplasty is one method of treatment for this condition. We reviewed eight hips, two bilateral cases, with a mean follow-up of 30 months. Clinical improvement was observed in all except one case, with respect to pain relief and sitting tolerance. Some proximal migration was observed in three cases, despite routine post-operative skeletal traction in all cases and careful soft tissue interposition. One case showed significant heterotopic ossification which restricted prolonged sitting. This patient needed some occasional medication for pain. PMID:12180614

  20. Space robotic system for proximity operations

    NASA Technical Reports Server (NTRS)

    Magnani, P. G.; Colomba, M.

    1989-01-01

    Key to an efficient accomplishment of space station servicing operations is the development of a scenario where the presence of man in space is well integrated with the capability of teleoperated and automatic robot system outside the stations. Results focusing on mission requirements, trajectory sequences, propulsion subsystem features, and manipulative kit characteristics relevant to proximity servicing during a Man Tended Free Flyers Robotic Mission (MTFF-RM) are illustrated.

  1. Capacitive Proximity Sensor Has Longer Range

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1992-01-01

    Capacitive proximity sensor on robot arm detects nearby object via capacitive effect of object on frequency of oscillator. Sensing element part of oscillator circuit operating at about 20 kHz. Total capacitance between sensing element and ground constitutes tuning capacitance of oscillator. Sensor circuit includes shield driven by replica of alternating voltage applied to sensing element. Driven shield concentrates sensing electrostatic field in exterior region to enhance sensitivity to object. Sensitivity and dynamic range has corresponding 12-to-1 improvement.

  2. Proximal monomelic amyotrophy of the upper limb.

    PubMed

    Amir, D; Magora, A; Vatine, J J

    1987-07-01

    A 30-year-old patient of Central European origin, suffering from monomelic amyotrophy, is presented. The disease was characterized by proximal weakness of one upper limb, mainly of the shoulder girdle, accompanied by atrophy. The electrodiagnostic examination revealed signs of partial denervation in the presence of normal motor and sensory conduction. The disease, which is probably of the anterior horn cells, had a benign course and good prognosis, as evident from repeated examinations during a follow-up of eight years.

  3. Children's memory and proximity to violence.

    PubMed

    Pynoos, R S; Nader, K

    1989-03-01

    The study examined 133 school-age children's memory of a sniper attack at their elementary school. Researchers analyzed the role that spatial representation, memory markers, inner plans of action, and strategies of recall played in the memory process. In recalling the event, exposed children reduced their degree of life threat, while nonexposed children increased their proximity to the violence. Clinical and forensic implications are discussed.

  4. Endoscopic Proximal Hamstring Repair and Ischial Bursectomy

    PubMed Central

    Dierckman, Brian D.; Guanche, Carlos A.

    2012-01-01

    With the significant increase in use of the arthroscope around the hip have come several less invasive techniques to manage pathologies around this joint. This technical note with a video details one such technique that allows for the endoscopic management of proximal hamstring tears and chronic ischial bursitis, which until now have been managed exclusively with much larger open approaches. This procedure allows for complete exposure of the posterior aspect of the hip in a safe, minimally invasive fashion. PMID:23766996

  5. Technical implications in proximal forearm transplantation.

    PubMed

    Haddock, Nicholas T; Chang, Benjamin; Bozentka, David J; Steinberg, David R; Levin, Lawrence Scott

    2013-12-01

    The field of vascularized composite allotransplantation has developed for more than a decade. Investigators are defining patient selection criteria, transplant indications, immunologic regimens, and tolerance. The majority of the current reported hand transplantations have been for treatment of distal forearm or hand amputations. In more proximal amputees, the functional outcome of the transplanted arm has some unique variables that require a different surgical approach. We present a single case of bilateral proximal forearm transplantation in effort to describe the unique technical considerations in this complex procedure. The surgical procedure is described in detail. At 19 months, our patient had 4/5 strength of finger and thumb flexors and protective extensor as well as 4/5 wrist flexors and extensors. Our patient had recovery of sensation. Our patient now lives independently and does her lower extremity prosthesis independently using her hands. These results are expected to continue to improve with more time. In hand transplantation, functional results have been very promising. The described approach of forearm transplantation allows the transfer of the entire functional unit, which should optimize the ultimate outcome for these more proximal injuries.

  6. Trajectories in Close Proximity to Asteroids

    NASA Technical Reports Server (NTRS)

    Scheeres, D. J.

    2000-01-01

    Spacecraft motion in close proximity to irregularly shaped, rotating bodies such as asteroids presents a unique dynamical environment as compared to most space missions. There are several fundamental novelties in this environment that spacecraft must deal with. These include the possibility of orbital instabilities that can act over very short time spans (on the order of hours for some systems), possible non-uniform rotation of the central gravity field, divergence of traditional gravity field representations when close to the asteroid surface, dominance of perturbing forces, an extremely large asteroid model parameter space that must be prepared for in the absence of reliable information, and the possibility of employing new and novel trajectory control techniques such as hovering and repeated landings on the asteroid surface. An overview of how these novelties impact the space of feasible close proximity operations and how different asteroid model properties will affect their implementation is given. In so doing, four fundamental types of close proximity operations will be defined. Listed in order of increasing technical difficulty these are: (1) close, stable orbits; (2) low-altitude flyovers; (3) landing trajectories; and (4) hovering trajectories. The feasibility and difficulty of implementing these operations will vary as a function of the asteroid shape, size, density, and rotation properties, and as a function of the spacecraft navigation capability. Additional information is contained in the original extended abstract.

  7. Management of proximal humerus fractures in adults

    PubMed Central

    Vachtsevanos, Leonidas; Hayden, Lydia; Desai, Aravind S; Dramis, Asterios

    2014-01-01

    The majority of proximal humerus fractures are low-energy osteoporotic injuries in the elderly and their incidence is increasing in the light of an ageing population. The diversity of fracture patterns encountered renders objective classification of prognostic value challenging. Non-operative management has been associated with good functional outcomes in stable, minimally displaced and certain types of displaced fractures. Absolute indications for surgery are infrequent and comprise compound, pathological, multi-fragmentary head-splitting fractures and fracture dislocations, as well as those associated with neurovascular injury. A constantly expanding range of reconstructive and replacement options however has been extending the indications for surgical management of complex proximal humerus fractures. As a result, management decisions are becoming increasingly complicated, in an attempt to provide the best possible treatment for each individual patient, that will successfully address their specific fracture configuration, comorbidities and functional expectations. Our aim was to review the management options available for the full range of proximal humerus fractures in adults, along with their specific advantages, disadvantages and outcomes. PMID:25405098

  8. Proximity effect correction concerning forward scattering

    NASA Astrophysics Data System (ADS)

    Tsunoda, Dai; Shoji, Masahiro; Tsunoe, Hiroyuki

    2010-09-01

    The Proximity Effect is a critical problem in EB Lithography which is used in Photomask writing. Proximity Effect means that an electron shot by gun scatters by collided with resist molecule or substrate atom causes CD variation depending on pattern density [1]. Scattering by collision with resist molecule is called as "forward scattering", that affects in dozens of nanometer range, and with substrate atom is called as "backward scattering, that affects approximately 10 micrometer in 50keV acceleration voltage respectively. In conventional Proximity Effect Correction (PEC) for mask writing, we don't need to think forward scattering effect. However we should think about forward scattering because of smaller feature size. We have proposed a PEC software product named "PATACON PC-Cluster"[2], which can concern forward scattering and calculate optimum dose modulation. In this communication, we explain the PEC processing throughput when the that takes forward scattering into account. The key technique is to use different processing field size for forward scattering calculation. Additionally, the possibility is shown that effective PEC may be available by connecting forward scattering and backward scattering.

  9. The Effect of Neutron and Gamma Ray Cross Talk Between Plastic Scintillating Detectors

    SciTech Connect

    Pozzi, S.A.

    2000-11-06

    In this paper a method is developed, using higher order statistics, to identify the type and degree of neutron and gamma ray cross talk between detectors that are placed in proximity to one another. A set of measurements was performed using the Nuclear Materials Identification System (NMIS) to acquire the time-dependent bicovariance of the pulses in fast plastic scintillating detectors. These signatures were analyzed to infer the degree and type of false coincidences (cross talk) in relation to true coincidences.

  10. Miniature Uncooled Infrared Sensitive Detectors for in Vivo Biomedical Imaging Applications

    SciTech Connect

    Datskos, P. G.; Demos, S. G.; Rajic, S.

    1998-06-01

    Broadband infrared (OR) radiation detectors have been developed using miniature, inexpensive, mass produced microcantilevers capable of detecting temperature differences as small as lea(-6) K. Microcantilevers made out of semiconductor materials can be used either as uncurled photon or thermal detectors. Mounted on a probe mm in diameter a number of microcantilevers can be accommodated in the working channel of existing endoscopes for in vivo proximity focus measurements inside the human body.

  11. Calibrating animal-borne proximity loggers.

    PubMed

    Rutz, Christian; Morrissey, Michael B; Burns, Zackory T; Burt, John; Otis, Brian; St Clair, James J H; James, Richard

    2015-06-01

    Growing interest in the structure and dynamics of animal social networks has stimulated efforts to develop automated tracking technologies that can reliably record encounters in free-ranging subjects. A particularly promising approach is the use of animal-attached 'proximity loggers', which collect data on the incidence, duration and proximity of spatial associations through inter-logger radio communication. While proximity logging is based on a straightforward physical principle - the attenuation of propagating radio waves with distance - calibrating systems for field deployment is challenging, since most study species roam across complex, heterogeneous environments.In this study, we calibrated a recently developed digital proximity-logging system ('Encounternet') for deployment on a wild population of New Caledonian crows Corvus moneduloides. Our principal objective was to establish a quantitative model that enables robust post hoc estimation of logger-to-logger (and, hence, crow-to-crow) distances from logger-recorded signal-strength values. To achieve an accurate description of the radio communication between crow-borne loggers, we conducted a calibration exercise that combines theoretical analyses, field experiments, statistical modelling, behavioural observations, and computer simulations.We show that, using signal-strength information only, it is possible to assign crow encounters reliably to predefined distance classes, enabling powerful analyses of social dynamics. For example, raw data sets from field-deployed loggers can be filtered at the analysis stage to include predominantly encounters where crows would have come to within a few metres of each other, and could therefore have socially learned new behaviours through direct observation. One of the main challenges for improving data classification further is the fact that crows - like most other study species - associate across a wide variety of habitats and behavioural contexts, with different signal

  12. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  13. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  14. Detectors for Tomorrow's Instruments

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  15. The Belle II Detector

    NASA Astrophysics Data System (ADS)

    Piilonen, Leo; Belle Collaboration, II

    2017-01-01

    The Belle II detector is now under construction at the KEK laboratory in Japan. This project represents a substantial upgrade of the Belle detector (and the KEKB accelerator). The Belle II experiment will record 50 ab-1 of data, a factor of 50 more than that recorded by Belle. This large data set, combined with the low backgrounds and high trigger efficiencies characteristic of an e+e- experiment, should provide unprecedented sensitivity to new physics signatures in B and D meson decays, and in τ lepton decays. The detector comprises many forefront subsystems. The vertex detector consists of two inner layers of silicon DEPFET pixels and four outer layers of double-sided silicon strips. These layers surround a beryllium beam pipe having a radius of only 10 mm. Outside of the vertex detector is a large-radius, small-cell drift chamber, an ``imaging time-of-propagation'' detector based on Cerenkov radiation for particle identification, and scintillating fibers and resistive plate chambers used to identify muons. The detector will begin commissioning in 2017.

  16. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  17. Semiconductor neutron detectors

    NASA Astrophysics Data System (ADS)

    Gueorguiev, Andrey; Hong, Huicong; Tower, Joshua; Kim, Hadong; Cirignano, Leonard; Burger, Arnold; Shah, Kanai

    2016-09-01

    Lithium Indium Selenide (LiInSe2) has been under development in RMD Inc. and Fisk University for room temperature thermal neutron detection due to a number of promising properties. The recent advances of the crystal growth, material processing, and detector fabrication technologies allowed us to fabricate large detectors with 100 mm2 active area. The thermal neutron detection sensitivity and gamma rejection ratio (GRR) were comparable to 3He tube with 10 atm gas pressure at comparable dimensions. The synthesis, crystal growth, detector fabrication, and characterization are reported in this paper.

  18. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  19. Sub-micrometer resolution proximity X-ray microscope with digital image registration.

    PubMed

    Chkhalo, N I; Pestov, A E; Salashchenko, N N; Sherbakov, A V; Skorokhodov, E V; Svechnikov, M V

    2015-06-01

    A compact laboratory proximity soft X-ray microscope providing submicrometer spatial resolution and digital image registration is described. The microscope consists of a laser-plasma soft X-ray radiation source, a Schwarzschild objective to illuminate the test sample, and a two-coordinate detector for image registration. Radiation, which passes through the sample under study, generates an absorption image on the front surface of the detector. Optical ceramic YAG:Ce was used to convert the X-rays into visible light. An image was transferred from the scintillator to a charge-coupled device camera with a Mitutoyo Plan Apo series lens. The detector's design allows the use of lenses with numerical apertures of NA = 0.14, 0.28, and 0.55 without changing the dimensions and arrangement of the elements of the device. This design allows one to change the magnification, spatial resolution, and field of view of the X-ray microscope. A spatial resolution better than 0.7 μm and an energy conversion efficiency of the X-ray radiation with a wavelength of 13.5 nm into visible light collected by the detector of 7.2% were achieved with the largest aperture lens.

  20. 14 CFR 135.153 - Ground proximity warning system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Ground proximity warning system. 135.153... Equipment § 135.153 Ground proximity warning system. (a) No person may operate a turbine-powered airplane... equipped with an approved ground proximity warning system. (b) (c) For a system required by this...

  1. 14 CFR 135.153 - Ground proximity warning system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Ground proximity warning system. 135.153... Equipment § 135.153 Ground proximity warning system. (a) No person may operate a turbine-powered airplane... equipped with an approved ground proximity warning system. (b) (c) For a system required by this...

  2. Scintillator-fiber charged particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector was developed using a bundle of square cross section plastic scintillator fiber optics, proximity focused onto an image intensified charge injection device (CID) camera. The tracks of charged particle penetrating into the scintillator fiber bundle are projected onto the CID camera and the imaging information is read out in video format. The detector was exposed to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei and images of their tracks were obtained. Details of the detector technique, properties of the tracks obtained, and preliminary range measurements of 15 MeV protons stopping in the fiber bundle are presented.

  3. Ultrafast neutron detector

    DOEpatents

    Wang, C.L.

    1985-06-19

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  4. Pocked surface neutron detector

    DOEpatents

    McGregor, Douglas; Klann, Raymond

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  5. Modular optical detector system

    DOEpatents

    Horn, Brent A.; Renzi, Ronald F.

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  6. The CBM RICH detector

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höohne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.

    2016-05-01

    The CBM RICH detector will use CO2 as radiator gas, focussing glass mirrors with Al+MgF2 reflective and protective coating and Hamamatsu H12700 MAPMTs as photon detectors. The detector will serve for electron to pion separation up to momenta of 8 GeV/c and thus enable in CBM the measurement of electromagnetic radiation from the early and dense fireball in A+A collisions at SIS 100. In this article, the current status of the CBM RICH development will be presented including new measurements of the radiation hardness of the H12700 MAPMT and WLS coatings with p-terphenyl, the new concept for the readout electronics, and optimizations ongoing with respect to the mirror mount structure and overall geometry. Prior to the usage in CBM, part of the already ordered MAPMTs will be used to upgrade the HADES RICH detector for a new measurement campaign at SIS 18 from 2018-2020.

  7. Inverter ratio failure detector

    NASA Technical Reports Server (NTRS)

    Wagner, A. P.; Ebersole, T. J.; Andrews, R. E. (Inventor)

    1974-01-01

    A failure detector which detects the failure of a dc to ac inverter is disclosed. The inverter under failureless conditions is characterized by a known linear relationship of its input and output voltages and by a known linear relationship of its input and output currents. The detector includes circuitry which is responsive to the detector's input and output voltages and which provides a failure-indicating signal only when the monitored output voltage is less by a selected factor, than the expected output voltage for the monitored input voltage, based on the known voltages' relationship. Similarly, the detector includes circuitry which is responsive to the input and output currents and provides a failure-indicating signal only when the input current exceeds by a selected factor the expected input current for the monitored output current based on the known currents' relationship.

  8. Lightning Current Detector

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Lightning Current Detector (LCD) was developed to monitor the magnitude of lightning strikes. Information it supplies is useful in evaluating lightning protection designs for such systems as telephone cables, radio broadcast towers, power transmission equipment and oil well towers.

  9. Pendulum detector testing device

    DOEpatents

    Gonsalves, J.M.

    1997-09-30

    A detector testing device is described which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: (1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, (2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and (3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements. 5 figs.

  10. Pendulum detector testing device

    DOEpatents

    Gonsalves, John M.

    1997-01-01

    A detector testing device which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: 1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, 2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and 3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements.

  11. PHENIX detector overview

    NASA Astrophysics Data System (ADS)

    Adcox, K.; Adler, S. S.; Aizama, M.; Ajitanand, N. N.; Akiba, Y.; Akikawa, H.; Alexander, J.; Al-Jamel, A.; Allen, M.; Alley, G.; Amirikas, R.; Aphecetche, L.; Arai, Y.; Archuleta, J. B.; Archuleta, J. R.; Armendariz, R.; Armijo, V.; Aronson, S. H.; Autrey, D.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Baldisseri, A.; Banning, J.; Barish, K. N.; Barker, A. B.; Barnes, P. D.; Barrette, J.; Barta, F.; Bassalleck, B.; Bathe, S.; Batsouli, S.; Baublis, V. V.; Bazilevsky, A.; Begay, R.; Behrendt, J.; Belikov, S.; Belkin, R.; Bellaiche, F. G.; Belyaev, S. T.; Bennett, M. J.; Berdnikov, Y.; Bhaganatula, S.; Biggs, J. C.; Bland, A. W.; Blume, C.; Bobrek, M.; Boissevain, J. G.; Boose, S.; Borel, H.; Borland, D.; Bosze, E.; Botelho, S.; Bowers, J.; Britton, C.; Britton, L.; Brooks, M. L.; Brown, A. W.; Brown, D. S.; Bruner, N.; Bryan, W. L.; Bucher, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Burward-Hoy, J.; Butsyk, S. A.; Cafferty, M. M.; Carey, T. A.; Chai, J. S.; Chand, P.; Chang, J.; Chang, W. C.; Chappell, R. B.; Chavez, L. L.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Chollet, S.; Choudhury, R. K.; Christ, T.; Chujo, T.; Chung, M. S.; Chung, P.; Cianciolo, V.; Clark, D. J.; Cobigo, Y.; Cole, B. A.; Constantin, P.; Conway, R.; Cook, K. C.; Crook, D. W.; Cunitz, H.; Cunningham, R.; Cutshaw, M.; D'Enterria, D. G.; Dabrowski, C. M.; Danby, G.; Daniels, S.; Danmura, A.; David, G.; Debraine, A.; Delagrange, H.; Demoss, J.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Dinesh, B. V.; Drachenberg, J. L.; Drapier, O.; Drees, A.; Du Rietz, R.; Durum, A.; Dutta, D.; Ebisu, K.; Echave, M. A.; Efremenko, Y. V.; El Chenawi, K.; Emery, M. S.; Engo, D.; Enokizono, A.; Enosawa, K.; En'yo, H.; Ericson, N.; Esumi, S.; Evseev, V. A.; Ewell, L.; Fackler, O.; Fellenstein, J.; Ferdousi, T.; Ferrierra, J.; Fields, D. E.; Fleuret, F.; Fokin, S. L.; Fox, B.; Fraenkel, Z.; Frank, S.; Franz, A.; Frantz, J. E.; Frawley, A. D.; Fried, J.; Freidberg, J. P.; Fujisawa, E.; Funahashi, H.; Fung, S.-Y.; Gadrat, S.; Gannon, J.; Garpman, S.; Gastaldi, F.; Gee, T. F.; Gentry, R.; Ghosh, T. K.; Giannotti, P.; Glenn, A.; Godoi, A. L.; Gonin, M.; Gogiberidze, G.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Greene, S. V.; Griffin, V.; Grosse Perdekamp, M.; Gupta, S. K.; Guryn, W.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, S.; Halliwell, J.; Hamagaki, H.; Hance, R. H.; Hansen, A. G.; Hara, H.; Harder, J.; Hart, G. W.; Hartouni, E. P.; Harvey, A.; Hawkins, L.; Hayano, R. S.; Hayashi, H.; Hayashi, N.; He, X.; Heine, N.; Heistermann, F.; Held, S.; Hemmick, T. K.; Heuser, J. M.; Hibino, M.; Hicks, J. S.; Higuchi, R.; Hill, J. C.; Hirano, T.; Ho, D. S.; Hoade, R.; Holzmann, W.; Homma, K.; Hong, B.; Hoover, A.; Honaguchi, T.; Hunter, C. T.; Hurst, D. E.; Hutter, R.; Ichihara, T.; Ikonnikov, V. V.; Imai, K.; Inaba, M.; Ippolitov, M. S.; Davis Isenhower, L.; Donald Isenhower, L.; Ishihara, M.; Issah, M.; Ivanov, V. I.; Jacak, B. V.; Jackson, G.; Jackson, J.; Jaffe, D.; Jagadish, U.; Jang, W. Y.; Jayakumar, R.; Jia, J.; Johnson, B. M.; Johnson, J.; Johnson, S. C.; Jones, J. P.; Jones, K.; Joo, K. S.; Jouan, D.; Kahn, S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamyshkov, Y.; Kandasamy, A.; Kang, J. H.; Kann, M. R.; Kapoor, S. S.; Kapustinsky, J.; Karadjev, K. V.; Kashikhin, V.; Kato, S.; Katou, K.; Kehayias, H.-J.; Kelley, M. A.; Kelly, S.; Kennedy, M.; Khachaturov, B.; Khanzadeev, A. V.; Khomutnikov, A.; Kikuchi, J.; Kim, D. J.; Kim, D.-W.; Kim, G.-B.; Kim, H. J.; Kim, S. Y.; Kim, Y. G.; Kinnison, W. W.; Kistenev, E.; Kiyomichi, A.; Klein-Boesing, C.; Klinksiek, S.; Kluberg, L.; Kobayashi, H.; Kochetkov, V.; Koehler, D.; Kohama, T.; Komkov, B. G.; Kopytine, M. L.; Koseki, K.; Kotchenda, L.; Kotchetkov, D.; Koutcheryaev, Iou. A.; Kozlov, A.; Kozlov, V. S.; Kravtsov, P. A.; Kroon, P. J.; Kuberg, C. H.; Kudin, L. G.; Kurata-Nishimura, M.; Kuriatkov, V. V.; Kurita, K.; Kuroki, Y.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Labounty, J. J.; Lacey, R.; Lajoie, J. G.; Lauret, J.; Lebedev, A.; Lebedev, V. A.; Lebedev, V. D.; Lee, D. M.; Lee, S.; Leitch, M. J.; Lenz, M.; Lenz, W.; Li, X. H.; Li, Z.; Libby, B.; Libkind, M.; Liccardi, W.; Lim, D. J.; Lin, S.; Liu, M. X.; Liu, X.; Liu, Y.; Liu, Z.; Lockner, E.; Longbotham, N.; Lopez, J. D.; Machnowski, R.; Maguire, C. F.; Mahon, J.; Makdisi, Y. I.; Manko, V. I.; Mao, Y.; Marino, S.; Mark, S. K.; Markacs, S.; Markushin, D. G.; Martinez, G.; Martinez, X. B.; Marx, M. D.; Masaike, A.; Matathias, F.; Matsumoto, T.; McGaughey, P. L.; McCain, M. C.; Mead, J.; Melnikov, E.; Melnikov, Y.; Meng, W. Z.; Merschmeyer, M.; Messer, F.; Messer, M.; Miake, Y.; Miftakhov, N. M.; Migluolio, S.; Milan, J.; Miller, T. E.; Milov, A.; Minuzzo, K.; Mioduszewski, S.; Mischke, R. E.; Mishra, G. C.; Mitchell, J. T.; Miyamoto, Y.; Mohanty, A. K.; Montoya, B. C.; Moore, A.; Moore, T.; Morrison, D. P.; Moscone, G. G.; Moss, J. M.; Mühlbacher, F.; Muniruzzaman, M.; Murata, J.; Murray, M. M.; Musrock, M.; Nagamiya, S.; Nagasaka, Y.; Nagle, J. L.; Nakada, Y.; Nakamura, T.; Nandi, B. K.; Negrin, J.; Newby, J.; Nikkinen, L.; Nikolaev, S. A.; Nilsson, P.; Nishimura, S.; Nyanin, A. S.; Nystrand, J.; O'Brien, E.; O'Conner, P.; Obenshain, F.; Ogilvie, C. A.; Ohnishi, H.; Ojha, I. D.; Ono, M.; Onuchin, V.; Oskarsson, A.; Österman, L.; Otterlund, I.; Oyama, K.; Paffrath, L.; Palounek, A. P. T.; Pancake, C. E.; Pantuev, V. S.; Papavassiliou, V.; Pate, S. F.; Peitzmann, T.; Petersen, R.; Petridis, A. N.; Pinkenburg, C. H.; Pisani, R. P.; Pitukhin, P.; Plagge, T.; Plasil, F.; Pollack, M.; Pope, K.; Prigl, R.; Purschke, M. L.; Purwar, A. K.; Qualls, J. M.; Rankowitz, S.; Rao, G.; Rao, R.; Rau, M.; Ravinovich, I.; Raynis, R.; Read, K. F.; Reygers, K.; Riabov, G.; Riabov, V. G.; Riabov, Yu. G.; Robinson, S. H.; Roche, G.; Romana, A.; Rosati, M.; Roschin, E. V.; Rose, A. A.; Rosnet, P.; Roth, R.; Ruggiero, R.; Ryu, S. S.; Saito, N.; Sakaguchi, A.; Sakaguchi, T.; Sakai, S.; Sako, H.; Sakuma, T.; Salomone, S.; Samsonov, V. M.; Sandhoff, W. F.; Sanfratello, L.; Sangster, T. C.; Santo, R.; Sato, H. D.; Sato, S.; Savino, R.; Sawada, S.; Schlei, B. R.; Schleuter, R.; Schutz, Y.; Sekimoto, M.; Semenov, V.; Seto, R.; Severgin, Y.; Shajii, A.; Shangin, V.; Shaw, M. R.; Shea, T. K.; Shein, I.; Shelikhov, V.; Shibata, T.-A.; Shigaki, K.; Shiina, T.; Shimada, T.; Shin, Y. H.; Sibiriak, I. G.; Silvermyr, D.; Sim, K. S.; Simon-Gillo, J.; Simpson, M.; Singh, C. P.; Singh, V.; Sippach, W.; Sivertz, M.; Skank, H. D.; Skutnik, S.; Sleege, G. A.; Smith, D. C.; Smith, G. D.; Smith, M.; Soldatov, A.; Solodov, G. P.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S.; Sourikova, I.; Staley, F.; Stankus, P. W.; Starinsky, N.; Steffens, S.; Stein, E. M.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stewering, J.; Stokes, W.; Stoll, S. P.; Sugioka, M.; Sugitate, T.; Sullivan, J. P.; Sumi, Y.; Sun, Z.; Suzuki-Nara, M.; Takagui, E. M.; Taketani, A.; Tamai, M.; Tanaka, K. H.; Tanaka, Y.; Taniguchi, E.; Tannenbaum, M. J.; Tarakanov, V. I.; Tarasenkova, O. P.; Tepe, J. D.; Thern, R.; Thomas, J. H.; Thomas, J. L.; Thomas, T. L.; Thomas, W. D.; Thornton, G. W.; Tian, W.; Todd, R.; Tojo, J.; Toldo, F.; Torii, H.; Towell, R. S.; Tradeski, J.; Trofimov, V. A.; Tserruya, I.; Tsuruoka, H.; Tsvetkov, A. A.; Tuli, S. K.; Turner, G.; Tydesjö, H.; Tyurin, N.; Urasawa, S.; Usachev, A.; Ushiroda, T.; van Hecke, H. W.; van Lith, M.; Vasiliev, A. A.; Vasiliev, V.; Vassent, M.; Velissaris, C.; Velkovska, J.; Velkovsky, M.; Verhoeven, W.; Villatte, L.; Vinogradov, A. A.; Vishnevskii, V. I.; Volkov, M. A.; von Achen, W.; Vorobyov, A. A.; Vznuzdaev, E. A.; Vznuzdaev, M.; Walker, J. W.; Wan, Y.; Wang, H. Q.; Wang, S.; Watanabe, Y.; Watkins, L. C.; Weimer, T.; White, S. N.; Whitus, B. R.; Williams, C.; Willis, P. S.; Wintenberg, A. L.; Witzig, C.; Wohn, F. K.; Wolniewicz, K.; Wong-Swanson, B. G.; Wood, L.; Woody, C. L.; Wright, L. W.; Wu, J.; Xie, W.; Xu, N.; Yagi, K.; Yamamoto, R.; Yang, Y.; Yokkaichi, S.; Yokota, Y.; Yoneyama, S.; Young, G. R.; Yushmanov, I. E.; Zajc, W. A.; Zhang, C.; Zhang, L.; Zhang, Z.; Zhou, S.; Phenix Collaboration

    2003-03-01

    The PHENIX detector is designed to perform a broad study of A-A, p-A, and p-p collisions to investigate nuclear matter under extreme conditions. A wide variety of probes, sensitive to all timescales, are used to study systematic variations with species and energy as well as to measure the spin structure of the nucleon. Designing for the needs of the heavy-ion and polarized-proton programs has produced a detector with unparalleled capabilities. PHENIX measures electron and muon pairs, photons, and hadrons with excellent energy and momentum resolution. The detector consists of a large number of subsystems that are discussed in other papers in this volume. The overall design parameters of the detector are presented.

  12. Superconductivity in Magnetic and Proximity Effect Systems.

    NASA Astrophysics Data System (ADS)

    Stephan, Walter Hugo

    Some aspects of the theory of superconductors containing paramagnetic impurities in the model of Shiba and Rusinov (SR) are examined. The critical magnetic field deviation function is shown to be very sensitive to the SR scattering parameter varepsilon_0 , with improved agreement with experiment for Zn -Mn as compared to the theory of Abrikosov and Gor'Kov (AG). Optical absorption and thermal conductivity experiments involving a variety of transition metal alloys are reanalyzed including up to three scattering phase shifts, with no significant improvement found over the agreement obtained with only a single phase shift. The electromagnetic coherence length with SR impurities is also considered. Model calculations for superconducting spin-glasses show that systems such as Gd{_ {x}Ce}_{1-{rm x} }{rm Ru_2}, which exhibit significant deviations from the AG prediction for the reduction of the critical temperature with impurity concentration, are also expected to exhibit significant deviations from AG behavior for properties such as the thermodynamic critical field and the electromagnetic penetration depth. The model of Lee for reentrant ferromagnetic superconductors is shown to be only in qualitative agreement with the free energy difference and thermal conductivity determined experimentally for ErRh_{4}B _{4}. A variety of properties of proximity effect junctions are considered within the McMillan model. The temperature dependence of the free energy difference differs significantly from that of a BCS superconductor, with the deviation function becoming much more negative than the BCS prediction. The optical absorption and the low temperature magnetic penetration depth of the normal side of a proximity effect junction with magnetic impurities are also calculated. Finally, the temperature dependence of the zero bias tunneling conductance of a proximity effect induced superconducting spin glass is calculated and found to be in reasonable agreement with experiments

  13. Hand Replantation with Proximal Row Carpectomy

    PubMed Central

    Lee, Young-Keun; Lee, Hang-Ho; Park, Ji-Kang; Kim, Joo-Yong; Dhawan, Vikas

    2008-01-01

    The purpose of this study is to present our operative technique and postoperative results of the hand replantation with proximal row carpectomy in cases of complete amputation at the level of wrist joint. From May 2003 to April 2005, five patients suffered from complete amputation of the hand due to industrial trauma. Amputation level was radiocarpal joint in three cases and midcarpal joint in two cases. Three cases represented guillotine type and two cases with local crush type injuries. All were men and the mean age was 26.6 years. The mean follow-up period was 26.8 months. At the time of replantation, the wrist joint was stabilized with transarticular fixation using three to four Kirschner’s wires after performing proximal row carpectomy. Postoperatively, functional results such as muscle strength, range of motion of the wrist and fingers, and sensory recovery were assessed according to Chen’s criteria. Joint width and arthritic changes of the radio-capitate joint were evaluated with radiologic tools. According to Chen’s criteria, the overall results in five cases were classified as grade II. Intrinsic muscle power of hands was found to be grade 4. The mean grip and pinch powers were 41% and 45%, respectively, compared to contralateral hand. The mean arc of flexion–extension of wrist was 53°. Total mean active motion of fingers was 215 degrees. Static two-point discrimination of fingertip ranged from 8 to 13 mm. On the follow-up, computerized tomography showed well-preserved radio-capitate joint space without any arthritic changes. While performing hand replantation after amputation at the radiocarpal or midcarpal level, proximal row carpectomy is a useful procedure to preserve joint motion of the wrist in selected cases. PMID:18855073

  14. Gaseous leak detector

    DOEpatents

    Juravic, Jr., Frank E.

    1988-01-01

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the non linear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  15. Improved gaseous leak detector

    DOEpatents

    Juravic, F.E. Jr.

    1983-10-06

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the nonlinear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  16. Fiber optic detector

    NASA Astrophysics Data System (ADS)

    Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.

    1990-04-01

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  17. Fiber optic detector

    SciTech Connect

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  18. Periprosthetic proximal femur fractures: current concepts.

    PubMed

    Parvizi, Javad; Vegari, David N

    2011-06-01

    With the increase in demand for total hip and knee arthroplasty, the orthopaedic community has seen a dramatic increase in periprosthetic fractures. Given the high morbidity and mortality associated with these fractures, the orthopaedic surgeon needs to be prepared to deal with this difficult problem. The purpose of this article is to provide the surgeon with an algorithmic approach that allows for easy classification and treatment options for periprosthetic fractures of the proximal femur. Such an approach should prevent the mismanagement of these complications.

  19. Impacted valgus fractures of the proximal humerus☆

    PubMed Central

    Ribeiro, Fabiano Rebouças; Takesian, Fernando Hovaguim; Bezerra, Luiz Eduardo Pimentel; Filho, Rômulo Brasil; Júnior, Antonio Carlos Tenor; da Costa, Miguel Pereira

    2016-01-01

    Impacted valgus fractures of the proximal humerus are considered to be a special type fracture, since impaction of the humeral head on the metaphysis with maintenance of the posteromedial periosteum improves the prognosis regarding occurrences of avascular necrosis. This characteristic can also facilitate the reduction maneuver and increase the consolidation rate of these fractures, even in more complex cases. The studies included were obtained by searching the Bireme, Medline, PubMed, Cochrane Library and Google Scholar databases for those published between 1991 and 2013. The objective of this study was to identify the most common definitions, classifications and treatment methods used for these fractures in the orthopedic medical literature. PMID:27069878

  20. Fractures of the proximal humeral epiphysis.

    PubMed

    Burgos-Flores, J; Gonzalez-Herranz, P; Lopez-Mondejar, J A; Ocete-Guzman, J G; Amaya-Alarcón, S

    1993-01-01

    Twenty-two patients with marked displacement of a fracture of the proximal humeral epiphysis have been treated with closed or open reduction and fixation by Kirschner wires. At an average follow-up of 6.8 years there have been good functional results in almost all patients (91.1), with better results in patients under 13 years of age particularly with less residual displacement or angulation. Since there is a greater occurrence of residual deformity and symmetria and limitation of motion in older patients, a more aggressive approach to correct the initial displacement and angulation is warranted in those over the age of 13 years.

  1. Unilateral Isolated Proximal Femoral Focal Deficiency

    PubMed Central

    Doğer, Emek; Köpük, Şule Y.; Çakıroğlu, Yiğit; Çakır, Özgür; Yücesoy, Gülseren

    2013-01-01

    Objective. To discuss a patient with a prenatal diagnosis of unilateral isolated femoral focal deficiency. Case. Antenatal diagnosis of unilateral isolated femoral focal deficiency was made at 20 weeks of gestation. The length of left femur was shorter than the right, and fetal femur length was below the fifth percentile. Proximal femoral focal deficiency was diagnosed. After delivery, the diagnosis was confirmed with skeletal radiographs and magnetic resonance imaging. In prenatal ultrasonographic examination, the early recognition and exclusion of skeletal dysplasias is important; moreover, treatment plans should be initiated, and valuable information should be provided to the family. PMID:23984135

  2. Impacted valgus fractures of the proximal humerus.

    PubMed

    Ribeiro, Fabiano Rebouças; Takesian, Fernando Hovaguim; Bezerra, Luiz Eduardo Pimentel; Filho, Rômulo Brasil; Júnior, Antonio Carlos Tenor; da Costa, Miguel Pereira

    2016-01-01

    Impacted valgus fractures of the proximal humerus are considered to be a special type fracture, since impaction of the humeral head on the metaphysis with maintenance of the posteromedial periosteum improves the prognosis regarding occurrences of avascular necrosis. This characteristic can also facilitate the reduction maneuver and increase the consolidation rate of these fractures, even in more complex cases. The studies included were obtained by searching the Bireme, Medline, PubMed, Cochrane Library and Google Scholar databases for those published between 1991 and 2013. The objective of this study was to identify the most common definitions, classifications and treatment methods used for these fractures in the orthopedic medical literature.

  3. Management of posttraumatic proximal interphalangeal joint contracture.

    PubMed

    Houshian, Shirzad; Jing, Shan Shan; Chikkamuniyappa, Chandrasekar; Kazemian, Gholam Hussein; Emami-Moghaddam-Tehrani, Mohammad

    2013-08-01

    Chronic flexion contracture of the proximal interphalangeal (PIP) joint presents a common yet challenging problem to hand surgeons. Over the years, multiple treatment modalities have been described for this problem, producing limited results. Nonoperative treatment using serial casting and splints should be tried before attempting open surgical release, which should be done in selected patients. The use of external fixation for treating PIP contracture has been encouraging and can be a useful alterative. This review provides an update on the current management of PIP joint contractures and presents a flowchart of treatment to aid decision making.

  4. Fiber optical ranging sensor for proximity fuse

    NASA Astrophysics Data System (ADS)

    Du, Fang; Chi, Zeying; You, Mingjun; Chen, Wenjian

    1996-09-01

    A fiber optical ranging sensor used in laser proximity fuze is described in this paper. In the fuze, pulse laser diode (LD) is used as light source and trigger signal is generated by comparing the reflected light pulses with the reference pulses by a correlator after they were converted into electric signals by PIN photodiodes. Multi-mode fibers and integrated optical devices are used in the system so that the structure can be more compact. Optical fiber delay line is used to offer precise delay time for reference channel.

  5. Open Subpectoral Tenodesis of the Proximal Biceps.

    PubMed

    Voss, Andreas; Cerciello, Simone; Yang, Justin; Beitzel, Knut; Cote, Mark P; Mazzocca, Augustus D

    2016-01-01

    This article summarizes both the various techniques for an open subpectoral biceps tenodesis as well as the biomechanics associated with these procedures. It provides information regarding the indications and contraindications to support the surgeon's decision. Furthermore, a postoperative protocol as well as an outcome overview is presented to address postoperative care. A short summary of the recent literature regarding potential complications is included to provide further insight on this technique. The open subpectoral tenodesis of the long head of the biceps is a safe and reproducible technique with a low complication rate for patients with pathologies of the proximal biceps.

  6. Complications of Proximal Biceps Tenotomy and Tenodesis.

    PubMed

    Virk, Mandeep S; Nicholson, Gregory P

    2016-01-01

    The long head of biceps tendon (LHBT) is a well-recognized cause of anterior shoulder pain. Tenotomy or tenodesis of the LHBT is an effective surgical solution for relieving pain arising from the LHBT. Cosmetic deformity of the arm, cramping or soreness in the biceps muscle, and strength deficits in elbow flexion and supination are the three most common adverse events associated with tenotomy of the LHBT. Complications associated with tenodesis of the LHBT include loss of fixation resulting in cosmetic deformity, residual groove pain, pain or soreness in the biceps muscle, infection, stiffness, hematoma, neurologic injury, vascular injury, proximal humerus fracture, and reflex sympathetic dystrophy.

  7. Space station proximity operations and window design

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1988-01-01

    On-orbit proximity operations (PROX-OPS) consist of all extravehicular activity (EVA) within 1 km of the space station. Because of the potentially large variety of PROX-OPS, very careful planning for space station windows is called for and must consider a great many human factors. The following topics are discussed: (1) basic window design philosophy and assumptions; (2) the concept of the local horizontal - local vertical on-orbit; (3) window linear dimensions; (4) selected anthropomorphic considerations; (5) displays and controls relative to windows; and (6) full window assembly replacement.

  8. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  9. The Belle detector

    NASA Astrophysics Data System (ADS)

    Abashian, A.; Gotow, K.; Morgan, N.; Piilonen, L.; Schrenk, S.; Abe, K.; Adachi, I.; Alexander, J. P.; Aoki, K.; Behari, S.; Doi, Y.; Enomoto, R.; Fujii, H.; Fujita, Y.; Funahashi, Y.; Haba, J.; Hamasaki, H.; Haruyama, T.; Hayashi, K.; Higashi, Y.; Hitomi, N.; Igarashi, S.; Igarashi, Y.; Iijima, T.; Ikeda, Hirokazu; Ikeda, Hitomi; Itoh, R.; Iwai, M.; Iwasaki, H.; Iwasaki, Y.; Joo, K. K.; Kasami, K.; Katayama, N.; Kawai, M.; Kichimi, H.; Kobayashi, T.; Koike, S.; Kondo, Y.; Lee, M. H.; Makida, Y.; Manabe, A.; Matsuda, T.; Murakami, T.; Nagayama, S.; Nakao, M.; Nozaki, T.; Ogawa, K.; Ohkubo, R.; Ohnishi, Y.; Ozaki, H.; Sagawa, H.; Saito, M.; Sakai, Y.; Sasaki, T.; Sato, N.; Sumiyoshi, T.; Suzuki, J.; Suzuki, J. I.; Suzuki, S.; Takasaki, F.; Tamai, K.; Tanaka, M.; Tatomi, T.; Tsuboyama, T.; Tsukada, K.; Tsukamoto, T.; Uehara, S.; Ujiie, N.; Uno, S.; Yabsley, B.; Yamada, Y.; Yamaguchi, H.; Yamaoka, H.; Yamaoka, Y.; Yamauchi, M.; Yoshimura, Y.; Zhao, H.; Abe, R.; Iwai, G.; Kawasaki, T.; Miyata, H.; Shimada, K.; Takahashi, S.; Tamura, N.; Abe, K.; Hanada, H.; Nagamine, T.; Nakajima, M.; Nakajima, T.; Narita, S.; Sanpei, M.; Takayama, T.; Ueki, M.; Yamaga, M.; Yamaguchi, A.; Ahn, B. S.; Kang, J. S.; Kim, Hyunwoo; Park, C. W.; Park, H.; Ahn, H. S.; Jang, H. K.; Kim, C. H.; Kim, S. K.; Lee, S. H.; Park, C. S.; Won, E.; Aihara, H.; Higuchi, T.; Kawai, H.; Matsubara, T.; Nakadaira, T.; Tajima, H.; Tanaka, J.; Tomura, T.; Yokoyama, M.; Akatsu, M.; Fujimoto, K.; Hirose, M.; Inami, K.; Ishikawa, A.; Itami, S.; Kani, T.; Matsumoto, T.; Nagai, I.; Okabe, T.; Oshima, T.; Senyo, K.; Sugi, A.; Sugiyama, A.; Suitoh, S.; Suzuki, S.; Tomoto, M.; Yoshida, K.; Akhmetshin, R.; Chang, P.; Chao, Y.; Chen, Y. Q.; Hou, W. S.; Hsu, S. C.; Huang, H. C.; Huang, T. J.; Lee, M. C.; Lu, R. S.; Peng, J. C.; Peng, K. C.; Sahu, S.; Sung, H. F.; Tsai, K. L.; Ueno, K.; Wang, C. C.; Wang, M. Z.; Alimonti, G.; Browder, T. E.; Casey, B. C. K.; Fang, F.; Guler, H.; Jones, M.; Li, Y.; Olsen, S. L.; Peters, M.; Rodriguez, J. L.; Rosen, M.; Swain, S.; Trabelsi, K.; Varner, G.; Yamamoto, H.; Zheng, Y. H.; An, Q.; Chen, H. F.; Wang, Y. F.; Xu, Z. Z.; Ye, S. W.; Zhang, Z. P.; Asai, M.; Asano, Y.; Mori, S.; Stanič, S.; Tsujita, Y.; Zhang, J.; Žontar, D.; Aso, T.; Aulchenko, V.; Beiline, D.; Bondar, A.; Dneprovsky, L.; Eidelman, S.; Garmash, A.; Kuzmin, A.; Romanov, L.; Root, N.; Shwartz, B.; Sidorov, A.; Sidorov, V.; Usov, Y.; Zhilich, V.; Bakich, A. M.; Peak, L. S.; Varvell, K. E.; Banas, E.; Bozek, A.; Jalocha, P.; Kapusta, P.; Natkaniec, Z.; Ostrowicz, W.; Palka, H.; Rozanka, M.; Rybicki, K.; Behera, P. K.; Mohapatra, A.; Satapathy, M.; Chang, Y. H.; Chen, H. S.; Dong, L. Y.; Li, J.; Liu, H. M.; Mao, Z. P.; Yu, C. X.; Zhang, C. C.; Zhang, S. Q.; Zhao, Z. G.; Zheng, Z. P.; Cheon, B. G.; Choi, Y.; Kim, D. W.; Nam, J. W.; Chidzik, S.; Korotuschenko, K.; Leonidopoulos, C.; Liu, T.; Marlow, D.; Mindas, C.; Prebys, E.; Rabberman, R.; Sands, W.; Wixted, R.; Choi, S.; Dragic, J.; Everton, C. W.; Gordon, A.; Hastings, N. C.; Heenan, E. M.; Moffitt, L. C.; Moloney, G. R.; Moorhead, G. F.; Sevior, M. E.; Taylor, G. N.; Tovey, S. N.; Drutskoy, A.; Kagan, R.; Pakhlov, P.; Semenov, S.; Fukunaga, C.; Suda, R.; Fukushima, M.; Goriletsky, V. I.; Grinyov, B. V.; Lyubinsky, V. R.; Panova, A. I.; Shakhova, K. V.; Shpilinskaya, L. I.; Vinograd, E. L.; Zaslavsky, B. G.; Guo, R. S.; Haitani, F.; Hoshi, Y.; Neichi, K.; Hara, K.; Hara, T.; Hazumi, M.; Hojo, T.; Jackson, D.; Miyake, H.; Nagashima, Y.; Ryuko, J.; Sumisawa, K.; Takita, M.; Yamanaka, T.; Hayashii, H.; Miyabayashi, K.; Noguchi, S.; Hikita, S.; Hirano, H.; Hoshina, K.; Mamada, H.; Nitoh, O.; Okazaki, N.; Yokoyama, T.; Ishino, H.; Ichizawa, S.; Hirai, T.; Kakuno, H.; Kaneko, J.; Nakamura, T.; Ohshima, Y.; Watanabe, Y.; Yanaka, S.; Inoue, Y.; Nakano, E.; Takahashi, T.; Teramoto, Y.; Kang, J. H.; Kim, H. J.; Kim, Heejong; Kwon, Y.-J.; Kawai, H.; Kurihara, E.; Ooba, T.; Suzuki, K.; Unno, Y.; Kawamura, N.; Yuta, H.; Kinoshita, K.; Satpathy, A.; Kobayashi, S.; Kuniya, T.; Murakami, A.; Tsukamoto, T.; Kumar, S.; Singh, J.; Lange, J.; Stock, R.; Matsumoto, S.; Watanabe, M.; Matsuo, H.; Nishida, S.; Nomura, T.; Sakamoto, H.; Sasao, N.; Ushiroda, Y.; Nagasaka, Y.; Tanaka, Y.; Ogawa, S.; Shibuya, H.; Hanagaki, K.; Okuno, S.; Shen, D. Z.; Yan, D. S.; Yin, Z. W.; Tan, N.; Wang, C. H.; Yamaki, T.; Yamashita, Y.

    2002-02-01

    The Belle detector was designed and constructed to carry out quantitative studies of rare B-meson decay modes with very small branching fractions using an asymmetric e +e - collider operating at the ϒ(4S) resonance, the KEK-B-factory. Such studies require data samples containing ˜10 7 B-meson decays. The Belle detector is configured around a 1.5 T superconducting solenoid and iron structure surrounding the KEK-B beams at the Tsukuba interaction region. B-meson decay vertices are measured by a silicon vertex detector situated just outside of a cylindrical beryllium beam pipe. Charged particle tracking is performed by a wire drift chamber (CDC). Particle identification is provided by d E/d x measurements in CDC, aerogel threshold Cherenkov counter and time-of-flight counter placed radially outside of CDC. Electromagnetic showers are detected in an array of CsI( Tl) crystals located inside the solenoid coil. Muons and K L mesons are identified by arrays of resistive plate counters interspersed in the iron yoke. The detector covers the θ region extending from 17° to 150°. The part of the uncovered small-angle region is instrumented with a pair of BGO crystal arrays placed on the surfaces of the QCS cryostats in the forward and backward directions. Details of the design and development works of the detector subsystems, which include trigger, data acquisition and computer systems, are described. Results of performance of the detector subsystems are also presented.

  10. Gamma ray detector modules

    NASA Technical Reports Server (NTRS)

    Capote, M. Albert (Inventor); Lenos, Howard A. (Inventor)

    2009-01-01

    A radiation detector assembly has a semiconductor detector array substrate of CdZnTe or CdTe, having a plurality of detector cell pads on a first surface thereof, the pads having a contact metallization and a solder barrier metallization. An interposer card has planar dimensions no larger than planar dimensions of the semiconductor detector array substrate, a plurality of interconnect pads on a first surface thereof, at least one readout semiconductor chip and at least one connector on a second surface thereof, each having planar dimensions no larger than the planar dimensions of the interposer card. Solder columns extend from contacts on the interposer first surface to the plurality of pads on the semiconductor detector array substrate first surface, the solder columns having at least one solder having a melting point or liquidus less than 120 degrees C. An encapsulant is disposed between the interposer circuit card first surface and the semiconductor detector array substrate first surface, encapsulating the solder columns, the encapsulant curing at a temperature no greater than 120 degrees C.

  11. Cadmium mercury telluride infrared detectors

    NASA Astrophysics Data System (ADS)

    Elliott, C. T.

    Signal Processing In The Element (SPITE) detectors used in high performance thermal imaging systems are discussed. Developments to improve spatial and temperature resolution are outlined. Focal plane arrays of electronically scanned two-dimensional arrays of CMT detectors are treated. Use of photovoltaic CMT detectors hybridized with silicon addressing circuits is reported. Research to raise the operating temperature of infrared detectors is summarized.

  12. Progress in semiconductor drift detectors

    SciTech Connect

    Rehak, P.; Walton, J.; Gatti, E.; Longoni, A.; Sanpietro, M.; Kemmer, J.; Dietl, H.; Holl, P.; Klanner, R.; Lutz, G.

    1985-01-01

    Progress in testing semiconductor drift detectors is reported. Generally better position and energy resolutions were obtained than resolutions published previously. The improvement is mostly due to new electronics better matched to different detectors. It is shown that semiconductor drift detectors are becoming versatile and reliable detectors for position and energy measurements.

  13. Proximate determinants of fertility in peninsular Malaysia.

    PubMed

    Tey, Nai Peng; Ng, Sor Tho; Yew, Siew Yong

    2012-05-01

    The continuing decline in fertility despite a contraction in contraceptive use in Peninsular Malaysia since the mid-1980s has triggered considerable interest in the reasons behind this phenomenon, such as increase in abortion, sterility, and out-of-wedlock pregnancy. Fertility decline has been attributed to rapid socioeconomic development, which can only influence fertility through the intermediate variables. Application of vital statistics, population census, and survey data of Peninsular Malaysia on Bongaarts's model vindicates that marriage postponement and contraceptive use are the 2 most important proximate determinants of fertility, but the effects are not uniform across the ethnic groups. For instance, the predicted total fertility rate for Chinese and Malays are 2.9 and 1.6, respectively, compared with the observed level of 3.0 and 1.9. Postpartum infecundability and abortion also play a part in explaining ethnic fertility differentials. The fertility inhibiting effects of these proximate determinants have significant implications on reproductive health and future population growth.

  14. Phylogenetic proximity revealed by neurodevelopmental event timings.

    PubMed

    Nagarajan, Radhakrishnan; Clancy, Barbara

    2008-01-01

    Statistical properties such as distribution and correlation signatures were investigated using a temporal database of common neurodevelopmental events in the three species most frequently used in experimental studies, rat, mouse, and macaque. There was a fine nexus between phylogenetic proximity and empirically derived dates of the occurrences of 40 common events including the neurogenesis of cortical layers and outgrowth milestones of developing axonal projections. Exponential and power-law approximations to the distribution of the events reveal strikingly similar decay patterns in rats and mice when compared to macaques. Subsequent hierarchical clustering of the common event timings also captures phylogenetic proximity, an association further supported by multivariate linear regression data. These preliminary results suggest that statistical analyses of the timing of developmental milestones may offer a novel measure of phylogenetic classifications. This may have added pragmatic value in the specific support it offers for the reliability of rat/mouse comparative modeling, as well as in the broader implications for the potential of meta-analyses using databases assembled from the extensive empirical literature.

  15. Synostosis of the Proximal Tibiofibular Joint

    PubMed Central

    Sferopoulos, Nikolaos K.

    2010-01-01

    The incidence of synostosis of the proximal tibiofibular joint (TFJ) was assessed among 1029 patients examined for osteoarthritis of the knee in a 4-year period. Radiographic evidence of a synostosis of the proximal TFJ was demonstrated in 3 knees (3 patients). The synostosis appeared incidental and was not the cause of symptoms in any of them. These patients were further examined with MRI and/or CT scans. In two cases, which were found to be primary (idiopathic), the synostosis was complete and bony. In a third case the lesion was secondary (acquired) to surgical reconstruction for a depressed fracture of the lateral tibial plateau. This iatrogenic complication followed open reduction, internal fixation, and grafting with synthetic bone. The bridging of the joint on the CT views was partial and compatible with ectopic calcification rather than ossification. The patients were treated conservatively and were followed for an average period of 3 years. No evidence that the synostosis accelerated the onset or progression of the degenerative changes to the ipsilateral knee could be verified. PMID:20592991

  16. An improved proximity force approximation for electrostatics

    SciTech Connect

    Fosco, Cesar D.; Lombardo, Fernando C.; Mazzitelli, Francisco D.

    2012-08-15

    A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated with their shapes. Indeed, in the so called 'proximity force approximation' the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contributions of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied in different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful for discussing the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction in atomic force microscopes. - Highlights: Black-Right-Pointing-Pointer The proximity force approximation (PFA) has been widely used in different areas. Black-Right-Pointing-Pointer The PFA can be improved using a derivative expansion in the shape of the surfaces. Black-Right-Pointing-Pointer We use the improved PFA to compute electrostatic forces between conductors. Black-Right-Pointing-Pointer The results can be used as an analytic benchmark for numerical calculations in AFM. Black-Right-Pointing-Pointer Insight is provided for people who use the PFA to compute nuclear and Casimir forces.

  17. Proteomics of Primary Cilia by Proximity Labeling

    PubMed Central

    Mick, David U.; Rodrigues, Rachel B.; Leib, Ryan D.; Adams, Christopher M.; Chien, Allis S.; Gygi, Steven P.; Nachury, Maxence V.

    2015-01-01

    SUMMARY While cilia are recognized as important signaling organelles, the extent of ciliary functions remains unknown because of difficulties in cataloguing proteins from mammalian primary cilia. We present a method that readily captures rapid snapshots of the ciliary proteome by selectively biotinylating ciliary proteins using a cilia-targeted proximity labeling enzyme (cilia-APEX). Besides identifying known ciliary proteins, cilia-APEX uncovered several ciliary signaling molecules. The kinases PKA, AMPK and LKB1 were validated as bona fide ciliary proteins and PKA was found to regulate Hedgehog signaling in primary cilia. Furthermore, proteomics profiling of Ift27/Bbs19 mutant cilia correctly detected BBSome accumulation inside Ift27−/− cilia and revealed that β-arrestin 2 and the viral receptor CAR are candidate cargoes of the BBSome. This work demonstrates that proximity labeling can be applied to proteomics of non-membrane-enclosed organelles and suggests that proteomics profiling of cilia will enable a rapid and powerful characterization of ciliopathies. PMID:26585297

  18. Carbon nanotube proximity influences rice DNA

    NASA Astrophysics Data System (ADS)

    Katti, Dinesh R.; Sharma, Anurag; Pradhan, Shashindra Man; Katti, Kalpana S.

    2015-07-01

    The uptake of carbon nanotubes (CNT) influences the output of plants, potentially through interactions between the DNA and CNTs. However, little is known about the changes in the plant DNA due to CNT proximity. We report changes in rice plant DNA in the proximity of single walled CNT (SWCNT) using molecular dynamics simulations. The DNA experiences breaking and forming of hydrogen bonds due to unzipping of Watson-Crick (WC) nucleobase pairs and wrapping onto SWCNT. The number of hydrogen bonds between water and DNA nucleobases decreases due to the presence of SWCNT. A higher number of guanine-cytosine (Gua-Cyt) WC hydrogen bonds break as compared to adenine-thymine (Ade-Thy), which suggests that Gua and Cyt bases play a dominant role in DNA-SWCNT interactions. We also find that changes to non-WC nucleobase pairs and van der Waals attractive interactions between WC nucleobase pairs and SWCNT cause significant changes in the conformation of the DNA.

  19. Empathy: Its ultimate and proximate bases.

    PubMed

    Preston, Stephanie D; de Waal, Frans B M

    2002-02-01

    There is disagreement in the literature about the exact nature of the phenomenon of empathy. There are emotional, cognitive, and conditioning views, applying in varying degrees across species. An adequate description of the ultimate and proximate mechanism can integrate these views. Proximately, the perception of an object's state activates the subject's corresponding representations, which in turn activate somatic and autonomic responses. This mechanism supports basic behaviors (e.g., alarm, social facilitation, vicariousness of emotions, mother-infant responsiveness, and the modeling of competitors and predators) that are crucial for the reproductive success of animals living in groups. The Perception-Action Model (PAM), together with an understanding of how representations change with experience, can explain the major empirical effects in the literature (similarity, familiarity, past experience, explicit teaching, and salience). It can also predict a variety of empathy disorders. The interaction between the PAM and prefrontal functioning can also explain different levels of empathy across species and age groups. This view can advance our evolutionary understanding of empathy beyond inclusive fitness and reciprocal altruism and can explain different levels of empathy across individuals, species, stages of development, and situations.

  20. Predicting the biomechanical strength of proximal femur specimens with Minkowski functionals and support vector regression

    NASA Astrophysics Data System (ADS)

    Yang, Chien-Chun; Nagarajan, Mahesh B.; Huber, Markus B.; Carballido-Gamio, Julio; Bauer, Jan S.; Baum, Thomas; Eckstein, Felix; Lochmüller, Eva-Maria; Link, Thomas M.; Wismüller, Axel

    2014-03-01

    Regional trabecular bone quality estimation for purposes of femoral bone strength prediction is important for improving the clinical assessment of osteoporotic fracture risk. In this study, we explore the ability of 3D Minkowski Functionals derived from multi-detector computed tomography (MDCT) images of proximal femur specimens in predicting their corresponding biomechanical strength. MDCT scans were acquired for 50 proximal femur specimens harvested from human cadavers. An automated volume of interest (VOI)-fitting algorithm was used to define a consistent volume in the femoral head of each specimen. In these VOIs, the trabecular bone micro-architecture was characterized by statistical moments of its BMD distribution and by topological features derived from Minkowski Functionals. A linear multiregression analysis and a support vector regression (SVR) algorithm with a linear kernel were used to predict the failure load (FL) from the feature sets; the predicted FL was compared to the true FL determined through biomechanical testing. The prediction performance was measured by the root mean square error (RMSE) for each feature set. The best prediction result was obtained from the Minkowski Functional surface used in combination with SVR, which had the lowest prediction error (RMSE = 0.939 ± 0.345) and which was significantly lower than mean BMD (RMSE = 1.075 ± 0.279, p<0.005). Our results indicate that the biomechanical strength prediction can be significantly improved in proximal femur specimens with Minkowski Functionals extracted from on MDCT images used in conjunction with support vector regression.

  1. The convergence rate of the proximal alternating direction method of multipliers with indefinite proximal regularization.

    PubMed

    Sun, Min; Liu, Jing

    2017-01-01

    The proximal alternating direction method of multipliers (P-ADMM) is an efficient first-order method for solving the separable convex minimization problems. Recently, He et al. have further studied the P-ADMM and relaxed the proximal regularization matrix of its second subproblem to be indefinite. This is especially significant in practical applications since the indefinite proximal matrix can result in a larger step size for the corresponding subproblem and thus can often accelerate the overall convergence speed of the P-ADMM. In this paper, without the assumptions that the feasible set of the studied problem is bounded or the objective function's component [Formula: see text] of the studied problem is strongly convex, we prove the worst-case [Formula: see text] convergence rate in an ergodic sense of the P-ADMM with a general Glowinski relaxation factor [Formula: see text], which is a supplement of the previously known results in this area. Furthermore, some numerical results on compressive sensing are reported to illustrate the effectiveness of the P-ADMM with indefinite proximal regularization.

  2. Detectors in Extreme Conditions

    SciTech Connect

    Blaj, G.; Carini, G.; Carron, S.; Haller, G.; Hart, P.; Hasi, J.; Herrmann, S.; Kenney, C.; Segal, J.; Tomada, A.

    2015-08-06

    Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 1012 - 1013 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impeding data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.

  3. Role of proximal tubules in the pathogenesis of kidney disease.

    PubMed

    Nakhoul, Nazih; Batuman, Vecihi

    2011-01-01

    The proximal tubules make up a significant portion of the kidneys; proximal tubule epithelial cells are the most populous cell type in the kidney, and carry out diverse regulatory and endocrine functions where numerous transporters are located. Under normal circumstances, more than two thirds of filtered salt and water, and all filtered bicarbonate is reabsorbed in the proximal tubule. A number of inherited and acquired acid-base and tubule disorders are linked to impaired transporters in the proximal tubule cells. Equally important is the intrinsic immune characteristics of proximal tubule cells that give them the ability to also function as immune responders to a wide range of immunologic, ischemic or toxic injury. It is therefore not surprising that proximal tubule-related phenomena are closely related to the pathogenesis of a vast array of kidney diseases. Many kidney diseases, acute and chronic, first manifest with proximal tubule disorders. Recent insight into molecular characteristics of transport functions in the proximal tubules, and the recognition that proximal tubule cells possess intrinsic immune responses have contributed to an improved understanding of important areas in nephrology, such as Fanconi's syndrome, renal tubular acidosis, phosphate wasting syndromes, Dent's disease, cystinuria and other amino acid transport disorders, acute kidney injury, and the role of proximal tubules in progressive kidney disease. Megalin/ cubilin-mediated endocytosis by proximal tubule cells of increased quantities of filtered proteins (protein overloading) in glomerular diseases appears to evoke cell stress responses resulting in increased inflammatory cytokines leading to tubulointerstitial inflammation and fibrosis. Finally, the proximal tubule may be the site of both active vitamin D synthesis through the action of 1-α-hydroxylase, and the site where erythropoietin synthesis takes place. Thus, proximal tubule injury also contributes to two distressing

  4. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    NASA Astrophysics Data System (ADS)

    Dobos, Daniel

    2016-07-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to the surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer, a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. An overview of the refurbishing of the Pixel Detector and of the IBL project as well as early performance tests using cosmic rays and beam data will be presented.

  5. Proximity effects in ferromagnet-superconductor structures

    NASA Astrophysics Data System (ADS)

    Halterman, Klaus Byron

    I present an extensive theoretical investigation of the proximity effects that occur in ferromagnet/superconductor systems. I use a numerical method to solve self consistently the Bogoliubov-de Gennes equations in the continuum. I obtain the pair amplitude and the local density of states (DOS), and use these results to extract the relevant lengths characterizing both the leakage of superconductivity into the magnet and to study spin splitting induced in the superconductor. These phenomena are investigated as a function of parameters such as temperature, magnet polarization, interfacial scattering, sample size and Fermi wave vector mismatch, all of which turn out to have an important influence on the results. These comprehensive results should help characterize and analyze future data, and are shown to be in agreement with existing experiments.

  6. Parallel Proximity Detection for Computer Simulations

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S. (Inventor); Wieland, Frederick P. (Inventor)

    1998-01-01

    The present invention discloses a system for performing proximity detection in computer simulations on parallel processing architectures utilizing a distribution list which includes movers and sensor coverages which check in and out of grids. Each mover maintains a list of sensors that detect the mover's motion as the mover and sensor coverages check in and out of the grids. Fuzzy grids are included by fuzzy resolution parameters to allow movers and sensor coverages to check in and out of grids without computing exact grid crossings. The movers check in and out of grids while moving sensors periodically inform the grids of their coverage. In addition, a lookahead function is also included for providing a generalized capability without making any limiting assumptions about the particular application to which it is applied. The lookahead function is initiated so that risk-free synchronization strategies never roll back grid events. The lookahead function adds fixed delays as events are scheduled for objects on other nodes.

  7. Parallel Proximity Detection for Computer Simulation

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S. (Inventor); Wieland, Frederick P. (Inventor)

    1997-01-01

    The present invention discloses a system for performing proximity detection in computer simulations on parallel processing architectures utilizing a distribution list which includes movers and sensor coverages which check in and out of grids. Each mover maintains a list of sensors that detect the mover's motion as the mover and sensor coverages check in and out of the grids. Fuzzy grids are includes by fuzzy resolution parameters to allow movers and sensor coverages to check in and out of grids without computing exact grid crossings. The movers check in and out of grids while moving sensors periodically inform the grids of their coverage. In addition, a lookahead function is also included for providing a generalized capability without making any limiting assumptions about the particular application to which it is applied. The lookahead function is initiated so that risk-free synchronization strategies never roll back grid events. The lookahead function adds fixed delays as events are scheduled for objects on other nodes.

  8. [Ophthalmologists in the proximity of Adolf Hitler].

    PubMed

    Rohrbach, J M

    2012-10-01

    Adolf Hitler met or at least knew about 5 ophthalmologists. The chair of ophthalmology in Berlin, Walther Löhlein, personally examined Hitler's eyes at least two times. The chair of ophthalmology in Breslau, Walter Dieter, developed "air raid protection spectacles" with the aid of high representatives of the NS-system and probably Adolf Hitler himself. Heinrich Wilhelm Kranz became rector of the universities of Giessen and Frankfurt/Main. He was known as a very strict advocate of the NS-race hygiene. Werner Zabel made plans for Hitler's diet and tried to interfere with Hitler's medical treatment. Finally, Hellmuth Unger was an influential representative of the medical press and a famous writer. Three of his novels with medical topics were made into a film which Hitler probably saw. Hitler had, so to say, a small "ophthalmological proximity" which, however, did not play a significant role for himself or the NS-state.

  9. Semiconductor radiation detector

    DOEpatents

    Patt, Bradley E.; Iwanczyk, Jan S.; Tull, Carolyn R.; Vilkelis, Gintas

    2002-01-01

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

  10. Handheld CZT radiation detector

    DOEpatents

    Murray, William S.; Butterfield, Kenneth B.; Baird, William

    2004-08-24

    A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

  11. JSATS Detector Field Manual

    SciTech Connect

    Choi, Eric Y.; Flory, Adam E.; Lamarche, Brian L.; Weiland, Mark A.

    2014-06-01

    The Juvenile Salmon Acoustic Telemetry System (JSATS) Detector is a software and hardware system that captures JSATS Acoustic Micro Transmitter (AMT) signals. The system uses hydrophones to capture acoustic signals in the water. This analog signal is then amplified and processed by the Analog to Digital Converter (ADC) and Digital Signal Processor (DSP) board in the computer. This board digitizes and processes the acoustic signal to determine if a possible JSATS tag is present. With this detection, the data will be saved to the computer for further analysis. This document details the features and functionality of the JSATS Detector software. The document covers how to install the software, setup and run the detector software. The document will also go over the raw binary waveform file format and CSV files containing RMS values

  12. Isosmotic volume reabsorption in rat proximal tubule

    PubMed Central

    1980-01-01

    A theoretical model incorporation both active and passive forces has been developed for fluid reabsorption from split oil droplets in rat intermediate and late proximal tubule. Of necessity, simplifying assumptions have been introduced; we have assumed that the epithelium can be treated as a single membrane and that the membrane "effective" HCO3 permeability is near zero. Based on this model with its underlying assumptions, the following conclusions are drawn. Regardless of the presence or absence of active NaCl transport, fluid reabsorption from the split oil droplet is isosmotic. The reabsorbate osmolarity can be affected by changes in tubular permeability parameters and applied forces but is not readily altered from an osmolarity essentially equal to that of plasma. In a split droplet, isosmotic flow need not be a special consequence of active Na transport, is not the result of a particular set of permeability properties, and is not merely a trivial consequence of a very high hydraulic conductivity; isosmotic flow can be obtained with hydraulic conductivity nearly an order of magnitude lower than that previously measured in the rat proximal convoluted tubule. Isosmotic reabsorption is, in part, the result of the interdependence of salt and water flows, their changing in parallel, and thus their ratio, the reabsorbate concentration being relatively invariant. Active NaCl transport can cause osmotic water flow by reducing the luminal fluid osmolarity. In the presence of passive forces the luminal fluid can be hypertonic to plasma, and active NaCl transport can still exert its osmotic effect on volume flow. There are two passive forces for volume flow: the Cl gradient and the difference in effective osmotic pressure; they have an approximately equivalent effect on volume flow. Experimentally, we have measured volume changes in a droplet made hyperosmotic by the addition of 50 mM NaCl; the experimental results are predicted reasonably well by our theoretical model

  13. Isosmotic volume reabsorption in rat proximal tubule.

    PubMed

    Warner, R R; Lechene, C

    1980-11-01

    A theoretical model incorporation both active and passive forces has been developed for fluid reabsorption from split oil droplets in rat intermediate and late proximal tubule. Of necessity, simplifying assumptions have been introduced; we have assumed that the epithelium can be treated as a single membrane and that the membrane "effective" HCO3 permeability is near zero. Based on this model with its underlying assumptions, the following conclusions are drawn. Regardless of the presence or absence of active NaCl transport, fluid reabsorption from the split oil droplet is isosmotic. The reabsorbate osmolarity can be affected by changes in tubular permeability parameters and applied forces but is not readily altered from an osmolarity essentially equal to that of plasma. In a split droplet, isosmotic flow need not be a special consequence of active Na transport, is not the result of a particular set of permeability properties, and is not merely a trivial consequence of a very high hydraulic conductivity; isosmotic flow can be obtained with hydraulic conductivity nearly an order of magnitude lower than that previously measured in the rat proximal convoluted tubule. Isosmotic reabsorption is, in part, the result of the interdependence of salt and water flows, their changing in parallel, and thus their ratio, the reabsorbate concentration being relatively invariant. Active NaCl transport can cause osmotic water flow by reducing the luminal fluid osmolarity. In the presence of passive forces the luminal fluid can be hypertonic to plasma, and active NaCl transport can still exert its osmotic effect on volume flow. There are two passive forces for volume flow: the Cl gradient and the difference in effective osmotic pressure; they have an approximately equivalent effect on volume flow. Experimentally, we have measured volume changes in a droplet made hyperosmotic by the addition of 50 mM NaCl; the experimental results are predicted reasonably well by our theoretical model.

  14. Proximity to mining industry and cancer mortality.

    PubMed

    Fernández-Navarro, Pablo; García-Pérez, Javier; Ramis, Rebeca; Boldo, Elena; López-Abente, Gonzalo

    2012-10-01

    Mining installations are releasing toxic substances into the environment which could pose a health problem to populations in their vicinity. We sought to investigate whether there might be excess cancer-related mortality in populations residing in towns lying in the vicinity of Spanish mining industries governed by the Integrated Pollution Prevention and Control Directive, and the European Pollutant Release and Transfer Register Regulation, according to the type of extraction method used. An ecologic study was designed to examine municipal mortality due to 32 types of cancer, across the period 1997 through 2006. Population exposure to pollution was estimated on the basis of distance from town of residence to pollution source. Poisson regression models, using the Bayesian conditional autoregressive model proposed by Besag, York and Molliè and Integrated Nested Laplace Approximations for Bayesian inference, were used: to analyze risk of dying from cancer in a 5-kilometer zone around mining installations; effect of type of industrial activity; and to conduct individual analyses within a 50-kilometer radius of each installation. Excess mortality (relative risk, 95% credible interval) of colorectal cancer (1.097, 1.041-1.157), lung cancer (1.066, 1.009-1.126) specifically related with proximity to opencast coal mining, bladder cancer (1.106, 1.016-1.203) and leukemia (1.093, 1.003-1.191) related with other opencast mining installations, was detected among the overall population in the vicinity of mining installations. Other tumors also associated in the stratified analysis by type of mine, were: thyroid, gallbladder and liver cancers (underground coal installations); brain cancer (opencast coal mining); stomach cancer (coal and other opencast mining installations); and myeloma (underground mining installations). The results suggested an association between risk of dying due to digestive, respiratory, hematologic and thyroid cancers and proximity to Spanish mining

  15. RADIATION WAVE DETECTOR

    DOEpatents

    Wouters, L.F.

    1958-10-28

    The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.

  16. Glow discharge detector

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2002-01-01

    A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured.

  17. Ultrasonic liquid level detector

    DOEpatents

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  18. High efficiency photoionization detector

    DOEpatents

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  19. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  20. Radiation Detectors and Art

    NASA Astrophysics Data System (ADS)

    Denker, Andrea

    The use of radiation detectors in the analysis of art objects represents a very special application in a true interdisciplinary field. Radiation detectors employed in this field detect, e.g., x-rays, γ-rays, β particles, and protons. Analyzed materials range from stones, metals, over porcelain to paintings. The available nondestructive and noninvasive analytical methods cover a broad range of techniques. Hence, for the sake of brevity, this chapter will concentrate on few techniques: Proton Induced X-ray Emission (PIXE) and Proton Induced γ-ray Emission (PIGE).

  1. Semiconductor neutron detector

    DOEpatents

    Ianakiev, Kiril D.; Littlewood, Peter B.; Blagoev, Krastan B.; Swinhoe, Martyn T.; Smith, James L.; Sullivan, Clair J.; Alexandrov, Boian S.; Lashley, Jason Charles

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  2. High efficiency photoionization detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  3. High performance pyroelectric infrared detector

    NASA Astrophysics Data System (ADS)

    Hu, Xu; Luo, Haosu; Ji, Yulong; Yang, Chunli

    2015-10-01

    Single infrared detector made with Relaxative ferroelectric crystal(PMNT) present excellence performance. In this paper include detector capacitance, characteristic of frequency--response, characteristic of detectivity. The measure result show that detectivity of detector made with relaxative ferroelectric crystal(PMNT) exceed three times than made with LT, the D*achieved than 1*109cmHz0.5W-1. The detector will be applied on NDIR spectrograph, FFT spectrograph and so on. The high performance pyroelectric infrared detector be developed that will be broadened application area of infrared detector.

  4. The Upgraded D0 detector

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Clermont-Ferrand U. /LPSC, Grenoble /Marseille, CPPM /Orsay, LAL /Paris U., VI-VII /DAPNIA, Saclay /Strasbourg, IReS

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  5. Performance overview of the Euclid infrared focal plane detector subsystems

    NASA Astrophysics Data System (ADS)

    Waczynski, A.; Barbier, R.; Cagiano, S.; Chen, J.; Cheung, S.; Cho, H.; Cillis, A.; Clémens, J.-C.; Dawson, O.; Delo, G.; Farris, M.; Feizi, A.; Foltz, R.; Hickey, M.; Holmes, W.; Hwang, T.; Israelsson, U.; Jhabvala, M.; Kahle, D.; Kan, Em.; Kan, Er.; Loose, M.; Lotkin, G.; Miko, L.; Nguyen, L.; Piquette, E.; Powers, T.; Pravdo, S.; Runkle, A.; Seiffert, M.; Strada, P.; Tucker, C.; Turck, K.; Wang, F.; Weber, C.; Williams, J.

    2016-07-01

    In support of the European space agency (ESA) Euclid mission, NASA is responsible for the evaluation of the H2RG mercury cadmium telluride (MCT) detectors and electronics assemblies fabricated by Teledyne imaging systems. The detector evaluation is performed in the detector characterization laboratory (DCL) at the NASA Goddard space flight center (GSFC) in close collaboration with engineers and scientists from the jet propulsion laboratory (JPL) and the Euclid project. The Euclid near infrared spectrometer and imaging photometer (NISP) will perform large area optical and spectroscopic sky surveys in the 0.9-2.02 μm infrared (IR) region. The NISP instrument will contain sixteen detector arrays each coupled to a Teledyne SIDECAR application specific integrated circuit (ASIC). The focal plane will operate at 100K and the SIDECAR ASIC will be in close proximity operating at a slightly higher temperature of 137K. This paper will describe the test configuration, performance tests and results of the latest engineering run, also known as pilot run 3 (PR3), consisting of four H2RG detectors operating simultaneously. Performance data will be presented on; noise, spectral quantum efficiency, dark current, persistence, pixel yield, pixel to pixel uniformity, linearity, inter pixel crosstalk, full well and dynamic range, power dissipation, thermal response and unit cell input sensitivity.

  6. High to very high frequency metal/anomaly detector

    NASA Astrophysics Data System (ADS)

    Heinz, Daniel C.; Brennan, Michael L.; Steer, Michael B.; Melber, Adam W.; Cua, John T.

    2014-05-01

    Typical metal detectors work at very low to low frequencies. In this paper, a metal/anomaly detector design that operates in the high to very high frequency range is presented. This design uses a high-Q tuned loop antenna for metal/anomaly detection. By measuring the return loss or voltage standing wave ratio a frequency notch can be detected. Tuning to the optimal location of the notch can be accomplished by monitoring the phase response. This phase monitoring technique can be used to ground balance the detector. As a metal object is moved along the longitudinal axis of the loop antenna a substantial shift in the frequency of the notch is detected. For metal targets, the frequency shift is positive, and for ferrite and other targets, the frequency shift is negative. This frequency shift is created by the proximity of the target causing a change in the impedance of the antenna. Experiments with a prototype antenna show long-range detection with low power requirements. The detector requires only one loop with one winding which is used for both transmit and receive. This allows for a metal/anomaly detector with a very simple design. The design is lightweight and, depending on loop size, significantly increases detection depth performance. In the full paper, modeling and further experimental results will be presented. Performance results for various types of soil and for different types of targets are presented.

  7. High resolution decoding of Multi-Anode Microchannel Array detectors

    NASA Technical Reports Server (NTRS)

    Kasle, David B.; Morgan, Jeffrey S.

    1991-01-01

    The Multi-Anode Microchannel Array (MAMA) is a photon counting detector which utilizes a photocathode for photon to electron conversion, a microchannel plate (MCP) for signal amplification and a proximity focused anode array for position sensitivity. The detector electronics decode the position of an event through coincidence discrimination. The decoding algorithm which associates a given event with the appropriate pixel is determined by the geometry of the array. A new algorithm incorporated into a CMOS Application Specific Integrated Circuit (ASIC) decoder which improves the pixel spatial resolution is described. The new algorithm does not degrade the detector throughput and does not require any modifications to the detector tube. The standard MAMA detector has a pixel size of 25 x 25 square microns, but with the new decoder circuit the pixel size is reduced to 12.5 x 12.5 square microns. We have built the first set of decode electronics utilizing the new ASIC chips and report here on the first imaging tests of this system.

  8. Sub-micrometer resolution proximity X-ray microscope with digital image registration

    SciTech Connect

    Chkhalo, N. I.; Salashchenko, N. N.; Sherbakov, A. V. Svechnikov, M. V.; Pestov, A. E.; Skorokhodov, E. V.

    2015-06-15

    A compact laboratory proximity soft X-ray microscope providing submicrometer spatial resolution and digital image registration is described. The microscope consists of a laser-plasma soft X-ray radiation source, a Schwarzschild objective to illuminate the test sample, and a two-coordinate detector for image registration. Radiation, which passes through the sample under study, generates an absorption image on the front surface of the detector. Optical ceramic YAG:Ce was used to convert the X-rays into visible light. An image was transferred from the scintillator to a charge-coupled device camera with a Mitutoyo Plan Apo series lens. The detector’s design allows the use of lenses with numerical apertures of NA = 0.14, 0.28, and 0.55 without changing the dimensions and arrangement of the elements of the device. This design allows one to change the magnification, spatial resolution, and field of view of the X-ray microscope. A spatial resolution better than 0.7 μm and an energy conversion efficiency of the X-ray radiation with a wavelength of 13.5 nm into visible light collected by the detector of 7.2% were achieved with the largest aperture lens.

  9. Fast Detector Simulation Using Lelaps, Detector Descriptions in GODL

    SciTech Connect

    Langeveld, Willy; /SLAC

    2005-07-06

    Lelaps is a fast detector simulation program which reads StdHep generator files and produces SIO or LCIO output files. It swims particles through detectors taking into account magnetic fields, multiple scattering and dE/dx energy loss. It simulates parameterized showers in EM and hadronic calorimeters and supports gamma conversions and decays. In addition to three built-in detector configurations, detector descriptions can also be read from files in the new GODL file format.

  10. Large-Area Liquid Scintillation Detector Slab

    NASA Astrophysics Data System (ADS)

    Crouch, M. F.; Gurr, H. S.; Hruschka, A. A.; Jenkins, T. L.; Kropp, W. P.; Reines, P.; Sobel, H.

    The following sections are included: * SUMMARY * INTRODUCTION * DETECTOR RESPONSE FUNCTION F(z) AND EVENT POSITION DETERMINATION * REFINEMENTS IN THE DETECTOR CONFIGURATION DESIGN * DETECTOR PERFORMANCE * APPENDIX * REFERENCES

  11. Gaseous wire detectors

    SciTech Connect

    Va'vra, J.

    1997-08-01

    This article represents a series of three lectures describing topics needed to understand the design of typical gaseous wire detectors used in large high energy physics experiments; including the electrostatic design, drift of electrons in the electric and magnetic field, the avalanche, signal creation, limits on the position accuracy as well as some problems one encounters in practical operations.

  12. Optimizing WIMP directional detectors

    NASA Astrophysics Data System (ADS)

    Green, Anne M.; Morgan, Ben

    2007-03-01

    We study the dependence of the exposure required to directly detect a WIMP directional recoil signal on the capabilities of a directional detector. Specifically we consider variations in the nuclear recoil energy threshold, the background rate, whether the detector measures the recoil momentum vector in two or three dimensions and whether or not the sense of the momentum vector can be determined. We find that the property with the biggest effect on the required exposure is the measurement of the momentum vector sense. If the detector cannot determine the recoil sense, the exposure required is increased by an order of magnitude for 3-d read-out and two orders of magnitude for 2-d read-out. For 2-d read-out the required exposure, in particular if the senses cannot be measured, can be significantly reduced by analyzing the reduced angles with the, time dependent, projected direction of solar motion subtracted. The background rate effectively places a lower limit on the WIMP cross-section to which the detector is sensitive; it will be very difficult to detect WIMPs with a signal rate more than an order of magnitude below the background rate. Lowering the energy threshold also reduces the required exposure, but only for thresholds above 20 keV.

  13. Optimizing WIMP Directional Detectors

    NASA Astrophysics Data System (ADS)

    Green, A. M.; Morgan, B.

    2007-08-01

    We study the dependence of the number of events required to directly detect a WIMP directional recoil signal on the capabilities of a directional detector. We consider variations in the nuclear recoil energy threshold, the background rate, whether the detector measures the recoil momentum vector in 2 or 3 dimensions and whether or not the sense of the momentum vector can be determined. The property with the biggest effect on the required exposure is the measurement of the momentum vector sense. If the detector cannot determine the recoil sense, the exposure required is increased by an order of magnitude for 3-d read-out and two orders of magnitude for 2-d read-out. For 2-d read-out the required exposure, in particular if the senses can not be measured, can be significantly reduced by analyzing the reduced angles with the, time dependent, projected direction of solar motion subtracted. The background rate effectively places a lower limit on the WIMP cross-section to which the detector is sensitive; it will be very difficult to detect WIMPs with a signal rate more than an order of magnitude below the background rate. Lowering the energy threshold also reduces the required exposure, but only for thresholds above 20 keV.

  14. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  15. Electromagnetic radiation detector

    DOEpatents

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  16. Detectors and experiments

    NASA Astrophysics Data System (ADS)

    Hauptman, John

    2016-11-01

    The talks in the Program and the Conference parallel sessions make clear that high quality pixel vertex chambers are presently well developed and with continuing improvements (M. Caccia,1 X. Sun,2 M. Stanitzki,3 J. Qian4); that there are at least two major tracking chambers that are well studied, a TPC and silicon-strip chambers (H. Qi,5,6 C. Young,7,8 A. de Roeck9,10); that the energy measurement of photons and electrons is generally very good (H. Yang,11 S. Franchino12); and, that the last remaining detector that has not yet achieved the high precision required for good e+e- physics is the hadronic calorimeter for the measurement of jets, most importantly, jets from the decays of W and Z to quarks (S. Lee,13,14 M. Cascella,15 A. de Roeck16). The relationship of the detectors to physics and the overall design of detectors was addressed and questioned (Y. Gao,17 M. Ruan,18 G. Tonelli,19 H. Zhu,20 M. Mangano,21 C. Quigg22) in addition to precision time measurements in detectors (C. Tully23).

  17. Gas Detectors, Volume 1.

    ERIC Educational Resources Information Center

    Defense Documentation Center, Alexandria, VA.

    The report contains annotated references on gas detectors compiled from the Defense Documentation Center's data bank. The range of the topics deals with detection of toxic propellants, odors, gas leaks, oxygen, etc. Included with the bibliographic reference are the corporate author-monitoring agency, subject, and title indexes. (Author/JR)

  18. Understanding the SNO+ Detector

    SciTech Connect

    Kamdin, K.

    2015-03-24

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, in which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.

  19. Photovoltaic radiation detector element

    DOEpatents

    Agouridis, Dimitrios C.

    1983-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein the edge of which closely approaches but is spaced from the current collector strips.

  20. Understanding the SNO+ Detector

    DOE PAGES

    Kamdin, K.

    2015-03-24

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, inmore » which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.« less

  1. Optical detector calibrator system

    NASA Technical Reports Server (NTRS)

    Strobel, James P. (Inventor); Moerk, John S. (Inventor); Youngquist, Robert C. (Inventor)

    1996-01-01

    An optical detector calibrator system simulates a source of optical radiation to which a detector to be calibrated is responsive. A light source selected to emit radiation in a range of wavelengths corresponding to the spectral signature of the source is disposed within a housing containing a microprocessor for controlling the light source and other system elements. An adjustable iris and a multiple aperture filter wheel are provided for controlling the intensity of radiation emitted from the housing by the light source to adjust the simulated distance between the light source and the detector to be calibrated. The geared iris has an aperture whose size is adjustable by means of a first stepper motor controlled by the microprocessor. The multiple aperture filter wheel contains neutral density filters of different attenuation levels which are selectively positioned in the path of the emitted radiation by a second stepper motor that is also controlled by the microprocessor. An operator can select a number of detector tests including range, maximum and minimum sensitivity, and basic functionality. During the range test, the geared iris and filter wheel are repeatedly adjusted by the microprocessor as necessary to simulate an incrementally increasing simulated source distance. A light source calibration subsystem is incorporated in the system which insures that the intensity of the light source is maintained at a constant level over time.

  2. The Friendship Detector

    ERIC Educational Resources Information Center

    Cox, Scott

    2012-01-01

    After years of using Rube Goldberg-inspired projects to teach concepts of simple machines, the author sought a comparable project to reinforce electricity lessons in his ninth-grade Science and Technology course. The Friendship Detector gives students a chance to design, test, and build a complex circuit with multiple switches and battery-powered…

  3. The Watchman Detector Design

    NASA Astrophysics Data System (ADS)

    Dazeley, Steven

    2014-03-01

    The Watchman collaboration is proposing a kiloton scale antineutrino detector of reactor-based antineutrinos for non-proliferation purposes. As an added bonus the detector will also have the capability to search for evidence of sterile neutrino oscillation, super-nova antineutrinos and, in a second phase, measure the neutrino mass hierarchy. Despite that fact that KamLAND demonstrated the feasibility of kiloton scale, long distance antineutrino detection with liquid scintillator, similar detectors at the megaton scale remain problematic for environmental, cost and light attenuation reasons. Water, with gadolinium added for neutron sensitivity, may be the detection medium of choice if its efficiency can be shown to be competitive with scintillator. The goal of the Watchman project, therefore, is to demonstrate medium distance reactor antineutrino detection, and thus demonstrate the feasibility of moving to water-based megaton scale antineutrino detectors in the future. In this talk I will describe the scope of the experiment, the physics and engineering challenges involved, the proposed design and the predicted performance of the experimental non-proliferation and high-energy physics program. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Release number LLNL-ABS-648381.

  4. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  5. Leak detector uses ultrasonics

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.; Keir, A. R.

    1978-01-01

    Probe located on outer wall of vacuum-jacketed fluid lines detects leaks on inner wall. Probe picks up and amplifies vibrations that occur when gas rushes through leak and converts them to audible signal or CRT display. System is considerably simpler to use than helium leak detectors and allows rapid checks to be made as part of routine maintenance.

  6. Choosing a Motion Detector.

    ERIC Educational Resources Information Center

    Ballard, David M.

    1990-01-01

    Examines the characteristics of three types of motion detectors: Doppler radar, infrared, and ultrasonic wave, and how they are used on school buses to prevent students from being killed by their own school bus. Other safety devices cited are bus crossing arms and a camera monitor system. (MLF)

  7. Understanding the SNO+ Detector

    NASA Astrophysics Data System (ADS)

    Kamdin, K.

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, in which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.

  8. Vaccination Rates are Associated With Functional Proximity But Not Base Proximity of Vaccination Clinics

    PubMed Central

    Beshears, John; Choi, James J.; Laibson, David I.; Madrian, Brigitte C.

    2016-01-01

    Background: Routine annual influenza vaccinations are recommended for persons 6 months of age and older, but less than half of US adults get vaccinated. Many employers offer employees free influenza vaccinations at workplace clinics, but even then take-up is low. Objective: To determine whether employees are significantly more likely to get vaccinated if they have a higher probability of walking by the clinic for reasons other than vaccination. Method: We obtained data from an employer with a free workplace influenza vaccination clinic. Using each employee’s building entry/exit swipe card data, we test whether functional proximity—the likelihood that the employee walks by the clinic for reasons other than vaccination—predicts whether the employee gets vaccinated at the clinic. We also test whether base proximity—the inverse of walking distance from the employee’s desk to the clinic—predicts vaccination probability. Participants: A total of 1801 employees of a health benefits administrator that held a free workplace influenza vaccination clinic. Results: A 2 SD increase in functional proximity is associated with a 6.4 percentage point increase in the probability of vaccination (total vaccination rate at company=40%), even though the average employee’s desk is only 166 meters from the clinic. Base proximity does not predict vaccination probability. Conclusions and Relevance: Minor changes in the environment can have substantial effects on the probability of vaccination. If these results generalize, health systems should emphasize functional proximity over base proximity when locating preventive health services. PMID:27177295

  9. Chemochromic Hydrogen Leak Detectors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or

  10. Carbon monoxide detector. [electrochemical gas detector for spacecraft use

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.; Bradspies, J. L.; Brummer, S. B.; Nelsen, L. L.

    1973-01-01

    A sensitive carbon monoxide detector, developed specifically for spacecraft use, is described. An instrument range of 0 to 60 ppm CO in air was devised. The fuel cell type detector is used as a highly sensitive electrolysis cell for electrochemically detecting gases. The concept of an electrochemical CO detector is discussed and the CO oxidation behavior in phosphoric and sulfuric acid electrolytes is reported.

  11. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S.; Rojeski, Ronald A.

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  12. Neutron detectors at IPNS

    SciTech Connect

    Crawford, R.K.; Haumann, J.R.; Ostrowski, G.E.

    1990-01-01

    The heart of each time-of-flight neutron scattering instrument is its complement of detectors and the associated encoding and counting electronics. Currently there are ten fully-scheduled neutron scattering instruments in operation at IPNS, with three more instruments under development. Six of these instruments use position-sensitive neutron detectors (PSDs) of various types. These PSDs include a 30 cm {times} 30 cm, {approximately}3 mm resolution, neutron Anger camera area PSD with {sup 6}Li-glass scintillator; a 2.5 cm dia, {approximately}0.7 mm resolution, microchannel-plate area PSD with {sup 6}Li-glass scintillator; a 20 cm {times} 20 cm, {approximately}5 mm resolution, {sup 3}He proportional counter area PSD; a 40 cm {times} 40 cm, {approximately}4 mm resolution, {sup 3}He proportional counter area PSD; a flat 25 cm long, {approximately}1.6 mm resolution, {sup 3}He proportional counter linear PSD; and 160 cylindrical {sup 3}He proportional counter linear PSDs, each of which is 1.27 cm in dia and 60 cm long and has {approximately}14 mm resolution. In addition to these PSDs, {approximately}750 standard cylindrical {sup 3}He proportional counters of various sizes are utilized on IPNS instruments, and {approximately}20 BF{sub 3} pulsed ion chambers are in use as beam monitors. This paper discusses these various detectors and associated electronics, with emphasis on the instrumental specifications and the reasons for the selection of the different types of detectors. Observed performance of these detectors is also discussed. 19 refs., 5 figs., 2 tabs.

  13. Proximity Operations and Docking Sensor Development

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Bryan, Thomas C.; Brewster, Linda L.; Lee, James E.

    2009-01-01

    The Next Generation Advanced Video Guidance Sensor (NGAVGS) has been under development for the last three years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in spot mode out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. 12 Parts obsolescence issues prevent the construction of more AVGS units, and the next generation sensor was updated to allow it to support the CEV and COTS programs. The flight proven AR&D sensor has been redesigned to update parts and add additional capabilities for CEV and COTS with the development of the Next Generation AVGS at the Marshall Space Flight Center. The obsolete imager and processor are being replaced with new radiation tolerant parts. In addition, new capabilities include greater sensor range, auto ranging capability, and real-time video output. This paper presents some sensor hardware trades, use of highly integrated laser components, and addresses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It also discusses approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements

  14. Fundamental principles of particle detectors

    SciTech Connect

    Fernow, R.C.

    1988-01-01

    This paper goes through the fundamental physics of particles-matter interactions which is necessary for the detection of these particles with detectors. A listing of 41 concepts and detector principles are given. 14 refs., 11 figs.

  15. Morphometry of Proximal Femur in Indian Population

    PubMed Central

    Joshi, Sheetal; Tuli, Anita; Raheja, Shashi; Jain, Priyanka; Srivastava, Priyanka

    2017-01-01

    Introduction Total hip arthroplasty is a commonly performed surgery now-a-day. There are regional and racial variations in the stature of the population worldwide. So there is always need of population specific data for making best fit prosthesis. Aim The present study was done to measure the parameters of proximal femur and to analyse their correlation by using standard statistical analysis. Materials and Methods Ninety one dry bones (44 left and 47 right) were used. Femur Head Diameter (FHD), Femur Neck Length (FNL), Femur Neck Diameter (FND), Femur Neck Thickness (FNT), Cervicodiaphyseal Angle (CDA) was directly measured with the help of anthropometric instruments. Femur Head Offset (FHO) and Vertical Offset (VO) were measured in the anteroposterior digital photographs. Results Normally distributed variables were compared using Student’s t-test (Unpaired data) to analyse significant effect. There was a significant difference between right and left side of FND and CDA. Pearson correlation coefficient was used to analyse the relationship among variables. FHO had high correlation with the VO (0.687, p<0.001). Conclusion These parameters can be used for designing the prosthesis and plates for hip joint reconstructive surgeries suitable for Indian population. PMID:28384844

  16. Proximity Navigation of Highly Constrained Spacecraft

    NASA Technical Reports Server (NTRS)

    Scarritt, S.; Swartwout, M.

    2007-01-01

    Bandit is a 3-kg automated spacecraft in development at Washington University in St. Louis. Bandit's primary mission is to demonstrate proximity navigation, including docking, around a 25-kg student-built host spacecraft. However, because of extreme constraints in mass, power and volume, traditional sensing and actuation methods are not available. In particular, Bandit carries only 8 fixed-magnitude cold-gas thrusters to control its 6 DOF motion. Bandit lacks true inertial sensing, and the ability to sense position relative to the host has error bounds that approach the size of the Bandit itself. Some of the navigation problems are addressed through an extremely robust, error-tolerant soft dock. In addition, we have identified a control methodology that performs well in this constrained environment: behavior-based velocity potential functions, which use a minimum-seeking method similar to Lyapunov functions. We have also adapted the discrete Kalman filter for use on Bandit for position estimation and have developed a similar measurement vs. propagation weighting algorithm for attitude estimation. This paper provides an overview of Bandit and describes the control and estimation approach. Results using our 6DOF flight simulator are provided, demonstrating that these methods show promise for flight use.

  17. Proximal Row Carpectomy Combined with Wrist Hemiarthroplasty

    PubMed Central

    Culp, Randall W.; Bachoura, Abdo; Gelman, Scott E.; Jacoby, Sidney M.

    2012-01-01

    Proximal row carpectomy (PRC) combined with distal radius hemiarthroplasty is a relatively novel procedure that rivals total wrist arthrodesis and offers a new surgical treatment option for select patients with painful, end-stage wrist disease. We present our early experience with this procedure. A retrospective chart review was conducted for nonrheumatoid patients diagnosed with wrist arthritis and subsequently treated with wrist hemiarthroplasty combined with PRC. The minimum follow-up duration was 12 months. Preoperative and postoperative flexion, extension, and grip strength were recorded. Postoperative radiographic findings were assessed. The Patient-Rated Wrist Evaluation (PRWE) questionnaire was administered to gauge postoperative pain and function. The records of 10 patients were reviewed. The mean age was 64 years and the mean postoperative follow-up duration was 19 months. Postoperative flexion, extension, and grip strength were all found to be less than the preoperative levels. The mean postoperative PRWE score for pain and function were 26 and 23, respectively. The complications were diverse and occurred at a relatively high rate. PRC combined with distal radius hemiarthroplasty is a novel procedure that offers a potential surgical option for the treatment of wrist arthritis in select patients. Our early experience has lead us to modify our technique with regard to the implant material, and at this stage, the surgical technique and the most appropriate implant may require further optimization. The level of evidence for this study is IV (therapeutic). PMID:23904978

  18. Distal radius fracture after proximal row carpectomy

    PubMed Central

    Igeta, Yuka; Naito, Kiyohito; Sugiyama, Yoichi; Obata, Hiroyuki; Aritomi, Kentaro; Kaneko, Kazuo; Obayashi, Osamu

    2015-01-01

    Introduction We encountered a patient with distal radius fracture (DRF) after proximal row carpectomy (PRC). The mechanism of the DRF after PRC is discussed in this report. Presentation of case The patient was a 73-year-old female who had undergone PRC due to Kienböck disease before. The wrist range of motion was: 45° on dorsiflexion and 20° on flexion. DRF has occurred at 3 years after PRC. The fracture type was extra-articular fracture. Osteosynthesis was performed using a volar locking plate. No postoperative complication developed, the Mayo score was excellent at 6 months after surgery, and the daily living activity level recovered to that before injury. Discussion Since the wrist range of motion decreased and the lunate fitted into the joint surface after PRC, making the forearm join with the hand like a single structure, pressure may have been loaded on the weak distal end of the radius from the dorsal side, causing volar displacement and fracture. Conclusion The pressure distribution and range of motion of the radiocarpal joint after PRC are different from those of a normal joint, and the mechanism of fracture also changes due to PRC. PMID:25623755

  19. Proximity Resonance and Localized Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Heller, Eric

    2014-03-01

    The collective excitation of conduction electrons in subwavelength nanostructures is known as Localized Surface Plasmon(LSP)[1]. Such plasmon modes has been intensively studied using noble nanoparticles . More recently, the possibility of building terahertz metamaterials supporting such LSP modes has been explored in graphene microribbons and microdisks. Unlike Surface Plasmon Polaritons(SPPs) at metal-insulator interface, LSP can be directly excited by light illumination and holds promise for applications in ultrasensitive biosensing, nano-optical tweezers and improved photovoltaic devices. In this paper, we consider the interaction of two LSPs in the weak coupling regime and show how an effect similar to the proximity resonance in the quantum scattering theory) gives rise to an asymmetric(quadrupole) mode with increased damping rate. The existence of this asymmetric mode relies on a small phase retardation between the two LSPs. This phase retardation, though small, is key to both increased damping rate for the asymmetric mode and reduced damping rate for the symmetric mode. When this small phase retardation is removed by changing the polarization of the exciting light,we show that the asymmetric mode can not be excited and the symmetric mode shows increased damping.

  20. Effective proximity retrieval by ordering permutations.

    PubMed

    Chavez, Edgar; Figueroa, Karina; Navarro, Gonzalo

    2008-09-01

    We introduce a new probabilistic proximity search algorithm for range and K-nearest neighbor (K-NN) searching in both coordinate and metric spaces. Although there exist solutions for these problems, they boil down to a linear scan when the space is intrinsically high-dimensional, as is the case in many pattern recognition tasks. This, for example, renders the K-NN approach to classification rather slow in large databases. Our novel idea is to predict closeness between elements according to how they order their distances towards a distinguished set of anchor objects. Each element in the space sorts the anchor objects from closest to farthest to it, and the similarity between orders turns out to be an excellent predictor of the closeness between the corresponding elements. We present extensive experiments comparing our method against state-of-the-art exact and approximate techniques, both in synthetic and real, metric and non-metric databases, measuring both CPU time and distance computations. The experiments demonstrate that our technique almost always improves upon the performance of alternative techniques, in some cases by a wide margin.

  1. Ranging/tracking system for proximity operations

    NASA Technical Reports Server (NTRS)

    Nilsen, P.; Udalov, S.

    1982-01-01

    The hardware development and testing phase of a hand held radar for the ranging and tracking for Shuttle proximity operations are considered. The radar is to measure range to a 3 sigma accuracy of 1 m (3.28 ft) to a maximum range of 1850 m (6000 ft) and velocity to a 3 sigma accuracy of 0.03 m/s (0.1 ft/s). Size and weight are similar to hand held radars, frequently seen in use by motorcycle police officers. Meeting these goals for a target in free space was very difficult to obtain in the testing program; however, at a range of approximately 700 m, the 3 sigma range error was found to be 0.96 m. It is felt that much of this error is due to clutter in the test environment. As an example of the velocity accuracy, at a range of 450 m, a 3 sigma velocity error of 0.02 m/s was measured. The principles of the radar and recommended changes to its design are given. Analyses performed in support of the design process, the actual circuit diagrams, and the software listing are included.

  2. Effects of thrust reversing in ground proximity

    NASA Technical Reports Server (NTRS)

    Joshi, P. B.; Hughes, R. V.

    1987-01-01

    The changes in stability and control characteristics encountered by a thrust reversing aircraft during its final approach, landing, and ground roll are described. These changes include a strong pitch-up accompanied by the loss of horizontal tail and aileron control effectiveness. The magnitude of reverser induced changes in ground effect are much larger than corresponding changes in free air. Some unexpected unsteady motions exhibited in wind tunnel by an aircraft model with reversers operating in ground proximity are also described. The cause of this oscillatory behavior was determined to be an unsteady interaction between the wall jets formed by impingement of reverser jets on the ground and the on-coming free stream. Time histories of rolling moments measured by the wind tunnel balance or support system were removed and frequencies were scaled by Strouhal number to full scale. Corrected time series were used to simulate the motion of a fighter aircraft with thrust reversers in ground effect. The simulation predicted large roll angles and nose down attitude at touchdown. Some phenomena of jet attachment to solid surfaces are discussed and areas for future research are recommended.

  3. Proximity effects in cold atom artificial graphene

    NASA Astrophysics Data System (ADS)

    Graß, Tobias; Chhajlany, Ravindra W.; Tarruell, Leticia; Pellegrini, Vittorio; Lewenstein, Maciej

    2017-03-01

    Cold atoms in an optical lattice with brick-wall geometry have been used to mimic graphene, a two-dimensional material with characteristic Dirac excitations. Here we propose to bring such artificial graphene into the proximity of a second atomic layer with a square lattice geometry. For non-interacting fermions, we find that such bilayer system undergoes a phase transition from a graphene-like semi-metal phase, characterized by a band structure with Dirac points, to a gapped band insulator phase. In the presence of attractive interactions between fermions with pseudospin-1/2 degree of freedom, a competition between semi-metal and superfluid behavior is found at the mean-field level. Using the quantum Monte Carlo method, we also investigate the case of strong repulsive interactions. In the Mott phase, each layer exhibits a different amount of long-range magnetic order. Upon coupling both layers, a valence-bond crystal is formed at a critical coupling strength. Finally, we discuss how these bilayer systems could be realized in existing cold atom experiments.

  4. Interactive orbital proximity operations planning system

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Ellis, Stephen R.

    1989-01-01

    An interactive, graphical proximity operations planning system was developed which allows on-site design of efficient, complex, multiburn maneuvers in the dynamic multispacecraft environment about the space station. Maneuvering takes place in, as well as out of, the orbital plane. The difficulty in planning such missions results from the unusual and counterintuitive character of relative orbital motion trajectories and complex operational constraints, which are both time varying and highly dependent on the mission scenario. This difficulty is greatly overcome by visualizing the relative trajectories and the relative constraints in an easily interpretable, graphical format, which provides the operator with immediate feedback on design actions. The display shows a perspective bird's-eye view of the space station and co-orbiting spacecraft on the background of the station's orbital plane. The operator has control over two modes of operation: (1) a viewing system mode, which enables him or her to explore the spatial situation about the space station and thus choose and frame in on areas of interest; and (2) a trajectory design mode, which allows the interactive editing of a series of way-points and maneuvering burns to obtain a trajectory which complies with all operational constraints. Through a graphical interactive process, the operator will continue to modify the trajectory design until all operational constraints are met. The effectiveness of this display format in complex trajectory design is presently being evaluated in an ongoing experimental program.

  5. Interactive orbital proximity operations planning system

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Ellis, Stephen R.

    1988-01-01

    An interactive graphical proximity operations planning system was developed, which allows on-site design of efficient, complex, multiburn maneuvers in a dynamic multispacecraft environment. Maneuvering takes place in and out of the orbital plane. The difficulty in planning such missions results from the unusual and counterintuitive character of orbital dynamics and complex time-varying operational constraints. This difficulty is greatly overcome by visualizing the relative trajectories and the relevant constraints in an easily interpretable graphical format, which provides the operator with immediate feedback on design actions. The display shows a perspective bird's-eye view of a Space Station and co-orbiting spacecraft on the background of the Station's orbital plane. The operator has control over the two modes of operation: a viewing system mode, which enables the exporation of the spatial situation about the Space Station and thus the ability to choose and zoom in on areas of interest; and a trajectory design mode, which allows the interactive editing of a series of way points and maneuvering burns to obtain a trajectory that complies with all operational constraints. A first version of this display was completed. An experimental program is planned in which operators will carry out a series of design missions which vary in complexity and constraints.

  6. The Proximal Tubule and Albuminuria: Really!

    PubMed Central

    Dickson, Landon E.; Wagner, Mark C.; Sandoval, Ruben M.

    2014-01-01

    Recent data highlight the role of the proximal tubule (PT) in reabsorbing, processing, and transcytosing urinary albumin from the glomerular filtrate. Innovative techniques and approaches have provided exciting insights into these processes, and numerous investigators have shown that selective PT cell defects lead to significant albuminuria, even reaching nephrotic range in animal models. Thus, the mechanisms of albumin reabsorption and transcytosis are undergoing intense study. Working in concert with megalin and cubilin, a nonselective multireceptor complex that predominantly directs proteins for lysosomal degradation, the neonatal Fc receptor (FcRn) located at the brush border of the apical membrane has been implicated as the “receptor” mediating albumin transcytosis. The FcRn pathway facilitates reabsorption and mediates transcytosis by its pH-dependent binding affinity in endosomal compartments. This also allows for selective albumin sorting within the PT cell. This reclamation pathway minimizes urinary losses and catabolism of albumin, thus prolonging its serum half-life. It may also serve as a molecular sorter to preserve and reclaim normal albumin while allowing “altered” albumin to be catabolized via lysosomal pathways. Here, we critically review the data supporting this novel mechanism. PMID:24408874

  7. Subspace Detectors: Efficient Implementation

    SciTech Connect

    Harris, D B; Paik, T

    2006-07-26

    The optimum detector for a known signal in white Gaussian background noise is the matched filter, also known as a correlation detector [Van Trees, 1968]. Correlation detectors offer exquisite sensitivity (high probability of detection at a fixed false alarm rate), but require perfect knowledge of the signal. The sensitivity of correlation detectors is increased by the availability of multichannel data, something common in seismic applications due to the prevalence of three-component stations and arrays. When the signal is imperfectly known, an extension of the correlation detector, the subspace detector, may be able to capture much of the performance of a matched filter [Harris, 2006]. In order to apply a subspace detector, the signal to be detected must be known to lie in a signal subspace of dimension d {ge} 1, which is defined by a set of d linearly-independent basis waveforms. The basis is constructed to span the range of signals anticipated to be emitted by a source of interest. Correlation detectors operate by computing a running correlation coefficient between a template waveform (the signal to be detected) and the data from a window sliding continuously along a data stream. The template waveform and the continuous data stream may be multichannel, as would be true for a three-component seismic station or an array. In such cases, the appropriate correlation operation computes the individual correlations channel-for-channel and sums the result (Figure 1). Both the waveform matching that occurs when a target signal is present and the cross-channel stacking provide processing gain. For a three-component station processing gain occurs from matching the time-history of the signals and their polarization structure. The projection operation that is at the heart of the subspace detector can be expensive to compute if implemented in a straightforward manner, i.e. with direct-form convolutions. The purpose of this report is to indicate how the projection can be

  8. Analysis of pattern density on process proximity compensation

    NASA Astrophysics Data System (ADS)

    Jung, Sunwook; Lo, Fred; Yang, Tien-Chu; Yang, Ta-Hong; Chen, Kuang-Chao; Lu, Chih-Yuan

    2007-03-01

    The challenges of ever-smaller CD (Critical Dimension) budget for advanced memory product requires tight ACLV (Across-Chip Line-width Variation) control. In addition to the lithographic MOPC (Model-based Optical Proximity Correction) for DCD (photo CD) control, the process correction for etch proximity effect can no longer be ignored. To meet on our requirement on final CD accuracy for critical layer, a set of test pattern, that represents memory array in one of our critical layers, has been generated for both photo and etch process characterizations. Through the combination of different pattern-coverage areas in the test mask and wafer map design, various local (chip-level) pattern densities of 40%~70% and global (wafer-level) pattern densities of 35%~65% were achieved for optical and etch proximity study. The key contributors to the process proximity effect were identified and voluminous data has been extracted from the memory block like patterns for statistical analysis. The photo and etch proximity effects were hence modeled as function of memory block separation, local pattern density as well as global pattern density. Finally, the respective photo and etch proximity effects through model-based proximity correction and rule-based proximity correction were applied in a multi-step flow to products.

  9. Wrist level and proximal-upper extremity replantation.

    PubMed

    Hanel, Douglas P; Chin, Simon H

    2007-02-01

    Since Malt and McKhan's first successful arm replantation in 1962, upper extremity replantation surgery techniques have been refined and spread worldwide. Nevertheless, replantation at or proximal to the wrist, referred to as wrist-proximal replants, remains a daunting challenge that presents the hand surgeon with an array of difficulties distinct from digital replantation.

  10. Proximal and distal muscle fatigue differentially affect movement coordination

    PubMed Central

    Cowley, Jeffrey C.

    2017-01-01

    Muscle fatigue can cause people to change their movement patterns and these changes could contribute to acute or overuse injuries. However, these effects depend on which muscles are fatigued. The purpose of this study was to determine the differential effects of proximal and distal upper extremity muscle fatigue on repetitive movements. Fourteen subjects completed a repetitive ratcheting task before and after a fatigue protocol on separate days. The fatigue protocol either fatigued the proximal (shoulder flexor) or distal (finger flexor) muscles. Pre/Post changes in trunk, shoulder, elbow, and wrist kinematics were compared to determine how proximal and distal fatigue affected multi-joint movement patterns and variability. Proximal fatigue caused a significant increase (7°, p < 0.005) in trunk lean and velocity, reduced humeral elevation (11°, p < 0.005), and increased elbow flexion (4°, p < 0.01). In contrast, distal fatigue caused small but significant changes in trunk angles (2°, p < 0.05), increased velocity of wrench movement relative to the hand (17°/s, p < 0.001), and earlier wrist extension (4%, p < 0.005). Movement variability increased at proximal joints but not distal joints after both fatigue protocols (p < 0.05). Varying movements at proximal joints may help people adapt to fatigue at either proximal or distal joints. The identified differences between proximal and distal muscle fatigue adaptations could facilitate risk assessment of occupational tasks. PMID:28235005

  11. Comparative studies for different proximity potentials applied to α decay

    NASA Astrophysics Data System (ADS)

    Yao, Y. J.; Zhang, G. L.; Qu, W. W.; Qian, J. Q.

    2015-09-01

    Half-lives of α decay of even-even nuclei calculated by using fourteen different versions of proximity potentials are compared to experimental data. The results show that the results of the generalized proximity potential 1977 are very much in agreement with the experimental data. In comparison with the distributions of nuclear potentials at small distances and the distributions of total potentials above the released energy Q α , it is found that at small distances the distributions of nuclear potentials have large difference and the distributions of total potentials are different among the listed proximity potentials. The different potential distributions affect the penetration probability of α, which is related to the half-life of the α decay for each nucleus. The generalized proximity potential 1977 is also used to calculate the half-lives of α decay of nuclei with odd mass numbers. The results show that the generalized proximity potential 1977 can calculate the half-lives of the α decay of almost all nuclei, which underlines and supports the use of the generalized proximity potential 1977 by Santhosh et al. in the Coulomb and proximity potential model (CPPM) and the Coulomb and proximity potential model for deformed nuclei (CPPMDN).

  12. Event sequence detector

    NASA Technical Reports Server (NTRS)

    Hanna, M. F. (Inventor)

    1973-01-01

    An event sequence detector is described with input units, each associated with a row of bistable elements arranged in an array of rows and columns. The detector also includes a shift register which is responsive to clock pulses from any of the units to sequentially provide signals on its output lines each of which is connected to the bistable elements in a corresponding column. When the event-indicating signal is received by an input unit it provides a clock pulse to the shift register to provide the signal on one of its output lines. The input unit also enables all its bistable elements so that the particular element in the column supplied with the signal from the register is driven to an event-indicating state.

  13. Underwater radiation detector

    DOEpatents

    Kruse, Lyle W.; McKnight, Richard P.

    1986-01-01

    A detector apparatus for differentiating between gamma and neutron radiation is provided. The detector includes a pair of differentially shielded Geiger-Mueller tubes. The first tube is wrapped in silver foil and the second tube is wrapped in lead foil. Both the silver and lead foils allow the passage of gamma rays at a constant rate in a gamma ray only field. When neutrons are present, however, the silver activates and emits beta radiation that is also detected by the silver wrapped Geiger-Mueller tube while the radiation detected by the lead wrapped Geiger-Mueller tube remains constant. The amount of radiation impinging on the separate Geiger-Mueller tubes is then correlated in order to distinguish between the neutron and gamma radiations.

  14. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  15. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  16. Stable glow discharge detector

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2004-05-18

    A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) stable glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The stable glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma and a solid rod electrode. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured. The solid rod electrode provides greater stability and thus easier alignment.

  17. Microwave hemorrhagic stroke detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.

    2002-01-01

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stroke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  18. Microwave hemorrhagic stroke detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.

    2007-06-05

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stoke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  19. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  20. Terahertz sources and detectors

    NASA Astrophysics Data System (ADS)

    Crowe, Thomas W.; Porterfield, David W.; Hesler, Jeffrey L.; Bishop, William L.; Kurtz, David S.; Hui, Kai

    2005-05-01

    Through the support of the US Army Research Office we are developing terahertz sources and detectors suitable for use in the spectroscopy of chemical and biological materials as well as for use in imaging systems to detect concealed weapons. Our technology relies on nonlinear diodes to translate the functionality achieved at microwave frequencies to the terahertz band. Basic building blocks that have been developed for this application include low-noise mixers, frequency multipliers, sideband generators and direct detectors. These components rely on planar Schottky diodes and integrated diode circuits and are therefore easy to assemble and robust. They require no mechanical tuners to achieve high efficiency and broad bandwidth. This paper will review the range of performance that has been achieved with these terahertz components and briefly discuss preliminary results achieved with a spectroscopy system and the development of sources for imaging systems.

  1. Continuous fluid level detector

    SciTech Connect

    LeVert, F.E.

    1989-02-21

    A fluid level detector is described which consists of: a junctionless thermocouple cable consisting of two thermoelectric elements enclosed in a metallic sheath wherein a negative resistance temperature coefficient insulant is interpositioned between the thermoelectric elements and the inner surface of the metallic sheath thereby providing electrical insulation and thermal energy transfer between the thermoelectric elements; a metallic sheathed resistance heater, which is used to input thermal energy to the fluid level detector; an outer metallic cylindrical tube capable of being sealed on one end, into which the juctionless thermocouple cable and resistance heater are inserted and held in place by mechanically swaging or drawing, to reduce the outer diameter of the metallic cylindrical tube; separate means for supplying electric currents to the thermoelectric elements and to the resistance heater; and electronic and computing means for measuring the loop resistance of the thermoelectric elements with a temporary junction.

  2. Triac failure detector

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A failure detector is provided for detecting unidirectional failures in triacs, particularly as used in power factor controllers for induction motors. In a first embodiment, the triac voltage waveform is sensed and upon detection of an unbalanced signal, corresponding to failure of the triac in either the positive or negative direction, the triac is turned full on in both directions. In a second embodiment, a pair of pulsed signals are derived, the pulse durations of which are proportional to the phase difference between the load current and voltage for each half cycle, and the triac is turned full on responsive to a difference in pulse duration between the half cycle signals. An unidirectional open circuit detector is adapted to use a signal from either of the first and second embodiment to turn the triac off in response to an open circuit failure in either direction.

  3. Pulsed neutron detector

    DOEpatents

    Robertson, deceased, J. Craig; Rowland, Mark S.

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  4. Metrology with Unknown Detectors.

    PubMed

    Altorio, Matteo; Genoni, Marco G; Somma, Fabrizia; Barbieri, Marco

    2016-03-11

    The best possible precision is one of the key figures in metrology, but this is established by the exact response of the detection apparatus, which is often unknown. There exist techniques for detector characterization that have been introduced in the context of quantum technologies but apply as well for ordinary classical coherence; these techniques, though, rely on intense data processing. Here, we show that one can make use of the simpler approach of data fitting patterns in order to obtain an estimate of the Cramér-Rao bound allowed by an unknown detector, and we present applications in polarimetry. Further, we show how this formalism provides a useful calculation tool in an estimation problem involving a continuous-variable quantum state, i.e., a quantum harmonic oscillator.

  5. Differential optoacoustic absorption detector

    NASA Technical Reports Server (NTRS)

    Shumate, M. S. (Inventor)

    1978-01-01

    A differential optoacoustic absorption detector employed two tapered cells in tandem or in parallel. When operated in tandem, two mirrors were used at one end remote from the source of the beam of light directed into one cell back through the other, and a lens to focus the light beam into the one cell at a principal focus half way between the reflecting mirror. Each cell was tapered to conform to the shape of the beam so that the volume of one was the same as for the other, and the volume of each received maximum illumination. The axes of the cells were placed as close to each other as possible in order to connect a differential pressure detector to the cells with connecting passages of minimum length. An alternative arrangement employed a beam splitter and two lenses to operate the cells in parallel.

  6. Gated strip proportional detector

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1987-01-01

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10.sup.6. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  7. Gated strip proportional detector

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1985-02-19

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10/sup 6/. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  8. Ultrafast neutron detector

    DOEpatents

    Wang, Ching L.

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  9. Portable Radiation Detectors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through a Small Business Innovation Research (SBIR) contract from Kennedy Space Center, General Pneumatics Corporation's Western Research Center satisfied a NASA need for a non-clogging Joule-Thomson cryostat to provide very low temperature cooling for various sensors. This NASA-supported cryostat development played a key part in the development of more portable high-purity geranium gamma-ray detectors. Such are necessary to discern between the radionuclides in medical, fuel, weapon, and waste materials. The outcome of the SBIR project is a cryostat that can cool gamma-ray detectors, without vibration, using compressed gas that can be stored compactly and indefinitely in a standby mode. General Pneumatics also produces custom J-T cryostats for other government, commercial and medical applications.

  10. Integrated Dual Imaging Detector

    NASA Technical Reports Server (NTRS)

    Rust, David M.

    1999-01-01

    A new type of image detector was designed to simultaneously analyze the polarization of light at all picture elements in a scene. The integrated Dual Imaging detector (IDID) consists of a lenslet array and a polarizing beamsplitter bonded to a commercial charge coupled device (CCD). The IDID simplifies the design and operation of solar vector magnetographs and the imaging polarimeters and spectroscopic imagers used, for example, in atmosphere and solar research. When used in a solar telescope, the vector magnetic fields on the solar surface. Other applications include environmental monitoring, robot vision, and medical diagnoses (through the eye). Innovations in the IDID include (1) two interleaved imaging arrays (one for each polarization plane); (2) large dynamic range (well depth of 10(exp 5) electrons per pixel); (3) simultaneous readout and display of both images; and (4) laptop computer signal processing to produce polarization maps in field situations.

  11. Semiconductor radiation detector

    DOEpatents

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  12. The MICROMEGEM detector

    NASA Astrophysics Data System (ADS)

    Bouhali, O.; De Lentdecker, G.; Dewèze, S.; Udo, F.; Van Doninck, W.; Vander Velde, C.; Van Lancker, L.; Zhukov, V.; Boulogne, I.; Daubie, E.

    2001-02-01

    This article introduces the MICROMEGEM detector, a position-sensitive proportional gas counter produced using advanced Printed Circuit Board (PCB) technology. The detector is equipped with a Gas Electron Multiplier (GEM) foil placed 50 μm above a plane of pick-up strips. The GEM produces a first gas amplification which is extended below the GEM foil by applying a strong electric field between the strips and the lower electrode of the GEM. The array of strips is used for read-out to obtain 1-D positional information. We present results on the gas gain, the energy resolution and the rate capability. The behaviour in an intense beam of 300 MeV/c pions in presence of heavily ionizing particles has also been investigated.

  13. Seismic intrusion detector system

    DOEpatents

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  14. Gas bubble detector

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor); Burchfield, David E. (Inventor); Hagey, John M. (Inventor)

    1995-01-01

    A gas bubble detector having a modulated IR source focused through a bandpass filter onto a venturi, formed in a sample tube, to illuminate the venturi with modulated filtered IR to detect the presence of gas bubbles as small as 0.01 cm or about 0.004 in diameter in liquid flowing through the venturi. Means are provided to determine the size of any detected bubble and to provide an alarm in the absence of liquid in the sample tube.

  15. Vertex Detector Cable Considerations

    SciTech Connect

    Cooper, William E.; /Fermilab

    2009-02-01

    Vertex detector cable requirements are considered within the context of the SiD concept. Cable material should be limited so that the number of radiation lengths represented is consistent with the material budget. In order to take advantage of the proposed accelerator beam structure and allow cooling by flow of dry gas, 'pulsed power' is assumed. Potential approaches to power distribution, cable paths, and cable design for operation in a 5 T magnetic field are described.

  16. The STEIN Particle Detector

    DTIC Science & Technology

    2015-02-27

    associated with solar disturbances, magnetic storms and magnetospheric substorms. AF-STEIN has several distinct advantages over standard detectors flown on...low-earth- orbit (LEO) satellites. AF-STEIN provides the sensitivity, temporal resolution, energy resolution (~1 keV FWHM), dynamic range, and energy...essentially all important suprathermal (~4 to 200 keV) particle populations associated with solar disturbances, magnetic storms and magnetospheric substorms

  17. Scintillating pad detectors

    SciTech Connect

    Adams, D.; Baumbaugh, B.; Borcherding, F.

    1996-12-31

    We have been investigating the performance of scintillating pad detectors, individual small tiles of scintillator that are read out with wavelength-shifting fibers and visible light photon counters, for application in high luminosity colliding beam experiments such as the D0 Upgrade. Such structures could provide {open_quotes}pixel{close_quotes} type readout over large fiducial volumes for tracking, preshower detection and triggering.

  18. Detector limitations, STAR

    SciTech Connect

    Underwood, D. G.

    1998-07-13

    Every detector has limitations in terms of solid angle, particular technologies chosen, cracks due to mechanical structure, etc. If all of the presently planned parts of STAR [Solenoidal Tracker At RHIC] were in place, these factors would not seriously limit our ability to exploit the spin physics possible in RHIC. What is of greater concern at the moment is the construction schedule for components such as the Electromagnetic Calorimeters, and the limited funding for various levels of triggers.

  19. Development of Portable Detectors

    SciTech Connect

    2006-12-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the “Contractor”) and Sense Holdings, Inc. (the “Participant”) was for the development of hand-held detectors with high sensitivity and selectivity for the detection of explosives, toxic industrial chemicals and materials, and other materials of interest for security applications. The two parties built a series of demonstration and prototype handheld sensors based upon micoelectromechanical systems (MEMS) with electronic readout.

  20. Laser beam methane detector

    NASA Technical Reports Server (NTRS)

    Hinkley, E. D., Jr.

    1981-01-01

    Instrument uses infrared absorption to determine methane concentration in liquid natural gas vapor. Two sensors measure intensity of 3.39 mm laser beam after it passes through gas; absorption is proportional to concentration of methane. Instrument is used in modeling spread of LNG clouds and as leak detector on LNG carriers and installations. Unit includes wheels for mobility and is both vertically and horizontally operable.

  1. Borehole Muon Detector Development

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.

    2015-12-01

    Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.

  2. The DAMPE Neutron Detector

    NASA Astrophysics Data System (ADS)

    Yan, Zhang; Tao, Ma; Yongyi, Huang

    2016-07-01

    The first Chinese space observatory DAMPE (DArk Matter Particle Explorer) was successfully launched on Dec. 17th, 2015. One major scientific object of DAMPE is to measure electrons between 5GeV to 10TeV with excellent energy resolution (1.5% at 800GeV) to search for possible dark matter signatures. The detector consists of four subsystems: a plastic scintillator detector (PSD), a silicon-tungsten tracker (STK), a BGO calorimeter (BGO), and a neutron detector (NUD). The NUD on board DAMPE is designed to detect moderated neutrons via the boron capture of thermal neutrons in boron-doped plastics. Given the fact that hadron showers initiated in the BGO calorimeter by incident nuclei tend to be followed by significantly more neutron activities comparing to electromagnetic cascades triggered by electrons, the NUD provides an additional order of magnitude hadron rejection capability to improve the overall e/p discrimination of DAMPE up to 10 ^{5}. Preliminary analysis of the in-orbit data is given, together with comparisons to the results obtained by a detailed GEANT4 simulation of the NUD instrument.

  3. The STAR PXL detector

    NASA Astrophysics Data System (ADS)

    Contin, G.

    2016-12-01

    The PiXeL detector (PXL) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. Designed to extend the STAR measurement capabilities in the heavy flavor domain, it took data in Au+Au collisions, p+p and p+Au collisions at 0√sNN=20 GeV at RHIC, during the period 2014-2016. The PXL detector is based on 50 μm-thin MAPS sensors with a pitch of 20.7 μm. Each sensor includes an array of nearly 1 million pixels, read out in rolling shutter mode in 185.6 μs. The 170 mW/cm2 power dissipation allows for air cooling and contributes to reduce the global material budget to 0.4% radiation length on the innermost layer. Experience and lessons learned from construction and operations will be presented in this paper. Detector performance and results from 2014 Au+Au data analysis, demonstrating the STAR capabilities of charm reconstruction, will be shown.

  4. Detector Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor); Dusl, John (Inventor)

    2003-01-01

    Transceiver and methods are included that are especially suitable for detecting metallic materials, such as metallic mines, within an environment. The transceiver includes a digital waveform generator used to transmit a signal into the environment and a receiver that produces a digital received signal. A tracking module preferably compares an in-phase and quadrature transmitted signal with an in-phase and quadrature received signal to produce a spectral transfer function of the magnetic transceiver over a selected range of frequencies. The transceiver initially preferably creates a reference transfer function which is then stored in a memory. Subsequently measured transfer functions will vary depending on the presence of metal in the environment which was not in the environment when the reference transfer function was determined. The system may be utilized in the presence of other antennas, metal, and electronics which may comprise a plastic mine detector for detecting plastic mines. Despite the additional antennas and other metallic materials that may be in the environment due to the plastic mine detector, the magnetic transceiver remains highly sensitive to metallic material which may be located in various portions of the environment and which may be detected by sweeping the detector over ground that may contain metals or mines.

  5. Hybrid superconducting neutron detectors

    SciTech Connect

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  6. Hybrid superconducting neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  7. Optical ionization detector

    DOEpatents

    Wuest, Craig R.; Lowry, Mark E.

    1994-01-01

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.

  8. Optical ionization detector

    DOEpatents

    Wuest, C.R.; Lowry, M.E.

    1994-03-29

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium. 3 figures.

  9. Commissioning the SNO+ detector

    NASA Astrophysics Data System (ADS)

    Descamps, Freija; SNO+ Collaboration

    2016-09-01

    The SNO+ experiment is the successor to the Sudbury Neutrino Observatory (SNO), in which SNO's heavy water is replaced by approximately 780T of liquid scintillator (LAB). The combination of the 2km underground location, the use of ultra-clean materials and the high light-yield of the liquid scintillator means that a low background level and a low energy threshold can be achieved. This creates a new multipurpose neutrino detector with the potential to address a diverse set of physics goals, including the detection of reactor, solar, geo- and supernova neutrinos. A main physics goal of SNO+ is the search for neutrinoless double beta decay. By loading the liquid scintillator with 0.5% of natural Tellurium, resulting in about 1300kg of 130Te (isotopic abundance is slightly over 34%), a competitive sensitivity to the effective neutrino mass can be reached. This talk will present the status of the SNO+ detector, specifically the results and status of the detector commissioning with water.

  10. Sensor readout detector circuit

    DOEpatents

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  11. Sensor readout detector circuit

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  12. Hypospadias and Residential Proximity to Pesticide Applications

    PubMed Central

    Yang, Wei; Roberts, Eric M.; Kegley, Susan E.; Wolff, Craig; Guo, Liang; Lammer, Edward J.; English, Paul; Shaw, Gary M.

    2013-01-01

    BACKGROUND: Experimental evidence suggests pesticides may be associated with hypospadias. OBJECTIVE: Examine the association of hypospadias with residential proximity to commercial agricultural pesticide applications. METHODS: The study population included male infants born from 1991 to 2004 to mothers residing in 8 California counties. Cases (n = 690) were ascertained by the California Birth Defects Monitoring Program; controls were selected randomly from the birth population (n = 2195). We determined early pregnancy exposure to pesticide applications within a 500-m radius of mother’s residential address, using detailed data on applications and land use. Associations with exposures to physicochemical groups of pesticides and specific chemicals were assessed using logistic regression adjusted for maternal race or ethnicity and age and infant birth year. RESULTS: Forty-one percent of cases and controls were classified as exposed to 57 chemical groups and 292 chemicals. Despite >500 statistical comparisons, there were few elevated odds ratios with confidence intervals that excluded 1 for chemical groups or specific chemicals. Those that did were for monochlorophenoxy acid or ester herbicides; the insecticides aldicarb, dimethoate, phorate, and petroleum oils; and adjuvant polyoxyethylene sorbitol among all cases; 2,6-dinitroaniline herbicides, the herbicide oxyfluorfen, and the fungicide copper sulfate among mild cases; and chloroacetanilide herbicides, polyalkyloxy compounds used as adjuvants, the insecticides aldicarb and acephate, and the adjuvant nonyl-phenoxy-poly(ethylene oxy)ethanol among moderate and severe cases. Odds ratios ranged from 1.9 to 2.9. CONCLUSIONS: Most pesticides were not associated with elevated hypospadias risk. For the few that were associated, results should be interpreted with caution until replicated in other study populations. PMID:24167181

  13. Interactive orbital proximity operations planning system

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Ellis, Stephen R.

    1990-01-01

    An interactive graphical planning system for on-site planning of proximity operations in the congested multispacecraft environment about the space station is presented. The system shows the astronaut a bird's eye perspective of the space station, the orbital plane, and the co-orbiting spacecraft. The system operates in two operational modes: (1) a viewpoint mode, in which the astronaut is able to move the viewpoint around in the orbital plane to range in on areas of interest; and (2) a trajectory design mode, in which the trajectory is planned. Trajectory design involves the composition of a set of waypoints which result in a fuel-optimal trajectory which satisfies all operational constraints, such as departure and arrival constraints, plume impingement constraints, and structural constraints. The main purpose of the system is to present the trajectory and the constraints in an easily interpretable graphical format. Through a graphical interactive process, the trajectory waypoints are edited until all operational constraints are satisfied. A series of experiments was conducted to evaluate the system. Eight airline pilots with no prior background in orbital mechanics participated in the experiments. Subject training included a stand-alone training session of about 6 hours duration, in which the subjects became familiar with orbital mechanics concepts and performed a series of exercises to familiarize themselves with the control and display features of the system. They then carried out a series of production runs in which 90 different trajectory design situations were randomly addressed. The purpose of these experiments was to investigate how the planning time, planning efforts, and fuel expenditures were affected by the planning difficulty. Some results of these experiments are presented.

  14. Nanocrystal Bioassembly: Asymmetry, Proximity, and Enzymatic Manipulation

    SciTech Connect

    Claridge, Shelley A.

    2008-05-01

    Research at the interface between biomolecules and inorganic nanocrystals has resulted in a great number of new discoveries. In part this arises from the synergistic duality of the system: biomolecules may act as self-assembly agents for organizing inorganic nanocrystals into functional materials; alternatively, nanocrystals may act as microscopic or spectroscopic labels for elucidating the behavior of complex biomolecular systems. However, success in either of these functions relies heavily uponthe ability to control the conjugation and assembly processes.In the work presented here, we first design a branched DNA scaffold which allows hybridization of DNA-nanocrystal monoconjugates to form discrete assemblies. Importantly, the asymmetry of the branched scaffold allows the formation of asymmetric2assemblies of nanocrystals. In the context of a self-assembled device, this can be considered a step toward the ability to engineer functionally distinct inputs and outputs.Next we develop an anion-exchange high performance liquid chromatography purification method which allows large gold nanocrystals attached to single strands of very short DNA to be purified. When two such complementary conjugates are hybridized, the large nanocrystals are brought into close proximity, allowing their plasmon resonances to couple. Such plasmon-coupled constructs are of interest both as optical interconnects for nanoscale devices and as `plasmon ruler? biomolecular probes.We then present an enzymatic ligation strategy for creating multi-nanoparticle building blocks for self-assembly. In constructing a nanoscale device, such a strategy would allow pre-assembly and purification of components; these constructs can also act as multi-label probes of single-stranded DNA conformational dynamics. Finally we demonstrate a simple proof-of-concept of a nanoparticle analog of the polymerase chain reaction.

  15. Proximal humeral reconstruction using nail cement spacer in primary and metastatic tumours of proximal humerus.

    PubMed

    Kundu, Zile Singh; Gogna, Paritosh; Gupta, Vinay; Kamboj, Pradeep; Singla, Rohit; Sangwan, Sukhbir Singh

    2013-11-01

    Limb salvage surgery for malignant tumours of proximal humerus is an operative challenge, where the surgeon has to preserve elbow and hand functions and retain shoulder stability with as much function as possible. We treated 14 consecutive patients with primary malignant or isolated metastasis of proximal humerus with surgical resection and reconstruction by nail cement spacer. There were 8 females and 6 males, with a mean age of 28.92 years (range 16-51 years) and a mean follow-up of 30.14 months (range 12-52 months). The diagnosis was osteosarcoma in 8 patients, chondrosarcoma in 4 patients and metastasis from thyroid and breast carcinoma in 1 patient each. One of our patients had radial nerve neuropraxia, 1 developed inferior subluxation and 3 developed distant metastasis. Two patients died of disease and one developed local recurrence leading to forequarter amputation, leaving a total of 11 patients with functional extremities for assessment at the time of final follow-up which was done using the Musculoskeletal Tumour Society (MSTS) score. Though we were able to preserve the elbow, wrist and hand functions in all patients, the abductor mechanism, deltoid muscle and axillary nerve were not salvageable in any of cases. The mean MSTS score at the time of final follow-up was 19.09. Thus, proximal humeral reconstruction using nail cement spacer is a technical simple, cost-effective and reproducible procedure which makes it a reliable option in subset of patients where the functions around the shoulder cannot be preserved despite costlier prosthesis.

  16. The STAR Vertex Position Detector

    NASA Astrophysics Data System (ADS)

    Llope, W. J.; Zhou, J.; Nussbaum, T.; Hoffmann, G. W.; Asselta, K.; Brandenburg, J. D.; Butterworth, J.; Camarda, T.; Christie, W.; Crawford, H. J.; Dong, X.; Engelage, J.; Eppley, G.; Geurts, F.; Hammond, J.; Judd, E.; McDonald, D. L.; Perkins, C.; Ruan, L.; Scheblein, J.; Schambach, J. J.; Soja, R.; Xin, K.; Yang, C.

    2014-09-01

    The 2×3 channel pseudo Vertex Position Detector (pVPD) in the STAR experiment at RHIC has been upgraded to a 2×19 channel detector in the same acceptance, called the Vertex Position Detector (VPD). This detector is fully integrated into the STAR trigger system and provides the primary input to the minimum-bias trigger in Au+Au collisions. The information from the detector is used both in the STAR Level-0 trigger and offline to measure the location of the primary collision vertex along the beam pipe and the event "start time" needed by other fast-timing detectors in STAR. The offline timing resolution of single detector channels in full-energy Au+Au collisions is ~100 ps, resulting in a start time resolution of a few tens of picoseconds and a resolution on the primary vertex location of ~1 cm.

  17. State of the art in semiconductor detectors

    SciTech Connect

    Rehak, P. ); Gatti, E. )

    1989-01-01

    The state of the art in semiconductor detectors for elementary particle physics and x-ray astronomy is briefly reviewed. Semiconductor detectors are divided into two groups; classical semiconductor diode detectors; and semiconductor memory detectors. Principles of signal formation for both groups of detectors are described and their performance is compared. New developments of silicon detectors are reported here. 13 refs., 8 figs.

  18. Spatial Pileup Considerations for Pixellated Gamma -ray Detectors

    PubMed Central

    Furenlid, L.R.; Clarkson, E.; Marks, D.G.; Barrett, H.H.

    2015-01-01

    High-spatial-resolution solid-state detectors being developed for gamma-ray applications benefit from having pixel dimensions substantially smaller than detector slab thickness. This leads to an enhanced possibility of charge partially spreading to neighboring pixels as a result of diffusion (and secondary photon emission) transverse to the drift direction. An undesirable consequence is the effective magnification of the event “size“ and the spatial overlap issues which result when two photons are absorbed in close proximity within the integration time of the detector/readout system. In this work, we develop the general statistics of spatial pileup in imaging systems and apply the results to detectors we are developing based on pixellated cadmium zinc telluride (CdZnTe) and a multiplexing application-specific integrated circuit (ASIC) readout. We consider the limitations imposed on total count rate capacity and explore in detail the consequences for the LISTMODE data-acquisition strategy. Algorithms are proposed for identifying and, where possible, resolving overlapping events by maximum-likelihood estimation. The efficacy and noise tolerance of these algorithms will be tested with a combination of simulated and experimental data in future work. PMID:26568675

  19. Modeling tunneling for the unconventional superconducting proximity effect

    NASA Astrophysics Data System (ADS)

    Zareapour, Parisa; Xu, Jianwei; Zhao, Shu Yang F.; Jain, Achint; Xu, Zhijun; Liu, T. S.; Gu, G. D.; Burch, Kenneth S.

    2016-12-01

    Recently there has been reinvigorated interest in the superconducting proximity effect, driven by predictions of the emergence of Majorana fermions. To help guide this search, we have developed a phenomenological model for the tunneling spectra in anisotropic superconductor-normal metal proximity devices. We combine successful approaches used in s-wave proximity and standard d-wave tunneling to reproduce tunneling spectra in d-wave proximity devices, and clarify the origin of various features. Different variations of the pair potential are considered, resulting from the proximity-induced superconductivity. Furthermore, the effective pair potential felt by the quasiparticles is momentum-dependent in contrast to s-wave superconductors. The probabilities of reflection and transmission are calculated by solving the Bogoliubov equations. Our results are consistent with experimental observations of the unconventional proximity effect and provide important experimental parameters such as the size and length scale of the proximity induced gap, as well as the conditions needed to observe the reduced and full superconducting gaps.

  20. areaDetector: Software for 2-D Detectors in EPICS

    SciTech Connect

    Rivers, M.

    2011-09-23

    areaDetector is a new EPICS module designed to support 2-D detectors. It is modular C++ code that greatly simplifies the task of writing support for a new detector. It also supports plugins, which receive detector data from the driver and process it in some way. Existing plugins perform Region-Of-Interest extraction and analysis, file saving (in netCDF, HDF, TIFF and JPEG formats), color conversion, and export to EPICS records for image display in clients like ImageJ and IDL. Drivers have now been written for many of the detectors commonly used at synchrotron beamlines, including CCDs, pixel array and amorphous silicon detectors, and online image plates.

  1. Non-Melanoma-Associated Dyschromia of the Proximal Nail Fold

    PubMed Central

    Cohen, Philip R

    2016-01-01

    Subungual melanoma with pigmentation beneath the nail that extends to involve the proximal nail fold is referred to as Hutchinson’s sign. Black or brown subungual discoloration involving the proximal nail fold secondary to other etiologies has been referred to as pseudo-Hutchinson’s sign. Three patients with nail discoloration and concurrent dyschromia of the proximal nail fold are described: a female with a chronic subungual hematoma and pseudo-Hutchinson’s sign, a male with culture-confirmed Pseudomonas aeruginosa (P. aeruginosa) of the nail with green discoloration involving the proximal nail fold, and a male with an acute subungual hematoma with red-purple subungual discoloration affecting the proximal nail fold. PubMed was searched for the following: black, brown, chloronychia, discoloration, dyschromia, green, hematoma, Hutchinson’s sign, nail, nail fold, proximal, pseudo-Hutchinson’s sign, red, subungual melanoma, syndrome. The papers were reviewed and appropriate references evaluated. In conclusion, melanoma-associated black proximal nail fold pigmentation is referred to as Hutchinson’s sign, and non-melanoma-associated black pigmentation has been designated as pseudo-Hutchinson’s sign. Subungual nail plate discoloration extending to involve the proximal nail fold may be black, green, or red-purple in patients with melanocytic and non-melanocytic lesions, bacterial infection (Pseudomonas), and acute subungual hematoma, respectively. Instead of creating a new terminology, we suggest that non-black subungual discoloration (green or red-purple) extending to involve the proximal nail fold be referred to as pseudo pseudo-Hutchinson’s sign. PMID:28090415

  2. The Role of Proximity Effects in Transition-Edge Sensor Design and Performance

    NASA Technical Reports Server (NTRS)

    Smith, Stephen J.

    2012-01-01

    Transition-edge sensor (TES) microcalorimeters and bolometers are under development by numerous groups worldwide for a variety of applications involving the measurement of particle and photon radiation. Recent experimental and theoretical progress has led to the realization that the fundamental physics of some TES systems involves the longitudinal proximity effect between the electrical bias contacts and the TES. As such, these devices are described as SS'S (or SN'S) weak-links exhibiting Fraunhofer-like magnetic field dependence, and exponential temperature dependence, of the critical current. These discoveries, for the first time, provide a realistic theoretical framework for predicting the resistive transition as a function of temperature, current and magnetic field. In this contribution, we review the latest theoretical and experimental results and investigate how proximity effects play an important role in determining the resistive transition characteristics, which ultimately determines the dynamic range and energy resolution of TES detectors. We investigate how these effects could be utilized in device design to engineer desired transition characteristics for a given application.

  3. Detector Mount Design for IGRINS

    NASA Astrophysics Data System (ADS)

    Oh, Jae Sok; Park, Chan; Cha, Sang-Mok; Yuk, In-Soo; Park, Kwijong; Kim, Kang-Min; Chun, Moo-Young; Ko, Kyeongyeon; Oh, Heeyoung; Jeong, Ueejeong; Nah, Jakyoung; Lee, Hanshin; Jaffe, Daniel T.

    2014-06-01

    The Immersion Grating Infrared Spectrometer (IGRINS) is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG Focal Plane Array (H2RG FPA) detectors. We present the design and fabrication of the detector mount for the H2RG detector. The detector mount consists of a detector housing, an ASIC housing, a Field Flattener Lens (FFL) mount, and a support base frame. The detector and the ASIC housing should be kept at 65 K and the support base frame at 130 K. Therefore they are thermally isolated by the support made of GFRP material. The detector mount is designed so that it has features of fine adjusting the position of the detector surface in the optical axis and of fine adjusting yaw and pitch angles in order to utilize as an optical system alignment compensator. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the structural and thermal analysis, the designed detector mount meets an optical stability tolerance and system thermal requirements. Actual detector mount fabricated based on the design has been installed into the IGRINS cryostat and successfully passed a vacuum test and a cold test.

  4. The MIC photon counting detector

    NASA Astrophysics Data System (ADS)

    Fordham, J. L. A.; Bone, D. A.; Oldfield, M. K.; Bellis, J. G.; Norton, T. J.

    1992-12-01

    The MIC (Microchannel plate Intensified CCD (Charge Coupled Device)) detector is an advanced performance Micro Channel Plate (MCP) intensified CCD photon counting detector developed for high resolution, high dynamic range, astronomical applications. The heart of the detector is an MCP intensifier developed specifically for photon counting applications. The maximum detector format is 3072 by 2304 pixels. The measured resolution of the detector system is 18 micrometers FWHM at 490 nm. The detector is linear to approximately 1,000,000 events/detector area/sec on a flat field and linear to count rates up to 200 events/object/s on star images. Two versions of the system have been developed. The first for ground based astronomical applications based around a 40 mm diameter intensifier, was proven in trials at a number of large optical telescopes. The second, specifically for the ESA X-Ray Multi Mirror Mission (XMM), where the MIC has been accepted as the blue detector for the incorporated Optical Monitor (OM). For the XMM-OM, the system is based around a 25 mm diameter intensifier. At present, under development, is a 75 mm diameter version of the detector which will have a maximum format of 6144 by 4608 pixels. Details of the MIC detector and its performance are presented.

  5. Gamma Detector Response and Analysis Software - Detector Response Function

    SciTech Connect

    2014-05-13

    GADRAS-DRF uses a Detector Response Function (DRF) to compute the response of gamma-ray detectors incident radiation. The application includes provision for plotting measured and computed spectra and for characterizing detector response parameters based on measurements of a series of calibration sources (e.g., Ba-133, Cs-137, Co-60, and Th-228). An application program interface enables other programs to access the dynamic-link library that is used to compute spectra.

  6. Axillary artery injury as a complication of proximal humerus fractures.

    PubMed

    McLaughlin, J A; Light, R; Lustrin, I

    1998-01-01

    Proximal humerus fractures are common injuries and represent approximately 5% of all fractures. These fractures are infrequently associated with neurovascular injuries. Brachial plexus injuries are uncommon, whereas axillary artery injuries are rare. A review of 19 previously reported cases of axillary artery injury after proximal humerus fracture revealed that 84% occurred in patients older than 50 years, 53% were associated with brachial plexus injury, and 21% resulted in upper extremity amputation. This study describes a case of axillary artery injury after proximal humerus fracture and, on the basis of a literature review, offers suggestions for the early diagnosis and effective treatment of this uncommon injury.

  7. Moderate temperature detector development

    NASA Technical Reports Server (NTRS)

    Marciniec, J. W.; Briggs, R. J.; Sood, A. K.

    1981-01-01

    P-side backside reflecting constant, photodiode characterization, and photodiode diffusion and G-R currents were investigated in an effort to develop an 8 m to 12 m infrared quantum detector using mercury cadmium telluride. Anodization, phosphorus implantation, and the graded band gap concept were approaches considered for backside formation. Variable thickness diodes were fabricated with a back surface anodic oxide to investigate the effect of this surface preparation on the diffusion limited zero bias impedance. A modeling technique was refined to thoroughly model diode characteristics. Values for the surface recombination velocity in the depletion region were obtained. These values were improved by implementing better surface damage removal techniques.

  8. Advanced Slit Detectors

    DTIC Science & Technology

    1976-12-01

    removed by chemical etching, shown in step 3. The etch solution used is a diluted aqua regia (2 HCl^i^O:! NHO3) . The etch was terminated by quenching...DISTRIBUTION STATEMENT (ol Hi* mbtltmcl •nl«rad In Black 30, II dlftartnl from Htpotl) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Contlnum on reverse ...source. When 13 : .- ^Mtti m —"—— ’■-■"-—’^ ’-’- ^ - .-».A-.... ■». .^.^.„^^JJ^....^^.^^^. DETECTOR: AD18-L11-#1 FORWARD BIAS fl REVERSE BIAS 1

  9. Wire-inhomogeneity detector

    DOEpatents

    Gibson, G.H.; Smits, R.G.; Eberhard, P.H.

    1982-08-31

    A device for uncovering imperfections in electrical conducting wire, particularly superconducting wire, by detecting variations in eddy currents. Eddy currents effect the magnetic field in a gap of an inductor, contained in a modified commercial ferrite core, through which the wire being tested is passed. A small increase or decrease in the amount of conductive material, such as copper, in a fixed cross section of wire will unbalance a bridge used to measure the impedance of the inductor, tripping a detector and sounding an alarm.

  10. High throughput microcantilever detector

    DOEpatents

    Thundat, Thomas G.; Ferrell, Thomas L.; Hansen, Karolyn M.; Tian, Fang

    2004-07-20

    In an improved uncoated microcantilever detector, the sample sites are placed on a separate semi-conducting substrate and the microcantilever element detects and measures the changes before and after a chemical interaction or hybridization of the sites by sensing differences of phase angle between an alternating voltage applied to the microcantilever element and vibration of the microcantilever element. In another embodiment of the invention, multiple sample sites are on a sample array wherein an array of microcantilever elements detect and measure the change before and after chemical interactions or hybridizations of the sample sites.

  11. Photon detector system

    DOEpatents

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  12. Pyroelectric demodulating detector

    DOEpatents

    Brocato, Robert W.

    2008-07-08

    A pyroelectric demodulating detector (also termed a pyroelectric demodulator) is disclosed which utilizes an electrical resistor stacked upon a pyroelectric element to demodulate an rf or microwave electrical input signal which is amplitude-modulated (AM). The pyroelectric demodulator, which can be formed as a hybrid or a monolithic device, has applications for use in AM radio receivers. Demodulation is performed by feeding the AM input signal into the resistor and converting the AM input signal into an AM heat signal which is conducted through the pyroelectric element and used to generate an electrical output signal containing AM information from the AM input signal.

  13. Liquid level detector

    DOEpatents

    Grasso, A.P.

    1984-02-21

    A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  14. Liquid level detector

    DOEpatents

    Grasso, Albert P.

    1986-01-01

    A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  15. Flexible composite radiation detector

    DOEpatents

    Cooke, D. Wayne; Bennett, Bryan L.; Muenchausen, Ross E.; Wrobleski, Debra A.; Orler, Edward B.

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  16. Long wavelength infrared detector

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1993-01-01

    Long wavelength infrared detection is achieved by a detector made with layers of quantum well material bounded on each side by barrier material to form paired quantum wells, each quantum well having a single energy level. The width and depth of the paired quantum wells, and the spacing therebetween, are selected to split the single energy level with an upper energy level near the top of the energy wells. The spacing is selected for splitting the single energy level into two energy levels with a difference between levels sufficiently small for detection of infrared radiation of a desired wavelength.

  17. Ultraviolet atomic emission detector

    NASA Technical Reports Server (NTRS)

    Braun, W.; Peterson, N. C.; Bass, A. M.; Kurylo, M. J., III (Inventor)

    1972-01-01

    A device and method are provided for performing qualitative and quantitative elemental analysis through the utilization of a vacuum UV chromatographic detector. The method involves the use of a carrier gas at low pressure. The gas carries a sample to a gas chromatograph column; the column output is directed to a microwave cavity. In this cavity, a low pressure microwave discharge produces fragmentation of the compounds present and generates intense atomic emissions in the vacuum ultraviolet. These emissions are isolated by a monochromator and measured by photometer to establish absolute concentration for the elements.

  18. Ionizing Radiation Detector

    DOEpatents

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2003-11-18

    A CdZnTe (CZT) crystal provided with a native CdO dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals is disclosed. A two step process is provided for forming the dielectric coating which includes etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and passivating the CZT crystal surface with a solution of 10 w/o NH.sub.4 F and 10 w/o H.sub.2 O.sub.2 in water after attaching electrical contacts to the crystal surface.

  19. Response microcantilever thermal detector

    DOEpatents

    Cunningham, Joseph P.; Rajic, Slobodan; Datskos, Panagiotis G.; Evans III, Boyd M.

    2004-10-19

    A "folded leg" thermal detector microcantilever constructed of a substrate with at least one leg interposed between a fixed end and a deflective end, each leg having at least three essentially parallel leg segments interconnected on alternate opposing ends and aligned in a serpentine pattern with only the first leg segment attached to the fixed end and only the last leg segment attached to the deflective end. Alternate leg segment are coated on the pentalever with coating applied to the top of the first, third, and fifth leg segments of each leg and to the bottom of the second and fourth leg segments of each leg.

  20. Overview of the BTeV Pixel Detector

    SciTech Connect

    Jeffrey A Appel

    2002-12-10

    BTeV is a new Fermilab beauty and charm experiment designed to operate in the CZero region of the Tevatron collider. Critical to the success of BTeV is its pixel detector. The unique features of this pixel detector include its proximity to the beam, its operation with a beam crossing time of 132 ns, and the need for the detector information to be read out quickly enough to be used for the lowest level trigger. This talk presents an overview of the pixel detector design, giving the motivations for the technical choices made. The status of the current R&D on detector components is also reviewed. Additional Pixel 2002 talks on the BTeV pixel detector are given by Dave Christian[1], Mayling Wong[2], and Sergio Zimmermann[3]. Table 1 gives a selection of pixel detector parameters for the ALICE, ATLAS, BTeV, and CMS experiments. Comparing the progression of this table, which I have been updating for the last several years, has shown a convergence of specifications. Nevertheless, significant differences endure. The BTeV data-driven readout, horizontal and vertical position resolution better than 9 {micro}m with the {+-} 300 mr forward acceptance, and positioning in vacuum and as close as 6 mm from the circulating beams remain unique. These features are driven by the physics goals of the BTeV experiment. Table 2 demonstrates that the vertex trigger performance made possible by these features is requisite for a very large fraction of the B meson decay physics which is so central to the motivation for BTeV. For most of the physics quantities of interest listed in the table, the vertex trigger is essential. The performance of the BTeV pixel detector may be summarized by looking at particular physics examples; e.g., the B{sub s} meson decay B{sub s} {yields} D{sub s}{sup -} K{sup +}. For that decay, studies using GEANT3 simulations provide quantitative measures of performance. For example, the separation between the B{sub s} decay point and the primary proton

  1. Shifting scintillator neutron detector

    DOEpatents

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  2. Infrared detectors for space applications

    NASA Astrophysics Data System (ADS)

    Fick, Wolfgang; Gassmann, Kai Uwe; Haas, Luis-Dieter; Haiml, Markus; Hanna, Stefan; Hübner, Dominique; Höhnemann, Holger; Nothaft, Hans-Peter; Thöt, Richard

    2013-12-01

    The motivation and intended benefits for the use of infrared (IR) detectors for space applications are highlighted. The actual status of state-of-the-art IR detectors for space applications is presented based on some of AIM's currently ongoing focal plane detector module developments covering the spectral range from the short-wavelength IR (SWIR) to the long-wavelength IR (LWIR) and very long-wavelength IR (VLWIR), where both imaging and spectroscopy applications will be addressed. In particular, the integrated detector cooler assemblies for a mid-wavelength IR (MWIR) push-broom imaging satellite mission, for the German hyperspectral satellite mission EnMAP and the IR detectors for the Sentinel 3 SLSTR will be elaborated. Additionally, dedicated detector modules for LWIR/VLWIR sounding, providing the possibility to have two different PVs driven by one ROIC, will be addressed.

  3. Chronopixels: particle detector R&D for the ATLAS phase 2 upgrade

    NASA Astrophysics Data System (ADS)

    Weber, Christian; Baker, Keith; Barker, Thomas; Baltay, Charles; Sinev, Nikolai; Brau, Jim; Strom, David; Atlas Collaboration

    2017-01-01

    The pixel detector comprises the innermost part of the ATLAS detector. Its proximity to the interaction point together with its micrometer resolution allow for impact parameter determination and vertex fitting. This proximity however exposes it also to the highest radiation fluences and particle densities. The latter poses a challenge in inferring particle tracks from hit pixels, while the former leads to progressive radiation damage of the pixel detector itself. These problems will worsen after the LHC's third long shutdown in 2025 when it will operate in high luminosity mode at about five times the current instantaneous luminosity. These conditions will require the pixel detector to be replaced by one staffed with pixel modules capable of enduring the harsher radiation environment, and with finer granularity to cope with the increased pileup. Several efforts in the community are on their way to produce such a pixel module. We are presenting here the current status of our R&D on such a pixel module: The Chronopixel for ATLAS phase 2, a fully monolithic active pixel sensor in CMOS technology. Sensing and readout electronics are included in each pixel here. As such it does not require expensive and labor intensive bump-bonding to a separate readout chip, reducing cost and material in the pixel detector. We gratefully acknowledge support by the Department of Energy, Office of High Energy Physics.

  4. Rad-Hard Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Giorgi, Marco

    2005-06-01

    For the next generation of High Energy Physics (HEP) Experiments silicon microstrip detectors working in harsh radiation environments with excellent performances are necessary. The irradiation causes bulk and surface damages that modify the electrical properties of the detector. Solutions like AC coupled strips, overhanging metal contact, <100> crystal lattice orientation, low resistivity n-bulk and Oxygenated substrate are studied for rad-hard detectors. The paper presents an outlook of these technologies.

  5. Proton calibration of low energy neutron detectors containing (6)LiF

    SciTech Connect

    Benton, E.V.; Frank, A.L.

    1995-03-01

    The purpose of the present calibrations is to measure the proton response of the detectors with accelerated beams having energies within the region of maximum intensities in the trapped proton spectrum encountered in near-Earth orbit. This response is compared with the responses of the spaceflight detectors when related to proton exposures. All of the spaceflight neutron measurements have been accompanied by TLD absorbed doses measurements in close proximity within the spacecraft. For purposes of comparison, the spaceflight TLD doses are assumed to be proton doses.

  6. Proton calibration of low energy neutron detectors containing (6)LiF

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    The purpose of the present calibrations is to measure the proton response of the detectors with accelerated beams having energies within the region of maximum intensities in the trapped proton spectrum encountered in near-Earth orbit. This response is compared with the responses of the spaceflight detectors when related to proton exposures. All of the spaceflight neutron measurements have been accompanied by TLD absorbed doses measurements in close proximity within the spacecraft. For purposes of comparison, the spaceflight TLD doses are assumed to be proton doses.

  7. An unusual case of glipizide-induced proximal myopathy

    PubMed Central

    Das, Saibal; Ramasamy, Anand; De, Soumyadip; Mondal, Somnath

    2016-01-01

    This case report outlines a very rare case of glipizide-induced severe proximal myopathy in a 61-year-old diabetic man. After taking 10 mg glipizide for 5 months, diabetes was well controlled but the patient presented with progressive proximal muscle weakness in all the four limbs. Clinical examination and relevant investigations suggested it to be a case of proximal myopathy and might be drug induced. De-challenge was done and was treated resulting in reversal of the diseased state. After 3 more months, controlled re-challenge was done and there was recurrence of proximal muscle weakness. There were no evidences of any other possible metabolic, infective, organic or other pathologic causes giving rise to that condition and Naranjo adverse drug reaction probability scale suggested that it was “probable” that glipizide was responsible for the development of myopathy in this patient. PMID:27440956

  8. 1. General view to southwest showing proximity of house to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. General view to southwest showing proximity of house to bridge and north elevation of house. - Locke Avenue Bridge, Bridge Tender's House, East side of Locke Avenue, 12 feet south of Locke Avenue Bridge, Swedesboro, Gloucester County, NJ

  9. View to northeast, showing west elevation and south side. Proximity ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View to northeast, showing west elevation and south side. Proximity of fence of adjacent subdivision precluded photography of north side. - Drew-Sherwood Farm, Barn, 7927 Elk Grove Boulevard, Elk Grove, Sacramento County, CA

  10. Abnormalities of proximal femoral growth after severe Perthes' disease.

    PubMed

    Sponseller, P D; Desai, S S; Millis, M B

    1989-08-01

    We studied the pattern of proximal femoral growth after severe Perthes' disease (Catterall grade III or IV) by retrospective analysis of serial radiographs in 52 hips (46 patients). Our aim was to determine the relationship between proximal femoral growth abnormalities and metaphyseal cysts, epiphyseal extrusion, physeal narrowing, and extensive epiphyseal necrosis. The average follow-up after treatment was 9.8 years (range 4 to 16 years), and 37 of the hips were followed to skeletal maturity. Slowing of proximal femoral growth was common: symmetrical abnormality was seen in 26 hips and asymmetrical abnormality in nine. However, definite premature closure of the proximal femoral physis was seen in only three hips. Abnormality seemed to be due to altered growth velocity rather than to bar formation in most cases. Metaphyseal cysts, epiphyseal extrusion and physeal narrowing during the active stage of the disease, alone or in combination, were found to be neither sensitive nor specific predictors of the subsequent growth pattern.

  11. Differential permeability of the proximal and distal rabbit small bowel

    PubMed Central

    Ross, Allan; Rubin, Allen W.; Deren, Julius J.

    1972-01-01

    The permeability of the proximal and distal rabbit intestine for two to six carbon polyhydric alcohols was compared. Intestinal segments were mounted in chambers that permitted the measurement of the unidirectional flux across the brush border membrane. For both proximal and distal intestine, the permeability for a series of polyhydric alcohols decreased with increasing size. The proximal intestine was more permeable for four, five, and six carbon polyhydric alcohols than distal intestine. This regional permeability difference can be attributed to variations in the permeability characteristics of the brush border specifically. The uptake of alcohols was nonsaturable and was not inhibited by phlorizine or n-ethylmaleimide. The results are compatible with the concept that the brush border membrane has properties similar to artificial porous membranes and that the equivalent radius of the pores of the proximal intestine exceeds that of the distal gut. PMID:4639025

  12. Analysis on the characteristics of pulsed laser proximity fuze's echo

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Chen, Huimin

    2011-06-01

    With the rapid development of semiconductor technology and laser technology, a kind of proximity fuze named pulsed laser proximity fuze has been applied. Compared with other fuzes, pulsed laser proximity fuze has high ranging precision and strong resistance to artificial active interference. It is an important development tendency of proximity fuze. The paper analyze the characteristic of target echo of laser signal, and then make theoretical analysis and calculation on the laser signal transmission in the smog. Firstly, use the pulse width of 10ns semiconductor laser fuze to do typical targets experiment, to get the echo information of target distance is 5m; then to do smog interference experiment, by comparing the pulse width amplitude and backscattering signal amplitude of laser fuze in simulation and experiment, analyzing the effect of anti-clutter, providing the evidence for the subsequent of circuit of signal amplification and processing.

  13. PAU camera: detectors characterization

    NASA Astrophysics Data System (ADS)

    Casas, Ricard; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; Jiménez, Jorge; Maiorino, Marino; Pío, Cristóbal; Sevilla, Ignacio; de Vicente, Juan

    2012-07-01

    The PAU Camera (PAUCam) [1,2] is a wide field camera that will be mounted at the corrected prime focus of the William Herschel Telescope (Observatorio del Roque de los Muchachos, Canary Islands, Spain) in the next months. The focal plane of PAUCam is composed by a mosaic of 18 CCD detectors of 2,048 x 4,176 pixels each one with a pixel size of 15 microns, manufactured by Hamamatsu Photonics K. K. This mosaic covers a field of view (FoV) of 60 arcmin (minutes of arc), 40 of them are unvignetted. The behaviour of these 18 devices, plus four spares, and their electronic response should be characterized and optimized for the use in PAUCam. This job is being carried out in the laboratories of the ICE/IFAE and the CIEMAT. The electronic optimization of the CCD detectors is being carried out by means of an OG (Output Gate) scan and maximizing it CTE (Charge Transfer Efficiency) while the read-out noise is minimized. The device characterization itself is obtained with different tests. The photon transfer curve (PTC) that allows to obtain the electronic gain, the linearity vs. light stimulus, the full-well capacity and the cosmetic defects. The read-out noise, the dark current, the stability vs. temperature and the light remanence.

  14. LIGO Detector Commissioning

    NASA Astrophysics Data System (ADS)

    Raab, Frederick

    2003-04-01

    The initial LIGO interferometer design was based on more than 20 years of experience with test interferometers, but the increase in scale, new operating environments and extreme technical requirements presented challenges for commissioning. Detector installation began in 1998 with injection optics at Hanford, WA. By 1999, light was resonating in a single 2-km Fabry-Perot arm cavity. Subsequent engineering runs tested stability and analyzed environmental influences, particularly the earth tides and the microseism. By October 2000, the first lock of a kilometer-scale, power recycled Fabry-Perot-Michelson interferometer was obtained, using an automated system to analyze optical signals and reconfigure control loops as the mirrors are drawn into position. The many control loops that minimize length and angle fluctuations of the mirrors relative to the laser light were tuned and noise sources were identified and reduced iteratively as sensitivity improved by several orders of magnitude. Following installation of the last LIGO mirror in 2001, engineering run 7 provided the first triple-coincidence operation of LIGO's interferometers at Hanford and Livingston, LA in early 2002. Clear signals of mirrors recoiling from the Brownian motion of the suspension-wire violin modes first emerged from the noise during science run 1 in September 2002, at approximately the expected amplitude. Detector robustness has steadily improved and uninterrupted locking on a dark fringe for more than a day has been achieved. The support of the US National Science Foundation under Cooperative Agreement No. PHY-0107417 is gratefully acknowledged.

  15. ATLAS Detector Upgrade Prospects

    NASA Astrophysics Data System (ADS)

    Dobre, M.; ATLAS Collaboration

    2017-01-01

    After the successful operation at the centre-of-mass energies of 7 and 8 TeV in 2010-2012, the LHC was ramped up and successfully took data at the centre-of-mass energies of 13 TeV in 2015 and 2016. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, which will deliver of the order of five times the LHC nominal instantaneous luminosity along with luminosity levelling. The ultimate goal is to extend the dataset from about few hundred fb ‑1 expected for LHC running by the end of 2018 to 3000 fb ‑1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extensions to larger pseudorapidity, particularly in tracking and muon systems. This report summarizes various improvements to the ATLAS detector required to cope with the anticipated evolution of the LHC luminosity during this decade and the next. A brief overview is also given on physics prospects with a pp centre-of-mass energy of 14 TeV.

  16. The Galileo Dust Detector

    NASA Technical Reports Server (NTRS)

    Gruen, Eberhard; Fechtig, Hugo; Hanner, Martha S.; Kissel, Jochen; Lindblad, Bertil-Anders; Linkert, Dietmar; Maas, Dieter; Morfill, Gregor E.; Zook, Herbert A.

    1992-01-01

    The Galileo Dust Detector is intended to provide direct observations of dust grains with masses between 10 exp -19 and 10 exp -9 kg in interplanetary space and in the Jovian system, to investigate their physical and dynamical properties as functions of the distances to the sun, to Jupiter and to its satellites, and to study its interaction with the Galilean satellites and the Jovian magnetosphere. The investigation is performed with an instrument that measures the mass, speed, flight direction and electric charge of individual dust particles. It is a multicoincidence detector with a mass sensitivity 1 000 000 times higher than that of previous in situ experiments which measured dust in the outer solar system. The instrument weighs 4.2 kg, consumes 2.4 W, and has a normal data transmission rate of 24 bits/s in nominal spacecraft tracking mode. On December 29, 1989 the instrument was switched-on. After the instrument had been configured to flight conditions cruise science data collection started immediately. In the period to May 18, 1990 at least 168 dust impacts have been recorded. For 81 of these dust grains masses and impact speeds have been determined. First flux values are given.

  17. Optical electromagnetic radiation detector

    NASA Astrophysics Data System (ADS)

    Miceli, W. J.; Ludman, J. E.

    1985-08-01

    An optical electromagnetic radiation detector is invented having a probe for receiving nearby electromagnetic radiation. The probe includes a loop antenna connected to a pair of transparent electrodes deposited on the end surfaces of an electro-optic Fabry-Perot interferometer. When the loop antenna picks up the presence of electromagnetic radiation, a voltage will be developed across the crystal of the electro-optic Fabry-Perot interferometer thereby changing the optical length of the interferometer. A beam of light from a remote location is transmitted through an optical fiber onto the Fabry-Perot interferometer. The change in optical length of the Fabry-Perot interferometer alters the intensity of the beam of light as its is reflected from the Fabry-Perot interferometer back through the optical fiber to the remote location. A beamsplitter directs this reflected beam of light onto an intensity detector in order to provide an output indicative of the variations in intensity. The variations in intensity are directly related to the strength of the electromagnetic radiation received by the loop antenna.

  18. Graphene based GHz detectors

    NASA Astrophysics Data System (ADS)

    Boyd, Anthony K.; El Fatimy, Abdel; Barbara, Paola; Nath, Anindya; Campbell, Paul M.; Myers-Ward, Rachael; Daniels, Kevin; Gaskill, D. Kurt

    Graphene demonstrates great promise as a detector over a wide spectral range especially in the GHz range. This is because absorption is enhanced due to the Drude contribution. In the GHz range there are viable detection mechanisms for graphene devices. With this in mind, two types of GHz detectors are fabricated on epitaxial graphene using a lift off resist-based clean lithography process to produce low contact resistance. Both device types use asymmetry for detection, consistent with recent thoughts of the photothermoelectric effect (PTE) mechanism. The first is an antenna coupled device. It utilizes two dissimilar contact metals and the work function difference produces the asymmetry. The other device is a field effect transistor constructed with an asymmetric top gate that creates a PN junction and facilitates tuning the photovoltaic response. The response of both device types, tested from 100GHz to 170GHz, are reported. This work was sponsored by the U.S. Office of Naval Research (Award Number N000141310865).

  19. Advanced Radiation Detector Development

    SciTech Connect

    The University of Michigan

    1998-07-01

    Since our last progress report, the project at The University of Michigan has continued to concentrate on the development of gamma ray spectrometers fabricated from cadmium zinc telluride (CZT). This material is capable of providing energy resolution that is superior to that of scintillation detectors, while avoiding the necessity for cooling associated with germanium systems. In our past reports, we have described one approach (the coplanar grid electrode) that we have used to partially overcome some of the major limitations on charge collection that is found in samples of CZT. This approach largely eliminates the effect of hole motion in the formation of the output signal, and therefore leads to pulses that depend only on the motion of a single carrier (electrons). Since electrons move much more readily through CZT than do holes, much better energy resolution can be achieved under these conditions. In our past reports, we have described a 1 cm cube CZT spectrometer fitted with coplanar grids that achieved an energy resolution of 1.8% from the entire volume of the crystal. This still represents, to our knowledge, the best energy resolution ever demonstrated in a CZT detector of this size.

  20. Barrier infrared detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Khoshakhlagh, Arezou (Inventor); Soibel, Alexander (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2012-01-01

    A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays.

  1. Chopper-stabilized phase detector

    NASA Technical Reports Server (NTRS)

    Hopkins, P. M.

    1978-01-01

    Phase-detector circuit for binary-tracking loops and other binary-data acquisition systems minimizes effects of drift, gain imbalance, and voltage offset in detector circuitry. Input signal passes simultaneously through two channels where it is mixed with early and late codes that are alternately switched between channels. Code switching is synchronized with polarity switching of detector output of each channel so that each channel uses each detector for half time. Net result is that dc offset errors are canceled, and effect of gain imbalance is simply change in sensitivity.

  2. Detector Background at Muon Colliders

    SciTech Connect

    Mokhov, N.V.; Striganov, S.I.; /Fermilab

    2011-09-01

    Physics goals of a Muon Collider (MC) can only be reached with appropriate design of the ring, interaction region (IR), high-field superconducting magnets, machine-detector interface (MDI) and detector. Results of the most recent realistic simulation studies are presented for a 1.5-TeV MC. It is shown that appropriately designed IR and MDI with sophisticated shielding in the detector have a potential to substantially suppress the background rates in the MC detector. The main characteristics of backgrounds are studied.

  3. In-line ion detector

    SciTech Connect

    Becker, R.; Kester, O.

    2008-02-15

    An in-line particle detector (IPD) uses secondary electrons for the detection of multiply charged ions with low to medium energy (10-10 keV). The ion detector does not physically intercept the ion beam line and is fully transparent to ions without applied voltages. The activation of the detector is performed by applying appropriate voltages to electrodes, which avoids any physical movement. Equipped with a channel electron multiplier, single particle counting is possible as well as measurement of currents. This detector therefore has a large dynamical range from about 10{sup -17} to 10{sup -3} A. The basic principle also allows for ion beam diagnostics.

  4. Burst Populations and Detector Sensitivity

    NASA Technical Reports Server (NTRS)

    Band, David L.

    2003-01-01

    The F(sub T) (peak bolometric photon flux) vs. E(sub p) (peak energy) plane is a powerful tool to compare the burst populations detected by different detectors. Detector sensitivity curves in this plane demonstrate which burst populations the detectors will detect. For example, future CZT-based detectors will show the largest increase in sensitivity for soft bursts, and will be particularly well- suited to study X-ray rich bursts and X-ray Flashes. Identical bursts at different redshifts describe a track in the F(sub T)-E(sub p) plane.

  5. Position-sensitive superconductor detectors

    NASA Astrophysics Data System (ADS)

    Kurakado, M.; Taniguchi, K.

    2016-12-01

    Superconducting tunnel junction (STJ) detectors and superconducting transition- edge sensors (TESs) are representative superconductor detectors having energy resolutions much higher than those of semiconductor detectors. STJ detectors are thin, thereby making it suitable for detecting low-energy X rays. The signals of STJ detectors are more than 100 times faster than those of TESs. By contrast, TESs are microcalorimeters that measure the radiation energy from the change in the temperature. Therefore, signals are slow and their time constants are typically several hundreds of μs. However, TESs possess excellent energy resolutions. For example, TESs have a resolution of 1.6 eV for 5.9-keV X rays. An array of STJs or TESs can be used as a pixel detector. Superconducting series-junction detectors (SSJDs) comprise multiple STJs and a single-crystal substrate that acts as a radiation absorber. SSJDs are also position sensitive, and their energy resolutions are higher than those of semiconductor detectors. In this paper, we give an overview of position-sensitive superconductor detectors.

  6. The MUSE instrument detector system

    NASA Astrophysics Data System (ADS)

    Reiss, Roland; Deiries, Sebastian; Lizon, Jean-Louis; Rupprecht, Gero

    2012-09-01

    The MUSE (Multi Unit Spectroscopic Explorer) instrument (see Bacon et al., this conference) for ESO's Very Large Telescope VLT employs 24 integral field units (spectrographs). Each of these is equipped with its own cryogenically cooled CCD head. The heads are individually cooled by continuous flow cryostats. The detectors used are deep depletion e2v CCD231-84 with 4096x4112 active 15 μm pixels. The MUSE Instrument Detector System is now in the final integration and test phase on the instrument. This paper gives an overview of the architecture and performance of the complex detector system including ESO's New General detector Controllers (NGC) for the 24 science detectors, the detector head electronics and the data acquisition system with Linux Local Control Units. NGC is sub-divided into 4 Detector Front End units each operating 6 CCDs. All CCDs are simultaneously read out through 4 ports to achieve short readout times at low noise levels. All science grade CCDs were thoroughly characterized on ESO's optical detectors testbench facility and the test results processed and documented in a semi-automated, reproducible way. We present the test methodology and the results that fully confirm the feasibility of these detectors for their use in this challenging instrument.

  7. Post-traumatic osteonecrosis of the proximal humerus.

    PubMed

    Patel, Shelain; Colaco, Henry B; Elvey, Michael E; Lee, Marcus H

    2015-10-01

    Post-traumatic osteonecrosis of the proximal humerus represents a challenging problem to the surgeon. It is commonly seen following multi-fragmentary fractures of the proximal humerus which may affect the long-term functional recovery after such injuries. This review summarises the current evidence on risk factors, reasons why estimating its epidemiology is difficult, the vascular supply of the humeral head, classification, and management options.

  8. [Merle D'Aubigne's oblique proximal femoral osteotomy. Surgical technique].

    PubMed

    López Sosa, Francisco H; Valentín-Guerrero, Santiago; Miranda-López, Eduardo

    2008-01-01

    Proximal femoral osteotomy with the technique described by Merle D'AubignC and Valliant was used in the treatment of adult patients with osteoarthritis or idiopathic avascular necrosis. Dr. Antonio Flores applied this technique to children with subluxation and acetabular dysplasia, identified with exaggerated anteversion and valgus of the proximal femur. He reported correction of the deformity in 75% of patients. The purpose of this paper is to describe the technique, its indications and complications.

  9. Hemiarthroplasty for proximal humeral fracture: restoration of the Gothic arch.

    PubMed

    Krishnan, Sumant G; Bennion, Phillip W; Reineck, John R; Burkhead, Wayne Z

    2008-10-01

    Proximal humerus fractures are the most common fractures of the shoulder girdle, and initial management of these injuries often determines final outcome. When arthroplasty is used to manage proximal humeral fractures, surgery remains technically demanding, and outcomes have been unpredictable. Recent advances in both technique and prosthetic implants have led to more successful and reproducible results. Key technical points include restoration of the Gothic arch, anatomic tuberosity reconstruction, and minimal soft tissue dissection.

  10. Design and performance of a modular low-radioactivity readout system for cryogenic detectors in the CDMS experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Barnes, P. D., Jr.; Brink, P. L.; Cabrera, B.; Clarke, R. M.; Gaitskell, R. J.; Golwala, S. R.; Huber, M. E.; Kurylowicz, M.; Mandic, V.; Martinis, J. M.; Meunier, P.; Mirabolfathi, N.; Nam, S. W.; Perillo-Isaac, M.; Saab, T.; Sadoulet, B.; Schnee, R. W.; Seitz, D. N.; Shutt, T.; Smith, G. W.; Stockwell, W. K.; Sundqvist, K. M.; White, S.

    2008-07-01

    The Cryogenic Dark Matter Search (CDMS) experiment employs ultra-cold solid-state detectors to search for rare events resulting from WIMP-nucleus scattering. An innovative detector packaging and readout system has been developed to meet the unusual combination of requirements for: low temperature, low radioactivity, low energy threshold, and large channel count. Features include use of materials with low radioactivity such as multi-layer KAPTON laminates for circuit boards; immunity to microphonic noise via a vacuum coaxial wiring design, manufacturability, and modularity. The detector readout design had to accommodate various electronic components which have to be operated in close proximity to the detector as well maintaining separate individual temperatures (ranging from 600 mK to 150 K) in order to achieve optimal noise performance. The paper will describe the general electrical, thermal, and mechanical designs of the CDMS readout system, as well as presenting the theoretical and measured performance of the detector readout channels.

  11. Design and Clinical Application of Proximal Humerus Memory Connector

    NASA Astrophysics Data System (ADS)

    Xu, Shuo-Gui; Zhang, Chun-Cai

    2011-02-01

    Treatment for comminuted proximal humerus fractures and nonunions are a substantial challenge for orthopedic surgeons. Plate and screw fixation does not provide enough stability to allow patients to begin functional exercises early after surgery. Using shape memory material nickel titanium alloy, we designed a new device for treating severe comminuted proximal humerus fractures that accommodates for the anatomical features of the proximal humerus. Twenty-two cases of comminuted fracture, malunion, and nonunion of the proximal humerus were treated with the proximal humeral memory connector (PHMC). No external fixation was needed after the operation and patients began active shoulder exercises an average of 8 days after the operation. Follow-up evaluation (mean 18.5 months) revealed that bone healing with lamellar bone formation occurred an average of 3.6 months after surgery for the fracture cases and 4.5 months after surgery for the nonunion cases. Average shoulder function was 88.5 according to the criteria of Michael Reese. PHMC is an effective new device to treat comminuted proximal humerus fractures and nonunions. The use of this device may reduce the need for shoulder joint arthroplasty.

  12. Psychological responses to the proximity of climate change

    NASA Astrophysics Data System (ADS)

    Brügger, Adrian; Dessai, Suraje; Devine-Wright, Patrick; Morton, Thomas A.; Pidgeon, Nicholas F.

    2015-12-01

    A frequent suggestion to increase individuals' willingness to take action on climate change and to support relevant policies is to highlight its proximal consequences, that is, those that are close in space and time. But previous studies that have tested this proximizing approach have not revealed the expected positive effects on individual action and support for addressing climate change. We present three lines of psychological reasoning that provide compelling arguments as to why highlighting proximal impacts of climate change might not be as effective a way to increase individual mitigation and adaptation efforts as is often assumed. Our contextualization of the proximizing approach within established psychological research suggests that, depending on the particular theoretical perspective one takes on this issue, and on specific individual characteristics suggested by these perspectives, proximizing can bring about the intended positive effects, can have no (visible) effect or can even backfire. Thus, the effects of proximizing are much more complex than is commonly assumed. Revealing this complexity contributes to a refined theoretical understanding of the role that psychological distance plays in the context of climate change and opens up further avenues for future research and for interventions.

  13. Detector developments at DESY.

    PubMed

    Wunderer, Cornelia B; Allahgholi, Aschkan; Bayer, Matthias; Bianco, Laura; Correa, Jonathan; Delfs, Annette; Göttlicher, Peter; Hirsemann, Helmut; Jack, Stefanie; Klyuev, Alexander; Lange, Sabine; Marras, Alessandro; Niemann, Magdalena; Pithan, Florian; Reza, Salim; Sheviakov, Igor; Smoljanin, Sergej; Tennert, Maximilian; Trunk, Ulrich; Xia, Qingqing; Zhang, Jiaguo; Zimmer, Manfred; Das, Dipayan; Guerrini, Nicola; Marsh, Ben; Sedgwick, Iain; Turchetta, Renato; Cautero, Giuseppe; Giuressi, Dario; Menk, Ralf; Khromova, Anastasiya; Pinaroli, Giovanni; Stebel, Luigi; Marchal, Julien; Pedersen, Ulrik; Rees, Nick; Steadman, Paul; Sussmuth, Mark; Tartoni, Nicola; Yousef, Hazem; Hyun, HyoJung; Kim, KyungSook; Rah, Seungyu; Dinapoli, Roberto; Greiffenberg, Dominic; Mezza, Davide; Mozzanica, Aldo; Schmitt, Bernd; Shi, Xintian; Krueger, Hans; Klanner, Robert; Schwandt, Joem; Graafsma, Heinz

    2016-01-01

    With the increased brilliance of state-of-the-art synchrotron radiation sources and the advent of free-electron lasers (FELs) enabling revolutionary science with EUV to X-ray photons comes an urgent need for suitable photon imaging detectors. Requirements include high frame rates, very large dynamic range, single-photon sensitivity with low probability of false positives and (multi)-megapixels. At DESY, one ongoing development project - in collaboration with RAL/STFC, Elettra Sincrotrone Trieste, Diamond, and Pohang Accelerator Laboratory - is the CMOS-based soft X-ray imager PERCIVAL. PERCIVAL is a monolithic active-pixel sensor back-thinned to access its primary energy range of 250 eV to 1 keV with target efficiencies above 90%. According to preliminary specifications, the roughly 10 cm × 10 cm, 3.5k × 3.7k monolithic sensor will operate at frame rates up to 120 Hz (commensurate with most FELs) and use multiple gains within 27 µm pixels to measure 1 to ∼100000 (500 eV) simultaneously arriving photons. DESY is also leading the development of the AGIPD, a high-speed detector based on hybrid pixel technology intended for use at the European XFEL. This system is being developed in collaboration with PSI, University of Hamburg, and University of Bonn. The AGIPD allows single-pulse imaging at 4.5 MHz frame rate into a 352-frame buffer, with a dynamic range allowing single-photon detection and detection of more than 10000 photons at 12.4 keV in the same image. Modules of 65k pixels each are configured to make up (multi)megapixel cameras. This review describes the AGIPD and the PERCIVAL concepts and systems, including some recent results and a summary of their current status. It also gives a short overview over other FEL-relevant developments where the Photon Science Detector Group at DESY is involved.

  14. Testing of Transient Radiation Noise Subtraction Using a Commercially Available 3-Color Visible Detector

    DTIC Science & Technology

    2008-01-01

    20080213027 DESTRUCTION NOTICE FOR CLASSIFIED documents, follow the procedures in DoD 5550.22-M, National Industrial Security Program Operating Manual...accordance with DoD 5220.22-M, Industrial Security Manual. PLEASE NOTIFY THE DEFENSE THREAT REDUCTION AGENCY, ATTN: CST, 8725 JOHN J. KINGMAN ROAD, STOP-6201...layer is in very close proximity to the other two layers but with little 3 light input it thus plays the role of the optica ’y inactive detector. The

  15. Neutron detector and fabrication method thereof

    DOEpatents

    Bhandari, Harish B.; Nagarkar, Vivek V.; Ovechkina, Olena E.

    2016-08-16

    A neutron detector and a method for fabricating a neutron detector. The neutron detector includes a photodetector, and a solid-state scintillator operatively coupled to the photodetector. In one aspect, the method for fabricating a neutron detector includes providing a photodetector, and depositing a solid-state scintillator on the photodetector to form a detector structure.

  16. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, V.

    1992-12-15

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.

  17. Imaging alpha particle detector

    DOEpatents

    Anderson, David F.

    1985-01-01

    A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  18. Imaging alpha particle detector

    DOEpatents

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  19. Porous material neutron detector

    DOEpatents

    Diawara, Yacouba [Oak Ridge, TN; Kocsis, Menyhert [Venon, FR

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  20. Temperature profile detector

    DOEpatents

    Tokarz, R.D.

    1983-10-11

    Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

  1. Direction sensitive neutron detector

    DOEpatents

    Ahlen, Steven; Fisher, Peter; Dujmic, Denis; Wellenstein, Hermann F.; Inglis, Andrew

    2017-01-31

    A neutron detector includes a pressure vessel, an electrically conductive field cage assembly within the pressure vessel and an imaging subsystem. A pressurized gas mixture of CF.sub.4, .sup.3He and .sup.4He at respective partial pressures is used. The field cage establishes a relatively large drift region of low field strength, in which ionization electrons generated by neutron-He interactions are directed toward a substantially smaller amplification region of substantially higher field strength in which the ionization electrons undergo avalanche multiplication resulting in scintillation of the CF.sub.4 along scintillation tracks. The imaging system generates two-dimensional images of the scintillation patterns and employs track-finding to identify tracks and deduce the rate and direction of incident neutrons. One or more photo-multiplier tubes record the time-profile of the scintillation tracks permitting the determination of the third coordinate.

  2. Temperature profile detector

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles.

  3. Fiber optic fluid detector

    DOEpatents

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  4. Fiber optic fluid detector

    DOEpatents

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  5. Laser pulse detector

    DOEpatents

    Mashburn, Douglas N.; Akerman, M. Alfred

    1981-01-01

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  6. Laser pulse detector

    DOEpatents

    Mashburn, D.N.; Akerman, M.A.

    1979-08-13

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  7. Volatile chemical reagent detector

    DOEpatents

    Chen, Liaohai; McBranch, Duncan; Wang, Rong; Whitten, David

    2004-08-24

    A device for detecting volatile chemical reagents based on fluorescence quenching analysis that is capable of detecting neutral electron acceptor molecules. The device includes a fluorescent material, a contact region, a light source, and an optical detector. The fluorescent material includes at least one polymer-surfactant complex. The polymer-surfactant complex is formed by combining a fluorescent ionic conjugated polymer with an oppositely charged surfactant. The polymer-surfactant complex may be formed in a polar solvent and included in the fluorescent material as a solution. Alternatively, the complex may be included in the fluorescent material as a thin film. The use of a polymer-surfactant complex in the fluorescent material allows the device to detect both neutral and ionic acceptor molecules. The use of a polymer-surfactant complex film allows the device and the fluorescent material to be reusable after exposing the fluorescent material to a vacuum for limited time.

  8. Event counting alpha detector

    DOEpatents

    Bolton, Richard D.; MacArthur, Duncan W.

    1996-01-01

    An electrostatic detector for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure.

  9. Event counting alpha detector

    DOEpatents

    Bolton, R.D.; MacArthur, D.W.

    1996-08-27

    An electrostatic detector is disclosed for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure. 6 figs.

  10. Void/particulate detector

    DOEpatents

    Claytor, Thomas N.; Karplus, Henry B.

    1985-01-01

    Voids and particulates are detected in a flowing stream of fluid contained in a pipe by a detector which includes three transducers spaced about the pipe. A first transducer at a first location on the pipe transmits an ultrasonic signal into the stream. A second transducer detects the through-transmission of the signal at a second location and a third transducer at a third location upstream from the first location detects the back-scattering of the signal from any voids or particulates. To differentiate between voids and particulates a fourth transducer is positioned at a fourth location which is also upstream from the first location. The back-scattered signals are normalized with the through-transmission signal to minimize temperature fluctuations.

  11. Chemical aerosol Raman detector

    NASA Astrophysics Data System (ADS)

    Aggarwal, R. L.; Farrar, L. W.; Di Cecca, S.; Amin, M.; Perkins, B. G.; Clark, M. L.; Jeys, T. H.; Sickenberger, D. W.; D'Amico, F. M.; Emmons, E. D.; Christesen, S. D.; Kreis, R. J.; Kilper, G. K.

    2017-03-01

    A sensitive chemical aerosol Raman detector (CARD) has been developed for the trace detection and identification of chemical particles in the ambient atmosphere. CARD includes an improved aerosol concentrator with a concentration factor of about 40 and a CCD camera for improved detection sensitivity. Aerosolized isovanillin, which is relatively safe, has been used to characterize the performance of the CARD. The limit of detection (SNR = 10) for isovanillin in 15 s has been determined to be 1.6 pg/cm3, which corresponds to 6.3 × 109 molecules/cm3 or 0.26 ppb. While less sensitive, CARD can also detect gases. This paper provides a more detailed description of the CARD hardware and detection algorithm than has previously been published.

  12. Pixelated gamma detector

    SciTech Connect

    Dolinsky, Sergei Ivanovich; Yanoff, Brian David; Guida, Renato; Ivan, Adrian

    2016-12-27

    A pixelated gamma detector includes a scintillator column assembly having scintillator crystals and optical transparent elements alternating along a longitudinal axis, a collimator assembly having longitudinal walls separated by collimator septum, the collimator septum spaced apart to form collimator channels, the scintillator column assembly positioned adjacent to the collimator assembly so that the respective ones of the scintillator crystal are positioned adjacent to respective ones of the collimator channels, the respective ones of the optical transparent element are positioned adjacent to respective ones of the collimator septum, and a first photosensor and a second photosensor, the first and the second photosensor each connected to an opposing end of the scintillator column assembly. A system and a method for inspecting and/or detecting defects in an interior of an object are also disclosed.

  13. Space-based detectors

    NASA Astrophysics Data System (ADS)

    Sesana, A.; Weber, W. J.; Killow, C. J.; Perreur-Lloyd, M.; Robertson, D. I.; Ward, H.; Fitzsimons, E. D.; Bryant, J.; Cruise, A. M.; Dixon, G.; Hoyland, D.; Smith, D.; Bogenstahl, J.; McNamara, P. W.; Gerndt, R.; Flatscher, R.; Hechenblaikner, G.; Hewitson, M.; Gerberding, O.; Barke, S.; Brause, N.; Bykov, I.; Danzmann, K.; Enggaard, A.; Gianolio, A.; Vendt Hansen, T.; Heinzel, G.; Hornstrup, A.; Jennrich, O.; Kullmann, J.; Møller-Pedersen, S.; Rasmussen, T.; Reiche, J.; Sodnik, Z.; Suess, M.; Armano, M.; Sumner, T.; Bender, P. L.; Akutsu, T.; Sathyaprakash, B. S.

    2014-12-01

    The parallel session C5 on Space-Based Detectors gave a broad overview over the planned space missions related to gravitational wave detection. Overviews of the revolutionary science to be expected from LISA was given by Alberto Sesana and Sasha Buchman. The launch of LISA Pathfinder (LPF) is planned for 2015. This mission and its payload "LISA Technology Package" will demonstrate key technologies for LISA. In this context, reference masses in free fall for LISA, and gravitational physics in general, was described by William Weber, laser interferometry at the pico-metre level and the optical bench of LPF was presented by Christian Killow and the performance of the LPF optical metrology system by Paul McNamara. While LPF will not yet be sensitive to gravitational waves, it may nevertheless be used to explore fundamental physics questions, which was discussed by Michele Armano. Some parts of the LISA technology that are not going to be demonstrated by LPF, but under intensive development at the moment, were presented by Oliver Jennrich and Oliver Gerberding. Looking into the future, Japan is studying the design of a mid-frequency detector called DECIGO, which was discussed by Tomotada Akutsu. Using atom interferometry for gravitational wave detection has also been recently proposed, and it was critically reviewed by Peter Bender. In the nearer future, the launch of GRACE Follow-On (for Earth gravity observation) is scheduled for 2017, and it will include a Laser Ranging Interferometer as technology demonstrator. This will be the first inter-spacecraft laser interferometer and has many aspects in common with the LISA long arm, as discussed by Andrew Sutton.

  14. Detector Arrays For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1988-01-01

    Paper describes status of program for developing integrated infrared detectors for astronomy. Program covers variety of detectors, including extrinsic silicon, extrinsic germanium, and indium antimonide devices with hybrid silicon multiplexers. Paper notes for arrays to reach background noise limit in cryogenic telescope, continued reductions in readout noise and dark current needed.

  15. Detector simulation for the SSC

    SciTech Connect

    Price, L.E.

    1991-01-01

    Detector simulation activities for SSC detector designs are described. Topics include the extensive work to date using existing programs. In addition, the several efforts to extend the capabilities of today's programs are described, as the practical and experimental use of new computing platforms for simulation. Finally, progress in the field is compared with the recommendations of the first workshop in this series in 1987.

  16. Micro-channel plate detector

    DOEpatents

    Elam, Jeffrey W.; Lee, Seon W.; Wang, Hsien -Hau; Pellin, Michael J.; Byrum, Karen; Frisch, Henry J.

    2015-09-22

    A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.

  17. Regulation of glomerulotubular balance: flow-activated proximal tubule function.

    PubMed

    Wang, Tong; Weinbaum, Sheldon; Weinstein, Alan M

    2017-03-07

    The purpose of this review is to summarize our knowledge and understanding of the physiological importance and the mechanisms underlying flow-activated proximal tubule transport. Since the earliest micropuncture studies of mammalian proximal tubule, it has been recognized that tubular flow is an important regulator of sodium, potassium, and acid-base transport in the kidney. Increased fluid flow stimulates Na(+) and HCO3(-) absorption in the proximal tubule via stimulation of Na/H-exchanger isoform 3 (NHE3) and H(+)-ATPase. In the proximal tubule, brush border microvilli are the major flow sensors, which experience changes in hydrodynamic drag and bending moment as luminal flow velocity changes and which transmit the force of altered flow to cytoskeletal structures within the cell. The signal to NHE3 depends upon the integrity of the actin cytoskeleton; the signal to the H(+)-ATPase depends upon microtubules. We have demonstrated that alterations in fluid drag impact tubule function by modulating ion transporter availability within the brush border membrane of the proximal tubule. Beyond that, there is evidence that transporter activity within the peritubular membrane is also modulated by luminal flow. Secondary messengers that regulate the flow-mediated tubule function have also been delineated. Dopamine blunts the responsiveness of proximal tubule transporters to changes in luminal flow velocity, while a DA1 antagonist increases flow sensitivity of solute reabsorption. IP3 receptor-mediated intracellular Ca(2+) signaling is critical to transduction of microvillus drag. In this review, we summarize our findings of the regulatory mechanism of flow-mediated Na(+) and HCO3(-) transport in the proximal tubule and review available information about flow sensing and regulatory mechanism of glomerulotubular balance.

  18. Induced spectral gap and pairing correlations from superconducting proximity effect

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Kai; Cole, William S.; Das Sarma, S.

    2016-09-01

    We theoretically consider superconducting proximity effect, using the Bogoliubov-de Gennes (BdG) theory, in heterostructure sandwich-type geometries involving a normal s -wave superconductor and a nonsuperconducting material with the proximity effect being driven by Cooper pairs tunneling from the superconducting slab to the nonsuperconducting slab. Applications of the superconducting proximity effect may rely on an induced spectral gap or induced pairing correlations without any spectral gap. We clarify that in a nonsuperconducting material the induced spectral gap and pairing correlations are independent physical quantities arising from the proximity effect. This is a crucial issue in proposals to create topological superconductivity through the proximity effect. Heterostructures of three-dimensional topological insulator (TI) slabs on conventional s -wave superconductor (SC) substrates provide a platform, with proximity-induced topological superconductivity expected to be observed on the "naked" top surface of a thin TI slab. We theoretically study the induced superconducting gap on this naked surface. In addition, we compare against the induced spectral gap in heterostructures of SC with a normal metal or a semiconductor with strong spin-orbit coupling and a Zeeman splitting potential (another promising platform for topological superconductivity). We find that for any model for the non-SC metal (including metallic TI) the induced spectral gap on the naked surface decays as L-3 as the thickness (L ) of the non-SC slab is increased in contrast to the slower 1 /L decay of the pairing correlations. Our distinction between proximity-induced spectral gap (with its faster spatial decay) and pairing correlation (with its slower spatial decay) has important implications for the currently active search for topological superconductivity and Majorana fermions in various superconducting heterostructures.

  19. The effectiveness of detector combinations.

    PubMed

    Li, Zhenghao; Gong, Weiguo; Nee, A Y C; Ong, S K

    2009-04-27

    In this paper, the performance improvement benefiting from the combination of local feature detectors for image matching and registration is evaluated. Possible combinations of five types of representative interest point detectors and region detectors are integrated into the testing framework. The performance is compared using the number of correspondences and the repeatability rate, as well as an original evaluation criterion named the Reconstruction Similarity (RS), which reflects not only the number of matches, but also the degree of matching error. It is observed that the combination of DoG extremum and MSCR outperforms any single detectors and other detector combinations in most cases. Furthermore, MDSS, a hybrid algorithm for accurate image matching, is proposed. Compared with standard SIFT and GLOH, its average RS rate exceeds more than 3.56%, and takes up even less computational time.

  20. Subminiature infrared detector translation stage

    NASA Technical Reports Server (NTRS)

    Bell, Alan D.

    1989-01-01

    This paper describes a precision subminiature three-axis translation stage used in the GOES Sounder to provide positional adjustment of 12 cooled infrared detectors. Four separate translation stages and detectors are packaged into a detector mechanism which has an overall size of 0.850 x 1.230 x 0.600 inches. Each translation stage is capable of + or - 0.015 inch motion in the X and Y axes and +0.050/-0.025 inch motion in the Z axis with a sensitivity of 0.0002 inches. The function of the detector translation stage allows real time detector signal peaking during Sounder alignment. The translation stage operates in a cryogenic environment under a 10 to the -6th torr vacuum.

  1. Biological Applications of Cryogenic Detectors

    SciTech Connect

    Friedrich, S

    2003-12-03

    High energy resolution and broadband efficiency are enabling the use of cryogenic detectors in biological research. Two areas where they have found initial application are X-ray absorption spectroscopy (XAS) and time-of-flight mass spectrometry (TOF-MS). In synchrotron-based fluorescence-detected XAS cryogenic detectors are used to examine the role of metals in biological systems by measuring their oxidation states and ligand symmetries. In time-of-flight mass spectrometry cryogenic detectors increase the sensitivity for biomolecule detection and identification for masses above {approx}50 kDa, and thus enable TOF-MS on large protein complexes or even entire viruses. More recently, cryogenic detectors have been proposed as optical sensors for fluorescence signals from biomarkers. We discuss the potential for cryogenic detectors in biological research, as well as the challenges the technology faces.

  2. Gallium nitride photocathode development for imaging detectors

    NASA Astrophysics Data System (ADS)

    Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; McPhate, Jason B.; Hull, Jeffrey S.; Malloy, James; Dabiran, Amir M.

    2008-07-01

    Recent progress in Gallium Nitride (GaN, AlGaN, InGaN) photocathodes show great promise for future detector applications in Astrophysical instruments. Efforts with opaque GaN photocathodes have yielded quantum efficiencies up to 70% at 120 nm and cutoffs at ~380 nm, with low out of band response, and high stability. Previous work with semitransparent GaN photocathodes produced relatively low quantum efficiencies in transmission mode (4%). We now have preliminary data showing that quantum efficiency improvements of a factor of 5 can be achieved. We have also performed two dimensional photon counting imaging with 25mm diameter semitransparent GaN photocathodes in close proximity to a microchannel plate stack and a cross delay line readout. The imaging performance achieves spatial resolution of ~50μm with low intrinsic background (below 1 event sec-1 cm-2) and reasonable image uniformity. GaN photocathodes with significant quantum efficiency have been fabricated on ceramic MCP substrates. In addition GaN has been deposited at low temperature onto quartz substrates, also achieving substantial quantum efficiency.

  3. Recent detector developments at SINTEF (industrial presentation)

    NASA Astrophysics Data System (ADS)

    Sundby Avset, Berit; Evensen, Lars; Uri Jensen, Geir; Mo, Sjur; Kari Schjølberg-Henriksen; Westgaard, Trond

    1998-02-01

    Results from SINTEF's research on radiation hardness of silicon detectors, thin silicon detectors, silicon drift devices, reach-through avalanche photodiodes, and detectors with thin dead layers are presented.

  4. RADIOGRAPHIC ASSESSMENT OF THE OPENING WEDGE PROXIMAL TIBIAL OSTEOTOMY

    PubMed Central

    Silva, Carlos Francisco Bittencourt; Camara, Eduardo Kastrup Bittencourt; Vieira, Luiz Antonio; Adolphsson, Fernando; Rodarte, Rodrigo Ribeiro Pinho

    2015-01-01

    Objective: To radiographically evaluate individuals who underwent opening wedge proximal tibial osteotomy, with the aim of analyzing the proximal tibial slope in the frontal and sagittal planes, and the patellar height. Method: The study included 22 individuals who were operated at the National Traumatology and Orthopedics Institute (INTO) for correction of varus angular tibial deviation using the opening wedge osteotomy (OWO) technique with the Orthofix monolateral external fixator. Patients with OWO whose treatment was completed between January 2000 and December 2006 were analyzed. The measurement technique consisted of using anteroposterior radiographs with loading and lateral views with the operated knees flexed at 30°. Results: There were no statistically significant differences between the pre and postoperative tibial slope and patellar height values in the patients evaluated. Conclusion: Opening wedge proximal tibial osteotomy is a technique that avoids the problems presented by high proximal tibial osteotomy, since it is done without causing changes to the extensor mechanism, ligament imbalance or distortions in the proximal tibia. PMID:27022577

  5. Developmental Changes in Proximal Tubule Tight Junction Proteins

    PubMed Central

    HADDAD, MAHA; LIN, FANGMING; DWARAKANATH, VANGIPURAM; CORDES, KIMBERLY; BAUM, MICHEL

    2014-01-01

    We demonstrated previously that neonatal proximal tubules have a lower passive paracellular permeability to chloride ions and higher resistance than that of adult proximal tubules. In addition, administration of thyroid hormone to neonates, before the normal maturational increase in serum thyroid hormone levels, prematurely accelerates the developmental increase in chloride permeability to adult levels. To test the hypothesis that there is a maturational change in tight junction proteins and that thyroid hormone mediates these changes, we examined the two known tight junction proteins present in proximal tubules, occludin and claudin 2. Using immunoblot and immunohistochemistry, we demonstrated that claudin 2 has a 4-fold greater abundance in neonatal proximal tubules than in adult tubules. Occludin, however, has a 4-fold greater expression in adult tubules than in neonatal tubules. Administration of thyroid hormone to neonates did not affect claudin 2 expression, occludin expression, or the transepithelial resistance in rat proximal tubule cells in vitro. In conclusion, there are postnatal maturational changes in tight junction proteins. The factors that cause these maturational changes are unknown but unlikely to be due solely to the maturational increase in thyroid hormone. PMID:15585672

  6. Intramedullary Nailing for Pathological Fractures of the Proximal Humerus

    PubMed Central

    Choi, Eun-Seok; Han, Ilkyu; Cho, Hwan Seong; Park, In Woong; Park, Jong Woong

    2016-01-01

    Background Endoprosthetic reconstruction is widely applied for pathological fractures of the proximal humerus; however, functional impairment is usually unsatisfactory. The aims of the current study are to evaluate the reliability of interlocking intramedullary (IM) nailing with cement augmentation as a fixation method in proximal humeral lesions and to assess functional outcomes. Methods We reviewed 32 patients with pathological fractures of the proximal humerus who underwent interlocking IM nailing and cement augmentation. Functional scores and pain relief were assessed as outcomes. Results The mean follow-up period was 14.2 months. The mean Musculoskeletal Tumor Society functional score and Karnofsky performance status scale score were 27.7 and 75.6, respectively. Improvement of pain assessed using the visual analogue scale was 6.2 on average. Thirty-one patients (97%) experienced no pain after surgery. The mean ranges of forward flexion and abduction were 115° and 112.6°, respectively. All patients achieved stability and had no local recurrence without failure of fixation until the last follow-up. Conclusions Proximal interlocking IM nailing with cement augmentation appears to be a reliable treatment option for pathological or impending fractures of the proximal humerus in selected patients with metastatic tumors, even with extensive bone destruction. PMID:27904730

  7. Fluoroscopically Guided Peritendinous Corticosteroid Injection for Proximal Hamstring Tendinopathy

    PubMed Central

    Nicholson, Luke T.; DiSegna, Steven; Newman, Joel S.; Miller, Suzanne L.

    2014-01-01

    Background: Proximal hamstring tendinopathy is an uncommon but debilitating cause of posterior thigh pain in athletes subjected to repetitive eccentric hamstring contraction, such as runners. Minimal data exist evaluating treatment options for proximal hamstring tendinopathy. Purpose: This retrospective study evaluates the effectiveness of fluoroscopically guided corticosteroid injections in treating proximal hamstring tendinopathy. Study Design: Case series; Level of evidence, 4. Methods: Eighteen athletes with 22 cases of magnetic resonance imaging–confirmed proximal hamstring tendinopathy were treated with corticosteroid injection and later contacted to evaluate the efficacy of the injection with the use of a questionnaire. Results: The visual analog score decreased from 7.22 preinjection to 3.94 postinjection (P < .001), level of athletic participation increased from 28.76% to 68.82% (P < .001) at a mean follow-up of 21 months, and 38.8% of patients experienced complete resolution at a mean follow-up of 24.8 months. The mean lower extremity function score at the time of follow-up was 60. Conclusion: A trial of fluoroscopically guided corticosteroid injection is warranted in patients presenting with symptoms of proximal hamstring tendinopathy refractory to conservative therapy. PMID:26535310

  8. Digital radiography: Present detectors and future developments

    SciTech Connect

    Perez-Mendez, V.

    1990-08-01

    Present detectors for digital radiography are of two classes: real time detectors and storage (non real time) types. Present real time detectors consist of image intensifier tubes with an internal cesium iodide layer x-ray converter. Non real time detectors involve linear sweep arrays or storage detectors such as film. Future detectors discussed here can be of both types utilizing new technologies such as hydrogenated amorphous silicon photodiode arrays coupled to thin film transistor arrays. 17 refs., 10 figs.

  9. A biomechanical comparison of proximal femoral nails and locking proximal anatomic femoral plates in femoral fracture fixation

    PubMed Central

    Ozkan, Korhan; Türkmen, İsmail; Sahin, Adem; Yildiz, Yavuz; Erturk, Selim; Soylemez, Mehmet Salih

    2015-01-01

    Background: The incidence of fractures in the trochanteric area has risen with the increasing numbers of elderly people with osteoporosis. Although dynamic hip screw fixation is the gold standard for the treatment of stable intertrochanteric femur fractures, treatment of unstable intertrochanteric femur fractures still remains controversial. Intramedullary devices such as Gamma nail or proximal femoral nail and proximal anatomic femur plates are in use for the treatment of intertrochanteric femur fractures. There are still many investigations to find the optimal implant to treat these fractures with minimum complications. For this reason, we aimed to perform a biomechanical comparison of the proximal femoral nail and the locking proximal anatomic femoral plate in the treatment of unstable intertrochanteric fractures. Materials and Methods: Twenty synthetic, third generation human femur models, obtained for this purpose, were divided into two groups of 10 bones each. Femurs were provided as a standard representation of AO/Orthopedic Trauma Associationtype 31-A2 unstable fractures. Two types of implantations were inserted: the proximal femoral intramedullary nail in the first group and the locking anatomic femoral plate in the second group. Axial load was applied to the fracture models through the femoral head using a material testing machine, and the biomechanical properties of the implant types were compared. Result: Nail and plate models were locked distally at the same level. Axial steady load with a 5 mm/m velocity was applied through the mechanical axis of femur bone models. Axial loading in the proximal femoral intramedullary nail group was 1.78-fold greater compared to the plate group. All bones that had the plate applied were fractured in the portion containing the distal locking screw. Conclusion: The proximal femoral intramedullary nail provides more stability and allows for earlier weight bearing than the locking plate when used for the treatment of

  10. Plastic neutron detectors.

    SciTech Connect

    Wilson, Tiffany M.S; King, Michael J.; Doty, F. Patrick

    2008-12-01

    This work demonstrated the feasibility and limitations of semiconducting {pi}-conjugated organic polymers for fast neutron detection via n-p elastic scattering. Charge collection in conjugated polymers in the family of substituted poly(p-phenylene vinylene)s (PPV) was evaluated using band-edge laser and proton beam ionization. These semiconducting materials can have high H/C ratio, wide bandgap, high resistivity and high dielectric strength, allowing high field operation with low leakage current and capacitance noise. The materials can also be solution cast, allowing possible low-cost radiation detector fabrication and scale-up. However, improvements in charge collection efficiency are necessary in order to achieve single particle detection with a reasonable sensitivity. The work examined processing variables, additives and environmental effects. Proton beam exposure was used to verify particle sensitivity and radiation hardness to a total exposure of approximately 1 MRAD. Conductivity exhibited sensitivity to temperature and humidity. The effects of molecular ordering were investigated in stretched films, and FTIR was used to quantify the order in films using the Hermans orientation function. The photoconductive response approximately doubled for stretch-aligned films with the stretch direction parallel to the electric field direction, when compared to as-cast films. The response was decreased when the stretch direction was orthogonal to the electric field. Stretch-aligned films also exhibited a significant sensitivity to the polarization of the laser excitation, whereas drop-cast films showed none, indicating improved mobility along the backbone, but poor {pi}-overlap in the orthogonal direction. Drop-cast composites of PPV with substituted fullerenes showed approximately a two order of magnitude increase in photoresponse, nearly independent of nanoparticle concentration. Interestingly, stretch-aligned composite films showed a substantial decrease in

  11. Direct beta autoradiography using microchannel plate (MCP) detectors

    NASA Astrophysics Data System (ADS)

    Lees, J. E.; Fraser, G. W.; Dinsdale, D.

    1997-02-01

    We describe a new form of detector for digital autoradiography which combines high sensitivity and good spatial resolution (< 100 μm). The detector is based on proximity registration of betas by radioisotope-free "low noise" microchannel plates (MCPs) developed for photon counting X-ray astronomy. Low dark count rates (<0.1 cm -2s -1) are combined with the high (>50%) electron detection efficiency of small pore MCPs for common beta emitting isotopes ( 3H, 14C, 35S…). In particular, the MCP detector is highly sensitive to the biologically important but previously difficult to detect low energy (average 6 keV, endpoint 18.6 keV) beta emission from tritium. We report 3H sensitivities and linearity derived from images of a 3H standard, together with images of 3H-Putrescine doped semi-thin-tissue sections of rat lung and isolated single cells from rabbit lung. We compare these results with those of previous attempts to digitally image tritium.

  12. Ejecta emplacement: from distal to proximal

    NASA Astrophysics Data System (ADS)

    Artemieva, N.

    2008-09-01

    Introduction Most part of impact ejecta is deposited ballistically at some distance from a crater, defined by ejection velocity V and ejection angle α: d=v2sinα/g. In case of giant impacts, planetary curvature should be taken into account [1]. Combined with ejecta scaling [2], these relations allow to define ejecta thickness as a function of distance. Ejecta from large craters are deposited at velocity high enough to mobilize substrate material and to thicken ejecta deposits [3]. Ballistic approximation is valid for airless bodies (if impact vaporization is not vast) or for proximal ejecta of large impact craters, where ejecta mass per unit area is substantially greater than the mass of involved vapor/atmosphere (M-ratio). Deposition of distal ejecta, in which ejecta mass is negligible compared to the atmosphere, may be also treated in a simplified manner, i.e. as 1) passive motion of ejected particles within an impact plume and 2) later, as sedimentation of particles in undisturbed atmosphere (equilibrium between gravity and drag). In all intermediate M-ratio values, impact ejecta move like a surge, i.e. dilute suspension current in which particles are carried in turbulent flows under the influence of gravity. Surges are well-known for near-surface explosive tests, described in detail for volcanic explosions (Plinian column collapse, phreato-magmatic eruption, lateral blast), and found in ejecta from the Chicxulub [4] and the Ries [5]. Important aspects of surge transport include its ability to deposit ejecta over a larger area than that typical of continuous ballistic ejecta and to create multiple ejecta layers. Numerical model Two-phase hydrodynamics. Surges should be modeled in the frame of two-phase hydrodynamics, i.e. interaction between solid/molten particles and atmospheric gas/impact vapor should be taken into account. There are two techniques of solving equations for dust particle motion in a gas flow. The first one describes solid/molten particles as a

  13. Bubble detector investigations in China.

    PubMed

    Guo, Shi-Lun

    2006-01-01

    Investigation on bubble detectors started in China in 1989. Five types of bubble detectors have been developed, with LET thresholds ranging from 0.05 to 6.04 MeV mg(-1) cm(2) at 25 degrees C. The neutron response of bubble detectors made with freon-12 has been investigated with mono-energetic neutrons from 20 keV to 19 MeV. Its effective threshold energy for neutron detection is approximately 100 keV at 28 degrees C. The response above this threshold is approximately 1.5 x 10(-4) (bubble cm(-2))/(n cm(-2)). Bubble detectors are unique not only for neutron dosimetry but also for monitoring and identifying high-energy heavy ions such as cosmic radiation in the space. High-energy heavy ion tracks in large size bubble detectors have been investigated in cooperation with scientists in Japan. The key parameter behind the thresholds of bubble detectors for track registration is the critical rate of energy loss. Three approaches to identify high-energy heavy ions with bubble detectors are suggested.

  14. Space Radiation Detector with Spherical Geometry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)

    2011-01-01

    A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.

  15. Space Radiation Detector with Spherical Geometry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)

    2012-01-01

    A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.

  16. Common relationships among proximate composition components in fishes

    USGS Publications Warehouse

    Hartman, K.J.; Margraf, F.J.

    2008-01-01

    Relationships between the various body proximate components and dry matter content were examined for five species of fishes, representing anadromous, marine and freshwater species: chum salmon Oncorhynchus keta, Chinook salmon Oncorhynchus tshawytscha, brook trout Salvelinus fontinalis, bluefish Pomatomus saltatrix and striped bass Morone saxatilis. The dry matter content or per cent dry mass of these fishes can be used to reliably predict the per cent composition of the other components. Therefore, with validation it is possible to estimate fat, protein and ash content of fishes from per cent dry mass information, reducing the need for costly and time-consuming laboratory proximate analysis. This approach coupled with new methods of non-lethal estimation of per cent dry mass, such as from bioelectrical impedance analysis, can provide non-destructive measurements of proximate composition of fishes. ?? 2008 The Authors.

  17. The thermometer of social relations: mapping social proximity on temperature.

    PubMed

    Ijzerman, Hans; Semin, Gün R

    2009-10-01

    "Holding warm feelings toward someone" and "giving someone the cold shoulder" indicate different levels of social proximity. In this article, we show effects of temperature that go beyond these metaphors people live by. In three experiments, warmer conditions, compared with colder conditions, induced (a) greater social proximity, (b) use of more concrete language, and (c) a more relational focus. Different temperature conditions were created by either handing participants warm or cold beverages (Experiment 1) or placing them in comfortable warm or cold ambient conditions (Experiments 2 and 3). These studies corroborate recent findings in the field of grounded cognition revealing that concrete experiences ground abstract concepts with which they are coexperienced. Our studies show a systemic interdependence among language, perception, and social proximity: Environmentally induced conditions shape not only language use, but also the perception and construal of social relationships.

  18. Bringing proximate neighbours into the study of US residential segregation.

    PubMed

    Friedman, Samantha

    2011-01-01

    The race and ethnicity of neighbours are thought to be critical in shaping household mobility underlying residential segregation. However, studies on this topic have used data at the census-tract level of analysis rather than at the proximate-neighbour level. Using a non-publicly available version of the neighbour-cluster sample within the American Housing Survey, this study incorporates data on the race, ethnicity and socioeconomic characteristics of the proximate neighbours of White, Black and Latino households and examines their impact on household residential satisfaction, out- and in-mobility. Results indicate that proximate-neighbour race and ethnicity matter in influencing endpoints of the mobility process and do not necessarily parallel those at the census-tract level. Implications of these findings are discussed as they relate to the study of residential segregation.

  19. VCSEL-based microsensors for photonic proximity fuzing of munitions

    NASA Astrophysics Data System (ADS)

    Keeler, G. A.; Mar, A.; Geib, K. M.; Hsu, A. Y.; Serkland, D. K.; Peake, G. M.

    2008-08-01

    This paper describes technologies developed at Sandia National Laboratories to support a joint DoD/DoE initiative to create a compact, robust, and affordable photonic proximity sensor for munitions fuzing. The proximity fuze employs high-power vertical-cavity surface-emitting laser (VCSEL) arrays, resonant-cavity photodetectors (RCPDs), and refractive micro-optics that are integrated within a microsensor whose volume is approximately 0.01 cm3. Successful development and integration of these custom photonic components should enable a g-hard photonic proximity fuze that replaces costly assemblies of discrete lasers, photodetectors, and bulk optics. Additional applications of this technology include void sensing, ladar and short-range 3-D imaging.

  20. MCP detector development for use in Nab detector characterization

    NASA Astrophysics Data System (ADS)

    Klassen, Wolfgang; Nab Collaboration

    2016-09-01

    The ``Nab'' collaboration will perform a precise measurement of the neutron beta decay parameters ``a'' and ``b'', which constitutes a test for physics beyond the standard model. The experiment makes use of the fundamental physics cold neutron beamline at the Spallation Neutron Source at the Fundamental Neutron Physics Beam Line. This experiment requires very efficient and precise detection of low energy (30 keV) protons with large area Si detectors. To this end, a 30 keV proton source has been built at the University of Manitoba to characterize the Si detector with respect to a custom large area (150mm x 150mm) microchannel plate detector, with know detection efficiency. This poster will present the development of the microchannel plate detector, the theory behind its operation, and its implementation at the University of Manitoba.

  1. SSC muon detector group report

    SciTech Connect

    Carlsmith, D.; Groom, D.; Hedin, D.; Kirk, T.; Ohsugi, T.; Reeder, D.; Rosner, J.; Wojcicki, S.

    1986-01-01

    We report here on results from the Muon Detector Group which met to discuss aspects of muon detection for the reference 4..pi.. detector models put forward for evaluation at the Snowmass 1986 Summer Study. We report on: suitable overall detector geometry; muon energy loss mechanisms; muon orbit determination; muon momentum and angle measurement resolution; raw muon rates and trigger concepts; plus we identify SSC physics for which muon detection will play a significant role. We conclude that muon detection at SSC energies and luminosities is feasible and will play an important role in the evolution of physics at the SSC.

  2. Seal system with integral detector

    DOEpatents

    Fiarman, S.

    1982-08-12

    A seal system is disclosed for materials where security is of the essence, such as nuclear materials. The seal is tamper-indicating, indicates changes in environmental conditions that evidence attempts to bypass the seal, is unique and cost effective. The seal system is comprised of a seal where an optical signal is transmitted through a loop, with a detector to read said signal, and one or more additional detectors designed to detect environmental changes, these detectors being operatively associated with the seal so that detection of a break in the optical signal or detection of environmental changes will cause an observable change in the seal.

  3. Seal system with integral detector

    DOEpatents

    Fiarman, Sidney

    1985-01-01

    There is disclosed a seal system for materials where security is of the essence, such as nuclear materials, which is tamper-indicating, which indicates changes in environmental conditions that evidence attempts to by-pass the seal, which is unique and cost effective, said seal system comprised of a seal where an optical signal is transmitted through a loop, with a detector to read said signal, and one or more additional detectors designed to detect environmental changes, these detectors being operatively associated with the seal so that detection of a break in the optical signal or detection of environmental changes will cause an observable change in the seal.

  4. Detector materials: germanium and silicon

    SciTech Connect

    Haller, E.E.

    1981-11-01

    This article is a summary of a short course lecture given in conjunction with the 1981 Nuclear Science Symposium. The basic physical properties of elemental semiconductors are reviewed. The interaction of energetic radiation with matter is discussed in order to develop a feeling for the appropriate semiconductor detector dimensions. The extremely low net dopant concentrations which are required are derived directly from the detector dimensions. A survey of the more recent techniques which have been developed for the analysis of detector grade semiconductor single crystals is presented.

  5. The CDF Silicon Vertex Detector

    SciTech Connect

    Tkaczyk, S.; Carter, H.; Flaugher, B.

    1993-09-01

    A silicon strip vertex detector was designed, constructed and commissioned at the CDF experiment at the Tevatron collider at Fermilab. The mechanical design of the detector, its cooling and monitoring are presented. The front end electronics employing a custom VLSI chip, the readout electronics and various components of the SVX system are described. The system performance and the experience with the operation of the detector in the radiation environment are discussed. The device has been taking colliding beams data since May of 1992, performing at its best design specifications and enhancing the physics program of CDF.

  6. Requirements on high resolution detectors

    SciTech Connect

    Koch, A.

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  7. Solid state neutron detector array

    SciTech Connect

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  8. Superconducting thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Pietropaolo, A.; Celentano, G.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Salvato, M.; Scherillo, A.; Schooneveld, E. M.; Vannozzi, A.

    2016-09-01

    A neutron detection concept is presented that is based on superconductive niobium nitride (NbN) strips coated by a boron (B) layer. The working principle is well described by a hot spot mechanism: upon the occurrence of the nuclear reactions n + 10B → α + 7Li + 2.8 MeV, the energy released by the secondary particles into the strip induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T below 11K and current-biased below the critical current IC, are driven into the normal state upon thermal neutron irradiation. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed and compared to those of a borated Nb superconducting strip.

  9. Liquid Hydrogen: Target, Detector

    SciTech Connect

    Mulholland, G.T.; Harigel, G.G.

    2004-06-23

    In 1952 D. Glaser demonstrated that a radioactive source's radiation could boil 135 deg. C superheated-diethyl ether in a 3-mm O glass vessel and recorded bubble track growth on high-speed film in a 2-cm3 chamber. This Bubble Chamber (BC) promised improved particle track time and spatial resolution and cycling rate. Hildebrand and Nagle, U of Chicago, reported Liquid Hydrogen minimum ionizing particle boiling in August 1953. John Wood created the 3.7-cm O Liquid Hydrogen BC at LBL in January 1954. By 1959 the Lawrence Berkley Laboratory (LBL) Alvarez group's '72-inch' BC had tracks in liquid hydrogen. Within 10 years bubble chamber volumes increased by a factor of a million and spread to every laboratory with a substantial high-energy physics program. The BC, particle accelerators and special separated particle beams created a new era of High Energy Physics (HEP) experimentation. The BC became the largest most complex cryogenic installation at the world's HEP laboratories for decades. The invention and worldwide development, deployment and characteristics of these cryogenic dynamic target/detectors and related hydrogen targets are described.

  10. Optical transcutaneous bilirubin detector

    DOEpatents

    Kronberg, J.W.

    1993-11-09

    A transcutaneous bilirubin detector is designed comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient. 6 figures.

  11. Microwave hematoma detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.; Matthews, Dennis L.

    2001-01-01

    The Microwave Hematoma Detector is a non-invasive device designed to detect and localize blood pooling and clots near the outer surface of the body. While being geared towards finding sub-dural and epi-dural hematomas, the device can be used to detect blood pooling anywhere near the surface of the body. Modified versions of the device can also detect pneumothorax, organ hemorrhage, atherosclerotic plaque in the carotid arteries, evaluate perfusion (blood flow) at or near the body surface, body tissue damage at or near the surface (especially for burn assessment) and be used in a number of NDE applications. The device is based on low power pulsed microwave technology combined with a specialized antenna, signal processing/recognition algorithms and a disposable cap worn by the patient which will facilitate accurate mapping of the brain and proper function of the instrument. The invention may be used for rapid, non-invasive detection of sub-dural or epi-dural hematoma in human or animal patients, detection of hemorrhage within approximately 5 cm of the outer surface anywhere on a patient's body.

  12. Triple Coincidence Radioxenon Detector

    SciTech Connect

    McIntyre, Justin I.; Aalseth, Craig E.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Morris, Scott J.; Reeder, Paul L.

    2004-09-22

    The Automated Radioxenon Sampler/Analyzer (ARSA) built by Pacific Northwest National Laboratory (PNNL) is on e of the world’s most sensitive systems for monitoring the four radioxenon isotopes 133Xe, 133mXE, 131mXe and 135Xe. However, due to size, weight and power specifications appropriate to meet treaty-monitoring requirements; the ARSA is unsuitable for rapid deployment using modest transportation means. To transition this technology to a portable unit can be easily and rapidly deployed can be achieved by significant reductions in size, weight and power consumption if concentration were not required. As part of an exploratory effort to reduce both the size of the air sample and the gas processing requirement PNNL has developed an experimental nuclear detector to test and qualify the use of triple coincidence signatures (beta, conversion electron, x-ray) from two of the radioxenon isotopes (135Xe and 133Xe) as well as the more traditional beta-gamma coincidence signatures used by the ARSA system. The additional coincidence requirement allows for reduced passive shielding, and makes it possible for unambiguous detection of 133Xe and 153Xe in the presence of high 222Rn backgrounds. This paper will discuss the experimental setup and the results obtained for a 133Xe sample with and without 222Rn as an interference signature.

  13. Optical transcutaneous bilirubin detector

    DOEpatents

    Kronberg, James W.

    1993-01-01

    A transcutaneous bilirubin detector comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient.

  14. Optical transcutaneous bilirubin detector

    DOEpatents

    Kronberg, J.W.

    1991-03-04

    This invention consists of a transcutaneous bilirubin detector comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient.

  15. Optical Flameout Detector

    NASA Technical Reports Server (NTRS)

    Borg, Stephen E. (Inventor); West, James W. (Inventor); Lawrence, Robert M. (Inventor); Harper, Samuel E., Jr. (Inventor); Alderfer, David W. (Inventor)

    1998-01-01

    A device has been developed which monitors the presence of a flame within a combustion chamber. The optical flameout detection system responds to gross changes in combustor light intensity which is monitored in two spectral bands. A photomultiplier tube makes optical measurements in the ultraviolet portion of the spectrum and a silicon photodiode covers the visible region. The detectors, located outside the combustion chamber, receive the light energy radiated from the combustion process through fiber optic probes designed to operate in a high pressure environment. The optical fibers are aimed diagonally through the center of the injector at the combustion chamber wall downstream of the injector. The probe observes events occurring within a narrow conical-shaped field of view so that the system can quickly detect longitudinal movement of the flame front away from the injector. If a change in intensity of the flame is detected, the fuel supply to the combustion chamber is shut off limiting the amount of unburned fuel in the combustion chamber which could reignite.

  16. Modular endoprosthetic replacement for metastatic tumours of the proximal femur

    PubMed Central

    Chandrasekar, Coonoor R; Grimer, Robert J; Carter, Simon R; Tillman, Roger M; Abudu, Adesegun T

    2008-01-01

    Background and aims Endoprosthetic replacements of the proximal femur are commonly required to treat destructive metastases with either impending or actual pathological fractures at this site. Modular prostheses provide an off the shelf availability and can be adapted to most reconstructive situations for proximal femoral replacements. The aim of this study was to assess the clinical and functional outcomes following modular tumour prosthesis reconstruction of the proximal femur in 100 consecutive patients with metastatic tumours and to compare them with the published results of patients with modular and custom made endoprosthetic replacements. Methods 100 consecutive patients who underwent modular tumour prosthetic reconstruction of the proximal femur for metastases using the METS system from 2001 to 2007 were studied. The patient, tumour and treatment factors in relation to overall survival, local control, implant survival and complications were analysed. Functional scores were obtained from surviving patients. Results and conclusion There were 45 male and 55 female patients. The mean age was 60.2 years. The indications were metastases. Seventy five patients presented with pathological fracture or with failed fixation and 25 patients were at a high risk of developing a fracture. The mean follow up was 15.9 months [range 0–77]. Three patients died within 2 weeks following surgery. 69 patients have died and 31 are alive. Of the 69 patients who were dead 68 did not need revision surgery indicating that the implant provided single definitive treatment which outlived the patient. There were three dislocations (2/5 with THR and 1/95 with unipolar femoral heads). 6 patients had deep infections. The estimated five year implant survival (Kaplan-Meier analysis) was 83.1% with revision as end point. The mean TESS score was 64% (54%–82%). We conclude that METS modular tumour prosthesis for proximal femur provides versatility; low implant related complications and

  17. Proximal arm kinematics affect grip force-load force coordination.

    PubMed

    Vermillion, Billy C; Lum, Peter S; Lee, Sang Wook

    2015-10-01

    During object manipulation, grip force is coordinated with load force, which is primarily determined by object kinematics. Proximal arm kinematics may affect grip force control, as proximal segment motion could affect control of distal hand muscles via biomechanical and/or neural pathways. The aim of this study was to investigate the impact of proximal kinematics on grip force modulation during object manipulation. Fifteen subjects performed three vertical lifting tasks that involved distinct proximal kinematics (elbow/shoulder), but resulted in similar end-point (hand) trajectories. While temporal coordination of grip and load forces remained similar across the tasks, proximal kinematics significantly affected the grip force-to-load force ratio (P = 0.042), intrinsic finger muscle activation (P = 0.045), and flexor-extensor ratio (P < 0.001). Biomechanical coupling between extrinsic hand muscles and the elbow joint cannot fully explain the observed changes, as task-related changes in intrinsic hand muscle activation were greater than in extrinsic hand muscles. Rather, between-task variation in grip force (highest during task 3) appears to contrast to that in shoulder joint velocity/acceleration (lowest during task 3). These results suggest that complex neural coupling between the distal and proximal upper extremity musculature may affect grip force control during movements, also indicated by task-related changes in intermuscular coherence of muscle pairs, including intrinsic finger muscles. Furthermore, examination of the fingertip force showed that the human motor system may attempt to reduce variability in task-relevant motor output (grip force-to-load force ratio), while allowing larger fluctuations in output less relevant to task goal (shear force-to-grip force ratio).

  18. Evolution and proximate expression of human paternal investment.

    PubMed

    Geary, D C

    2000-01-01

    In more than 95% of mammalian species, males provide little direct investment in the well-being of their offspring. Humans are one notable exception to this pattern and, to date, the factors that contributed to the evolution and the proximate expression of human paternal care are unexplained (T. H. Clutton-Brock, 1989). The nature, extent, and influence of human paternal investment on the physical and social well-being of children are reviewed in light of the social and ecological factors that are associated with paternal investment in other species. On the basis of this review, discussion of the evolution and proximate expression of human paternal investment is provided.

  19. Investigation of proximity effects in electron microscopy and lithography

    SciTech Connect

    Walz, M.-M.; Vollnhals, F.; Rietzler, F.; Schirmer, M.; Steinrueck, H.-P.; Marbach, H.

    2012-01-30

    A fundamental challenge in lithographic and microscopic techniques employing focused electron beams are so-called proximity effects due to unintended electron emission and scattering in the sample. Herein, we apply a method that allows for visualizing electron induced surface modifications on a SiN substrate covered with a thin native oxide layer by means of iron deposits. Conventional wisdom holds that by using thin membranes proximity effects can be effectively reduced. We demonstrate that, contrary to the expectation, these can be indeed larger on a 200 nm SiN-membrane than on the respective bulk substrate due to charging effects.

  20. Double-driven shield capacitive type proximity sensor

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1993-01-01

    A capacity type proximity sensor comprised of a capacitance type sensor, a capacitance type reference, and two independent and mutually opposing driven shields respectively adjacent to the sensor and reference and which are coupled in an electrical bridge circuit configuration and driven by a single frequency crystal controlled oscillator is presented. The bridge circuit additionally includes a pair of fixed electrical impedance elements which form adjacent arms of the bridge and which comprise either a pair of precision resistances or capacitors. Detection of bridge unbalance provides an indication of the mutual proximity between an object and the sensor. Drift compensation is also utilized to improve performance and thus increase sensor range and sensitivity.

  1. Longitudinal spin Seebeck effect free from the proximity Nernst effect.

    PubMed

    Kikkawa, T; Uchida, K; Shiomi, Y; Qiu, Z; Hou, D; Tian, D; Nakayama, H; Jin, X-F; Saitoh, E

    2013-02-08

    This Letter provides evidence for intrinsic longitudinal spin Seebeck effects (LSSEs) that are free from the anomalous Nernst effect (ANE) caused by an extrinsic proximity effect. We report the observation of LSSEs in Au/Y(3)Fe(5)O(12) (YIG) and Pt/Cu/YIG systems, showing that the LSSE appears even when the mechanism of the proximity ANE is clearly removed. In the conventional Pt/YIG structure, furthermore, we separate the LSSE from the ANE by comparing the voltages in different magnetization and temperature-gradient configurations; the ANE contamination was found to be negligibly small even in the Pt/YIG structure.

  2. Inverse Proximity Effect in Superconductor-ferromagnet Bilayer Structures

    SciTech Connect

    Xia, Jing

    2010-04-05

    Measurements of the polar Kerr effect using a zero-area-loop Sagnac magnetometer on Pb/Ni and Al/(Co-Pd) proximity-effect bilayers show unambiguous evidence for the 'inverse proximity effect,' in which the ferromagnet (F) induces a finite magnetization in the superconducting (S) layer. To avoid probing the magnetic effects in the ferromagnet, the superconducting layer was prepared much thicker than the light's optical penetration depth. The sign and size of the effect, as well as its temperature dependence agree with recent predictions by Bergeret et al.[1].

  3. Superconductor disorder and strong proximity coupling effects in Majorana nanowires

    NASA Astrophysics Data System (ADS)

    Cole, William; Sau, Jay

    Topological superconductivity induced by proximity to a conventional superconductor is only robust against moderate disorder in the parent superconductor, and only when the energy scale of the interface coupling is much smaller than the parent gap. I present detailed calculations of proximity-induced superconductivity in one-dimensional, spin-orbit coupled, semiconductor nanowires when the parent superconductor disorder and interface coupling exceed this limit. This parameter regime is characterized by unique spectroscopic signatures on both sides of the external field tuned topological phase transition. This work is supported by LPS-MPO-CMTC, Microsoft Q, and JQI-NSF-PFC.

  4. Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) Rendezvous Proximity Operations Design and Trade Studies

    NASA Astrophysics Data System (ADS)

    Griesbach, J.; Westphal, J. J.; Roscoe, C.; Hawes, D. R.; Carrico, J. P.

    2013-09-01

    The Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) program is to demonstrate rendezvous proximity operations (RPO), formation flying, and docking with a pair of 3U CubeSats. The program is sponsored by NASA Ames via the Office of the Chief Technologist (OCT) in support of its Small Spacecraft Technology Program (SSTP). The goal of the mission is to demonstrate complex RPO and docking operations with a pair of low-cost 3U CubeSat satellites using passive navigation sensors. The program encompasses the entire system evolution including system design, acquisition, satellite construction, launch, mission operations, and final disposal. The satellite is scheduled for launch in Fall 2015 with a 1-year mission lifetime. This paper provides a brief mission overview but will then focus on the current design and driving trade study results for the RPO mission specific processor and relevant ground software. The current design involves multiple on-board processors, each specifically tasked with providing mission critical capabilities. These capabilities range from attitude determination and control to image processing. The RPO system processor is responsible for absolute and relative navigation, maneuver planning, attitude commanding, and abort monitoring for mission safety. A low power processor running a Linux operating system has been selected for implementation. Navigation is one of the RPO processor's key tasks. This entails processing data obtained from the on-board GPS unit as well as the on-board imaging sensors. To do this, Kalman filters will be hosted on the processor to ingest and process measurements for maintenance of position and velocity estimates with associated uncertainties. While each satellite carries a GPS unit, it will be used sparsely to conserve power. As such, absolute navigation will mainly consist of propagating past known states, and relative navigation will be considered to be of greater importance. For relative observations

  5. Dose ratio proton radiography using the proximal side of the Bragg peak

    SciTech Connect

    Doolan, P. J. Royle, G.; Gibson, A.; Lu, H.-M.; Prieels, D.; Bentefour, E. H.

    2015-04-15

    Purpose: In recent years, there has been a movement toward single-detector proton radiography, due to its potential ease of implementation within the clinical environment. One such single-detector technique is the dose ratio method in which the dose maps from two pristine Bragg peaks are recorded beyond the patient. To date, this has only been investigated on the distal side of the lower energy Bragg peak, due to the sharp falloff. The authors investigate the limits and applicability of the dose ratio method on the proximal side of the lower energy Bragg peak, which has the potential to allow a much wider range of water-equivalent thicknesses (WET) to be imaged. Comparisons are made with the use of the distal side of the Bragg peak. Methods: Using the analytical approximation for the Bragg peak, the authors generated theoretical dose ratio curves for a range of energy pairs, and then determined how an uncertainty in the dose ratio would translate to a spread in the WET estimate. By defining this spread as the accuracy one could achieve in the WET estimate, the authors were able to generate lookup graphs of the range on the proximal side of the Bragg peak that one could reliably use. These were dependent on the energy pair, noise level in the dose ratio image and the required accuracy in the WET. Using these lookup graphs, the authors investigated the applicability of the technique for a range of patient treatment sites. The authors validated the theoretical approach with experimental measurements using a complementary metal oxide semiconductor active pixel sensor (CMOS APS), by imaging a small sapphire sphere in a high energy proton beam. Results: Provided the noise level in the dose ratio image was 1% or less, a larger spread of WETs could be imaged using the proximal side of the Bragg peak (max 5.31 cm) compared to the distal side (max 2.42 cm). In simulation, it was found that, for a pediatric brain, it is possible to use the technique to image a region with a

  6. Intensified-CCD focal plane detector for space applications A second generation

    NASA Technical Reports Server (NTRS)

    Torr, M. R.; Torr, D. G.; Baum, R.; Spielmaker, R.

    1986-01-01

    An intensified-CCD detector system developed for space applications from commercially available components is described. This detector uses components which are readily available and are mechanically, thermally, and optically coupled to produce the final compact system. The CCD is cooled using a Peltier-effect thermoelectric cooler to reduce thermal noise. The image is formed on the photocathode of a proximity-focused image intensifier and is transferred fiber-optically from the intensifier to the CDD. Various photocathode and window materials are used to optimize the system for use within the wavelength range extending from the far UV to the near IR. The basic design, including the image intensifier, intensifier-CCD interface, CCD array, cooling, electronics, and mounting, and the detector performance are described in detail.

  7. Belle II Silicon Vertex Detector

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Bulla, L.; Caria, G.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; De Pietro, G.; Divekar, S. T.; Doležal, Z.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kambara, N.; Kang, K. H.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kumar, R.; Kun, W.; Kvasnička, P.; La Licata, C.; Lanceri, L.; Lettenbicher, J.; Libby, J.; Lueck, T.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Resmi, P. K.; Rozanska, M.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Watanuki, S.; Watanabe, M.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.; Zani, L.

    2017-02-01

    The Belle II experiment at the SuperKEKB asymmetric energy e+e‑ collider in KEK, Japan will operate at an instantaneous luminosity 40 times larger than that of its predecessor, Belle. It is built with an aim of collecting a huge amount of data (50 ab‑1 by 2025) for precise CP violation measurements and new physics search. Thus, we need an accurate vertex determination and reconstruction of low momentum tracks which will be achieved with the help of vertex detector (VXD). The Belle II VXD consists of two layers of DEPFET pixels (`Pixel Detector') and four layers of double-sided silicon microstrip sensors (`Silicon Vertex Detector'), assembled over carbon fibre ribs. In this paper, we discuss about the Belle II Silicon Vertex Detector, especially its design and key features; we also present its module (`ladder') assembly and testing procedures.

  8. Modulated voltage metastable ionization detector

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Humphrey, D. E. (Inventor)

    1985-01-01

    The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder.

  9. Evaluation of bismuth germanate detectors

    SciTech Connect

    Swinth, K.L.; Eschbach, P.A.

    1993-12-01

    During International Atomic Energy Agency (IAEA) safeguards inspections, one of the activities is the verification of materials in the inventory through quantitative or qualitative measurements. Performance of these measurements requires an array of sophisticated detectors, electronics, shields, and stands. This requires the transport and handling of delicate systems that are both heavy and bulky. The increasing sophistication and miniaturization of electronic and computer systems have led to progressive reductions in both the weight and the bulk of such electronics. However, to take full advantage of these improvements, similar reductions must also occur in the size and weight of the detectors. The purpose of this study was to explore the usefulness of one type of new detector, the bismuth germinate (BGO) scintillator. The purpose was to test detectors for their performance at high (fission products) and low ({sup 235}U) photon energies. Information is also provided on other scintillators, including those using photodiode-coupled cesium iodide and germanium orthosilicate.

  10. Simple dynamic electromagnetic radiation detector

    NASA Technical Reports Server (NTRS)

    Been, J. F.

    1972-01-01

    Detector monitors gamma dose rate at particular position in a radiation facility where a mixed neutron-gamma environment exists, thus determining reactor power level changes. Device also maps gamma intensity profile across a neutron-gamma beam.

  11. Encapsulating X-Ray Detectors

    NASA Technical Reports Server (NTRS)

    Conley, Joseph M.; Bradley, James G.

    1987-01-01

    Vapor-deposited polymer shields crystals from environment while allowing X rays to pass. Polymer coating transparental to X rays applied to mercuric iodide detector in partial vacuum. Coating protects crystal from sublimation, chemical attack, and electrical degradation.

  12. Signal processing for semiconductor detectors

    SciTech Connect

    Goulding, F.S.; Landis, D.A.

    1982-02-01

    A balanced perspective is provided on the processing of signals produced by semiconductor detectors. The general problems of pulse shaping to optimize resolution with constraints imposed by noise, counting rate and rise time fluctuations are discussed.

  13. All-electric gas detector

    NASA Technical Reports Server (NTRS)

    Margolis, J. S.

    1979-01-01

    Modified optoacoustic gas detector identifies gases by measuring pressure-induced voltage charge in electric signals. Can detect water vapor, atmospheric fluorocarbons, or certain nitrous or nitric compounds that indicate presence of explosives.

  14. Detector Fundamentals for Reachback Analysts

    SciTech Connect

    Karpius, Peter Joseph; Myers, Steven Charles

    2016-08-03

    This presentation is a part of the DHS LSS spectroscopy course and provides an overview of the following concepts: detector system components, intrinsic and absolute efficiency, resolution and linearity, and operational issues and limits.

  15. Detectors for the SIMURIS payload

    NASA Astrophysics Data System (ADS)

    Patchett, B. E.; Carter, M. K.; Read, P. D.

    1992-05-01

    Detectors for the Solar Ultraviolet Network (SUN) and Imaging Fourier Transform Spectrometer (IFTS) instruments, which are particularly challenging due to the requirements for high total count rate, high pixel count rate, and far UV sensitivity, are discussed. Count rates are exceptionally high for active regions, but with a spatial resolution of 0.001 inches it is also possible that high individual pixel counts will occur even on 'quiet' Sun observations. On the other hand it is planned to use the Solar Interferometric Mission for Ultrahigh Resolution Imaging and Spectroscopy (SIMURIS) for planetary observations where the detectors will be required to work efficiently and with very low noise levels. It seems unlikely that any one detector would suffice for all channels, and in any case this could potentially represent a single point of failure. The design and performance of a range of modular detectors which are built specifically with solar UV observing in mind are discussed along with plans for their future development.

  16. Gated high speed optical detector

    NASA Technical Reports Server (NTRS)

    Green, S. I.; Carson, L. M.; Neal, G. W.

    1973-01-01

    The design, fabrication, and test of two gated, high speed optical detectors for use in high speed digital laser communication links are discussed. The optical detectors used a dynamic crossed field photomultiplier and electronics including dc bias and RF drive circuits, automatic remote synchronization circuits, automatic gain control circuits, and threshold detection circuits. The equipment is used to detect binary encoded signals from a mode locked neodynium laser.

  17. The atmosphere as particle detector

    NASA Technical Reports Server (NTRS)

    Stanev, Todor

    1990-01-01

    The possibility of using an inflatable, gas-filled balloon as a TeV gamma-ray detector on the moon is considered. By taking an atmosphere of Xenon gas there, or by extracting it on the moon, a layman's detector design is presented. In spite of its shortcomings, the exercise illustrates several of the novel features offered by particle physics on the moon.

  18. STAR Vertex Detector Upgrade Development

    SciTech Connect

    Greiner, Leo C.; Matis, Howard S.; Stezelberger, Thorsten; Vu,Chinh Q.; Wieman, Howard; Szelezniak, Michal; Sun, Xiangming

    2008-01-28

    We report on the development and prototyping efforts undertaken with the goal of producing a micro-vertex detector for the STAR experiment at the RHIC accelerator at BNL. We present the basic detector requirements and show a sensor development path, conceptual mechanical design candidates and readout architecture. Prototyping and beam test results with current generation MimoSTAR-2 sensors and a readout system featuring FPGA based on-the-fly hit finding and data sparsification are also presented.

  19. Living Membranes as Environmental Detectors

    DTIC Science & Technology

    2016-02-19

    addition to the core results, we have explored important aspects of the system, including loading capacity, long-term stability, detection capacity, and...Oct-2011 30-Sep-2015 Approved for Public Release; Distribution Unlimited Final Report: Living Membranes as Environmental Detectors The views, opinions...Report: Living Membranes as Environmental Detectors Report Title The work conducted over the course of this program has made significant progress

  20. Improvement in Ge Detector Cooling

    DTIC Science & Technology

    2008-09-01

    lifetime and integrity, improve performance, and resolve the need to procure and handle liquid nitrogen (LN2). Both cryocoolers offer advantages over...place, the 22-liter reservoir of LN2 provides up to 7 days of cooling to the detector with no risk of a partial thermal cycle or warm -up. The detector... warmed for repairs. Moreover, the interchangeability of dipsticks and Cryo-Cycle™ coolers allows independent replacement of either of the two most

  1. Long range alpha particle detector

    DOEpatents

    MacArthur, D.W.; Wolf, M.A.; McAtee, J.L.; Unruh, W.P.; Cucchiara, A.L.; Huchton, R.L.

    1993-02-02

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  2. Modern Detectors for Astroparticle Physics

    SciTech Connect

    Adriani, Oscar

    2005-10-12

    This paper focus on the necessary requirements for a modern astroparticle physics detector based either on stratospheric balloons, either on satellite. The main technical solutions used to build a reliable detector are described. Finally, the most relevant experiments that have been developed with the INFN contribution and that will be ready in the near future (both for {gamma} and charged cosmic rays detection) are described.

  3. Directional detector of gamma rays

    DOEpatents

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  4. Coal-shale interface detector

    NASA Technical Reports Server (NTRS)

    Reid, H., Jr. (Inventor)

    1980-01-01

    A coal-shale interface detector for use with coal cutting equipment is described. The detector consists of a reciprocating hammer with an accelerometer to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  5. Radiation Hazard Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA technology has made commercially available a new, inexpensive, conveniently-carried device for protection, of people exposed to potentially dangerous levels of microwave radiation. Microwaves are radio emissions of extremely high frequency. They can be hazardous but the degree of hazard is not yet well understood. Generally, it is believed that low intensity radiation of short duration is not harmful but that exposure to high levels can induce deep internal burns, affecting the circulatory and nervous systems, and particularly the eyes. The Department of Labor's Occupational Safety and Health Administration (OSHA) has established an allowable safe threshold of exposure. However, people working near high intensity sources of microwave energy-for example, radar antennas and television transmitters-may be unknowingly exposed to radiation levels beyond the safe limit. This poses not only a personal safety problem but also a problem for employers in terms of productivity loss, workman's compensation claims and possible liability litigation. Earlier-developed monitoring devices which warn personnel of dangerous radiation levels have their shortcomings. They can be cumbersome and awkward to use while working. They also require continual visual monitoring to determine if a person is in a dangerous area of radiation, and they are relatively expensive, another deterrent to their widespread adoption. In response to the need for a cheaper and more effective warning system, Jet Propulsion Laboratory developed, under NASA auspices, a new, battery-powered Microwave Radiation Hazard Detector. To bring the product to the commercial market, California Institute Research Foundation, the patent holder, granted an exclusive license to Cicoil Corporation, Chatsworth, California, an electronic components manufacturer.

  6. The theoretical simulation on electrostatic distribution of 1st proximity region in proximity focusing low-light-level image intensifier

    NASA Astrophysics Data System (ADS)

    Zhang, Liandong; Bai, Xiaofeng; Song, De; Fu, Shencheng; Li, Ye; Duanmu, Qingduo

    2015-03-01

    Low-light-level night vision technology is magnifying low light level signal large enough to be seen by naked eye, which uses the photons - photoelectron as information carrier. Until the micro-channel plate was invented, it has been possibility for the realization of high performance and miniaturization of low-light-level night vision device. The device is double-proximity focusing low-light-level image intensifier which places a micro-channel plate close to photocathode and phosphor screen. The advantages of proximity focusing low-light-level night vision are small size, light weight, small power consumption, no distortion, fast response speed, wide dynamic range and so on. It is placed parallel to each other for Micro-channel plate (both sides of it with metal electrode), the photocathode and the phosphor screen are placed parallel to each other. The voltage is applied between photocathode and the input of micro-channel plate when image intensifier works. The emission electron excited by photo on the photocathode move towards to micro-channel plate under the electric field in 1st proximity focusing region, and then it is multiplied through the micro-channel. The movement locus of emission electrons can be calculated and simulated when the distributions of electrostatic field equipotential lines are determined in the 1st proximity focusing region. Furthermore the resolution of image tube can be determined. However the distributions of electrostatic fields and equipotential lines are complex due to a lot of micro-channel existing in the micro channel plate. This paper simulates electrostatic distribution of 1st proximity region in double-proximity focusing low-light-level image intensifier with the finite element simulation analysis software Ansoft maxwell 3D. The electrostatic field distributions of 1st proximity region are compared when the micro-channel plates' pore size, spacing and inclination angle ranged. We believe that the electron beam movement

  7. New class of neutron detectors

    SciTech Connect

    Czirr, J.B.

    1997-09-01

    An optimized neutron scattering instrument design must include all significant components, including the detector. For example, useful beam intensity is limited by detector dead time; detector pixel size determines the optimum beam diameter, sample size, and sample to detector distance; and detector efficiency vs. wavelength determines the available energy range. As an example of the next generation of detectors that could affect overall instrumentation design, we will describe a new scintillator material that is potentially superior to currently available scintillators. We have grown and tested several small, single crystal scintillators based upon the general class of cerium-activated lithium lanthanide borates. The outstanding characteristic of these materials is the high scintillation efficiency-as much as five times that of Li-glass scintillators. This increase in light output permits the practical use of the exothermic B (n, alpha) reaction for low energy neutron detection. This reaction provides a four-fold increase in capture cross section relative to the Li (n, alpha) reaction, and the intriguing possibility of demanding a charged-particle/gamma ray coincidence to reduce background detection rates. These new materials will be useful in the thermal and epithermal energy ran at reactors and pulsed neutron sources.

  8. Performance characteristics of proximity focused ultraviolet image converters

    NASA Technical Reports Server (NTRS)

    Williams, J. T.; Feibelman, W. A.

    1973-01-01

    Performance characteristics of Bendix type BX 8025-4522 proximity focused image tubes for ultraviolet to visible light conversion are presented. Quantum efficiency, resolution, background, geometric distortion, and environmental test results are discussed. The converters use magnesium fluoride input windows with Cs - Te photocathodes, and P-11 phosphors on fiber optic output windows.

  9. Sharpening a Tool for Teaching: The Zone of Proximal Development

    ERIC Educational Resources Information Center

    Wass, Rob; Golding, Clinton

    2014-01-01

    Vygotsky's Zone of Proximal Development (ZPD) provides an important understanding of learning, but its implications for teachers are often unclear or limited and could be further explored. We use conceptual analysis to sharpen the ZPD as a teaching tool, illustrated with examples from teaching critical thinking in zoology. Our conclusions are…

  10. Scaffolding Critical Thinking in the Zone of Proximal Development

    ERIC Educational Resources Information Center

    Wass, Rob; Harland, Tony; Mercer, Alison

    2011-01-01

    This paper explores student experiences of learning to think critically. Twenty-six zoology undergraduates took part in the study for three years of their degree at the University of Otago, New Zealand. Vygotsky's developmental model of the Zone of Proximal Development (ZPD) provided a framework as we examined how critical thinking was developed.…

  11. Unconventional oil and gas: The role of politics and proximity

    NASA Astrophysics Data System (ADS)

    Schelly, Chelsea

    2016-10-01

    Political divisions are important in understanding public perceptions of unconventional oil and natural gas development, but so is proximity to drilling activities. New research highlights that, as geographical distance from development areas increases, political ideology becomes more influential in explaining diverging perceptions.

  12. Children's Attentional Processing of Mother and Proximity Seeking

    PubMed Central

    2015-01-01

    Attachment expectations regarding the availability of mother as a source for support are supposed to influence distressed children’s support seeking behavior. Because research is needed to better understand the mechanisms related to support seeking behavior, this study tested the hypothesis that the cognitive processing of mother-related information is linked to proximity and support seeking behavior. Uncertainty in maternal support has been shown to be characterized by a biased attentional encoding of mother, reducing the breadth of children’s attentional field around her. We investigated whether this attentional bias is related to how long distressed children wait before seeking their mother’s proximity. Thirty-three children (9-11 years) participated in this study that consisted of experimental tasks to measure attentional breadth and to observe proximity seeking behavior and of questionnaires to measure confidence in maternal support and experienced distress. Results suggested that distressed children with a more narrow attentional field around their mother wait longer to seek her proximity. Key Message: These findings provide a first support for the hypothesis that the attentional processing of mother is related to children’s attachment behavior. PMID:25927921

  13. Housing Projects and Crime: Testing a Proximity Hypothesis.

    ERIC Educational Resources Information Center

    Roncek, Dennis W.; And Others

    1981-01-01

    Proximity to public housing projects has a small but statistically significant effect on the incidence of violent crime. However, adjacency to public housing is a weak predictor of violent crime once the socioeconomic and housing characteristics of the adjacent blocks are taken into account. (Author/GC)

  14. Bridging Pedagogies: Drama, Multiliteracies, and the Zone of Proximal Development

    ERIC Educational Resources Information Center

    Macy, Leonora

    2016-01-01

    This article examines how one educator embraced Vygotsky's concept of the zone of proximal development (ZPD) while using drama to scaffold learning about Dr. Seuss's "The Lorax" for first-grade students. This learning event is interpreted with reference to the ZPD and the New London Group's pedagogy of multiliteracies. The author asserts…

  15. Vygotsky's Zone of Proximal Development: Implications for Gifted Education.

    ERIC Educational Resources Information Center

    Shaughnessy, Michael F.

    This paper reviews Lev Vygotsky's theories concerning optimizing of potential through assistance, support, or instruction. The paper notes that there is a "zone of proximal development" or a band around intelligence quotient (IQ) scores reflecting one's true potential. IQ tests are generally well-standardized and "static,"…

  16. A pedunculated intraluminal foregut reduplication cyst of the proximal esophagus.

    PubMed

    Craig, S R; Wallace, W H; Scott, D J; Cameron, E W

    1998-06-01

    A 66-year-old woman with a 3-month history of progressive dysphagia underwent transoral excision of a pedunculated cyst arising in the proximal esophagus. Histologic examination confirmed a pedunculated intraluminal foregut reduplication cyst. She remains well 1 year after excision with no recurrence of dysphagia.

  17. A Region of Proximal Learning Model of Study Time Allocation

    ERIC Educational Resources Information Center

    Metcalfe, J.; Kornell, N.

    2005-01-01

    A Region of Proximal Learning model is proposed emphasizing two components to people's study time allocation, controlled by different metacognitive indices. The first component is choice, which is further segmented into two stages: (1) a decision of whether to study or not and (2) the order of priority of items chosen. If the people's Judgments of…

  18. Proximal Positioning: A Strategy of Practice in Violin Pedagogy.

    ERIC Educational Resources Information Center

    Gholson, Sylvia A.

    1998-01-01

    Attempts to identify and characterize patterns of expert teaching practice as they occur in context, and to confirm these patterns through processes of verification. Observes teacher Dorothy DeLay in her studio, documenting her teaching through notes, audiotapes, and contextual artifacts. Discusses DeLay's theory of proximal positioning in…

  19. Proximal versus Distal Validity Coefficients for Teacher Observational Instruments

    ERIC Educational Resources Information Center

    Marzano, Robert J.

    2014-01-01

    This study examined the use of measures of student learning computed using end-of-year assessments (distal measures) versus measures of student learning associated with a single lesson (proximal measures) as criterion scores for the validity of observations of teachers' pedagogical skills. The validity coefficients computed using distal…

  20. Proximity to Coast Is Linked to Climate Change Belief

    PubMed Central

    Milfont, Taciano L.; Evans, Laurel; Sibley, Chris G.; Ries, Jan; Cunningham, Andrew

    2014-01-01

    Psychologists have examined the many psychological barriers to both climate change belief and concern. One barrier is the belief that climate change is too uncertain, and likely to happen in distant places and times, to people unlike oneself. Related to this perceived psychological distance of climate change, studies have shown that direct experience of the effects of climate change increases climate change concern. The present study examined the relationship between physical proximity to the coastline and climate change belief, as proximity may be related to experiencing or anticipating the effects of climate change such as sea-level rise. We show, in a national probability sample of 5,815 New Zealanders, that people living in closer proximity to the shoreline expressed greater belief that climate change is real and greater support for government regulation of carbon emissions. This proximity effect held when adjusting for height above sea level and regional poverty. The model also included individual differences in respondents' sex, age, education, political orientation, and wealth. The results indicate that physical place plays a role in the psychological acceptance of climate change, perhaps because the effects of climate change become more concrete and local. PMID:25047568

  1. Residential proximity to gasoline service stations and preterm birth.

    PubMed

    Huppé, Vicky; Kestens, Yan; Auger, Nathalie; Daniel, Mark; Smargiassi, Audrey

    2013-10-01

    Preterm birth (PTB) is a growing public health problem potentially associated with ambient air pollution. Gasoline service stations can emit atmospheric pollutants, including volatile organic compounds potentially implicated in PTB. The objective of this study was to evaluate the relationship between residential proximity to gasoline service stations and PTB. Singleton live births on the Island of Montreal from 1994 to 2006 were obtained (n=267,478). Gasoline service station locations, presence of heavy-traffic roads, and neighborhood socioeconomic status (SES) were determined using a geographic information system. Multivariable logistic regression was used to analyze the association between PTB and residential proximity to gasoline service stations (50, 100, 150, 200, 250, and 500 m), accounting for maternal covariates, neighborhood SES, and heavy-traffic roads. For all distance categories beyond 50 m, presence of service stations was associated with a greater odds of PTB. Associations were robust to adjustment for maternal covariates for distance categories of 150 and 200 m but were nullified when adjusting for neighborhood SES. In analyses accounting for the number of service stations, the likelihood of PTB within 250 m was statistically significant in unadjusted models. Associations were, however, nullified in models accounting for maternal covariates or neighborhood SES. Our results suggest that there is no clear association between residential proximity to gasoline service stations in Montreal and PTB. Given the correlation between proximity of gasoline service stations and SES, it is difficult to delineate the role of these factors in PTB.

  2. Osteosynthesis of the proximal femur anchorage of a cervical nail.

    PubMed

    el Banna, S; Burny, F; Bourgois, R; Donkerwolcke, M; Moulart, F

    1994-01-01

    One of the factors determining the stability of osteosynthesis is the mechanical strength of the bone fragments required for the anchorage of the implant. The aim is to study the driving of a Thornton nail in the proximal epiphysis of a human femur as a way to measure the strength of the trabecular bone and to predict the stability of the implanted system.

  3. Distal and variably proximal causes: education, obesity, and health.

    PubMed

    Schafer, Markus H; Ferraro, Kenneth F

    2011-11-01

    Medical sociologists hold that social conditions generate disparities across a host of health conditions through exposure to a variety of more proximate risk factors. Though distal and proximal causes jointly influence disease, the nature of risk accumulation may differ appreciably by the link of a proximal cause to the outcome in question. This paper employs a representative sample of over 3000 American older adults to examine whether position in the educational gradient amplifies the effect of obesity on two health outcomes. Results indicate that educational inequalities amplify the effect of high body mass index on disability (unstandardized coefficients across education groups range from -.05 [ns] to .26 [p < .01] among overweight respondents yet reach .17 [ns] to .73 [p < .001] among severely obese adults), but fail to amplify the consequences of severe obesity in the case of C-reactive protein (CRP) levels. Instead, educational gradients in CRP are most pronounced at lower levels of body mass. Sex-specific analyses further clarify these patterns, as the connections between CRP and body mass are particularly strong among women. We conclude that risk accumulation processes differ based on the proximity of causes to the health outcome under examination.

  4. Constructing a MEZOPED (Multiple Electronic Zone of Proximal Development).

    ERIC Educational Resources Information Center

    Murfin, Brian

    1994-01-01

    This paper presents the theoretical background for using computer-mediated communication to link children and scientists in a multiple electronic zone of proximal development. It is postulated that students will be able to perform at higher cognitive levels as a result of this increased interment contact with many adults. (LZ)

  5. Reflections on the Ecolab and the Zone of Proximal Development

    ERIC Educational Resources Information Center

    Luckin, Rosemary; du Boulay, Benedict

    2016-01-01

    In 1999 we reported a study that explored the way that Vygotsky's Zone of Proximal Development could be used to inform the design of an Interactive Learning Environment called the Ecolab. Two aspects of this work have subsequently been used for further research. Firstly, there is the interpretation of the ZPD and its associated theory that was…

  6. Proximal dup(10q): Case report and literature review

    SciTech Connect

    Barritt, J.A.; Teague, K.E.; Bodurtha, J.N.

    1994-09-01

    We report a case of a proximal dir dup(10q) in a female with multiple congenital anomalies. During infancy she was noted to gave growth retardation, microcephaly, microphthalmia, coloboma, a long, beaked nose, posteriorly rotated ears with simple helices, full bowed lips, widely-spaced nipples, broad first toes, hypermobile and proximally placed thumbs, a heart murmur, PDA, and coarctation of the aorta. Additional findings at age 13 included a full columella, short philtrum, thin limbs, bilateral blindness, and mental retardation, as well as continued growth retardation. Her medical history included precocious puberty at age 8 and a diagnosis of hyperactivity. Using FISH with multiple probes combined with GTG-banding, the aberrant chromosome was determined to be a dir dup(10)(q21{r_arrow}q22). Parental chromosomes were normal and the family history was unremarkable. The parental origin of the dir dup(10) is being assessed using DNA markers. Five similar cases of proximal dup(10q) have been reported previously. Consistent characteristics include low birth weight, developmental and psychomotor delay, growth retardation, and microcephaly. Also found in most cases were short prominent philtrum, bowed mouth, PDA, thin limbs, coloboma, micropthalmia, deep set eyes, and other ocular anomalies. Our case is unique in that she has a long, beaked nose, precocious puberty, and hyperactivity. Future studies such as this, using molecular cytogenetic techniques to better define the chromatin involved in proximal dup(10q), may lead to its recognition as a distinct clinical phenotype.

  7. Metastatic transitional cell carcinoma in proximal humerus of a dog

    PubMed Central

    Malek, Sarah; Murphy, Kimberly A.; Nykamp, Stephanie G.; Allavena, Rachel

    2011-01-01

    Transitional cell carcinoma (TCC) was diagnosed in the proximal humerus of a dog that was presented with persistent right forelimb lameness with no clinical signs of urinary tract involvement. A diagnosis of TCC was made from surgical biopsy of the humeral lesion with subsequent necropsy revealing the prostatic urethra as the primary site of the tumor. PMID:22379204

  8. Proximity to coast is linked to climate change belief.

    PubMed

    Milfont, Taciano L; Evans, Laurel; Sibley, Chris G; Ries, Jan; Cunningham, Andrew

    2014-01-01

    Psychologists have examined the many psychological barriers to both climate change belief and concern. One barrier is the belief that climate change is too uncertain, and likely to happen in distant places and times, to people unlike oneself. Related to this perceived psychological distance of climate change, studies have shown that direct experience of the effects of climate change increases climate change concern. The present study examined the relationship between physical proximity to the coastline and climate change belief, as proximity may be related to experiencing or anticipating the effects of climate change such as sea-level rise. We show, in a national probability sample of 5,815 New Zealanders, that people living in closer proximity to the shoreline expressed greater belief that climate change is real and greater support for government regulation of carbon emissions. This proximity effect held when adjusting for height above sea level and regional poverty. The model also included individual differences in respondents' sex, age, education, political orientation, and wealth. The results indicate that physical place plays a role in the psychological acceptance of climate change, perhaps because the effects of climate change become more concrete and local.

  9. Approximate proximal point methods for convex programming problems

    SciTech Connect

    Eggermont, P.

    1994-12-31

    We study proximal point methods for the finite dimensional convex programming problem minimize f(x) such that x {element_of} C, where f : dom f {contained_in} RIR is a proper convex function and C {contained_in} R is a closed convex set.

  10. Constructing Proximity: Relating to Readers in Popular and Professional Science

    ERIC Educational Resources Information Center

    Hyland, Ken

    2010-01-01

    The view of academic discourse as a rhetorical activity involving interactions between writers and readers is now central to most perspectives on EAP, but these interactions are conducted differently in different disciplinary and generic contexts. In this paper I use the term "proximity" to refer to a writer's control of those rhetorical features…

  11. West and south elevations, view to northeast. Proximity of house ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    West and south elevations, view to northeast. Proximity of house and trees precluded photography of north and east elevations, but building is symmetrical. Entry is in east elevation; windmill was mounted at third story level on north elevation. - Drew-Sherwood Farm, Tank House, 7927 Elk Grove Boulevard, Elk Grove, Sacramento County, CA

  12. Proximal femoral diaphyseal cross-sectional geometry in Orrorin tugenensis.

    PubMed

    Bleuze, M

    2012-06-01

    Functional adaptations in femora attributed to Orrorin tugenensis provide a unique opportunity to examine locomotor behavior very early in the hominin lineage. This study examines relative cortical thickness, cortical area (CA) relative to the polar moment of area (J), and J relative to femoral head superoinferior diameter (FHD) in the proximal femur of O. tugenensis (BAR 1002'00 and BAR 1003'00), and compares patterns in this early hominin with those in a sample of modern humans (N=31), Plio-Pleistocene fossil hominins (N=8), Pan troglodytes troglodytes (N=13), and Pan paniscus (N=3). Relative cortical thickness and CA relative to J in the proximal femur of O. tugenensis are comparable to patterns generally found in other fossil hominins. Proximal femoral diaphyseal J relative to FHD in BAR 1002'00 is similar to patterns found in fossil hominins typically attributed to a non-Homo genus (i.e. SK 82, SK 97, and KNM-ER 738). Cross-sectional geometric patterns in the proximal femur of Orrorin are not unlike those generally found in australopithecines and fossil Homo. While the results of this study cannot confirm unequivocally that Orrorin was an obligate biped, a mode of locomotion comparable to that proposed for australopithecines cannot be ruled out.

  13. Rendezvous and Proximity Operations of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2005-01-01

    Space Shuttle rendezvous missions present unique challenges that were not fully recognized when the Shuttle was designed. Rendezvous targets could be passive (i.e., no lights or transponders), and not designed to facilitate Shuttle rendezvous, proximity operations, and retrieval. Shuttle reaction control system jet plume impingement on target spacecraft presented induced dynamics, structural loading, and contamination concerns. These issues, along with limited reaction control system propellant in the Shuttle nose, drove a change from the legacy Gemini/Apollo coelliptic profile to a stable orbit profile, and the development of new proximity operations techniques. Multiple scientific and on-orbit servicing missions, and crew exchange, assembly and replenishment flights to Mir and to the International Space Station drove further profile and piloting technique changes. These changes included new proximity operations, relative navigation sensors, and new computer generated piloting cues. However, the Shuttle's baseline rendezvous navigation system has not required modification to place the Shuttle at the proximity operations initiation point for all rendezvous missions flown.

  14. Conservative Treatment for Bilateral Displaced Proximal Humerus Head Fracture

    PubMed Central

    Velutini-Becker, Ricardo; Aguilar-Alcalá, Luis D

    2016-01-01

    Proximal humerus fracture represents five to eight percent of all fractures and is twice as common in women than in men. Most cases of displaced fracture of the proximal humerus are treated surgically; it is probable that more cases are preferred to be treated surgically greater than required. The optimal treatment for these fractures remains controversial, but physicians have a tendency to treat via open reduction and fixation with angular locking plates or glenohumeral arthroplasty.  We present a case of a 71-year-old woman with bilateral displaced proximal humeral fracture. Conservative treatment was initiated with two hanging casts, achieving radiological reduction on week one. After two additional weeks of casting, treatment continued with radiologic control and home physical therapy, ultimately an excellent functional outcome and adequate radiological reduction was obtained.    Even in bilaterally displaced proximal humerus fractures, conservative treatment can be an efficient option, reducing complications, reaching adequate functional results and acceptable radiographic reduction.​ PMID:27489750

  15. On the Surprising Salience of Curvature in Grouping by Proximity

    ERIC Educational Resources Information Center

    Strother, Lars; Kubovy, Michael

    2006-01-01

    The authors conducted 3 experiments to explore the roles of curvature, density, and relative proximity in the perceptual organization of ambiguous dot patterns. To this end, they developed a new family of regular dot patterns that tend to be perceptually grouped into parallel contours, dot-sampled structured grids (DSGs). DSGs are similar to the…

  16. Interlanguage Pragmatics in the Zone of Proximal Development

    ERIC Educational Resources Information Center

    Ohta, Amy Snyder

    2005-01-01

    Vygotsky's zone of proximal development (ZPD) has been fruitfully applied in L2 research that examines second and foreign language learning. This paper considers the applicability of the ZPD to interlanguage pragmatics instruction and research. First, the ZPD is defined [Vygotsky, L.S., 1978. Mind in Society: The Development of Higher…

  17. 14 CFR 125.173 - Fire detectors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fire detectors. 125.173 Section 125.173....173 Fire detectors. Fire detectors must be made and installed in a manner that assures their ability... subjected. Fire detectors must be unaffected by exposure to fumes, oil, water, or other fluids that may...

  18. 14 CFR 125.173 - Fire detectors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fire detectors. 125.173 Section 125.173....173 Fire detectors. Fire detectors must be made and installed in a manner that assures their ability... subjected. Fire detectors must be unaffected by exposure to fumes, oil, water, or other fluids that may...

  19. 14 CFR 125.173 - Fire detectors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fire detectors. 125.173 Section 125.173....173 Fire detectors. Fire detectors must be made and installed in a manner that assures their ability... subjected. Fire detectors must be unaffected by exposure to fumes, oil, water, or other fluids that may...

  20. 14 CFR 125.173 - Fire detectors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fire detectors. 125.173 Section 125.173....173 Fire detectors. Fire detectors must be made and installed in a manner that assures their ability... subjected. Fire detectors must be unaffected by exposure to fumes, oil, water, or other fluids that may...